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Abstract 35 

Municipal water and wastewater services have complicated sources of greenhouse gas (GHG) emissions, 36 

and quantifying their roles is critical for tackling global environmental challenges. In this study we 37 

provide a systematic review of the state-of-the-art on GHG emission characterizations of China's urban 38 

water infrastructure with the aim of shedding light on global implications for sustainable development. 39 

We started by synthesizing a framework on GHG emissions associated with water and wastewater 40 

infrastructure. Then we analyzed the different sources of GHG emissions in drinking water and 41 

wastewater treatment systems. In drinking water services, electricity consumption is the largest source of 42 

GHG emissions. A particular concern in China is the common use of secondary pumping for high-rise 43 

buildings. Optimized pressure management with an efficient pumping system should be prioritized. In 44 

wastewater services, non-CO2 emissions such as methane (CH4) and nitrous oxide (N2O) emissions are 45 

substantial, but vary greatly depending on regional and technological differences. Further research 46 

directions may include GHG inventory development for urban water systems at the plant level, 47 

quantifications of GHG emissions from sewer systems, emission reduction measures via water 48 

reclamation, renewable energy recovery, energy efficiency improvement, cost-benefit analyses, and 49 

characterizations of Scope 3 emissions. 50 

Keywords 51 

urban water systems; greenhouse gas accounting; water-energy nexus; non-CO2 emissions; life-cycle 52 

thinking 53 

  54 
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1. Introduction 55 

In the past few decades, China has made unprecedented progress in economic development. Along with 56 

this growth, the country has also dramatically improved its water infrastructure, expanded its clean water 57 

service and wastewater treatment, and improved protection of the water environment. The population 58 

able to access tap water from municipal water treatment plants increased from 303 million in 2004 to 59 

503 million in 2018 (+4.7%/year), and the total capacity of wastewater treatment increased from 74 60 

million m3/d in 2004 to 181 million m3/d in 2018 (+10%/year) (NBS, 2018). Such a trend will continue 61 

as China's urbanization continues; another ~10% of the total population is expected to move to urban 62 

areas by 2030 (United Nations, 2017). In the United Nations’ Sustainable Development Goals (SDGs), 63 

SDG 6 is dedicated to the water, sanitation, and hygiene (WASH) sector (United Nations, 2015), which 64 

aims to achieve universal and equitable access to safe and affordable drinking water and sanitation for 65 

all, especially for developing countries. In this regard, China has established a good model and will 66 

continue to play an exemplary role in achieving the global SDGs (Z. Xu et al., 2020). 67 

 68 

Municipal water and wastewater services have complicated sources of greenhouse gas (GHG) emissions. 69 

Although the WASH sector's contributions to national GHG inventories are usually between 1~3% 70 

(Hillman & Ramaswami, 2010; Bo Zhang et al., 2015), the absolute magnitude from a big country like 71 

China is noticeable. There is also high uncertainty around GHG inventories from wastewater and sludge 72 

treatment (Hall, West, Sherman, Lane, & de Haas, 2011; Sweetapple, Fu, & Butler, 2013). Recent 73 

studies show there are both synergies and trade-offs between achieving SDG 6 on clean water and 74 

sanitation and SDG 13 on climate actions (Q. Zhang et al., 2019; Q. Zhou, Leng, & Huang, 2018). 75 

Understanding the complete picture of GHG emissions associated with the WASH sector remains a 76 

challenging but fundamental requirement for policymakers and practitioners wanting to respond to the 77 

grand challenges in water, energy, and climate change. 78 
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 79 

In this study, we provided a systematic review of the state-of-the-art on GHG emission characterizations 80 

associated with China's urban water infrastructure and hope to shed light on global implications for 81 

sustainable development. We conducted a comprehensive literature search and critically reviewed 82 

relevant resources on other countries' cases to compare with results found in China.  83 

 84 

Following this introduction, we present a systems perspective to source GHG emissions accompanying 85 

the urban water cycle in Section 2. Recent studies on GHG emissions associated with drinking water 86 

systems in China are reviewed in Section 3. In Section 4, we critically evaluate current estimations of 87 

GHG emissions related to wastewater treatment systems in China. A brief summary of review highlights 88 

is provided in Section 5. GHG reduction opportunities for the water sector are illustrated in Section 6. 89 

Conclusions and the outlook for future research are provided in Section 7. 90 

 91 

2. A systems perspective of GHGs associated with urban water infrastructure  92 

In this review, urban water infrastructure includes municipal drinking water infrastructure and 93 

wastewater infrastructure. The term urban water systems (sometimes an urban water system) refers to an 94 

integrated system including water and wastewater infrastructure (Arora, Malano, Davidson, Nelson, & 95 

George, 2015; Hering, Waite, Luthy, Drewes, & Sedlak, 2013; Loubet, Roux, Loiseau, & Bellon-96 

Maurel, 2014; Lundin & Morrison, 2002) and links to asset management (Alegre et al., 2013; Leitão et 97 

al., 2016; L. Liu & Jensen, 2018). Industrial water treatment facilities, as well as large infrastructure for 98 

water conservation and long-distance transport like the South-North water transfer project in China, are 99 

not included due to different jurisdictions and scopes. The GHG emissions and other environmental 100 
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impacts associated with every stage of an urban water system can be analyzed using a life cycle 101 

assessment (LCA) (Lemos, Dias, Gabarrell, & Arroja, 2013).  102 

 103 

Figure 1 illustrates the potential GHG emission sources associated with urban water systems with a focus 104 

on system-level life-cycle thinking (Q. Zhang, Nakatani, Wang, Chai, & Moriguchi, 2017). In the urban 105 

water system, five main sections include water purification, water distribution, water end-use, 106 

wastewater collection, and wastewater treatment (including sludge treatment and disposal). The 107 

operations and maintenance (O&M) stage of urban water infrastructure is the primary source of both 108 

direct and indirect GHG emissions. For example, Scope 1 and 2 emissions (see Sidebar) include 109 

emissions from onsite fossil fuel consumption and purchased electricity consumption, and methane 110 

(CH4) and nitrous oxide (N2O) emissions from wastewater and sludge management. Some studies also 111 

consider Scope 3 GHG emissions from the energy consumption embodied in chemical inputs to water 112 

and wastewater treatment processes. Besides the O&M stage, the emissions associated with the 113 

construction stage and end-of-life stage are theoretically within this accounting framework as part of 114 

Scope 3 emissions. 115 

 116 
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 117 

Figure 1 A systematic illustration of GHG sources associated with urban water infrastructure. GHGs (E) 118 

represents energy-related GHG emissions. GHGs (NE) represents non-energy-related GHG emissions 119 

(mainly CH4 and N2O emissions from wastewater systems) 120 

 121 

Historical studies on China's city-level GHG inventories do not often focus on urban water systems. 122 

However, some studies in other countries shine light on this subject. Mahgoub et al. (2010) conduct a 123 

life-cycle assessment of the urban water system in one city in Egypt and indicate that a decentralized 124 

wastewater treatment system can help reduce the total energy consumption. A systematic evaluation of 125 

energy consumption during the urban water cycle and its environmental impacts in Norway reveals 126 

critical processes, e.g., pumping, aeration, anaerobic digestion, and pipelines rehabilitation, etc. 127 

(Venkatesh & Brattebø, 2011). Other evidence indicates that energy consumption from water end-users 128 

(e.g. household) can be more significant than water supply or wastewater treatment processes 129 

(Rothausen & Conway, 2011). Frijns (2012) proposes a standard framework of the carbon footprint for 130 
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the water sector, mentioning that the accounting boundary should include CO2 from energy 131 

consumption, direct CH4 and N2O emissions in processes, and indirect CO2 emissions from production 132 

of the chemicals used in treatment processes. His work shows that GHG emissions in the wastewater 133 

subsystem are much more significant than in the water supply subsystem in the case of the Netherlands, 134 

mainly due to CH4 and N2O emissions from wastewater treatment. However, it fails to include indirect 135 

CO2 emissions from materials used in construction because of its limited contribution over the whole 136 

life-cycle. A comprehensive LCA of the urban wastewater system in France reports significant 137 

environmental impacts from the construction of sewer infrastructure (Risch, Gutierrez, Roux, Boutin, & 138 

Corominas, 2015). Other LCA studies show considerable GHG emissions from the development of 139 

water infrastructure (pipelines or treatment facilities) (Petit-Boix et al., 2014; Piratla, Ariaratnam, & 140 

Cohen, 2011; Venkatesh, Hammervold, & Brattebø, 2009). In recent years, studies on China have 141 

reported energy use in water supply (Smith, Liu, & Chang, 2016; Smith, Liu, Liu, et al., 2016), CH4 142 

emissions from wastewater treatment (Jinhe Wang et al., 2011; X. Zhao et al., 2019), emissions from 143 

sludge treatment (B. Liu, Wei, Zhang, & Bi, 2013; C. Xu, Chen, & Hong, 2014) and LCA case studies 144 

for a municipal water treatment plant (WTP) or a municipal wastewater treatment plant (WWTP) (Y. Li, 145 

