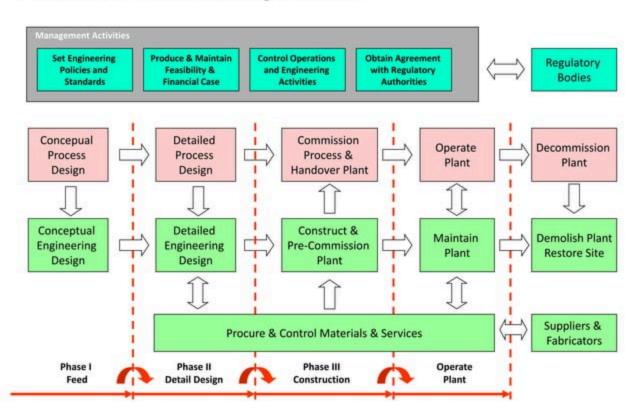

Fundamentals of Process Plant Design

Understand the basic fundamentals of an EPC role in Process Plant Engineering. Help / Guide you in your job to try and apply some


- thought, where can you add value to the industry we serve.
 Presentation where we can learn about Plant Design.
 - Does not cover all aspects of Plant Design.
 Does not cover all industries
 - Not about making you a Piping Designer

Goals and Objectives

Plant Design Workflow

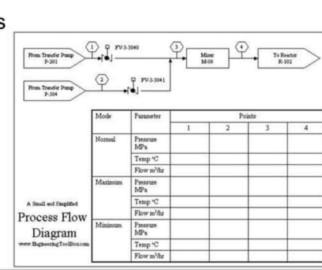
Process Plant Activity Model

> Process Engineering focuses on Design, Operation, Control and

Productive

Process department and its role

- Optimisation of Chemical, Physical and Biological processes


 Translate a customer needs into a production facility Safely &
- ➤ Block Diagram
- > FEED (Front End Engineering and Design)
- > PFD (Process Flow Diagram)

PFD (Process Flow Diagram)

This figure depicts a small and simplified PFD:

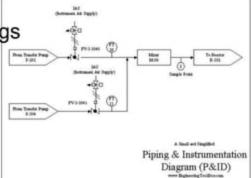
System Flow Diagrams should not include:

- pipe class
- pipe line numbers
- minor bypass lines
 isolation and shutoff valves
- maintenance vents and drains
- Finalitienance vents and drains
- relief and safety valve
- code class information
- seismic class information

A PFD should include: Process Piping Major equipment symbols, names and identification numbers Control, valves and valves that affect operation of the system Interconnection with other systems

Major bypass and recirculation lines

Composition of fluids

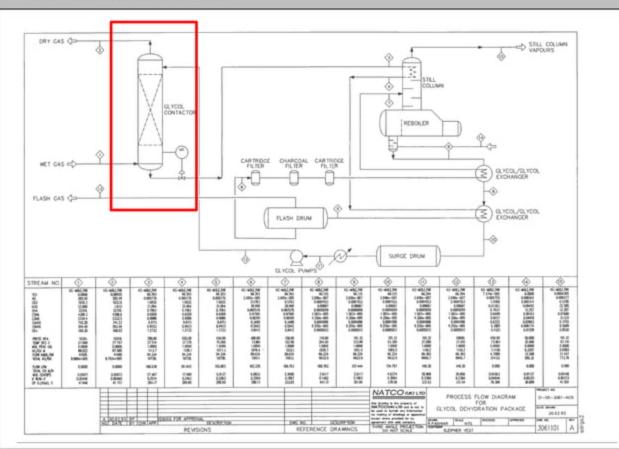

maximum flow, temperature and pressure

System ratings and operational values as minimum, normal and

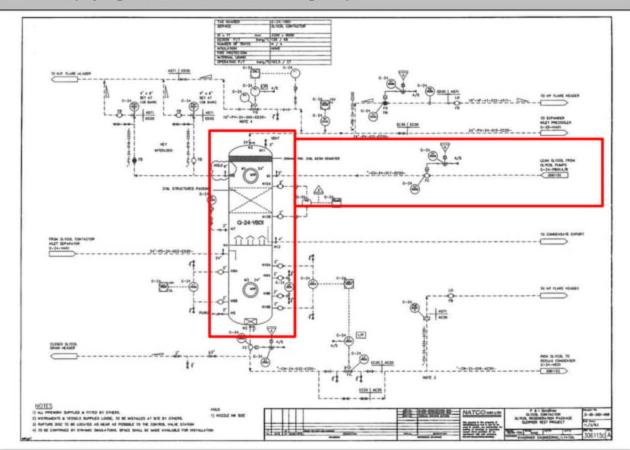
P&ID (Piping & Instrumentation Diagram)

This figure depicts a very small and simplified P&ID:

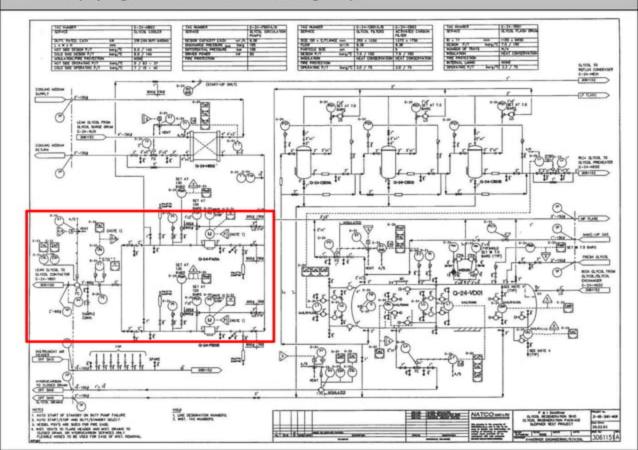
- A P&ID **should not include**:
- Instrument root valves
 - colove
 - control relays manual switches
- manual switches
 equipment rating or capacity
- primary instrument tubing and valves
- pressure temperature and flow data
- elbow, tees and similar standard fittings
- eibow, tees and similar standsextensive explanatory notes

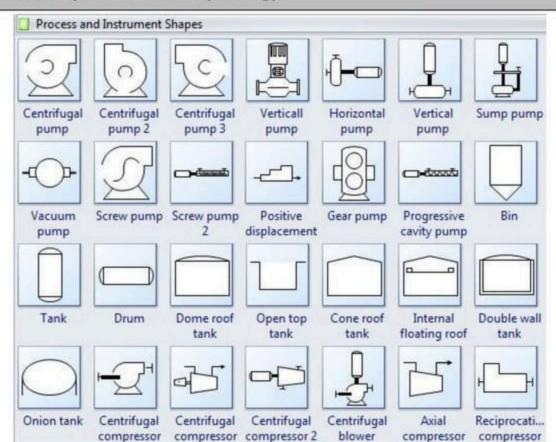

P&ID (Piping & Instrumentation Diagram)

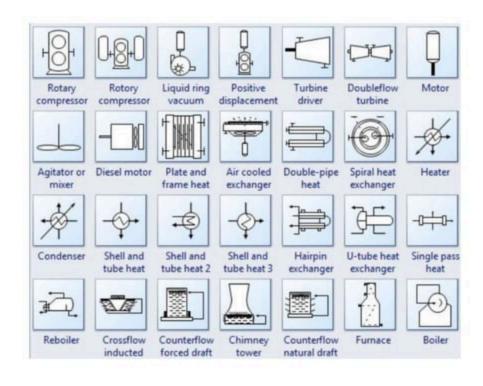
Instrumentation and designations Mechanical equipment with names and numbers All valves and their identifications

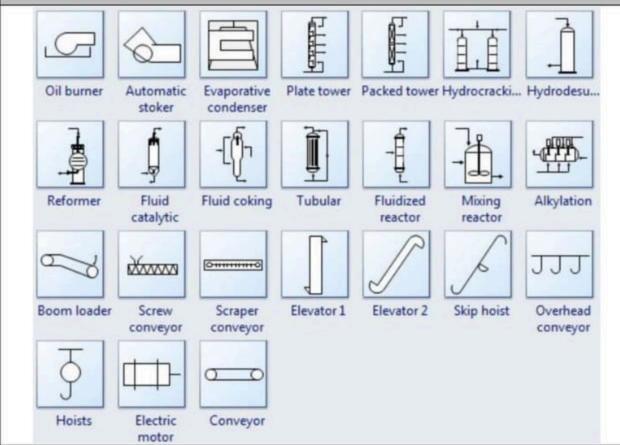

A P&ID should include:

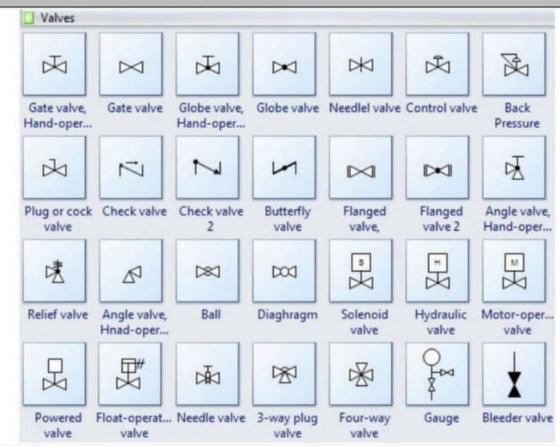
- Process piping, sizes and identification
- Miscellaneous vents, drains, special fittings, sampling lines, reducers, increasers
- and swaggers Permanent start-up and flush lines
- Flow directions Interconnections references
 - Interfaces for class changes
 - Computer control system input
- Vendor and contractor interfaces
- Identification of components and subsystems delivered by others
- Intended physical sequence of the equipment

