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Preface to the English edition
It is well known that multi-electron Schrödinger equation can give only approximate 
solutions. Empirical and semi-empirical methods used to find them are not accu-
rate and hence they describe the properties and behavior of chemical elements only 
approximately. The author of this book applied group-theoretical approach, which 
proved to be effective in building the system of hadrons, to describe qualitatively the 
properties of chemical compounds which cannot be derived from the equations. This 
is the main result of his work.

This book is useful in yet another respect. It makes the theory accessible to 
the reading audience with a general chemical background. The author starts with 
common, familiar subjects and introduces further the ideas of the physics of symme-
try as naturally as possible, so that its origin and meaning can be understood without 
profound background in mathematical apparatus of quantum physics.

This book is in no way purely theoretical. Rather, it has strong connections with 
experimentally measured properties of chemical elements and their compounds. To 
compare the theory with experiments, the author considered the properties of ele-
ments that are associated with their chemical behavior: ionization potentials, atomic 
volumes, enthalpies of formation of the elements, polarizability of the atoms, their 
boiling and melting points, enthalpy of vaporization, electron affinity, energies of 
ionic lattices, and bonding energies of diatomic molecules and some lanthanide com-
pounds.

The obtained confirmations of the theory suggested that it would be useful to 
understand the properties of chemical compounds. These hopes largely justified. This 
book can be regarded a generalization of the ideas presented in the existing literature 
on this subject.

I express my deep gratitude to my colleagues from different countries whose 
judgements strengthened my intention to publish the book in English.

Rem Khlebopros





Introduction
This book presents a group description of chemical elements considered as states of 
a quantum system. Atoms of different elements are viewed as elements of a vector 
space associated with an irreducible unitary representation of some symmetry group. 
The elements of the group are carried into each other by operators defined on this 
group. This approach fundamentally differs from the traditional application of group 
theory to atomic physics, where a symmetry group is used to carry into each other dif-
ferent excited states of the same atom. Besides, we describe heavy particles (hadrons) 
as representations of unitary groups. This approach follows the model proposed inde-
pendently by Gell-Mann and Néeman and developed later in the works of Okubo, 
Gürsey and Radicati, Pais and other authors.

The book “Unitary symmetry theory” by Yu. Rumer and A. Fet was published in 
1970, in which these ideas were discussed systematically. While working on the book, 
Rumer had an idea to apply the same approach to the system of chemical elements. 
After getting over some difficulties, we laid down a group systematization of elements 
in our joint work (Rumer and Fet, 1971). Already in this article, we emphasized that the 
approach implies considering symmetry as related to the atom as a whole rather than 
to its electron shells only. As a group symmetry, we chose a two-dimensional covering 
group of SO(4) group. In 1972, B. Konopel’chenko extended the symmetry group up 
to the conformal group (Rumer and Fet, 1971). Barut (1972) and Barrondo and Novaro 
(1972) independently described the symmetry from the viewpoint of electron shells.

Apparently, this clear differentiation between the symmetry of the elements 
and the traditional shell model helped us to achieve a clearer understanding of the 
obtained classification. In particular, I suggested a group description of chemical 
affinity in Fet (1974, 1975), and a mass formula for atoms in Fet (1979a, 1981). While 
refining the classification, we noticed, apparently for the first time, that the proper-
ties of elements change with some regularity. In particular, each p-, d-, and f-family 
is distinctly divided into two subfamilies where the properties of the elements change 
by different laws. The results were compared with experimental data by Byakov et al. 
(1976) and later, with additional material, by Sorokin.

Discussions of the method in scientific articles usually imply a sufficient knowl-
edge of Lee groups. However, physicists and chemists usually meet in practice only 
representations of the three-dimensional rotation group, as it was elaborated by 
Wigner and Weil in the late 1920s. That is why I wanted to write a book that will be 
useful for this broad audience rather for a narrow circle of theorists. The work met 
serious difficulties since the available literature on Lee groups did not provide easy 
understanding of the ideas of symmetry which have acquired much importance in the 
Physics these last decades. What we have in this area are either systematic treatises 
for expert mathematicians or manuals for physicists which imitate these treatises or 
offer a number of separate applications to special cases. Therefore, I tried to state 
the main concepts of group theory and Lee algebras briefly, and only as far as it is  
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necessary to understand the symmetry of particles assuming that the reader has 
physical or chemical education and some basic knowledge of quantum mechanics. 
Group theory is explained from the very beginning, starting from the definition of a 
group. However, it would be desirable for the reader to have some preliminary idea 
of using rotation group for classification of atomic and molecular energy spectra. 
Group methods are introduced as necessary and are always illustrated by physical 
examples. Especially, the physical background of spin and unitary spin is discussed 
in detail. Therefore, the presentation of the material is “genetic” and inductive rather 
than deductive, that is, the main attention is paid to the origin and meaning of the 
concepts rather to the formal exactness of the constructions. In particular, mathemat-
ical rigor, though followed when possible, is not an end in itself. We cite only those 
theorems which are constantly used further, their meaning is discussed in detail but 
the proofs are usually omitted as well as cumbersome calculations which are cited, 
when necessary, in the Appendices.

First chapter of this book is an introduction to quantum chemical group methods 
and starts with the traditional applications of the rotation group to the hydrogen 
atom. Then a classical, though not broadly known, work of Vladimir Fock (1935) is 
discussed to demonstrate how hydrogen energy spectrum can be obtained from a 
four-dimensional rotation group. Since the work is very brief and not readily available 
nowadays, its most important part is considered in detail in Appendix A.

Second chapter shows how the observables of a quantum system can be obtained 
from its symmetry group. Thereby, symmetry groups are considered from the view-
point of modern physics which implies that a quantum system is defined by the rep-
resentation of a symmetry group. In particular, we discuss the relation between the 
Hamiltonian of the system and Casimir operators of its symmetry group.

Third chapter introduces the main ideas of Lee groups and algebras using phys-
ical background of the first two chapters. Each concept is illustrated with examples 
and is justified by detailed explanations.

Fourth chapter introduces the concepts of spin and isotopic spin, and explains 
the ideas of unitary symmetry. The discussion here, similar to the other chapters, 
implies the knowledge of simplest quantum mechanical concepts than some special 
literature. The concluding part of the chapter presents the main principles of classi-
fying particles (or states) in a quantum theory and, I believe, contains some novelty 
when introducing a common principle of identifying similar particles in the multip-
lets of a symmetry group.

Chapters five and six present the main content of the book. They introduce the 
symmetry of the system of chemical elements illustrated by tables and graphs to 
compare the theory with experimental data.

I am very grateful to S. Prishchepionok who greatly contributed to improve the 
algebraic part of the book, and to N. Sorokin who did much work with the experi-
mental material. In particular, Sorokin noticed that the suggested group classification 
provides good description of those properties which are associated with chemical 
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reactivity. Lately, this viewpoint was confirmed by Zhuvikin and Hefferlin (1983) who 
used our group method to explain regularities in the properties of diatomic molecules 
systematically studied by R. Hefferlin et al. (1979), Hefferlin and Kuhlman (1980), and 
Refferlin and Kutzner (1981). Unfortunately, I learned about these results after the 
book had been finished, and so the material was not included in this book.

January 9, 1984
Abram Fet





1 Symmetries of a quantum system

1.1 Rotation group in quantum mechanics

The motion of a particle is described in quantum mechanics by a function ψ x y z( , , ) of 
coordinates x, y, z and time t, which is called a wave function of the particle. Function 
ψ takes on complex values. In this chapter, we do not consider the spin of the particle 
and the change of its state with time; hence, ψ is a one-component function and its 
dependence on t is not indicated.

Mathematical apparatus of quantum mechanics does not allow a unique corre-
spondence between a particle’s state and some definite wave function: function ψ 
is defined for the given state with an accuracy up to a nonzero imaginary factor λ, 
so that ψ and λψ represent the same state of the particle. The zero function (ψ ≡ 0) 
images no state. The wave function has a “probabilistic interpretation”: the proba-
bility to find a particle in the domain D is proportional to the integral of ψ 2 over the 
domain D. Since for the whole space the probability is unity, all possible states of the 
particle are supposed to be defined by nonzero quadratically integrable functions:

∫ ψ x y z d x( , , ) < ∞,
2 3� (1.1)

where d x dxdydz=3 , the integration is taken over the whole space, and every nonzero 
function satisfying eq. (1.1) defines the possible state of a particle. If we “normalize” ψ 
(by multiplying it with an appropriate factor) so that the integral (1.1) becomes equal to 
1, the arbitrariness in the description is reduced to the phase factor eiφ, where φ is real 
and does not depend on the coordinates. The phase factor does not change the meaning 
of ψ, since all numerical values derived from the quantum theory do not depend on it. 
For the normalized wave function ψ, the probability of finding the particle in D is

∫ ψ x y z d x( , , )
D

2 3� (1.2)

It can be shown that all quadratically integrable ψ functions constitute a linear space, 
that is, the sum and any complex multiple of such functions are also quadratically 
integrable. By analogy with the vectors of elementary geometry, objects that can be 
summed up and multiplied by a number are often referred to as vectors; therefore, 
ψ function is often called a state vector of the particle, and the linear space of all 
wave functions is called a vector space. Since linear combinations of wave functions 
are also wave functions (if they are not zero), the linear space of wave functions is 
equivalent to the so-called “principle of superposition”, stating that a superposition 
of physically possible states is again a physically possible state of a quantum system.1

1 As we will see, this principle has some restrictions in more complex cases.
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We assume in this chapter that the particle is not free and is placed in the electro-
magnetic field to act on its charge e. In this case, the quantum system is a particle in 
the field (e.g. classically defined as a central electrostatic field) rather than a particle 
per se. External factors (e.g. a photon absorption or emission, which is not described 
by the quantum mechanics of a single particle) can transform the system from state ψ 
into state φ. The probability of such transition is ψ φ 2, where

∫ψ φ ψ x y z φ x y z d x= ( , , ) ( , , ) 3∗� (1.3)

This expression is called the scalar product of the wave functions ψ and φ; we can 
show that the integral (1.3) is always finite. The scalar product (1.3) is positive definite, 
that is, ψ φ > 0 when ψ ≠ 0. A vector space with a positive definite scalar product is 
called a Hilbert space; so the set of all wave functions constitutes a Hilbert space. The 
norm of function ψ is defined as the square root of the integral (1.1). The norm is used 
to define the convergence of series: a series … …ψ ψ ψ+ + + +n1 2  is said to converge to 
ψ0, if the norm ψ s− n0  of its partial sum …s ψ ψ= + +n n1  tends to zero.

Suppose now that the whole quantum system (a particle in the field) rotates about 
the coordinate origin. Let ψ x y z( , , ) describes the initial state of the system and ψ x y z( , , )′  
describes its rotated state. Since the space is isotropic (all directions are equal), we 
assume that functions ψ and ψ′ describe physically equivalent situations. Consider, for 
example, the region D in the proximity of point (x, y, z) with the volume d x3 . The prob-
ability to find the particle in the initial state of the system in this area is ψ x y z d x( , , ) 2 3 . 
If the rotation О carries point (x, y, z) into (x′, y′, z′), and area D into D′ with the volume 
d3x′, the probability to find the particle in the rotated state in D′ is ψ x y z d x( , , )′ ′ ′ ′ ′2 3 . 
Sine the situations are equivalent, the following probabilities coincide:

ψ x y z d x ψ x y z d x( , , ) = ( , , )′ ′ ′ ′ ′2 3 2 3� (1.4)

Since d x d x= ′3 3 , we have

ψ x y z ψ x y z( , , ) = ( , , )′ ′ ′ ′� (1.5)

The simplest way to satisfy eq. (1.5) is to assume

ψ x y z ψ x y z( , , ) = ( , , )′ ′ ′ ′� (1.6)

There is also another argument in favor of eq. (1.6). Transition probabilities ψ φ→  (in 
the initial state) and ψ φ→′ ′ (in the rotated state) should also be considered. There-
fore, for any ψ, φ,

∗ ∗∫ ∫ψ φ ψ x y z φ x y z d x ψ x y z φ x y z d x ψ φ= ( , , ) ( , , ) = ( , , ) ( , , ) =″′ ′ ′ ′ ′ ′ ′ ′′2 3
2

3
2

2� (1.7)

From eq. (1.7), it can be mathematically deduced that ψ x y z e ψ x y z( , , ) = ( , , )′ ′ ′ ′ iφ  where 
the phase factor may depend on ψ, but not on the coordinates. Again, the easiest way 
to satisfy this requirement is to assume eq. (1.6), that is, that all phase factors are 
equal to 1.
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Equation (1.6) is a general law to describe the rotations of wave functions.
We have deduced the law (eq. 1.6) to describe different states of a quantum system 

(before and after the rotation) using the same system of coordinates (x, y, z) for the 
wave functions of the initial state ψ x y z( , , ) and the rotated state ψ x y z( , , )′ . This is an 
active approach interpreting x′, y′, z′ as the coordinates of another point in the same 
coordinate system.

There is another interpretation of eq. (1.6), which states that ψ x y z( , , ) and 
ψ x y z( , , )′ ′ ′ ′  specify the same state of a quantum system in different coordinate 
systems. Since observations in these coordinate systems should identically describe 
experimental facts (e.g. the probability to find a particle in some region or the prob-
ability of some transition), the same quantum-mechanical procedure should derive 
the same values of observables from the wave functions. This leads to eqs. (1.4) and 
(1.7) and, consequently, to eq. (1.6). In many physical problems, this approach which 
is equivalent to the previous one is called “passive.” However, in more complex situa-
tions, where state vectors describe “internal degrees of freedom” of the system rather 
than its space-time properties, we can no longer address the “reference system” or the 
“observer.” Since we are interested exactly in such situations, we will usually use the  
active viewpoint; that is, assume that the method of mathematical description of  
the states is fixed, and the states of the system are transformed.

Rotation О is given by a linear homogeneous coordinate transform with orthogo-
nal matrix O o= ( )ij :

x o x o y o z
y o x o y o z
z o x o y o z

= + +
= + +
= + +

′
′
′

11 12 13

21 22 23

31 32 33

� (1.8)

Designate point (x, y, z) as x and point (x′, y′, z′) as x′. Then the rotation is written as 
x Ox=′ , and eq. (1.6) as ψ Ox ψ x( ) = ( )′ . To express ψ′ directly through x, y, z, apply the 
reverse rotation O−1 and replace х in eq. (1.8) by O x−1 :

ψ x ψ O x( ) = ( )′ −1� (1.9)

or, expressing coordinates O x−1  in terms of x using the orthogonal rotation matrix 
O o= ( )ij

−1 −1 , obtain the same as

ψ x y z ψ o x o y o z o x o y o z o x o y o z( , , ) = ( + + , + + , + + )′ 11
−1

12
−1

13
−1

21
−1

22
−1

23
−1

31
−1

32
−1

33
−1� (1.10)

Therefore, each rotation О is related to some transform of wavefunctions (eq. 1.9) or, 
in other words, to some operator TO which acts on ψ functions:

ψ T ψ=′ O� (1.11)

Operator ТО is said to represent rotation О in the space of wavefunctions R.
The most important property of representing operators is that they, like rotations, 

constitute a group. To remind the definition of the group, it is a set of elements G 
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satisfying the following conditions: there is a multiplication operation g1g2 defined on 
G and γ the association law (g1g2)g3 = g1(g2g3), and there is an unit element е such that 
ge = eg = g for any g from G, and for each g, there is an inverse element g−1 such that 
gg−1 = g−1g = e.

Transformation or operator groups are often considered as acting in some space, 
and the multiplication of operators is defined as their sequential action: Т1Т2 desig-
nates the operator obtained as the result of the operator Т2 and then operator Т1, so

T a b Tb c T a cТ = Т Т means that if = , = ,  then =3 1 2 2 1 3� (1.12)

Associative law for multiplication of operators is satisfied automatically, since the 
action of Т3 followed by Т1Т2 means the same as the action of Т2Т3 followed by Т1 (in 
both cases, we need only to apply Т3, Т2, and Т1 in the specified order). The identity 
operator does not change the points of space. Designating the operator as 1, obtain 
1(а) = а. Evidently, T T T⋅ 1 = 1 ⋅ = . The inverse operator Т−1 acts inversely to Т:

Ta b T b aif = , then =−1� (1.13)

Therefore, to verify if some operators constitute a group, we need to check if the 
product of such operators is the operator of the same kind, and that each of them has 
the inverse operator of the same kind.

Consider from this viewpoint rotations of the three-dimensional space O and the 
operators of rotation ТО. Evidently, successive rotations – that is, distance preserving 
transforms of the three-dimensional space – are again a transform of the same kind. 
Multiplication of rotations is associated with multiplication of matrixes (оij) to rep-
resent them in the given coordinate system. The unity rotation is imaged by the iden-
tity transformation with the identity matrix. Finally, each rotation O has the inverse 
rotation O−1 with the inverse matrix. Therefore, rotations of the three-dimensional 
space constitute a group (denoted by O(3)). We are interested in a smaller group or 
a subgroup of О(3) consisting of proper rotations, that is, those which do not change 
the orientation of the space (the determinant of their matrices is +1). The group of 
proper rotations of the three-dimensional space is denoted as SО(3).2 Henceforth, 
when talking about rotations, we mean proper rotations only.

Let О1,О2 be rotations and О3 = О1О2. Accomplish successively operators T T and O O2 1
 

(eq. (1.9)):

″ ″T ψ ψ ψ x ψ O x T ψ ψ ψ x ψ O x= , where  ( ) = ( ), = , where  ( ) = ( )′ ′ ′ ′O O2
−1

1
−1

2 1
� (1.14)

Substituting O x1
−1  instead of х in the definition of ψ′, obtain

ψ O x ψ O O x ψ O O x ψ O O x( ) = ( ( )) = ( ) = (( ) ),′ 1
−1

2
−1

1
−1

2
−1

1
−1

1 2
−1

2 Spécial orthogonal.
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and from the definition of ψ″

″ψ x ψ O x( ) = ( )3
−1� (1.15)

Equation (1.15) means that successive application of operators TO2
 and TO1

 to the func-
tion ψ″ is equivalent to a single application of operator TO3

; in other words,

T T T=O O O O1 2 1 2
� (1.16)

Thus, representing operators of rotations are multiplied in the same order as the rota-
tions. At the same time, it was found that the product of operators is again a rotation 
operator. Substituting this in eq. (1.16), O1

−1 instead of О2, obtain T T = 1O O−1 . Therefore, 
TO−1 is inverse to TO:

T T= ( )O O
−1−1� (1.17)

Thus, the inverse operator of rotation is again the operator of rotation, and all such 
operators TO constitute a group. If, in general, the elements of some group g are asso-
ciated with operators Tg acting in some space, so that

T T T T= , = 1,g g g g e1 2 1 2
� (1.18)

then we say that a representation of group G is defined in this space. Representation 
is a method to image a group by the group of operators. When different elements g 
correspond to different operators Tg, the representation is faithful. In this case, the 
group of operators is isomorphic to the initial group, that is, the replacement of g by Tg 
changes only the type of elements rather than the algebraic multiplication law. It can 
be shown that the representation of the rotation group {TO} is faithful.

As we will show, operators TO are linear. In general, linear operators T are those 
which carry a sum into a sum and a multiple into a multiple:

T ψ ψ Tψ Tψ T λψ λTψ( + ) = + ,   ( ) =1 2 1 2� (1.19)

According to eq. (1.9), ψ Tψ=′1 1 is defined as ψ x ψ O x( ) = ( )′1 1
−1 , and, similarly, 

ψ x ψ O x( ) = ( )′2 2
−1 ; therefore, ψ x ψ x ψ O x ψ O x( ) + ( ) = ( ) + ( )′ ′1 2 1

−1
2

−1 ; the same is obtained if 
O x−1  is substituted in the sum ψ x ψ x( ) + ( )1 2  instead of x. So, T ψ T ψ T ψ ψ+ = ( + )O O O1 2 1 2 . The 
same is true for eq. (1.19).

Representation {Tg} of a group G is linear if operators Tg are linear and are defined 
on a vector space. Furthermore, when talking about representations, we always mean 
linear representations without mentioning their linearity.

Furthermore, operators TO are unitary. A linear operator T in a Hilbert space is 
unitary if it preserves scalar products:

Tψ Tφ ψ φ ψ φ= for all ,� (1.20)

In our case, taking ψ T ψ=′ O  and φ T φ=′ O , we obtain

∫ ∫ψ φ ψ x φ x d x ψ O x φ O x d x= ( ) ( ) = ( ) ( ) .′ ′ ′ ′ 3 −1 −1 3∗ ∗
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After changing the variables O x x= ′−1  and since the Jacobian dx
dx

= 1′ , we obtain

∗∫ ψ x φ x d x ψ φ( ) ( ) = ,′ ′ ′3

which was to be proved.
Representation {Tg} of a group G is unitary, if operators Tg are unitary and are 

defined in a Hilbert space. As we can see, our representation {TO} is unitary. We will 
discuss in detail the role of unitary representations in Physics.

The first application of group theory in quantum mechanics was associated with 
the calculation and studying of eigenfunctions of the energy operator Н. In the case 
of a general spherically symmetric potential of a charged particle, the Hamiltonian 
has the form

H
m

p V r= 1
2

+ ( ).2� (1.21)

This operator commutes with all operators of rotation TO,

T H HT= ,O O� (1.22)

that is, both products are identical; in other words, for any function ψ, action Н fol-
lowed by TO gives the same function as action TO followed by Н. Obviously, it will be 
sufficient to prove it for operators р2 and V. Let T ψ ψ= ′O . Then from eq. (1.10), we have

p ψ
i x

ψ
i

o
ψ
x

o
ψ
y

o
ψ
z

= ∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

,′ ′x 11
−1

21
−1

31
−1









� �� (1.23)

and similarly for рy and pz. As p p p p= + +x y z
2 2 2 2, matrix O−1 is orthogonal; reapply the 

momentum operators and easily obtain p ψ p ψ= ( )′ ′2 2 , where the prime on the right 
side means the substitution of arguments (1.10). Further, V r ψ x( ) ( )′  is obtained by mul-
tiplying V(r) by ψ O x( )−1 ; but, as the distance r does not change during the rotation, we 
obtain the same if O x−1  is substituted in V r ψ x( ) ( ) instead of х.

Let ψ be an eigenfunction of the energy operator, that is, Hψ Eψ= . In this case, all 
functions ψ T ψ=′ O  obtained from ψ by rotations are also eigenfunctions of H with the 
same eigenvalues E. This is to be expected from symmetry reasons since states ψ and ψ′ 
differ only in the spatial orientation of the quantum system, which cannot change the 
energy of the system in a spherically symmetric field. The formal verification is as follows:

Hψ HT ψ T Hψ T Eψ ET ψ Eψ= = = ( ) = =′ ′O O O O� (1.24)

Therefore, a group of transforms commuting with the energy operator makes it pos-
sible to obtain eigenfunctions …ψ T ψ ψ T ψ= , = ,O O1 0 2 01 2

 from a single eigenfunction 
ψ0; it can be proved that only a finite number of them are linearly independent.  
By choosing appropriate О1, О2, we can obtain eigenfunctions as the following linear 
combinations:



� 1.1 Rotation group in quantum mechanics   11

c ψ c ψ+ … + k k1 1� (1.25)

Therefore, the eigenvalue Е is k-fold degenerate, which can be revealed by “removing 
the degeneracy,” for example, by applying a magnetic field. A representation of the 
rotation group {TO} makes it possible to find from a single eigenfunction the basis of 
eigenfunctions …ψ ψ, , k1  with the same eigenvalue and to evaluate the multiplicity of 
the eigenvalue, which turns out to be not less than k.

Consider the concept of the invariant subspace of a representation. Let {Tg} be 
a representation of group G. If a subspace W of the representation space is such 
that for any vector φ from W, all vectors Tgφ also belong to W, then W is called an 
invariant subspace of representation {Tg}. In other words, the subspace is invariant 
if the representation operators act only inside it and thus define a “restricted” rep-
resentation of group G on the space W. As is seen from eq. (1.24), all eigenfunctions 
of energy operator (eq. 1.21) having the same eigenvalue Е constitute an invariant 
subspace of representation {TO} of the rotation group. It can be shown that such 
subspaces WE are finite, that is, all their vectors are expressed in terms of a finite 
basis.

