

Citation for published version:
Zhang, Q, Smith, K, Zhao, X, Jin, X, Wang, S, Shen, J & Ren, ZJ 2021, 'Greenhouse gas emissions associated with urban water infrastructure: What we have learnt from China's practice', *Wiley Interdisciplinary Reviews:* Water, vol. 8, no. 4, e1529. https://doi.org/10.1002/wat2.1529

DOI: 10.1002/wat2.1529

Publication date: 2021

Document Version Peer reviewed version

Link to publication

This is the peer reviewed version of the following article: Zhang, Q, Smith, K, Zhao, X, et al. Greenhouse gas emissions associated with urban water infrastructure: What we have learnt from China's practice. WIREs Water. 2021;e1529, which has been published in final form at https://doi.org/10.1002/wat2.1529. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

University of Bath

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 09 Mar 2023

- 1 Title: Greenhouse gas emissions associated with urban water
- 2 infrastructure: What we have learnt from China's practice
- 3 Authors
- 4 Qian Zhang^{1*}, Kate Smith², Xu Zhao^{3*}, Xinkai Jin⁴, Shuya Wang⁵, Junjie Shen⁶ and Zhiyong Jason Ren⁷
- ¹The Robert M. Buchan Department of Mining, Queen's University, Kingston, Ontario, K7L 3N6,
- 6 Canada
- 7 Email: qian.zhang@queensu.ca
- 8 ORCID: https://orcid.org/0000-0002-0544-6744
- ²Aurecon, Neutral Bay, NSW, 2089, Australia
- 10 Email: <u>kate.smith@aurecongroup.com</u>
- ³Institute of Blue and Green Development, Shandong University, Weihai, 264209, China
- 12 Email: xuzhao@sdu.edu.cn
- 13 ORCID: https://orcid.org/0000-0002-7461-852X
- ⁴School of Environment and Society, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
- 15 Email: jin.x.ab@m.titech.ac.jp
- ⁵School of Forestry & Environmental Studies, Yale University, New Haven, 06511, USA
- Email: shuya.wang@yale.edu
- ⁶Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
- 19 Email: J.Shen@bath.ac.uk
- 20 ORCID: https://orcid.org/0000-0002-9837-9252
- ⁷Department of Civil and Environmental Engineering and Andlinger Center for Energy and the
- 22 Environment, Princeton University, Princeton, NJ 08544, USA
- 23 Email: zjren@princeton.edu

ORCID: https://orcid.org/0000-0001-7606-0331 24 *Corresponding authors: 25 26 Qian Zhang, qian.zhang@queensu.ca, The Robert M. Buchan Department of Mining, Queen's 27 University, Kingston, Ontario, K7L 3N6, Canada 28 Xu Zhao, xuzhao@sdu.edu.cn, Institute of Blue and Green Development, Shandong University, Weihai, 264209, China 29 30 31 Publisher's version: https://onlinelibrary.wiley.com/doi/10.1002/wat2.1529 32 33 34

Abstract

Municipal water and wastewater services have complicated sources of greenhouse gas (GHG) emissions, and quantifying their roles is critical for tackling global environmental challenges. In this study we provide a systematic review of the state-of-the-art on GHG emission characterizations of China's urban water infrastructure with the aim of shedding light on global implications for sustainable development. We started by synthesizing a framework on GHG emissions associated with water and wastewater infrastructure. Then we analyzed the different sources of GHG emissions in drinking water and wastewater treatment systems. In drinking water services, electricity consumption is the largest source of GHG emissions. A particular concern in China is the common use of secondary pumping for high-rise buildings. Optimized pressure management with an efficient pumping system should be prioritized. In wastewater services, non-CO₂ emissions such as methane (CH₄) and nitrous oxide (N₂O) emissions are substantial, but vary greatly depending on regional and technological differences. Further research directions may include GHG inventory development for urban water systems at the plant level, quantifications of GHG emissions from sewer systems, emission reduction measures via water reclamation, renewable energy recovery, energy efficiency improvement, cost-benefit analyses, and characterizations of Scope 3 emissions.

Keywords

urban water systems; greenhouse gas accounting; water-energy nexus; non-CO₂ emissions; life-cycle thinking

1. Introduction

In the past few decades, China has made unprecedented progress in economic development. Along with this growth, the country has also dramatically improved its water infrastructure, expanded its clean water service and wastewater treatment, and improved protection of the water environment. The population able to access tap water from municipal water treatment plants increased from 303 million in 2004 to 503 million in 2018 (+4.7%/year), and the total capacity of wastewater treatment increased from 74 million m³/d in 2004 to 181 million m³/d in 2018 (+10%/year) (NBS, 2018). Such a trend will continue as China's urbanization continues; another ~10% of the total population is expected to move to urban areas by 2030 (United Nations, 2017). In the United Nations' Sustainable Development Goals (SDGs), SDG 6 is dedicated to the water, sanitation, and hygiene (WASH) sector (United Nations, 2015), which aims to achieve universal and equitable access to safe and affordable drinking water and sanitation for all, especially for developing countries. In this regard, China has established a good model and will continue to play an exemplary role in achieving the global SDGs (Z. Xu et al., 2020).

Municipal water and wastewater services have complicated sources of greenhouse gas (GHG) emissions. Although the WASH sector's contributions to national GHG inventories are usually between 1~3% (Hillman & Ramaswami, 2010; Bo Zhang et al., 2015), the absolute magnitude from a big country like China is noticeable. There is also high uncertainty around GHG inventories from wastewater and sludge treatment (Hall, West, Sherman, Lane, & de Haas, 2011; Sweetapple, Fu, & Butler, 2013). Recent studies show there are both synergies and trade-offs between achieving SDG 6 on clean water and sanitation and SDG 13 on climate actions (Q. Zhang et al., 2019; Q. Zhou, Leng, & Huang, 2018). Understanding the complete picture of GHG emissions associated with the WASH sector remains a challenging but fundamental requirement for policymakers and practitioners wanting to respond to the grand challenges in water, energy, and climate change.

In this study, we provided a systematic review of the state-of-the-art on GHG emission characterizations associated with China's urban water infrastructure and hope to shed light on global implications for sustainable development. We conducted a comprehensive literature search and critically reviewed relevant resources on other countries' cases to compare with results found in China.

Following this introduction, we present a systems perspective to source GHG emissions accompanying the urban water cycle in Section 2. Recent studies on GHG emissions associated with drinking water systems in China are reviewed in Section 3. In Section 4, we critically evaluate current estimations of GHG emissions related to wastewater treatment systems in China. A brief summary of review highlights is provided in Section 5. GHG reduction opportunities for the water sector are illustrated in Section 6. Conclusions and the outlook for future research are provided in Section 7.

2. A systems perspective of GHGs associated with urban water infrastructure

In this review, urban water infrastructure includes municipal drinking water infrastructure and wastewater infrastructure. The term urban water systems (sometimes an urban water system) refers to an integrated system including water and wastewater infrastructure (Arora, Malano, Davidson, Nelson, & George, 2015; Hering, Waite, Luthy, Drewes, & Sedlak, 2013; Loubet, Roux, Loiseau, & Bellon-Maurel, 2014; Lundin & Morrison, 2002) and links to asset management (Alegre et al., 2013; Leitão et al., 2016; L. Liu & Jensen, 2018). Industrial water treatment facilities, as well as large infrastructure for water conservation and long-distance transport like the South-North water transfer project in China, are not included due to different jurisdictions and scopes. The GHG emissions and other environmental

impacts associated with every stage of an urban water system can be analyzed using a life cycle assessment (LCA) (Lemos, Dias, Gabarrell, & Arroja, 2013).

Figure 1 illustrates the potential GHG emission sources associated with urban water systems with a focus on system-level life-cycle thinking (Q. Zhang, Nakatani, Wang, Chai, & Moriguchi, 2017). In the urban water system, five main sections include water purification, water distribution, water end-use, wastewater collection, and wastewater treatment (including sludge treatment and disposal). The operations and maintenance (O&M) stage of urban water infrastructure is the primary source of both direct and indirect GHG emissions. For example, Scope 1 and 2 emissions (see Sidebar) include emissions from onsite fossil fuel consumption and purchased electricity consumption, and methane (CH₄) and nitrous oxide (N₂O) emissions from wastewater and sludge management. Some studies also consider Scope 3 GHG emissions from the energy consumption embodied in chemical inputs to water and wastewater treatment processes. Besides the O&M stage, the emissions associated with the construction stage and end-of-life stage are theoretically within this accounting framework as part of Scope 3 emissions.

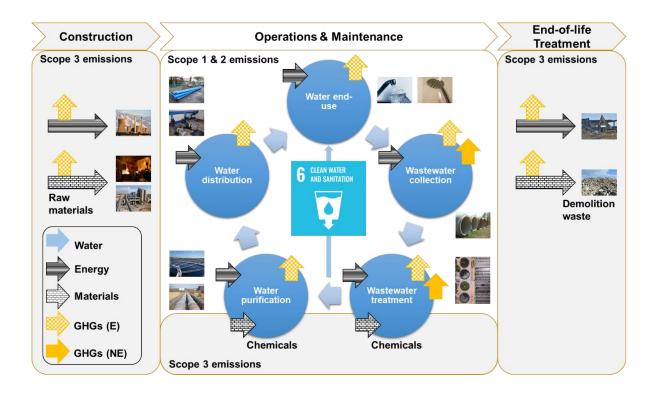


Figure 1 A systematic illustration of GHG sources associated with urban water infrastructure. GHGs (E) represents energy-related GHG emissions. GHGs (NE) represents non-energy-related GHG emissions (mainly CH₄ and N₂O emissions from wastewater systems)

However, some studies in other countries shine light on this subject. Mahgoub et al. (2010) conduct a life-cycle assessment of the urban water system in one city in Egypt and indicate that a decentralized wastewater treatment system can help reduce the total energy consumption. A systematic evaluation of energy consumption during the urban water cycle and its environmental impacts in Norway reveals critical processes, e.g., pumping, aeration, anaerobic digestion, and pipelines rehabilitation, *etc*. (Venkatesh & Brattebø, 2011). Other evidence indicates that energy consumption from water end-users (*e.g.* household) can be more significant than water supply or wastewater treatment processes

(Rothausen & Conway, 2011). Frijns (2012) proposes a standard framework of the carbon footprint for

Historical studies on China's city-level GHG inventories do not often focus on urban water systems.

the water sector, mentioning that the accounting boundary should include CO₂ from energy consumption, direct CH₄ and N₂O emissions in processes, and indirect CO₂ emissions from production of the chemicals used in treatment processes. His work shows that GHG emissions in the wastewater subsystem are much more significant than in the water supply subsystem in the case of the Netherlands, mainly due to CH₄ and N₂O emissions from wastewater treatment. However, it fails to include indirect CO₂ emissions from materials used in construction because of its limited contribution over the whole life-cycle. A comprehensive LCA of the urban wastewater system in France reports significant environmental impacts from the construction of sewer infrastructure (Risch, Gutierrez, Roux, Boutin, & Corominas, 2015). Other LCA studies show considerable GHG emissions from the development of water infrastructure (pipelines or treatment facilities) (Petit-Boix et al., 2014; Piratla, Ariaratnam, & Cohen, 2011; Venkatesh, Hammervold, & Brattebø, 2009). In recent years, studies on China have reported energy use in water supply (Smith, Liu, & Chang, 2016; Smith, Liu, Liu, et al., 2016), CH₄ emissions from wastewater treatment (Jinhe Wang et al., 2011; X. Zhao et al., 2019), emissions from sludge treatment (B. Liu, Wei, Zhang, & Bi, 2013; C. Xu, Chen, & Hong, 2014) and LCA case studies for a municipal water treatment plant (WTP) or a municipal wastewater treatment plant (WWTP) (Y. Li, Luo, Huang, Wang, & Zhang, 2013; Q. H. Zhang, Wang, Xiong, Chen, & Cao, 2010). However, there is no comprehensive study that provides a system-level understanding of the GHG emissions associated with China's water infrastructure.

149

150

151

152

153

154

155

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

There is an emerging need to estimate non-CO₂ GHG emissions from the urban water cycle, mainly from wastewater treatment. There are several recent publications on measurement and technology-based estimations of CH₄ emissions (Cakir & Stenstrom, 2005; Foley, Yuan, & Lant, 2009; Guisasola, de Haas, Keller, & Yuan, 2008; Shahabadi, Yerushalmi, & Haghighat, 2009; Jinhe Wang et al., 2011) and N₂O emissions in the wastewater treatment processes (Foley, De Haas, Yuan, & Lant, 2010; Law, Ye, Pan, & Yuan, 2012). They estimate the potential generation of CH₄ in the wastewater collection system,

which is ignored under some GHG accounting protocols, and conclude that the dissolved CH₄ in a rising main is significant (Foley et al., 2009; Guisasola, Sharma, Keller, & Yuan, 2009). Treatment plants that achieve high levels of nitrogen removal are found to emit less N₂O, indicating that no compromise is required between high water quality and lower N₂O emissions (Law et al., 2012). However, another study suggests a trade-off between nutrient removal and GHG emissions in WWTPs (Soda et al., 2013). An extreme case is that N₂O emissions accounted for three quarters of a plant's carbon footprint in one WWTP in the Netherlands, according to 16 months of measurement (Daelman, van Voorthuizen, Van Dongen, Volcke, & Van Loosdrecht, 2013). These studies demonstrate that non-CO₂ emissions from the wastewater system are substantial, but there is considerable uncertainty and variety depending on the regional context and technologies used (Mannina et al., 2016).

