Fire & Gas Detection in Process Industry

Topics Covered

- Hazard Management and Requirement of F&G Detection in Industry
- Working Principles of Fire, Heat & Gas Detectors
- Detectors There Coverage
- Comparison of Fire & Gas Detectors
- Detector Selection and their Applications
- Cause and & Effect
- Comparing QRA Results, Hazardous Area and F & G Layout
- Exercise Selection and Placement of Fire & Gas Detectors
- Considerations when placing F& G Detectors and Areas of Concerns
- Working of F & G Safety Systems
- Fire, Smoke and Gas Detection Selection and Application Guide
- Sample Layouts of Fire, Smoke and Gas Detectors
- Detector Voting Logic Not Covered
- F&G 3-D Mapping Not Covered

Presentation Part - 1

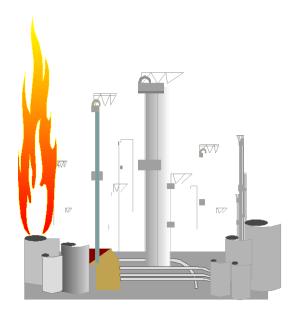
Hazard Management and Requirement of F & G Detection in Industry

F&G Applications in Process Industry

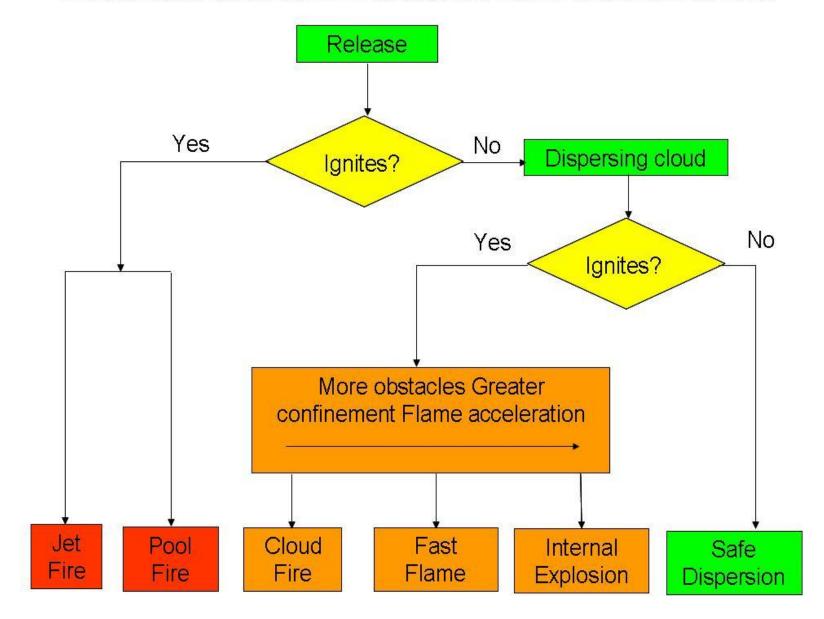
Wide range of process industries use and manufacture Hydrocarbon and Toxic Liquids and Gas:

- Gas Compressor Stations
- Pipelines
- ☐ Gas Turbine Power Plants
- ☐ Oil and Gas Terminals
- ☐ Refineries
- ☐ Oil and Gas Storage Tanks
- ☐ Oil and Gas Platforms

Type of Hazards in Process Industry


Hazard :

- Toxicity
- Flammability
- Reactivity

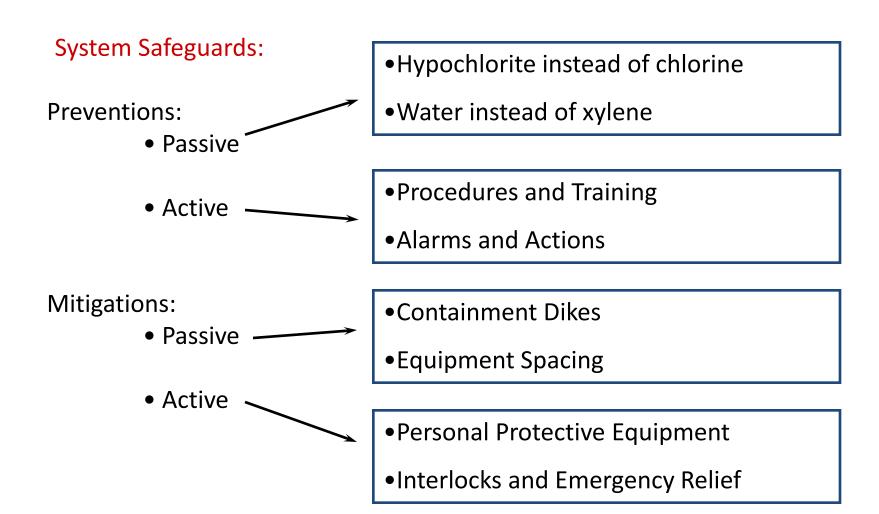

Chemical Hazard Examples:

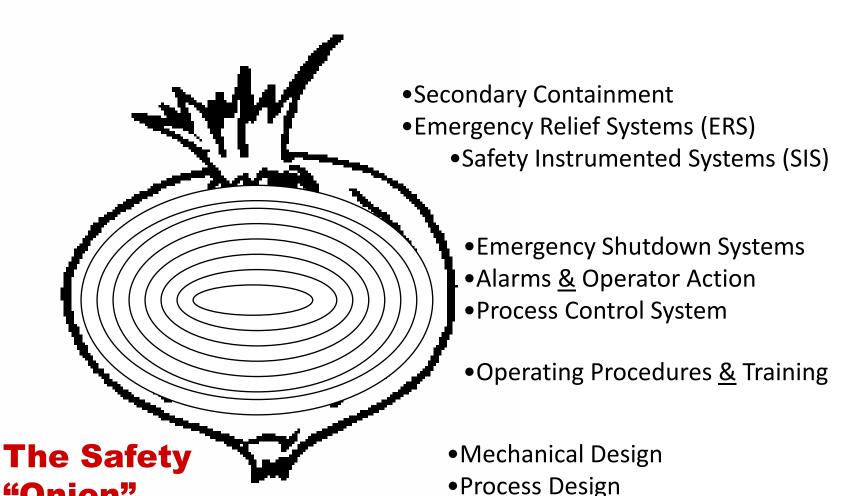
- Hydrocarbon (flammable gas and liquids)
- Sulfuric Acid (toxic and reactive)
- Chlorine (toxic and reactive)
- Hydrogen Peroxide (unstable and reactive)