Linear combinations (eq. 1.25) obtained from a single eigenfunction by rotation 
operators also constitute an invariant subspace:

� � �

�

T c ψ c ψ T c T ψ c T ψ c T T ψ c T T ψ

c T ψ c T ψ

( + + ) = ( + + ) = + +

= + +

O k k O O k O O O k O O

O O k O O

1 1 1 0 0 1 0 0

1 0 0

k k

k

1 1

1

� (1.26)

But T ψO O 0j
 are expressed in terms of ψ1,… ψк, which are the basis for all functions T ψO 0, 

so the right-hand side can be represented in the same form (eq. (1.25)). We denote this 
subspace ψ0

W . Evidently, ψ0
W  is a subset of WE.

In the general case, potential V(r) is of arbitrary form and the eigenspace WE con-
tains no smaller invariant subspace of representation {TO}; such invariant space is 
called irreducible. (Appendix B describes the structure of all irreducible subspaces 
of the rotation group.) If WE is irreducible, then ψ0

W  is also irreducible and =E ψ0
W W .  

Therefore, in the general case, eigenspaces of a spherically symmetric energy opera-
tor can be obtained simply by applying rotation operators TO to some eigenfunction 
and then by constructing linear combinations of these new eigenfunctions. From the 
dimension of space Wψ0

, we can estimate the “inevitable” degeneracy of the energy 
eigenvalue Е. In such important cases as, for example, the Coulomb potential, the 
space can be reducible, and its dimension exceeds the above estimation. Such degen-
eration is called “accidental degeneration.” For now, we leave aside “accidental 
degenerations” and consider only irreducible eigensubspaces of energy WE. We also 
assume that far from the germ, the Hamiltonian little differs from the Coulomb Ham-
iltonian, that is,

H H H H
m

p Ze
r

H V r= + , where = 1
2

− and = ( ),0 1 0
2

2

1� (1.27)
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where matrix elements of V(r) are small as compared to H0, and V(r) decreases quite 
rapidly at infinity. These conditions are true for the approximate model of a multi-
electron atom implying that the energy of a single electron is calculated, and all other 
electrons are replaced by a spherically symmetric charged layer which “screens” the 
nucleus.

We are interested only in the wave functions of bounded electron states, that is, the 
states where the electron is not removed to infinity. All such functions are expanded 
in terms of the eigenfunctions of the energy operator with negative eigenvalues.  
Furthermore, we will consider only such wavefunctions and denote their space R. 
Scattering problems of unbounded electrons are not considered in this book, and 
“wavefunctions” are assumed to describe bounded states only.

In the above conditions, we can build in space R a complete orthonormal basis of 
eigenfunctions of operator Н, as it is done in the textbooks on quantum mechanics,

ψ x y z f r Y υ φ( , , ) = ( ) ( , ),nlm n l
m� (1.28)

where the “principal quantum number” n takes values 1, 2,…; “azimuthal quantum 
number” l for a given n takes values 0, 1,…, п – 1; and “magnetic quantum number” 
т for a given l takes values …l l l l− , − + 1, , − 1, . “Radial functions” f r( )n  decrease 
exponentially when r → ∞, and Y υ φ( , )l

m  are spherical functions defined on the sphere 
S x y z( + + = 1)2 2 2 2 .

Eigenfunctions (eq. 1.28) are connected to eigenvalues Enl which depend on 
integer parameters n, l (but not on т). If there is no “accidental degeneracy,” all 
values Enl are different. Any wave function ψ is uniquely expanded into a series of 
eigenfunctions of Н:

∑ψ c ψ=
n l m

nlm nlm
, ,

� (1.29)

Combine the terms with the same values n and l and denote the obtained sums ψnl; 
then the wavefunction is expanded into the series

∑ψ ψ=
n l

nl
,

� (1.30)

with orthogonal terms, where ψnl are eigenfunctions of Н connected to eigenvalues Enl,  
that is, they belong to the eigensubpace Enl

W . Therefore, eq. (1.30) defines the expan-
sion of the space of all wave functions R into the orthogonal sum of irreducible invari-
ant subspaces of SO(3) group (denoted, for brevity, Rnl):

R R⊕= .nl� (1.31)

Basis Rnl consists of functions (eq. 1.28) with fixed п, l, and variable т. Rotation 
TO does not change factor  fn(r) and, as can be shown, carries spherical function 
Y l

m( ) into a linear combination of spherical functions with the same n, l, and 
…m l l l l= − , − + 1, , − 1, .
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If H is a Coulomb potential (Н = Н0), eigenvalues Enl do not depend on l (and are 
denoted as En). Combining in eq. (1.29) all terms with the same п and denoting WEn

 as 
Rn, obtain the orthogonal decomposition

∑ψ ψ=
n

n
=1

∞

� (1.32)

and

⊕ ⊕ ⊕ ⊕= n1 2R R R R� �� (1.33)

l = 0

n = 1 n = 2 n = 3 n = 4

m = 0

ψ4,1,–1

ψ3,2,0

m = 0

m = 1

m = 0

m = 1

m = 2

m = –1

m = –1

m = –2

m = 0

m = 1

m = 2

m = 3

m = –1

m = –2

m = –3

l = 1

l = 2

l = 3

Table 1.1: Expansion of R into irreducible subspaces. 
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Invariant subspace Rnl has a basis consisting of eigenfunctions (eq. 1.28) with 
m l l l l= − , − + 1, ..., − 1, ; hence, its dimension is 2l + 1. Invariant subspace

⊕ ⊕=n no n n, −1R R R�� (1.34)

has a basis constituted by bases of all ψnlm with given n; its dimension is

∑ l n(2 + 1) =
l

n

=0

−1
2� (1.35)

Expansion (1.34) is possible also in the case of a general potential V(r), but func-
tions Rn will not be eigenfunctions of H; rather, they will be linear combinations of 
eigenfunctions having the same radial function fn(r). Since all terms in eq. (1.34) are 
invariant subspaces, the sum of their Rn is also an invariant subspace though not an 
eigensubpace of Н.

Expansion of R into irreducible subspaces is conveniently represented by the 
following table, where the cells correspond to the basis functions ψnlm (Fig. 1.1). Rect-
angles of Table 1.1 depict irreducible subspaces Rnl of SO(3) group. Basis vectors corre-
sponding to cells of the same rectangle are “connected” by representation operators 
{TO} in the sense that each of them can be obtained from any other by operators TOi

 and 
linear combinations (see eq. (1.25)). Vertical columns represent invariant spaces Rn. 
Rotation operators TO connect neither different rectangles nor different columns, but 
“work” inside the rectangles. To connect all cells of Table 1.1, we need to extend SО(3) 
group, which will be done later. The representation of the extended group will have 
enough operators to achieve this goal and will be irreducible on the whole space of 
wavefunctions R.

1.2 Electron in the Coulomb field

Now consider in detail the electron in a Coulomb field. If the charge of the nucleus 
is Z e , eigenfunctions and eigenvalues of the energy operator Н0 are defined by the 
equation

m
ψ Ze

r
ψ Eψ−

2
Δ − = .

2 2�� (1.36)

Eigenvalues Н0 depend only on the principal quantum number п and are written as

E Z me
n

= −
2

1
n

2 4

2 2�
� (1.37)

As mentioned in Section 1.1, eigenfunctions ψnlm belong to En and form a n2-
dimensional space Rn which decomposes into the orthogonal sum of subspaces Rnl 
( …l n= 0, 1, , − 1) with dimensions 1, 3, 5,…, 2n − 1 (see eq. (1.33)). Each space 

nlR  is irreducible for the rotation group, but Rn are reducible (for n > 1). Therefore, 
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the order of eigenvalue Еn cannot be explained by the spherical symmetry of the 
Hamiltonian in contrast to the case of the general potential V(r) when the eigen-
values …E l n( = 0, 1, , − 1)nl  do not coincide and their multiplicities are the dimen-
sions  of the corresponding representations of SO(3). This, so-called “accidental 
degeneracy” was explained in 1935 for the Coulomb potential by V.A. Fock with 
the help of a group theoretical approach (Fock, 1935, 1936). Fock’s work, born far 
before its time, is not enough known and is currently hardly accessible. A part of it, 
which we will need, is discussed in detail in Appendix A, and here we present its 
final results only.

As is known, the state of an electron can also be described in the momentum rep-
resentation by function ∼ψ p p p( , , )x y z  related to ψ x y z( , , ) by Fourier transform:

∼

∼
�

�

�

�

∫
∫

ψ p p p π ψ x y z e d x

ψ x y z π ψ p p p e d p

( , , ) = (2 ) ( , , ) ,

( , , ) = (2 ) ( , , ) .

x y z
i p x p y p z

x y z
i p x p y p z

−3/2 − ( + + )/ 3

−3/2 ( + + )/ 3

x y z

x y z
� (1.38)

Denote the Fourier operators in eq. (1.38) U and U−1:

ψ Uψ ψ U ψ= , = .−1∼ ∼
� (1.39)

Operators U and U−1 are linear and preserve scalar products ψ φ :

ψ φ ψ φ= .∼∼� (1.40)

A linear one-to-one correspondence between vectors of Hilbert spaces preserving 
scalar products is called an isomorphism. Thus, space R of functions ψ x y z( , , ) and 
space ∼R of functions ψ p p p( , , )x y z

∼  (with scalar product similar to eq. (1.3)) are isomor-
phic. Under the isomorphism, eigenfunctions of Н0 from eq .(1.36) transform into the 
solutions of the integral,

∫m
p ψ p Ze

π
ψ p d p

p p
Eψ p1

2
( ) −

2
( )

−
= ( ),

′ ′
′

2
2

2

3

2
∼

∼
∼

�
� (1.41)

where d p d p d p d p=′ ′ ′ ′x y z
3  and the integration extends over the whole momentum 

space (all proofs see in Appendix A). As U preserves the orthogonality and the dimen-
sion, subspaces ∼ U=n nR R  composed of eigenfunctions of eq. (1.41) associated with 
eigenvalues Еn are orthogonal to each other and have the same dimension n2.

Since basis ψ x( )nlm  transforms into basis ∼ψ p( )nlm  of space R∼, the structure of eigen-
functions in ∼R is the same as in R.

Fock translates the momentum space p p p( , , )x y z  into the sphere S3

ξ ξ ξ ξ+ + + = 11
2

2
2

3
2

4
2� (1.42)

of a four-dimensional Euclidean space R4 with distances between its points:
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ξ η ξ η ξ η ξ η ξ η− = [( − ) + ( − ) + ( − ) + ( − ) ]1 1
2

2 2
2

3 3
2

4 4
2 1/2� (1.43)

(this space should not be confused with the Minkowski space having a nonpositive 
metric form used in the special theory of relativity). Coordinates ξk have no relation to 
space–time coordinates and no physical meaning. The points on S3 are described by 
three independent parameters only, because the four coordinates on the sphere are 
connected by eq. (1.42); therefore, the sphere S3, similar to the momentum space, is 
three-dimensional (the superscript denotes the dimension).

Since eigenvalues Е are negative for bound states (eq. (1.45)), the number

p mE= −20� (1.44)

is positive (and equals the mean square of the momentum р2 in the state ψ p( )∼ ). 
Correspondence between the points p p p p= ( , , )x y z  of momentum space and points 
ξ ξ ξ ξ ξ= ( , , , )1 2 3 4  of the sphere S3 is defined as follows:

ξ
p p

p p
α φ

ξ
p p

p p
α φ

ξ
p p

p p
α

ξ
p p
p p

α

=
2

+
= sin sin ϑ cos

=
2

+
= sin sin ϑ sin

=
2

+
= sin cos ϑ

=
−
+

= cos

x

y

z

1
0

2
0
2

2
0

2
0
2

3
0

2
0
2

4

2
0
2

2
0
2

�
(1.45)

where α φ, ϑ, and   are the spherical coordinates on S3 similar to usual coordinates 
φϑ and  on S α π π φ π(0 ≤ ≤ , 0 ≤ ϑ ≤ , 0 ≤ ≤ 2 )2 . The geometric meaning of eq. (1.45) as a 

four-dimensional “stereographic projection” is explained in Appendix A. It is easily 
verified that eq. (1.42) is true for any p p p, ,x y z, so we actually obtain the points of S3.

Furthermore, following Fock’s reasoning, the correspondence between the eigen-
functions ψ p( )∼  of eq. (1.41) and the functions on the three-dimensional sphere is 
defined as follows:

α φ π p p p ψ pΨ( , ϑ, ) =
8

( + ) ( ),0
−5/2 2

0
2 2∼� (1.46)

where α φ, ϑ,  are defined from eq. (1.45) by the set p p p( , , )x y z , and р0 is given by eq. 
(1.44). Equation (1.41) for ψ p( )∼  can be rewritten as the integral for Ψ:

∫α φ λ
π

α φ d
ξ ξ

Ψ( , ϑ, ) =
2

Ψ( , ϑ , ) Ω
−

,
′ ′ ′ ′

′2 2� (1.47)

where d α dα d dφΩ = sin sin ϑ ϑ′ ′ ′ ′ ′ ′2  is an element of S3, the integration is taken over 
the whole sphere, π2 2 is the area of S3, and distance ξ ξ− ′  is expressed in terms of 
α φ α φ, ϑ, , , ϑ ,′ ′ ′ with the help of eqs. (1.43) and (1.45); finally, we have
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λ Zme
mE

=
−2

2

��
(1.48)

Let E E= n. Then ψ belongs to the subspace Rn, and from eqs. (1.37) and (1.48), we find 
λ n= . Thus (including the factor π1/2 2 in the integral operator), we can see that ξΨ( ) 
is an eigenfunction of the integral eq. (1.47) with eigenvalue n.

A scalar product on the sphere S3 is defined as 

∫π
α φ α φ dΨ Φ = 1

2
Ψ ( , ϑ, )Φ( , ϑ, ) Ω .2
∗� (1.49)

It can be verified that the Fock’s transform ψ p ξ( ) → Ψ( )∼  preserves the scalar products:

ψ φΨ Φ = ∼∼� (1.50)

Comparing this with eq. (1.40), we see that a consecutive transform ψ x ψ p ξ( ) → ( ) → Ψ( )∼  
defines operator Fn as

F ψΨ = ,n� (1.51)

which is linear, preserves scalar products, and transforms the space of eigenfunc-
tions Rn belonging to the eigenvalues En of Schrödinger equation (eq. (1.36)) into a 
set of eigenfunctions of Fock’s integral (eq. (1.47)) belonging to the eigenvalue n. This 
way, we can obtain all eigenfunctions of eq. (1.47) with the eigenvalue п. Denoting the 
space of such functions Fn, eq. (1.51) is an isomorphism between Rn and Fn.

Space Fn is very simple to describe. It consists of four-dimensional spherical func-
tions of order (п − 1). To define them, a well-known method of constructing usual 
(three-dimensional) spherical functions is used. Consider the homogeneous polyno-
mials of х, у, z of order l, satisfying the Laplace equation:

u x y zΔ ( , , ) = 0l� (1.52)

For example, for l = 0, such polynomials are constants; for l = 1, the polynomials 
are u x y z= , ,1 ; for l = 2, the polynomials are u x y= −2

2 2 or u yz=2 , and so on. On the 
sphere S2, polynomials ul are transformed into the so-called “spherical functions of 
order l”3 Y φ(ϑ, )l . Functions …Y φ where m l l l l(ϑ, ), ( = − , − + 1, , − 1, ),l

m  constitute a 
basis of the space of all spherical functions of order l, and the basis is orthogonal 
with respect to the integration over S2. Since the Laplacian commutes with rotations 
(eq. (1.22)), operators TO translate homogeneous harmonic polynomials of order l into 
polynomials of the same kind and, therefore, spherical functions of order l are carried 
into the functions of the same kind. This defines a representation of SO(3) in the space 

3 The term “spherical function” does not imply all functions defined on the sphere; rather, these are 
only some functions of a special form. Their relation to the Laplace equation is marked by the term 
“spherical harmonics.”
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of spherical functions Y φ(ϑ, )l . Each of the basic spherical functions Y φ(ϑ, )l
m  is carried 

by operators TO into a linear combination of the same basic functions (which are the 
basis of the representation space or, shorter, a basis of the representation). For wave-
functions ψ x y z f r Y φ( , , ) = ( ) (ϑ, )nl n l , transforms TO essentially operate on Yl, and fn(r) 
remains unchanged. Therefore, in the eigensubspace of the energy operator nlR , gen-
erated by functions ψnl (eqs. (1.30) and (1.31)), the rotation group acts in the same way 
as in the space of spherical functions Yl. This shows that the representation SO(3) in 

nlR  is independent of n.
Four-dimensional spherical functions are constructed in a similar way. Consider 

n-th order homogeneous polynomials of ξ ξ ξ ξ, , ,1 2 3 4, satisfying the four-dimensional 
Laplace equation:

u
u

ξ
u

ξ
u

ξ
u

ξ
Δ =

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= 0n
n n n n(4)

2

1
2

2

2
2

2

3
2

2

4
2� (1.53)

These polynomials turn into four-dimensional spherical functions Y α φ( , ϑ, )n  of order 
п on the sphere S3. Spherical functions of order (п − 1) (п = 1, 2,…)4 can be shown to 
have a basis which is orthogonal with respect to integration over S3 and consisting of 
functions

α φ α Y φΨ ( , ϑ, ) = Π ( ) (ϑ, )nlm nl l
m� (1.54)

where Y φ(ϑ, )l
m  are ordinary spherical functions …m l l l l( = − , − + 1, , − 1, ), and l takes 

values 0, 1,…, n − 1. The Fock transform carries the eigenfunctions ψ x y z( , , )nlm  of the 
Schrödinger equation into four-dimensional spherical functions α φΨ ( , ϑ, )nlm  with the 
same indices.

Fock showed that the eigenfunctions of eq. (1.47) belonging to the eigenvalue 
λ = n exactly coincide with four-dimensional spherical functions of (п − 1)-th order 
Y α φ( , ϑ, )n−1 . In particular, the basis for these functions consists of the above functions 
Ψnlm. It is remarkable that Coulomb potential 1/r does not take part in this description 
of eigenfunctions. As we will see, a special form of the potential turns here into addi-
tional symmetry of the problem.

Fock transform Fn is constructed separately for each subspace Rn since eqs. (1.45) 
and (1.46) contain p0 depending on En (eq. (1.44)). As we will see, we can construct 
from Fn (п = 1, 2,…) a single transform F of the space of all wave functions R into the 
space of all square-integrable functions on the sphere S3; this Hilbert space is denoted 
as F and is called the Fock space.5 Define F as taking the same values as Fn on the  

4 We consider here spherical functions of order (п − 1) rather than order п, because they correspond 
to the eigenvalue п.
5 The other “Fock space” used in the quantum field theory is not considered in this book.
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subspaces Rn, so that Fψ = Ψnlm nlm; for wave functions which are not eigenfunctions of 
Н0, use eq. (1.32) and define

∑Fψ F ψ=
n

n n
=1

∞

� (1.55)

Obviously, F is a linear operator. Since ψn and F ψn n are orthogonal to each other, we 
have

∑ ∑ ∑Fψ Fφ F ψ F ψ F ψ F φ= =
′

′ ′
n

n n
n

n n
n

n n n n
� (1.56)

and since Fn preserves the scalar product, so does operator F. Furthermore, each 
square-integrable function α φΨ( , ϑ, ) can be expanded into four-dimensional spher-
ical functions

∑Ψ = Ψ
n

n
=1

∞

−1� (1.57)

and, therefore, can be obtained by F from function

∑ψ F= (Ψ )
n

n n
=1

∞
−1

−1� (1.58)

Thus, operator F defines an isomorphism of the Hilbert space R of Schrödinger wave 
functions on the Hilbert space F of Fock wave functions.

Isomorphic spaces can easily be used instead of each other in all aspects of 
quantum mechanics; the choice between them depends on the particular problem 
where they are most convenient to use. For example, the isomorphism of the Fourier 
transform allows performing various tasks in either coordinate or momentum repre-
sentations, while the “Fock representation” is particularly useful to consider particles 
in the Coulomb field. As we will see, the group of four-dimensional rotations SO(4), 
greater than the rotation group of three-dimensional space SO(3), naturally acts on 
the space F.

1.3 Broken symmetry

Consider a rotation group in the four-dimensional Euclidean space R4 with coordi-
nates ξ ξ ξ ξ, , ,1 2 3 4. This is a group of homogeneous linear transforms preserving dis-
tances and written similar to eq. (1.8):

�
��������

�

ξ o ξ o ξ

ξ o ξ o ξ

= + +

= + +

′

′

1 11 1 14 4

4 41 1 44 4

� (1.59)
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or, shorter, ξ Oξ=′ . Here O o= ( )ij  is an orthogonal matrix of the fourth order. Rota-
tions, which do not change the orientation of the space, similar to that in the three- 
dimensional case, are given by the equation odet = +1ij .6

All such rotations constitute group SO(4). By analogy with eq. (1.9), define trans-
forms of functions ξ ξ ξ ξ ξΨ( ) = Ψ( , , , )1 2 3 4  as

ξ O ξΨ ( ) = Ψ( )′ −1� (1.60)

or

� �ξ ξ ξ ξ o ξ o ξ o ξ o ξΨ ( , , , ) = Ψ( + + , …, + + )′
1 2 3 4 11

−1
1 14

−1
4 41

−1
1 44

−1
4� (1.61)

Just as three-dimensional rotations, operators

TΨ = Ψ′ O� (1.62)

are proved to define a representation of group SO(4) in the Fock space of functions 
ξΨ( ) (see eqs. (1.10), (1.14), and further). The difference is that functions ξΨ( ) are con-

sidered only on the sphere S3 and are not defined in the whole space R4, whereas 
Schrödinger wave functions ψ(x, y, z) are defined in the whole three-dimensional 
space.

Operators TO are easily verified to preserve the scalar product in F (eq. (1.49)); 
indeed, we can make a change of variables O O ξ=′ −1  in the integral

∫ ∫ξ ξ d O ξ O ξ dΨ Φ = Ψ ( )Φ ( ) Ω = Ψ ( )Φ( ) Ω .′ ′ ′ ′ −1 −1∗ ∗� (1.63)

Since the area elements do not change on S3 during rotations, d dΩ = Ω′ , and the inte-
gral (1.63) equals Ψ Φ . So, we have a unitary representation {TO} of group SO(4) in 
space F.

This representation is evidently reducible because orthogonal transforms of vari-
ables carry homogeneous harmonic polynomials u ξ ξ ξ ξ( , , , )n 1 2 3 4  into polynomials of 
the same kind (similar to the polynomials of three variables), and thereby the sub-
spaces of four-dimensional spherical functions Fn (п = 1, 2,…) are invariant with 
respect to SO(4). However, these subspaces are irreducible for SO(4) (see Appendix 
B). Thus, SO(4) group connects, in the above sense, all basis vectors of each subspace 
Fn, or the cells of each vertical column of Table 1.1. But different columns of the table 
remain disconnected: SO(4) group “works” within the columns.