China's urbanization has been driven by decades of rural-to-urban migration (K. H. Zhang & Song, 2003). Water resources have become one of the controlling factors in urbanization due to water scarcity and pollution (C. Bao & Fang, 2012). China's 'new-normal' urbanization plan makes it harder for residents to settle down in larger cities and is cautious when providing new land for urban expansion in mega-cities (X.-R. Wang, Hui, Choguill, & Jia, 2015). The urbanization level in China is estimated to reach ~70% in 2030 (Shi et al., 2012). More construction of urban water infrastructure and associated water services provision are expected during the continuing process of urbanization in China. Urbanization significantly enhances GHG emissions associated with the water cycle (X. Wang et al., 2018). The sponge city initiative has greatly improved the city's capability of dealing with stormwater and water body pollution. A recent study for Shanghai showed that the life-cycle (30-year) GHG emissions of sponge city projects can be offset by those enhanced carbon sinks after 19 years (Lin et al., 2018). However, China's growth is disproportionate. In the urban water market, there is inequality among different types of cities (Tong et al., 2016). Generally speaking, smaller and less affluent cities have lower levels of wastewater treatment and water supply coverage. Water utilities in small towns

perform poorly in critical variables, including water supply reliability, water quality, and financial performance, as well as having inadequate wastewater treatment (Browder et al., 2007; Y. Jiang, 2015; Q. H. Zhang et al., 2016).

3. Drinking water systems

The process of supplying water typically involves four steps: (1) extracting water from the source, (2) treating water to the desired quality, (3) transferring water through an underground water distribution system, and (4) lifting water within a user's building. Scope 1 emissions within water supply include diesel use during sludge trucking and diesel use for backup generators, Scope 2 emissions result from grid electricity use, and Scope 3 emissions occur during the construction and manufacturing of infrastructure, equipment, and chemicals required during water supply and during the use of treated water after it arrives at the user.

Greenhouse gas emissions for water supply in China and a number of other countries, regions and cities are presented in Table 1 for comparison. Key factors determining the emissions intensity of water supply are (1) electricity use and (2) the energy mix used to generate electricity (Smith & Liu, 2019). The emissions intensity of water supply in China is higher than three areas listed in Table 1 – Oslo, Toronto and New Zealand – which is mainly due to China's high emission factor for electricity generation compared to Norway, Canada and New Zealand (Smith & Liu, 2019; Smith, Liu, & Chang, 2016). These three countries rely greatly on hydropower, wind power or nuclear power, whereas China relies mostly on coal (Smith & Liu, 2019; Smith, Liu, & Chang, 2016).

Shifting from emissions-intensive electricity sources is crucial to reducing emissions in China's water supply sector (Smith, Liu, & Chang, 2016) and China is in the process of becoming less coal-dependent (Yuan, Behrens, Tukker, & Rodrigues, 2018). The percentage of non-fossil fuel energy in primary energy consumption increased from 3.4% in 1978 to 14.3% in 2018. The percentage of coal consumption decreased from 70.7% in 1978 to 59.0% in 2018, in particular due to the increase in the share of renewables over the last 10 years (Zheng et al., 2020).

Table 1 Total (GHG_{water}), per capita (GHG_{per cap}) and per unit (GHG_{per unit}) GHG emissions for urban water supply, GHG emissions for urban water supply as a percentage of total national GHG emissions for electricity/heat (GHG_%), and emission factor (EF) for countries, regions and cities represented in the literature. Table source: Smith, Liu, and Chang (2016) © 2015 by Yale University.

Region	GHGper cap	GHGper unit	GHG water	GHG%	EF
Author and Date	(kg CO ₂ -eq/cap/yr)	(kg CO ₂ -eq/m ³)	(Mt CO ₂ -eq)	(%)	(kg CO ₂ -eq/kWh)
China	24.5	0.213	7.63	0.18^{a}	0.737
Smith et al. 2016					
India				3-16% 16 cities	
Miller et al. 2013				<3% for 23 cities ^b	
Australia	92.1 ^c	0.721^{c}	1.11 ^c	0.46^{d}	0.908^{e}
Kenway et al. 2008					
UK		0.34 ^f	2^g	0.82^{h}	
DEFRA 2008					
Water UK 2010					
\mathbf{USA}^i	76.9 ^j	0.311^{j}	18.6^{j}	0.69^{k}	0.608^{l}
Hutson 2004					
EPRI 2002					
Selected areas ^m	7.32^{n}	0.0596^n			0.209^{o}
New Zealand					
Kneppers et al. 2009					
California		1.093^{p}			
Stokes and Horvath 2009					

Toronto, Canada	23.5^{q}	0.117	0.173^{r}

Racoviceanu et al. 2007

Oslo, Norway 0.07-0.08

Venkatesh & Brattebo 2011

Durban, South Africa 0.481^s

Friedrich et al. 2009

"Using China's 2011 CO ₂ emissions for electricity/heat from WRI (2014).	"Public supply" refers to water withdrawn by public and private water suppliers
^b Includes wastewater and is given as % of city-wide emissions.	that furnish water to at least 25 people or have a minimum of 15 connections.
^c Calculated based on total emissions, energy for water supply and population served for	Hutson (2004, 13).
2006/2007 table 1 p6 Kenway et al. (2008).	$^k\!Calculated$ using 18.6 Mt and total 2000 CO ₂ emissions for electricity/heat from
d Calculated using Kenway et al. (2008) and average CO ₂ emissions for electricity/heat	WRI (2014).
for Australia between 2006/2007 from WRI (2014).	$^{\prime}Calculated$ using electricity generation (3.8x10 12 kWh: EIA (2013)) and CO 2
$^e \sum GHG$ emissions for energy-related sources across 6 cities/ \sum total energy demands	emissions (2.3x10 ⁹ t: EIA (2012)) from the US electric power sector.
from table 1 p6 Kenway et al. (2008).	m Kneppers et al. (2009) reviews four water systems with different characteristics
^f Sourced from Water UK (2010).	representing just over 8% of the national population.
gFor yr 2005-2006. Read from figure 12 p68 DEFRA (2008) (get, treat, distribute water	ⁿ Calculation based on table 7 p20 Kneppers et al.(2009).
+ leakage).	$^o \sum$ GHG emissions/ \sum total energy from table 7 p20 Kneppers et al. (2009).
h Calculated using DEFRA (2008) and average CO ₂ emissions for electricity/heat for the	^p Prediction: Assumes California imports all water
UK between 2005/2006 from WRI (2014).	$^q136~\mathrm{kWh/cap*0.173~kg~CO_2\text{-}eq/kWh}$ from Racoviceanu et al. (2007).
EIA GHG emissions data are only available in terms of CO2 not CO2-eq.	Units converted from $48.1\ t\ CO_2$ -eq/TJ for electricity generated for Ontario in 1997
$^{j}\!\mathrm{Calculated}$ using estimated water with drawal for and population served by "public water	from Racoviceanu et al. (2007).
supply" in 2000 (table 5 p14 Hutson (2004)), total electricity for "public water supply"	^s Full LCA most likely used, including dam emissions.
in 2000 (table 1.2 p1.5 EPRI (2002)) and emissions factor 0.608 kg $\rm CO_2$ -eq/kWh.	

213

214

215

216

217

218

219

220

3.1 Scope 1 & 2 GHG emissions

This section focuses primarily on Scope 2 emissions from grid electricity use, which are the main type of emissions associated with water supply in China and for which data are more accessible. Drinking water treatment plants do produce some Scope 1 fugitive emissions due to sludge from sedimentation tanks and use of ozonation for disinfection, but this is difficult to quantify and low compared to wastewater treatment plants. Most GHG emissions from drinking water treatment plants are from the use of grid electricity (Smith, Liu, & Chang, 2016). Continuing reliance on coal for electricity generation in China

means Scope 2 emissions remain important, though the energy mix in China is expected to be greener over time (Q. Liu, Lei, Xu, & Yuan, 2018).

3.1.1 Emissions from sourcing water

Water sourcing is not the leading emitter for most urban water supply systems. Surface water accounts for more than 80% of freshwater withdrawals in China (Food and Agriculture Organization, 2019), and surface water extraction tends not to be emissions-intensive unless it is long-distance (Wakeel, Chen, Hayat, Alsaedi, & Ahmad, 2016). Long-distance transfer and agricultural water use are not within the scope of this study. One major southern city, Changzhou, is an example of the contribution sourcing surface water can make to overall energy use for water supply when water users are located near the source. Only 3% of energy for water supply in Changzhou is used for locally sourcing water (Y. Zhou, Zhang, Wang, & Bi, 2013). Li et al. (2016) estimate the energy intensity of water lifting from rivers and lakes to be 0.20 kWh/m³ based on a summary of the literature from China. Emissions are generally higher for sourcing groundwater (Rothausen & Conway, 2011). Energy use varies greatly based on the depth from which groundwater must be sourced (Smith & Liu, 2019), but the average energy intensity across provinces of China (including rural areas) is estimated to be 0.37 kWh/m³ (X. Li et al., 2016).

Emissions associated with sourcing water are mainly for pumping and fall into Scope 1 if pumps are run using diesel or Scope 2 if pumps are run using grid electricity. Diesel pumps are used for around 25% of groundwater wells in rural areas of China (Jinxia Wang et al., 2012) and are rarer in urban areas, although they may be used in cases where private bores fall within city boundaries. The difference between diesel and electric pumps is largely due to (1) pump efficiency and (2) emission factor, with

both higher for electric pumps. In China, the efficiency of diesel pumps (~15%) is estimated to be much lower than that of electric pumps (40%, less 15% due to transmission and distribution of electricity) (Jinxia Wang et al., 2012). The emission factor of diesel was around one-third of the emission factor of electricity generated in China at that time.

China's move towards the Sponge City concept has increased the focus on the collection and management of rainwater as an opportunity to supplement other water sources (H. Wang, Mei, Liu, & Shao, 2018). Research in other countries suggests that energy use for rainwater harvesting in buildings tends to be higher than for centralized water supply because rainwater is often stored in basement-level tanks and pumped up to users (Vieira, Beal, Ghisi, & Stewart, 2014). A comprehensive review of energy intensity data for rainwater harvesting systems around the world by Vieira et al. (2014) finds these systems use three times more energy than a centralized water supply system. However, for people living in high-rise buildings that already need onsite pumping (just under 10% of China's population), rainwater harvesting may not increase emissions associated with water supply (Smith & Liu, 2019). This could be an interesting area for comparative research in the future.

3.1.2 Emissions from water treatment

Conventional treatment of groundwater and locally sourced or transferred surface water is not a major source of emissions. In China, treatment generally involves coagulation, sedimentation, filtration, and disinfection, which are processes that do not require much energy (Can et al., 2013; X. Zhang et al., 2016). For example, Changzhou uses 1% of the total energy for centralized water supply on water treatment (Y. Zhou et al., 2013). Energy use for conventional water treatment processes in China can be found in Smith, Liu, Liu, and Guo (2018). The primary source of emissions is filtration due to electricity

use for filter scouring and backwashing. Disinfection can also be a high energy user, but chlorine disinfection is most commonly used in China and is a low-energy process (Ye, Wang, Yang, Wei, & E, 2009). Some big cities have implemented more advanced pre-treatment or post-treatment processes, such as ozonation, activated carbon filtration, etc. These processes will increase overall energy consumption, but limited data points are available so far from China. According to a reference from the United States, water chlorination/de-chlorination consumes $2 \times 10^{-5} - 5 \times 10^{-4} \, \text{kWh/m}^3$, while energy use for ozonation is between 0.03 and 0.15 kWh/m³ (Plappally & Lienhard V, 2012). We do not find any first-hand information in the refereed literature about electricity intensity or carbon intensity of drinking water treatment from China's operating water treatment plants. All the current studies in China are based on aggregated energy use data from statistics. The global median values of energy use for surface water and ground water treatment are found to be 0.22 and 0.25 kWh/m³, respectively (Y. Liu et al., 2016). China's aggregated energy intensity of water treatment is between the global median and the 75th percentile.

Seawater desalination for water supply emits more GHGs than conventional drinking water treatment. The two main forms of desalination in China are reverse osmosis (RO) and multi-effect distillation (MED), the former of which accounts for around 70% of the total desalination capacity (State Oceanic Administration, 2018). Other technologies such as multi-stage flash (MSF) and electrodialysis (ED) are less common in China. Emissions for RO are due to the use of electricity to create high pressure, with the exact amount depending on the salt concentration of the feed. As shown in Table 2, electricity use for RO is influenced by the age and size of the plant and can range between 3.3 and 5.2 kWh/m³ in China (Smith, Liu, Liu, et al., 2018). MED involves heating seawater to form water vapor, which condenses to form pure water. Energy use is independent of salt concentration, but MED is more energy-intensive than RO (6-7 kWh/m³ vs 4.5 kWh/m³) (J. P. Chen, Wang, Yang, & Zheng, 2011; Smith, Liu, Liu, et al., 2018). Furthermore, this technology uses both electricity and thermal energy. GHG emissions are high because thermal energy from burning coal is the main energy source; most low-temperature MED plants

in China are co-located with coal-fired power stations to utilize waste heat for operation. By comparison, RO only uses grid electricity, which is generated using a combination of fossil fuels and renewable sources (e.g., hydro) in China. In 2016, Shandong Province had roughly 1.6 times larger seawater desalination capacity than Hebei Province, but its GHG emissions from seawater desalination are only 47.4% of GHG emissions from Hebei's desalination plants. This difference is because Shandong Province only uses RO plants, whereas Hebei Province depends largely on MED plants (65% of its total desalination capacity) (Jia, Klemeš, Varbanov, & Wan Alwi, 2019).

Table 2 Electricity use by seawater reverse osmosis (SWRO) and low-temperature multi-effect distillation (LT-MED) plants in China. Table source: Smith, Liu, Liu, et al. (2018) © 2018 Elsevier Ltd.

Plant name	Technique	Capacity (m³/day)	Direct electricity use (kWh/m³)	Steam use (kJ/m³)	Electrical equivalent for thermal energy (kWh/m³) ^d	Total equivalent energy use (kWh/m³)
Hebei	LT-MED	$5.0x10^4$	2.11	2.69x10 ⁵	5.85	7.96
Caofeidian ^{a,b}						
Tianjin	LT-MED	$1.0x10^5$	1.45	$2.51x10^{5}$	5.46	6.91
Beijianga						
Qingdao Baifa ^a	SWRO	$1.0x10^{5}$	4.40	n/a	n/a	4.40
Shandong	SWRO	1000	4.5	n/a	n/a	4.5
Changdao						
County ^c						

^aY. Li, Xiong, Zhang, Wang, and Wang (2016); ^bValues for this plant include transfer to Beijing (270 km), which increases energy use; ^cL. Zhang, Xie, Chen, and Gao (2005) ^dElectrical equivalent is the electrical energy that cannot be produced in a turbine because the given quantity of steam was extracted (Encyclopedia of Desalination and Water Resources, 2017). We use the conversion provided by Encyclopedia of Desalination and Water Resources (2017), which estimates 46 000 kJ of steam produces 1 kWh of electricity, and assumes that pressure in the condenser of a large commercial steam turbine is kept at 0.1 bara, seawater temperature is 35°C and steam extraction pressure is 0.5 bara (loss is 258 kJ/kg steam).