Luo, Huang, Wang, & Zhang, 2013; Q. H. Zhang, Wang, Xiong, Chen, & Cao, 2010). However, there is 146 

no comprehensive study that provides a system-level understanding of the GHG emissions associated 147 

with China’s water infrastructure. 148 

 149 

There is an emerging need to estimate non-CO2 GHG emissions from the urban water cycle, mainly from 150 

wastewater treatment. There are several recent publications on measurement and technology-based 151 

estimations of CH4 emissions (Cakir & Stenstrom, 2005; Foley, Yuan, & Lant, 2009; Guisasola, de 152 

Haas, Keller, & Yuan, 2008; Shahabadi, Yerushalmi, & Haghighat, 2009; Jinhe Wang et al., 2011) and 153 

N2O emissions in the wastewater treatment processes (Foley, De Haas, Yuan, & Lant, 2010; Law, Ye, 154 

Pan, & Yuan, 2012). They estimate the potential generation of CH4 in the wastewater collection system, 155 
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which is ignored under some GHG accounting protocols, and conclude that the dissolved CH4 in a rising 156 

main is significant (Foley et al., 2009; Guisasola, Sharma, Keller, & Yuan, 2009). Treatment plants that 157 

achieve high levels of nitrogen removal are found to emit less N2O, indicating that no compromise is 158 

required between high water quality and lower N2O emissions (Law et al., 2012). However, another 159 

study suggests a trade-off between nutrient removal and GHG emissions in WWTPs (Soda et al., 2013). 160 

An extreme case is that N2O emissions accounted for three quarters of a plant’s carbon footprint in one 161 

WWTP in the Netherlands, according to 16 months of measurement (Daelman, van Voorthuizen, Van 162 

Dongen, Volcke, & Van Loosdrecht, 2013). These studies demonstrate that non-CO2 emissions from the 163 

wastewater system are substantial, but there is considerable uncertainty and variety depending on the 164 

regional context and technologies used (Mannina et al., 2016). 165 

 166 

China's urbanization has been driven by decades of rural-to-urban migration (K. H. Zhang & Song, 167 

2003). Water resources have become one of the controlling factors in urbanization due to water scarcity 168 

and pollution (C. Bao & Fang, 2012). China's 'new-normal' urbanization plan makes it harder for 169 

residents to settle down in larger cities and is cautious when providing new land for urban expansion in 170 

mega-cities (X.-R. Wang, Hui, Choguill, & Jia, 2015). The urbanization level in China is estimated to 171 

reach ~70% in 2030 (Shi et al., 2012). More construction of urban water infrastructure and associated 172 

water services provision are expected during the continuing process of urbanization in China.  173 

Urbanization significantly enhances GHG emissions associated with the water cycle (X. Wang et al., 174 

2018). The sponge city initiative has greatly improved the city’s capability of dealing with stormwater 175 

and water body pollution. A recent study for Shanghai showed that the life-cycle (30-year) GHG 176 

emissions of sponge city projects can be offset by those enhanced carbon sinks after 19 years (Lin et al., 177 

2018). However, China's growth is disproportionate. In the urban water market, there is inequality 178 

among different types of cities (Tong et al., 2016). Generally speaking, smaller and less affluent cities 179 

have lower levels of wastewater treatment and water supply coverage. Water utilities in small towns 180 
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perform poorly in critical variables, including water supply reliability, water quality, and financial 181 

performance, as well as having inadequate wastewater treatment (Browder et al., 2007; Y. Jiang, 2015; 182 

Q. H. Zhang et al., 2016).  183 

 184 

3. Drinking water systems 185 

The process of supplying water typically involves four steps: (1) extracting water from the source, (2) 186 

treating water to the desired quality, (3) transferring water through an underground water distribution 187 

system, and (4) lifting water within a user's building. Scope 1 emissions within water supply include 188 

diesel use during sludge trucking and diesel use for backup generators, Scope 2 emissions result from 189 

grid electricity use, and Scope 3 emissions occur during the construction and manufacturing of 190 

infrastructure, equipment, and chemicals required during water supply and during the use of treated 191 

water after it arrives at the user.  192 

 193 

Greenhouse gas emissions for water supply in China and a number of other countries, regions and cities 194 

are presented in Table 1 for comparison. Key factors determining the emissions intensity of water supply 195 

are (1) electricity use and (2) the energy mix used to generate electricity (Smith & Liu, 2019). The 196 

emissions intensity of water supply in China is higher than three areas listed in Table 1 – Oslo, Toronto 197 

and New Zealand – which is mainly due to China’s high emission factor for electricity generation 198 

compared to Norway, Canada and New Zealand (Smith & Liu, 2019; Smith, Liu, & Chang, 2016). These 199 

three countries rely greatly on hydropower, wind power or nuclear power, whereas China relies mostly 200 

on coal (Smith & Liu, 2019; Smith, Liu, & Chang, 2016).  201 

 202 
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Shifting from emissions-intensive electricity sources is crucial to reducing emissions in China’s water 203 

supply sector (Smith, Liu, & Chang, 2016) and China is in the process of becoming less coal-dependent 204 

(Yuan, Behrens, Tukker, & Rodrigues, 2018). The percentage of non-fossil fuel energy in primary 205 

energy consumption increased from 3.4% in 1978 to 14.3% in 2018. The percentage of coal 206 

consumption decreased from 70.7% in 1978 to 59.0% in 2018, in particular due to the increase in the 207 

share of renewables over the last 10 years (Zheng et al., 2020). 208 

Table 1 Total (GHGwater), per capita (GHGper cap) and per unit (GHGper unit) GHG emissions for urban 209 
water supply, GHG emissions for urban water supply as a percentage of total national GHG emissions 210 

for electricity/heat (GHG%), and emission factor (EF) for countries, regions and cities represented in the 211 
literature. Table source: Smith, Liu, and Chang (2016) © 2015 by Yale University. 212 

Region 

Author and Date 

GHGper cap  

(kg CO2-eq/cap/yr) 

GHGper unit  

(kg CO2-eq/m3) 

GHGwater 

(Mt CO2-eq) 

GHG% 

(%) 

EF 

(kg CO2-eq/kWh) 

China  

Smith et al. 2016  

24.5 0.213 7.63 0.18a 0.737  

India  

Miller et al. 2013 

   3-16% 16 cities 

<3% for 23 citiesb 

 

Australia  

Kenway et al. 2008 

92.1c 0.721c 1.11c 

 

0.46d 0.908e 

UK  

DEFRA 2008 

Water UK 2010 

 0.34f 2g 0.82h  

USAi 

Hutson 2004 

EPRI 2002 

76.9j 

  

0.311j 18.6j 

 

0.69k 

 

0.608l 

Selected areasm 

New Zealand 

Kneppers et al. 2009 

7.32n 0.0596n 

 

  0.209o 

California 

Stokes and Horvath 2009 

 1.093p    
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 213 

3.1 Scope 1 & 2 GHG emissions 214 

This section focuses primarily on Scope 2 emissions from grid electricity use, which are the main type of 215 

emissions associated with water supply in China and for which data are more accessible. Drinking water 216 

treatment plants do produce some Scope 1 fugitive emissions due to sludge from sedimentation tanks 217 

and use of ozonation for disinfection, but this is difficult to quantify and low compared to wastewater 218 

treatment plants. Most GHG emissions from drinking water treatment plants are from the use of grid 219 

electricity (Smith, Liu, & Chang, 2016). Continuing reliance on coal for electricity generation in China 220 

Toronto, Canada 

Racoviceanu et al. 2007  

23.5q 0.117   0.173r 

Oslo, Norway 

Venkatesh & Brattebo 2011  

 0.07-0.08     

Durban, South Africa 

Friedrich et al. 2009  

 0.481s 

 

   

aUsing China’s 2011 CO2 emissions for electricity/heat from WRI (2014).  

bIncludes wastewater and is given as % of city-wide emissions. 

cCalculated based on total emissions, energy for water supply and population served for 

2006/2007 table 1 p6 Kenway et al. (2008). 

dCalculated using Kenway et al. (2008) and average CO2 emissions for electricity/heat 

for Australia between 2006/2007 from WRI (2014). 

e∑GHG emissions for energy-related sources across 6 cities/∑total energy demands 

from table 1 p6 Kenway et al. (2008). 

fSourced from Water UK (2010). 

gFor yr 2005-2006. Read from figure 12 p68 DEFRA (2008) (get, treat, distribute water 

+ leakage). 

hCalculated using DEFRA (2008) and average CO2 emissions for electricity/heat for the 

UK between 2005/2006 from WRI (2014). 

 iEIA GHG emissions data are only available in terms of CO2 not CO2-eq. 

jCalculated using estimated water withdrawal for and population served by “public water 

supply” in 2000 (table 5 p14 Hutson (2004)), total electricity for “public water supply” 

in 2000 (table 1.2 p1.5 EPRI (2002)) and  emissions factor 0.608 kg CO2-eq/kWh.  

“Public supply” refers to water withdrawn by public and private water suppliers 

that furnish water to at least 25 people or have a minimum of 15 connections. 