As mentioned above, space R of Schrödinger wave functions ψ(x, y, z) and space 
F of Fock functions ξ ξ ξ ξΨ( , , , )1 2 3 4  are isomorphic; however, the action of SO(4) group 
is obvious on the second of them, but not on the first, since ψ(x, y, z) depends only 
on three variables. We will not describe here the representation of SO(4) on R, but 

6 They translate any basis e e e e( , , , )1 2 3 4 of space R4 into the basis e e e e( , , , )′ ′ ′ ′1 2 3 4  obtained from the ini-
tial basis by continuous deformation e e→ ′k k , so that the vectors remain linearly independent (which 
means that the bases have the same orientation).
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use the general concept of equivalent representations. Let R and R′ be isomorphic 
spaces, W being the isomorphism between them. Then every operator Т on R defines 
the operator Т′ on R′, and vice versa; if Та = b in R, and a Wa=′  and b Wb=′  are the 
corresponding vectors in R′, then T a b=′ ′ ′. In other words, operator Т′ reproduces the 
action of Т on the “isomorphic images” of the vectors from R. This can be imaged as 
the following diagram:

R ′R ′
T ′

T
R R

W W

�

(1.64)

The diagram says that if we take a vector a in R, apply to it the operator Т and then 
take the image of the resulting vector b Ta=  for the isomorphism a Wa=′  (moving to 
the right and downward), the result will be the same as for the sequence of taking the 
image for the isomorphism a Wa=′ , and then for b T a=′ ′ ′ (moving downwards and to 
the right). To construct Т′ from Т, we need to find a W a= ′−1  for a given vector a′ from 
space R′ (moving upwards), then b = Та (moving to the right), and, finally, b Wb=′  
(moving downwards). In short, it is written as

T WTW=′ −1� (1.65)

If a representation {Tg} of group G is defined on R, we can construct corresponding 
operators on the isomorphic space R′ as

T WT W=′g g
−1� (1.66)

It is easily verified (eq. (1.8)) that this equation defines a representation of G in space 
R′. Inversely,

T W T W= ′g g
−1� (1.67)

Representations {Tg} and {T′g} are called equivalent. In applications, equivalent rep-
resentations are completely interchangeable, and the choice between them is deter-
mined by their convenience for a particular space.7

Operator Fn defines an isomorphism between the subspace of wave functions Rn 
(the eigensubspace of energy H0 associated with the eigenvalue Еn) and the subspace 

7 If R and R′ coincide, eq. (1.66) admits the following “passive” interpretation. Group G is represented 
by matrices Tg to determine operators on the space R in some chosen basis. When switching to another 
basis, these matrices are replaced by matrices T′g (eq. (1.66)), where W is the transformation matrix 
of the basis. With this interpretation, Tg and T′g represent the same operator in different bases. We 
make this remark so that the reader could compare our discussion with available textbooks on the 
representations of groups.
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Fn (composed of four-dimensional spherical functions of order (п − 1)). Now find the 
images of this isomorphism as a result of its action on the representations of three- 
dimensional rotations (eq. (1.9)). By definition of representation {TO}, rotation О  
corresponds to the operator T ψ ψ= ′O , where ψ x ψ O x( ) = ( )′ −1 . In the momentum repre-
sentation, function ψ(x) corresponds to ψ p( )∼  (eq. (1.38)), and ψ x( )′  to ψ p( )′∼ . Then the 
operator TO corresponds in the momentum space to the operator which carries ψ p( )∼  
into ψ p( )′∼ .

To find this operator, ψ x( )′  is substituted instead of ψ x( ) in eq. (1.38), and then 
we have

∫ψ p π ψ x e d x( ) = (2 ) ( )′ ′ ipx−3/2 − / 3∼
� �

Replacing ψ x( )′  by ψ O x( )−1  and changing variables O x x= ′−1 , obtained are O−1x = x′, 
px pOx O O p Ox O px= = ( ) =′ ′ ′−1 −1 , since the rotation preserves the scalar product, and 
d x d x= ′3 3 , from whence

∫ψ p π ψ x e d x( ) = (2 ) ( ) .′ ′ ′′iO px−3/2 − / 3−1∼
� �

But the integral on the right differs from the integral (1.38) only by the notation of the 
integration variables and by O p−1  substituted instead of p

Thus,

ψ p ψ O p( ) = ( )′ −1∼ ∼� (1.68)

and functions ψ p( )∼  are transformed under rotations in the same way as ψ(x).
Now consider transform (1.46) and find out how the argument in the left side of ξ 

(defined by angles α φ, ϑ, ) changes when O p−1  is substituted on the right side instead 
of p (eq. (1.68)). As follows from eq. (1.55), it is enough to take function ψ(x) from Rn; 
then E E= n and p mE= −2 n0  (eq. (1.44)) can be considered constant. Furthermore, 
O p p=−1 , and, as is seen from eq. (1.45), TO does not change ξ4 (ξ ξ=′

4 4) and ξ ξ ξ, ,1 2 3 are 
transformed by the same matrix О−1 as p p p, ,x y z; so we have

ξ o ξ o ξ o ξ
ξ o ξ o ξ o ξ
ξ o ξ o ξ o ξ
ξ ξ

= + +
= + +
= + +
=

′
′
′
′

1 11
−1

1 12
−1

2 13
−1

3

2 21
−1

1 22
−1

2 23
−1

3

3 31
−1

1 32
−1

2 33
−1

3

4 4

� (1.69)

Since the factor of ψ p( )∼  in eq. (1.46) does not change, operator TO corresponds in 
the Fock space to the operator carrying ξΨ( ) into ξΨ( )′ , where ξ ′ is defined by eq. 
(1.69). The transform eq. (1.69) is inverse to the special four-dimensional rotation with 
matrix
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O

o o o
o o o
o o o

=

0
0
0

0 0 0 1

(4)

11 12 13

21 22 23

31 32 33























� (1.70)

Thus, in view of the Fock equivalence, the operator TO in space R corresponds to the 
operator carrying ξΨ( ) into

ξ ξ O ξΨ ( ) = Ψ( ) = Ψ( )′ ′ 4
−1� (1.71)

But this is a special case of a four-dimensional rotation operator (eq. (1.60)) corre-
sponding to a special matrix (eq. (1.70)). Rotations (1.70) preserve the coordinate ξ4,  
that is, ξ ξ=′4 4. All such rotations constitute a subgroup of SO(4), and each of them cor-
responds to the third order orthogonal matrix in the left-top corner of eq. (1.70); due to 
this correspondence, the subgroup is isomorphic to SO(3) and will be denoted simply 
SO(3). Therefore, Fock equivalence carries the representation (1.9) of group SO(3) in the 
Schrödinger space of wave functions into the representation of the same group on the 
Fock space obtained from eq. (1.60) for the special rotation О taken in the form (1.70).

As will be shown in the next chapter, the action of some group on the state space 
of a quantum system has fundamental importance not only for the kinematic descrip-
tion of states but also for the dynamics of the system. If the action of SO(3) group is 
isomorphically translated to the Fock space, so that “hydrogen” electron states are 
imaged by functions ξΨ( ), we obtain an equivalent representation of the form (1.60), 
where О are special four-dimensional rotations constituting the subgroup (eq. (1.70)). 
But now, using the isomorphic model of the space state, we can extend this subgroup 
by simply taking group SO(4) and its representation (1.60) together with all four- 
dimensional rotations О. Due to isomorphism F, decomposition (1.33) corresponds to 
the decomposition of the Fock space in terms of invariant subspaces of SO(4):

F F F F� �⊕ ⊕ ⊕ ⊕= n1 2� (1.72)

Decomposition (1.34) corresponds to the decomposition of Fn in terms of irreducible 
subspaces of SO(3):

⊕ ⊕ ⊕= ,n n n n n,0 ,1 , −1F F F F�� (1.73)

where nlF  is the image of space nlR  under the isomorphism. Finally, since basic func-
tions ψ x y z( , , )nlm  are carried into ξΨ ( )nlm , decomposition (1.29) corresponds to the 
decomposition of function ξΨ( ) defined on the sphere S3, in terms of four-dimen-
sional spherical functions:

∑ξ c ξΨ( ) = Ψ ( )
n l m

nlm nlm
, ,

� (1.74)

Subspaces Fn are invariant even for the whole group SO(4). Indeed, as aforemen-
tioned in Section 1.2, Fn consists of four-dimensional spherical functions Yn−1 of order  
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(n − 1) obtained from homogeneous harmonic polynomials un−1 of the same order, if 
their values are taken on the sphere S3. Similar to the three-dimensional case (Section 
1.1), the four-dimensional Laplace operator is proved to commute with rotation opera-
tors (eq. (1.64)) and, therefore, these operators carry u ξ ξ ξ ξ( , , , )n−1 1 2 3 4  into polynomials 
of the same kind, namely, homogeneous harmonic polynomials of n − 1 degree. But 
this means that Fn is an invariant subspace of group SO(4). Moreover, these subspaces 
are irreducible for SO(4) (see Appendix B).

If basis vectors ψnlm in Table 1.1 are changed for corresponding vectors Ψnlm, the 
resulting table will image the basis of space F. The columns of the table show the 
subspace Fn (n = 1, 2,…), and the expanded group SO(4) interconnects all cells of each 
individual column because corresponding subspaces are irreducible for SO(4). If the 
same representation (1.64) is considered only for the rotations of subgroup SO(3) (ξ4 
being preserved), the resulting representation of SO(3) for n > 1 will not be irreduc-
ible on subspaces Fn since each them is decomposed into irreducible subspaces nlF  
of SO(3) group imaged by the rectangles of Table 1.1 (eq. (1.73)). This process, when a 
set of operators from some group is reduced to a set of operators from its subgroup, is 
called a reduction of the representation to the subgroup. Since isomorphisms preserve 
dimensions, the irreducible representation of SO(4) on the space Fn has dimension n2 
and, after being reduced to the subgroup SO(3), is decomposed into irreducible repre-
sentations with dimensions 1, 3, 5,…, 2п − 1 (eq. (1.35)).

The question arises as to weather group SO(4) can be further expanded to make 
the whole Fock space irreducible, that is, the operators of the expanded group connect 
all columns of Table 1.1. In fact, such expansion is possible and was first applied to 
the hydrogen atom by Abalkin and Manko (1965). It was a so-called conformal group8 
SO(4,2), first used by Dirac (1937) for other purposes.

Consider a six-dimensional space with coordinates …ξ ξ( , , )1 6 , which have no phys-
ical meaning. Group SO(4,2) consists of all linear homogeneous transformations С,

�
��������

�

ξ c ξ c ξ

ξ c ξ c ξ

= + +

= + +

′

′

1 11 1 16 6

6 61 1 66 6

� (1.75)

having determinant +1 and preserving the form

ξ ξ ξ ξ ξ ξ+ + + − − ,1
2

2
2

3
2

4
2

5
2

6
2� (1.76)

That is,9

8 The name of this group is due to its original definition as a group of conformal (angle-preserving) 
transformations of the Minkowski space. We use the definition proposed by Dirac.
9 In fact, we will need only those transformations (1.75) which are close to the identity transforma-
tion. “Global” issues are discussed in Fet (1975).
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ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ+ + + − − = + + + − − .′ ′ ′ ′ ′ ′1
2

2
2

3
2

4
2

5
2

6
2

1
2

2
2

3
2

4
2

5
2

6
2� (1.77)

Designation SO(4, 2) reflects the structure of the form (1.76).
There is a subgroup of SO(4, 2) consisting of transformations to preserve ξ ξ,5 6, 

that is, ξ ξ=′5 5, ξ ξ=′6 6, and from eq. (1.77), we have

ξ ξ ξ ξ ξ ξ ξ ξ+ + + = + + + .′ ′ ′ ′1
2

2
2

3
2

4
2

1
2

2
2

3
2

4
2� (1.78)

Identified with the coordinates of the four-dimensional Euclidean space, the first four 
coordinates ξα can be regarded as four-dimensional rotations with matrices:

�

� �
�

























c

o o

o o=
0

0 1 0
0 1

,

11 14

41 44� (1.79)

where (oαβ) (α, β = 1,…, 4) are the orthogonal matrices with determinant +1 (see details 
in Section 5.2). Therefore, SO(4,2) contains a subgroup which is isomorphic to SO(4) 
and thus denoted simply SO(4). There is already a representation (1.62) of this sub-
group in the Fock space F. This representation can be expanded to the representation 
{TC} of the whole group SO(4,2) in the same space, it means that for all transforms C of 
this group, we can define operators TC to act in F and to constitute its representation, 
so that for С = 0, operator TC coincides with the above-defined operator TO of four- 
dimensional rotations (eq. (1.62)). Furthermore, space F is unitary and irreducible for 
representation {TC} (which is therefore infinite-dimensional and indecomposable into 
finite-dimensional representations).

Such a representation is not easy to construct due to the fact that functions 
ξ ξ ξ ξΨ( , , , )1 2 3 4  of space F depend on four variables in contrast to transforms (eq. (1.75)) 

depending on six variables, so methods such as eqs. (1.9) or (1.72) are not applicable 
here. We will solve the task in Chapter 5 with the help of Lie algebras to be introduced 
in Chapter 3. So far, we assume that such representation exists, and make some phys-
ical conclusions.

To do that, we will use the inverse Fock isomorphism F−1 and define an equiva-
lent representation of groups SO(4,2) on the space R of Schrodinger wave functions. 
As a result, we obtain a representation with irreducible subspaces Rn (instead of Fn) 
on the subgroup SO(4), and a representation with irreducible subspaces nlR  (instead 
of nlF ) on even smaller subgroup SO(3) (Table 1.1). Group SO(3) commutes with the 
general spherically symmetric Hamiltonian Н (1.27). Group SO(4), to the contrary, no 
longer commutes with Н, but commutes with the Coulomb Hamiltonian H0; in fact, 
each eigenspace of Coulomb Hamiltonian Rn is invariant with respect to SO(4); there-
fore, for any function ψ from Rn and any operator of a four-dimensional rotation TO(4)

, 
we have T H ψ T E ψ E T ψ H T ψ= ( ) = = ( )O O n n O O0 0(4) (4) (4) (4)

, and from eq. (1.32) T H ψ H T ψ=O O0 0(4) (4)
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for all ψ from R. But for the group SO(4,2), we can no longer find a Hamiltonian to 
commute with the group; since the whole space R is irreducible for this group, such 
Hamiltonian would have the whole R as its eigenspace with a single eigenvalue. For 
this hypothetical Hamiltonian H∗, we would have

H ψ Eψ=∗� (1.80)

Such an operator is sometimes called “constant.” Since energy is accurate within a 
constant, we can introduce a term H∗ in the Hamiltonian equation (1.27), so that H∗ 
is greatly exceeding all values of Н0 (for example, it can be the rest energy mc2 of the 
electron). Finally, we introduce another term Н2 which does not commute with SO(3); 
for example, the energy of interaction of an electron with a uniform magnetic field 
along z axis; we assume, following the consideration of the Zeeman effect, that this 
field is weak, so that Н2 is small compared to Н1. Then the Hamiltonian has the form

H H H H H= + + + ,0 1 2∗� (1.81)

where H∗ commutes with SO(4,2), Н0 commutes with SO(4), and Н1 commutes with 
SO(3). Hamiltonian equation (1.81) can be considered as consisting of a sequence of 
“perturbations,” so that each of them is smaller than the preceding one. The largest 
member H∗ corresponds to the system with the “highest symmetry” defined by group 
SO(4,2); perturbation Н0 reduces the symmetry, so that H H+ 0∗  has the symmetry of 
subgroup SO(4); then the following perturbation Н1 reduces the symmetry to the sub-
group SO(3). The last term H2 completely breaks the symmetry of the system.10

Hamiltonians with a “step-like” structure of successively decreasing terms are 
very common in physics, perhaps, because only such operators in many cases allow 
solving the tasks of quantum mechanics with the methods of perturbation theory. 
In any case, the successive “symmetry breaking” is important for quantum mechan-
ics and particularly for the applications we are interested in. We demonstrated the 
approach on the conventional example of the atomic electron. Successive symmetry 
reduction is described in this case by a nested chain of groups:

⊃ ⊃SO(4, 2) SO(4) SO(3)� (1.82)

Note also that the chain (1.82) corresponds to a special basis constructed above in 
the representation space ξΨ ( )nlm  (or, in its isomorphic space, ψ x( )nlm ). All vectors of 
the basis with a given n generate an irreducible subspace F of subgroup SO(4) (n = 1, 
2,…); all vectors with given n, l generate an irreducible subspace F F⊂nl n of subgroup 
SO(3)(l = 0, 1,…, n − 1); finally, the third index m, for given n, l enumerates individual 

10 We do not take into account the rotational symmetry about z axis; this symmetry is useless, be-
cause after H2 is added, we obtain an operator with nondegenerate eigenvalues, whose eigensub-
spaces are one-dimensional and not interesting as far as symmetry groups are considered.
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basis vectors in …m l l l l( = − , − + 1, , − 1, )nlF . As we will see, the numbers п, l, m can 
be obtained directly from the chain (1.82) without resorting to the Hamiltonian; they 
are called quantum numbers of the broken symmetry (1.82). Furthermore, the chain of 
groups makes it possible to construct a corresponding special basis without using the 
Hamiltonian and to classify the eigenstates; in more complex cases, this chain can 
help to guess the form of the Hamiltonian.

This chapter outlined the historical development of quantum mechanics. The 
equations of motion had the primary role, and groups were used only to solve and 
study them. The description of a quantum system was based on an energy operator, 
whose form is borrowed from the classical (nonquantum) physics in accordance with 
Bohr’s “correspondence principle.” Similarly, all other observables of a quantum 
system were obtained from classical observables by the “correspondence principle.” 
The energy operator often happens to be symmetric, or, to put it mathematically, it 
commutes with some “symmetry group,” or has a “step-like” structure of the terms 
with decreasing symmetry. From the Hamiltonian, a corresponding sequence of 
groups is constructed; irreducible representations of the symmetry group and its sub-
groups provide a kinematic description of the state space, a classification of states, 
and a numbering “quantum numbers” to indicate characteristic properties of the 
states and their place in the classification system.

There is also another approach, where the primary structure of physical reality is 
defined by a symmetry group or a chain of groups to express a successive “symmetry 
breaking” of the system. From the symmetry group, the observables or dynamic vari-
ables of the system are mathematically derived; they are used to construct a “step-
like” Hamiltonian defining successive perturbations to express the given method of 
symmetry breaking. This approach was suggested by Wigner (1939) and is particularly 
useful in elementary particle theory which usually lacks a corresponding classical 
theory, and where the description of a system starts with guessing its symmetry.

In the next chapter, we will discuss these ideas and apply them to the description 
of the system of chemical elements.



2 Observables of a quantum system

2.1 Deriving observables from a symmetry group

According to the correspondence principle, each quantum system transforms in the 
“classical limit” into some corresponding classical system. For example, the electron 
in a central field corresponds to the classical system of a charge in a central field, 
considered as a particle of Newtonian mechanics. The Coulomb potential 1/r, as a 
part of Schrödinger equation, was borrowed this way. In general, classical observ-
ables х, у, z correspond to the operators of multiplying ψ functions by х, у, z; and an 
arbitrary function f(x, y, z) corresponds to the operator of multiplying by this func-
tion. Classical momenta px = mvx, py = mvy, pz = mvz correspond to the operators of 
differentiating ψ functions with respect to coordinates � � �, ,i x i y i z

∂
∂

∂
∂

∂
∂ , and the functions 

of p p p, ,x y z correspond to the same function of these operators: for example, the clas-
sical observable of kinetic energy p p p= ( + + )mv

m x y z2
1

2
2 2 22

 is associated with the same 
function of the momentum operator с. Thus, the classical expression of the electron’s 
energy in a Coulomb field −mv Ze

r2

2 2
 generates a quantum Hamiltonian �H = − −m

Ze
r0 2

2 2
 

(eq. (1.36)). When the Hamiltonian is known, symmetry considerations sometimes 
facilitate the integration of the Schrödinger equation or the search of some qualitative 
properties of the energy spectrum. For example, the eigenfunctions and eigenvalues 
for a spherically symmetric Hamiltonian equation (1.56) may not always be possible 
to find, but if the dimensions of irreducible subspaces nlR  of group SO(3) are known, 
one can find the multiplicities of eigenvalues 2l + 1. When a magnetic field is applied, 
spherical symmetry is broken and the energy level Enl splits into 2l + 1 nondegenerate 
levels, the same number as the dimension of the irreducible representation. Thus, tra-
ditional quantum mechanics considers symmetry groups as an applied tool to study 
dynamic equations obtained from the correspondence principle. Thus, the latter has 
the primary role in the construction of quantum mechanics, while the role of symme-
try groups is, in a sense, secondary.

However, such method to obtain the observables works only for some simple 
quantum systems. For example, the spin of the electron cannot be derived this way as 
it has no classical analogy. Even less, the correspondence principle can be applied to 
quantum systems of the theory of elementary particles such as “isotopic multiplet” or 
“unitary multiplet” (e.g., “nucleon,” “octet,” and “decuplet”). To build such quantum- 
mechanical models, we need to use another method of guessing their symmetry 
groups and then obtaining from them the observables to describe the system, that is, 
a set of operators to acting on its state vectors. In this approach, the symmetry group 
is of primary importance, while the observables are derived from it.

Consider the method by the example from the nonrelativistic quantum 
mechanics of a single particle. Similar to the discussion in Section 1.1, we con-
sider functions ψ x y z( , , ) (disregarding the spin and time dependence) to be state 
vectors of the system. In Section 1.1, we examined how SO(3) group acts on the 
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wave functions. Now we extend this group by introducing the group of motions 
or isometry group M(3) composed of all nonhomogeneous linear transforms of the 
Euclidean space,

x Ox a= + ,′� (2.1)

where О is the proper rotation O(det = +1), and а is the translation vector. Each move-
ment can be obtained by consecutive rotation О and translation Dx x a= +′ :

M DO=� (2.2)

A motion can be defined geometrically as the most general transform of the Euclidean 
space to preserve distances. In coordinates (eq. (2.1)), it has the form

x o x o y o z a
y o x o y o z a
z o x o y o z a

= + + +
= + + +
= + + +

′
′
′

x

y

z

11 12 13

21 22 23

31 32 33

� (2.3)

A representation of the isometry group in the space of state vectors R can now be 
defined similar to the rotation group (see eq. (1.9)):

T ψ ψ ψ x ψ M x= , where ( ) = ( )′ ′M
−1� (2.4)

It is easily verified that eq. (2.4) is actually a representation, that is, the conditions in 
eq. (1.18) are fulfilled. The inverse transform M−1 in eq. (2.4) can be found if x y z, ,  in 
eq. (2.3) are expressed in terms of x y z, ,′ ′ ′:

x o x a o y a o z a
y o x a o y a o z a
y o x a o y a o z a

= ( − ) + ( − ) + ( − )
= ( − ) + ( − ) + ( − )
= ( − ) + ( − ) + ( − )

′ ′ ′
′ ′ ′
′ ′ ′

x y z

x y z

x y z

11
−1

12
−1

13
−1

21
−1

22
−1

23
−1

31
−1

32
−1

33
−1

� (2.5)

or

x O x a= ( − )′−1� (2.6)

Thus, the transformed function ψ′ is written as

ψ x y z ψ o x a o y a o z a( , , ) = ( ( − ) + ( − ) + ( − ),′ x y z11
−1

12
−1

13
−1

o x a o y a o z a
o x a o y a o z a

( − ) + ( − ) + ( − ),
( − ) + ( − ) + ( − )

x y z

x y z

21
−1

22
−1

23
−1

31
−1

32
−1

33
−1

� (2.7)

The isometry group M(3) contains a subgroup of rotations SO(3) obtained for а = 0, 
and a subgroup of translations D(3) obtained for O = 1. Its simplest subgroups are 
one-parameter subgroups whose elements Mα are parametrized by a continuous 
parameter α, so that the multiplication of these elements corresponds to the summa-
tion of the parameters:
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M M M=α α α α+1 2 1 2� (2.8)

For example, consider a subgroup of translations along axis x. Designating the trans-
lation upon α as Mα, we have

M x y z x α y z( , , ) = ( + , , )α� (2.9)

and the condition in eq. (2.8) is easily verified, because consecutive translations α1 
and α2 are a single translation α α+1 2. Similarly, one-parameter subgroups of transla-
tions along у, z, or any axis are defined.

As another example, consider a subgroup of rotations about axis z. Designating 
the rotation by angle α as Mα, obtain

M x y z x α y α x α y α z( , , ) = ( cos − sin , sin + cos , )α� (2.10)

The condition in eq. (2.8) is also easily verified: consecutive rotations by angles α1 and 
α2 are the same as a single rotation by angle α α+1 2 (the angles with the difference 
2π correspond to the same rotation). Similarly, one-parameter subgroups of rotations 
about у, z, or any arbitrary axis are defined.