China has a common practice of wastewater reclamation (Z. Chen, Wu, Wu, & Hu, 2016) but uses a comparatively small amount of desalinated seawater, although the use of both types of water has increased significantly over the past two decades. Tianjin is one of the main producers of desalinated water, but desalination only accounts for 1.2% of water supplied to Tianjin; by comparison, reclaimed wastewater accounts for between 5% and 20% or more in major northern Chinese cities (Y. Li et al., 2016). Note that reclaimed wastewater is not yet for potable use in China's cities, but mainly for landscape and industrial use (Zhu & Dou, 2018).

3.1.3 Emissions for water distribution

Water distribution is often the main source of emissions in the water supply process, particularly if the distribution of water in high-rise buildings is considered (Smith, Liu, Liu, et al., 2018). The topography of a city and the percentage of people living in high-rise buildings are two of the main factors determining energy use for water distribution (Q. Zhang et al., 2019).

There are only a few city-level studies in China that show the importance of water distribution in energy-related emissions. In Beijing, water distribution accounts for 63% of total emissions of centralized water supply (Smith, Liu, Liu, & Wu, 2017). Another study by He et al. (2019) estimates the energy use for water distribution in Beijing to be 0.44 kWh/m³, which is 54% of the total energy use for sourcing, treatment and centralized distribution. In Changzhou, centralized water distribution accounts for 96% (Y. Zhou et al., 2013), and it accounts for 44%, according to one case study in Taipei (Cheng, 2002).

Pressure management is a countermeasure against water leakage during distribution, which has clear cobenefits of energy savings and GHG reductions (Q. Xu, Chen, Ma, Blanckaert, & Wan, 2014; Y. Zhou et al., 2013). Energy is used during distribution to meet water quality objectives, to provide sufficient pressure to satisfy consumers, and ensure fire hydrants are functional. Many countries recommend a minimum pressure be used in the distribution system for these reasons, and a selection of these regulations and guidelines is shown in Figure 2. For example, the minimum recommended pressure is 28 m in China, which delivers to the sixth story and under. Other examples are 15 m for Australia and 10 m for Spain.

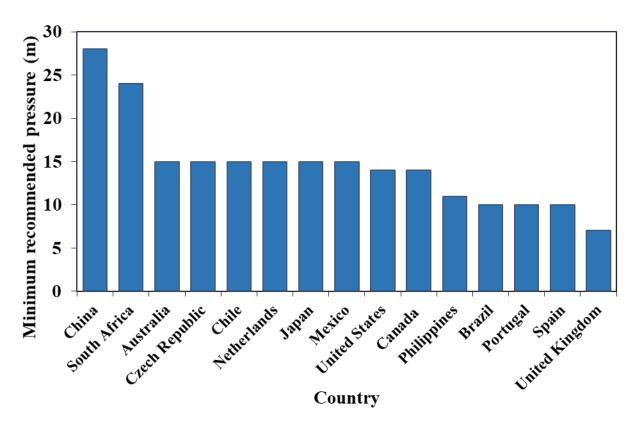


Figure 2 Examples of minimum pressure guidelines for countries around the world. Data source: Smith and Liu (2021).

Onsite pumping for households not serviced by the minimum pressure can be a significant contributor to emissions for water supply, but this can be reduced by using an efficient pumping system. As an example, energy use for high-rise pumping is estimated to account for 43% of total electricity use for water supply in a major Chinese city where 9% of the population live on the seventh story or above (Smith et al., 2017). The most common high-rise pumping systems in China are the booster pump and break tank system and the entirely pressurized booster system. Both have basement tanks to store water, and variable speed pumps to lift water to upper levels, but the tanks are different – one is a large break tank that holds water at atmospheric pressure, and the other is a small pressurized tank. The former system uses 0.019 kWh to lift one cubic meter of water one meter, and the latter arrangement uses less energy – 0.010 kWh/m³· m – because pressure provided in the water distribution system is retained (Smith et al., 2017).

3.2 Scope 3 GHG emissions

Scope 3 emissions data for China's water supply are challenging to obtain and do not contribute significantly to overall emissions according to both bottom-up and top-down estimations.

3.2.1 Evidence from bottom-up estimations

We found the only city-level study in China that included Scope 3 greenhouse gas emissions associated with water supply was a study comparing the carbon footprint of different water supply infrastructure options in Ningbo (Wu, Mao, & Zeng, 2015). The study investigates four potential sites for a water treatment facility. All four sites would use ferrous chemicals for coagulation, and polymer chemicals for sludge dewatering. Three sites would use chlorine disinfection, and the fourth would use ozone disinfection. Scope 3 emissions included in Wu et al. (2015) were those associated with chemicals and fuels. Although Wu et al. (2015) showed that the incorporation of fuel-related Scope 3 emissions is useful for assessing the impact of a plant's location on overall emissions, other factors were more influential in deciding plant location (e.g., elevation with respect to source and consumers). Scope 2 emissions from electricity consumption and Scope 1 emissions from ozone disinfection (in the case where this was used) were the main contributors to the carbon footprint of water supply infrastructure options.

From a life-cycle perspective, manufacturing and transporting chemicals used in drinking water treatment are responsible for some greenhouse gas emissions. It is difficult to find empirical data on this topic in China in the literature, so a brief review of literature for other countries is provided here. A study by Racoviceanu et al. (2007) on total energy use and GHG emissions for a conventional water treatment

plant in Toronto found that chemical manufacturing and transportation contributed 8% to total greenhouse emissions. Similarly, emissions related to chemical use in the Dutch water sector (including both drinking water and wastewater utilities) accounted for less than 8% of the total carbon footprint (Frijns, 2012). However, those studies did not include the chemicals and other materials used in pipeline construction and maintenance. Studies in Norway suggested that using polyurethane to replace epoxy resin as the material used for pipeline rehabilitation can significantly reduce GHG emissions and other environmental impacts (Venkatesh & Brattebø, 2012; Venkatesh, Brattebø, Sægrov, Behzadian, & Kapelan, 2017).

Another study by Stokes and Horvath (2011) on a conventional water treatment plant estimates 36% of GHG emissions can be attributed to materials, of which 73% is due to chemical production. Chemicals used were ammonia, polymer, caustic soda, hydrofluosilicic acid, sodium hypochlorite, polyalumium chloride, sodium bisulfite, and alum. They compared this plant to results from two other plants, also in California, for which energy use contributed a much greater percent to GHG emissions and concluded that the large contribution of material production to overall GHG emissions (17% higher than one of the other case study plants) was due to (1) lower energy use by the plant in absolute terms and (2) more comprehensive inclusion of costs associated with constructing and maintaining the system. The same authors found in a previous study (Stokes & Horvath, 2009) on alternative water sources – imported water, desalination, and recycled water – that chemicals accounted for 4-18% of total energy consumption, and the contribution to GHG emissions was similar. Sodium hydroxide and sodium hypochlorite were the biggest contributors to energy consumption. Transport of chemicals accounted for 1% or less.

The contribution of chemicals and materials to life-cycle GHG emissions for the water sector depends on technology and treatment requirements, study scope, and geographic and social factors (Venkatesh, Chan, & Brattebø, 2014). Based on current evidence, we conclude that Scope 2 emissions from electricity use account for the majority of GHG emissions from China's drinking water system.

3.2.2 Evidence from top-down estimations

Top-down estimations of Scope 3 GHG emissions associated with the urban water supply system can be significant. Some upstream activities outside direct suppliers of water utilities are difficult to capture through a bottom-up approach. Using environmentally extended input-output models, Zhang et al. (2017) reveal that Scope 3 emissions contribute up to 17% of total carbon dioxide emissions associated with the operation and maintenance of water utilities, mainly from upstream electricity and heat generation (21%), water management (9%), manufacture of metal products (15%) and plastics (6%), and other chemical inputs (4%). Emissions from cement and lime production (27%) and steel rolling (22%) are the primary sources of Scope 3 emissions for the construction of urban water infrastructure (Q. Zhang et al., 2017). The dataset they used was the Chinese 2007 Input-Output Table with 135 industrial sectors, which provided China's most detailed sector information at that time. Similar insights can be found in a series of studies on the water-energy nexus at the city level (Fang & Chen, 2017; J. Gao et al., 2019; Xian Li et al., 2019). For example, Beijing's construction sector was found to be a high-intensive node for embodied water and carbon (Meng et al., 2019). Mining, mineral processes, and chemical manufacturing are the key sectors for the water-energy nexus in China (Fan, Kong, Zhang, & Wang, 2019).

4. Wastewater treatment systems

Wastewater treatment is one of the major sectors of GHG emissions under the Intergovernmental Panel on Climate Change (IPCC) guideline (Kampschreur, Temmink, Kleerebezem, Jetten, & van Loosdrecht, 2009; Mannina et al., 2018). Increasing concerns have been raised about the generation of GHGs from the rapid expansion of WWTPs in China (Zhao et al. 2019), where the volume of treated municipal wastewater increased ten times between 2001 and 2014 (Society of Chinese Urban Water Supply and Drainage, 2015). Three main GHGs can be generated due to wastewater treatment. These include CH₄ and N₂O released in the sewer systems, generated in wastewater treatment plants, and discharged into receiving water bodies (Scope 1 emissions), and CO₂ and other GHG emissions generated through energy and materials consumption (Scope 2 & 3 emissions).

4.1 Scope 1 GHG emissions from wastewater treatment systems

This section presents various sources of direct CH₄ and N₂O emissions from wastewater treatment systems, including sewer systems, urban WWTPs, sludge treatment/disposal, and receiving water bodies.

4.1.1 Nitrous oxide emissions from WWTPs

Nitrous oxide (N₂O) is produced in WWTPs during nitrogen removal processes, including both nitrification and denitrification reactions. In wastewater treatment processes, N₂O is emitted predominantly in aerated zones (Kampschreur et al., 2009). Globally, N₂O emissions from wastewater treatment were estimated to increase by 13% during the period 2005-2020 (Law et al., 2012). In China, the latest national GHG report showed that N₂O emissions from wastewater treatment were 110 gigagrams (Gg) in 2014, amounting to 5.6% of national N₂O emissions (National Development and Reform Commission, 2018). Measuring onsite N₂O emissions from full-scale WWTPs is complicated

and lacks standardized methods (Law et al., 2012). For example, real-time N₂O emissions at full-scale treatment plants have been found to vary between 0 and 14% of incoming N (Kampschreur et al., 2009).

Several case studies reported onsite monitoring of N_2O emissions in WWTPs. A case study in Beijing's WWTPs found that N_2O was the largest source of GHG among all GHG emissions (CH₄, N_2O , and indirect emissions of CO_2), accounting for 43.5% and 55.6% of total GHG emissions in anoxic/oxic (A/O) and sequencing batch reactor (SBR) WWTPs, respectively (Z. Bao, Sun, & Sun, 2016). Table 3 shows several monitoring results of N_2O emission factors from onsite measurement for the most popular treatment processes in China. In this table, SBR shows the highest emission factor, followed by oxidation ditch, anoxic/anaerobic/oxic (A₂O), and A/O. We found that the emission factors fall into a similar order of magnitude when compared with the results derived from several other countries. These studies provided valuable information on N_2O emissions from WWTPs but were based on limited sample sizes. More lab-scale and full-scale investigations are needed to increase understanding of N_2O emissions and reduction potential for different treatment processes.

Low dissolved oxygen (DO) concentration, increased nitrite concentrations during both nitrification and denitrification stages, a low COD/N ratio in the denitrification stage, as well as low pH levels were found to be the main factors leading to N₂O emissions in WWTPs (Kampschreur et al., 2009; S. Wang, Zhao, & Huang, 2019). Li et al. (2017) investigated N₂O emissions in a constructed wetland in Jinan city of China and found that the C/N ratio of influent wastewater significantly affected N₂O emissions. These findings indicate that considerable potential exists in reducing N₂O emissions in China. For example, Chen et al. (2014) found that the N₂O emissions were reduced by 42% through canceling the anaerobic phase and extending the idle phase in an SBR treatment process in Shanghai.

4.1.2 Nitrous oxide emissions from sewers and receiving water bodies

Recent studies have shown significant N₂O emitted from gravity sewer systems (Fries, Schifman, Shuster, & Townsend-Small, 2018). Hydraulic turbulence during high flow periods is a strong driver for N₂O production from gravity sewer systems (Short et al., 2014). However, further case studies on N₂O emissions in sewer systems worldwide, including in China, are still sparse. In terms of receiving water bodies from WWTPs, case studies in both China and Canada have found that rivers close to urban WWTPs had significantly higher N₂O emissions than rivers receiving natural and agricultural runoff (Rosamond, Thuss, & Schiff, 2012; Jianing Wang, Chen, Yan, Wang, & Yang, 2015). Rosamond et al. (2012) indicated that dissolved inorganic nitrogen discharged from WWTPs has no linear relationship with N₂O emissions in rivers. He et al. (2017) further revealed that nitrogen substrates and DO could be good predictors of the N₂O emissions of urban rivers. They also suggested a revision of the default emission factors of N₂O in the IPCC approach in China's context.

Table 3 Emission factors of N₂O derived from onsite measurement for different wastewater treatment processes in China and some other countries.