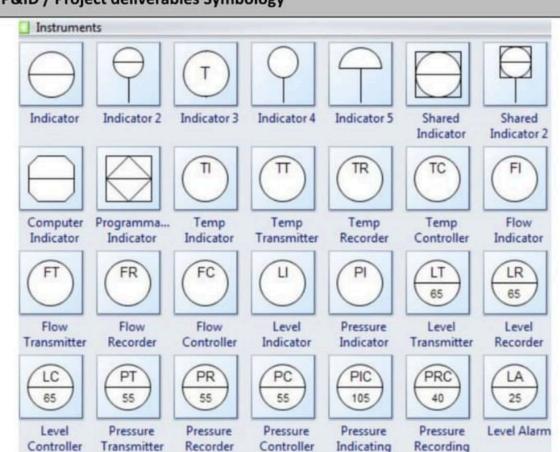

PFD (Process Flow Diagram)

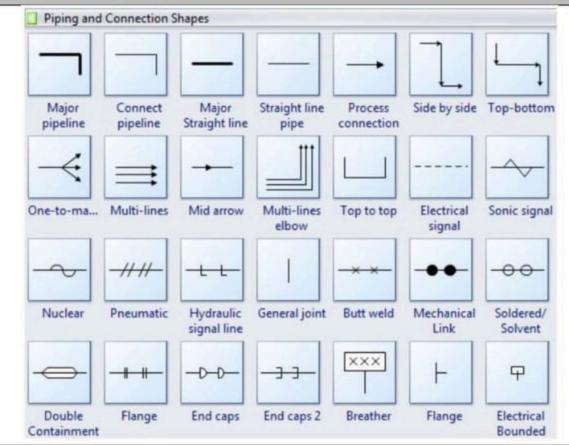



P&ID (Piping and Instrumentation Diagram)




P&ID (Piping and Instrumentation Diagram)



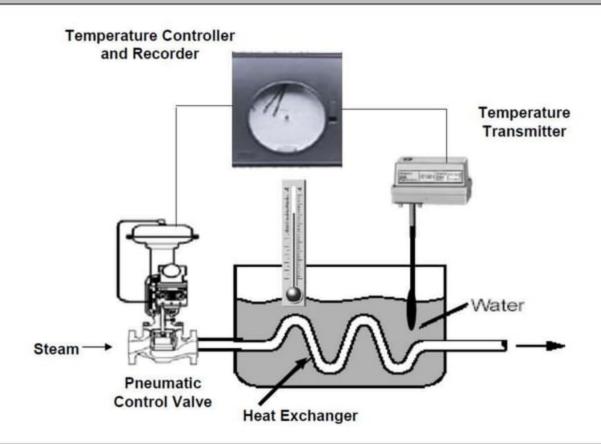


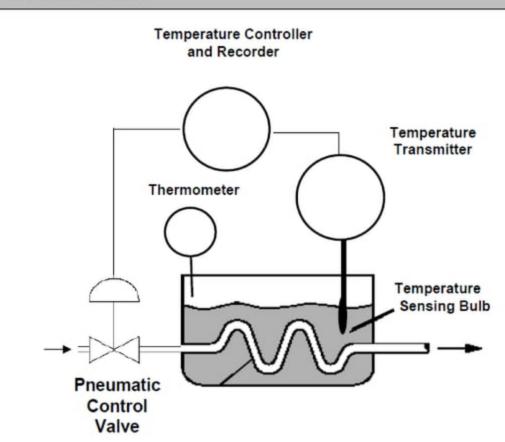
LOCALLY MOUNTED INSTRUMENT BOARD MOUNTED	FA FLOW ALARM FE) FLOW ELEMENT	USD UNIT SHUT DOWN (SSC POSITION/ UNIT SWITCH
INSTRUMENT	FI FLOW INDICATOR	CLOSED (SDY)
PC PRESSURE CONTROLLER	\simeq	SDV SHUT DOWN VALVE RELAY
PRESSURE INDICATOR	(FRC) FLOW RECORDING	(V-239) SHO! DOWN VALUE
PR PRESSURE RECORDER	CONTROLLER	POSITION/ LIMIT INDICATOR OPEN
PIC PRESSURE INDICATING CONTROLLER	TA TEMPERATURE ALARM	F-250 TEMPERATURE RELAY
PRESSURE RECORDING	TI) TEMPERATURE INDICATOR	9
PSV PRESSURE SAFETY VALVE		SPECTAÇLE BLÎND OPEN
RV RELIEF VALVE	(TRC) TEMPERATURE RECORDING CONTROLLER (TW) TEMPERATURE WELL	SPECTACLE BLIND CLOSES
O	TEMPERATURE WELL	- II- ORIFICE FLANGES
LEVEL ALARM	GATE VALVE	SP PIPING SPECIALITY ITEM
LEVEL ALARM HIGH	GLOBE VALVE	######################################
	CHECK VALVE	INSTRUMENT AIR LINE INSTRUMENT
LEVEL CONTROLLER	Q	ELECTRICAL H H H H H INSTRUMENT
LG LEVEL GLASS	CONTROL VALVE	CAPILLARY TUBING
LI) LEVEL INDICATOR	PLUG VALVE	
LIC LEVEL INDICATING CONTROLLER	BALL VALVE	T TRANSMITTER (OR)
LEVEL RECORDING CONTROLLER	N BUTTERFLY VALVE	HCV HAND CONTROL VALVE

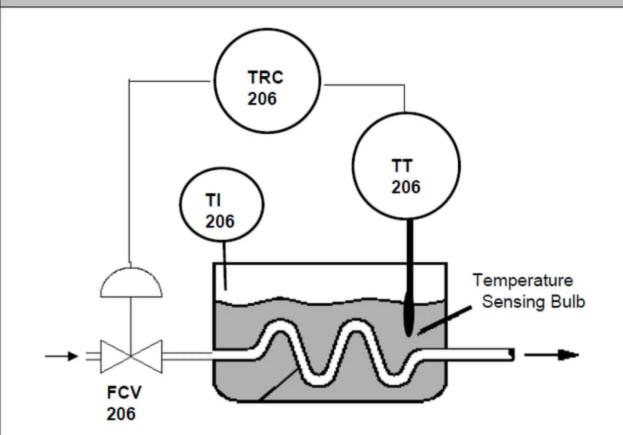
Piping and Instrumentation Diagrams or simply "P&IDs" are the

"Schematics" used in the field or Instrumentation and Control

P&ID / ISA Symbols and Loop Diagrams

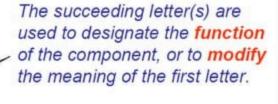

(Automation).


The P&ID is used by the field technicians, engineers and operators to


better understand the process and how the instrumentation is interconnected, ensuring the plant is operating efficiently.

Most industries have standardised the symbols according to the ISA Standards S5.1 Instrumentation Symbol Specification

Temperature Process / Loop Diagram



Tag Descriptors

The first letter is used to designate the measured variable

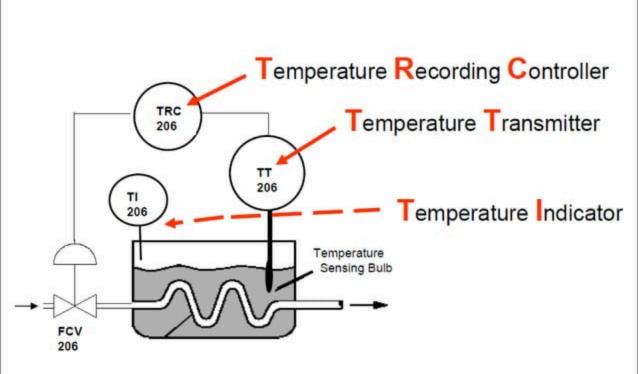
XYZ

123

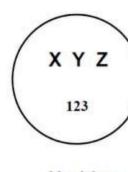
Pressure

Level

Flow

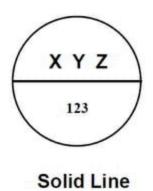

Temperature

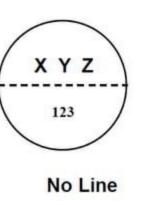
ndicator


Recorder

Controller

Transmitter

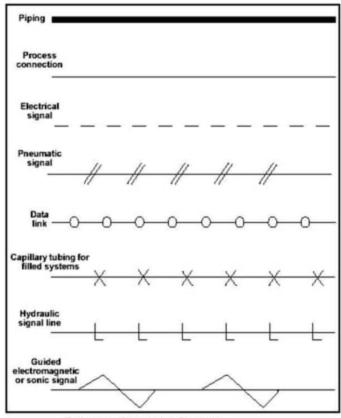

Instrumentation Location


No Line

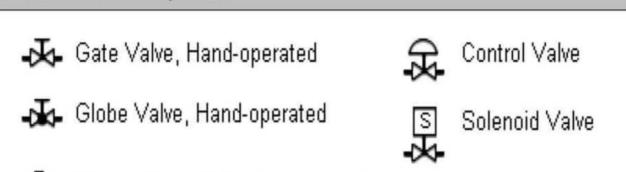
The instrument is mounted in the field near the process,

(close to the operator)

The instrument is mounted in the control room (accessible to the operator)


The instrument is mounted out of sight (not accessible to the

operator)


Summary of Instrument type & location

	Accessible to the Operator; Primary Location on the Main Control Panel	Mounted in the Field	Not Normally Accessible to Operator, Behind the Panel				
Distinct Elements							
Shared Display Shared Control in Distributed Control System							
Computer Logic Function	\bigcirc		$\langle - \rangle$				
Programmable Logic Control							