In particular, representation {TM} of the isometry group defines the representa-
tions of its one-parameter subgroups. For the translations along x axis, we have

ψ x y z T ψ x y z ψ x α y z( , , ) = ( , , ) = ( − , , )α Mα
� (2.11)

(negative sign is due to Mα
−1 under the function, see eq. (2.1)). The rate of change of ψ 

along some one-parameter subgroup is measured by its derivative with respect to α; 
the “initial rate” is

d
dα

ψ x y z d
dα

ψ x α y z
ψ x y z

x
( , , ) = ( − , , ) = −

∂ ( , , )
∂α α α=0 =0� (2.12)

or, accurate within the sign, the operator of differentiation with respect to x. Quantum 
mechanics often operates with Hermitian operators since they have real eigenvalues; 
to obtain a Hermitian operator from eq. (2.12), we need only to multiply it by i. Finally, 
if a momentum operator is to be obtained, the desired dimension is achieved by factor 
ℏ to result in operator px. For py and pz, we have

� � �p
i x

p
i y

p
i z

= ∂
∂

, = ∂
∂

, = ∂
∂x y z� (2.13)

Similarly, for the rotations about z axis,

ψ x y z T ψ x y z ψ x α y α x α y α z( , , ) = ( , , ) = ( cos + sin , − sin + cos , )α Mα
� (2.14)

The “initial rate” of change of ψ along some one-parameter subgroup is
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Multiplying operator eq. (2.8) by �i , obtain a Hermitian operator Lz having the dimen-
sion of the angular momentum. For Lx and Ly,
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The situation is more complicated with the operators of coordinates which are rel-
ativistic and are associated with the Lorentz group. Without assuming any knowl-
edge of relativistic quantum mechanics, we now show with simple reasoning that 
all observables of quantum mechanics are of “group origin.” In relativistic mechan-
ics, spatial and temporal coordinates are not considered separately, since they both 
change together with the coordinate system. Therefore, the state vector is a function 
of four variables ψ x y z t( , , , ) and describes also the temporal evolution of the system.11 
Instead of the rotation group, relativistic theory uses the Lorentz group; that is, the 
group of homogeneous linear transformations of variables x, у, z, t to preserve the form 
x y z c t+ + −2 2 2 2 2. Denote the Lorentz transformation Λ, x x=1 , x y=2 , x z=3 , x ct=0 , 
and the point of space-time x x x x( , , , )1 2 3 0  as x. Similar to the motions in the Euclidean 
space, define “inhomogeneous Lorentz transformations” x x a= Λ +′ , where а is the 
four-vector a a a a( , , , )1 2 3 0 . This group is called the Poincare group; it contains (for а = 0) 
the Lorentz subgroup and (for Λ = 1) the subgroup of four-dimensional translations. 
In the space of wave functions Ψ, a representation of the Poincare group is defined 
similar to those of the rotation group (eq. (1.9)) and the isometry group (eq. (2.4)); that 
is, the Poincare transform x p x a= = Λ +′ x  is associated with the operator:

T x P x x aΨ = Ψ , where Ψ ( ) = Ψ( ) = Ψ(Λ ( − ))′ ′p
−1 −1� (2.17)

All observables of relativistic quantum mechanics are derived from one-parameter 
subgroups of the Poincaré group (except the spin observables to be discussed later).

One-parameter subgroups of translations along axes x α( = 1, 2, 3, 0)α  are defined 
similar to that of eq. (2.9). The first three of them generate momentum operators 
p p p, ,1 2 3, and the fourth generates the operator:

d
dα

x y z x α
x c t

Ψ( , , , − ) = − ∂Ψ
∂

= − 1 ∂Ψ
∂

.α0 =0
0

� (2.18)

11 In fact, relativistic interpretation of the electron is impossible without considering the spin. So, the 
one-component wave function can refer here only to mesons with zero spin; but this point is of no 
importance for our goal of revealing the group origin of observables.
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Thus, we obtain operator �i x
∂

∂ 0
 similar to momentum operators, and after multiplying 

by −с, obtain the energy operator12

�H i
t

= ∂
∂

.� (2.19)

Eigenfunctions of operator (eq. (2.9)), that is, wavefunctions with a definite value of 
(relativistic) energy Er, have the form

�x e χ x y zΨ( ) = ( , , ).iE t− /r� (2.20)

If the particle is required to be at rest, that is, Ψ = Ψ0 be an eigenfunction of p p p, ,1 2 3 
with zero eigenvalues, we find χ const= , then the energy Er is the rest energy mc2, and

�x eΨ ( ) = imc t
0

− /2� (2.21)

up to a constant factor.
For the case of a nonrelativistic limit, define nonrelativistic energy Е by subtract-

ing the rest energy from Er. Writing the wave function as

�x e ψ x y z tΨ( ) = ( , , , )imc t− /2� (2.22)

we see that

�H mc e HψΨ = Ψ + imc t2 − /2� (2.23)

If ψ is an eigenfunction of H, then from eq. (2.23), the corresponding eigenvalue is E. 
For E � mc2, we can therefore consider ψ as a nonrelativistic wave function with non-
relativistic energy E. Since any nonrelativistic wave function is expanded in a series 
in terms of eigenfunctions of the energy, we can generally interpret eq. (4.2) as an 
equation to connect, in the nonrelativistic limit, a relativistic wave function xΨ( ) with 
the corresponding nonrelativistic wave function ψ x( ).

Consider now one-parameter subgroups generating the operators of angular 
momentum. The subgroup of rotations in the plane (x1, x2) has the form

x x α x α
x x α x α
x x
x x

= cos − sin
= sin + cos
=
=

′
′
′
′

1 1 2

2 1 2

3 3

0 0

� (2.24)

12 Multiplication by с gives the desired dimension, and the sign is chosen according to tradition. Note 
that the resulting operator stands on the left side of the nonrelativistic Schrödinger equation. From 
this point of view, Schrödinger equation is a relation between four-momentum operators pα . A poly-
nomial p m/22  of p p p, ,1 2 3 is also called the energy operator. From the Schrödinger equation, it follows 
that these two operators coincide for a wavefunction of motion in a real space.
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and, since it preserves x0, it coincides with the subgroup of rotations about axis 
z in a three-dimensional space. This subgroup generates the angular momentum 
operator
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which is quite similar to operator Lz (see eq. (2.16)). The same way obtain operators 
L L,23 31 from one-parameter subgroups of rotations in the planes x x( )2 3  and x x( )3 1 ; oper-
ators L i k( , = 1, 2, 3)ik  play the role of operators of spatial angular momentum in the 
relativistic theory.

Finally, consider one-parameter subgroups of proper Lorentz transformations. In 
the plane x x( )1 0 , such subgroup has the following form:

x x chα x shα
x x
x x
x x shα x chα

= −
=
=
= +

′
′
′
′

1 1 0

2 2

3 3

0 1 0

�

(2.26)

where α and β v c= /  are connected by equations as

chα β shα β β= (1 − ) , = (1 − ) .2 −1
2 2 −1

2� (2.27)

So, eq. (2.26) coincides with the usual form of Lorentz transformations:

x x vt
v c

t
t v

c
x

v c
= −

1 − ( / )
, =

−

1 − ( / )
.′ ′

2 2

2

2 2
� (2.28)

In the representation (2.17), this subgroup is associated with the generating operator:
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Denote this operator, multiplied by �i , as L01. Similarly, construct operators L02 and 
L03 corresponding to proper Lorentz transformations in the planes x x( )0 2  and x x( )0 3 , 
respectively. Operators
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are called relativistic angular momenta. For a particle having no spin, operators 
pα and L α β( , = 1, 2, 3, 0)αβ  constitute a complete set of observables in relativistic 
quantum mechanics. Thus, the observables are obtained by a uniform way, namely, 
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they are operators which generate one-parameter subgroups of the main symmetry 
group.13

Now, we can explain the group origin of operators of multiplication by the coordi-
nates in nonrelativistic quantum mechanics.14 Apply operator L01 to the wave function  
Ψ in the form of eq. (2.22):
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Operators in the parentheses on the right-hand side of the equation have different 
values in the nonrelativistic approximation. The second of them, �i t

∂
∂ , is the oper-

ator of nonrelativistic energy (since it is applied to nonrelativistic ψ); by assump-
tion, its matrix elements are small compared to mc2; therefore, the operator can be 
neglected. The resulting operator should be considered at a fixed moment of time, 
because in nonrelativistic case, state vectors are functions of х, у, z and contain t 
as a parameter only, so observables do not depend on t.15 Then eq. (2.31) is a linear 
combination of px and the operator of multiplication by х. Since the first is con-
structed from the Poincare group, the second can also be explained in terms of a 
group theory.

In nonrelativistic quantum mechanics, there are some difficulties when deduc-
ing observables from a symmetry group. Full-symmetry group in nonrelativistic 
quantum mechanics is the Galilean group generated by rotations, translations, and 
proper Galilean transforms defining a uniform and rectilinear motion system at 
rate v:

x x vt= +′� (2.32)

This group has poor algebraic properties which makes it difficult to build its represen-
tations. Apparently, it relates to some formal imperfection of nonrelativistic mechan-
ics capable to describe only slow motions.

13 Later we will show that other observables are obtained as functions of those described above.
14 Note that relativistic quantum mechanics does not contain operators of multiplication by coordi-
nates which are obtained, as we will see, in the nonrelativistic limit from the operators of relativistic 
angular momentum (eq. (2.30)).
15 Here, we discuss the so-called “Schrodinger representation.” In the “Heisenberg representation,” 
state vectors, in contrast to observables, are time-independent.
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2.2 �Quantum numbers of symmetry groups and their  
physical meaning

As shown above, observables of a quantum system can be derived from its symme-
try group. Of course, the choice of the observables is not unique: for example, the 
operators of momentum and angular momentum derived from the isometry group 
depend on coordinate axes: and, therefore, on one-parameter subgroups. However, 
it will be shown that the number of such linearly independent observables depends 
on the group only. All observables are Hermitian operators, which act on the space of 
state vectors of a quantum system. As is known, for the set consisting of the maximum 
number of commuting operators, there are common eigenvectors which can be num-
bered by corresponding sets of eigenvalues. The eigenvalues used for such numbering 
are called quantum numbers of the symmetry group.

Consider, for example, the action of the isometry group M(3) on the space R of 
Schrodinger wave functions ψ x y z( , , ) (eq. (2.4)). This group generates the operators of 
momentum p p p, ,x y z and angular momentum L L L, ,x y z. As is easily verified, momen-
tum operators commute with each other but do not commute with angular momen-
tum operators, and also angular momentum operators do not commute with each 
other. The maximum number of commuting operators is three: p p p, ,x y z. Common 
eigenfunctions of these operators are plane waves:

� �ψ x y z e e( , , ) = = .q q q
i qx i q x q y q z( )/ ( + + )/

x y z
x y z� (2.33)

Function (2.33) corresponds to eigenvalues q q q, ,x y z of operators p p p, ,x y z. Since func-
tions (2.33) are not square-integrable (eq. (2.1)), they do not belong to the Hilbert 
space R and hence are not wavefunctions in the strict sense of the word. There exist 
no infinite wave packets (eq. (2.33)) in nature: each wave packet is a plane wave in 
some limited area and vanishes at infinity. However, in theoretical studies, it is useful 
to consider also “nonnormable” wavefunctions; furthermore, plane waves are par-
ticularly important and the very term “wave function” originates from them. Eigen-
values q q q, ,x y z change continuously (“belong to a continuous spectrum”) and take 
any real values. Since any wave function can be expanded in a Fourier integral (eq. 
(1.38)), that is, in a “continuous linear combination” of plane waves, functions (eq. 
(2.33)) form a (continuous) basis of space R for all possible sets of quantum numbers 
(q q q, ,x y z).

As a second example, consider the rotation group SO(3) in space R. The observ-
ables of the group are L L L, ,x y z; the maximum system of commuting observables con-
tains only one of them, for example, Lz. Space R can be decomposed into a sum of 
irreducible subspaces of group SO(3); one way to do this was discussed in Section 
1.1, where irreducible subspaces are denoted as nlR . Each of them has the basis 
ψ x y z f r Y φ( , , ) = ( ) (ϑ, )nlm n l

m( )  (eq. (1.28)) composed of eigenfunctions of operator Lz with 
eigenvalues …m l l l l= − , − + 1, , − 1, . In contrast to the previous example, the quantum 
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number of the group SO(3) (single, in this specific case) is insufficient to number the 
basis of the entire R: it enumerates only the basis for each irreducible subspace. Later, 
we will obtain from symmetry groups two other quantum numbers l and n.

Some observables in quantum mechanics such as the operator of kinetic energy

E
m

p p p= 1
2

( + + )x y zкин
2 2 2� (2.34)

and the operator of total angular momentum16

L L L L= + +x y z
2 2 2 2� (2.35)

cannot be obtained from a symmetry group with the above method.
However, all known observables are functions of those obtained from one-pa-

rameter subgroups of the symmetry group. We will call the latter main observables 
of the symmetry group, and the Hermitian operators which are functions of the main 
observables, we will call simply observables. Equations (2.34) and (2.35) are the qua-
dratic functions of the main observables of the isometry group.

Casimir operators of the symmetry group are polynomials of main observables 
commuting with all of them. Operator (2.34) commutes with all momenta and 
angular  momenta and, therefore, is a Casimir operator of the isometry group. As 
we will see, Casimir operator of G commutes also with all operators Tg; this implies 
that the Laplace operator (different from Ekin only by factor m2 ) commutes with the 
operators of translation and rotation. This explains the role of Laplace operator in 
mathematical physics. Operator (2.35) commutes with all momenta and, therefore, is 
a Casimir operator of rotation group; therefore, it also commutes with all operators of 
rotation TO.

The following theorem of representation theory, the so-called “Schur’s lemma,” 
formulates the most important property of Casimir operators17:

All vectors of an irreducible space of a group are eigenvectors of its Casimir oper-
ator having the same eigenvalue. In other words, irreducible space of a group is an 
eigenspace of its Casimir operator С; that is, for all vectors, ψ of such space Cψ λψ=  
for some λ. Therefore, operator С is constant on the space of the irreducible repre-
sentation and has value λ. Schur’s lemma will be proved in Chapter 3, and here, we 
illustrate it with some examples.

Irreducible subspaces of the isometry group are defined in R as those where Hkin 
is constant, since Hkin is the Casimir operator of the isometry group:

16 Designation L2 should be understood as a single sign for the operator on the right side of eq. (2.35). 
Usually, operator L (root of L2 ) is not considered.
17 The theorem was proved by I. Schur and the term “lemma” is a purely historical confusion.
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�
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2 2 2
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� (2.36)

This is a Schrödinger equation for stationary states of a free particle. Thus, the value 
of the Casimir operator Hkin on an irreducible subspace of the isometry group is the 
energy of a free particle.

Irreducible subspaces of the rotation group (eq. (2.35)) are defined in R as those 
where the operator of total angular momentum is constant:

L ψ λψ= .2� (2.37)

It is known (see also Section 1 in Appendix B) that eigenvalues of this equation are 
�λ l l= ( + 1) 2, where l = 0, 1, 2, … In particular, on the subspace nlR , the values of L2 are 

�l l( + 1) 2. Thus, on an irreducible subspace of the rotation group, the Casimir operator 
L2 defines the maximum value l of the projection of the angular momentum Lz and the 
dimension 2l + 1 of the subspace. This suggests a group interpretation of number l. If 
we call quantum numbers also the eigenvalues of Casimir operators of the symmetry 
group and its subgroups, then l l( + 1) is a quantum number of group SO(3); it is deter-
mined by an integer number l which is often also called a quantum number. However, 
there is not an observable of group SO(3) with values l for the basis vectors: for l ≠ m,  
number l does not coincide with the value m of Lz or with the value of any other 
observable of SO(3). We will distinguish “true” quantum numbers (eigenvalues of the 
observables) from the parameters to define them (like l defines l l( + 1)).

The third index п is associated with the group SO(4) and numbers the eigenfunc-
tions of an electron in the Coulomb field. By Fock transform, ψ x y z( , , )nlm  is carried into 

ξΨ ( )nlm  defined on the sphere S3, and the space Rn generated by eigenfunctions with 
given п is carried into the irreducible subspace Fn of SO(4). To find this subspace in F, 
we will use Casimir operator of SO(4) the same way as for the full angular momentum 
as in eq. (2.35):

∑ LΛ =
α β

αβ
2

, =1

4
2

	
(2.38)

where Lαβ corresponds to the one-parameter rotation group in the plane ξ ξ( )α β :
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To prove that Λ2 commutes with all operators Lγδ (e.g., L12), represent Λ2 as

L L L L L L LΛ = ( + + ) + ( + + ) − .2
12
2

23
2

31
2

12
2

24
2

41
2

12
2� (2.40)

Since first bracket in eq. (2.40) is L2 and L i k( , = 1, 2, 3)ik  have the same expressions as 
in the three-dimensional case (x y z, ,  replaced by ξ ξ ξ, ,1 2 3), then L12 commutes with 
the first bracket. The second bracket is obtained from the first only by substituting ξ4 



38   2 Observables of a quantum system

instead of ξ3, so L12 commutes also with the second bracket. Since the degrees of the 
same operator commute, L12 commutes with L− 12

2  and Λ2. So Λ2 is the Casimir operator 
of SO(4).

Space Fn+1 consists of n-th degree homogeneous harmonic polynomials of 
ξ ξ ξ ξ, , ,1 2 3 4. Since all such polynomials form an irreducible subspace of SO(4), by 
Schur’s lemma, they are all eigenfunctions of Λ2 with the same eigenvalue λ. To find 
λ, it is enough to take one polynomial un and calculate uΛ n

2 . Take a polynomial that 
depends only on ξ ξ,1 2: u ξ ξ ξ iξ( , ) = ( + )n

n
1 2 1 2 . Defining ξ iξ ζ+ =1 2  obtain that ζRe n and 

ζIm n are homogeneous polynomials of degree n, they are harmonic (since they are 
real and imaginary parts of analytic function ζ n); therefore, ζ n is also a harmonic func-
tion of ξ ξ,1 2 (consequently, also of ξ ξ ξ ξ( , , , )1 2 3 4 ). Accurate with designations, the first 
term of eq. (2.40) is L2. Considering un as a polynomial of three variables ξ ξ ξ, ,1 2 3, we 
have �L L L u n n u( + + ) = ( + 1)n n12

2
23
2

31
2 2  (l being replaced by n). The second bracket takes 

the same value. Now find L un12
2 . Introducing a polar angle φ in the plane ξ ξ( , )1 2 , obtain 

�L = i φ12
∂

∂ , ζ e=n inφ, and �L u n u=n n12
2 2 2 . So, � �u n n n u n n uΛ = [2 ( + 1) − ] = ( + 2)n n n

2 2 2 2 . 
Replacing n by n − 1, we obtain that the value of Λ2 on the irreducible subspace Fn is 

�n( − 1)2 2.
Thus, for the “hydrogen” electron, the indices n, l, and т of wavefunctions are 

associated with the group SO(4) and its subgroup SO(3). In the space of Schrodinger 
wave functions, n − 12  is the value of the Casimir operator of group SO(4) on its irre-
ducible subspace Rn, and l l( + 1) is the value of the Casimir operator of group SO(3) on 
its irreducible subspace n l,R ; finally, m is the eigenvalue of the observable Lz of group 
SO(3). Indices ψnlm indicate, therefore, the position of the basis vector in the irreduc-
ible subspaces of the chain ⊃SO(4) SO(3). Though the numbers n, l have no direct 
meaning for the group SO(4), we will also call them quantum numbers due to their 
connection with Casimir operators.

As we will see, number n is an eigenvalue of one of the main observables of the 
SO(4,2) group.



3 Lie groups and Lie algebras

3.1 Lie groups

The groups mentioned in the previous chapter, such as rotation groups SO(3) and 
SO(4), the isometry group of three-dimensional Euclidean space M(3), Lorentz and 
Poincare groups, conformal group SO(4,2) are important for Physics and share a 
common property of their elements being described by continuous parameters. Now 
we show, by example of SO(3) group, how these parameters can be set.

The elements of SO(3), or proper rotations, are defined in a fixed-coordinate 
system by orthogonal matrices of the third order O o= ( )ij  with determinant +1. The 
elements of an orthogonal matrix are connected by six independent relations

∑ o o δ i j= ( , = 1, 2, 3),
k

ik jk ij
=1

3

� (3.1)

where δ = 1 ij  for  i = j and δ = 0 ij  for ji ≠ . The independence of these relations means 
that none of them is a consequence of the others (we will not prove it here); the 
elements of orthogonal matrix are also connected by other relations which can be 
obtained by interchanging the first and the second indices in eq. (3.1), but these rela-
tions depend on relations (eq. (3.1)) (namely, equivalent to them). Generally speaking, 
from six equations (eq. (3.1)), one can express six variables oij in terms of three others, 
which can vary independently and determine an orthogonal matrix. Therefore, SO(3) 
is a three-parameter group.

However, the procedure for solving the equations meets difficulties: when we 
said that it is possible “generally speaking,” we had in mind the following limita-
tions. First, it is required that the Jacobian of six functions in the left-hand side of eq. 
(3.1) be nonzero for any values o i j( , = 1,2,3)ij

0  with respect to six selected variables oij;  
under this condition, six selected matrix elements can be expressed in terms of the 
three others o o o, ,i j i j i j1 1 2 2 3 3

 in a sufficiently small vicinity of values o o o, , ,i j i j i j
0 0 0
1 1 2 2 3 3

 where 
these three parameters can change freely. But this assumption is not always true. If, 
for example, for some matrix O0, one of the three elements oi j

0
k k

 equals unity, then these 
three elements cannot be free parameters, because from eq.(3.1), it follows that o ≤ 1ij  
(for i = j). But then the corresponding Jacobian should go to zero with respect to six 
other elements and, therefore, the above procedure is not applicable. It can be ver-
ified that for any orthogonal matrix O0, there are such six elements that the above 
Jacobian is nonzero; but, as was shown, they cannot be chosen with the same method 
for the whole group. Thus, the parameterization of group SO(3) with three matrix ele-
ments o( )ij  is local: we need to use different triples of elements to describe different 
parts of the group.

Euler angles provide a more intuitive parameterization of group SO(3). Let х, у, 
z be a right-handed coordinate system, which we call a “fixed” coordinate system  
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(Fig. 3.1), then a proper rotation О can be defined by introducing a “moving” right-
handed coordinate system x y z, ,′ ′ ′ which is obtained from the “fixed” system by 
rotation О. The position of “moving” axes with respect to the “fixed” axes is defined 
as follows. Take the intersection line of planes xy( ), x y( )′ ′  (“nodal line”) and choose 
a direction on it; let φ denotes the angle between this direction and the axis x. ψ 
denotes the angle in the plane x y( )′ ′  between the positive direction of the nodal line 
and the axis х′. Finally, ϑ denotes the angle between axes z and z′. In Euler coordi-
nates, the position of axes x y z, ,′ ′ ′ and, thereby, rotation О is described by angles 
φ ψ and, , ϑ, where φ π0 ≤ ≤ 2 , ψ π0 ≤ ≤ 2 , and π0 ≤ ϑ ≤ .

The disadvantage of this parameterization is that it is not a one-to-one correspon-
dence: values φ φ π= 0, = 2  and ψ ψ π= 0, = 2  correspond to the same rotation.  
Furthermore, the axis of rotation is not determined for the identical rotation, and 
the position of the nodal line is not defined for rotations about axis z, so that these 
rotations cannot be associated with no definite Euler angles. Therefore, Euler angles 
do not provide a one-to-one parameterization for the whole group SO(3). The same 
problem is met when longitude and latitude are defined on a two-dimensional sphere.

Wigner suggested an intuitive local parameterization of SO(3) (Wigner, 1959,  
p. 110). According to Euler’s theorem (from the kinematics of rigid body), each non-
identical rotation has a uniquely defined axis of rotation and can be obtained by 
rotation about this axis by an angle defined up to π2 . Let l be some axis and l w( , ) a 
point on it at a distance w

π  from the origin (w > 0 stands for the direction of the axis 

Zʹ

yʹ

xʹ

x

Nodal line

y

Z

ϑ

ψφ

Fig. 3.1: Euler angle parameterization for SO(3) group.
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andw < 0 for the opposite direction). Point l w( , ) will represent the rotation about axis l 
by (positive or negative) angle w. Small angles correspond to the points in the vicinity 
of the coordinate origin; it is therefore natural to assign the coordinate origin to the 
identity rotation. The points of a ball K with the radius exceeding unity, for example, 
x y z+ + < 42 2 2 , represent all possible rotations, and points l w( , ) and l w π( , + 2 ) rep-
resent the same rotation. If K is covered by a finite number of areas εi such that none 
of them contains such pair of points, then in each εi, coordinates x y z( , , ) determine a 
one-to-one continuous parameterization of some part of group SО(3), and each rota-
tion belongs to one of these parts.