Hazardous Material Release

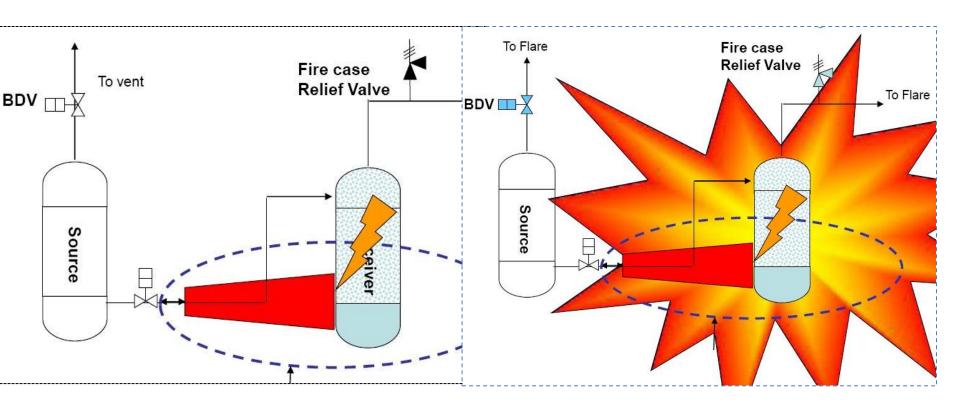
Hazardous Scenarios of Concern

- combustible
 - methane (CH₄); hydrogen (H₂)


- toxic
 - carbon monoxide (CO); hydrogen sulphide (H₂S)


- asphyxiant
 - nitrogen (N₂); carbon dioxide (CO₂)

Hazard Management



Multi Layer Safeguards

"Onion"

Layers of Protection and Failures

Fire case relief valve on Receiver opens to protect against overpressure. Following relief liquid level decrease in receiver and vapour part of vessel is exposed to jet fire.

If Receiver is not protected by passive fire protection it will fail in less than 15 min and cause BLEVE.

Multi Layer Safeguards

COMMUNITY EMERGENCY RESPONSE

PLANT EMERGENCY RESPONSE

MITIGATION

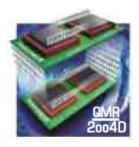
Mechanical Mitigation Systems Safety Instrumented Control Systems Safety Instrumented Mitigation Systems

PREVENTION

Mechanical Protection System
Process Alarms
Operator Supervision
Safety Instrumented Control Systems
Safety Instrumented Prevention Systems

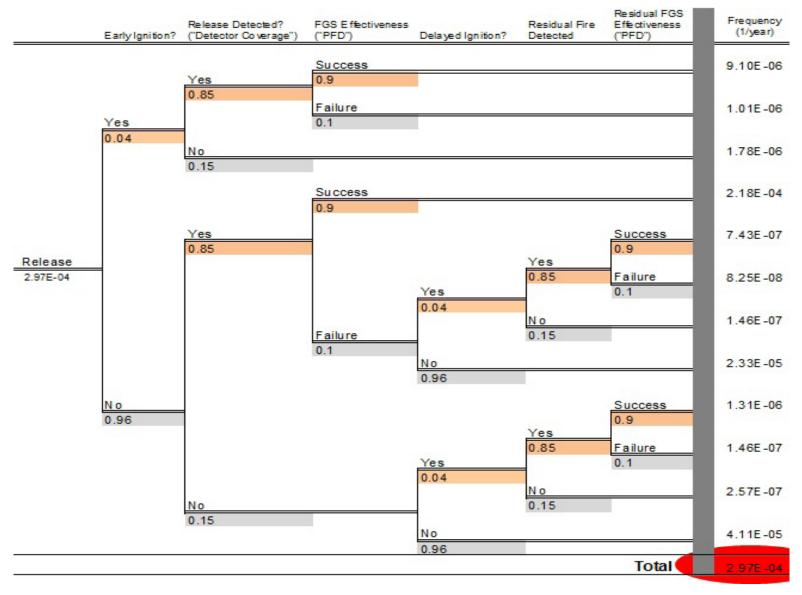
Basic Process Control Systems Monitoring Systems (process alarms) Operator Supervision

Process Design


Safety Layer(s)

Mitigation

e.g. Fire & Gas Safety System


Prevention

e.g. ESD Safety System

Protection layers specified in IEC 61511

Risk Calculation Using Event Tree for an Release Scenario

Risk = Consequence X Likelihood. Risk associated with scenarios in each zone can be modeled by a event tree as shown in Figure. The risk posed by each scenario will be modified taking into account various mitigating factors, such as ignition probability, explosion probability, occupancy probability, and mitigation effectiveness.