Piping and Connection Symbols

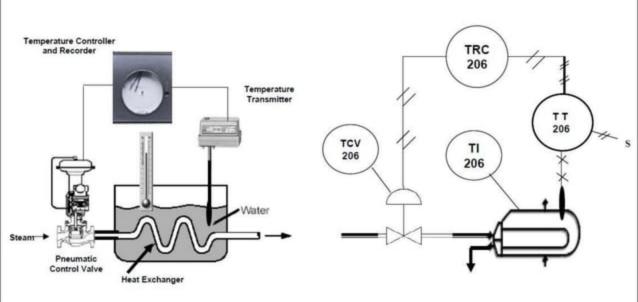
Piping and Connection Symbols

Motor-operated

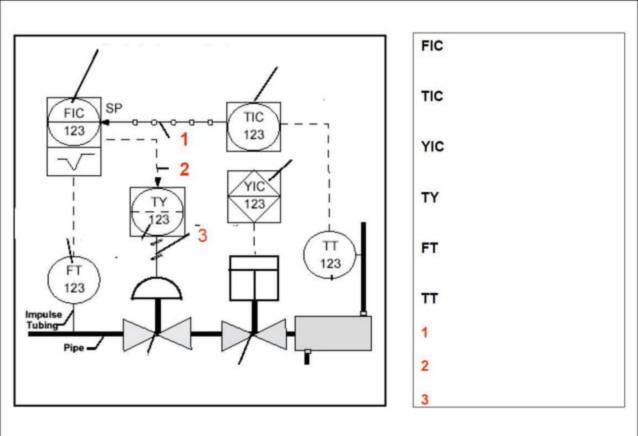
Piston-operated

Safety Valve or

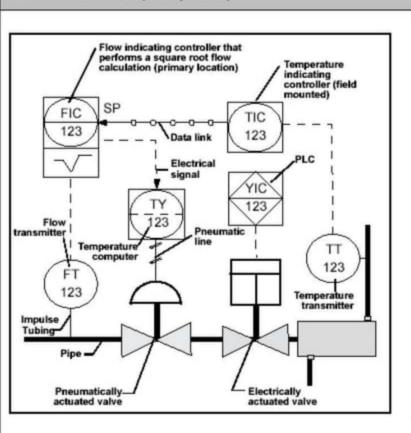
Relief Valve



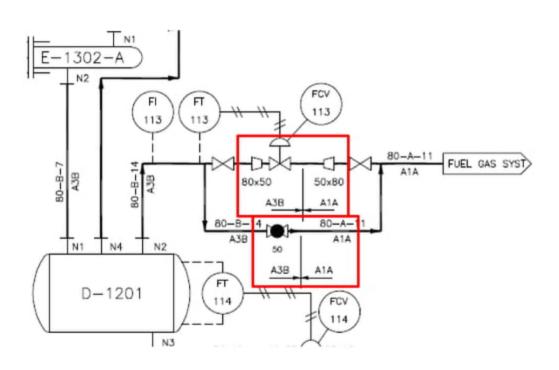
Angle Valve, Hand-operated


Instrument Valve Symbols

Butterfly Valve


P&ID Example of a Instrument Loop

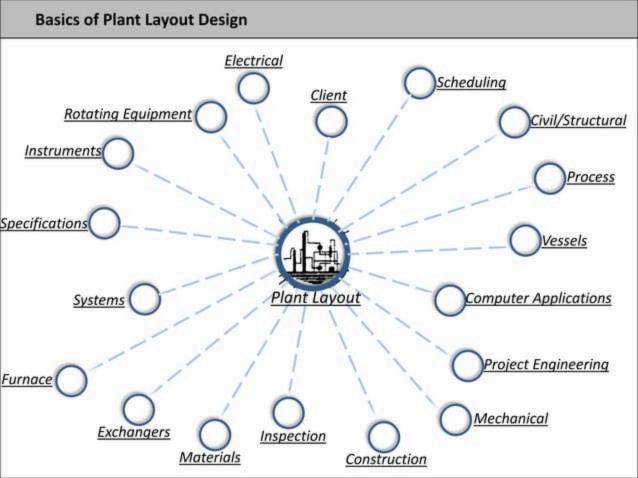
P&ID Exercise

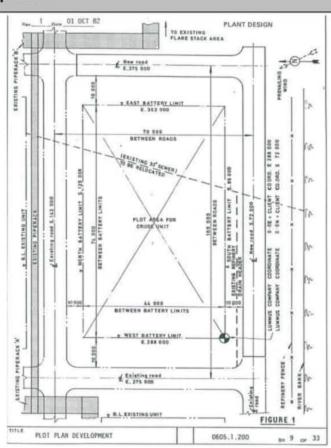

P&ID Exercise (Completed)

FIC -Flow Indicating Controller TIC Temperature Indicating Cont. YIC **PLC Indicating Controller** TY **Temperature Computer** Output FT Flow Transmitter TT **Temperature Transmitter**

Pipeline Naming 150-PV-20-2002-AD20XS-03-050-N 150 - Line Size Nominal Dia PV - Service Code 20 - System 2002 - Sequence Number AD20XS - Pipe Class 03 – Insulation Class 050 – Insulation Thickness N - Heat Tracing

Pipe Spec Breaks




Bulk MTO / Estimates

20 NB SS LINES																	
Line No	Pipe	Gate Valves	90 Elbow	45 Elbow	Tee	Flange	Gasket	Nut/Bolt	CRed 20x15	RedT 20x15	Steam Trap	GlobE Valve	Control Valve	Flush Bot Valve	Strainer	RedT 20x15	Plug
20-MET-05-SS	3000		1	1		2	2	8						1			
20-MET-06-SS	4920	1	3	1		3	3	12									
20-MET-07-SS	11515	2	4		2	10	10	40				1	1				
20-MET-09/10-SS	8265	1	3			6	6	24									
20-BIO-12-SS	3000		1	1		4	5	20						1			
20-BIO-13-SS	6260	1	2	2	1	3	3	12									
20-BIO-14-SS	29570	2	8		2	9	9	36				1	1				
20-BIO-15-SS	7860	1	7			2	3	12									
20-BIO-14-SS(OP)	7545		1		1	1	1	4									
20-BIO-15-SS(OP)	6545		3		1	1	1	4									
20-BIO-28-SS(OP)	9120		6			2	2	8									
20-BIO-29-SS(OP)	5420		3			2	2	8									
20-BIO-30-SS(OP)	14540	3	4		3	3	3	12									
	117560	11	46	5	10	48	50	200				2	2	2			

A Major phase in the life of process plants

Piping Engineering

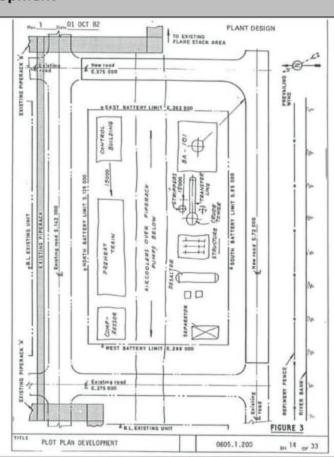
Indicate all Major equipment items Building outlines

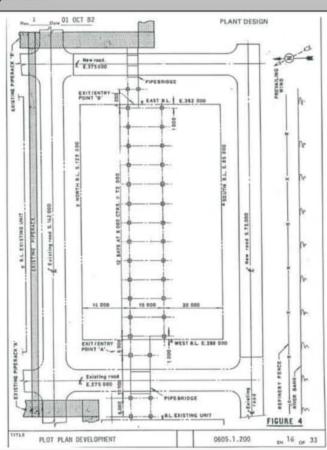
Plot Plan Development

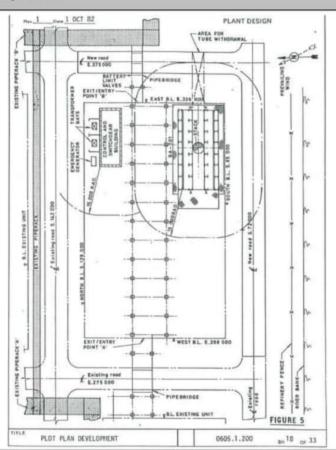
- Battery Limits Area Limits of responsibility
- Piping Entry and Exit Points Access ways
- Roadways
- Main Structure Stairways
- Piperacks
- Dimensions kept to a minimum
- Show all Easting/Northings Elevations
- True North

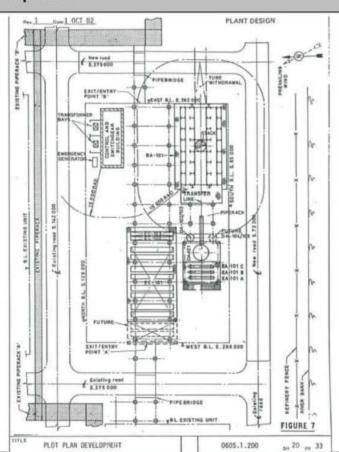
Plot Plans supplied by Clients (FEED Specifications)

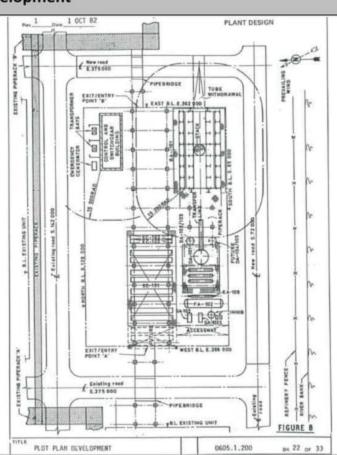
Plot Plan Development – General Information Required Site Plans

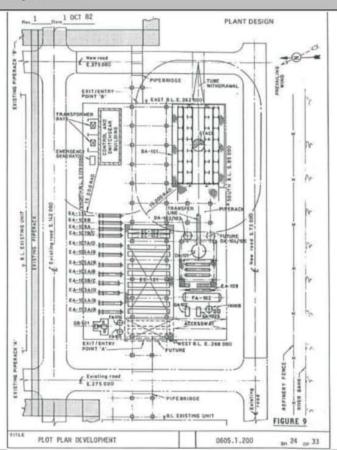

- Project Design Information Client Standards Equipment List
- PFD and P&ID
- Utility conditions Cooling Water, Steam, etc
- Preferred locations of exit and entry piping points Electrical Cables entry points
- Client / EPC Standards for safely distances
- Client / EPC Standards for specific equipment locations
- Grade levels of unit area and plant in general Details of existing roadways, railroad or accessways
- Plant North
- Battery Limits
- Firefighting data