Treatment process	Location	Emission factors	References	Scale
A ₂ O	Beijing	0.0195	(S. Sun et al., 2013)	Full-scale
		(N ₂ O/TN influent)		
A_2O	Beijing	0.4–1.5 (0.8)	(Yan, Li, & Liu,	Full-scale
		(g N ₂ O/kg TN removed)	2014)	
A_2O	Jinan	1-1.3	(Jinhe Wang et al.,	Full-scale
		(g N ₂ O/kg TN removed)	2011)	
A/O	Beijing	0.016±0.0089	(S. Sun et al., 2017)	Full-scale
		(N ₂ O/TN influent)		
Oxidation Ditch	Beijing	0.8-8.8 (3.6)	(Yan et al., 2014)	Full-scale
		(g N ₂ O/kg TN removed)		
A_2O	Shanghai	0.095–3.44 (1.29 average)	(Y. Wang et al.,	Full-scale
		(gN2O/kg TN influent)	2016)	

SBR	Beijing	6.52	(S. Sun et al., 2013)	Full-scale
		(N2O/TN influent)		
SBR	Switzerland	1.0	(Gruber et al., 2020)	Full-scale
		(gN2O/kg TN influent)		
A_2O	South Korea	1.605	(Hwang, Bang, &	Full-scale
		(gN2O/kg TN influent)	Zoh, 2016)	

4.1.3 Methane emissions from WWTPs

Methane (CH₄) is formed when organic matter decomposes in anaerobic conditions during wastewater or sludge treatment (Mannina et al., 2018). Although CH₄ is the second most important GHG from anthropogenic sources, there are fewer studies on CH₄ emissions in WWTPs than N₂O emissions (X. Zhao et al., 2019). Globally, CH₄ emissions from the wastewater treatment sector account for 5-7% of anthropogenic methane emissions (Saunois et al., 2020; US EPA, 2012). According to the Second Biennial Update Report on Climate Change of the People's Republic of China, CH₄ emissions from wastewater treatment were 2721 Gg in 2014, amounting to 4.9% of China's total CH₄ emissions.

Both plant-level and region-level studies can be found in CH₄ emission studies in China. Studies at a regional level are usually based on a mass balance approach derived from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006). Researchers have evaluated CH₄ emissions at the regional level (Du et al., 2018; Ma et al., 2015) and city level (X. Zhao et al., 2019), and these estimations showed similar results to total national emissions (Table 4). Zhao et al. (2019) found that CH₄ emissions from municipal WWTPs for China's 229 prefectural-level cities were over three times that of the municipal WWTPs in the United States in 2016. Although the IPCC approach has considerable uncertainty (Law et al., 2012), it is still a suitable way to quantify CH₄ of WWTPs at a regional level compared to the onsite monitoring approach (Zhao et al. 2019).

Case studies of CH₄ emissions at the plant level for China are rare and not comparable with the results from regional studies. Specific studies found that GHG emissions from vertical subsurface flow constructed wetlands could be much lower than conventional WWTPs (Pan, Zhu, & Ye, 2011). Wang et al. (2011) investigated CH₄ emissions from an A₂O WWTP in China. However, based on the emission factor (kg CH₄/kg COD) derived from their studies, the scaled-up national CH₄ emissions were only 6.2 Gg, much smaller than results from the IPCC approach. Local GHG inventories require higher accuracy (Meyer, Deventer, Zhao, & Klemm, 2019). Thus, it is urgent to carry out more monitoring work with different treatment processes, scales, and geophysical locations to provide more accurate CH₄ emission inventories for municipalities. Besides, different sludge treatment and disposal techniques could be the predominant source of CH₄ generation. Wei et al. (2020) summarized five routes of sludge treatment and disposal, which are anaerobic digestion and land application (route 1), compost and land application (route 2), sanitary landfills (route 3), sludge incineration (route 4), and building materials production (route 5). They found that incineration contributed the most to CH₄ and CO₂ emissions (45.11%), followed by sanitary landfills (23.04%), land utilization (17.64%), and building materials (14.21%).

Table 4 China's methane emissions from WWTPs using the IPCC approach

Year	Municipal CH ₄ emissions	Industrial CH ₄ emissions	References
	Unit: Gg	Unit: Gg	
2010	611	1624	(Ma et al., 2015)
2000	245	1104	(Du et al., 2018)
2014	1271	2159	(Du et al., 2018)
2014	1170	-	(X. Zhao et al., 2019)

Many factors can influence the onsite emissions of CH₄. Methane emissions are directly correlated with the degradable organics present in wastewater, but they are also tightly related to the treatment conditions and processes. Zhao et al. (2019) found that cities in China with a higher gross domestic product (GDP), household food consumption expenditure, or household consumption expenditure produced wastewater with more degradable organics, thus generating more CH₄ emissions. Mechanical

aeration results in high DO concentrations in wastewater, which can inhibit methane formation. However, it also leads to the air stripping of dissolved methane from wastewater. As a result, DO concentrations are positively correlated with CH₄ flux from the aerated grit chambers and oxic tanks but not significantly relevant in anaerobic tanks (Jinhe Wang et al., 2011).

4.1.4 Methane emissions from sewers and receiving water bodies

The supersaturated CH₄ in rising mains of sewers can drive CH₄ emissions to the atmosphere. Monitoring results proved that a large amount of CH₄ emitted from sewers might be comparable to that from WWTPs (Guisasola et al., 2008). Higher CH₄ concentrations in sewers are highly related to long hydraulic residence time and larger pipe area-to-volume ratio (Foley et al., 2009). Three-year monitoring on 37 km-long sewer systems in Xi'an of China reports much higher onsite CH₄ emissions from the sewer system than previous estimations (Jin, Gu, Shi, & Yang, 2019), indicating the importance of examining CH₄ emissions from sewer systems in China. Researchers have found CH₄ dissolved in effluent increased the CH₄ emissions in rivers (Brigham et al., 2019). However, the volume of CH₄ emissions with discharged effluent is relatively insignificant, only accounting for a small share of the total CH₄ emitted in the drainage system (Alshboul, Encinas-Fernández, Hofmann, & Lorke, 2016).

One of the critical differences between China's urban wastewater systems and those of other countries is the inclusion in China of a pretreatment system (Liao, Hu, & Roker, 2015). The widely distributed septic tanks to pretreat household wastewater represent such a system, and these are huge sources of GHG emissions that are currently ignored. Hao et al. (2017) estimated that CH₄ emissions in China's urban septic tanks are at the same level as the GHG emissions from the WWTPs. It is important to include the pretreatment system in future studies to monitor and evaluate GHG emissions from wastewater treatment. Evaluating the cost and benefit of pretreatment system removal should consider GHG

generation potential in septic tanks and other pretreatment facilities, which is essential to mitigating GHG emissions further.

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

540

541

4.2 Scope 2 & 3 GHG emissions

The CO₂ emissions from energy consumption required for WWTPs operation are the major indirect source of GHG emissions from wastewater treatment (Daelman et al., 2013). From 2007 to 2015, the total amount of wastewater treated in China increased from 17.0 billion m³ to 46.7 billion m³, and the electricity consumed increased from 3.9 billion kWh to 14.0 billion kWh (Smith, Liu, Liu, et al., 2018). Among the multiple stages of the wastewater treatment process, secondary treatment and tertiary treatment (for wastewater reclamation) are the most energy-consuming stages, followed by pretreatment, primary treatment, and sludge treatment (Q. H. Zhang et al., 2010). A comprehensive investigation of energy consumption in China's WWTPs suggests that energy use of different secondary treatment technologies depends heavily on the capacity of the plant, which is defined as the volume of treated water per day (Y. He et al., 2019). The research found that SBR with energy consumption efficiency ranging from 0.128-0.424 kWh/m³ is more efficient for small-scale WWTPs (<10×10⁴ m³/d), oxidation ditch (0.126-0.434 kWh/m³) is more efficient for medium-scale WWTPs (10-20×10⁴ m³/d), and A₂O (A/O) (0.141-0.473) kWh/m³ is more efficient for large-scale WWTPs (>20×10⁴ m³/d) (Y. He et al., 2019). The energy use of tertiary treatment technologies for wastewater reclamation varies with the specific use of the reclaimed water and the associated water quality standards in China (Lyu, Chen, Zhang, Fan, & Jiao, 2016). In general, pressure-driven membrane processes, such as RO, nanofiltration (NF), and ultrafiltration (UF), are more energy-intensive than conventional processes such as coagulation, disinfection, and activated carbon adsorption (Plappally & Lienhard V, 2012). Based on data from 1079 WWTPs across China, Zeng et al. (2017) estimated that GHG emissions from WWTPs could decrease by 32.2% if all plants worked efficiently. Niu et al. (2019) established an energy consumption model for WWTPs in China using data from a national pollution source census (which

covers 3035 WWTPs supplying 85% of the total amount of wastewater treated in China in 2010). They found that WWTPs in China are more energy-intensive than their international counterparts. Low inlet COD concentrations and low utilization rates are the root causes of the abnormally high energy consumption of small-scale WWTPs in China (Niu et al., 2019).

GHG emissions can be induced by energy embodied in the upstream construction, production of input materials for operation, or downstream demolition phase of WWTPs (Beibei Zhang, Ariaratnam, Huang, & Zhang, 2014). Indirect emissions from WWTPs can also be substantial. For example, Bao et al. (2016) compared the direct and indirect GHG emissions of two WWTPs with A/O and SBR treatment processes in Beijing, China. They found that indirect GHG emissions due to the consumption of electricity and chemicals (flocculants) accounted for 50.8% and 30.2% in A/O and SBR WWTPs, respectively. On a national scale, up to 3.3×10⁶ Gg of construction materials may be needed to build up urban water and wastewater infrastructure to meet the increasing demand by 2050 (T. Wang, Shi, Zhang, Qian, & Hashimoto, 2018).

5. Challenges of accounting life-cycle GHG emissions from the water sector

Based on our in-depth review, the hotspots of China's current research related to GHG emissions from the water sector are qualitatively summarized in Table 5. The sub-area with high-quality literature refers to multiple studies on similar topics found in China with comparable results or over the years. In contrast, the sub-area with low-quality literature means no or single study is found in China with large potential to improve. Although there are extensive studies from China focusing on energy use for drinking water systems and non-CO₂ emissions from wastewater treatment, some challenges – either to methods or data availability – are identified in this review.

Table 5 Research hotspots regarding GHG emissions from China's water sector

	DRINKING W	DRINKING WATER SYSTEMS		WASTEWATER SYSTEMS	
	Plant level	City/region level	Plant level	City/region level	
GHGSCOPE 1	Low	Medium	High	High	
GHGSCOPE 2	Low	High	High	Medium	
GHG _{SCOPE} 3	Low	Low	Low	Low	

Note: 1) High: Multiple studies on similar topics found in China with comparable results or over the years; 2) Medium: Sparse studies found with limited representativeness or implications for China; 3) Low: No study or only a single study found in China with large potential to improve.

5.1 Plant-level case study of the drinking water system in China

We fail to find any plant-level case study of a centralized drinking water system in China with transparent raw data of energy or chemical use. Only one study in Ningbo of China discusses the impact of GHG emissions on the planning choices of municipal water infrastructure (Wu et al., 2015). Although many studies on the energy-water nexus report GHG emissions using aggregated intensities or emission factors, aggregated data are less accurate than specific data when discussing technological optimization that could reduce a water utility's carbon footprint (Molinos-Senante & Sala-Garrido, 2017). Given China's context, it is very difficult to get public operational data for specific water treatment plants. This might be one reason for lacking case studies. However, we urge more of China's researchers in drinking water treatment to add the GHG mitigation lens as one of the functional objectives in their technological advancement. Many studies on wastewater systems in China estimate GHG emissions on a lab or full scale to advocate a carbon-neutral agenda (Qu et al., 2019), whereas researchers in drinking water treatment may feel less inclined to focus on this topic as most of the GHG emissions from mainstream treatment processes come from electricity use. However, some solutions discussed in Section 6.2 shed light on future studies for China to approach a low-carbon roadmap in the drinking water system.

Quantifying the impact of urban form transitions on GHG emission accounting in the water sector is another challenge. China's ongoing urbanization is a lasting factor in shaping the future water market. The implementation of urban policies, water policies, and energy policies in China's cities cannot be independent. Zhang et al. (2019) examine the water sector's complex response to Chinese urban policies taking resource efficiency into account. A hypothetical grid-city model was developed to connect technical parameters in urban water infrastructure systems to socioeconomic changes, such as population growth, housing blocks, and water end-use. The results show that pipeline construction dominates material use and locks in significant GHG emissions in the water sector. The most efficient urbanization scenario can reduce GHG emissions from water infrastructure by 60%, compared to urban sprawl with residency restriction in large cities. Zhao et al. (2020) introduces more technical parameters of pumping systems into model development and confirms that urban forms and population distribution significantly impact energy used by the water supply system. More plant-level case studies are expected to bring those insights into practice.

5.2 Scope 3 emission accounting

As shown in Table 5, few studies work on scope 3 emission accounting in drinking water and wastewater systems for China. Zhang et al. (2017) estimated these emissions for China between 2006 and 2012 using top-down approaches and aggregated emission factors. More studies from a comprehensive life-cycle assessment at the plant level are needed to validate those results. Lam and van der Hoek (2020) point out many water-related "wider opportunities" can also contribute to GHG emissions abatement for cities. They use Amsterdam as a case study to estimate marginal GHG abatement costs, including both in-utility and wider opportunities. Promising cost-effective opportunities to reduce Scope 3 emissions of the water sector include recovery, supply, and storage of thermal energy and the biogas upgrading process in drinking water treatment (Lam & van der Hoek, 2020). A proper Scope 3 emission accounting and accreditation system will encourage water utilities to extend their roles

beyond water and wastewater services providers.

5.3 Accounting for interactions in the wastewater system

Previous studies in China have separately monitored and quantified the GHG emissions for different components of wastewater systems, e.g., sewer system, urban WWTPs, sludge disposal system, and receiving water bodies. However, focusing on reducing one component of GHG emissions will not optimize the whole system (Mannina et al., 2018). There is still a lack of studies accounting for and comparing the GHG emissions from the whole system with different treatment processes, sewer, and river conditions at a city level. Also, the interaction mechanisms between different components need to be further investigated. The operation of an upstream component might increase the GHG emissions in downstream components. For example, the low ratio of C/N in the influent water from the sewer system will lead to a higher generation of N₂O during wastewater treatment (Liao et al., 2015). The contribution of WWTPs to N₂O emissions in the receiving water bodies is poorly understood, which might be the main cause of a large discrepancy between the global N₂O budget and atmospheric measurement (Rosamond et al., 2012). Specifically, the cumulative effect of wastewater discharge into the sediment of water bodies, which might lead to a large amount of N₂O emissions, still lacks investigation.