Financial Analysis of F&G

Jet or Pool fire Consequence, Frequency & Loss

Hole Size	Release	Personnel Impact	Asset Loss	Production loss	Release F	requency
25 mm	0,1 Kg/Sec	Serious Injury	\$10 MM	1 Months	1.2E-02	1 in 80 years
75 mm	0,9 Kg/Sec	Single Fatality	\$30 MM	2 Months	1.4E-05	1 in 70 000 years

Summary of FGS Effectiveness

	Unmitigated		Mitigated with F&G System	
Serious Injury Frequency	1.3E-04	1 in 7,600 years	2.1E-04	1 in 4,733 years
Single Fatality Frequency	1.5E-04	1 in 6,846 years	8.7E-05	1 in 11,518 years
Annualized Financial Risk	\$ 172,000	(US Dollars)	\$ 85,000	(US Dollars)

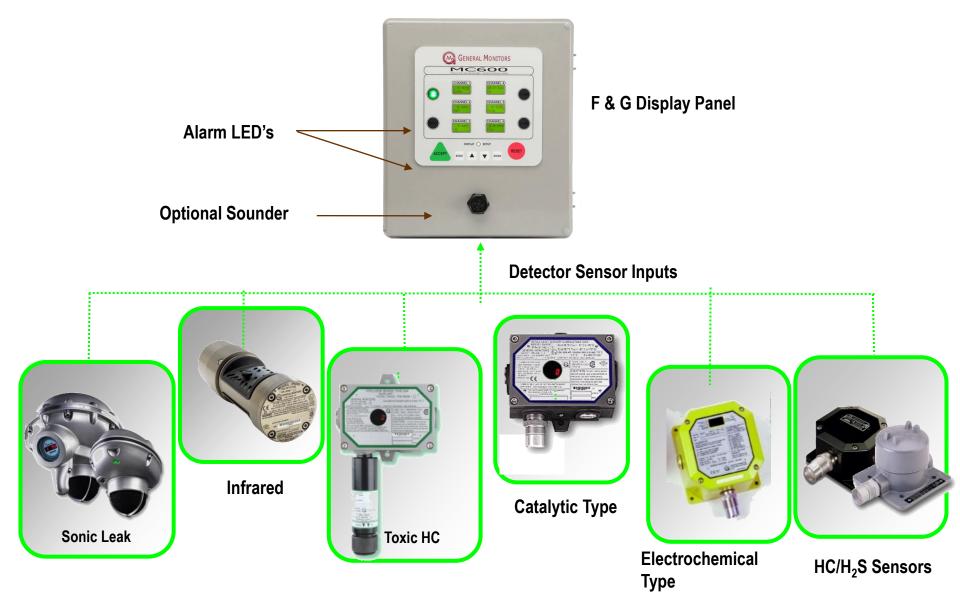
International Safety Code: RequirementS of Fire Detection Device

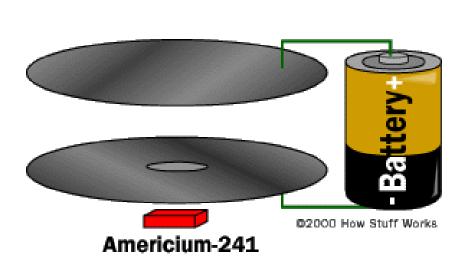
Location Facility	Hazard	Fixed Detector Types	Reference
Control Room	Electric Fire	MAC / Smoke	NFPA 75, Section 6.2
Switchgear Room	Electric Fire	MAC / Smoke	NFPA 850, Section 5.5
Turbine Package	Electric & HC Fire	Heat / Optical	NFPA 30, Section 5.5.5.1
Process Units	Hydrocarbon Fire	MAC / Heat / Optical	NFPA 30, Section 5.5.5.1
Pump Stations	Hydrocarbon Fire	MAC / Heat / Optical	NFPA 30, Section 5.5.5.1
Loading Facilities	Hydrocarbon Fire	MAC / Heat / Optical	NFPA 30, Section 5.5.5.1
Tank or Vessel Storage	Hydrocarbon Fire	MAC / Heat / Optical	NFPA 30, Section 5.5.5.1

Working Principles of Fire, Heat & Gas Detectors

FIRE SIGNATURES

When fire begins - changes occur in the surrounding environment, which are termed "fire signatures" (smoke, heat, light, and gas).

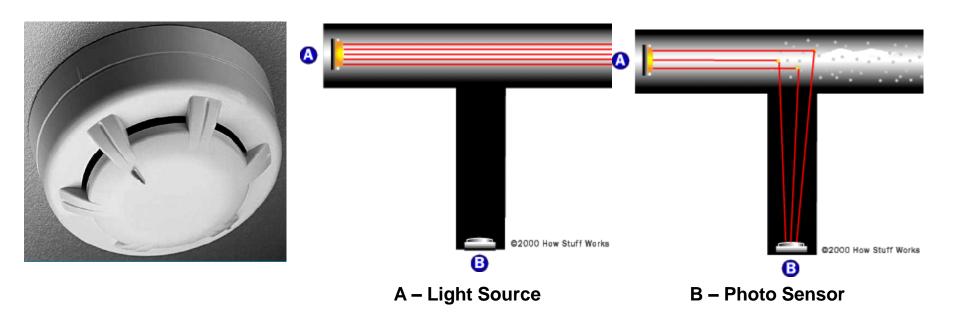

F & G Detectors - Types


- Toxic Gas Detectors
- Point/Open Path Detectors
- Flame Detectors
- Ultrasonic Gas Leak Detectors
- Heat and Smoke Detectors
- Integrated Fire and Gas Detection Systems

Fire and gas detection systems are designed to mitigate unexpected events. Designers need to know what is available in order to choose the correct systems for their plants

Hydro Carbon Detector Types

WORKING PRINCIPLE - SMOKE DETECTORS (Ionization Type)



Ionization Type Detectors:

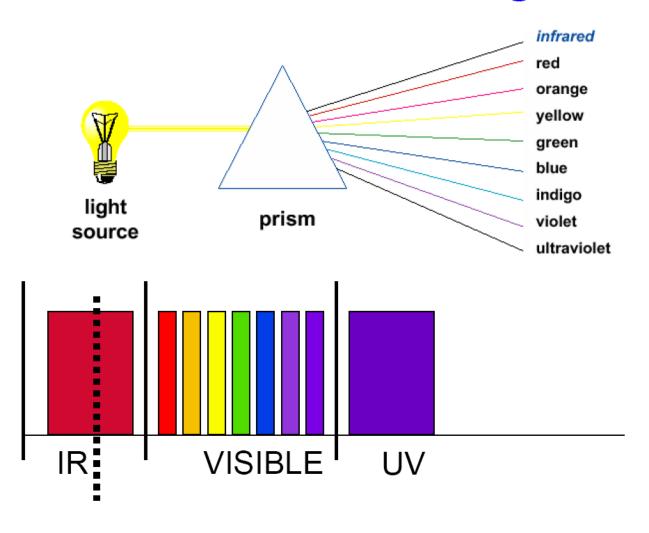
- Ionization detectors operate by using a small amount of radioactive material to ionize (electrically charge) the air within a sensing chamber in the detector. The ionization of the air permits the air to conduct electricity between two electrodes. As smoke enters the chamber, the smoke particles become ionized and reduce the conductivity of the air between the electrodes.
- These detectors also have the greatest false alarm rate of smoke detectors from cooking and other non-fire sources.

WORKING PRINCIPLE - SMOKE DETECTORS (Photoelectric)

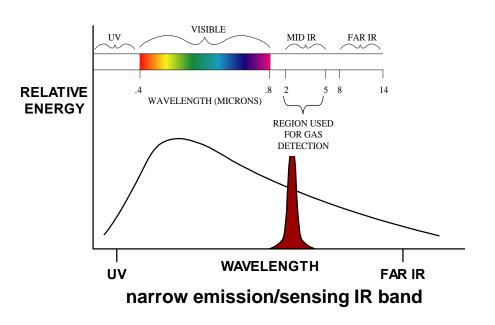
Photoelectric Type Detectors:

- Photoelectric detectors operate on one of three different principles:
- 1) Light obscuration principle
- 2) Light scattering principle
- Light obscuration principle photoelectric detectors operate by projecting a light beam onto a photosensitive device.
- As smoke particles enter the chamber the light intensity diminishes
- As smoke particles enter the sensing chamber, light is reflected (scattered) from the smoke particles onto the photosensitive device

WORKING PRINCIPLE - FIXED HEAT DETECTORS

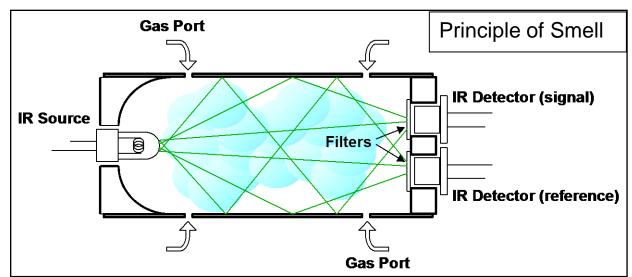

FIXED TEMPERATURE / HEAT DETECTORS

Fixed temperature heat detectors - designed to alarm when the sensing element reaches a predetermined temperature. Type: fusible element type, continuous line/ wire type and bimetal type.


The continuous line type - parallel wires, with heat resistive insulation. Insulation melts away at a predetermined temperature (from a fire), the wires come into contact. The bimetal type of heat detectors relies on two joined metals with different coefficients of expansion. Fusible element type operates similar to a sprinkler head where a eutectic metal melts at a predetermined temperature releasing a spring under tension and initiates an alarm signal

WORKING PRINCIPLE- Gas detection IR -Band

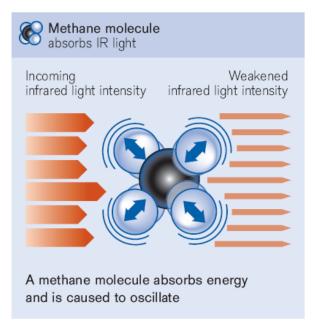
Infrared combustible gas detector



WORKING PRINCIPLE- Point IR Gas Detector

Infra-red (IR) gas detection is based on the absorption of energy by hydrocarbons. The bond between hydrogen and carbon absorbs proton energy at a wavelength of 3.3m m.

In practice, most modern sensors use light at two different wavelengths, one is absorbed by the gas (sample), and the other is not absorbed (reference).

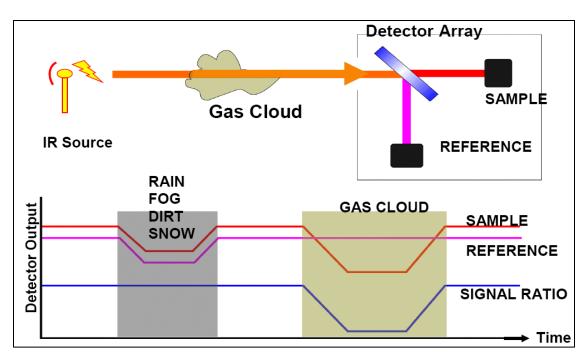

Organic substances are ionized and subjected to the electrical field between the electrodes in the measuring chamber. The strength of the resulting current is directly proportional to the concentration of ionized molecules inside the chamber

WORKING PRINCIPLE-Infra-red(IR)gas detection

Every gas absorbs light in a particular way; some even absorb visible light (wavelength of 0.4 to 0.8 micrometers), which is why chlorine is yellowish green, bromine and nitrogen dioxide are brown, iodine vapor is violet.

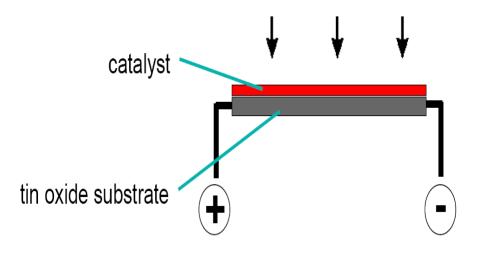
Hydrocarbons, on the other hand, absorb light in a certain wavelength range, from between about 3.3 and 3.5 micrometers – and that can be utilized for detection purposes, since the main components of air (oxygen, nitrogen, and argon) do not absorb radiation in that range.