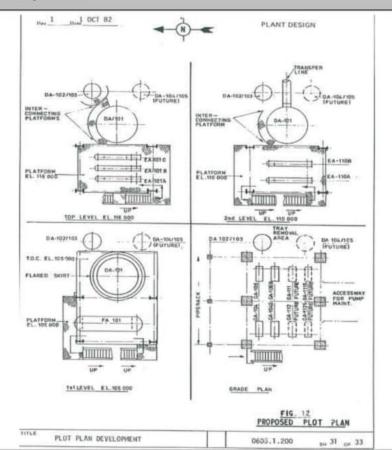

Plot Plan Development – General Information Required

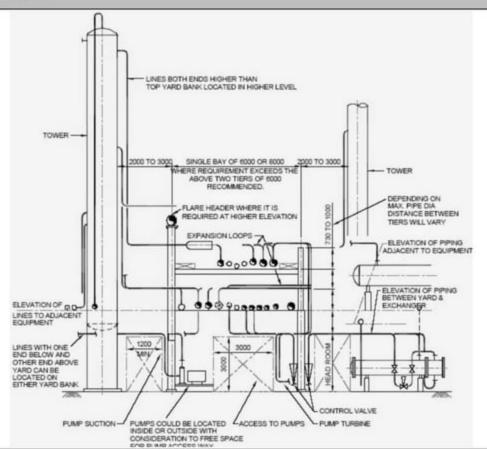

- Heaters diameter of shell and height
- Compressors size of base plate area type

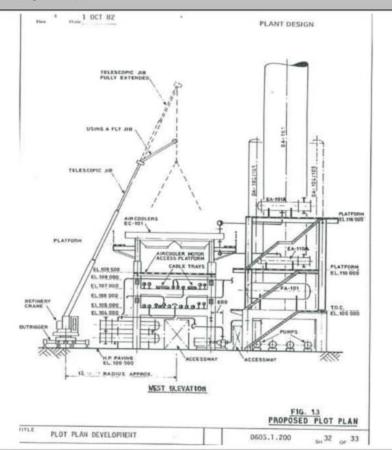

Storage tanks – diameter and capacity

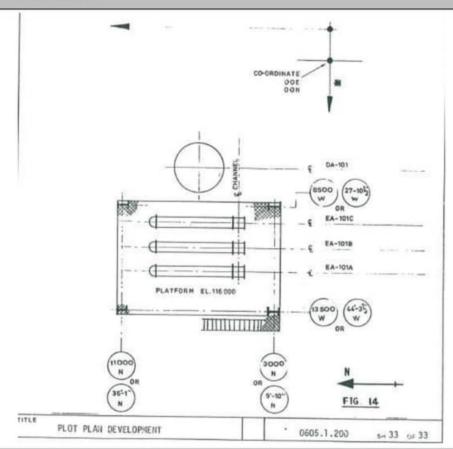

- Specialist equipment eg skids, size and area
- Towers/Drums Diameter and tan line minimum heights
- Critical elevations for all equipment
 Exchangers tube length and diameter

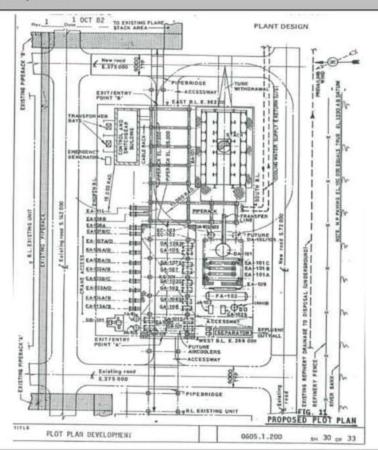












Piping Study

Piping - Fundamentals

The Goal of Piping Engineering is: To Ensure a connected Piping is...... Specified and Designed Fabricated and Erected Inspected and Tested Operated and Maintained In other words.... To perform reliably and safely in all expected conditions, for its design life.

Piping - Fundamentals

Why is Piping Engineering so important?

- Pipes are supported at point locations
- Weight of the Pipe may change Temperature will vary – ambient to operating
- Thermal expansion
- Connected to equipment
- Pipe are welded to components

Piping - Fundamentals

- Different components within a piping system Etc.....

Piping Standards

MAJOR ORGANIZATION FOR STANDARDS

Sr. No. Abbreviation	County	Organization	
1.	USA	American National Standard Institute	ANSI
2.	Canada	Canadian Standard Association	CSA
3.	France	Francaise	AFNOR
4.	United Kingdom	British Standards Institute	BSI
5.	Europe	European Community for standardization	CEN
6.	Germany	Deutsches Institute for Normung	DIN
7.	Japan	Japanese Industrial	JIS
8.	India	Bureau of Indian	BIS Standards

Piping - Standards

Organization	ID	Title
ASME	B31.1	Power Piping
ASME	B31.4	Liquid Petroleum Transportation Piping Systems
ASME	B31.5	Refrigeration Piping
ASME	B31.8	Gas Transmission and Distribution Piping Systems
ASME	B31.9	Building Services Piping
ASME	B31.11	Slurry Transportation Piping Systems
ANSI/AGA	Z223.1	National Fuel Gas Code (same as NFPA 54)
AWWA	C 100	Cast-Iron Pipe, Fittings
AWWA	C 200	Steel Pipe
AWWA	C 300	Concrete Pipe
AWWA	C 400	Asbestos Cement Pipe
AWWA	C 500	Valves and Hydrants
AWWA	C 600	Pipe Laying
AWWA	C 900	PVC Pressure Pipe
AWWA	M9	Concrete Pressure Pipe
AWWA	M11	Steel Pipe-Guide for Design and Installation
NFPA	Multiple	Fire Protection Systems

Acronyms and Definitions

Piping - Standards

this Guide, or in various vendor valve catalogues. Understanding of these acronyms and what they mean may be necessary to proper valve

The following acronyms and definitions are applicable to this Guide. They may either appear in

selection.

API: The American Petroleum Institute.

ASME: The American Society of Mechanical Engineers.

ANSI: American National Standards Institute.

Process Pipe

Pipe is specified by its Nominal Bore, its outside diameter. Pipe is identified by its Wall Thickness, referred to as "Schedule", eg Sch 40, 80, XS, etc

Piping Specification Revision Control Page

Piping Specification	Title	Revision	Description of Revision	Page
PS-101	Class 150 Carbon Steel	0	Original Issue	1
PS-102	Carbon Steel (B16.3)	0	Original Issue	1
PS-103	Class 300 Carbon Steel	0	Original Issue	1
PS-104	Class 400 Carbon Steel	0	Original Issue	1
PS-105	Class 600 Carbon Steel	0	Original Issue	1
PS-106	Rating 1000 psi, Carbon Steel	0	Original Issue	1
PS-107	Class 1500, Carbon Steel	0	Original Issue	1
PS-108	Class 2500, Carbon Steel	0	Original Issue	1
PS-109	Victaulic Zero-flex, Carbon Steel	0	Original Issue	1
PS-200	Class 150 304L Stainless Steel	0	Original Issue	1
PS-201	Class 150 316L Stainless Steel	0	Original Issue	1
PS-202	Class 300 304L Stainless Steel	0	Original Issue	1
PS-203	Class 300 316L Stainless Steel	0	Original Issue	1
PS-204	304L Stainless Steel Tubing	0	Original Issue	1
PS-205	304L Stainless Steel Tubing	0	Original Issue	1
PS-206	316L Stainless Steel Tubing	0	Original Issue	1
PS-207	316L Stainless Steel Tubing	0	Original Issue	1
PS-208	Class 400 304L Stainless Steel	0	Original Issue	1
PS-209	Class 600 304L Stainless Steel	0	Original Issue	1
PS-210	Rating 600 psi, 304L Seamless	0	Original Issue	1
PS-211	Rating 600 psi, 316L Seamless	0	Original Issue	1
PS-212	Rating 1225 psi, 304L Seamless	0	Original Issue	1
PS-213	Class 1500, 304L Seamless	0	Original Issue	1
PS-214	Class 2500, 304L Seamless	0	Original Issue	1
PS-215	Victaulic Zero-flex, 316L 10S	0	Original Issue	1
PS-300	Class 150 Hastelloy C276	0	Original Issue	1
PS-301	Class 300 Hastelloy C276	0	Original Issue	1
PS-302	Class 150 Alloy 20	0	Original Issue	1
PS-303	Class 300 Alloy 20	0	Original Issue	1