The above example shows that generally we cannot parametrize the whole group 
and are to content with local parameterization. The symmetry groups we will need, 
namely, Lie groups, allow good local parameterization. Lie groups are defined as 
follows:

Let G be a group. Suppose that G contains a finite or infinite sequence of sets 
…ε ε, ,1 2  which fully cover G, that is,

(1)	 Each element g of G belongs to at least one of sets εi.
	 Suppose also that each set εi allows parameterization in the sense that
(2)	 For each εi, there is a region Di of n-dimensional Euclidean space Rn which is in 

a one-to-one correspondence with εi. Each element g from εi is associated with 
coordinates …α α, ,i

n
i

1
( ) ( ) of its corresponding point in Rn interpreted as parameters. 

The same Rn with the same Cartesian coordinate system is taken for all i. The cor-
respondence between εi and Di defines i-th parameterization (in εi).

	 The parameterizations are connected as follows:
(3)	 If g belongs simultaneously to εi and εj and has, therefore, both i-th and j-th 

parameterizations, then parameters of g in these parameterizations …α α, ,i
n
i

1
( ) ( ) 

and …α α, ,j
n

j
1
( ) ( ) obey the equation,

��������
…

…

α f α α

α f α α

= ( , , )

= ( , , ),

i ij j
n

j

n
i

n
ij j

n
j

1
( )

1
( )

1
( ) ( )

( ) ( )
1
( ) ( )

� (3.2)

where f n
ij( ) are continuously differentiable functions of п arguments.

If the above requirements are satisfied, the group G is called a Lie group.
Evidently, this method of local parameterization is not unique: one and the same 

Lie group can be determined by different local parameters. It is only required that 
different parameterizations be related with each other via continuously differentiable 
maps. In other words, Lie group is not a group with a fixed system of local param-
eterization; rather, it is a group which can be parametrized “well enough,” that is, 
by parameters changing in a continuously differentiable manner when g varies. The 
number of parameters n is called a dimension of the group and it does not depend on the 
chosen method of parameterization. Parameters αk are quite similar to the curvilinear  
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coordinates in space or on a surface and sometimes we will refer to them as local 
coordinates on group G.

In the previous example (parameterization of SO(3)), the parameters in different 
sets εi are connected by equations x x y y z z= , = , =i j i j i j( ) ( ) ( ) ( ) ( ) ( ) or





































x
x y z

x

y
x y z

y

z
x y z

z

= 1 − 2
( ) + ( ) + ( )

,

= 1 − 2
( ) + ( ) + ( )

,

= 1 − 2
( ) + ( ) + ( )

i

j j j

j

i

j j j

j

i

j j j

j

2 2 2

2 2 2

2 2 2

�
(3.3)

which can be verified by reader. If we take as parameters different triples of elements 
of orthogonal matrix oij, eq. (3.2) is obtained, as stated above, by solving eq. (3.1); the 
explicit expression of functions (3.2) is impossible in this case.

Exponential transform provides a standard parameterization of Lie groups easily 
used to discover their dimension. We apply it to the so-called matrix Lie groups, that 
is, homogeneous linear transformations of a finite-dimensional space represented by 
matrices in some coordinate system. The product of transformations corresponds to 
the product of the matrices, the identity transformation corresponds to the identity 
matrix, and the inverse transformation corresponds to the inverse matrix. All complex 
nondegenerate matrices of order n constitute a general linear group n CGL( , ).18 Any 
group of matrices of order n is a subgroup of n CGL( , ) and is defined by certain rela-
tions. Thus, the orthogonal group of order n, O n( ), has real elements and its inverse 
matrices O−1 coincide with transposed matrices Ot  (eq. (3.1)):

O O O o o oIm = 0, = , or Im = 0, = .t
ij ij ji

−1 −1� (3.4)

The group of proper rotations SO(n) is obtained by additional requirement Odet = 1, 
the unitary group U (n) by the condition that inversed matrices U−1 coincide with their 
transposed complex conjugates Ut ∗:

∗ ∗U U u u= , or =t
ij ji

−1 −1� (3.5)

SU(n) group is obtained by additional requirement Udet = 1.19 Orthogonal and unitary 
groups are particularly important for physics. Equally important is the Lorentz 
group which is pseudo-orthogonal. Group SO(p,q) consists of real matrices of order 
p + q, which have determinant 1 and define linear homogeneous transformations of  

18 Groupe linéaire (n specifies the dimension of the space, С is a complex number).
19 Spécial unitaire (fr.) (Special unitary).
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p q( + )-dimensional space to preserve the form � �ξ ξ ξ ξ+ + − − −p p p q1
2 2

+1
2

+
2 . SO(3,1) 

is a Lorentz group, while SO(4,2) is a conformal group. Here we will not discuss pseu-
do-orthogonality conditions in their general form, and later consider the conformal 
group in detail.

Define the exponential function of matrix X as

� �U e X X
n

X= = 1 + + 1
2 !

+ + 1
!

+X n2� (3.6)

It can be verified that eq. (3.6) converges for any matrix X (i.e. the element sij
n( ) of 

its partial sum S n( ) converges to uij for all i, j) and defines a continuous one-to-one  
correspondence between matrices X sufficiently close to the zero matrix and matrices U 
sufficiently close to the identity matrix. Thus, X can be considered as the logarithm of U 
from the vicinity of the identity matrix. Without these restrictions, the correspondence 
between X and U is no more a one-to-one correspondence. As is known, the logarithm 
function is not uniquely determined for complex numbers; the same is true for matrices 
e e=πi2 ⋅1 0, where О is the zero matrix and 1 is the identity matrix. But the “real logarithm” 
is not always unique even for real matrices, as is seen from the example of matrices,

















X π
π X π

π= 0 −
0 , = 0

− 0 ,1 2� (3.7)

for which e e= = −1X X
1 2 .

If matrices X, Y commute, all their degrees also commute; therefore, similar to 
numbers,

e e e XY YX= , if =X Y X Y+� (3.8)

As matrix −X commutes with X, we have, in particular, e e e= ⋅X X0 −  and

e e( ) = .X X−1 −� (3.9)

In addition, that the following equation can be proved:

e edet = ,X trX� (3.10)

where tr X x= ∑i
n

ii=1  is the trace of X. From eq. (3.9), it follows that eX is a nondegenerate 
matrix for all X and that Xdet = 1 for all traceless matrices X (tr X = 0).

Suppose X is a real antisymmetric matrix, that is, xIm = 0ij , x x ImX= − ( = 0)ij ji , 
X X( = − )t . Then for O e= X, the inverse matrix coincides with the transposed one:

O e e e O= = = ( ) = ,X X Xt t−1 − t� (3.11)

that is, О is orthogonal. As mentioned above, all orthogonal matrices sufficiently 
close to the identity matrix can be uniquely represented as eX, where X is a suffi-
ciently small matrix. From eq. (3.10), it follows that determinants of sufficiently small  
matrices X are close to the identity. But O Odet = dett , and from OO = 1t , obtain 

O(det ) = 12 , Odet = ± 1; therefore, for small X, we have Odet = 1 and О belongs to SO(n).
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Thus, eq. (3.6) defines a continuous one-to-one correspondence between matrices 
SO(n) close to identity and antisymmetric matrices close to zero. The latter are much 
easily parametrized: matrix X can be parametrized by its elements above the diagonal 
(xij, i  <  j) which completely determine real antisymmetric matrices. The number of 
such xij is n n( − 1)

2
. As follows from eq. (3.6), the same parameters xij can be assigned to 

the orthogonal matrix O e= X and thus, they define a parameterization of some vicin-
ity of identity in SO(n). Now we can parameterize also a vicinity of any rotation O0 by 
associating all matrices О close to O0 with matrices O OO=′ 0

−1 close to identity. Since 
the latter are already parameterized, we can assign to matrix О the same parame-
ter values as those describing the corresponding matrix O′. This method of “group 
translation” is applicable to all Lie groups and allows reducing parameterization of 
a vicinity of any element to parameterization of a vicinity of identity. Evidently, the 
dimension of SO(n) is n n( − 1)

2 .
Similarly is parameterized SU(n) group. As it was done for eq. (3.11), matrix U e= X 

is proved to be unitary if X X= −t ∗  (here we have to use eq. (3.5) instead of eq. (3.4)). 
Such matrices X are called antihermitian. Independent parameters are chosen as 
real and imaginary parts of n n( − 1)

2
 elements above the diagonal and imaginary parts 

of their diagonal elements. Consequently, the dimension of the unitary group is 
n n n n( − 1) + = 2. The condition Udet = 1 is not automatically fulfilled in this case and 
follows from the additional condition tr X = 0 (eq. (3.10)). Due to this condition, only  
п − 1 diagonal elements of matrix X are independent, and the n-th element is expressed 
in terms of the others, so that the dimension SU(n) is n − 12 . So, the dimensions of 
groups SU(2), SU(3), SU(4), SU(5), and SU(6) are 3, 8, 15, 24, and 35, respectively.

It can be shown that the dimension of pseudo-orthogonal group SO p q( , ) depends 
on the sum p q+  rather than on p,q (i.e. the number of pluses and minuses in the 
quadratic form to determine the group). Therefore, the dimension of Lorentz group 
SO (3,1) is six, similar to that of SO(4) group; the dimension of the conformal group 
SO(4,2) is the same as that of SO(6); that is, = 156 ⋅ 5

2
.

Now consider nonmatrix groups.20 The elements of Euclidean translations group 
D(3) are defined by translation vectors а having three components a a a, ,x y z; thus, 
the group is three-dimensional. The elements of Euclidean isometry group M(3) are 
defined by pairs O a( , ), where О is the rotation and а is the translation vector. Rota-
tions and translations depend on three parameters each, so the dimension of M(3) 
is 6. The elements of the Poincare group are defined by pairs a(Λ, ), where Λ is the 
Lorentz transformation depending on six parameters, and а is the four-dimensional 
translation vector depending on four components; therefore, the dimension of the 
Poincare group is 10.

20 All Lie groups considered in physics are isomorphic to some matrix groups, but these matrix 
groups are artificially constructed and are not directly related to the space where the group originally 
acts. As these spaces (e.g. Euclidean or Minkowski spaces) are important for Physics, we do not re-
place such groups as isometry group or Poincare group by isomorphic matrix groups.
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Lie groups can be compact or noncompact, depending on their topological 
structure. Roughly speaking, the difference between them is the same as between a 
closed finite line segment a x b≤ ≤  and the whole line x−∞ ≤ ≤ ∞. It is known that no 
sequence of points can “go to infinity” on a segment, rather it accumulates at least in 
one point x0, whereas on the infinite line, there exists a sequence that “goes to infin-
ity” (e.g. …x = 1, 2, 3,k ). More exactly, a sequence of points x{ }k  is called compact if it 
contains a subsequence x{ }kl

 converging to some point x0 (a finite limit). A set is called 
compact if any sequence of its points is compact. A closed finite segment is compact 
(Bolzano-Weierstrass theorem), but the entire line is not compact.

The line is a simplest Lie group (with the operation of addition), whereas the 
segment is not even a group. In fact, compactness can be defined for other objects 
than groups, but we will consider Lie groups only. Let G be a Lie group, g{ }k  is a 
sequence of its elements, g0 is an element of G. Then there is a set ε which contains 
g0 and is parameterized by parameters …α α, , n1 ; let parameters of g0 be …α α, , n1

(0) (0).  
Assume that all gk belong to ε starting from some number and have in ε parameters 
…α α, ,k

n
k

1
( ) ( ), and …α α l nlim = ( = 1, , )k l

k
l→∞

( ) (0) . Then gk is said to converge to g0. It is 
easily verified that this definition is independent on the chosen set ε containing g0 (if 
there is more than one such set). This definition of convergence in a Lie group shows 
how parameterization of a group can be used. In the case of a matrix group G, the 
elements of matrix U belonging to G are numbers uij having is a well-known definition 
of convergence. uij are expressed, by definition of a Lie group, as continuous functions 
of some number of independent parameters, and the convergence of uij follows from 
the convergence of the parameters; in other words, for a matrix group, convergence of 
elements U U→k( ) (0) means convergence of u u→ij

k
ij

( ) (0) for all i, j. For the group of trans-
lations, the convergence of translations a a→k( ) (0) means a a a a a a→ , → , →x

k
x y

k
y z

k
z

( ) (0) ( ) (0) ( ) (0).  
For the isometry group, convergence O a O a( , ) → ( , )k k( ) ( ) (0) (0)  means O O→k( ) (0) and 
a a→k( ) (0). A sequence of elements g{ }k  of a Lie group G is called compact, if it contains 
a subsequence g{ }k  converging to some element g0 of the group. A Lie group is called 
compact if any sequence of its elements is compact.

It is easily verified that SO(3) is compact. Indeed, from the orthogonality condi-
tion (3.1), it follows that o ≤ 1ij  for all i, j (it is sufficient to consider the sum of squares 
of the elements of any row). If O{ }k( )  is a sequence of orthogonal matrices, then due 
to finiteness of the sequences …o k{ }, = 1, 2,ij

k( ) , we can find a subsequence O{ }k( )l  such 
that numbers oij

k( )l  converge for all i,j; that is, matrices O k( )l  converge to some matrix O(0).  
Transition to limit in eq. (3.1) proves that O(0) is also orthogonal and its determinant is 1.

Translation group is noncompact. Indeed, translations a a a a= ( , , )x y z  are para-
metrized by numbers a a a, ,x y z; a sequence of translations a k= ( , 0, 0)k( )  cannot 
contain a converging subsequence a k( )l  since numbers kl in this case would have a 
finite limit.

All groups nSO( ), nSU( ) are compact, because they consist of matrices with finite 
elements. Isometry group and Poincare group are noncompact because they contain 
the subgroup of translations. Lorentz group and conformal group are also noncompact.
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3.2 Lie algebras

As we saw, one-parameter subgroups of Lie groups are particularly important in 
physics because they can be used to obtain observables. One-parameter subgroups 
are most convenient to study for matrix Lie groups. Matrix groups consist of nondegen-
erate matrices of a specified order with an operation of group multiplication, so that 
the identity matrix (denoted 1) plays the role of identity, and the inverse matrix plays 
the role of the inverse element. Orthogonal and unitary groups are matrix groups. All 
groups of matrices of order n are subgroups of the general linear group; that is, the 
group of all nondegenerated matrices of order n with complex elements n CGL( , ).

Since matrices define operators in a finite space, matrix groups can also be con-
sidered as operator groups. In fact, consider n-dimensional complex space Cn with 
coordinates …z z, , n1 . The addition of vectors is defined in Cn as

… … …z z w w z w z w( , , ) + ( , , ) = ( + , , + ),n n n n1 1 1 1� (3.12)

the multiplication by complex numbers as

… …λ z z λz λz( , , ) = ( , , ).n n1 1� (3.13)

The scalar product in Cn is defined as

∑z w z w= ,
i

n

i i
=1

∗� (3.14)

and is easily verified to have the following properties:

z v w z w v w w z v w z w v+ = + , + = +� (3.15)

(additivity);

z λw λ z w=� (3.16)

for all complex λ (homogeneity with respect to the second factor),

λz w λ z w= ∗� (3.17)

for all complex λ (“antihomogeneity” with respect to the first factor),

z z z z z≥ 0; > 0 for   ≠ 0� (3.18)

(positive definiteness).
Equations (3.15) and (3.16) mean linearity of scalar product with respect to the 

second factor and antilinearity with respect to the first factor.
Matrix U u= ( )ij  defines a linear transformation or (what is the same) a linear oper-

ator in Cn as

…∑z u z i n= ( = 1, , )′i
j

n

ij j
=1

� (3.19)
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or, briefly

z Uz′ = .� (3.20)

As is easily seen, a product of matrices corresponds to the product of operators in the 
same order. Thus, matrix groups may be considered as operator groups. If matrices U 
are unitary, that is, ∗U U= t−1 , then operators are also unitary:
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=1 =1 =1 =1 , =1 =1

, =1 =1

� (3.21)

A one-parameter subgroup U{ }α  of a matrix group G, by definition, satisfies the con-
dition,

U U U=α α α α+1 2 1 2
� (3.22)

For α α= = 01 2 , obtain U U=0 0
2, whence U = 10 . Matrix Uα can be shown to depend on α 

in a continuous and even differential way, that is, u( )α ij are differentiable functions of 
α. As we saw in Chapter 2, observables are obtained from representations of one- 
parameter subgroups by differentiating U ψα  with respect to α for α = 0. In the case  
of matrix groups, this procedure can be carried out within the group itself. Let

A i
U

α
i
dU
dα

= lim
− 1

=
α

α α
α→0 =0� (3.23)

and call А a generating matrix or a generator of a one-parameter subgroup (eq. (3.13)).
Factor i is introduced here for the following reason. Unitary representations of 

groups are most important in physics; in particular, eq. (3.19) defines a unitary rep-
resentation in Cn for a unitary group. If Uα are unitary operators, then for any vectors 
z, w, the equation U z U w z w=α α  is identical with respect to α. Differentiation with 
respect to α gives

d
dα

U z U w
dU
dα

z U w U z
dU
dα

w= +α α α
α

α α α
α

α=0 =0 =0� (3.24)

and since U z z=0 , U w w=0 , for the operator X = dU
dα α=0

α , obtain the identity

Xz w z Xw= −� (3.25)

Or, in coordinate form

∑ ∑ ∑ ∑x z w z x w= −
i

n

j

n

ij j i
j

n

j
i

n

ji i
=1 =1 =1 =1
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that is, x x= −ij ji
∗  or X X= −t ∗ . Matrices satisfying this condition (or, equivalently, 

operators satisfying (eq. (3.25))) are called antihermitian. Antihermitian opera-
tors are not popular with physicists, as their eigenvalues are purely imaginary. 
When multiplied by i, they become Hermitian matrices A iX= , and their elements 
satisfy the conditions a a=ij ji

∗ , or A A=+ , аnd the corresponding operator satisfies 
the identity

Az w z Aw=� (3.27)

Hermitian operators have real eigenvalues: if Az = λz, then

Az z λ z z z Az λ z z= , = ,∗� (3.28)

and from eq. (3.27), it follows λ λ=∗ . This property makes the Hermitian operators 
convenient observables, because their eigenvalues can be identified with real values 
observed experimentally.21

Derive a differential equation for one-parameter subgroups of a matrix group. 
Assuming in eq. (3.22) α α α β= , =1 2 , we find

dU
dα

U U
β

U U U
β

U
U

β
U

U
β

iU A= lim
−

= lim
−

= lim
− 1

= lim
− 1

= −α

β

α β α

β

α β α

β α
β

α β

β
α→0

+

→0 →0 →0
� (3.29)

(note that if Uα β+  is written as U Uβ α, then we have iAU− α, so that Uα and А commute). 
Therefore,

dU
dα

iAU= −α
α� (3.30)

The solution of this matrix differential equation is the same as in the numerical case: 
U Ce=α

iαA− . Assuming α = 0 and taking into account that U0 = 1, obtain the general view 
of a one-parameter subgroup of a matrix group:

U e=α
iαA−� (3.31)

Thus, from the generator А determined by eq. (3.23), we can uniquely reconstruct a 
one-parameter subgroup.

Consider as an example a subgroup of SО(3) consisting of all rotations about coor-
dinate axes. For the rotation by angle α about axis z, we have an orthogonal matrix

O
α α
α α=

cos − sin 0
sin cos 0

0 0 1
.α







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







� (3.32)

21 In mathematical literature, operator X = dUα
dα α=0 is called a generator of a one-parameter sub-

group U{ }α ; if Uα are unitary, then Х is an antihermitian. As follows from А = iX, both recordings are 
equivalent.
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The generator of subgroup O{ }α  is

































A i
dO
dα

i
α α

α α
i

i= =
− sin − cos 0
cos − sin 0

0 0 0
=

0 − 0
0 0

0 0 0
.α

α

α

3 =0

=0

� (3.33)

Verifying eq. (3.31),

















A A A A A=
1 0 0
0 1 0
0 0 0

, = , = , etc.,3
2

3
3

3 3
4

3
2� (3.34)

whence it follows

� �

�





















e iα A iα A α α A

i α α α A A A α iA α A O

= 1 + (− ) + 1
2 !

(− ) + = 1 −
2 !

+
4 !

−

− −
3 !

+
5 !

− + (1 − ) = cos − sin + (1 − ) = .

iαA

α

−
3

2
3
2

2 4

3
2

3 5

3 3
2

3
2

3 3
2

3

�
(3.35)

Similarly, obtain the generators of the one-parameter subgroup of rotations about 
axes х,у:

















































A i
i

A
i

i
A

i
i=

0 0 0
0 0 −
0 0

, =
0 0
0 0 0
− 0 0

, =
0 − 0

0 0
0 0 0

.1 2 3� (3.36)

As might be expected, these matrices are Hermitian. The reader is advised to write 
down the matrix representing rotation about an arbitrary axis and to find the corre-
sponding generator.

As a second example, consider one-parameter subgroups of SU(2) generated by 
Hermitian matrices

















































τ τ τ=
0

0
, =

0 −
0

, =
0

0 −
.

i

i1

1
2

1
2

2
2

2
3

1
2

1
2

� (3.37)

These matrices are connected to well-known Pauli matrices σ τ= 2k k (k = 1,2,3) satisfy-
ing equations σ = 1k

2 . Thus,


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
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
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
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
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− sin
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− sin
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− sin

2
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2
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α
k iατ iα σ
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α α α

iα

iα
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2
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− 2
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These matrices are easily verified to be unitary. The reader is encouraged to find the 
most general one-parameter subgroup of SU(2).

For one-parameter subgroups, one can define operations which again produce 
one-parameter subgroups. To do that, we will need the following concept. A curve in 
the space of matrices is a family of matrices X{ }α  dependent on some parameter. This 
concept is similar to the curve r(α) in usual space or on the surface defined by radius 
vector as a function of some parameter. The dependence is assumed continuously 
differentiable, that is, the components r(α) are continuously differentiable functions 
of α. Similarly, for a matrix curve X{ }α , matrix elements (x )α ij are assumed continuously 
differentiable functions of α. By analogy with the tangent vector r′(α) at point r(α), we 
can determine a tangent vector X′α at the point of a matrix curve Xα as matrix

dX
dα

X X
β

= lim
−α

β

α β α

→0

+� (3.39)

The elements of this matrix are d x

dα

( )α ij . We say that matrix curves X{ }α  and Y{ }α  are 
tangent at the identity, if

X Y
dX
dα

dY
dα

= = 1, = ;α
α

α
α0 0 =0 =0� (3.40)

that is, both curves originate at the identity (for α = 0) and have a common tangent 
vector at it. From eq. (3.23), it follows that for a one-parameter subgroup U{ }α , the 
tangent vector at the identity is its generator multiplied by −i.

Let U{ }α  be the one-parameter subgroup of matrix group G. Substitute the param-
eter α for λα, where λ is a real number:

V U= .α λα� (3.41)

Evidently, curve V{ }α  is also a one-parameter subgroup,

V U U U U V V= = = ⋅ = ⋅ ,α α λ α α λα λα λα λα α α+ ( + ) +1 2 1 2 1 2 1 2 1 2
� (3.42)

which is called a product of one-parameter subgroup U{ }α  and the real number λ. The 
meaning of the definition is that the “speed” along one-parameter subgroup increases 
by λ times. The generator of the subgroup, in its turn, is multiplied by λ:

dV
dα

dU
dα

λ
dU
dα

= = .α
α

λα
α

α
α=0 =0 =0� (3.43)

Let U{ }α , V{ }α  be two one-parameter subgroups of a matrix group G. Construct a matrix 
curve W U V{ } = { }α α α . Since multiplication is generally not commutative, the curve is not 
generally a one-parameter subgroup. Since W U V= = 10 0 0 , the curve originates from 
the identity. Find its tangent vector at this point:

dW
dα

dU
dα

V U
dV
dα

dU
dα

dV
dα

= ⋅ + = + .α
α

α
α

α
α

α
α

α
α=0 =0 0 0 =0 =0 =0� (3.44)
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Designate А and В as the generators of subgroups U{ }α  and V{ }α , respectively; then 
the tangent vector to U V{ }α α  at the identity is −i(A + B). Construct a one-parameter 
subgroup W e{ } = { }α

iαC−  with a tangent vector at the identity C = −i(A + B); that is, the 
subgroup is tangent at the identity to the curve U V{ }α α ; this subgroup is called the sum 
of subgroups U{ }α , V{ }α .