Hutson (2004, 13). 

kCalculated using 18.6 Mt and total 2000 CO2 emissions for electricity/heat from 

WRI (2014). 

lCalculated using electricity generation (3.8x1012 kWh: EIA (2013)) and CO2 

emissions (2.3x109t: EIA (2012)) from the US electric power sector. 

mKneppers et al. (2009) reviews four water systems with different characteristics 

representing just over 8% of the national population.  

nCalculation based on table 7 p20 Kneppers et al.(2009).  

o∑GHG emissions/∑total energy from table 7 p20 Kneppers et al. (2009). 

pPrediction: Assumes California imports all water 

q136 kWh/cap*0.173 kg CO2-eq/kWh from Racoviceanu et al. (2007). 

rUnits converted from 48.1 t CO2-eq/TJ for electricity generated for Ontario in 1997 

from Racoviceanu et al.  (2007). 

sFull LCA most likely used, including dam emissions. 
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means Scope 2 emissions remain important, though the energy mix in China is expected to be greener 221 

over time (Q. Liu, Lei, Xu, & Yuan, 2018).  222 

 223 

3.1.1 Emissions from sourcing water 224 

Water sourcing is not the leading emitter for most urban water supply systems. Surface water accounts 225 

for more than 80% of freshwater withdrawals in China (Food and Agriculture Organization, 2019), and 226 

surface water extraction tends not to be emissions-intensive unless it is long-distance (Wakeel, Chen, 227 

Hayat, Alsaedi, & Ahmad, 2016). Long-distance transfer and agricultural water use are not within the 228 

scope of this study. One major southern city, Changzhou, is an example of the contribution sourcing 229 

surface water can make to overall energy use for water supply when water users are located near the 230 

source. Only 3% of energy for water supply in Changzhou is used for locally sourcing water (Y. Zhou, 231 

Zhang, Wang, & Bi, 2013). Li et al. (2016) estimate the energy intensity of water lifting from rivers and 232 

lakes to be 0.20 kWh/m3 based on a summary of the literature from China. Emissions are generally 233 

higher for sourcing groundwater (Rothausen & Conway, 2011). Energy use varies greatly based on 234 

the depth from which groundwater must be sourced (Smith & Liu, 2019), but the average energy 235 

intensity across provinces of China (including rural areas) is estimated to be 0.37 kWh/m3 (X. Li et al., 236 

2016). 237 

 238 

Emissions associated with sourcing water are mainly for pumping and fall into Scope 1 if pumps are run 239 

using diesel or Scope 2 if pumps are run using grid electricity. Diesel pumps are used for around 25% of 240 

groundwater wells in rural areas of China (Jinxia Wang et al., 2012) and are rarer in urban areas, 241 

although they may be used in cases where private bores fall within city boundaries. The difference 242 

between diesel and electric pumps is largely due to (1) pump efficiency and (2) emission factor, with 243 
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both higher for electric pumps. In China, the efficiency of diesel pumps (~15%) is estimated to be much 244 

lower than that of electric pumps (40%, less 15% due to transmission and distribution of electricity) 245 

(Jinxia Wang et al., 2012). The emission factor of diesel was around one-third of the emission factor of 246 

electricity generated in China at that time. 247 

 248 

China's move towards the Sponge City concept has increased the focus on the collection and 249 

management of rainwater as an opportunity to supplement other water sources (H. Wang, Mei, Liu, & 250 

Shao, 2018). Research in other countries suggests that energy use for rainwater harvesting in buildings 251 

tends to be higher than for centralized water supply because rainwater is often stored in basement-level 252 

tanks and pumped up to users (Vieira, Beal, Ghisi, & Stewart, 2014). A comprehensive review of energy 253 

intensity data for rainwater harvesting systems around the world by Vieira et al. (2014) finds these 254 

systems use three times more energy than a centralized water supply system. However, for people living 255 

in high-rise buildings that already need onsite pumping (just under 10% of China's population), 256 

rainwater harvesting may not increase emissions associated with water supply (Smith & Liu, 2019). This 257 

could be an interesting area for comparative research in the future. 258 

 259 

3.1.2 Emissions from water treatment 260 

Conventional treatment of groundwater and locally sourced or transferred surface water is not a major 261 

source of emissions. In China, treatment generally involves coagulation, sedimentation, filtration, and 262 

disinfection, which are processes that do not require much energy (Can et al., 2013; X. Zhang et al., 263 

2016). For example, Changzhou uses 1% of the total energy for centralized water supply on water 264 

treatment (Y. Zhou et al., 2013). Energy use for conventional water treatment processes in China can be 265 

found in Smith, Liu, Liu, and Guo (2018). The primary source of emissions is filtration due to electricity 266 
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use for filter scouring and backwashing. Disinfection can also be a high energy user, but chlorine 267 

disinfection is most commonly used in China and is a low-energy process (Ye, Wang, Yang, Wei, & E, 268 

2009). Some big cities have implemented more advanced pre-treatment or post-treatment processes, such 269 

as ozonation, activated carbon filtration, etc. These processes will increase overall energy consumption, 270 

but limited data points are available so far from China. According to a reference from the United States, 271 

water chlorination/de-chlorination consumes 2×10-5– 5×10-4 kWh/m3, while energy use for ozonation is 272 

between 0.03 and 0.15 kWh/m3 (Plappally & Lienhard V, 2012). We do not find any first-hand 273 

information in the refereed literature about electricity intensity or carbon intensity of drinking water 274 

treatment from China’s operating water treatment plants. All the current studies in China are based on 275 

aggregated energy use data from statistics. The global median values of energy use for surface water and 276 

ground water treatment are found to be 0.22 and 0.25 kWh/m3, respectively (Y. Liu et al., 2016). China’s 277 

aggregated energy intensity of water treatment is between the global median and the 75th percentile. 278 

 279 

Seawater desalination for water supply emits more GHGs than conventional drinking water treatment. 280 

The two main forms of desalination in China are reverse osmosis (RO) and multi-effect distillation 281 

(MED), the former of which accounts for around 70% of the total desalination capacity (State Oceanic 282 

Administration, 2018). Other technologies such as multi-stage flash (MSF) and electrodialysis (ED) are 283 

less common in China. Emissions for RO are due to the use of electricity to create high pressure, with 284 

the exact amount depending on the salt concentration of the feed. As shown in Table 2, electricity use for 285 

RO is influenced by the age and size of the plant and can range between 3.3 and 5.2 kWh/m3 in China 286 

(Smith, Liu, Liu, et al., 2018). MED involves heating seawater to form water vapor, which condenses to 287 

form pure water. Energy use is independent of salt concentration, but MED is more energy-intensive 288 

than RO (6-7 kWh/m3 vs 4.5 kWh/m3) (J. P. Chen, Wang, Yang, & Zheng, 2011; Smith, Liu, Liu, et al., 289 

2018). Furthermore, this technology uses both electricity and thermal energy. GHG emissions are high 290 

because thermal energy from burning coal is the main energy source; most low-temperature MED plants 291 
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in China are co-located with coal-fired power stations to utilize waste heat for operation. By comparison, 292 

RO only uses grid electricity, which is generated using a combination of fossil fuels and renewable 293 

sources (e.g., hydro) in China. In 2016, Shandong Province had roughly 1.6 times larger seawater 294 

desalination capacity than Hebei Province, but its GHG emissions from seawater desalination are only 295 

47.4% of GHG emissions from Hebei’s desalination plants. This difference is because Shandong 296 

Province only uses RO plants, whereas Hebei Province depends largely on MED plants (65% of its total 297 

desalination capacity) (Jia, Klemeš, Varbanov, & Wan Alwi, 2019). 298 

Table 2 Electricity use by seawater reverse osmosis (SWRO) and low-temperature multi-effect 299 
distillation (LT-MED) plants in China. Table source: Smith, Liu, Liu, et al. (2018) © 2018 Elsevier Ltd. 300 

Plant name Technique Capacity 

(m3/day) 

Direct 

electricity use 

(kWh/m3) 

Steam 

use 

(kJ/m3) 

Electrical 

equivalent for 

thermal energy 

(kWh/m3)d 

Total equivalent 

energy use 

(kWh/m3) 

Hebei 

Caofeidiana,b 

LT-MED 5.0x104 2.11 2.69x105 5.85 7.96 

Tianjin 

Beijianga 

LT-MED 1.0x105 1.45 2.51x105 5.46 6.91 

Qingdao Baifaa SWRO 1.0x105 4.40 n/a n/a 4.40 

Shandong 

Changdao 

Countyc 

SWRO 1000 4.5  n/a n/a 4.5  

aY. Li, Xiong, Zhang, Wang, and Wang (2016); bValues for this plant include transfer to Beijing (270 km), which 

increases energy use; cL. Zhang, Xie, Chen, and Gao (2005) dElectrical equivalent is the electrical energy that 

cannot be produced in a turbine because the given quantity of steam was extracted (Encyclopedia of Desalination 

and Water Resources, 2017). We use the conversion provided by Encyclopedia of Desalination and Water 

Resources (2017), which estimates 46 000 kJ of steam produces 1 kWh of electricity, and assumes that pressure in 

the condenser of a large commercial steam turbine is kept at 0.1 bara, seawater temperature is 35oC and steam 

extraction pressure is 0.5 bara (loss is 258 kJ/kg steam). 