0.125

Schedule -

XXS 160

160 160 160 160

Pipi	ng Specif	g Specification 101				Date: March 16, 2009 Rev				ision	0	Page 1 of 1								
DES	IGN PARA	METERS	_									_								
P-Spe	ec					PS-	101(A,	B, C, D)			Calc	ulation	Refere	nce:	00-00	-CALC	M-000	4-R0	
Desig			285 260 230 200 170 140			0 12	25	Code of Ref			de of Reference: B3		B31.3 - 2002							
Desig			100	200	300	400	500	0 60	00 65	650		F	luid Ser	rvice:	Norm	al				
Minim	num Tempera	ature ("F)		-20	-20	-20	-20	-20	-2	0 -2	0			Mal	erial:	Carto	n Steel	l)		
Minim	num Test Pre	ssure (psig	0	430	390	345	300	270	0 24	5 2	20	Pressure Rating:		sting:	Class 150					
Maxin	mum Test Pro	essure (psi	g)		820						Exten	nal Pres	sure Ra	ating:	15 ps					
GEN	IERAL NO	TES																		
Refer	to General N	Notes 1-12																		
	OWABLE F	Dine Ma																		
	ponent	Size	IERIA		Rating		19	Standa	rd		Materia	1		Material	Grade		ddition	nal Rec	uireme	nts
Piping		1/4-24		\rightarrow	Schedule Tables ASME B36.			_				B			\rightarrow	Additional Requirements ERW – Type E/Seamless				
	1-3			Schedule Tables ASME B36.					7.10.710.710.0							Seamless				
	g	14-24		_		-							E			_			COMMITTED	30
Piping		-			Schedu	le Table	es /	ASME E					_		222	_			Commission	
Pipin	UIRED SC	HEDULE			Schedu	le Table	PIP	ASME E	336.10				_			_	eamles	8		
Piping REQ P.		HEDULE Pine Size			Schedu	le Table	es /	ASME E					_		12	_			20	
Piping REQ P.	Corrosion	HEDULE Pine Size	1/4	Non	Schedu -THR	le Table	PIP	ASME E	336.10	,		106	E		12 STD	S	eamles	8		24
REQ P. Spec	Corrosion Allowance	Pipe Size	1/4	Non %	Schedu I-THR	EADE	PIPI 1½	ASME E	2 1/2	3	4	6	8	10		14	earnies 16	18	20	24 ST
Piping REQ P. Spec	Corrosion Allowance	Pipe Size Schedule	¼ STD	Non % STD	Schedu FTHR % STD	EADE:	PIP 1½ STD	ASME E	2 1/2 STD	3 STD	4 STD	6 STD	8 STD	10 STD	STD	14 STD	16 STD	18 STD	20 STD	24 ST
Piping REQ P. Spec A B	Corrosion Allowance 0.000	Pipe Size Schedule Schedule	% STD	% STD	Schedu FTHR % STD STD	e Table EADEI 1 STD STD	PIP 1½ STD STD	2 STD STD	2 1/2 STD STD	3 STD STD	4 STD STD	6 STD STD	8 STD STD	10 STD	STD	14 STD STD	16 STD	18 STD STD	20 STD	STI STI
Piping P. Spec A B C	0.000 0.031 0.063 0.125	Pipe Size Schedule Schedule Schedule	5TD STD 80	STD STD XXS	Schedu FTHR 34 STD STD STD STD	1 STD STD STD 160	PIP 11/2 STD STD STD 160	STD STD	2 1/4 STD STD STD	3 STD STD STD	4 STD STD STD	6 STD STD STD	8 STD STD STD	10 STD STD STD	STD STD	14 STD STD STD	16 STD STD STD	18 STD STD STD	20 STD STD STD	ST ST
Piping P. Spec A B C D REQ	Corrosion Allowance 0.000 0.031 0.063 0.125	Pipe Size Schedule Schedule Schedule Schedule	STD STD 80	STD STD XXS	Schedu FTHR 34 STD STD STD STD	1 STD STD STD 160	PIP 11/2 STD STD STD 160	STD STD	2 1/4 STD STD STD	3 STD STD STD	4 STD STD STD	6 STD STD STD	8 STD STD STD	10 STD STD STD	STD STD	14 STD STD STD	16 STD STD STD	18 STD STD STD	20 STD STD STD	STI STI
Piping P. Spec A B C D REQ P.	Corrosion Allowance 0.000 0.031 0.063 0.125 CUIRED SC	Pipe Size Schedule Schedule Schedule Schedule	STD STD 80	STD STD XXS	STD STD STD 160	1 STD STD STD 160	PIP 1 ½ STD STD STD 160	STD STD STD 80	2 1/4 STD STD STD STD 80	3 STD STD STD 80	4 STD STD STD STD	6 STD STD STD STD	8 STD STD STD	10 STD STD STD	STD STD	14 STD STD STD	16 STD STD STD	18 STD STD STD	20 STD STD STD	ST ST
Piping P. Spec A B C D REQ P. Spec	Corrosion Allowance 0.000 0.031 0.063 0.125 Corrosion Allowance	Pipe Size Schedule Schedule Schedule Schedule Schedule Pipe Size	% STD STD 80 - S FOR	STD STD XXS	Schedu THR STD STD STD 160 EADEI	STD STD 160	1½ STD STD STD 160 E	STD STD STD 80	2 ½ STD STD STD 80	3 STD STD STD 80	4 STD STD STD STD	6 STD STD STD STD	8 STD STD STD	10 STD STD STD	STD STD	14 STD STD STD	16 STD STD STD	18 STD STD STD	20 STD STD STD	24 STI STI STI

80

FILINGS						
Component	Size	Rating	Standard	Material	Material Grade	Additional Requirements
Threaded Fittings	1/4-4	2000#, 3000#	ASME B16.11	ASTM A105	WP	Use 3000# for PS101-D
Socket-Weld Fittin	igs 14-2	3000#, 6000#	ASME B16.11	ASTM A105	WP	Use 6000# for PS101-D
Buttweld Fittings	1/2-24	Schedule Tables	ASME B16.9	ASTM A234	WPB	
Buttweld Fittings	1/2-24	Schedule Tables	ASME B16.28	ASTM A234	WPB	
FLANCES					7	SV.
Component	Size	Rating	Standard	Material	Material Grade	Additional Requirements
Threaded Flange	1/2-6	Class 150	ASME B16.5	ASTM A105	N/A	
Socket-Weld Flan	ge ½-2	Class 150	ASME B16.5	ASTM A105	N/A	
Weldneck Flange	1/2-24	Class 150	ASME B16.5	ASTM A105	N/A	
Slip-on Flange	1/2-24	Class 150	ASME B16.5	ASTM A105	N/A	
Blind Flange	1/2-24	Class 150	ASME B16.5	ASTM A105	N/A	
Backup Flange	1/2-24	Class 150	ASME B16.5	ASTM A105	N/A	
MECHANICAL	FASTENERS	,			_	
Component	Size	Standard	Material	Material Grade	Additional Requi	rements
Fasteners	%-1%	ASME B18.2.1	ASTM A193	B7-HH	See General Note	10.

ASTM A194

2H-HH

1/4-11/4

ASME B18.2.2

Nuts

FITTINGS

VALVES

The valve ID numbering system is defined in Appendix D. Feature **Feature Specifications**

	Acceptable Standard	CV Code Valve
uired fication tures	2) Material	2-Bronze, 4-Carbon Steel (1), 5-Stainless Steel 304(L) (2), 6-Stainless Steel 316(L) (3)
265		

- Specif Pressure Class
 - 4) End Connection (4) 5) Type of Valve
- 1-150, P-Pressure Rated
 - 1-Flanged, 2-Socket Weld, 3-Butt Weld, 4-Threaded BL-Ball, CB-Ball Check, GW-Solid Wedge Gate, TN-Needle Globe, TS-
 - 6) Valve Size

B-Teflon, D-Nylon, G-Viton, H-EPDM

A-Graphite, B-Teffon, D-Nylon, G-Viton, H-EPDM

- Standard Globe
- Specified as shown in the Example Valve ID Number by NPS
- A-Chromium (11-13%), C-Bronze, D-Stainless Steel
- Disc Material 8) Seat Material A-Chromium (11-13%), D-Stainless Steel, O-Viton, P-EPDM A-Chromium (11-13%), B-Carbon Steel, C-Bronze, D-Stainless Steel
- 9) Stem Material 10) Packing Material
- 11) Body Gasket
- NOTES

Specification Features

Optional

- 1) ASTM A216WCB or A105
- 2) CF3, CF8, F304, or F304L
- 3) CF3M, CF8M, F316, F316L
- Non welded end stainless steel valves pressure rating is based on the high carbon (non L) grade.

Standard

ASME B16.34

API 594 API 599

API 600 API 602

API 603

Note 1:

Table D-1 Standards for Valves

Steel Gate Valves, Flanged and Buttwelding Ends

Class 150 Cast, Corrosion-Resistant, Flanged-End Gate Valves

Valves - Flanged, Threaded, and Welding End

Steel and Ductile Iron Plug Valves

Compact Steel Gate Valves

functions independently of the stem seal retainer shall be used" (refer to paragraph 107.1(D) of ASME B31.1).

Wafer Check Valves

Title

API 608	Metal Ball valves - Flanged and Buttwelding Ends
API 609	Butterfly Valves, Lug-Type and Wafer-Type
AWWA C500	Gate Valves, 3 inch through 48 inch, for Water and Sewage Systems
AWWA C504	Rubber Seated Butterfly Valves
MSS SP-42 (Note 1)	Class 150 Corrosion Resistant Gate, Globe, Angle and Check Valves with Flanged and Butt Weld Ends
MSS SP-67 (Note 1)	Butterfly Valves
MSS SP-70	Cast Iron Gate Valves, Flanged and Threaded Ends
MSS SP-71	Cast Iron Swing Check Valves, Flanged and Threaded Ends
MSS SP-72	Ball Valves with Flanged or Butt-Welding Ends for general Service
MSS SP-80	Bronze Gate, Globe, Angle and Check Valves
MSS SP-81	Stainless Steel, Bonnetless, Flanged Knife Gate Valves
MSS SP-85	Cast Iron Globe & Angle Valves Flanged and Threaded Ends
MSS SP-88	Diaphragm Type Valves

The additional requirements of ASME B31.1 must be met in that "only valves designed such that the valve stem is retained by an assembly which

These valves are acceptable even though not listed in Table 326.1 of ASME B31.3. They are listed in Table 126.1 of ASME B31.1.