The meaning of this definition is that such one-parameter subgroup most 
closely approximates U V{ }α α  near identity: matrix W e=α

iαC−  differs from the product 
U V e e=α α

iαA iαB− −  for small α by the value of the second order with respect to α. It can be 
shown that such one-parameter subgroup is unique. Thus, for small α and first-order 
accuracy,

W U V≈α α α� (3.45)

Therefore, the generator of the sum of one-parameter subgroups is the sum of their 
generators.

The same result is obtained if the product of subgroups is taken in the reverse 
order V U{ }α α ; that is, the sum does not depend on the order of the multiplied sub-
groups. We can prove that addition and multiplication by real numbers satisfy also all 
other requirements of a vector space. Thus, one-parameter subgroups of a matrix Lie 
group constitute a real vector space.

Note that we define no multiplication by complex numbers for one-parameter 
subgroups.22 If a generator А of subgroup U{ }α  is multiplied by i, the obtained matrix 
may be a generator of no one-parameter subgroup; but even if such a subgroup exists, 
it is not considered a product of U{ }α  and i.

In the vector space of one-parameter subgroups, introduce another operation. Let 
U{ }α , V{ }α  be the one-parameter subgroups of a matrix group. Construct a curve W{ }α :

W U V U V= .α α α α α
−1 −1� (3.46)

This expression “measures the noncommutativity” of the subgroups: the identity  
W{ }α  is equivalent to U V V U=α α α α. Therefore, noncommutativity is measured by the  

deviation of Wα from the identity of the group. Substituting (eq. (3.22)) U V,α α
−1 −1 for 

U V,α α− −  and differentiating, we find that tangent vector to W{ }α  at the identity is zero, 
and therefore gives no information about the “measure of noncommutativity” for 
small α. Write our multipliers as Taylor’s series

� �

� �

U e iαA A V e iαB B

U U iαA A V V iαB B

= = 1 − − + , = = 1 − − + ,

= = 1 + − + , = = 1 + − + ,
α

iαA α
α

iαB α

α α
α

α α
α

−
2

2 −
2

2

−1
− 2

2 −1
− 2

2

2 2

2 2
� (3.47)

22 In general, there is no reasonable way to define such operation.
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and then multiply them, in compliance with the given order and accuracy up to α2; 
so we have

�W α AB BA= 1 − ( − ) +α
2� (3.48)

This shows that Wα − 1 is of the second order of smallness with respect to α. Let β = α2 
and �Z W β AB BA= = 1 − ( − ) +β β  . The tangent vector to this curve

dZ
dβ

AB BA= −( − ),β
β=0� (3.49)

is, generally speaking, nonzero and can be used as a “measure” of noncommutativity. 
Construct a one-parameter subgroup e{ }iαC−  tangent to the curve {Z }α  at the identity. 
To do this, take C AB BA= ( − )i

1 . This parameter subgroup is called a commutator of 
one-parameter subgroups U V{ }, { }α α . Its generator is constructed from the generators 
А, В of one-parameter subgroups by usual commutation of matrices [A,B] = AB − BA 
and dividing it by i.23

Consider, for example, a unitary group Un. In this case, the generators of Lie 
algebra are Hermitian, operations of addition and multiplication by real numbers 
again produce Hermitian operators, that is, generators of U(n). Multiplication by i 
gives not Hermitian matrices which are not generators of the group, and hence, the 
operation has no relation to operations defined on one-parameter subgroups. Further, 
if A, B are the Hermitian operators, then, denoting A+ the adjoint operator with matrix 
tA*, obtain A+ = A, B+ = B,

i
A B

i
AB BA

i
B A A B

i
AB BA

i
A B1 [ , ] = − 1 ( − ) = − 1 ( − ) = 1 ( − ) = 1 [ , ],

+
+ + + + +






�

(3.50)

so that the operation of commutation applied to generators again gives a Hermitian 
operator, that is, a generator of the group. Describe again the relationship between 
the operations with one-parameter subgroups of a matrix Lie group and operations 
with their generators by the following scheme:

U e A
V e B

U V A B
λ U λA

U V
i

A B

                                   { = }
                                   { = }
                    Sum { } and { } +
                   Real multiple { }

          Commutator { }  and { } 1 [ , ]

α
iαA

α
iαB

α α

α

α α

−

−

� (3.51)

23 This discrepancy does not arise in the mathematical literature, and one-parameter groups are writ-
ten as U e V e= ,   =α

αX
α

αY, whence Zα = 1 + α[X,Y]; the generators Х,Y commute like the subgroups they 
generate. In Physics, this complication is done to ensure that generators in unitary representations 
are Hermitian operators.
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Now consider general Lie groups which need not necessarily be matrix groups. 
In the general case, the elements of G can be only multiplied by each other, but, 
unlike matrices and operators, they cannot be added or multiplied by numbers.24 
The concept of one-parameter subgroup remains the same: it is a family of such ele-
ments g{ }α  that

g g g= ⋅ .α α α α+1 2 1 2� (3.52)

However, generators cannot be build for one-parameter subgroups, because in the 
general case, the procedure (3.23) is impossible, as ii implies nongroup operations. 
Nevertheless, the operations on one-parameter subgroups such as addition, multipli-
cation by real numbers, and commutation defined above for matrices can readily be 
extended to the general case with the only difference that one-parameter subgroups 
cannot be defined by generating matrices and operations on one-parameter sub-
groups cannot be substituted by matrix operations on their generators as is described 
in the right side of scheme (3.51), because in the general case, the right side of the 
scheme does not exist.

Define a concept of a “curve” on a Lie group G. Curve is a family of elements of 
group g{ }α  which depends on a real parameter α. A curve is called continuously differ-
entiable if local coordinates …α α( , , )n1  of element gα are continuously differentiable 
functions of α in a vicinity of each value α0:

…α α α α α α= ( ), , = ( ).n n1 1� (3.53)

Compare this definition with a continuously differentiable curve r r α= ( ) defined 
by three scalar functions х = х(α), y = y(α), and z = z(α) in Euclidian space, or with 
a curve in the space of matrices X(α) defined by scalar functions xij. The change 
of local coordinates gives other continuously differentiable functions (eq. (3.53))  
(e.g. …β α β α( ), , ( )n1 ); therefore, the definition of a continuously differentiable curve 
does not depend on the choice of local coordinates. By analogy with tangent vector 
defined at r(α) by derivatives , , ,dx α

dα
dy α

dα
dz α

dα
( ) ( ) ( )  or tangent vector to a matrix curve X(α) 

by derivatives ,dx α
dα

( )ij  we can define components of the tangent vector at a point of the 
curve g{ }α  by the numbers in local coordinates …, ,dα α

dα
dα α

dα
( ) ( )n1 , which transform under a 

change of coordinates as

∑dβ
dα

β
α

dα
dα

=
∂

.i

j

n
i

j

j

=1
� (3.54)

There is no intuitive interpretation of the “tangent vector,” but we will assume that 
numbers …, , ,dα α

dα
dβ α

dα
( ) ( )j i  which transform according to eq. (3.54), define a tangent vector 

24 Note that also in the case of groups consisting of matrices and operators, when addition of ele-
ments and their multiplication by numbers make sense, these operations are not group operations, 
that is, generally speaking, take out of the group.
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at point gα. Now we can define the notion of tangency of curves. Curves g and h{ } { }α α  
are said to be tangent at point g h=α α if they have a common tangent vector at this 
point. In other words, if the curves have coordinates α α and α α{ ( )} { ( )},i

g
i
h( ) ( )  respectively, 

then

…
dα α

dα
dα α

dα
i n

( )
=

( )
( = 1, , ).i

g
i
h( ) ( )

� (3.55)

As is seen from eq. (3.54), this definition does not depend on the choice of local coor-
dinates. Designate dg

dα
α the tangent vector to curve g{ }α .

It can be proved that each parameter subgroup g{ }α  of a Lie group G is a contin-
uously differentiable curve. In the case of a matrix group, tangent vectors to one- 
parameter subgroups at the identity of the group can be shown to be in a one-to-one 
correspondence with their generators:

dg
dα

iA= − .α
α=0� (3.56)

In general, tangent vectors have no visual representation in the form of a matrix.
With the concept of tangent curves, we can apply three above operations on 

one-parameter subgroups to general Lie groups. The operation of multiplying of a 
one-parameter subgroup g{ }α  of group G by a real number is defined exactly the same 
way as above:

λ g g{ } = { }α λα� (3.57)

For tangent vectors at the identity, it means that

dg
dα

λ
dg
dα

= ,λα
α

α
α=0 =0� (3.58)

which has the following intuitive meaning: for small α, the element gλα is “λ times 
farther” from the identity than element gα, that is, the motion along the subgroup is λ 
times faster when multiplied by λ.

The sum of two one-parameter subgroups g h{ }, { }α α  of group G is defined as a 
one-parameter subgroup f{ }α tangent to the curve g h{ }α α at the identity:

df
dα

d
dα

g h= ( ) .α
α α α α=0 =0� (3.59)

Intuitively, this definition means that for small α elements, fα and g hα α coincide up 
to small quantities of high order with respect to α. It can be verified that eq. (3.59) 
uniquely defines a one-parameter subgroup f{ }α .

Commutator of two one-parameter subgroups g h{ }, { }α α  of group G is defined as a 
one-parameter subgroup f{ }α  tangent at the identity to the curve g h g h α{ }  ( ≥ 0)α α α α

−1 −1  :













df
dα

d
dα

g h g h= .α
α α α α α α=0

−1 −1
=0� (3.60)
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The reason of introducing this definition is the same as for matrices: a tangent vector 
df
dα α=0

α  “measures” the noncommutativity of subgroups g h{ }, { }α α  (see eqs. (3.46)–(3.49)). 
It can be proved that eq. (3.59) uniquely defines the one-parameter subgroup f{ }α .

A set of one-parameter subgroups of Lie group G with operations of addition, 
multiplication by real numbers, and commutation is called Lie algebra of group G. 
Designate it g.

In general, algebra is a set a with operations of addition of elements а + b, multi-
plication of elements аb, and multiplication of elements by (real or complex) numbers 
λ, which satisfies the following conditions:
(1)	 a  is an Abelian group with respect to addition;
(2)	 multiplication of elements is distributive:

a b c ab ac b c a ba ca( + ) = + , ( + ) = + ;� (3.61)

(3)	 multiplication by numbers is distributive: λ(а + b) = λa + λb, (λ + μ)a = λa + μa;
(4)	 λ(μa) = (λμ)a;
(5)	 (λa)b = a(λb) = λ(ab);
(6)	 1·a = a (where 1 is the unity).

Multiplication of elements is not assumed commutative or associative. The algebra of 
matrices is associative but not commutative. As we will see, Lie algebras are neither 
commutative nor associative. In modern mathematics, algebras are generalizations of 
real and complex numbers.

For Lie algebras, commutation operation is used instead of multiplication, and 
real numbers are taken as numerical factors. Let small Latin letters а,b,c,… denote 
one-parameter subgroups. Then а + b denotes the addition operation, λa denotes 
the multiplication, and [a,b] denotes the commutation.25 The operations in Lie alge-
bras satisfy conditions (3.12)–(3.17); for example, the distributivity of multiplication 
means, applied to the commutation operation, that the following identities are true:

a b c a c b c c a b c a c b[ + , ] = [ , ] + [ , ], [ , + ] = [ , ] + [ , ],� (3.62)

and the condition (3.16) has the form

λa b a λb λ a b[ , ] = [ , ] = [ , ].� (3.63)

However, Lie algebras have another special property which distinguishes them as a 
special class of algebras. Namely, they satisfy the identity

a b b a[ , ] = −[ , ],� (3.64)

25 For matrix Lie groups, when the elements of Lie algebras (one-parameter subgroups a,b, . . .) can 
be replaced by their generating generators A,В,…, commutator [a,b] corresponds to the generator 

i
A B

i
AB BA1 [ , ] = 1 ( − ).



56   3 Lie groups and Lie algebras

which replaces the condition of commutativity of the product; this property of Lie 
algebras is called anticommutativity. Further, there is another identity which connects 
together three elements of Lie algebras; it replaces the associativity of the product and 
is called the Jacobi identity:

a b c b c a c a b[ , [ , ]] + [ , [ , ]] + [ , [ , ]] = 0.� (3.65)

Identity (3.65) is easy to remember because its second and third terms are obtained 
from the first by cyclic permutation of the multipliers. An obvious consequence of eq. 
(3.64) for a = b is the identity,

a a[ , ] = 0.� (3.66)

We do not prove here the properties (3.61), (3.64), and (3.65) of Lie algebras in the 
general case; but in the case of matrix groups, operations over one-parameter sub-
groups can be replaced by operations over their generators, the proof is not difficult. 
For example, anticommutativity is proved as

A B AB BA BA AB B A[ , ] = − = −( − ) = −[ , ],� (3.67)

and the Jacobi identity as

A B C A B C B C A A BC CB BC CB A
ABC ACB BCA CBA

[ [ , ]] = [ , ] − [ , ] = ( − ) − ( − )
= − − +� (3.68)

and two other similar expressions.
For some matrix groups, we already can find their Lie algebra. If one-parameter 

subgroups of a matrix group can be defined by their generators, we will say (when it 
creates no confusion) that these generators constitute a Lie algebra. As we saw, gen-
erators of group U(n) are Hermitian matrices, and every Hermitian matrix А gener-
ates a one-parameter subgroup of unitary matrices by eq. (3.31). So, Lie algebra of 
U(n) consists of all Hermitian matrices. We have already verified by direct calculations 
(eq. (3.50)) that a commutator of Hermitian matrices divided by i is also a Hermitian 
matrix. Group SU(n) is a subgroup of U(n), so all its generators are Hermitian. But now 
there is an additional requirement, det|U| = 1, and from eq. (3.10) obtain e = 1tr iαA(− ) , 
whence tr A = 0. Thus, Lie algebra of SU(n) consists of traceless Hermitian matrices. 
It is easily verified that a commutator of traceless matrix (in fact, any matrix) is a 
traceless matrix:

tr A B tr AB BA tr AB tr BA[ , ] = ( − ) = ( ) − ( ) = 0,� (3.69)

as the trace of the product of matrices does not depend on their order. Orthogonal 
group O(n) is a subgroup of U(n) consisting of matrices with real elements; there-
fore, its Lie algebra consists of Hermitian matrices, and, as follows from eq. (3.31), 
with purely imaginary elements. Group SO(n) differs from O(п) by the an additional 
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requirement det|U| = 1, that is, matrices of its Lie algebra must have a zero trace; but 
for purely imaginary Hermitian matrices, this requirement is always satisfied, so 
the Lie algebra for SO(n) is the same as for O(п). This is also seen from the fact that 
one-parameter subgroups of the group of orthogonal matrices O{ }α  originate from the 
identity, and since det|Оα| = ±1 obtain from the continuity that det|Оα| = 1 for all α; it 
means that one-parameter subgroups O(п) and SO(n) coincide. As is easily verified, 
Lie algebra of the general linear group GL(n,C) consists of matrices of order n (with 
complex elements); Lie algebra of the unimodular group SL(n,C) (matrices with deter-
minant 1) consists of all traceless matrices.

In the case of matrix groups, there is a general formula relating a Lie group and 
its Lie algebra (defined by its generators). Let A be the generator of group G, and e{ }iαA−  
is its corresponding one-parameter subgroup. Then U e=α

iαA−  for all α belongs to G; in 
particular, for α = 1, we find that matrix

U e=α
iA−� (3.70)

belongs to G. Comparison of eq. (3.70) with the formula of exponential map eq. ((3.6)) 
gives X = −iA and that sufficiently small matrices A of Lie algebra g are in a contin-
uous one-to-one correspondence (eq. (3.70)) with those matrices U of group G which 
are sufficiently close to the identity. We have used this in Section 3.1 to calculate the 
dimensions of some Lie groups. The Lie algebra of a matrix group is a real vector 
space which is, as can be shown, finite.

Replace the elements of the corresponding Lie algebra g, that is, one-parameter 
subgroups of G, by their generators. Then a basis …A A, , n1  can be chosen in g such 
that all operators of g are linear combinations with real coefficients:

�A α A α A= + + .n n1 1� (3.71)

Since for sufficiently small αi operators, A belong to the vicinity related by the expo-
nential correspondence to the identity of G, we can take coefficients …α α, , n1  as local 
coordinates in the vicinity of the identity of this group. Thus, the dimension of a 
Lie algebra coincides with the dimension of its Lie group. From eqs. (3.70) and (3.71) 
obtain the representation for the elements of matrix group sufficiently close to the 
identity:

U e= .
∑i α A−

k

n
k k

=1
� (3.72)

Construct, for example, a basis of the Lie algebra of SO(3). Matrices of this Lie algebra –  
i.e. Hermitian matrices with purely imaginary elements – are expressed as a linear 
combination with real coefficients of three matrices Ai (eq. (3.36)) which generate the 
subgroups of rotations about coordinate axes:

A α A α A α A= + + .1 1 2 2 3 3� (3.73)

If B β A β A β A= + +1 1 2 2 3 3 is another matrix of Lie algebra, then
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∑ ∑ ∑A B α A βA α β A A[ , ] = , = [ , ],
i

i i
j

j j
i j

i j i j
=1

3

=1

3

, =1

3











� (3.74)

and all commutators of this algebra are found from the commutators of basic  
matrices Ai:

A A iA A A iA A A iA[ , ] = , [ , ] = , [ , ] = .1 2 3 2 3 1 3 1 2� (3.75)

Similarly, matrices τi (eq. (3.37)) form a basis of the Lie algebra of group SU(2) with 
commutators

τ τ iτ τ τ iτ τ τ iτ[ , ] = , [ , ] = , [ , ] =1 2 3 2 3 1 3 1 2� (3.76)

For GL(n,C) group, the basis of its Lie algebra (consisting of all matrices) are matrices 
Bj

i  with a nonzero element at the intersection of the j-th row and the i-th column, and 
matrices …iB i j n  ( , = 1, , )j

i . Their commutators are

B B δ B δ B iB iB δ B δ B

iB B B iB iδ B iδ B

[ , ] = − ,  [ , ] = − + , 

[ , ] = [ , ] = − .
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l
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j
k

j
k

l
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j
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l
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l
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j
k

l
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j
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l
k

l
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j
k

j
k

l
i

� (3.77)

where δ = 0 l
i  for i l≠  and δ = 1j

i . The reader is advised to verify that matrices 
A B tr A= − ( ) ⋅ 1j

i
j
i

n j
i1  are related by equation A∑ = 0i

n
i
i

=1  and that n − 12  independent 

matrices Aj
i  and corresponding matrices iAj

i  form the basis of the Lie algebra of  
SL(n,C), and to find commutation relations for the matrices of this basis.

It can be proved that for any (not necessarily matrix) Lie group, its Lie algebra is 
finite and has the same dimension as its Lie group. If we choose a basis …a i n( = 1, , )i  
in the Lie algebra, then any element a of the algebra is represented as

∑a α a=
i

n

i i
=1

� (3.78)

and the commutator of any а, b has the form

∑ ∑ ∑a b α a βa α β a a[ , ] = , = [ , ]
i

n

i i
j

n

j j
i j

n

i j i j
=1 =1 , =1











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� (3.79)

so that the commutation operation in Lie algebra is completely determined by the 
commutators of its basic elements a a[ , ]i j . Expressing these commutators in terms of 
the basis, obtain commutation relations for the Lie algebra:

∑a a c a[ , ] =i j
k

n

ij
k

k
=1

� (3.80)

Real numbers cij
k are called structural constants of the Lie algebra. These constants, 

according to eq. (3.79), completely determine the commutation operation, and 
thereby the structure of the Lie algebra. Structural constants depend on the selected 
basis {a }i ; the basis is usually chosen the way that commutation relations be as easy 
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as possible. If the basis changes, the structure constants transform by the tensor law, 
which is reflected in their designations.

If G is a matrix group, then the commutation operation for generators has the 
form A B[ , ]i

1  (eq. (3.51)); equation (3.78) becomes

∑A α A= ,
k

n

i i
=1

� (3.81)

with real αi, and commutation relations (eq. (3.80)) take the form

∑A A i c A[ , ] =i j
k

n

ij
k

k
=1

� (3.82)

with the same structural constants as in eq. (3.79). Equations (3.75) and (3.76) are 
examples of such relations; relations (3.76) can be written in the same form if i on the 
right side is factored out.

Since Lie algebras have linear structure of a real vector space with linear oper-
ation of commutation, transition from Lie group to its Lie algebra has important 
advantages. This operation obeys eq. (3.67) to replace the commutativity operation. 
Situation is more complicated for a group, where there is no linear structure and, gen-
erally speaking, multiplication is not commutative. The role of commutation can be 
explained as follows. The structure of the Lie algebra is completely determined by a 
finite set of numbers or structural constants. It turns out that we can reduce group 
operations in Lie groups (in any case, in the vicinity of the identity) to the operations 
in its Lie algebra, addition, multiplication by real numbers, and commutation, so the 
structure of the Lie algebra determines, at least locally, the structure of its Lie group 
(Campbell–Hausdorff formula). Reducing the study of Lie groups to their Lie alge-
bras, we can then use the methods of linear algebra. As we will see, Lie algebras are 
also useful to construct representations of Lie groups.

There is a convenient way to study matrix Lie groups with the help of generators 
which reduce operations on one-parameter subgroups to the operations on matrices. 
This, in particular, made it possible to find a general form of generators and commutation 
relations for some matrix groups, that is, fully clarify the structure of their Lie algebras. 
For nonmatrix Lie groups, there is no such an effective method yet. Meanwhile, some 
important Lie groups used in physics are not matrix groups: for example, all groups con-
taining translations, such as the isometry group, Galilean group, and Poincare group. As 
we will see, faithful representations provide a tool necessary to study nonmatrix groups.

3.3 Representations of Lie groups

Let G denote the Lie group and R denote the finite or infinite complex vector space. 
Let each element g of group G correspond to a linear operator Tg which acts in R and 
the following conditions are fulfilled,
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T T T g g G(1) =  for any  ,   from  ;g g g g 1 21 2 1 2
� (3.83)

(2)	 T =1e , where е is the identity of G, and 1 is the identity operator.

The correspondence between operators Tg and elements g is called a representa-
tion of G in the space R. If g g e=1 2 , then from eqs. (3.83) and (3.84), obtain T T = 1g g1 2

,  
whence

T T= ( )g g
−1−1� (3.84)

If different elements g correspond to different operators Tg, the representation T{ }g  is 
called faithful. In this case, there is a one-to-one mapping between the elements of the 
group and the operators to represent them, so that the mapping preserves group oper-
ations, that is, group G is isomorphic to the group of operators T{ }g . Isomorphic groups 
differ only as far as the specific form of their elements rather than algebraic relations 
between them. Yet in some cases, for example, when the elements of the original 
group have direct physical meaning, it is not useful to use the isomorphic group. This 
is the case, for example, of the isometry group or Poincare group. Therefore, we will 
always distinguish between the original group and its isomorphic models (e.g. exact 
representations).

Matrix Lie groups, by definition, have a faithful representation in the space with 
the dimension equal to the order of the matrices (see eq. (3.19)). Each matrix is rep-
resented by a linear operator depending on the chosen basis. In fact, in Section 3.2, 
we used basis vectors … … … …e e e= (1, 0, , 0), = (0, 1, , 0), , = (0, 0, , 1)n1 2  and vector 

…z z z= ( , , )n1  was decomposed as z z e= ∑k
n

k k=1 . This representation of matrix groups 
has no special mathematical term, but it is often called “fundamental” in physical 
literature.