IR sensor


Reaction

CH₄ + Energy → CH₄ (charged)

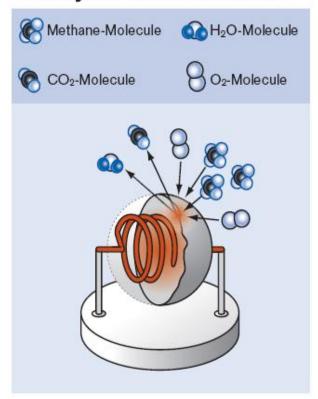
Working Principle Line of Site (IR type)

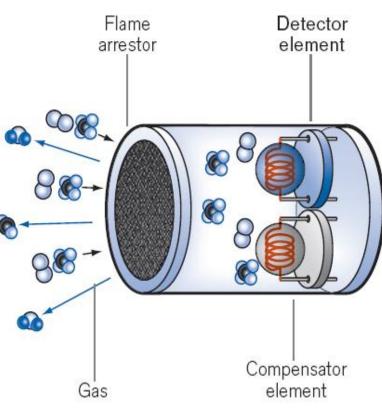

- Gases Wide range of hydrocarbons can be detected based on the fact that they absorb light in a certain wavelength range. Example: Alkane series from methane to hexane, propylene, ethanol and methanol.
- Factory calibration Methane or propane, selectable. Other hydrocarbon gases on request
- Operating distance 30 120 m or 100 200 m separation of transmitter & receiver

Working Principle Metal oxide – Gas Detector

Solid State (MOS), toxic gas detector

- © lifetime typically 5 to 10 years
- © ppm level detection
- **⊗** large cross sensitivity to other gases
- ⊗ non linear ouput, can "go to sleep"

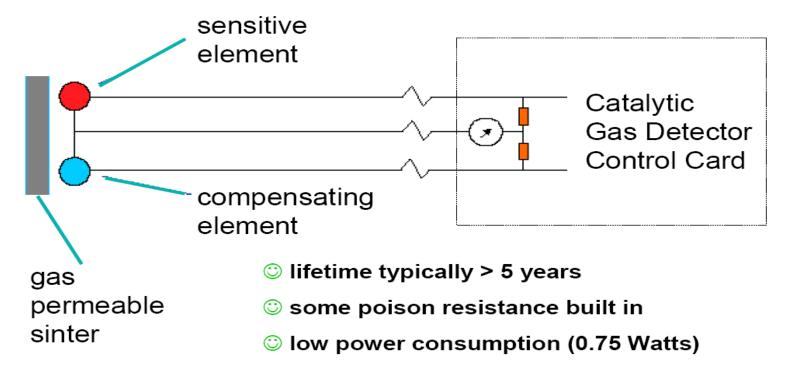

Solid-state sensors are made of a metal oxide that changes resistance in response to the presence of a gas; the instrument measures this resistance change and translates it into concentration.


Advantages:. Solid-state sensors have a very long lifetime, typically 10 years

Because they are fairly inexpensive, solid-state instruments typically are used to detect gas at the source, so response to leaks is quick and monitoring is continuous.

Point Catalytic HC Detector

Catalytic bead sensors

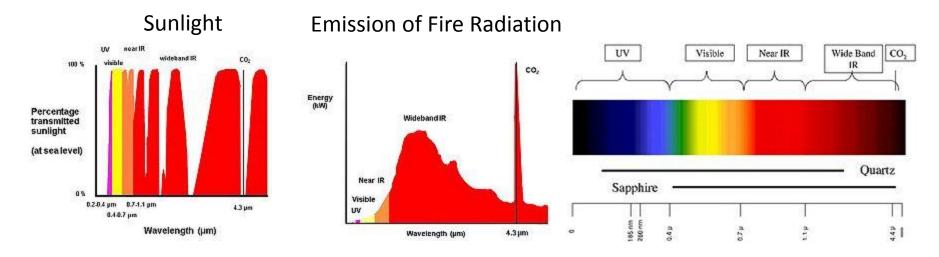


Reaction

Principle of Smell

Catalytic combustible gas detector

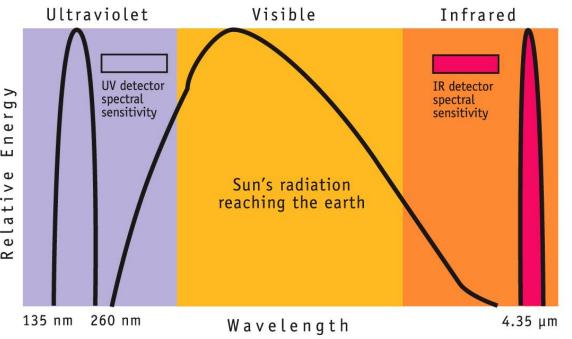
- The catalytic sensor is a coil of platinum wire, which is heated to around 400oC by passing a
 current through it. The coil is coated with a catalyst that enables a reaction to occur at this
 relatively low temperature the reaction being one between the combustible gas being
 detected, and oxygen from the air.
- This reaction is exothermic, that is, it gives off heat. This causes the platinum coil to heat up further, which in turn changes the electrical resistance of the coil. This change of resistance is measured.