Service

Contamination

Throttling

Table D-2 Valve Selection

Description of Service

Control of fluids which may cause

Control the amount of flow by varying

the valve position

oontamination.	contamination buildup, a valve with minimum obstruction to flow is needed	buil, oute, olobe, or riller
High Pressure	Control of flow at high pressures - selection of a valve to be used in a high pressure application, particularly pneumatic, should be approached with caution	Ball or Globe, Poppet Valves are occasionally used
High Temperature	Control of flow at high temperatures	Ball or Globe, Poppet Valves are occasionally used
Low Leakage	Control of flow with very low seat leakage in the closed position	Ball, Gate, Globe, or Plug
Shutoff	Normal on-off control	Ball, Gate, Globe, or Plug - Ball and Plug Valves normally operate faster
Steam Service	Control of steam under pressure	Ball or Globe

Recommended Valve

Globe - Ball and gate valves tend to vibrate under flow, and erosion is a

concern when using gate valves

Ball, Gate, Globe, or Pinch

Type

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Moderate

Valve

Butterfly

Diaphragm

Weir Type

Straight Through

Pinch

Table D-3 Valve Selection

Mode of Flow Regulation

					Free of	Solius III Suspension			1
		On-Off	Throttling	Diverting	Solid	Non- Abrasive	Abrasive	Sticky	Sanitary
Globe	Straight Pattern	Yes	Yes		Yes				
	Angle Pattern	Yes	Yes		Yes	Special	Special	-	
	Oblique Pattern	Yes	Yes	6	Yes	Special			
	Multi-Port	J		Yes	Yes				
	Piston	Yes	Yes		Yes	Yes			
Parallel Gate	Conventional	Yes			Yes				
	Conduit	Yes			Yes	Yes	Yes		
	Knife	Yes	Special		Yes	Yes	Yes		
Wedge Gate	With bottom Cavity	Yes			Yes	L.,			
	Without Bottom Cavity (rubber seated)	Yes	Moderate		Yes	Yes			
Plug	Non-lubricated	Yes	Moderate	Yes	Yes	Yes			
	Lubricated	Yes		Yes	Yes	Yes	Yes		Yes
	Eccentric Plug	Yes	Moderate	Yes	Yes	Yes		Yes	
	Lift Plug	Yes		Yes	Yes	Yes		Yes	
Ball		Yes	Moderate	Yes	Yes	Yes			

Special

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Fluid

Yes

Yes

Yes

Yes

Yes

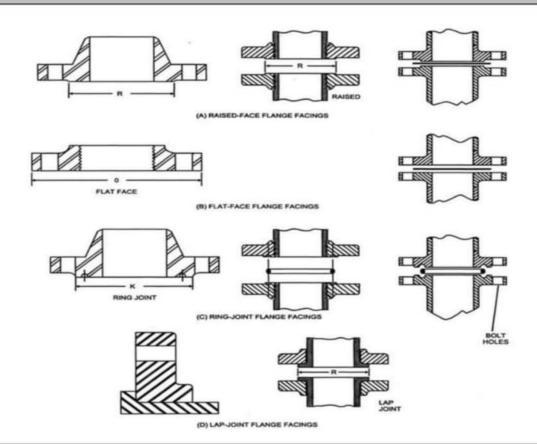
Yes

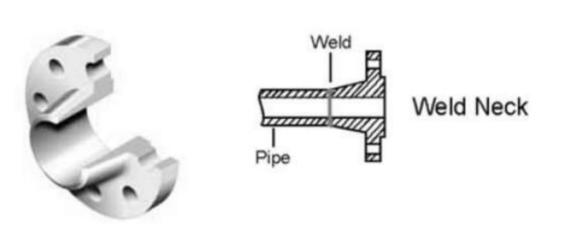
Yes

Solids in Suspension

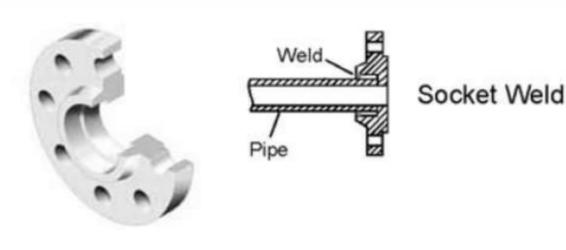
Piping – Fittings and Components

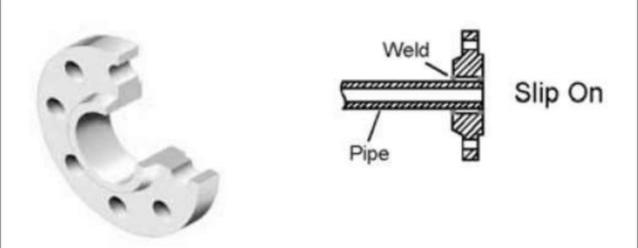
Screwed stainless steel and butt weld mild steel fittings


Piping – Fittings and Components


required. Ends are already prepared.

Fittings are used in pipe systems to connect straight pipe or where change is direction is

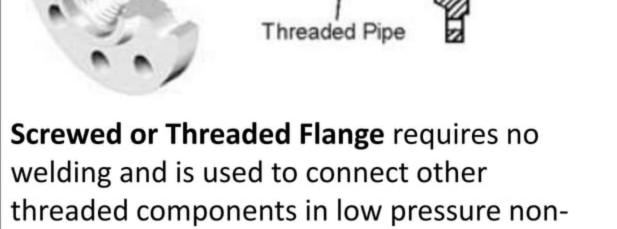

- To adapt to different sizes, to branch out or re-direct the process (flow).
- To provide a joint if 2 dissimilar materials are used in one system.
- Fittings for pipe most often made from the same base material as the pipe being connected, e.g., carbon steel, stainless steel, copper or plastic.
- Any material that is allowed by code may be used, but must be compatible with the other materials in the system, the fluids being transported, and the temperatures and
- pressures inside and outside of the system.
- Lines below 50mm NB are normally screwed or socket weld. Line 50mm and above are butt welded.



<u>Weld Neck flanges</u> are used in critical applications. These are circumferentially welded onto the system at their necks which means that the integrity of the butt-welded area can easily be examined by X-ray radiography. The bores of both pipe and flange match thus reducing turbulence and erosion.

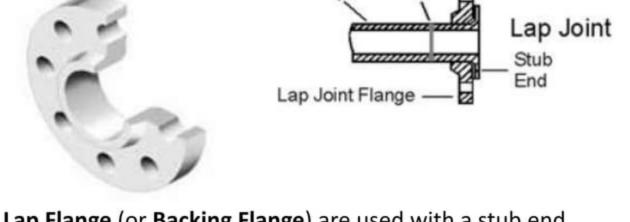
Socket Weld Flange is counter-bored to accept the pipe, which is then fillet welded.

The bore of both the pipe and the flange are the same to ensure good flows.

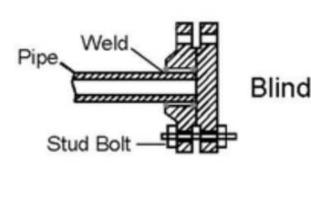


Slip-on Flange is slipped over the pipe and then fillet welded. Easy to use in fabricated applications.

Threaded


Piping - Flanges

critical applications.


Pipe Weld Lap Joint

Piping - Flanges

Lap Flange (or Backing Flange) are used with a stub end which is butt-welded to the pipe with the lap flange acting as a loose collar behind it. Thus the stub end always provides the sealing face. This type of joint is easily assembled and aligned, and it is favoured in low pressure applications.

Blind Flange or sometimes called a Blanking Flange, this is used for blanking off pipelines, valves and pumps and as an inspection cover.

Piping - Valves

identified above.

system or process. A valve controls system or process fluid flow and pressure by performing any of the following functions:

A valve is a mechanical device that controls the flow of fluid and pressure within a

- Stopping and starting fluid flow. Varying (throttling) the amount of fluid flow.
- Controlling the direction of fluid flow.
- Regulating downstream system or process pressure.
- Relieving component or piping over pressure. There are many valve designs and types that satisfy one or more of the functions
- A multitude of valve types and designs safely accommodate a wide variety of process applications.
- Complex control systems will use feedback from an instrument to control these types of valves to regulate pressure, temperature or flowrate depending on the control parameters required.

Piping - Valves

Piping - Valves Types of Valves Globe Gate Plug Ball Needle Butterfly Diaphragm Pinch Check Safety/relief Reducing