Moreover, some key issues need to be resolved for China to estimate methane emissions from wastewater systems accurately. First, the trade-offs between CH₄ and N₂O emissions need to be further investigated along with the whole drainage system. For example, nitrite can substantially inhibit CH₄ production (G. Jiang, Gutierrez, Sharma, & Yuan, 2010), but it might increase N₂O emissions (Kampschreur et al., 2009). Second, drainage system construction is also found to contribute significantly to GHG emissions (Nguyen et al., 2020; Q. Zhang et al., 2019). The newly developed urban drainage system should consider GHG emissions from both construction and rehabilitation phases in accordance with a life-cycle perspective.

6. Prospects on China's GHG reduction for urban water infrastructure

Water and wastewater utilities have made tremendous progress in increasing energy efficiency, recovering resources, and developing new integrated water management solutions. The water sector has significant potential to decarbonize, not only from a technological point of view but from practical, operational and policy-making aspects (Qu et al., 2019; Zodrow et al., 2017). New technologies have enabled utilities to reduce energy use and integrate with renewable energy, recover renewable energy and value-added products, and accomplish advanced treatment goals to improve efficiency and standards (Babovic, Babovic, & Mijic, 2018; Mihelcic et al., 2017). In the meantime, environmental policies and regulations have evolved to incorporate more measures to improve energy efficiency and reduce GHG emissions, which drives innovation and implementation (Rauch et al., 2017). Other factors include socioeconomic and behavioral changes toward sustainable living and circular economy, which provide the industry with broader opportunities to decarbonize and be more sustainable (Ren, 2019). While this study cannot cover all aspects of best practice, we highlight two promising pathways.

6.1 Wastewater energy and resource recovery

WWTPs are among the largest energy consumers in many cities and towns. Studies estimated that wastewater treatment could account for up to 3% of global electricity if treated with conventional technologies. On the other hand, the chemical energy embedded in wastewater is estimated to be more than 9 times that required to treat the wastewater (W.-W. Li, Yu, & Rittmann, 2015). Technologies such as anaerobic digestion (AD), anaerobic membrane bioreactors (AnMBR), and microbial electrochemical technology (MET) have been tested to replace energy-intensive aerobic treatment and recover renewable energy in the form of biogas, hydrogen, and electricity. Among them, biogas from AD has been implemented in many large scale WWTPs and the captured biogas is used for heat recovery combined

with electricity production or upgraded to vehicle fuel and household gas. According to a recent study, China may achieve a net energy production of 3.41 billion kWh annually from AD-based wastewater treatment processes (Huang, Lu, & Li, 2020). A recent review summarized different processes and highlighted alternative wastewater treatment pathways for CO₂ capture and utilization, making WWTPs a potential contributor to negative carbon emissions (Lu et al., 2018).

Biogas to replace fossil fuel use is the primary way in which utilities reduce emissions (Murray, Galik, & Vegh, 2017). Renewable energy generation can lead to long-term cost savings for plants. For example, Marselisborg WWTP in Denmark produces 40% more electricity than the plant requires through cogeneration without the need for extra organic waste (State of Green, 2020). Sweden and Norway are among the European countries that support the use of biogas for fuel through government funding and infrastructure, like biogas filling stations for public buses and biogas upgrading facilities. In Strasbourg of France, the environmental services provider, Suez, teamed with the city's natural gas distributor to inject biogas from wastewater into the gas network and replace natural gas use by 5000 households (Suez, 2020). The availability of European Union funding, existing gas demand and infrastructure, and the easing of regulations controlling gas injections into the network were vital enabling factors. In order to meet China's requirements to improve WWTP discharge standards and achieve sustainable water management, the adoption of advanced treatment and resource utilization from wastewater (e.g., water, organic matter, nutrients) are highly recommended (Y. Sun et al., 2016).

Heat energy recovery and biosolid management are other popular strategies to reduce GHG emissions and sustainably manage waste (H. Gao, Scherson, & Wells, 2014; Mihelcic et al., 2017). In 2010, Vancouver Olympic Village recovered heat from wastewater and heated the athletes' village during the Winter Games (Brenhouse, 2010). Scottish Water captures and returns heat from wastewater to

households before it enters the sewage network (Scottish Water, 2020). They are converting AD biosolids to fertilizers for land application, another beneficial way for GHG emission reduction and revenue generation. This practice can reduce chemical fertilizer use, reduce landfilling, condition soil, and potentially capture carbon (Iocoli, Zabaloy, Pasdevicelli, & Gómez, 2019; Möller & Müller, 2012), most of which are a Scope 3 source of GHG emissions.

In China, the use of biogas from anaerobic digestion has strong prospects. Anaerobic digestion is a highly developed technology that is only applied in a small percentage of Chinese WWTPs, although many Chinese WWTPs are large enough to make anaerobic digestion feasible (Smith, Liu, Liu, et al., 2018). Chinese plants could offset around 50% of their energy use by using the heat and power produced by burning biogas, and there are already numerous examples of plants using a combination of anaerobic digestion and co-generation (H. Li & Feng, 2018). There are successful examples of the sale of methane gas for use as fuel for vehicles; Xiangyang, in central China, is one such city that has achieved this (Fu, Zhong, Jagannathan, & Fang, 2017). However, extra purification is required, and the energy demands of this process need to be considered.

There is potential to recover heat energy from wastewater in northern China, and it is best recovered from wastewater treatment plant effluent (Xiaodi Hao, Li, van Loosdrecht, Jiang, & Liu, 2019). Winter effluent temperatures are 10-16°C in northern China, which is well above ambient air temperature. Heat could be used for heating buildings onsite or nearby, or for heating greenhouses to reduce emissions from burning coal or gas. It is already applied in a number of demonstration plants, but more investigation is needed to understand the potential for emissions reduction (Xiaodi Hao, Wang, et al., 2019).

Land application of anaerobic digestion biosolids is not a common sludge disposal method in China; it is only used to dispose of 2.4% of wastewater sludge produced (Smith, Liu, Hu, Dong, & Wen, 2018; Yang, Zhang, & Wang, 2015). Thus, there is an opportunity for China to increase land application, which would reduce GHG emissions by avoiding the need for synthetic nitrogen fertilizer production (H. Chen, Yan, Ye, Meng, & Zhu, 2012). This would require a review of policies controlling both the sale of sludge-based fertilizer and contaminant standards for land application of sludge.

6.2 Solar power penetration and energy efficiency

Solar panels are used on utility sites for power generation and evaporation control. SA Water – one of the leading utilities of Australia – is seeking to reduce net grid electricity cost to zero with the installation of solar panels and energy storage devices across 80 sites. The 'Zero Cost Energy Future' strategy is also expected to reduce CO₂ emissions by around 90,000 tonnes per year and will stabilize the cost of water for consumers (SA Water, 2020). Solar panels in the water sector can be partly motivated by secondary benefits, such as reduced water evaporation. Japan and Australia are both using floating solar panels in wastewater treatment plants, thus producing power while reducing extra land use, water evaporation, and algal growth. Floating panels can be more efficient due to the cooling effect of the water (Beca, 2015). Solar panels can be applied in China in conjunction with other emissions-reduction strategies listed in Section 6.1. When installed in wastewater treatment plants, they may only provide a small reduction in electricity use compared to the overall energy used by a plant (Xiaodi Hao, Liu, & Huang, 2015); but China is a major producer and user of solar panels for electricity production, so there is scope for offsetting at sites with large available area and solar resources.

Adhering to water quality and effluent standards is a priority for utilities that is not necessarily at odds with energy efficiency. Another Australian wastewater treatment plant replaced surface aerators with

fine bubble aeration to achieve similar effluent quality and less odor for half the energy cost (Abbott, 2020). Aeration is generally the main energy user in Chinese wastewater treatment plants (Smith, Liu, Liu, et al., 2018). The use of diffused aeration instead of surface aeration is an established way to reduce energy use because it provides more complete mixing of oxygen and wastewater. Implementation of diffused aeration in new activated sludge tanks should be a priority, but conversion of existing activated sludge tanks to diffused aeration is also possible.

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

756

757

758

759

760

761

7. Conclusions

Municipal water and wastewater services have complicated sources of greenhouse gas emissions. In this review, we present a systems perspective to source GHG emissions associated with urban water infrastructure. Based on China's empirical cases and socioeconomic contexts, we highlight the hotspots of GHG emission sources in drinking water systems and wastewater treatment systems, respectively. In drinking water services, electricity consumption is the largest source of GHG emissions. Alternative water sources (e.g., rainwater harvest, desalination) have different energy intensities, leading to varying implications for GHG emissions. Another particular concern in China is the common use of secondary pumping for high-rise buildings. Optimized pressure management with an efficient pumping system should be prioritized. In wastewater services, progress has been made to estimate non-CO₂ GHG emissions based on information collected from different WWTPs. These studies demonstrate that non-CO₂ emissions are substantial in GHG emission sources from the wastewater system, but considerable uncertainty and variety exists, depending on different regional contexts and technologies used. It is recommended that N₂O emission factors from the onsite measurement of different treatment processes in China replace default values in the IPCC approach. Evidence about Scope 3 emissions, especially those beyond the operations and maintenance stage, is still scarce. From a practical viewpoint, harnessing the co-benefits of energy and cost savings when applying new technology or carrying out maintenance can

be an effective way for water utilities to reduce GHG emissions. Some cases include renewable energy recovery, biosolid management, and onsite solar power installation.

782

800

801

802

780

- GHG in water infrastructure is a new and evolving topic, and there is much work needed to advance the field:
- 1. A feasible systems accounting method for plant-level/city-level GHG inventories of the urban water cycle. This requires more data and higher accuracy, and onsite measurement is favored. Since LCA studies are based on functional units, a reasonable scaling-up approach is essential to compile a full-scale GHG inventory.
- 2. GHG reductions from water reclamation. China has reused massive amounts of water for non-potable
 purposes. However, there is no explicit study on the estimations of GHG reductions from water
 reclamation, especially from the scope of the urban water cycle.
- 3. GHG emissions from sewer systems. One recent study in China reported substantial progress on this
 topic, but only for one city in China. Geographic factors, temperature, precipitation, and the types of
 sewer pipes may cause emissions to vary significantly.
- 4. The dynamics of CH₄ and N₂O emissions. The trade-off mechanism between CH₄ and N₂O emissions in wastewater treatment processes needs to be further investigated. In an emission-factor-based GHG accounting method, linear and independent assumptions between different GHG sources are the most common. However, if the microbial community can simultaneously change CH₄ and N₂O production, the accounting method needs to be revised and validated accordingly.
 - 5. Scope 3 emissions embodied in supply chains. Our knowledge about Scope 3 emissions associated with water infrastructure is still insufficient. In an emerging market economy, GHG emissions associated with the expansion of infrastructure can be significant. City-level accounting of Scope 3 emissions

probably faces a lack of both data and human resources. Quantifying Scope 3 emissions involves communication and engagement with stakeholders and the forging of a shared responsibility for climate change mitigation and other sustainability agendas.

6. Technology innovation and system integration. Many emerging technologies hold promise for GHG emission reduction and the recovery of value-added energy and products. Such system-level analyses are needed to identify opportunities and challenges and guide innovation and market translation.

Sidebar

S1 GHG inventory compilation and reporting methods

Anthropogenic greenhouse gas (GHG) emissions have been one of the principal reasons for global warming since the mid-20th century (IPCC, 2014). The 2006 IPCC Guidelines for National Greenhouse Gas Inventories provide internationally agreed methodologies to estimate national GHG emissions (IPCC, 2006). To develop an inventory of GHG emissions, one should carefully consider types of greenhouse gases, emission sectors (or removal sinks), territory boundary, inventory year, and accounting methods to keep the constructed inventories comparable between countries with a satisfactory quality regarding transparency, completeness, and consistency.

The GHG Protocol Corporate Accounting and Reporting Standard initiated by the World Resources
Institute (WRI) and the World Business Council for Sustainable Development (WBCSD) provides
guidance on GHG accounting for companies or other organizations (WRI & WBCSD, 2004). It
introduces the concept of the 'scope' of GHG emissions in inventory compilation, requiring both direct
and indirect emissions to be reported in the GHG inventory using this standard. Scope 1 emissions refer
to direct GHG emissions occurring from owned or controlled sources by the entity. Scope 2 emissions
refer to indirect GHG emissions from purchased or otherwise acquired electricity and heat power
consumed by the entity. Scope 3 emissions refer to all other indirect GHG emissions as a consequence of

827	the entity's activities but occurring from sources not owned or controlled by the entity. This concept of
828	indirect emissions has been adopted in ISO standards (ISO 14064-1/2/3) (Bastianoni, Marchi, Caro,
829	Casprini, & Pulselli, 2014) and is presented in the IPCC's fifth assessment report.
830	
831	
832	Funding Information
833	This work was supported by the National Natural Science Foundation of China (No. 72074136).
834	
835	Acknowledgments
836 837	The authors declare no conflict of interest. The authors gratefully appreciate the editor and reviewers for their constructive comments and suggestions.
838	
839	Further Reading (not included in the reference section)
840	
841	References
842	Abbott, D. (2020). Aeration modifications: Tatura Wastewater Management Facility case
843	study. Retrieved from https://watersource.awa.asn.au/business/assets-and-
844	operations/aeration-modifications-tatura-wastewater-management-facility-case-
845	study/
846	Alegre, H., Coelho, S. T., Covas, D., Almeida, M., Cardoso, M., & Ostfeld, A. (2013).
847	Infrastructure asset management of urban water systems. In Water supply system
848	analysis—Selected topics. Rijeka, Croatia: InTech (ISBN 978-953-51-0889-4).
849	Alshboul, Z., Encinas-Fernández, J., Hofmann, H., & Lorke, A. (2016). Export of Dissolved
850	Methane and Carbon Dioxide with Effluents from Municipal Wastewater
851	Treatment Plants. Environmental science & technology, 50(11), 5555-5563.
852	doi:10.1021/acs.est.5b04923
853	Arora, M., Malano, H., Davidson, B., Nelson, R., & George, B. (2015). Interactions
854 855	between centralized and decentralized water systems in urban context: A review. <i>WIREs Water, 2</i> (6), 623-634. doi:10.1002/wat2.1099

- Babovic, F., Babovic, V., & Mijic, A. (2018). Antifragility and the development of urban water infrastructure. *International Journal of Water Resources Development,* 34(4), 499-509. doi:10.1080/07900627.2017.1369866
- Bao, C., & Fang, C.-l. (2012). Water resources flows related to urbanization in China: challenges and perspectives for water management and urban development.