Different Hydrocarbon Detection Capability

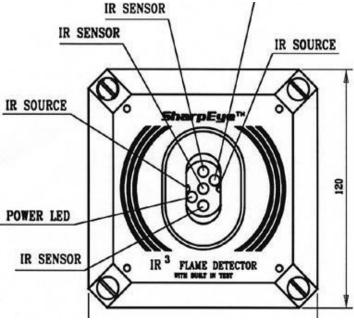
Gas Type	LEL (%vol)	Ranges Available: Flamgard Plus
Acetylene (C ₂ H ₂)*	2.3 (2.4)	0-100% LEL
Ammonia (NH ₃)	15	0-100% LEL
Butane (C ₄ H ₁₀)	1.4 (1.8)	0-100% LEL
Ethane (C ₂ H ₆)	2.5 (3)	0-100% LEL
Ethylene (C ₂ H ₄)	2.3 (2.7)	0-100% LEL
Hexane (C ₆ H ₁₄)	1.2	0-100% LEL
Hydrogen (H ₂)	4	0-100% LEL
LPG	2	0-100% LEL
Methane (CH ₄)	4.4 (5)	0-100% LEL
Pentane (C ₅ H ₁₂)	1.4 (1.5)	0-100% LEL
Petrol	1.3	0-100% LEL
Propane (C ₃ H ₈)	1.7 (2.2)	0-100% LEL

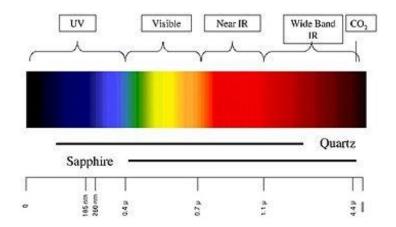
Different Gas Detection Capability

Туре	Explosion proof transmitter				
Gases and Ranges	Toxic gases and oxygen in discrete pre-set values, user selectable				
Display	3-digit LCD				
FSD (Full Scale Deflection)	O ₂		25 vol%		
	CO		50 / 100 / 200 / 300 / 500 ppm		
	H₂S zero-bias		10 / 20 / 50 / 100 ppm		
	H₂S LC		10 / 20 / 50 / 100 ppm		
	H₂S HC		100 / 200 / 300 / 500 ppm		
	$\overline{H_2}$		500 ppm		
	Cl ₂ **)		5 / 10 / 20 / 50 ppm		
	EO *)		20 / 50 / 100 ppm		
	NH ₃ LC **)		50 / 100 ppm		
	NH₃ HC **)		300 / 500 ppm		
	NO *) NO ₂ **) SO ₂ **)		50 / 100 ppm		
			5 / 10 / 20 / 50 / 100 ppm		
			5 / 10 / 20 / 50 / 100 ppm		
	H ₂ O ₂ LC **)		5 / 10 / 20 / 50 / 100 ppm		
Electrical data	Signal Output	Normal operation	4 to 20 mA		
		Maintenance	4 mA ± 1 mA 1 Hz modulation, or steady 3 mA; user selectable		
		Fault	< 2 mA		
	Supply Voltage		16 to 30 VDC, 2-wire		
Ambient conditions	Temperature		-40 to + 150 °F / - 40 to + 65 °C		
(see also sensor data sheet)	Pressure		20.7 to 38.4 inch Hg / 700 to 1300 mbar		
	Humidity		0 to 100 %RH, non-condensing		
Enclosure	Transmitter housing		epoxy-coated copper free aluminum or 316L s		
	Sensor housing		316L stainless steel		


Working Principle of Optical Fire Detectors

During a fire relatively sparsely UV energy and visible light energy is emitted, as compared to the emission of Infrared radiation. A none-hydrocarbon fire, from for example hydrogen, does not show a CO2 peak on 4.3 μ m. A multi-frequency-detector with sensors for UV, visible light, near IR and/or a little bit wideband IR thus do have much more "sensor data" to detect these fires like: hydrogen, methanol, ether or sulphur.

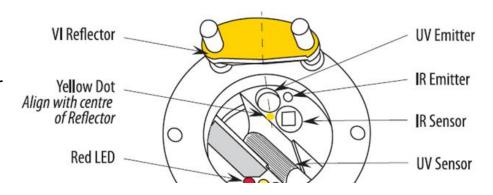

Spectral Range & UV / IR Detectors



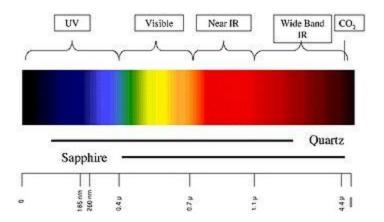
A multi-frequency-detector with sensors for UV, visible light, near IR and/or wideband IR thus do have much more "sensor data" to detect these fires like: hydrogen, methanol, ether or sulphur.

Working Principle Flame Detectors-Optical

Ultraviolet

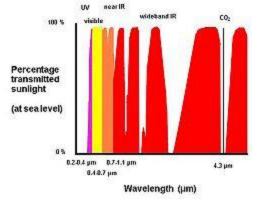

• Ultraviolet (UV) detectors work with wavelengths shorter than 300 nm. These detectors detect fires and explosions within 3–4 milliseconds due to the UV radiation emitted at the instant of their ignition. False alarms by UV sources such as lightning, arc welding, radiation, and sunlight. To reduce false alarm a time delay of 2-3 seconds is included UV detector design.

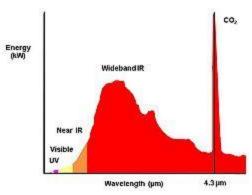
Infrared


• Infrared (IR) flame detectors work within the infrared spectral band. Hot gases emit a specific spectral pattern in the infrared region, which can be sensed with a thermal imaging camera (TIC) a type of thermographic camera. False alarms can be caused by other hot surfaces and background thermal radiation in the area as well as blinding from water and solar energy. Typical frequency fo single IR flame detector is 4.3 micrometer. Typical response time is 3-5 seconds.

UV/IR

UV and IR flame detectors compare the threshold signal in two ranges in "AND" configuration and their ratio to each other to confirm the fire signal and minimize false alarms.