Piping - Valves

Classification

Regulation

Gate Valves Ball Valves

Isolation

Plug Valves

Piston Valves

Diaphragm

Valves

Butterfly Valves

Pinch Valves

Needle Valves **Butterfly Valves**

Globe Valves

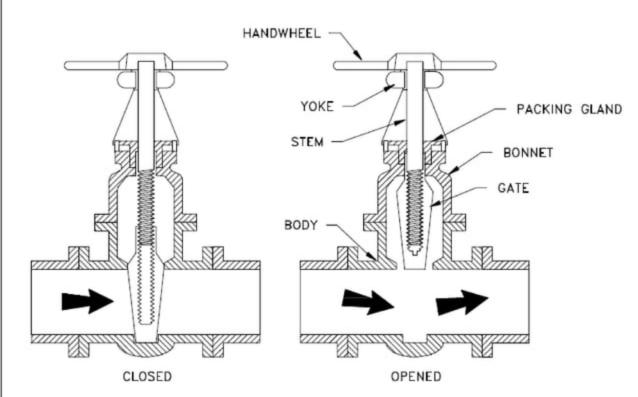
Diaphragm

Valves Piston Valves

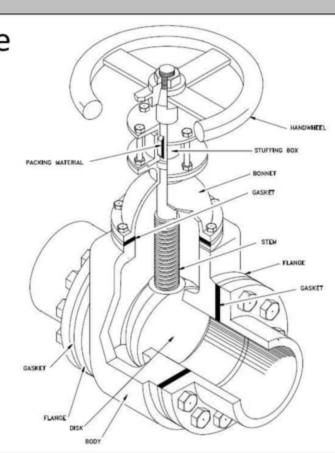
Pinch Valves

Special Purpose

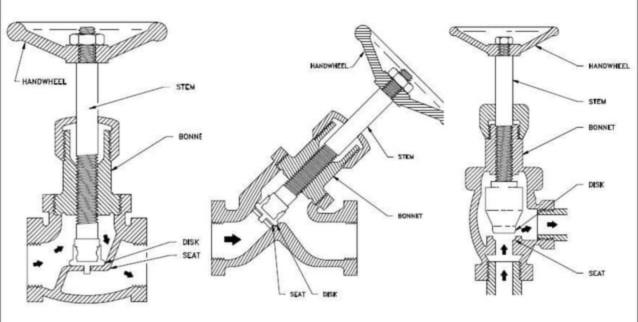
Non-Return

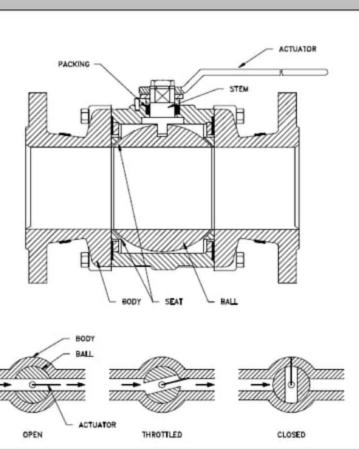

Check Valves

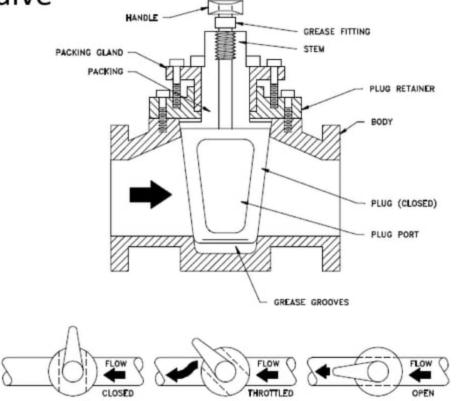
Multi-port

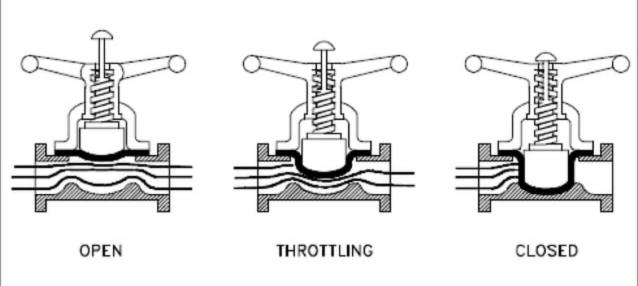

Valves Float Valves Blind Valves

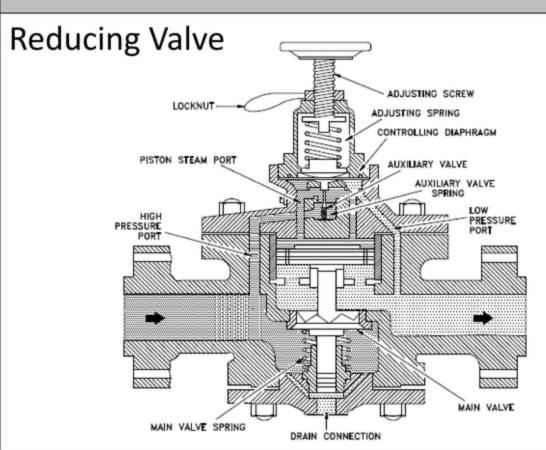
Rising Stem STEM HANDWHEEL PACKING GLAND YOKE BONNET GATE BODY -CLOSED OPENED

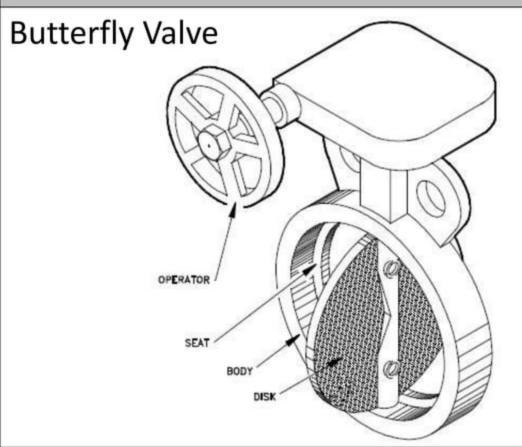

Non Rising Stem

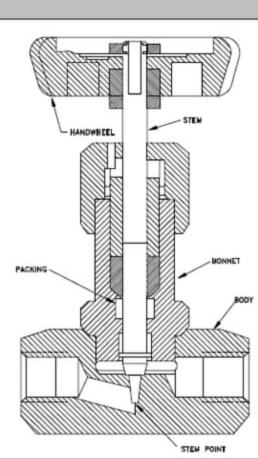

Gate Valve

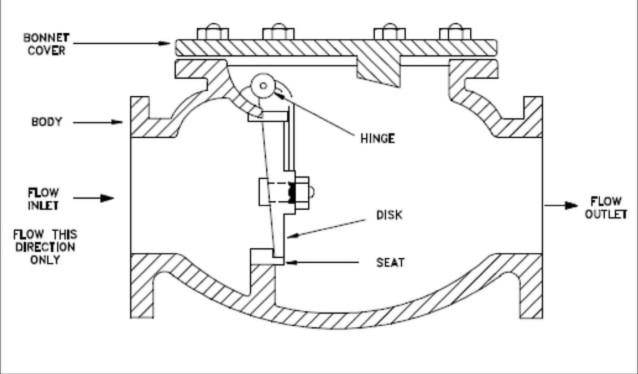

Globe Valve

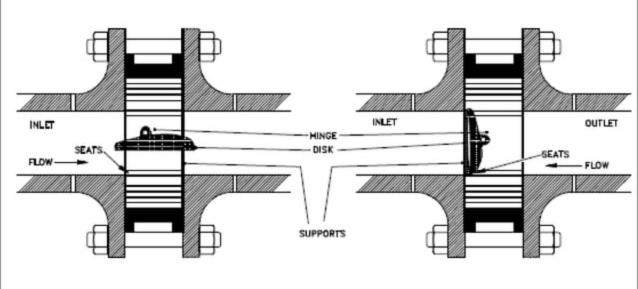

Ball Valve

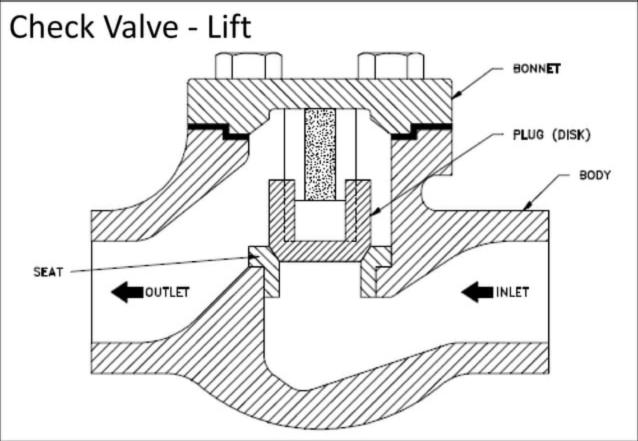



Plug Valve

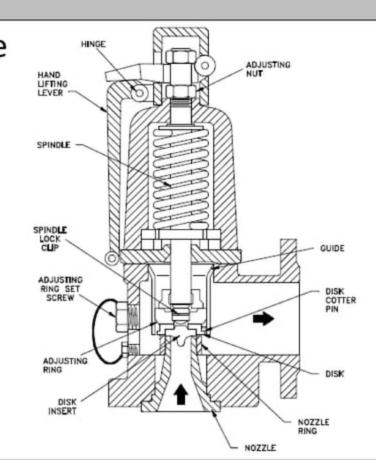

Diaphragm Valve



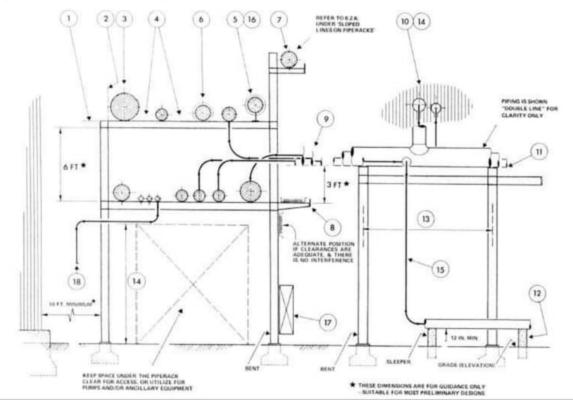

Needle Valve



Check Valve - Swing



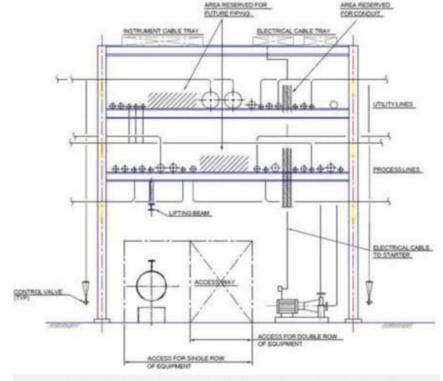
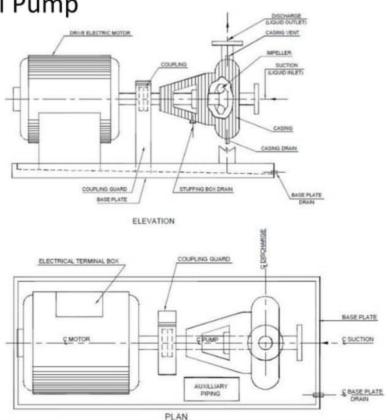
Check Valve - Tilting