 Water Resources Management, 26(2), 531-552.

866

867

868

877

878

879 880

884 885

- Bao, Z., Sun, S., & Sun, D. (2016). Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China. *International Biodeterioration & Biodegradation*, 108, 108-114. doi:https://doi.org/10.1016/j.ibiod.2015.11.028
 - Bastianoni, S., Marchi, M., Caro, D., Casprini, P., & Pulselli, F. M. (2014). The connection between 2006 IPCC GHG inventory methodology and ISO 14064-1 certification standard—A reference point for the environmental policies at sub-national scale. *Environmental Science & Policy*, 44, 97-107.
- Beca. (2015). OPPORTUNITIES FOR RENEWABLE ENERGY IN THE AUSTRALIAN WATER
 SECTOR. Retrieved from Sydney:
 https://arena.gov.au/assets/2016/01/Opportunities-for-renewable-energy-in-
- https://arena.gov.au/assets/2016/01/Opportunities-for-renewable-energy-inthe-Australian-water-sector.pdf
- 873 Brenhouse, H. (2010, 2010/05/18). In Vancouver, Wastewater and Sewage Provide
 874 Energy. *The New York Times*. Retrieved from
 875 https://www.nytimes.com/2010/05/18/business/energy-environment/18iht-renvan.html
 - Brigham, B. A., Bird, J. A., Juhl, A. R., Zappa, C. J., Montero, A. D., & O'Mullan, G. D. (2019). Anthropogenic inputs from a coastal megacity are linked to greenhouse gas concentrations in the surrounding estuary. *Limnology and Oceanography*, 64(6), 2497-2511. doi:https://doi.org/10.1002/lno.11200
- Browder, G., Xie, S., Kim, Y., Gu, L., Fan, M., & Ehrhardt, D. (2007). *Stepping up: improving the performance of China's urban water utilities*: World Bank
 Publications.
 - Cakir, F., & Stenstrom, M. (2005). Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology. *Water research*, 39(17), 4197-4203.
- Can, Z., Wenjun, L., Wen, S., Minglu, Z., Lingjia, Q., Cuiping, L., & Fang, T. (2013).

 Endotoxin contamination and control in surface water sources and a drinking water treatment plant in Beijing, China. *Water Research*, *47*(11), 3591-3599.

 doi:http://dx.doi.org/10.1016/j.watres.2013.04.009
- 891 Chen, H., Yan, S. H., Ye, Z. L., Meng, H. J., & Zhu, Y. G. (2012). Utilization of urban sewage 892 sludge: Chinese perspectives. *Environmental Science and Pollution Research*, 893 *19*(5), 1454-1463. doi:10.1007/s11356-012-0760-0
- Chen, J. P., Wang, L. K., Yang, L., & Zheng, Y.-M. (2011). Desalination of seawater by thermal distillation and electrodialysis technologies. In L. K. Wang, J. P. Chen, Y.-T.

- Hung, & N. K. Shammas (Eds.), *Membrane and desalination technologies* (pp. 525-558). Totowa, NJ: Humana Press.
- Chen, Y., Wang, D., Zheng, X., Li, X., Feng, L., & Chen, H. (2014). Biological nutrient removal with low nitrous oxide generation by cancelling the anaerobic phase and extending the idle phase in a sequencing batch reactor. *Chemosphere*, 109, 56-63. doi:https://doi.org/10.1016/j.chemosphere.2014.02.011
- Chen, Z., Wu, Q., Wu, G., & Hu, H.-Y. (2016). Centralized water reuse system with
 multiple applications in urban areas: Lessons from China's experience. *Resources, Conservation and Recycling*.
 doi:http://dx.doi.org/10.1016/j.resconrec.2016.11.008
- Cheng, C.-L. (2002). Study of the inter-relationship between water use and energy conservation for a building. *Energy and buildings, 34*(3), 261-266.
- Daelman, M., van Voorthuizen, E. M., Van Dongen, L., Volcke, E., & Van Loosdrecht, M. (2013). Methane and nitrous oxide emissions from municipal wastewater treatment—results from a long-term study. *Water Science and Technology, 67*(10), 2350-2355.
- Du, M., Zhu, Q., Wang, X., Li, P., Yang, B., Chen, H., . . . Peng, C. (2018). Estimates and predictions of methane emissions from wastewater in China from 2000 to 2020. Earth's Future, 6(2), 252-263.
- Encyclopedia of Desalination and Water Resources. (2017). Energy requirements of
 desalination processes. Retrieved from http://www.desware.net/Energy-
 Requirements-Desalination-Processes.aspx
- Fan, J.-L., Kong, L.-S., Zhang, X., & Wang, J.-D. (2019). Energy-water nexus embodied in the supply chain of China: Direct and indirect perspectives. *Energy Conversion and Management, 183*, 126-136.

 doi:https://doi.org/10.1016/j.enconman.2018.12.095
- Fang, D., & Chen, B. (2017). Linkage analysis for the water—energy nexus of city. *Applied Energy*, 189, 770-779. doi:https://doi.org/10.1016/j.apenergy.2016.04.020
- Foley, J., De Haas, D., Yuan, Z., & Lant, P. (2010). Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. *Water research*, 44(3), 831-844.
- Foley, J., Yuan, Z., & Lant, P. (2009). Dissolved methane in rising main sewer systems: field measurements and simple model development for estimating greenhouse gas emissions. *Water Science & Technology, 60*(11), 2963-2971.
- Food and Agriculture Organization. (2019). AQUASTAT database. Retrieved from
 http://www.fao.org/nr/water/aquastat/dbases/index.stm
- 932 Fries, A. E., Schifman, L. A., Shuster, W. D., & Townsend-Small, A. (2018). Street-level 933 emissions of methane and nitrous oxide from the wastewater collection system in 934 Cincinnati, Ohio. *Environ Pollut, 236*, 247-256. doi:10.1016/j.envpol.2018.01.076

- 935 Frijns, J. (2012). Towards a common carbon footprint assessment methodology for the water sector. *Water and Environment Journal*, *26*(1), 63-69.
- 937 Fu, X., Zhong, L., Jagannathan, V., & Fang, W. (2017). Sludge to Energy: An Environment-938 Energy-Economic Assessment of Methane Capture from Sludge in Xiangyang City, 939 Hubei Province. Retrieved from Washington, DC:
- 940 http://www.wri.org/publication/environment-energy-economic-assessmentsludge-energy-approach

955

956

960

- Gao, H., Scherson, Y. D., & Wells, G. F. (2014). Towards energy neutral wastewater
 treatment: methodology and state of the art. *Environmental Science: Processes & Impacts*, 16(6), 1223-1246.
- Gao, J., Li, C., Zhao, P., Zhang, H., Mao, G., & Wang, Y. (2019). Insights into water-energy
 cobenefits and trade-offs in water resource management. *Journal of Cleaner Production, 213*, 1188-1203. doi:https://doi.org/10.1016/j.jclepro.2018.12.126
- Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., & Joss, A. (2020). N2O
 emission in full-scale wastewater treatment: Proposing a refined monitoring
 strategy. Science of the Total Environment, 699, 134157.
 doi:https://doi.org/10.1016/j.scitotenv.2019.134157
- Guisasola, A., de Haas, D., Keller, J., & Yuan, Z. (2008). Methane formation in sewer systems. *Water research*, *42*(6), 1421-1430.
 - Guisasola, A., Sharma, K. R., Keller, J., & Yuan, Z. (2009). Development of a model for assessing methane formation in rising main sewers. *Water research*, 43(11), 2874-2884.
- Hall, M. R., West, J., Sherman, B., Lane, J., & de Haas, D. (2011). Long-term trends and
 opportunities for managing regional water supply and wastewater greenhouse
 gas emissions. *Environmental science & technology*, 45(12), 5434-5440.
 - Hao, X., Li, J., van Loosdrecht, M. C., Jiang, H., & Liu, R. (2019). Energy recovery from wastewater: Heat over organics. *Water research*, 161, 74-77.
- Hao, X., Liu, R., & Huang, X. (2015). Evaluation of the potential for operating carbon
 neutral WWTPs in China. *Water Research*, 87, 424-431.
 doi:http://dx.doi.org/10.1016/j.watres.2015.05.050
- Hao, X., Wang, X., Liu, R., Li, S., van Loosdrecht, M. C. M., & Jiang, H. (2019).
 Environmental impacts of resource recovery from wastewater treatment plants.
 Water research, 160, 268-277. doi:https://doi.org/10.1016/j.watres.2019.05.068
- Hao, X., Yang, W., & Lin, J. (2017). Non Negligible Carbon Emission with Methane from Septic Tanks. *China Water & Wastewater (in Chinese), 33*(10), 28-33.
- He, G., Zhao, Y., Wang, J., Zhu, Y., Jiang, S., Li, H., & Wang, Q. (2019). The effects of
 urban water cycle on energy consumption in Beijing, China. *J. Geogr. Sci., 29*(6),
 959-970.
- He, Y., Wang, X., Chen, H., Yuan, X., Wu, N., Zhang, Y., . . . Zhou, L. (2017). Effect of watershed urbanization on N2O emissions from the Chongqing metropolitan river

```
975 network, China. Atmospheric Environment, 171, 70-81.
976 doi:https://doi.org/10.1016/j.atmosenv.2017.09.043
```

- He, Y., Zhu, Y., Chen, J., Huang, M., Wang, P., Wang, G., . . . Zhou, G. (2019). Assessment of energy consumption of municipal wastewater treatment plants in China.
 Journal of Cleaner Production, 228, 399-404.
 doi:https://doi.org/10.1016/j.jclepro.2019.04.320
- Hering, J. G., Waite, T. D., Luthy, R. G., Drewes, J. E., & Sedlak, D. L. (2013). A changing
 framework for urban water systems. *Environmental science & technology, 47*(19),
 10721-10726.
- Hillman, T., & Ramaswami, A. (2010). Greenhouse gas emission footprints and energy
 use benchmarks for eight US cities. *Environmental science & technology, 44*(6),
 1902-1910.
- Huang, B.-C., Lu, Y., & Li, W.-W. (2020). Exploiting the energy potential of municipal wastewater in China by incorporating tailored anaerobic treatment processes.
 Renewable Energy, 158, 534-540.
 doi:https://doi.org/10.1016/j.renene.2020.05.157
- Hwang, K.-L., Bang, C.-H., & Zoh, K.-D. (2016). Characteristics of methane and nitrous
 oxide emissions from the wastewater treatment plant. *Bioresource Technology*,
 214, 881-884. doi:https://doi.org/10.1016/j.biortech.2016.05.047
- locoli, G. A., Zabaloy, M. C., Pasdevicelli, G., & Gómez, M. A. (2019). Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Science of the total environment, 647, 11-19.
- IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In H. S.
 Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.). Japan: Institute for
 Global Environmental Strategies (IGES).
- IPCC. (2014). Climate Change 2014: Synthesis Report. Retrieved from Geneva,
 Switzerland:
 https://www.ipcc.ch/site/assets/uploads/2018/05/SYR AR5 FINAL full wcover.p
 df
- Jia, X., Klemeš, J. J., Varbanov, P. S., & Wan Alwi, S. R. (2019). Analyzing the energy consumption, GHG emission, and cost of seawater desalination in China. *Energies*, *12*(3), 463.
- Jiang, G., Gutierrez, O., Sharma, K. R., & Yuan, Z. (2010). Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. *Water research*, 44(14), 4241-4251. doi:https://doi.org/10.1016/j.watres.2010.05.030
- Jiang, Y. (2015). China's water security: Current status, emerging challenges and future prospects. *Environmental Science & Policy, 54,* 106-125.
- doi:https://doi.org/10.1016/j.envsci.2015.06.006

- Jin, P., Gu, Y., Shi, X., & Yang, W. (2019). Non-negligible greenhouse gases from urban sewer system. *Biotechnology for Biofuels, 12*(1), 100. doi:10.1186/s13068-019-1016
- 1017 Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S., & van Loosdrecht, M. 1018 C. (2009). Nitrous oxide emission during wastewater treatment. *Water research*, 1019 43(17), 4093-4103. doi:10.1016/j.watres.2009.03.001
- Lam, K. L., & van der Hoek, J. P. (2020). Low-Carbon Urban Water Systems:
 Opportunities beyond Water and Wastewater Utilities? *Environmental science & technology*, *54*(23), 14854-14861. doi:10.1021/acs.est.0c05385
- Law, Y., Ye, L., Pan, Y., & Yuan, Z. (2012). Nitrous oxide emissions from wastewater treatment processes. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *367*(1593), 1265-1277.
- Leitão, J. P., Coelho, S. T., Alegre, H., Cardoso, M. A., Silva, M. S., Ramalho, P., . . .