China has a common practice of wastewater reclamation (Z. Chen, Wu, Wu, & Hu, 2016) but uses a 301 

comparatively small amount of desalinated seawater, although the use of both types of water has 302 

increased significantly over the past two decades. Tianjin is one of the main producers of desalinated 303 

water, but desalination only accounts for 1.2% of water supplied to Tianjin; by comparison, reclaimed 304 

wastewater accounts for between 5% and 20% or more in major northern Chinese cities (Y. Li et al., 305 

2016). Note that reclaimed wastewater is not yet for potable use in China’s cities, but mainly for 306 

landscape and industrial use (Zhu & Dou, 2018). 307 
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 308 

3.1.3 Emissions for water distribution 309 

Water distribution is often the main source of emissions in the water supply process, particularly if the 310 

distribution of water in high-rise buildings is considered (Smith, Liu, Liu, et al., 2018). The topography 311 

of a city and the percentage of people living in high-rise buildings are two of the main factors 312 

determining energy use for water distribution (Q. Zhang et al., 2019). 313 

 314 

There are only a few city-level studies in China that show the importance of water distribution in energy-315 

related emissions. In Beijing, water distribution accounts for 63% of total emissions of centralized water 316 

supply (Smith, Liu, Liu, Liu, & Wu, 2017). Another study by He et al. (2019) estimates the energy use 317 

for water distribution in Beijing to be 0.44 kWh/m3, which is 54% of the total energy use for sourcing, 318 

treatment and centralized distribution. In Changzhou, centralized water distribution accounts for 96% (Y. 319 

Zhou et al., 2013), and it accounts for 44%, according to one case study in Taipei (Cheng, 2002).  320 

 321 

Pressure management is a countermeasure against water leakage during distribution, which has clear co-322 

benefits of energy savings and GHG reductions (Q. Xu, Chen, Ma, Blanckaert, & Wan, 2014; Y. Zhou et 323 

al., 2013). Energy is used during distribution to meet water quality objectives, to provide sufficient 324 

pressure to satisfy consumers, and ensure fire hydrants are functional. Many countries recommend a 325 

minimum pressure be used in the distribution system for these reasons, and a selection of these 326 

regulations and guidelines is shown in Figure 2. For example, the minimum recommended pressure is 28 327 

m in China, which delivers to the sixth story and under. Other examples are 15 m for Australia and 10 m 328 

for Spain. 329 
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 330 

Figure 2 Examples of minimum pressure guidelines for countries around the world. Data source: Smith 331 

and Liu (2021). 332 

 333 

Onsite pumping for households not serviced by the minimum pressure can be a significant contributor to 334 

emissions for water supply, but this can be reduced by using an efficient pumping system. As an example, 335 

energy use for high-rise pumping is estimated to account for 43% of total electricity use for water supply 336 

in a major Chinese city where 9% of the population live on the seventh story or above (Smith et al., 2017). 337 

The most common high-rise pumping systems in China are the booster pump and break tank system and 338 

the entirely pressurized booster system. Both have basement tanks to store water, and variable speed pumps 339 

to lift water to upper levels, but the tanks are different – one is a large break tank that holds water at 340 

atmospheric pressure, and the other is a small pressurized tank. The former system uses 0.019 kWh to lift 341 

one cubic meter of water one meter, and the latter arrangement uses less energy – 0.010 kWh/m3· m – 342 

because pressure provided in the water distribution system is retained (Smith et al., 2017). 343 
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 344 

3.2 Scope 3 GHG emissions 345 

Scope 3 emissions data for China's water supply are challenging to obtain and do not contribute 346 

significantly to overall emissions according to both bottom-up and top-down estimations. 347 

 348 

3.2.1 Evidence from bottom-up estimations 349 

We found the only city-level study in China that included Scope 3 greenhouse gas emissions associated 350 

with water supply was a study comparing the carbon footprint of different water supply infrastructure 351 

options in Ningbo (Wu, Mao, & Zeng, 2015). The study investigates four potential sites for a water 352 

treatment facility. All four sites would use ferrous chemicals for coagulation, and polymer chemicals for 353 

sludge dewatering. Three sites would use chlorine disinfection, and the fourth would use ozone 354 

disinfection. Scope 3 emissions included in Wu et al. (2015) were those associated with chemicals and 355 

fuels. Although Wu et al. (2015) showed that the incorporation of fuel-related Scope 3 emissions is 356 

useful for assessing the impact of a plant’s location on overall emissions, other factors were more 357 

influential in deciding plant location (e.g., elevation with respect to source and consumers). Scope 2 358 

emissions from electricity consumption and Scope 1 emissions from ozone disinfection (in the case 359 

where this was used) were the main contributors to the carbon footprint of water supply infrastructure 360 

options. 361 

 362 

From a life-cycle perspective, manufacturing and transporting chemicals used in drinking water 363 

treatment are responsible for some greenhouse gas emissions. It is difficult to find empirical data on this 364 

topic in China in the literature, so a brief review of literature for other countries is provided here. A study 365 

by Racoviceanu et al. (2007) on total energy use and GHG emissions for a conventional water treatment 366 
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plant in Toronto found that chemical manufacturing and transportation contributed 8% to total 367 

greenhouse emissions. Similarly, emissions related to chemical use in the Dutch water sector (including 368 

both drinking water and wastewater utilities) accounted for less than 8% of the total carbon footprint 369 

(Frijns, 2012). However, those studies did not include the chemicals and other materials used in pipeline 370 

construction and maintenance. Studies in Norway suggested that using polyurethane to replace epoxy 371 

resin as the material used for pipeline rehabilitation can significantly reduce GHG emissions and other 372 

environmental impacts (Venkatesh & Brattebø, 2012; Venkatesh, Brattebø, Sægrov, Behzadian, & 373 

Kapelan, 2017). 374 

 375 

Another study by Stokes and Horvath (2011) on a conventional water treatment plant estimates 36% of 376 

GHG emissions can be attributed to materials, of which 73% is due to chemical production. Chemicals 377 

used were ammonia, polymer, caustic soda, hydrofluosilicic acid, sodium hypochlorite, polyalumium 378 

chloride, sodium bisulfite, and alum. They compared this plant to results from two other plants, also in 379 

California, for which energy use contributed a much greater percent to GHG emissions and concluded 380 

that the large contribution of material production to overall GHG emissions (17% higher than one of the 381 

other case study plants) was due to (1) lower energy use by the plant in absolute terms and (2) more 382 

comprehensive inclusion of costs associated with constructing and maintaining the system. The same 383 

authors found in a previous study (Stokes & Horvath, 2009) on alternative water sources – imported 384 

water, desalination, and recycled water – that chemicals accounted for 4-18% of total energy 385 

consumption, and the contribution to GHG emissions was similar. Sodium hydroxide and sodium 386 

hypochlorite were the biggest contributors to energy consumption. Transport of chemicals accounted for 387 

1% or less. 388 

 389 
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The contribution of chemicals and materials to life-cycle GHG emissions for the water sector depends on 390 

technology and treatment requirements, study scope, and geographic and social factors (Venkatesh, 391 

Chan, & Brattebø, 2014). Based on current evidence, we conclude that Scope 2 emissions from 392 

electricity use account for the majority of GHG emissions from China's drinking water system. 393 

 394 

3.2.2 Evidence from top-down estimations 395 

Top-down estimations of Scope 3 GHG emissions associated with the urban water supply system can be 396 

significant. Some upstream activities outside direct suppliers of water utilities are difficult to capture 397 

through a bottom-up approach. Using environmentally extended input-output models, Zhang et al. 398 

(2017) reveal that Scope 3 emissions contribute up to 17% of total carbon dioxide emissions associated 399 

with the operation and maintenance of water utilities, mainly from upstream electricity and heat 400 

generation (21%), water management (9%), manufacture of metal products (15%) and plastics (6%), and 401 

other chemical inputs (4%). Emissions from cement and lime production (27%) and steel rolling (22%) 402 

are the primary sources of Scope 3 emissions for the construction of urban water infrastructure (Q. 403 

Zhang et al., 2017). The dataset they used was the Chinese 2007 Input-Output Table with 135 industrial 404 

sectors, which provided China’s most detailed sector information at that time. Similar insights can be 405 

found in a series of studies on the water-energy nexus at the city level (Fang & Chen, 2017; J. Gao et al., 406 

2019; Xian Li et al., 2019). For example, Beijing's construction sector was found to be a high-intensive 407 

node for embodied water and carbon (Meng et al., 2019). Mining, mineral processes, and chemical 408 

manufacturing are the key sectors for the water-energy nexus in China (Fan, Kong, Zhang, & Wang, 409 

2019). 410 

 411 
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4. Wastewater treatment systems 412 