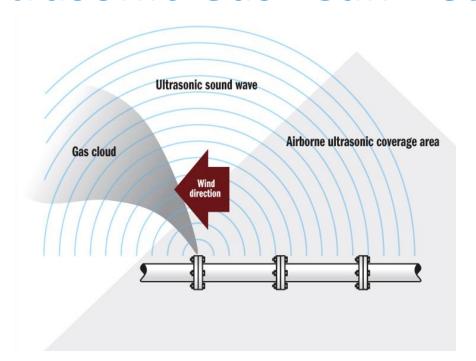



Working Principle Flame Detectors-Optical

3-IR flame detection

Triple IR flame detectors compare three specific wavelength bands within the IR spectral region and their ratio to each other to reliably detect flames while attempting to reduce false alarms. In this case one sensor looks at the 4.4 micrometre range and the other sensors at reference frequencies above and below. Triple IR detectors are also susceptible to blinding by water and reduced sensitivity from sunlight. False alarms can be caused by other hot surfaces and background thermal radiation in the immediate area.

Working Principle Flame Detectors-Optical

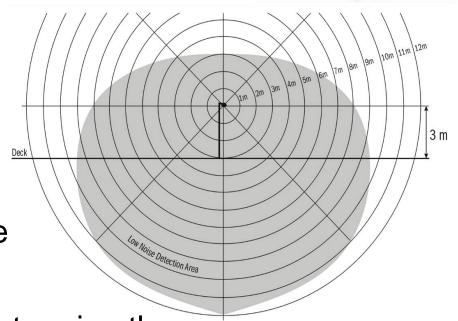

Visible sensors

 In some detectors a sensor for visible radiation is added to the design in order to be able to discriminate against false alarms better or improve the detection range. Example: UV/IR/vis, IR/IR/vis, 3-IR flame detectors.

Video

 Closed-circuit television or a web camera can be used for video detection (wavelength between 0.4 and 0.7 μm). Like humans, the camera can be blinded by smoke or fog.

Ultrasonic Gas Leak Detection


Main Characteristics:

- Instant acoustic gas leak detection
- Detects gas leaks at a leak rate of 0.1 kg/s
- Detection radius up to 20 meters away

Leak Detection Range

The detection range of an ultrasonic gas leak detector depends on these variables:

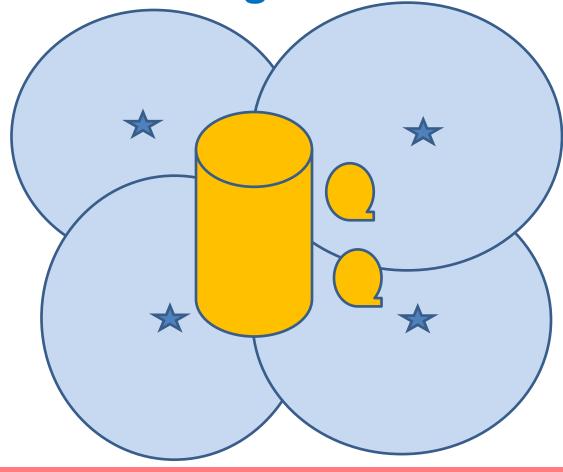
- Leak size
- Pressure
- Ultrasonic background noise

Leak size and gas pressure determine the acoustical ultrasonic noise level generated from the leak.