 Vitorino, D. (2016). Moving urban water infrastructure asset management from science into practice. *Urban Water Journal*, *13*(2), 133-141.
- Lemos, D., Dias, A. C., Gabarrell, X., & Arroja, L. (2013). Environmental assessment of an urban water system. *Journal of Cleaner Production*, *54*, 157-165.
- Li, H., & Feng, K. (2018). Life cycle assessment of the environmental impacts and energy efficiency of an integration of sludge anaerobic digestion and pyrolysis. *Journal of Cleaner Production, 195*, 476-485.

 doi:https://doi.org/10.1016/j.jclepro.2018.05.259
- Li, M., Wu, H., Zhang, J., Ngo, H. H., Guo, W., & Kong, Q. (2017). Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: effect of C/N ratios. *Bioresour Technol, 240*, 157-164.
- Li, W.-W., Yu, H.-Q., & Rittmann, B. E. (2015). Chemistry: reuse water pollutants. *Nature*,528(7580), 29-31.
- Li, X., Liu, J., Zheng, C., Han, G., & Hoff, H. (2016). Energy for water utilization in China and policy implications for integrated planning. *International Journal of Water Resources Development*, 32(3), 477-494. doi:10.1080/07900627.2015.1133403
- Li, X., Yang, L., Zheng, H., Shan, Y., Zhang, Z., Song, M., . . . Guan, D. (2019). City-level water-energy nexus in Beijing-Tianjin-Hebei region. *Applied Energy*, 235, 827-834. doi:https://doi.org/10.1016/j.apenergy.2018.10.097
- Li, Y., Luo, X., Huang, X., Wang, D., & Zhang, W. (2013). Life Cycle Assessment of a municipal wastewater treatment plant: a case study in Suzhou, China. *Journal of Cleaner Production*, *57*, 221-227.
- Li, Y., Xiong, W., Zhang, W., Wang, C., & Wang, P. (2016). Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China. *Water Research*, 89, 9-19.
- doi:http://dx.doi.org/10.1016/j.watres.2015.11.030

- Liao, Z., Hu, T., & Roker, S. A. C. (2015). An obstacle to China's WWTPs: the COD and BOD standards for discharge into municipal sewers. *Environmental Science and Pollution Research*, 22(21), 16434-16440. doi:10.1007/s11356-015-5307-8
- Lin, X., Ren, J., Xu, J., Zheng, T., Cheng, W., Qiao, J., . . . Li, G. (2018). Prediction of life cycle carbon emissions of sponge city projects: A case study in Shanghai, China. Sustainability, 10(11), 3978.
- Liu, B., Wei, Q., Zhang, B., & Bi, J. (2013). Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China. *Science of the Total Environment, 447*, 361-369. doi:http://dx.doi.org/10.1016/j.scitotenv.2013.01.019
- Liu, L., & Jensen, M. B. (2018). Green infrastructure for sustainable urban water management: Practices of five forerunner cities. *Cities, 74,* 126-133. doi:https://doi.org/10.1016/j.cities.2017.11.013
- Liu, Q., Lei, Q., Xu, H., & Yuan, J. (2018). China's energy revolution strategy into 2030. *Resources, Conservation and Recycling, 128*, 78-89.
- Liu, Y., Hejazi, M., Kyle, P., Kim, S. H., Davies, E., Miralles, D. G., . . . Niyogi, D. (2016).

 Global and Regional Evaluation of Energy for Water. *Environmental science & technology*, *50*(17), 9736-9745. doi:10.1021/acs.est.6b01065
- Loubet, P., Roux, P., Loiseau, E., & Bellon-Maurel, V. (2014). Life cycle assessments of urban water systems: A comparative analysis of selected peer-reviewed literature. *Water research, 67*, 187-202.
- Lu, L., Guest, J. S., Peters, C. A., Zhu, X., Rau, G. H., & Ren, Z. J. (2018). Wastewater
 treatment for carbon capture and utilization. *Nature Sustainability*, 1(12), 750 758. doi:10.1038/s41893-018-0187-9
- Lundin, M., & Morrison, G. M. (2002). A life cycle assessment based procedure for development of environmental sustainability indicators for urban water systems. *Urban water, 4*(2), 145-152.
- Lyu, S., Chen, W., Zhang, W., Fan, Y., & Jiao, W. (2016). Wastewater reclamation and reuse in China: Opportunities and challenges. *Journal of Environmental Sciences,* 39, 86-96. doi: https://doi.org/10.1016/j.jes.2015.11.012
- Ma, Z.-Y., Feng, P., Gao, Q.-X., Lu, Y.-N., Liu, J.-R., & Li, W.-T. (2015). CH4 emissions and reduction potential in wastewater treatment in China. *Advances in Climate*1085 *Change Research*, 6(3-4), 216-224.

 1086 doi:https://doi.org/10.1016/j.accre.2015.11.006
- Mahgoub, M. E.-S. M., van der Steen, N. P., Abu-Zeid, K., & Vairavamoorthy, K. (2010).
 Towards sustainability in urban water: a life cycle analysis of the urban water
 system of Alexandria City, Egypt. *Journal of Cleaner Production, 18*(10), 11001106.
- Mannina, G., Butler, D., Benedetti, L., Deletic, A., Fowdar, H., Fu, G., . . . Willems, P. (2018). Greenhouse gas emissions from integrated urban drainage systems:

```
1093 Where do we stand? Journal of Hydrology, 559, 307-314. 
1094 doi:https://doi.org/10.1016/j.jhydrol.2018.02.058
```

- Mannina, G., Ekama, G., Caniani, D., Cosenza, A., Esposito, G., Gori, R., . . . Olsson, G. (2016). Greenhouse gases from wastewater treatment A review of modelling tools. *Science of the total environment*, *551*, 254-270.
- Meng, F., Liu, G., Chang, Y., Su, M., Hu, Y., & Yang, Z. (2019). Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China). *Energy*, *171*, 403-418.

 doi:https://doi.org/10.1016/j.energy.2019.01.013
 - Meyer, H., Deventer, M. J., Zhao, Y., & Klemm, O. (2019). CO2 emissions from cities:

 Direct flux measurements versus the indirect budget approach. *Meteorologische Zeitschrift*, 379-387.
- Mihelcic, J. R., Ren, Z. J., Cornejo, P. K., Fisher, A., Simon, A. J., Snyder, S. W., . . .
 Turgeon, J. (2017). Accelerating Innovation that Enhances Resource Recovery in
 the Wastewater Sector: Advancing a National Testbed Network. *Environmental* science & technology, 51(14), 7749-7758. doi:10.1021/acs.est.6b05917
- Molinos-Senante, M., & Sala-Garrido, R. (2017). Energy intensity of treating drinking water: Understanding the influence of factors. *Applied Energy, 202*, 275-281. doi:https://doi.org/10.1016/j.apenergy.2017.05.100
- Möller, K., & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. *Engineering in Life Sciences, 12*(3), 242-1114 257.
- Murray, B. C., Galik, C. S., & Vegh, T. (2017). Biogas in the United States: estimating future production and learning from international experiences. *Mitigation and Adaptation Strategies for Global Change, 22*(3), 485-501.
- National Development and Reform Commission. (2018). *The People's Republic of China*Second Biennial Update Report on Climate Change. Beijing: National Development
 and Reform Commission (NDRC) of China Retrieved from
 https://unfccc.int/sites/default/files/resource/China%202BUR_English.pdf
- NBS. (2018). China statistical yearbook 2018. Retrieved from www.stats.gov.cn/tjsj/ndsj/2018/indexeh.htm
- Nguyen, T. K. L., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Nguyen, T. V., & Nghiem, D. L. (2020). Contribution of the construction phase to environmental impacts of the wastewater treatment plant. *Science of the total environment,* 1127 743, 140658. doi:https://doi.org/10.1016/j.scitotenv.2020.140658
- Niu, K., Wu, J., Qi, L., & Niu, Q. (2019). Energy intensity of wastewater treatment plants and influencing factors in China. *Science of the total environment, 670*, 961-970. doi:https://doi.org/10.1016/j.scitotenv.2019.03.159
- Pan, T., Zhu, X.-D., & Ye, Y.-P. (2011). Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional

- wastewater treatment plants: A case study in China. *Ecological Engineering*, 37(2), 248-254. doi:https://doi.org/10.1016/j.ecoleng.2010.11.014
- Petit-Boix, A., Sanjuan-Delmás, D., Gasol, C. M., Villalba, G., Suárez-Ojeda, M. E.,
 Gabarrell, X., . . . Rieradevall, J. (2014). Environmental assessment of sewer
 construction in small to medium sized cities using life cycle assessment. *Water Resources Management*, 28(4), 979-997.
- Piratla, K. R., Ariaratnam, S. T., & Cohen, A. (2011). Estimation of CO2 emissions from the life cycle of a potable water pipeline project. *Journal of Management in Engineering*.
- Plappally, A. K., & Lienhard V, J. H. (2012). Energy requirements for water production, treatment, end use, reclamation, and disposal. *Renewable and Sustainable Energy Reviews, 16*(7), 4818-4848.
- Qu, J., Wang, H., Wang, K., Yu, G., Ke, B., Yu, H.-Q., . . . Li, W.-W. (2019). Municipal wastewater treatment in China: Development history and future perspectives. Frontiers of Environmental Science & Engineering, 13(6), 88.
- Racoviceanu, A. I., Karney, B. W., Kennedy, C. A., & Colombo, A. F. (2007). Life-cycle energy use and greenhouse gas emissions inventory for water treatment systems.

 Journal of Infrastructure Systems, 13(4), 261-270. doi:Doi 10.1061/(Asce)1076-0342(2007)13:4(261)
- Rauch, W., Urich, C., Bach, P., Rogers, B., de Haan, F., Brown, R., . . . Sitzenfrei, R. (2017).

 Modelling transitions in urban water systems. *Water research, 126*, 501-514.
 - Ren, Z. J. (2019). Editorial Perspectives: the value proposition of resource recovery. Environmental Science: Water Research & Technology, 5(2), 196-197.
- 1156 Risch, E., Gutierrez, O., Roux, P., Boutin, C., & Corominas, L. (2015). Life cycle assessment 1157 of urban wastewater systems: Quantifying the relative contribution of sewer 1158 systems. *Water research*, 77, 35-48.
- 1159 Rosamond, M. S., Thuss, S. J., & Schiff, S. L. (2012). Dependence of riverine nitrous oxide 1160 emissions on dissolved oxygen levels. *Nature Geoscience*, *5*(10), 715-718. 1161 doi:10.1038/ngeo1556
- Rothausen, S. G., & Conway, D. (2011). Greenhouse-gas emissions from energy use in the water sector. *Nature Climate Change*, *1*(4), 210-219.
- SA Water. (2020). Regional South Australia key to SA Water's zero cost energy future.

 Retrieved from https://www.sawater.com.au/news/regional-south-australia-key-to-sa-waters-zero-cost-energy-future
- Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., . . .
 Zhuang, Q. (2020). The Global Methane Budget 2000–2017. *Earth Syst. Sci. Data*,
 12(3), 1561-1623. doi:10.5194/essd-12-1561-2020
- 1170 Scottish Water. (2020). Heat from Waste Water. Retrieved from

1155

https://www.scottishwater.co.uk/about-us/energy-and-sustainability/renewable-energy-technologies/heat-from-waste-water

- Shahabadi, M. B., Yerushalmi, L., & Haghighat, F. (2009). Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. *Water research*, *43*(10), 2679-2687.
- Shi, F., Huang, T., Tanikawa, H., Han, J., Hashimoto, S., & Moriguchi, Y. (2012). Toward a Low Carbon-Dematerialization Society Measuring the Materials Demand and CO2 Emissions of Building and Transport Infrastructure Construction in China. *Journal of Industrial Ecology*, 16(4), 493-505. doi:10.1111/j.1530-9290.2012.00523.x
- Short, M. D., Daikeler, A., Peters, G. M., Mann, K., Ashbolt, N. J., Stuetz, R. M., & Peirson, W. L. (2014). Municipal gravity sewers: An unrecognised source of nitrous oxide.

 Science of the total environment, 468-469, 211-218.

 doi:https://doi.org/10.1016/j.scitotenv.2013.08.051
- 1184 Smith, K., & Liu, S. (2019). *Reducing Energy for Urban Water and Wastewater: Prospects*1185 *for China*. London, UK: IWA Publishing.
- Smith, K., & Liu, S. (2021). Methodology for evaluating city-level energy footprint for water distribution systems. *Journal of Cleaner Production, 288*, 125463. doi:https://doi.org/10.1016/j.jclepro.2020.125463
- Smith, K., Liu, S., & Chang, T. (2016). Contribution of Urban Water Supply to Greenhouse Gas Emissions in China. *Journal of Industrial Ecology, 20*(4), 792-802. doi:10.1111/jiec.12290
- Smith, K., Liu, S., Hu, H.-Y., Dong, X., & Wen, X. (2018). Water and energy recovery: The future of wastewater in China. *Science of the Total Environment, 637-638*, 1466-1194 1470. doi:https://doi.org/10.1016/j.scitotenv.2018.05.124
- Smith, K., Liu, S., Liu, Y., & Guo, S. (2018). Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change. *Renewable and Sustainable Energy Reviews, 91*, 41-58.

 doi:https://doi.org/10.1016/j.rser.2018.03.051
- Smith, K., Liu, S., Liu, Y., Liu, Y., & Wu, Y. (2017). Reducing energy use for water supply to China's high-rises. *Energy and buildings, 135*, 119-127. doi:https://doi.org/10.1016/j.enbuild.2016.11.033
- Smith, K., Liu, S., Liu, Y., Savic, D., Olsson, G., Chang, T., & Wu, X. (2016). Impact of urban water supply on energy use in China: a provincial and national comparison.

 Mitigation and Adaptation Strategies for Global Change, 21(8), 1213-1233.
- Society of Chinese Urban Water Supply and Drainage. (2015). *Urban Drainage Statistic*Yearbook. Retrieved from Beijing:
- Soda, S., Arai, T., Inoue, D., Ishigaki, T., Ike, M., & Yamada, M. (2013). Statistical analysis of global warming potential, eutrophication potential, and sludge production of wastewater treatment plants in Japan. *J. Sustainable Energy Environ, 4*(1), 33-40.
- 1210 State Oceanic Administration. (2018). 2017 National seawater use report.

- State of Green. (2020). From Wastewater Plant to Power Plant. Retrieved from https://stateofgreen.com/en/partners/aarhus-vand/solutions/marselisborg-wwtp-energy-neutral-water-management/
- Stokes, J., & Horvath, A. (2009). Energy and Air Emission Effects of Water Supply.