Wastewater treatment is one of the major sectors of GHG emissions under the Intergovernmental Panel 413 

on Climate Change (IPCC) guideline (Kampschreur, Temmink, Kleerebezem, Jetten, & van Loosdrecht, 414 

2009; Mannina et al., 2018). Increasing concerns have been raised about the generation of GHGs from 415 

the rapid expansion of WWTPs in China (Zhao et al. 2019), where the volume of treated municipal 416 

wastewater increased ten times between 2001 and 2014 (Society of Chinese Urban Water Supply and 417 

Drainage, 2015). Three main GHGs can be generated due to wastewater treatment. These include CH4 418 

and N2O released in the sewer systems, generated in wastewater treatment plants, and discharged into 419 

receiving water bodies (Scope 1 emissions), and CO2 and other GHG emissions generated through 420 

energy and materials consumption (Scope 2 & 3 emissions). 421 

 422 

4.1 Scope 1 GHG emissions from wastewater treatment systems 423 

This section presents various sources of direct CH4 and N2O emissions from wastewater treatment 424 

systems, including sewer systems, urban WWTPs, sludge treatment/disposal, and receiving water bodies. 425 

 426 

4.1.1 Nitrous oxide emissions from WWTPs 427 

Nitrous oxide (N2O) is produced in WWTPs during nitrogen removal processes, including both 428 

nitrification and denitrification reactions. In wastewater treatment processes, N2O is emitted 429 

predominantly in aerated zones (Kampschreur et al., 2009). Globally, N2O emissions from wastewater 430 

treatment were estimated to increase by 13% during the period 2005-2020 (Law et al., 2012). In China, 431 

the latest national GHG report showed that N2O emissions from wastewater treatment were 110 432 

gigagrams (Gg) in 2014, amounting to 5.6% of national N2O emissions (National Development and 433 

Reform Commission, 2018). Measuring onsite N2O emissions from full-scale WWTPs is complicated 434 
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and lacks standardized methods (Law et al., 2012). For example, real-time N2O emissions at full-scale 435 

treatment plants have been found to vary between 0 and 14% of incoming N (Kampschreur et al., 2009).  436 

 437 

Several case studies reported onsite monitoring of N2O emissions in WWTPs. A case study in Beijing’s 438 

WWTPs found that N2O was the largest source of GHG among all GHG emissions (CH4, N2O, and 439 

indirect emissions of CO2), accounting for 43.5% and 55.6% of total GHG emissions in anoxic/oxic 440 

(A/O) and sequencing batch reactor (SBR) WWTPs, respectively (Z. Bao, Sun, & Sun, 2016). Table 3 441 

shows several monitoring results of N2O emission factors from onsite measurement for the most popular 442 

treatment processes in China. In this table, SBR shows the highest emission factor, followed by 443 

oxidation ditch, anoxic/anaerobic/oxic (A2O), and A/O. We found that the emission factors fall into a 444 

similar order of magnitude when compared with the results derived from several other countries. These 445 

studies provided valuable information on N2O emissions from WWTPs but were based on limited 446 

sample sizes. More lab-scale and full-scale investigations are needed to increase understanding of N2O 447 

emissions and reduction potential for different treatment processes. 448 

 449 

Low dissolved oxygen (DO) concentration, increased nitrite concentrations during both nitrification and 450 

denitrification stages, a low COD/N ratio in the denitrification stage, as well as low pH levels were 451 

found to be the main factors leading to N2O emissions in WWTPs (Kampschreur et al., 2009; S. Wang, 452 

Zhao, & Huang, 2019). Li et al. (2017) investigated N2O emissions in a constructed wetland in Jinan city 453 

of China and found that the C/N ratio of influent wastewater significantly affected N2O emissions. These 454 

findings indicate that considerable potential exists in reducing N2O emissions in China. For example, 455 

Chen et al. (2014) found that the N2O emissions were reduced by 42% through canceling the anaerobic 456 

phase and extending the idle phase in an SBR treatment process in Shanghai.  457 

 458 
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4.1.2 Nitrous oxide emissions from sewers and receiving water bodies 459 

Recent studies have shown significant N2O emitted from gravity sewer systems (Fries, Schifman, 460 

Shuster, & Townsend-Small, 2018). Hydraulic turbulence during high flow periods is a strong driver for 461 

N2O production from gravity sewer systems (Short et al., 2014). However, further case studies on N2O 462 

emissions in sewer systems worldwide, including in China, are still sparse. In terms of receiving water 463 

bodies from WWTPs, case studies in both China and Canada have found that rivers close to urban 464 

WWTPs had significantly higher N2O emissions than rivers receiving natural and agricultural runoff 465 

(Rosamond, Thuss, & Schiff, 2012; Jianing Wang, Chen, Yan, Wang, & Yang, 2015). Rosamond et al. 466 

(2012) indicated that dissolved inorganic nitrogen discharged from WWTPs has no linear relationship 467 

with N2O emissions in rivers. He et al. (2017) further revealed that nitrogen substrates and DO could be 468 

good predictors of the N2O emissions of urban rivers. They also suggested a revision of the default 469 

emission factors of N2O in the IPCC approach in China's context. 470 

 471 

Table 3 Emission factors of N2O derived from onsite measurement for different wastewater treatment 472 
processes in China and some other countries. 473 

Treatment process Location Emission factors References Scale 

A2O Beijing 0.0195 

(N2O/TN influent) 

(S. Sun et al., 2013) Full-scale 

A2O Beijing 0.4–1.5 (0.8) 

(g N2O/kg TN removed) 

(Yan, Li, & Liu, 

2014) 

Full-scale 

A2O Jinan 1-1.3 

(g N2O/kg TN removed) 

(Jinhe Wang et al., 

2011) 

Full-scale 

A/O Beijing 0.016±0.0089 

(N2O/TN influent) 

(S. Sun et al., 2017) Full-scale 

Oxidation Ditch Beijing 0.8–8.8 (3.6) 

(g N2O/kg TN removed) 

(Yan et al., 2014) Full-scale 

A2O Shanghai 

 

0.095–3.44 (1.29 average) 

(gN2O/kg TN influent) 

(Y. Wang et al., 

2016) 

Full-scale 
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SBR Beijing 6.52 

(N2O/TN influent) 

(S. Sun et al., 2013) Full-scale 

SBR Switzerland 1.0 

(gN2O/kg TN influent) 

(Gruber et al., 2020) Full-scale 

A2O South Korea 1.605 

(gN2O/kg TN influent) 

(Hwang, Bang, & 

Zoh, 2016) 

Full-scale 

 474 

4.1.3 Methane emissions from WWTPs 475 

Methane (CH4) is formed when organic matter decomposes in anaerobic conditions during wastewater or 476 

sludge treatment (Mannina et al., 2018). Although CH4 is the second most important GHG from 477 

anthropogenic sources, there are fewer studies on CH4 emissions in WWTPs than N2O emissions (X. 478 

Zhao et al., 2019). Globally, CH4 emissions from the wastewater treatment sector account for 5-7% of 479 

anthropogenic methane emissions (Saunois et al., 2020; US EPA, 2012). According to the Second 480 

Biennial Update Report on Climate Change of the People's Republic of China, CH4 emissions from 481 

wastewater treatment were 2721 Gg in 2014, amounting to 4.9% of China's total CH4 emissions.  482 

 483 

Both plant-level and region-level studies can be found in CH4 emission studies in China. Studies at a 484 

regional level are usually based on a mass balance approach derived from the 2006 IPCC Guidelines for 485 

National Greenhouse Gas Inventories (IPCC, 2006). Researchers have evaluated CH4 emissions at the 486 

regional level (Du et al., 2018; Ma et al., 2015) and city level (X. Zhao et al., 2019), and these 487 

estimations showed similar results to total national emissions (Table 4). Zhao et al. (2019) found that 488 

CH4 emissions from municipal WWTPs for China's 229 prefectural-level cities were over three times 489 

that of the municipal WWTPs in the United States in 2016. Although the IPCC approach has 490 

considerable uncertainty (Law et al., 2012), it is still a suitable way to quantify CH4 of WWTPs at a 491 

regional level compared to the onsite monitoring approach (Zhao et al. 2019).  492 

 493 
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Case studies of CH4 emissions at the plant level for China are rare and not comparable with the results 494 

from regional studies. Specific studies found that GHG emissions from vertical subsurface flow 495 

constructed wetlands could be much lower than conventional WWTPs (Pan, Zhu, & Ye, 2011). Wang et 496 

al. (2011) investigated CH4 emissions from an A2O WWTP in China. However, based on the emission 497 

factor (kg CH4/kg COD) derived from their studies, the scaled-up national CH4 emissions were only 6.2 498 

Gg, much smaller than results from the IPCC approach. Local GHG inventories require higher accuracy 499 

(Meyer, Deventer, Zhao, & Klemm, 2019). Thus, it is urgent to carry out more monitoring work with 500 

different treatment processes, scales, and geophysical locations to provide more accurate CH4 emission 501 

inventories for municipalities. Besides, different sludge treatment and disposal techniques could be the 502 

predominant source of CH4 generation. Wei et al. (2020) summarized five routes of sludge treatment and 503 

disposal, which are anaerobic digestion and land application (route 1), compost and land application 504 