Let G be the Lie group and T{ }g  its representation in Cn. In any basis …e e( , , )n1  
operators Tg are defined by matrices U u= ( )ij  which act on vectors z z e= ∑ k k according 
to eq. (3.19), and the coordinates of vectors z and z Uz′ =  are taken in the same basis 
(ei). Consider another basis (fl),

…∑e φ f k n=   ( = 1, , ).k
l

n

lk l
=1

� (3.85)

Let wi denote the coordinates of z in the new basis, then











∑ ∑ ∑ ∑ ∑z e z φ f φ z f w f= = =
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k ik i
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ik k i
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=1 , =1 =1 =1 =1

� (3.86)

whence

∑w φ z=i
k

n

ik k
=1

� (3.87)
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The coordinates of the transformed vector z ′ are expressed in the new basis as

∑ ∑ ∑w φ z φ u z φ u φ w= = = ( )′ ′i
k

n

ik k
k l

n

ik kl l
k l j

n

ik kl lj j
=1 , =1 , , =1

−1� (3.88)

This means that operator Tg in the new basis is represented by matrix

U U= Φ Φ′ −1� (3.89)

Equation (3.89) gives the relation between the matrices of the same representation in 
different bases of space R. Similarly looks the relationship between equivalent rep-
resentations discussed in Section 1.3. Denote T{ }g  and T{ }g

′  the representations of the 
same group G in spaces R and R′, respectively. Let Φ be the isomorphism between 
these spaces, that is, it is a linear operator defining a one-to-one mapping between 
R and R′ such that for z T z=′ g  and w z= Φ , w z= Φ ′, the equation T w w=′ ′g  is true. In 
this case, the representations T{ }g , T{ }g

′  are called equivalent. Evidently, equivalent 
representations have similar structure: each vector z from R is replaced by its “copy” 
w z= Φ  from R′, and representation T{ }g

′  works with the “copies” the same way as 
T{ }g  works with their “originals.” The equivalence of operators is expressed by the  

equation

T T T T gΦ = Φ , or = Φ Φ for all .′ ′g g g g
−1� (3.90)

As a special case, both representations can be also defined in the same space R.  
Isomorphic mapping of space R on itself is called an automorphism of R. If R is finite 
and all its operators (including the automorphism) are written in the same basis, eq. 
(3.90) can be replaced by a matrix equation of the same form as eq. (3.89).

Let R denotes the Hilbert space. If all operators of representation Tg are unitary, 
that is,

T v T w v w= ,g g� (3.91)

for all vectors v,w, the representation T{ }g  is called unitary. If group G is compact, then 
for any of its finite-dimensional representation T{ }g , a positive definite scalar product 
can be defined in the space of representations such that T{ }g  becomes unitary. Having 
in mind physical applications, we will further consider only unitary representations 
for both compact and noncompact groups.

From now on, we consider only Hilbert representation spaces. In Hilbert spaces, 
similar to the Euclidean space, a norm of vectors is defined using scalar product:

v v v=� (3.92)

With respect to this norm, a concept of convergence of vectors can be defined: v v→n 0 
for n → ∞, if v v− → 0n 0 . Hilbert space is complete if its sequences obey a prop-
erty similar to “Cauchy’s test” for numeric sequences: any sequence of vectors v{ }n  
such that v v− → 0m n  for m n, → ∞ converges. It can be verified that Hilbert space of  
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functions ψ x y z( , , ) with square-integrable module is complete. We will assume that 
all Hilbert spaces are complete. Further we will consider subspaces of Hilbert spaces.  
A Hilbert space ′R  is called a subspace of a Hilbert space R, if all vectors of R′ belong 
to R (i.e. ′R  is a subset of R), and if the scalar product in R′ is the same as in R.26

Let ′R  denotes the subspace of R and representation T{ }g  of group G is defined in 
R. If all operators of representation T{ }g  carry the vectors of R′ into the vectors of ′R ,  
then R′ is called an invariant subspace of representation T{ }g . In this case, the rep-
resentation T{ }g  defines a representation of the same group G in the subspace R′: it 
is obtained by applying operators T{ }g  to vectors R′ only. Such representation is said 
to be induced by the given representation T{ }g . If space R contains no invariant sub-
spaces of T{ }g  other than the whole R and zero subspace (consisting only of the zero 
vector), representation T{ }g  is called irreducible.

Suppose that Hilbert space R contains mutually orthogonal subspaces Rk (i.e. 
for any vector vk from Rk and vl from k l( ≠ )lR  the scalar product v v = 0k l ). Space R 
is decomposed into orthogonal sum of subspaces Rk, if each vector v of space R is 
uniquely represented in the form

�v v v= + + ,1 2� (3.93)

where vk belongs to kR . (In the case of an infinite number of subspaces, the sum in 
eq. (3.93) is understood as the sum of a convergent series, that is, v v v− ( + … + ) → 0n1   
for n → ∞.)

Decomposition into an orthogonal sum can be written as

⊕ ⊕= 1 2R R R �� (3.94)

A wide class of Lie groups, including all those which we need, the following theorem 
is true: representation space of a group can be decomposed into orthogonal sum of 
invariant subspaces irreducible with respect to this representation. In Chapter 1, we 
decomposed an infinite-dimensional representation of the rotation group into irre-
ducible representations (see eqs. (1.33) and (1.34)). For finite-dimensional represen-
tations, an orthonormal basis e{ }j  can be chosen in R such that all its vectors belong 
to subspaces kR . Then, if ej belongs to Rk, then all vectors T eg j also belong to kR  and 
are therefore decomposed only by the basis vectors of Rk. If first basis vectors of 1R  are 
written down, then basis vectors 2R , and so on, then all matrices Tg take a “box form,” 
and the dimensions of diagonal boxes are the same as the dimensions of …, ,1 2R R ; 
matrices in these boxes represent irreducible representations in the corresponding 
subspaces.

26 It can be shown that subspaces as defined above are closed: if a sequence v{ }n  of vectors from ′R  
converges in R to some vector v0, then v0 belongs to ′R . In this book, we consider only closed sub-
spaces.
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Let G1 denotes the subgroup of a Lie group G, and let it also be a Lie group (we 
will consider only such subgroups); suppose that T{ }g  is an irreducible representation 
of G in R. If only those operators of representation T{ }g  considered that g belongs to 
G1, then a representation of the subgroup G1 in the same space R is obtained. The 
described process is called a reduction of representation T{ }g  to the subgroup G1. 
Reduced representation of subgroup G1 is usually reducible and is decomposed into 
irreducible subspaces of the form (3.94). Reducing representations is important in 
physical applications. As was shown in Chapter 1, the space of Schrodinger ψ func-
tions can be regarded as an irreducible space of some representation of the conformal 
group SO(4,2); the reduction of this representation to the subgroup SO(4) leads to the 
decomposition into irreducible representations SO(4) (eq. (1.33)), and further reduc-
tion to the subgroup SO(3) to the decomposition (eq. (1.34)).

Let G be a Lie group, g its Lie algebra, and T{ }g  representation of G in the space R. 
Each element g (i.e. each one-parameter subgroup a g= { }α  of group G) corresponds 
to the family of operators T{ }gα

 and is easily seen that this family is a one-parameter 
subgroup of operators:

T T T T= = ,g g g g gα α α α α α1+ 2 1 2 1 2
� (3.95)

and

T T= − 1g e0
� (3.96)

where 1 means the identity operator regardless of the space. In Section 2.1, some exam-
ples of such operator subgroups were considered (see eqs. (2.13) and (2.14)). In contrast 
to the elements of the original one-parameter subgroup g{ }α  (which generally allow 
only multiplication by each other), the elements of the representing one-parameter  
subgroup T{ }gα

 can, similar to all operators, can also be added and multiplied by any 
complex number (since they act in a complex space R). This makes it possible to 
build a generator for T{ }gα

 like it was done in eq. (3.23) for one-parameter subgroups 
of matrix groups:27

T i
T

α
i
dT
dα

= lim
− 1

= .a α

g g
α→0 =0

α α� (3.97)

This way a mapping a T→ a is defined: each element of Lie algebra g is associated with 
an operator acting in a representation of Lie group G. It can be proved that for this 

27 For infinite-dimensional representations, operators Ta may not be defined on all vectors of the 
representation space. We can always select a subset L where all operators Ta are defined such that 
L is linear, that is, together with any two vectors contains their sum, and together with each vector 
contains its multiple; L is everywhere dense, that is, for each vector of the representation space, there 
is an arbitrarily close vector of L. In the case of a function space, L can be composed of continuously 
differentiable functions.
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correspondence, the operations in the Lie algebra g (i.e. operations on one-parameter 
subgroup G described in Section 3.2) transform into similar operations with the oper-
ators to represent them:
(1)	 If c a b= + , then T T T= +c a b;

c λa λ T λT(2) If = ,  where is a real number,  then = ;c a� (3.98)

(3)	 If c a b= [ , ], then T
i

T T
i

T T T T= 1 [ , ] = 1 ( − )c a b a b b a .28

Mapping a T→ a is called a representation of the Lie algebra g generated by the given 
representation of Lie group G. The term can be used also in the case when there is no 
representation G; namely, if the elements а of algebra g are put in correspondence to 
operators Ta to act in space R, and the conditions (eq. (3.98)) are fulfilled, then we say 
that representation of g is defined in R.

A representation of Lie algebra g can be used to construct a representation (at 
least local, i.e., in a vicinity of the identity) of Lie group G generating Lie algebra g. 
It can be verified that there exists a vicinity ε of the identity of group G completely 
covered by one-parameter subgroups, and that the following conditions of “correct 
covering” are fulfilled: each one-parameter subgroup g{ }α  has an initial curve corre-
sponding to the parameter change α α0 ≤ ≤ 0 and lying entirely in ε. When parameter 
α is replaced by λα λ( > 0), the initial curve h{ }α , α α0 ≤ ≤ λ

1
0 is obtained, where h λ=α 0.  

These two initial curves are called overlapping. Then we have (1) each initial curve 
does not cross itself; (2) two initial curves either intersect only at the identity or 
overlap; (3) the whole vicinity ε is covered by the initial curves of one-parameter sub-
groups. Furthermore, we will take on each one-parameter subgroup its initial curve. 
Then each element belonging to ε, except the identity, belongs to some initial curve, 
and if it belongs to more than one curve, the curves overlap. Thus, with an accuracy 
up to overlapping, the initial curve of one one-parameter subgroup passes through 
each element g e≠  of the vicinity ε. As we will see, this fact makes it possible to build 
a one-to-one (local) representation of group G in the vicinity ε. Suppose that subgroup 
a g= { }α  corresponds to operator Ta in the representation of its Lie algebra. Construct 
now a one-parameter subgroup of operators

T α e( ) =a
iαT− a� (3.99)

similar to matrix group (eq. (3.31)). Associate the identity е of group a with the identity 
operator 1, and element g e≠α  of a one-parameter subgroup a with operator T α( )a  with 
the same value of parameter α. If we take λα h λ= { }( = 0)α  instead of а, then by the 
definition of multiplication in Lie algebras, h g=α λα, so that g h=α λ α1 . From eq. (3.98) 
it follows that T λT=λa a. If gα belongs to a one-parameter subgroup λα (with the 
parameter αλ

1 ), the corresponding operator, as follows from eq. (3.99), is

28 The factor 
i
1 is the result of transition from one-parameter subgroups to their generators,  

see eq. (3.51).
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T α
λ

e e e T α= = = = ( ).λa
i α

λ T i α
λ λT iαT

a
− − −λa a a






� (3.100)

This shows that the operator corresponding to gα is independent of the change of the 
parameter in the one-parameter subgroup. Let g g=α , T α T( ) =a g. From eq. (3.98), it can 
be shown that T T T=g g g g1 2 1 2

, that is, correspondence g T→ g is a representation of G. This 
representation of the group generates the initial representation of the Lie algebra; 
indeed, in the representation T{ }g  the one-parameter subgroup a g= { }α  corresponds 
to the one-parameter subgroup T T α{ = ( )}g aα

 of the form (3.99) with generator Ta. If all 
operators Ta are Hermitian, then the resulting representation T{ }g  is unitary. In fact, 
the operator Tg is unitary if T v T w v w=g g  or (which is the same) T T v w v w=g g

+  
for all vectors v, w; in other words, the unitarity condition has the form

T T=g g
+ −1� (3.101)

If T T=a a
+ , then eq. (3.101) is true:

T e e e e T= ( ) = = = ( ) = .g
iαT iαT iαT iαT

g
+ − + − −1 −1a a a a

+� (3.102)

Consider, for example, the representation of the isometry group М(3) in the space of ψ 
functions (3.25). One-parameter subgroup of translations g x y z x α y z( , , ) = ( + , , )α  (eq. 
(3.30)) corresponds in this representation to a one-parameter subgroup of operators 
T ψ x y z ψ x α y z( , , ) = ( − , , )gα

 (eq. (2.11)) with generator 
i x
1 ∂

∂
 (eq. (2.12)). If we started with 

the representation of the Lie algebra, we would put operator T =a i x
1 ∂

∂
 into correspon-

dence with the element a g= { }α . It is easily verified that this operator is Hermitian. 
Since wave functions vanish at infinity,29 we have











∗ ∗
∗

∗

∫ ∫
∫

T φ ψ φ T ψ φ i φ
ψ
x

d x i φ ψ i
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∂
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∂
∂

= 1 ∂
∂

=

a a i
ψ
x x

x

a

+ 1 ∂
∂

3
=−∞
=+∞ 3

3
� (3.103)

A one-parameter subgroup of operators generated by Ta is constructed according to 
eq. (3.99):

�T α e e α
x

α
x

α
x

( ) = = = 1 − ∂
∂

+
2 !

∂
∂

−
3 !

∂
∂

+a
iαT α x− − ∂

∂
2 2

2

3 3

3
a� (3.104)

The meaning of operator T α( )a  becomes clear when it is applied to function ψ. From 
Taylor’s formula, obtain

29 For the most common wave functions, satisfying only the condition (1.1), this proof needs to be 
generalized, but the result remains the same. The same is true for the conclusion (eq. (3.105)) where 
Taylor expansion is not needed.
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�T α ψ x y z ψ x y z α
x

ψ x y z α
x

ψ x y z α
x

ψ x y z

ψ x α y z

( ) ( , , ) = ( , , ) − ∂
∂

( , , ) +
2 !

∂
∂

( , , ) −
3 !

∂
∂

( , , ) +

= ( − , , )

a

2 2

2

3 3

3�
(3.105)

Thus, translation by α along axis х corresponds to the operator (eq. (2.11)), and again 
the representation of translations described in Section 2.1 is obtained. The reader is 
encouraged to verify similar calculations for rotations using rotation angle α about z 
axis and taking into account that x y= −α y x

∂
∂

∂
∂

∂
∂

.

Lie algebra g is defined by its basis a{ }k  and commutation relations (eq. (3.80)). To 
construct a representation g in space R, it is enough to set a correspondence between 
the elements ak of the basis and Hermitian operators Tak

 acting in this space and satis-
fying the following commutation relations:

∑T T i c T[ , ] =a a
k

n

ij
k

a
=1

i j k
� (3.106)

Then each element a α a= ∑k
n

k k=1  of the Lie algebra is put into correspondence to the 
operator

∑T α T=a
k

n

k a
=1

k
� (3.107)

and conditions in eq. (3.98) are easily verified, that is, we obtain a representation of 
the Lie algebra g and, therefore, the Lie group G. Thus, the construction of represen-
tations of Lie group G in the space R reduces to construction of a set of operators T{ }ak

 
satisfying given commutation relations.

This process is simplified when G is a matrix group. In this case, commutation 
relations are reduced to commutation relations for generators Ak of one-parameter 
subgroups ak:

∑A A i c A[ , ] =i j
k

n

ij
k

k
=1

� (3.108)

There is an exponential relation between the generators

∑A α A=
k

n

k k
=1

� (3.109)

sufficiently close to zero and matrices of the Lie group G sufficiently close to the identity:

U e e= =
∑iA i α A− −

k

n
k k

=1
� (3.110)

Let U belong to a one-parameter subgroup,

U e=α
iαA−� (3.111)

with α = 1. Then, according to eq. (3.99), the corresponding operators are
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T e=U
iαT−

α
A� (3.112)

(where а is replaced by generator A and operator Ta is replaced by operator TA), and for 
α = 1, we obtain the operator

T e=U
iT− A� (3.113)

Using eqs. (3.109) and (3.107), rewrite it as

T e=
∑

U
i α T−

k

n
k Ak

=1
� (3.114)

Thus, we come to the following method to construct representations of matrix Lie 
groups:
(1)	 Basis matrix Ak of the Lie algebra is put in correspondence to Hermitian operators 

TAk
 in the space R with the same commutation relations.

(2)	 Matrices U of the Lie group sufficiently close to the identity are represented in the 
form (3.110).

(3)	 Operators TU are constructed in the form (3.114) with the same coefficients αk.

The following example will explain this. Suppose we want to build a two-dimensional 
representation of SO(3) group. The basis of the Lie algebra is composed in this case of 
matrices A A A, ,1 2 3 (eq. (3.36)) with commutation relations (eq. (3.75)). Consider matri-
ces of the second order τ τ τ, ,1 2 3 (eq. (3.37)) with the same commutation relations (eq. 
(3.76)). Then, the representation of the Lie algebra is given by the rule

A α A α A α A T α τ α τ α τIf = + + , then = + + ,A1 1 2 2 3 3 1 1 2 2 3 3� (3.115)

(where operators in a two-dimensional space are identified with their matrices), and 
the representation of SO(3) is given by the rule

O e T eIf = , then = .i α A α A α A
O

i α τ α τ α τ− ( + + ) − ( + + )1 1 2 2 3 3 1 1 2 2 3 3� (3.116)

To build a five-dimensional representation SO(3), take Hermitian matrices
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Evidently, they satisfy the same commutation relations as A A A, ,1 2 3. The formulas of 
the representations are similar to eqs. (3.115) and(3.116). As can be shown, the con-
structed representations of SO(3) are irreducible. Appendix B, Section 1 describes 
the method to construct irreducible representations of this group in the general 
case.

The following method is often useful when representations of Lie algebras are 
constructed. If the operators of the representation are already known, they can be 
used to construct linear combinations not only with real but also with complex coef-
ficients; for example, for SO(3) group, the operators are

T T iT T T iT= + , = −A A A A+ −1 2 1 2
� (3.118)

These operators can be important in physics; for example, in the representation T{ }O ,  
eq.(3.118) can be used to obtain operators L+, L−, which rise or lower the projections 
of angular momentum L3. To define such operators in all representations at once, 
consider as their preimages the complex linear combinations of the matrices of Lie 
algebra:

A A iA A A iA= + , = −+ 1 2 − 1 2� (3.119)

Since Lie algebras allow multiplication only for real numbers, these matrices do not 
belong to the Lie algebra of SO(3). Further, nothing corresponds to such matrices in 
the representations of the Lie algebra, so Lie algebra and its representations are to be 
extended to construct operators (eq. (3.118)).

This is achieved as follows. Let g be any (matrix or nonmatrix) Lie algebra. All 
possible linear combinations a ib+  of elements а and b from g constitute a complex 
envelope of the Lie algebra g. These combinations are considered equal if and only 
if their “real” and “imaginary” parts are equal, that is, from a ib c id+ = + , it follows 
that a c= , b d= . Thus, the transition from the Lie algebra to its complex envelope 
is similar to that from real to complex numbers. In this definition, the elements of 
the Lie algebra, that is, parameter subgroups, rather than their generators are con-
sidered.30

Operations in algebra g are applied to its complex envelope according to the fol-
lowing rules:

30 For matrix groups, it is not always possible to construct a complex envelope from the generators 
of the Lie algebra. For example, for the group GL(n,C), Lie algebra consists of all complex matrices; in 
this case, matrices A and iA are generators of some one-parameter subgroups, a and b, but in the com-
plex envelope, by its definition, b ia≠ ! Therefore, the complex envelope is constructed directly from 
the elements of the Lie algebra, that is, one-parameter subgroups, rather than from the generators. 
However, in the important case, when the Lie algebra consists of Hermitian matrices, this precaution 
is not essential since for a Hermitian matrix A, matrix iA is not Hermitian and thus does not belong to 
the Lie algebra. In this case, complex envelope can be constructed from the generators.
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(1)	 a ib c id a c i b d( + ) + ( + ) = ( + ) + ( + );

λ iμ a ib λa μb i μa λb λ μ(2) ( + )( + ) = ( − ) + ( + ) (where , are real numbers);� (3.120)

(3)	 a ib c id a c b d i b c a d[ + , + ] = ([ , ] − [ , ]) + ([ , ] + [ , ]).

From a given representation of Lie algebra g, the presentation of its complex envelope 
is constructed as follows:

T T a b T iT a ibIf , represent , , then + represents + .a b a b

As is easily seen, the properties of representation (3.98) are true when the elements of 
the Lie algebra change to the elements of its complex envelope.

In some cases, it is more convenient to choose a basis in the complex envelope of 
g and first construct representing operators for this basis and then for the elements of 
the Lie algebra and express them in terms of the “imaginary” basis. For example, for 
the group SO(3), such “imaginary” basis are matrices A A A, ,+ − 3 (see eq. (3.119)), with 
commutation relations:

A A A A A A A A A[ , ] = , [ , ] = − , [ , ] = 23 + + 3 − − + − 3� (3.121)

If operators T T T, ,+ − 3 are constructed in R with commutation relations,

T T T T T T T T T[ , ] = , [ , ] = − , [ , ] = 23 + + 3 − − + − 3� (3.122)

Then, expressing the basis of the Lie algebra in terms of the “imaginary basis,”

A A A A
i

A A A A= 1
2

( + ), = 1
2

( − ), =1 + − 2 + − 3 3� (3.123)

define

T T T T
i

T T Τ T= 1
2

( + ), = 1
2

( − ), =A A A+ − + − 31 2 3
� (3.124)

These operators evidently satisfy the required commutation relations with the same 
structure constants as in eq. (3.75). Further, we will use the described technique.

Faithful representations of Lie groups make it possible to find commutation 
relations for nonmatrix Lie groups, because in these representations, the commu-
tation of one-parameter subgroups reduces to the commutation of their genera-
tors, that is, to a simple algebraic operation of the form AB–BA on the operators 
of the representation. Consider, for example, representation (3.25) of the isometry 
group. As is easily verified, the representation is faithful. Using such isomorphic 
model of the isometry group, find commutation relations for the group of opera-
tors (see eq. (3.98)) rather than the commutation relations for the group M(3). For 
the rotations about axes х,у, the corresponding generators of the operator group 
have the form
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Their commutator
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which is equivalent to the relation A A iA[ , ] =1 2 3 obtained directly for matrices (eq.
(3.36)) of SO(3) subgroup.

For the translations along axis х, we have the operator T =x i x
1 ∂

∂ . The commutation 
relation for the generator of translation and the generator of rotation is now obtained 
by direct calculation similar to eq. (3.56):
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that is, T T iT[ , ] = −x y3 . The reader is encouraged to find all commutation relations for 
the basic generators T T T T T T, , , , ,x y z1 2 3 .

The method to construct representations of Lie groups with the help of their Lie 
algebras is, generally speaking, of local nature, that is, allows defining operators Tg 
only for the elements g sufficiently close to the identity. If, for example, in the case of 
a matrix group, matrix U can be expressed as e iA−  in various ways (see eq. (3.7)), the 
operator TA and, consequently, e iT− a are not unique. For the group SO(3), irreducible 
global representations exist only in odd-dimensional spaces, while even-dimensional 
spaces contain only local representations, which results in the so-called “two-valued 
representations.” In simple cases (see Chapters 1 and 2), the representations could be 
built “in large” without Lie algebras. In this book, we need only local representations, 
but “global” issues are important in some areas of physics.
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3.4 Universal enveloping algebras and Casimir operators

As we saw in Chapter 2, Lie algebra provides “main observables” of the symmetry 
group: to find them, we need to find its representation in the space of the states of 
the physical system. This, however, does not cover all observables of interest for 
physics: for example, the Hamiltonians are constructed from the Casimir operators 
of the symmetry group and its subgroups which are polynomials of the representing 
operators. For many physical systems with different state spaces, the symmetry group 
is a subgroup of the isometry group. This was shown in Chapter 1 for spinless parti-
cles described by one-component wave functions; the same is true for the particles of 
any spin described by wave functions with any number of components. In all these 
cases, besides the operators of momentum p p p, ,x y z and angular momentum L L L, ,x y z 
constructed from one-parameter subgroups of the isometry group in the correspond-
ing representations of its Lie algebra, there are other more complex observables such 
as the kinetic energy operator p p p p= ( + + )m m x y z

1
2

2 1
2

2 2 2 , the operator of “total angular 
momentum” L L L L= + +x y z

2 2 2 2, and so on. These operators are polynomials of the rep-
resenting operators, and each type of polynomial, regardless of the representation, 
corresponds to the same observable. It is natural to construct such observables “in 
general”, that is, consider “standard polynomials” of the elements of the Lie algebra 
which define the way of constructing observables in all representations. But here 
we meet an obstacle: in contrast to representing operators, the elements of the Lie 
algebra cannot be multiplied by each other. If we want to have a common preimage 
of energy or angular moment operators in various representations, we cannot achieve 
the goal within a Lie algebra. To find a clear algebraic meaning for the polynomials, 
we have to introduce a new concept.