 Environmental science & technology, 43(8), 2680-2687. doi:10.1021/es801802h
- Stokes, J., & Horvath, A. (2011). Life-cycle assessment of urban water provision: Tool and case study in California. *J. Infrastruct. Syst., 17*(1), 15-24.
- Suez. (2020). Harnessing the energy out of water and waste. Retrieved from

 https://www.suez.com/en/who-we-are/innovating-for-the-future/exploit-the-energy-of-water-and-waste
- Sun, S., Bao, Z., Li, R., Sun, D., Geng, H., Huang, X., . . . Zhao, X. (2017). Reduction and prediction of N2O emission from an Anoxic/Oxic wastewater treatment plant upon DO control and model simulation. *Bioresource technology, 244*, 800-809. doi:https://doi.org/10.1016/j.biortech.2017.08.054
- Sun, S., Cheng, X., Li, S., Qi, F., Liu, Y., & Sun, D. (2013). N2O emission from full-scale urban wastewater treatment plants: a comparison between A2O and SBR. *Water Science and Technology, 67*(9), 1887-1893.
- Sun, Y., Chen, Z., Wu, G., Wu, Q., Zhang, F., Niu, Z., & Hu, H.-Y. (2016). Characteristics of water quality of municipal wastewater treatment plants in China: implications for resources utilization and management. *Journal of Cleaner Production, 131*, 1-9. doi: https://doi.org/10.1016/j.jclepro.2016.05.068
- Sweetapple, C., Fu, G., & Butler, D. (2013). Identifying key sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment. *Water research*, 47(13), 4652-4665. doi:https://doi.org/10.1016/j.watres.2013.05.021
 - Tong, K., Fang, A., Boyer, D., Hu, Y., Cui, S., Shi, L., . . . Ramaswami, A. (2016).

 Greenhouse gas emissions from key infrastructure sectors in larger and smaller Chinese cities: method development and benchmarking. *Carbon Management*, 7(1-2), 27-39. doi:10.1080/17583004.2016.1165354
- United Nations. (2015). Sustainable Development Goals. Retrieved from
 http://www.un.org/sustainabledevelopment/sustainable-development-goals/
 - United Nations. (2017). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables (Working Paper No. ESA/P/WP/248). Retrieved from
- US EPA. (2012). Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990 2030.
 Retrieved from Washington DC:
- https://19january2017snapshot.epa.gov/sites/production/files/2016-08/documents/epa_global_nonco2_projections_dec2012.pdf

1236

1237

1238

1241

1242

1247 Venkatesh, G., & Brattebø, H. (2011). Energy consumption, costs and environmental 1248 impacts for urban water cycle services: Case study of Oslo (Norway). *Energy*, 1249 36(2), 792-800.

- Venkatesh, G., & Brattebø, H. (2012). Assessment of environmental impacts of an aging and stagnating water supply pipeline network. *Journal of Industrial Ecology, 16*(5), 722-734.
- 1253 Venkatesh, G., Brattebø, H., Sægrov, S., Behzadian, K., & Kapelan, Z. (2017). Metabolism-1254 modelling approaches to long-term sustainability assessment of urban water 1255 services. *Urban Water Journal*, *14*(1), 11-22.
- 1256 Venkatesh, G., Chan, A., & Brattebø, H. (2014). Understanding the water-energy-carbon 1257 nexus in urban water utilities: Comparison of four city case studies and the 1258 relevant influencing factors. *Energy*, 75, 153-166.
- Venkatesh, G., Hammervold, J., & Brattebø, H. (2009). Combined MFA-LCA for Analysis of Wastewater Pipeline Networks. *Journal of Industrial Ecology, 13*(4), 532-550.
- Vieira, A. S., Beal, C. D., Ghisi, E., & Stewart, R. A. (2014). Energy intensity of rainwater harvesting systems: A review. *Renewable and Sustainable Energy Reviews, 34*, 225-242. doi:http://dx.doi.org/10.1016/j.rser.2014.03.012
- Wakeel, M., Chen, B., Hayat, T., Alsaedi, A., & Ahmad, B. (2016). Energy consumption for water use cycles in different countries: A review. *Applied Energy*, *178*, 868–885.
- Wang, H., Mei, C., Liu, J., & Shao, W. (2018). A new strategy for integrated urban water management in China: Sponge city. *Science China Technological Sciences, 61*(3), 317-329. doi:10.1007/s11431-017-9170-5
- Wang, J., Chen, N., Yan, W., Wang, B., & Yang, L. (2015). Effect of dissolved oxygen and nitrogen on emission of N2O from rivers in China. *Atmospheric Environment, 103*, 347-356. doi:10.1016/j.atmosenv.2014.12.054
- Wang, J., Rothausen, S. G. A., Conway, D., Zhang, L., Xiong, W., Holman, I. P., & Li, Y.
 (2012). China's water—energy nexus: greenhouse-gas emissions from
 groundwater use for agriculture. *Environmental Research Letters*, 7(1), 014035.
- Wang, J., Zhang, J., Xie, H., Qi, P., Ren, Y., & Hu, Z. (2011). Methane emissions from a full-scale A/A/O wastewater treatment plant. *Bioresource technology*, *102*(9), 5479-5485.
- Wang, S., Zhao, J., & Huang, T. (2019). High NO and N2O accumulation during nitrite
 denitrification in lab-scale sequencing batch reactor: influencing factors and
 mechanism. Environmental Science and Pollution Research, 26(33), 34377-34387.
 doi:10.1007/s11356-019-06391-5
- Wang, T., Shi, F., Zhang, Q., Qian, X., & Hashimoto, S. (2018). Exploring material stock
 efficiency of municipal water and sewage infrastructures in China. *Journal of Cleaner Production*, 181, 498-507.
 doi:https://doi.org/10.1016/j.jclepro.2018.01.253
- Wang, X.-R., Hui, E. C.-M., Choguill, C., & Jia, S.-H. (2015). The new urbanization policy in China: Which way forward? *Habitat International, 47*, 279-284.
- Wang, X., He, Y., Chen, H., Yuan, X., Peng, C., Yue, J., . . . Zhou, L. (2018). CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed

- urbanization impacts and environmental controls. *Science of the total* environment, 622-623, 1079-1089.
- doi:https://doi.org/10.1016/j.scitotenv.2017.12.054
- Wang, Y., Lin, X., Zhou, D., Ye, L., Han, H., & Song, C. (2016). Nitric oxide and nitrous
 oxide emissions from a full-scale activated sludge anaerobic/anoxic/oxic process.
 Chemical Engineering Journal, 289, 330-340.
 doi:https://doi.org/10.1016/j.cej.2015.12.074
- Wei, L., Zhu, F., Li, Q., Xue, C., Xia, X., Yu, H., . . . Bai, S. (2020). Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivalent emissions analysis. *Environment International, 144*, 1300 106093. doi:https://doi.org/10.1016/j.envint.2020.106093
- WRI, & WBCSD. (2004). The Greenhouse Gas Protocol: A Corporate Accounting and
 Reporting Standard. Washington, DC, USA: World Resources Institute and World
 Business Council for Sustainable Development.
- Wu, L., Mao, X. Q., & Zeng, A. (2015). Carbon footprint accounting in support of city
 water supply infrastructure siting decision making: a case study in Ningbo, China.
 Journal of Cleaner Production, 103, 737-746. doi:10.1016/j.jclepro.2015.01.060
- 1307 Xu, C., Chen, W., & Hong, J. (2014). Life-cycle environmental and economic assessment 1308 of sewage sludge treatment in China. *Journal of Cleaner Production, 67*, 79-87.
- Xu, Q., Chen, Q., Ma, J., Blanckaert, K., & Wan, Z. (2014). Water Saving and Energy
 Reduction through Pressure Management in Urban Water Distribution Networks.
 Water Resources Management, 28(11), 3715-3726. doi:10.1007/s11269-014-0704-1
- Xu, Z., Chau, S. N., Chen, X., Zhang, J., Li, Y., Dietz, T., . . . Liu, J. (2020). Assessing progress
 towards sustainable development over space and time. *Nature*, *577*(7788), 74-78.
 doi:10.1038/s41586-019-1846-3
- Yan, X., Li, L., & Liu, J. (2014). Characteristics of greenhouse gas emission in three fullscale wastewater treatment processes. *Journal of Environmental Sciences*, 26(2), 256-263.
- Yang, G., Zhang, G., & Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. *Water Research*, 78, 60-73. doi:http://dx.doi.org/10.1016/j.watres.2015.04.002
- Ye, B., Wang, W., Yang, L., Wei, J., & E, X. (2009). Factors influencing disinfection byproducts formation in drinking water of six cities in China. *Journal of Hazardous Materials*, 171(1–3), 147-152. doi:http://dx.doi.org/10.1016/j.jhazmat.2009.05.117
- Yuan, R., Behrens, P., Tukker, A., & Rodrigues, J. F. (2018). Carbon overhead: The impact of the expansion in low-carbon electricity in China 2015–2040. *Energy Policy, 119*, 97-104.

- Zeng, S. Y., Chen, X., Dong, X., & Liu, Y. (2017). Efficiency assessment of urban
 wastewater treatment plants in China: Considering greenhouse gas emissions.
 Resources Conservation and Recycling, 120, 157-165.
 doi:10.1016/j.resconrec.2016.12.005
- Zhang, B., Ariaratnam, S. T., Huang, Y., & Zhang, C. (2014). Method for Estimating and
 Predicting CO2e Emissions: Case Study of an Urban Wastewater System in
 Suzhou, China. *Journal of Architectural Engineering*, A4014003.
- Zhang, B., Chen, Z. M., Qiao, H., Chen, B., Hayat, T., & Alsaedi, A. (2015). China's non CO2 greenhouse gas emissions: Inventory and input—output analysis. *Ecological Informatics*, 26, 101-110. doi:https://doi.org/10.1016/j.ecoinf.2014.01.009
- Zhang, K. H., & Song, S. (2003). Rural–urban migration and urbanization in China:
 Evidence from time-series and cross-section analyses. *China Economic Review*,
 1341
 14(4), 386-400.
- Zhang, L., Xie, L., Chen, H.-L., & Gao, C.-J. (2005). Progress and prospects of seawater
 desalination in China. *Desalination*, 182(1), 13-18.
 doi:http://dx.doi.org/10.1016/j.desal.2005.03.005
- Zhang, Q., Liu, S., Wang, T., Dai, X., Baninla, Y., Nakatani, J., & Moriguchi, Y. (2019).
 Urbanization impacts on greenhouse gas (GHG) emissions of the water
 infrastructure in China: Trade-offs among sustainable development goals (SDGs).
 Journal of Cleaner Production, 232, 474-486.
 doi:https://doi.org/10.1016/j.jclepro.2019.05.333
- Zhang, Q., Nakatani, J., Wang, T., Chai, C., & Moriguchi, Y. (2017). Hidden greenhouse
 gas emissions for water utilities in China's cities. *Journal of Cleaner Production*,
 162, 665-677. doi:10.1016/j.jclepro.2017.06.042
- Zhang, Q. H., Wang, X. C., Xiong, J. Q., Chen, R., & Cao, B. (2010). Application of life cycle
 assessment for an evaluation of wastewater treatment and reuse project Case
 study of Xi'an, China. *Bioresource technology*, 101(5), 1421-1425.
- Zhang, Q. H., Yang, W. N., Ngo, H. H., Guo, W. S., Jin, P. K., Dzakpasu, M., . . . Ao, D.
 (2016). Current status of urban wastewater treatment plants in China.
 Environment International, 92, 11-22.
- Zhang, X., Qi, Y., Wang, Y., Wu, J., Lin, L., Peng, H., . . . Zhang, Y. (2016). Effect of the tap
 water supply system on China's economy and energy consumption, and its
 emissions' impact. Renewable and Sustainable Energy Reviews, 64, 660-671.
 doi:http://dx.doi.org/10.1016/j.rser.2016.06.067
- Zhao, S., Liu, Y., Liang, S., Wang, C., Smith, K., Jia, N., & Arora, M. (2020). Effects of urban forms on energy consumption of water supply in China. *Journal of Cleaner Production*, 253, 119960. doi:https://doi.org/10.1016/j.jclepro.2020.119960
- Zhao, X., Jin, X. K., Guo, W., Zhang, C., Shan, Y. L., Du, M. X., . . . Li, Y. P. (2019). China's
 Urban Methane Emissions From Municipal Wastewater Treatment Plant. *Earth's* Future, 7(4), 480-490. doi:10.1029/2018ef001113

1369	Zheng, X., Lu, Y., Yuan, J., Baninla, Y., Zhang, S., Stenseth, N. C., Chen, D. (2020).
1370	Drivers of change in China's energy-related CO ₂ emissions. <i>Proceedings of the</i>
1371	National Academy of Sciences, 117(1), 29-36. doi:10.1073/pnas.1908513117
1372	Zhou, Q., Leng, G., & Huang, M. (2018). Impacts of future climate change on urban flood
1373	volumes in Hohhot in northern China: benefits of climate change mitigation and
1374	adaptations. Hydrol. Earth Syst. Sci., 22(1), 305-316. doi:10.5194/hess-22-305-
1375	2018
1376	Zhou, Y., Zhang, B., Wang, H., & Bi, J. (2013). Drops of Energy: Conserving Urban Water
1377	to Reduce Greenhouse Gas Emissions. Environmental science & technology,
1378	<i>47</i> (19), 10753-10761. doi:10.1021/es304816h
1379	Zhu, Z., & Dou, J. (2018). Current status of reclaimed water in China: an overview.
1380	Journal of Water Reuse and Desalination, 8(3), 293-307.
1381	doi:10.2166/wrd.2018.070
1382	Zodrow, K. R., Li, Q., Buono, R. M., Chen, W., Daigger, G., Dueñas-Osorio, L., Alvarez,
1383	P. J. J. (2017). Advanced Materials, Technologies, and Complex Systems Analyses:
1384	Emerging Opportunities to Enhance Urban Water Security. Environmental science
1385	& technology, 51(18), 10274-10281. doi:10.1021/acs.est.7b01679
1386	