(route 2), sanitary landfills (route 3), sludge incineration (route 4), and building materials production 505 

(route 5). They found that incineration contributed the most to CH4 and CO2 emissions (45.11%), 506 

followed by sanitary landfills (23.04%), land utilization (17.64%), and building materials (14.21%). 507 

 508 

Table 4 China's methane emissions from WWTPs using the IPCC approach 509 

Year Municipal CH4 emissions 

Unit: Gg 

Industrial CH4 emissions 

Unit: Gg 

References 

2010 611 1624 (Ma et al., 2015) 

2000 245 1104 (Du et al., 2018) 

2014 1271 2159 (Du et al., 2018) 

2014 1170 - (X. Zhao et al., 2019) 

 510 

Many factors can influence the onsite emissions of CH4. Methane emissions are directly correlated with 511 

the degradable organics present in wastewater, but they are also tightly related to the treatment 512 

conditions and processes. Zhao et al. (2019) found that cities in China with a higher gross domestic 513 

product (GDP), household food consumption expenditure, or household consumption expenditure 514 

produced wastewater with more degradable organics, thus generating more CH4 emissions. Mechanical 515 
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aeration results in high DO concentrations in wastewater, which can inhibit methane formation. 516 

However, it also leads to the air stripping of dissolved methane from wastewater. As a result, DO 517 

concentrations are positively correlated with CH4 flux from the aerated grit chambers and oxic tanks but 518 

not significantly relevant in anaerobic tanks (Jinhe Wang et al., 2011). 519 

 520 

4.1.4 Methane emissions from sewers and receiving water bodies 521 

The supersaturated CH4 in rising mains of sewers can drive CH4 emissions to the atmosphere. 522 

Monitoring results proved that a large amount of CH4 emitted from sewers might be comparable to that 523 

from WWTPs (Guisasola et al., 2008). Higher CH4 concentrations in sewers are highly related to long 524 

hydraulic residence time and larger pipe area-to-volume ratio (Foley et al., 2009). Three-year monitoring 525 

on 37 km-long sewer systems in Xi'an of China reports much higher onsite CH4 emissions from the 526 

sewer system than previous estimations (Jin, Gu, Shi, & Yang, 2019), indicating the importance of 527 

examining CH4 emissions from sewer systems in China. Researchers have found CH4 dissolved in 528 

effluent increased the CH4 emissions in rivers (Brigham et al., 2019). However, the volume of CH4 529 

emissions with discharged effluent is relatively insignificant, only accounting for a small share of the 530 

total CH4 emitted in the drainage system (Alshboul, Encinas-Fernández, Hofmann, & Lorke, 2016). 531 

 532 

One of the critical differences between China’s urban wastewater systems and those of other countries is 533 

the inclusion in China of a pretreatment system (Liao, Hu, & Roker, 2015). The widely distributed septic 534 

tanks to pretreat household wastewater represent such a system, and these are huge sources of GHG 535 

emissions that are currently ignored. Hao et al. (2017) estimated that CH4 emissions in China’s urban 536 

septic tanks are at the same level as the GHG emissions from the WWTPs. It is important to include the 537 

pretreatment system in future studies to monitor and evaluate GHG emissions from wastewater 538 

treatment. Evaluating the cost and benefit of pretreatment system removal should consider GHG 539 
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generation potential in septic tanks and other pretreatment facilities, which is essential to mitigating 540 

GHG emissions further. 541 

 542 

4.2 Scope 2 & 3 GHG emissions 543 

The CO2 emissions from energy consumption required for WWTPs operation are the major indirect 544 

source of GHG emissions from wastewater treatment (Daelman et al., 2013). From 2007 to 2015, the 545 

total amount of wastewater treated in China increased from 17.0 billion m3 to 46.7 billion m3, and the 546 

electricity consumed increased from 3.9 billion kWh to 14.0 billion kWh (Smith, Liu, Liu, et al., 2018). 547 

Among the multiple stages of the wastewater treatment process, secondary treatment and tertiary 548 

treatment (for wastewater reclamation) are the most energy-consuming stages, followed by pretreatment, 549 

primary treatment, and sludge treatment (Q. H. Zhang et al., 2010). A comprehensive investigation of 550 

energy consumption in China's WWTPs suggests that energy use of different secondary treatment 551 

technologies depends heavily on the capacity of the plant, which is defined as the volume of treated 552 

water per day (Y. He et al., 2019). The research found that SBR with energy consumption efficiency 553 

ranging from 0.128-0.424 kWh/m3 is more efficient for small-scale WWTPs (<10×104 m3/d), oxidation 554 

ditch (0.126-0.434 kWh/m3) is more efficient for medium-scale WWTPs (10-20×104 m3/d), and A2O 555 

(A/O) (0.141-0.473) kWh/m3 is more efficient for large-scale WWTPs (>20×104 m3/d) (Y. He et al., 556 

2019). The energy use of tertiary treatment technologies for wastewater reclamation varies with the 557 

specific use of the reclaimed water and the associated water quality standards in China (Lyu, Chen, 558 

Zhang, Fan, & Jiao, 2016). In general, pressure-driven membrane processes, such as RO, nanofiltration 559 

(NF), and ultrafiltration (UF), are more energy-intensive than conventional processes such as 560 

coagulation, disinfection, and activated carbon adsorption (Plappally & Lienhard V, 2012). Based on 561 

data from 1079 WWTPs across China, Zeng et al. (2017) estimated that GHG emissions from WWTPs 562 

could decrease by 32.2% if all plants worked efficiently. Niu et al. (2019) established an energy 563 

consumption model for WWTPs in China using data from a national pollution source census (which 564 
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covers 3035 WWTPs supplying 85% of the total amount of wastewater treated in China in 2010). They 565 

found that WWTPs in China are more energy-intensive than their international counterparts. Low inlet 566 

COD concentrations and low utilization rates are the root causes of the abnormally high energy 567 

consumption of small-scale WWTPs in China (Niu et al., 2019). 568 

 569 

GHG emissions can be induced by energy embodied in the upstream construction, production of input 570 

materials for operation, or downstream demolition phase of WWTPs (Beibei Zhang, Ariaratnam, Huang, 571 

& Zhang, 2014). Indirect emissions from WWTPs can also be substantial. For example, Bao et al. (2016) 572 

compared the direct and indirect GHG emissions of two WWTPs with A/O and SBR treatment processes 573 

in Beijing, China. They found that indirect GHG emissions due to the consumption of electricity and 574 

chemicals (flocculants) accounted for 50.8% and 30.2% in A/O and SBR WWTPs, respectively. On a 575 

national scale, up to 3.3×106 Gg of construction materials may be needed to build up urban water and 576 

wastewater infrastructure to meet the increasing demand by 2050 (T. Wang, Shi, Zhang, Qian, & 577 

Hashimoto, 2018).  578 

 579 

5. Challenges of accounting life-cycle GHG emissions from the water sector 580 

Based on our in-depth review, the hotspots of China’s current research related to GHG emissions from 581 

the water sector are qualitatively summarized in Table 5. The sub-area with high-quality literature refers 582 

to multiple studies on similar topics found in China with comparable results or over the years. In 583 

contrast, the sub-area with low-quality literature means no or single study is found in China with large 584 

potential to improve. Although there are extensive studies from China focusing on energy use for 585 

drinking water systems and non-CO2 emissions from wastewater treatment, some challenges – either to 586 

methods or data availability – are identified in this review. 587 

 588 
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Table 5 Research hotspots regarding GHG emissions from China’s water sector 589 

 DRINKING WATER SYSTEMS WASTEWATER SYSTEMS 

 Plant level City/region level Plant level City/region level 

GHGSCOPE 1  Low Medium High High 

GHGSCOPE 2 Low High High Medium 

GHGSCOPE 3 Low Low Low Low 

Note: 1) High: Multiple studies on similar topics found in China with comparable results or over the years; 2) 590 
Medium: Sparse studies found with limited representativeness or implications for China; 3) Low: No study or only 591 
a single study found in China with large potential to improve. 592 

 593 

5.1 Plant-level case study of the drinking water system in China 594 

We fail to find any plant-level case study of a centralized drinking water system in China with 595 

transparent raw data of energy or chemical use. Only one study in Ningbo of China discusses the impact 596 

of GHG emissions on the planning choices of municipal water infrastructure (Wu et al., 2015). Although 597 

many studies on the energy-water nexus report GHG emissions using aggregated intensities or emission 598 

factors, aggregated data are less accurate than specific data when discussing technological optimization 599 

that could reduce a water utility’s carbon footprint (Molinos-Senante & Sala-Garrido, 2017). Given 600 