Different Detectors & There Coverage

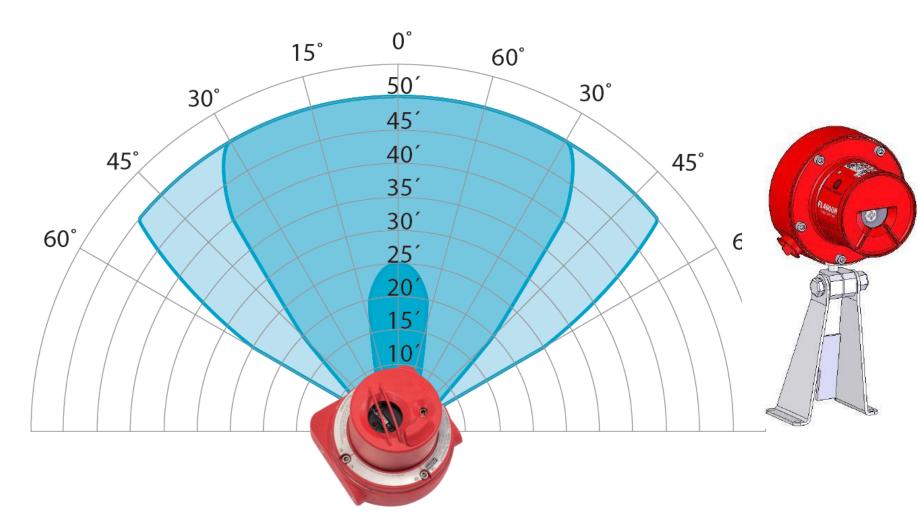
Point & Line Hydrocarbon Detector

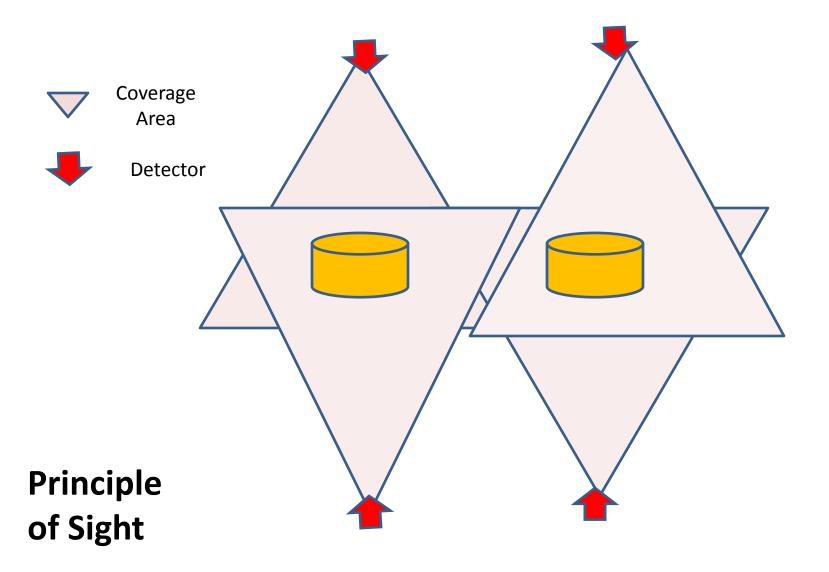
Coverage



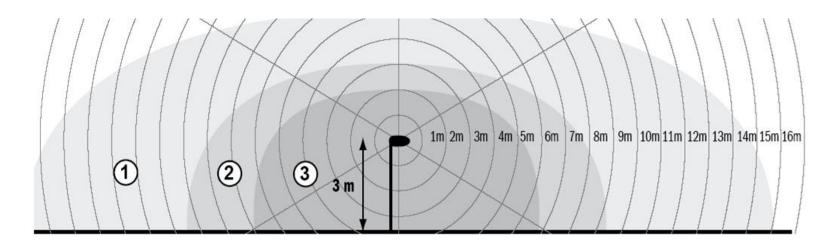
Detector

Coverage Area


Principle of Smell


Principle IR Absorption

Field of View / Cone of Vision Flame Detector



Field of View, View Angel, Line of Site, Mounting Height

UV / IR Flame Detector Coverage

Directional Characteristics

1 Very low-noise areas

In "very low-noise areas", where background noise is less 58dB, the trigger level must be set at 64 dB. This corresponds to a detection radius of 13-20 Metres.

Typical areas:

- Onshore wellhead areas in calm environment
- Salt dome gas storage facilities in calm environment

(2) Low-noise areas

In "low-noise areas", where background noise is less than 68dB, the trigger level must be set at 74 dB. This corresponds to a detection radius of 9-12 Metres.

Typical areas:

- Areas with no machinery
- Areas with low frequency machine made noise

(3) High-noise areas

In "high-noise areas", where background noise is above 78dB, the trigger level must be set at 84 dB. This corresponds to a detection radius of 5-8 Metres.

Typical areas:

- Turbo compressor areas
- Complete open offshore weather deck
- Next to very noisy machinery

Comparison of F & G Detectors & F & G Detector Applications

Hydrocarbon Gas Detection Technology Compared

Gas	Advantages	Disadvantages
Catalytic	Simple, Measures flammability of gases. Low cost, proven technology	Can be poisoned by chlorine, lead. Requires O2 to work. Limited to Spot Detection
Electrochemical	Measures Toxic gas at low concentration. Wide rage of gases. Industry Standard	Poisoning. Failure mode not easily revealed. Limited to Spot Detection
Point -Infrared	Use physical rather then chemical tech. less sensitive to calibration errors. No unseen failure. Can be used in inert atmosphere. Ideal for areas where gas is likely to collect, Can be used in conjunction with line of sight. Very fast response, Limited maintenance	Flammable gas in % range. Measure on the concentration, which has to be related to flammability of gas. Only measures at a particular point. Cannot measure non hydrocarbons eg., hydrogen.
Open Path- IR	Covers large Area, can be used Boundaries Pump Alleys, Perimeters. Best to seek leak path. No unseen failures. Can detect low concentrations. Poisoning not critical. Very fast response. Toxic and flammable versions	Higher initial cost. Requires Clear view, Detection path can be obstructed. Unsuitable for hydrocarbons which have various compositions ie., if one day the leak could be Methane and the next Propane the readings will change and will not be representative. Cannot measure H2.
Semiconductor	Mechanically robust, work well in constant humidity	Susceptible to contaminants and changes in environment. Non liner response. Affected by complexity. Limited to Spot Detection

Comparison of Fire Detectors

Comparison o	of Fire Detectors			
Detection	Detector Type	Speed	Cost	Detection Range
Human	Human	Moderate	Expensive	Wide Area
Smoke	Ionization	Fast	Moderate	Area
	Photo-Electric	Fast	Moderate	Area
	VESDA	Very Fast	High	Area
Heat	Fusible Link	Low	Moderate	Wide /Line
	Plastic Tube	Low	Low	Wide /Line
	Fusible Plug	Low	Low	Local
	Quartzoid Bulb	Low	Moderate	Local
	Bi-Metallic	Low	Low	Local
Optical	IR/ UV/ 3-IR	Very Fast	High	Wide /Line
	Video Camera	Fast	Expensive	Wide

FIRE DETECTOR PARAMETERS AND APPLICATIONS

Detector	Advantages	Disadvantages	Application	Environmental Resistance
Туре				
	- Fast response	- Need a clear "cone of	- In general areas where flames are	- Very good.
Ultra Violet		sight "	expected to be one of the prime	- Unaffected by rain, wind
Detectors	- Large coverage		indications of fire.	etc.
		- Ultraviolet radiation	- Hydrocarbon & Fuel areas	- Solar blind if sensitivity
	- Unaffected by	absorbed by heavy	- Open outdoor areas	below 2800
	wind	smoke		
Infra Red	- Fast response	- Need a clear "cone of	As for UV, however, not recommended	- Good.
Detectors		sight "	in outdoor areas and areas where	
	- Large coverage		vibrating machinery operates	- Unaffected by rain, wind
		- Radiation from sun		etc. Solar radiation may
	- Unaffected by	and hot vibratory		give rise to false alarms
	wind	machinery may give		
		rise to false alarms		
	- Infrared			
	radiation not			
	absorbed by			
	smoke			
Heat Detectors	- Reliable	- Relatively slow	1. Areas where ambient conditions are	- Good, although
		response	too rough for smoke detectors.	response affected by
			2. Back-up for flame detectors in	wind, making them less
			high hazard areas.	suitable for open outdoor
				areas.
Smoke	- Very sensitive	Require relatively	- Clean areas not associated with	- Not suitable for open
detectors	- Detect	clean atmosphere	flammables	outdoor areas or naturally
	smoldering		- Control room	ventilated areas.
	fires at early		- Switchgear room	
	stage		- Void ceiling spaces / false floors	