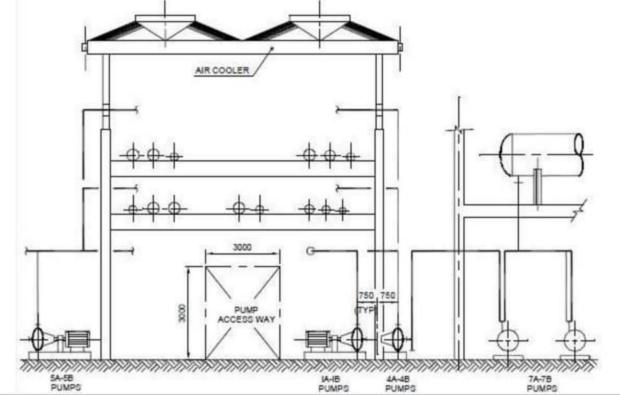


Relief Valve

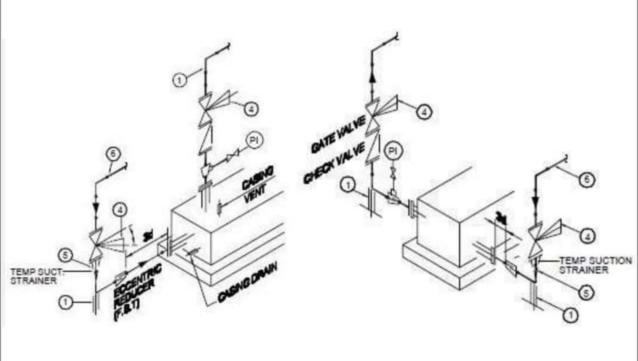
Piperack configuration

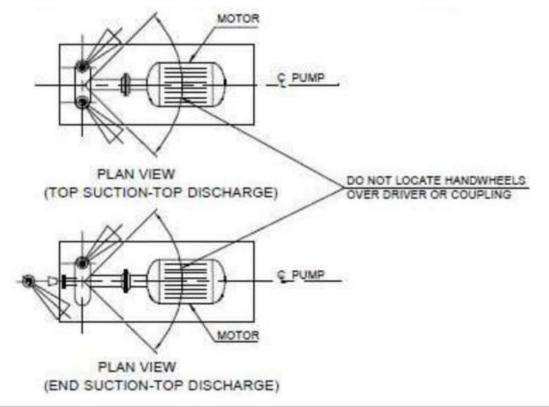
Piperack configuration

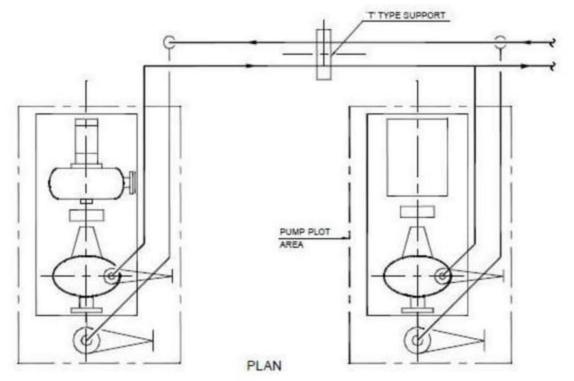

Fig 1- Typical cross-section for composite piperack

Piping – Pump arrangement and piping

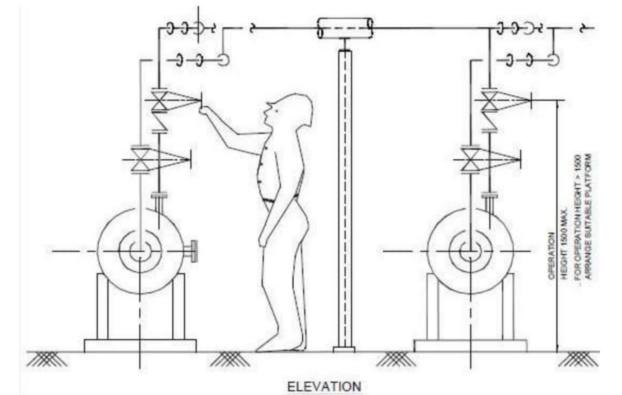

Centrifugal Pump


Typical pump locations - elevation

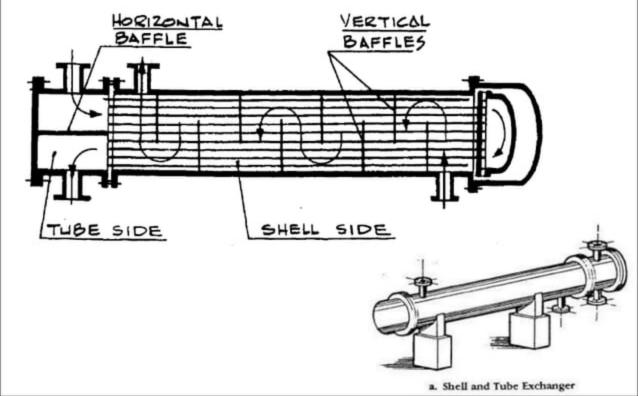
Typical pump suction and discharge piping



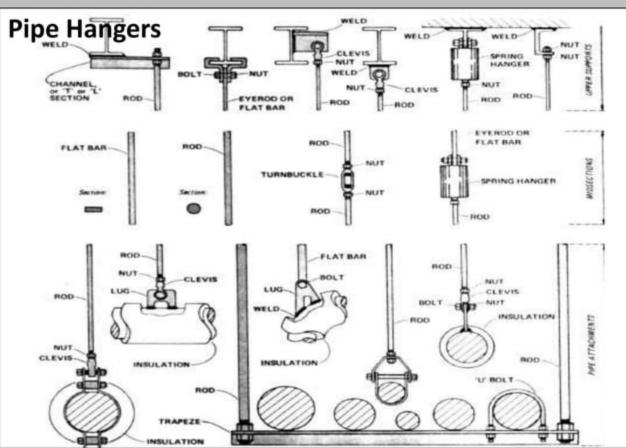
Orientation of handwheels


Piping – Pump arrangement and piping

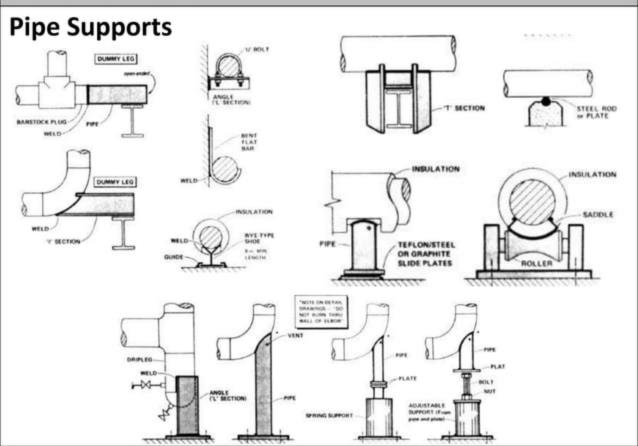
Typical auxilliary pump piping

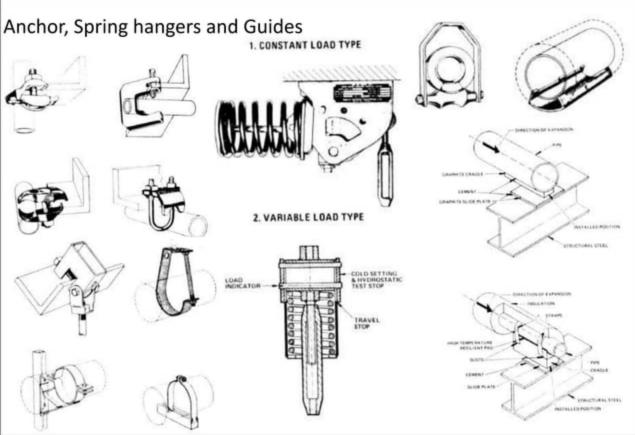

Piping – Pump arrangement and piping

Maintenance and operation access requirements



Piping – Heat Exchangers, Compressors, Air Coolers, etc


Various other equipment


Piping - Pipe supports

Piping – Pipe supports

Piping – Pipe supports

Overall plot plans showing location of various process units, offsite, package units, 1. roads, piperacks, sleepers, etc. PMS (Piping Material Specifications) & Valve Material Specifications. 3. Equipment general arrangement layouts/drawings indicating the location of all the

Piperack general arrangements drawings & structures for equipment support.

Outputs from the Piping Discipline

4.

5.

equipment. 6. Piping BOM (Bill of Material). 7. Piping stress analysis reports for critical lines.

equipment within a unit, platforms, ladders, overhead crane elevation.

Piping general arrangement layouts/drawings showing all the piping and

- Drawing showing the vessel cleats location for pipe supports. 8.
- 9. Layout for underground services. 10. Piping isometrics with bill of material.
- 11. Pipe support location plan, support schedules, pipe support drawings.
- 12. Purchase specification for insulation, painting, wrapping and coating.

Piping Material Control The material controller is responsible for all piping material requirement

Material Control

planning. This includes quantity take-off activities, production of bill of material, piping material quantity summaries, piping requisitions, piping order bit tabulation/summaries and technical comparison and required at site date planning.

- The list of deliverables may include the following.
- Bill of material for each piping documents
- Bill of material summary
- Special take-off summaries (large diameter or long delivery valves)
- Piping material procurement request for quote (RFQ) draft
- Piping material procurement purchase order (PO)

Electrical engineering

Electrical

Responsible for all of the project power, lighting and communication needs.

- electrical design considerations and electrical code requirements

- Normal and emergency systems
- hardware selection such as transformers and switchgear
- Aboveground and underground distribution systems

Instrument engineering

Instrumentation

Responsible for the 'nervous' system of the plant. Input is preliminary data sheet originated by process and complete the definition requirements, including final sizing and vendor selection. Other

layout of any control room
 control system hardware
 control system software

sensing elements and circuits

and on-line instruments for the project.

- defining the physical hardware elements that constitute the in-line

responsibilities are:

local indicators