China's context, it is very difficult to get public operational data for specific water treatment plants. This 601 

might be one reason for lacking case studies. However, we urge more of China’s researchers in drinking 602 

water treatment to add the GHG mitigation lens as one of the functional objectives in their technological 603 

advancement. Many studies on wastewater systems in China estimate GHG emissions on a lab or full 604 

scale to advocate a carbon-neutral agenda (Qu et al., 2019), whereas researchers in drinking water 605 

treatment may feel less inclined to focus on this topic as most of the GHG emissions from mainstream 606 

treatment processes come from electricity use. However, some solutions discussed in Section 6.2 shed 607 

light on future studies for China to approach a low-carbon roadmap in the drinking water system. 608 

 609 
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Quantifying the impact of urban form transitions on GHG emission accounting in the water sector is 610 

another challenge. China’s ongoing urbanization is a lasting factor in shaping the future water market. 611 

The implementation of urban policies, water policies, and energy policies in China’s cities cannot be 612 

independent. Zhang et al. (2019) examine the water sector's complex response to Chinese urban policies 613 

taking resource efficiency into account. A hypothetical grid-city model was developed to connect 614 

technical parameters in urban water infrastructure systems to socioeconomic changes, such as population 615 

growth, housing blocks, and water end-use. The results show that pipeline construction dominates 616 

material use and locks in significant GHG emissions in the water sector. The most efficient urbanization 617 

scenario can reduce GHG emissions from water infrastructure by 60%, compared to urban sprawl with 618 

residency restriction in large cities. Zhao et al. (2020) introduces more technical parameters of pumping 619 

systems into model development and confirms that urban forms and population distribution significantly 620 

impact energy used by the water supply system. More plant-level case studies are expected to bring those 621 

insights into practice. 622 

 623 

5.2 Scope 3 emission accounting 624 

As shown in Table 5, few studies work on scope 3 emission accounting in drinking water and 625 

wastewater systems for China. Zhang et al. (2017) estimated these emissions for China between 2006 626 

and 2012 using top-down approaches and aggregated emission factors. More studies from a 627 

comprehensive life-cycle assessment at the plant level are needed to validate those results. Lam and van 628 

der Hoek (2020) point out many water-related “wider opportunities” can also contribute to GHG 629 

emissions abatement for cities. They use Amsterdam as a case study to estimate marginal GHG 630 

abatement costs, including both in-utility and wider opportunities. Promising cost-effective opportunities 631 

to reduce Scope 3 emissions of the water sector include recovery, supply, and storage of thermal energy 632 

and the biogas upgrading process in drinking water treatment (Lam & van der Hoek, 2020). A proper 633 

Scope 3 emission accounting and accreditation system will encourage water utilities to extend their roles 634 
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beyond water and wastewater services providers. 635 

 636 

5.3 Accounting for interactions in the wastewater system 637 

Previous studies in China have separately monitored and quantified the GHG emissions for different 638 

components of wastewater systems, e.g., sewer system, urban WWTPs, sludge disposal system, and 639 

receiving water bodies. However, focusing on reducing one component of GHG emissions will not 640 

optimize the whole system (Mannina et al., 2018). There is still a lack of studies accounting for and 641 

comparing the GHG emissions from the whole system with different treatment processes, sewer, and 642 

river conditions at a city level. Also, the interaction mechanisms between different components need to 643 

be further investigated. The operation of an upstream component might increase the GHG emissions in 644 

downstream components. For example, the low ratio of C/N in the influent water from the sewer system 645 

will lead to a higher generation of N2O during wastewater treatment (Liao et al., 2015). The contribution 646 

of WWTPs to N2O emissions in the receiving water bodies is poorly understood, which might be the 647 

main cause of a large discrepancy between the global N2O budget and atmospheric measurement 648 

(Rosamond et al., 2012). Specifically, the cumulative effect of wastewater discharge into the sediment of 649 

water bodies, which might lead to a large amount of N2O emissions, still lacks investigation. 650 

 651 

Moreover, some key issues need to be resolved for China to estimate methane emissions from 652 

wastewater systems accurately. First, the trade-offs between CH4 and N2O emissions need to be further 653 

investigated along with the whole drainage system. For example, nitrite can substantially inhibit CH4 654 

production (G. Jiang, Gutierrez, Sharma, & Yuan, 2010), but it might increase N2O emissions 655 

(Kampschreur et al., 2009). Second, drainage system construction is also found to contribute 656 

significantly to GHG emissions (Nguyen et al., 2020; Q. Zhang et al., 2019). The newly developed urban 657 

drainage system should consider GHG emissions from both construction and rehabilitation phases in 658 

accordance with a life-cycle perspective. 659 
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 660 

6. Prospects on China’s GHG reduction for urban water infrastructure 661 

Water and wastewater utilities have made tremendous progress in increasing energy efficiency, 662 

recovering resources, and developing new integrated water management solutions. The water sector has 663 

significant potential to decarbonize, not only from a technological point of view but from practical, 664 

operational and policy-making aspects (Qu et al., 2019; Zodrow et al., 2017). New technologies have 665 

enabled utilities to reduce energy use and integrate with renewable energy, recover renewable energy 666 

and value-added products, and accomplish advanced treatment goals to improve efficiency and standards 667 

(Babovic, Babovic, & Mijic, 2018; Mihelcic et al., 2017). In the meantime, environmental policies and 668 

regulations have evolved to incorporate more measures to improve energy efficiency and reduce GHG 669 

emissions, which drives innovation and implementation (Rauch et al., 2017). Other factors include 670 

socioeconomic and behavioral changes toward sustainable living and circular economy, which provide 671 

the industry with broader opportunities to decarbonize and be more sustainable (Ren, 2019). While this 672 

study cannot cover all aspects of best practice, we highlight two promising pathways. 673 

 674 

6.1 Wastewater energy and resource recovery 675 

WWTPs are among the largest energy consumers in many cities and towns. Studies estimated that 676 

wastewater treatment could account for up to 3% of global electricity if treated with conventional 677 

technologies. On the other hand, the chemical energy embedded in wastewater is estimated to be more 678 

than 9 times that required to treat the wastewater (W.-W. Li, Yu, & Rittmann, 2015). Technologies such 679 

as anaerobic digestion (AD), anaerobic membrane bioreactors (AnMBR), and microbial electrochemical 680 

technology (MET) have been tested to replace energy-intensive aerobic treatment and recover renewable 681 

energy in the form of biogas, hydrogen, and electricity. Among them, biogas from AD has been 682 

implemented in many large scale WWTPs and the captured biogas is used for heat recovery combined 683 
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with electricity production or upgraded to vehicle fuel and household gas. According to a recent study, 684 

China may achieve a net energy production of 3.41 billion kWh annually from AD-based wastewater 685 

treatment processes (Huang, Lu, & Li, 2020). A recent review summarized different processes and 686 

highlighted alternative wastewater treatment pathways for CO2 capture and utilization, making WWTPs 687 

a potential contributor to negative carbon emissions (Lu et al., 2018). 688 

 689 

Biogas to replace fossil fuel use is the primary way in which utilities reduce emissions (Murray, Galik, & 690 

Vegh, 2017). Renewable energy generation can lead to long-term cost savings for plants. For example, 691 

Marselisborg WWTP in Denmark produces 40% more electricity than the plant requires through 692 

cogeneration without the need for extra organic waste (State of Green, 2020). Sweden and Norway are 693 

among the European countries that support the use of biogas for fuel through government funding and 694 

infrastructure, like biogas filling stations for public buses and biogas upgrading facilities. In Strasbourg 695 

of France, the environmental services provider, Suez, teamed with the city's natural gas distributor to 696 

inject biogas from wastewater into the gas network and replace natural gas use by 5000 households 697 

(Suez, 2020). The availability of European Union funding, existing gas demand and infrastructure, and 698 

the easing of regulations controlling gas injections into the network were vital enabling factors. In order 699 

to meet China’s requirements to improve WWTP discharge standards and achieve sustainable water 700 

management, the adoption of advanced treatment and resource utilization from wastewater (e.g., water, 701 

organic matter, nutrients) are highly recommended (Y. Sun et al., 2016). 702 

 703 

Heat energy recovery and biosolid management are other popular strategies to reduce GHG emissions 704 

and sustainably manage waste (H. Gao, Scherson, & Wells, 2014; Mihelcic et al., 2017). In 2010, 705 

Vancouver Olympic Village recovered heat from wastewater and heated the athletes' village during the 706 

Winter Games (Brenhouse, 2010). Scottish Water captures and returns heat from wastewater to 707 
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households before it enters the sewage network (Scottish Water, 2020). They are converting AD 708 

biosolids to fertilizers for land application, another beneficial way for GHG emission reduction and 709 

revenue generation. This practice can reduce chemical fertilizer use, reduce landfilling, condition soil, 710 

and potentially capture carbon (Iocoli, Zabaloy, Pasdevicelli, & Gómez, 2019; Möller & Müller, 2012), 711 

most of which are a Scope 3 source of GHG emissions.  712 

 713 

In China, the use of biogas from anaerobic digestion has strong prospects. Anaerobic digestion is a 714 

highly developed technology that is only applied in a small percentage of Chinese WWTPs, although 715 

many Chinese WWTPs are large enough to make anaerobic digestion feasible (Smith, Liu, Liu, et al., 716 

2018). Chinese plants could offset around 50% of their energy use by using the heat and power produced 717 

by burning biogas, and there are already numerous examples of plants using a combination of anaerobic 718 

digestion and co-generation (H. Li & Feng, 2018). There are successful examples of the sale of methane 719 

gas for use as fuel for vehicles; Xiangyang, in central China, is one such city that has achieved this (Fu, 720 

Zhong, Jagannathan, & Fang, 2017). However, extra purification is required, and the energy demands of 721 

this process need to be considered. 722 

 723 

There is potential to recover heat energy from wastewater in northern China, and it is best recovered 724 

from wastewater treatment plant effluent (Xiaodi Hao, Li, van Loosdrecht, Jiang, & Liu, 2019). Winter 725 

effluent temperatures are 10-16oC in northern China, which is well above ambient air temperature. Heat 726 

could be used for heating buildings onsite or nearby, or for heating greenhouses to reduce emissions 727 

from burning coal or gas. It is already applied in a number of demonstration plants, but more 728 

investigation is needed to understand the potential for emissions reduction (Xiaodi Hao, Wang, et al., 729 

2019). 730 

 731 
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Land application of anaerobic digestion biosolids is not a common sludge disposal method in China; it is 732 

only used to dispose of 2.4% of wastewater sludge produced (Smith, Liu, Hu, Dong, & Wen, 2018; 733 

Yang, Zhang, & Wang, 2015). Thus, there is an opportunity for China to increase land application, 734 

which would reduce GHG emissions by avoiding the need for synthetic nitrogen fertilizer production (H. 735 

Chen, Yan, Ye, Meng, & Zhu, 2012). This would require a review of policies controlling both the sale of 736 

sludge-based fertilizer and contaminant standards for land application of sludge. 737 

 738 

6.2 Solar power penetration and energy efficiency  739 

Solar panels are used on utility sites for power generation and evaporation control. SA Water – one of 740 

the leading utilities of Australia – is seeking to reduce net grid electricity cost to zero with the 741 

installation of solar panels and energy storage devices across 80 sites. The 'Zero Cost Energy Future' 742 

strategy is also expected to reduce CO2 emissions by around 90,000 tonnes per year and will stabilize the 743 

cost of water for consumers (SA Water, 2020). Solar panels in the water sector can be partly motivated 744 

by secondary benefits, such as reduced water evaporation. Japan and Australia are both using floating 745 

solar panels in wastewater treatment plants, thus producing power while reducing extra land use, water 746 

evaporation, and algal growth. Floating panels can be more efficient due to the cooling effect of the 747 

water (Beca, 2015). Solar panels can be applied in China in conjunction with other emissions-reduction 748 

strategies listed in Section 6.1. When installed in wastewater treatment plants, they may only provide a 749 

small reduction in electricity use compared to the overall energy used by a plant (Xiaodi Hao, Liu, & 750 

Huang, 2015); but China is a major producer and user of solar panels for electricity production, so there 751 

is scope for offsetting at sites with large available area and solar resources. 752 

 753 

Adhering to water quality and effluent standards is a priority for utilities that is not necessarily at odds 754 

with energy efficiency. Another Australian wastewater treatment plant replaced surface aerators with 755 
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fine bubble aeration to achieve similar effluent quality and less odor for half the energy cost (Abbott, 756 

2020). Aeration is generally the main energy user in Chinese wastewater treatment plants (Smith, Liu, 757 

Liu, et al., 2018). The use of diffused aeration instead of surface aeration is an established way to reduce 758 

energy use because it provides more complete mixing of oxygen and wastewater. Implementation of 759 

diffused aeration in new activated sludge tanks should be a priority, but conversion of existing activated 760 

sludge tanks to diffused aeration is also possible.  761 

 762 

7. Conclusions 763 

Municipal water and wastewater services have complicated sources of greenhouse gas emissions. In this 764 

review, we present a systems perspective to source GHG emissions associated with urban water 765 

infrastructure. Based on China's empirical cases and socioeconomic contexts, we highlight the hotspots 766 

of GHG emission sources in drinking water systems and wastewater treatment systems, respectively. In 767 

drinking water services, electricity consumption is the largest source of GHG emissions. Alternative 768 

water sources (e.g., rainwater harvest, desalination) have different energy intensities, leading to varying 769 

implications for GHG emissions. Another particular concern in China is the common use of secondary 770 

pumping for high-rise buildings. Optimized pressure management with an efficient pumping system 771 

should be prioritized. In wastewater services, progress has been made to estimate non-CO2 GHG 772 

emissions based on information collected from different WWTPs. These studies demonstrate that non-773 

CO2 emissions are substantial in GHG emission sources from the wastewater system, but considerable 774 

uncertainty and variety exists, depending on different regional contexts and technologies used. It is 775 

recommended that N2O emission factors from the onsite measurement of different treatment processes in 776 

China replace default values in the IPCC approach. Evidence about Scope 3 emissions, especially those 777 

beyond the operations and maintenance stage, is still scarce. From a practical viewpoint, harnessing the 778 

co-benefits of energy and cost savings when applying new technology or carrying out maintenance can 779 
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be an effective way for water utilities to reduce GHG emissions. Some cases include renewable energy 780 

recovery, biosolid management, and onsite solar power installation. 781 

 782 

GHG in water infrastructure is a new and evolving topic, and there is much work needed to advance the 783 

field: 784 

1. A feasible systems accounting method for plant-level/city-level GHG inventories of the urban water 785 

cycle. This requires more data and higher accuracy, and onsite measurement is favored. Since LCA 786 

studies are based on functional units, a reasonable scaling-up approach is essential to compile a full-scale 787 

GHG inventory. 788 

2. GHG reductions from water reclamation. China has reused massive amounts of water for non-potable 789 

purposes. However, there is no explicit study on the estimations of GHG reductions from water 790 

reclamation, especially from the scope of the urban water cycle. 791 

3. GHG emissions from sewer systems. One recent study in China reported substantial progress on this 792 

topic, but only for one city in China. Geographic factors, temperature, precipitation, and the types of 793 

sewer pipes may cause emissions to vary significantly. 794 

4. The dynamics of CH4 and N2O emissions. The trade-off mechanism between CH4 and N2O emissions 795 

in wastewater treatment processes needs to be further investigated. In an emission-factor-based GHG 796 

accounting method, linear and independent assumptions between different GHG sources are the most 797 

common. However, if the microbial community can simultaneously change CH4 and N2O production, the 798 

accounting method needs to be revised and validated accordingly. 799 

5. Scope 3 emissions embodied in supply chains. Our knowledge about Scope 3 emissions associated 800 

with water infrastructure is still insufficient. In an emerging market economy, GHG emissions associated 801 

with the expansion of infrastructure can be significant. City-level accounting of Scope 3 emissions 802 



39 
 

probably faces a lack of both data and human resources. Quantifying Scope 3 emissions involves 803 

communication and engagement with stakeholders and the forging of a shared responsibility for climate 804 

change mitigation and other sustainability agendas. 805 

6. Technology innovation and system integration. Many emerging technologies hold promise for GHG 806 

emission reduction and the recovery of value-added energy and products. Such system-level analyses are 807 

needed to identify opportunities and challenges and guide innovation and market translation.  808 

 809 

Sidebar 810 

S1 GHG inventory compilation and reporting methods 811 

Anthropogenic greenhouse gas (GHG) emissions have been one of the principal reasons for global 812 

warming since the mid-20th century (IPCC, 2014). The 2006 IPCC Guidelines for National Greenhouse 813 

Gas Inventories provide internationally agreed methodologies to estimate national GHG emissions 814 

(IPCC, 2006). To develop an inventory of GHG emissions, one should carefully consider types of 815 

greenhouse gases, emission sectors (or removal sinks), territory boundary, inventory year, and 816 

accounting methods to keep the constructed inventories comparable between countries with a 817 

satisfactory quality regarding transparency, completeness, and consistency. 818 

The GHG Protocol Corporate Accounting and Reporting Standard initiated by the World Resources 819 

Institute (WRI) and the World Business Council for Sustainable Development (WBCSD) provides 820 

guidance on GHG accounting for companies or other organizations (WRI & WBCSD, 2004). It 821 

introduces the concept of the 'scope' of GHG emissions in inventory compilation, requiring both direct 822 

and indirect emissions to be reported in the GHG inventory using this standard. Scope 1 emissions refer 823 

to direct GHG emissions occurring from owned or controlled sources by the entity. Scope 2 emissions 824 

refer to indirect GHG emissions from purchased or otherwise acquired electricity and heat power 825 

consumed by the entity. Scope 3 emissions refer to all other indirect GHG emissions as a consequence of 826 
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the entity's activities but occurring from sources not owned or controlled by the entity. This concept of 827 

indirect emissions has been adopted in ISO standards (ISO 14064-1/2/3) (Bastianoni, Marchi, Caro, 828 

Casprini, & Pulselli, 2014) and is presented in the IPCC's fifth assessment report. 829 
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