First of all, it is convenient to have not only the preimages of one-parameter  
subgroups of operators (eq. (3.99)) in the Lie group but also their inverse images of 
generators TA. For matrix groups, this role is played by generators of one-parame-
ter subgroups of the Lie group itself: matrix subgroup a U= { }α  belonging to the Lie 
algebra g is put in correspondence to matrix A according to eq. (3.23). In the general 
case, when this construction is not possible, we will denote each one-parameter sub-
group of a Lie group a g= { }α  with symbol A having no operator interpretation, which 
we will also call a generator of the one-parameter subgroup а. Also agree that oper-
ations on the elements of the Lie algebra correspond to the same operations on the 
generators, like it is in the matrix case (see eq. (3.51)):

If c a b= + ,   then C A B= + .
c λa C λA λIf = , then = ( is a real number).� (3.128)

If c a b= [ , ],   then C A B= [ , ]i
1 .

The relations A B iC[ , ] =  where the elements of the Lie algebra are replaced by their 
generators are called commutation relations in the algebra g.
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Preimages of the observables are polynomials of the generators of the Lie algebra 
g. Consider formal polynomials with complex coefficients P A B Q A B( , , …), ( , , …),  
and so on. The expression “formal polynomial” means that its monomials such as 
AB iABC2 , , and so on, are purely symbolical and serve as models to construct similar 

operator monomials in the representations T T iT T T2 ,A B A B C, and so on. Further, for 
formal polynomials, in contrast to usual polynomials, the order of the factors is essen-
tial (so that, for example, the monomials АВС and ACB are considered different), but 
the order of the summands is indifferent. The agreement is adapted to operator rep-
resentations of such polynomials as commutation is true for the addition but not for 
the multiplication. For formal polynomials, the operations of addition, multiplication 
by complex numbers, and multiplication by each other are defined. To add up poly-
nomials Р and Q, we should write down the polynomial Р, put a plus sign, write down 
the polynomial Q, and collect similar monomials; that is, write down one mono-
mial …z z AB C( + )1 2  instead of two monomials …z AB C1 , …z AB C2  differing only by 
complex coefficients z1, z2 (if such exist). To multiply a polynomial Р by number z, the 
coefficients of all monomials which are members of Р should be multiplied by z. To 
multiply Р by Q, we should for each monomial …z AB C1  of Р and for each monomial 

…z DE F2  of Q write down the monomial … …z z AB CDE F( )1 2  (keeping the order of 
the factors) to connect all such monomials by plus signs and to collect similar terms. 
It is easily verified that these operations make the set of all formal polynomials an 
associative algebra, that is, both the condition (3.61) and the condition PQ R P QR( ) = ( ) 
are met.

However, various formal polynomials …P A B( , , ), …Q A B( , , ) can correspond in all 
representations to the same operators …P T T( , , )A B , …Q T T( , , )A B . Namely, transforma-
tions of formal polynomials by the operations of the Lie algebra can be specified such 
that their images do not change in the representations:
(1)	 Let the polynomial Р contains … …AB C D, where C C C= +1 2 in the Lie algebra g. 

Then Р transforms into the polynomial Q containing the sum of two monomials 
… … … …zAB C D zAB C D+1 2  instead of this monomial. Vice versa, Q transforms 

into P.
(2)	 Let the polynomial Р contain the monomial … …zAB C D, where C λC= 1 in g 

(λ is real). Then Р transforms into the polynomial Q containing the monomial 
… …λz AB C D( ) 1  instead of this monomial. Vice versa, Q transforms into P.

(3)	 Let the polynomial Р contain the monomial … …zAB C D, where iC C C= [ , ]1 2  in g. 
Then Р transforms into the polynomial Q containing the sum of two monomials 
… … … …AB C C D AB C C D−z

i
z
i1 2 2 1  instead of this monomial. Vice versa, Q trans-

forms into P.

Consider, for example, how transform (3.129) is imaged in representations. Poly-
nomial Р corresponds to the operator polynomial with monomial … …zT T T TA B C D. 
According to the definition of representations of the Lie algebra (3.98), commutation 
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relation C C iC[ , ] =1 2  symbolizing the commutation relation c c c[ , ] =1 2  in the Lie algebra, 
obtain T T iT[ , ] =C C C1 2

 whence … … … … … …zT T T T T T T T T T T T T T= −A B C D
z
i A B C C D

z
i A B C C D1 2 2 1

.
But it is exactly this pair of monomials which is contained in Q.31

Polynomials …P A B( , , ) and …Q A B( , , ) are called equivalent if they can be trans-
formed into each other by some number of operations (3.129). Since they correspond 
to the same operators in all representations, it is reasonable to identify such poly-
nomials as a single object or an equivalence class. This procedure of considering 
mathematical objects “up to equivalence” is usual in mathematics (for example, in  
constructing factor groups). The equivalence class of formal polynomials is exactly 
the observable of the symmetry group G used to construct the operators of this observ-
able in the representations of G, that is, for special physical systems. This general 
concept of the observable includes also the “main observables” defined above: in 
this case, we take classes containing polynomials of the first degree A, B, …, that is, 
those corresponding to the elements of the Lie algebra. For equivalence classes, the 
same operations can be defined as for polynomials; if, for example, class P∼ contains 
polynomial P and class Q∼ contains polynomial Q, then the class containing P + Q is 
called the sum P Q+ ∼∼ ; it does not depend on the choice of the “representatives” of P 
and Q in their equivalence classes. Multiplication of classes by complex numbers and 
by each other is similarly defined. The resulting associative algebra is called a univer-
sal enveloping algebra of the Lie algebra g (or Lie group G); we denote it g∼. This is the 
mathematical definition comprising all observables of the symmetry group G.

In practice, polynomials P, Q,… are considered up to equivalence, that is, equiv-
alent polynomials are viewed as the same object (and are often combined by the 
equality sign). For example, for SO(3) group with generators Ak (k = 1,2,3), the polyno-
mial P A A A A A A( , , ) = + +1 2 3 1

2
2
2

3
2 can be transformed using the commutation relation 

A A iA[ , ] =1 2 3 into the equivalent polynomial Q A A A A A A A( , , ) = + ( − 1)1 2 3 + − 3 3 , where 
A A iA= ±± 1 2. In any representation Т, where T L=A kk

, the equivalence of P and Q leads 
to the equality of operators:

31 Note that in the case of a matrix group, different formal polynomials …P A B( , , ) and …Q A B( , , ) may 
coincide when symbolic generators are replaced by corresponding matrices. If, however, P and Q do 
not transform into each other according to eq. (3.129), such coinciding of matrices results in coincid-
ing of operators only in the fundamental representation rather than in all representations. For exam-
ple, we can construct a three-dimensional representation of SU(2) group defining a correspondence 
between basic matrices τk of the Lie algebra and matrices Ak (k = 1,2,3) (see eq. (3.115)) where, to the 
contrary, a two-dimensional representation of SO(3) was constructed. As is easily seen, τ σ= =1

2 1
4 1

2 1
4
,  

so that polynomials P τ τ τ( , , ) = τ1 2 3 1
2 and Q τ τ τ( , , ) =1 2 3

1
4 (consisting of a free term only) correspond to the 

same second-order matrix. But in three-dimensional representation, we have
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L L L L L L L+ + = + ( − 1)1
2

2
2

3
2

+ − 3 3� (3.130)

where L L iL= ±± 1 2. This is a general equation for the projections of the angular 
momentum.

Sometimes in mathematical (and very often in physical) works, simplified des-
ignations of representing operators are used: …g h, ,  are written instead of …T T, ,g h ; 

…A B, ,  are written instead of …T T, ,A B ; and, similarly, …P A B( , , ) is written instead of 
…P T T( , , )A B .

Casimir elements, that is, the elements of g∼ which commute with all elements of 
∼g are most important of all the elements of the universal enveloping algebra. (Mathe-
matically, they form the center of algebra g∼.) Polynomial …P A B( , , ) representing the 
Casimir element up to equivalence commutes with all generators A,B,C, . . . of g.

When verifying commutation relations, the so-called “second Jacobi identity” for 
associative algebras is helpful:

C AB C A B A C B[ , ] = [ , ] + [ , ].� (3.131)

This identity is easy to remember by formal analogy with the rule for differentiating 
a product: commutator C with the product AB equals the sum of commutator C with 
the first factor multiplied by the second factor, and the first factor multiplied by com-
mutator C with the second factor. The difference with the differentiation rules is that 
the order of the factors is essential in the case of commutation since multiplication of 
operators is not commutative. Verification of eq. (3.132) is simple:

C AB C AB AB C CAB ACB ACB ABC
CA AC B A CB BC C A B A C B

[ , ] = ( ) − ( ) = ( − ) + ( − )
= ( − ) + ( − ) = [ , ] + [ , ]�

(3.132)

Similar to the rule for differentiating a product, the identity (eq. (3.132)) extends to any 
number of factors …A B, ,

Apply the rule (3.132) to the polynomial A A A+ +1
2

2
2

3
2 of the generators of SO(3):

A A A A A A A A A A
A A A A A A A A A A A A

iA A A iA iA A A iA

[ , + + ] = [ , ] + [ , ] + [ , ]
= 0 + [ , ] + [ , ] + [ , ] + [ , ]
= ( ) + ( ) − ( ) − ( ) = 0,

1 1
2

2
2
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2

1 1
2

1 2
2
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1 2 2 2 1 2 1 3 3 3 1 3

3 2 2 3 2 3 3 2

� (3.133)

and similarly for A A,2 3. Consequently, the polynomial A A A+ +1
2

2
2

3
2 represents an 

element of the universal enveloping algebra of SO(3), which is a Casimir element. 
Instead of these bulky expressions, we will say shorter: the polynomial A A A+ +1

2
2
2

3
2 is 

a Casimir operator of SO(3) group. Of course, this way of speaking is conventional as 
operators are obtained from this polynomial only in the representations. In any repre-
sentation where generator Ak is associated with operator Lk k( = 1, 2, 3), we obtain the 
Casimir operator L L L+ +1

2
2
2

3
2 denoted briefly L2. In this designation, L2 is considered 

as a single symbol: operator L is not defined (and if defined, it has an inconvenient 
expression).
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The role of Casimir operators is that in some cases they make it possible to iden-
tify and describe irreducible representations. This process is based on Schur’s lemma 
mentioned in Section 2.2. Now we formulate it again and prove it in the simplest case. 
Agree to use following term: if operator С is defined on space R so that Cv λv=  for all 
vectors v from R and number λ does not depend on v, then the operator С is said to be 
constant on R and equal λ. (In mathematics, such operator is also called a homoth-
ety.) In other words, R is the proper space of operator С. Schur’s lemma is formulated 
as follows.

Let an irreducible representation T{ }g  of group G be defined on the space R. If 
operator С defined on R commutes with all operators of Tg, then С is constant on R.

We prove this theorem only for finite-dimensional spaces. First, a preliminary 
statement will be proved:

In the conditions of the theorem, operator С is either identically zero or is nonzero 
for all vectors v.

Indeed, assume the contrary: let set R0 of vectors v such that Cv = 0 is not reduced 
to the zero vector but differs from R. Then R0 is a vector subspace: if v1 and v2 belong to 

0R  Cv Cv( = 0, = 0)1 2 , then C v v Cv Cv( + ) = + = 01 2 1 2  (v v+1 2 belongs to R0), and if v belongs 
to 0R  (Cv = 0), then C λv λC v( ) = ( ) = 0 (λv belongs to R0). We will now prove that 0R  is an 
invariant subspace of representation T{ }g  which contradicts to the irreducibility of the 
representation. In fact, if v belongs to R0, then Cv = 0, whence T Cv = 0g  for all g; by the 
condition this is equivalent to CT v = 0g , and this means that all vectors T vg  belong to 0R .  
This contradiction proves our preliminary statement. Note that the same statement is 
true also for the operator C λ− ⋅ 1 for any complex number λ; indeed, according to the 
conditions of the theorem, this operator commutes with all Tg.

Until now, we have not used the assumption about the finite dimensionality of 
R. In a finite-dimensional space, the equation C λ v( − ⋅ 1) = 0 is equivalent to the 
homogeneous system of linear equations c λδ v∑ ( − ) = 0j

n
ij ij j=1  having a nonzero solution 

provided that that det c λδ− = 0ij ij . This is a so-called secular equation. As an alge-
braic equation, it has a complex root λ. For this λ, the equation C λ v( − ⋅ 1) = 0 has a 
nonzero solution v; therefore, for the operator C λ− ⋅ 1, the subspace R0 is not reduced 
to the zero vector. From the above preliminary statement, we have =0R R, that is, 
Cv λv=  for all v, and the operator С is constant.

Schur’s lemma is usually applied in the following situation. Let С be a Casimir 
operator of group G (which is verified, for example, by the second Jacobi identity 
like it was done in eq. (3.134)). If representation T{ }g  (generally speaking, reducible) 
of group G is defined in the space R, then R decomposes into a sum of irreducible 
subspaces kR . From Schur’s lemma, operator С is constant on each kR  and takes some 
value λk. Assume that all numbers λk are different. Then the expansion of space R 
into irreducible subspaces amounts to finding eigensubspaces of the Casimir oper-
ator С, which are desired irreducible subspaces of kR . The simplification is achieved 
due to the fact that instead of considering the behavior of vectors in R relative to 
the group of operators Tg, we can study their behavior under the action of a single 
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operator С. To better understand this method, consider again the examples dis-
cussed in Section 2.2.

If the values of the Casimir operator on irreducible subspaces are not all different, 
we should find all independent Casimir operators of group G. Denote them C C, …, r1 , 
and their values on the irreducible subspaces kR  as λ λ, …,k k

r(1) ( ), respectively. In many 
cases, these sets of eigenvalues do not coincide for different k; then the complete 
system of Casimir operators makes it possible to identify all irreducible subspaces as 
eigensubspaces of the system of r commuting operators C C, …, r1  and describe them by 
the above sets of eigenvalues. The same method is used to reduce irreducible repre-
sentations of group G with respect to its subgroup G1, for this goal, the Casimir opera-
tors of this subgroup are used.

3.5 Tensor product of representations

Consider now some methods to construct other groups and representations from Lie 
groups and their representations. Let G and H denote arbitrary groups; construct from 
them their product K. The elements of K are ordered pairs g h( , ), where g is an element 
of G and h is an element of H; the multiplication of such pairs is done by the rule

g h g h g g h h( , ) ⋅ ( , ) = ( , ).1 1 2 2 1 2 1 2� (3.134)

It is easily verified that this multiplication is associative, the identity in K is the pair 
e e( , )G H , where eG is the identity in G, eH is the identity in H, and g h( , )−1 −1  is the inverse 

element to g h( , ). Therefore, K is a group. The group is called the product of groups 
G H, , respectively, and is designated G H× . Group K contains a subgroup consisting of 
elements g e( , )H  which are multiplied the same way as their first factors in G; this sub-
group is therefore isomorphic to G. Denote it G × 1. Similarly subgroup H1 ×  consisting 
of elements e h( , )G  is constructed; it is isomorphic to H.

Evidently, each element from K uniquely decomposes into a product of elements 
from G × 1 and H1 × : g h g e e h( , ) = ( , )( , )H G .

Further, from eq. (3.135), it follows that elements of G × 1 commute with elements 
of H1 × : g e e h g h e h g e( , )( , ) = ( , ) = ( , )( , )H G G H .

This situation can take place within some given group K. Assume that K contains 
commuting subgroups G H, ; that is, gh hg=  for all elements g from G and h from H, 
and each element of K uniquely decomposes into a product of an element of G and 
an element of H: k gh= . Then, writing down k as g h( , ), we can easily verify that pairs 
g h( , ) are multiplied by the rule (3.135): from the commutativity of G and H, obtain

g h g h g h g h g g h h g g h h( , ) ⋅ ( , ) = ( ) ⋅ ( ) = ( ) ⋅ ( ) = ( , ).1 1 2 2 1 1 2 2 1 2 1 2 1 2 1 2� (3.135)

Thus, in the above conditions, group K is isomorphic to the product of groups G H× .
If G and H are Lie groups with dimensions dG and dH, respectively, then an element 

from G is described by dG parameters, an element from H by dH parameters and,  
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therefore, the pair g h( , ) is described by d d+G H parameters; thus, the dimension of 
G H×  is d d+G H.

The definition of the product of groups is easily generalized for any number 
of factors: the elements of the product are sets …g g( , , )n1  where gk belongs to 

…G k n( = 1, , )k , and multiplication of such elements is performed by the rule:

… … …g g g g g g g g( , , )·( , , ) = ( , , ).′ ′ ′ ′n n n n1 1 1� (3.136)

In particular, if all Gk are isomorphic to the group of real numbers R1 (with the oper-
ation of addition), then the product Rn is called an n-dimensional vector group; this 
operation in Rn is usually written additively (with the sign +). Another example is mul-
tiplication of n circles (a circle here is considered as a group of rotations of the plane 
SO(2)). This product T n is called an n-dimensional torus. In both examples, we obtain 
abelian (i.e. commutative) groups. It can be verified that each abelian Lie group is 
isomorphic either to Rm or to T n or to the product R T×m n. A more interesting example 
will be discussed in Section 5.2, where a nonabelian group SO(4) will be locally (in 
the vicinity of the identity) decomposed into a product of two copies of group SO(3).

Let representations T T{ }, { }g h  of groups G H, , respectively, be defined in spaces 
,1 2R R . Physically, it means that two quantum systems with state spaces R R,1 2 and 

symmetry groups G H,  are defined. If these systems constitute together some complex 
system, then the state of the latter is denoted v w⊗ , where v and w are state vectors of 
the first and the second systems, respectively. Linear combinations of such conditions 
also describe the states of the complex system (when the states of these both parts are 
not defined).

Mathematically, the state space of a complex system is constructed as follows. 
For Hilbert spaces ,1 2R R  there exists (up to isomorphism) such Hilbert space R, that 
are as follows:
(1)	 Each pair of vectors v from 1R  and w from R2 corresponds to the vector v w⊗  from 

R, such that

v v w v w v w
v w w v w v w
λv w v λw λ v w

( + ) = +
( + ) = +

( ) = = ( )

1 2 1 2

1 2 1 2

⊗ ⊗ ⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

� (3.137)

	 (λ is a complex number).
(2)	 Each vector from R can be represented as v w v w+ + …1 1 2 2⊗ ⊗ , where the sum is finite 

if ,1 2R R  are finite, and, in general, is the sum of a series converging in the norm.
(3)	 The scalar product in R is defined as

v w v w v v w w= + ,R R R1 1 2 2 1 2 1 2⊗ ⊗� (3.138)

where the first scalar product on the right side is taken in R1, and the second in R2.
The space R satisfying the above conditions is called the tensor product of spaces 

R R,1 2.
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In Physics, often the following simple method to construct the tensor product is 
used. Orthonormal bases σ  and τ  are chosen in 1R  and 2R , respectively; the bases 
are numerated by numbers σ τ, , and each pair of vectors σ τ,  is associated with an 
object called vector σ τ, ; linear combinations of such vectors constitute the desired 
space R, and its basis vectors σ τ,  are implied normalized and orthogonal to each 
other. If ,1 2R R  have finite dimensions т,n, then R is also finite-dimensional and has 
dimension тn. The pair of vectors v λ σ= ∑σ σ , w μ τ= ∑τ τ  belonging to the spaces 

,1 2R R , respectively, is associated with the vector

∑v w λ μ σ τ= ,
σ τ

σ τ
,

⊗� (3.139)

from R.
Let T{ }g  be the representation of group G in the space R1 and T{ }h  be the representa-

tion of group H in the space R2. From these representations, some representation T{ }k  
of group K G H= ×  is constructed in the space ⊗= 1 2R R R . Since the representation 
must be linear, it suffices to define operators Tk for vectors v w⊗  because their sums 
constitute the whole space R. Define for the element k g h= ( , ),

T v w T v T w( ) = ( ) ( ).k g h⊗ ⊗� (3.140)

Physically, it means that groups G H,  act separately on the state vectors v w,  of the 
subsystems, so that G H×  is the symmetry group of the complex system. In particular, 
for the basis vectors, we have

T σ τ T σ T τ, = .k g h⊗� (3.141)

If representations T T{ }, { }g h  are irreducible, the representation T{ }k  can also be shown 
to be irreducible.

It is easily verified that if representations T T{ }, { }g h  are unitary, then T{ }k  is also 
unitary. From eqs. (3.141) and (3.139),

⊗ ⊗ ⊗ ⊗T v w T v w T v T w T v T w
T v T w T v T w

( ) ( ) = ( ) ( ) ( ) ( )
= + ,

k k g h g h

g h g h

1 1 2 2 1 1 2 2

1 1 2 2

� (3.142)

where scalar products on the right are taken in ,1 2R R , and since T T{ }, { }g h  are unitary, 
obtain for the right side

v w v w v w v w+ = .1 1 2 2 1 1 2 2⊗ ⊗� (3.143)

Especially important is the case when one of the groups, for example, G, is the SU(2) 
group, and representation T{ }g  is a fundamental representation of this group in the 
two-dimensional complex space C2. In this case, index σ takes two values usually 
chosen as − 1

2
 and 12; then the basis of the space R consists of vectors σ τ, , and for σ = − 1

2 
and σ = 1

2, obtain subspaces ,+ −R R , respectively, generated by vectors τ τ− , , ,1
2

1
2

, and 
in each of them, a representation of group H is defined. The representations T T{ }, { }h h

− +  
act only on number τ and do not change σ.



� 3.5 Tensor product of representations   79

As can be verified, one-parameter subgroups g h{ , 1}, {1, }α α  belonging to G and 
H together form a complete set of generators of the Lie algebra of group K. In the 
space R of the representation T{ }k , one-parameter subgroups G correspond to oper-
ators AG acting only on the number σ, that is, transforming basis vectors σ τ,  into 
linear combinations of vectors with the same τ; similarly, one-parameter subgroups 
H correspond to operators AH acting only on the number τ. In particular, for G = SU(2) 
and fundamental representation T{ }g , operators Ag are reduced to matrices τ σ=k k

1
2  

and their linear combinations which transform components τ τ− , , ,1
2

1
2

. Denoting 
τ τ iτ= ++ 1 2, τ τ iτ= −− 1 2, we have

∓






τ τ τ τ τ τ τ σ τ σ σ τ σ− 1

2
, = 1

2
, , 1

2
, = − 1

2
, , , = , = 1

2
.+ − 3� (3.144)

Consider now the case of isomorphic groups G H, . Then each element g from G cor-
responds to the element φ g( ) from H, where φ is an isomorphism. If H is assumed 
the second copy of the group G, we can for simplicity designate φ g( ) as g keeping in 
mind which factor the element belongs to. Then from two representations T T{ }, { }g g

(1) (2)  
of group G in spaces R R,1 2, respectively, a representation T{ }g  of the same group G in 
the space R R R⊗= 1 2 can be constructed by the formula

T v w T v T w( ) = ( ) ( ).g g g⊗ ⊗� (3.145)

This representation is called a tensor product of representations T T,(1) (2) and is denoted as

T T T= .(1) (2)⊗� (3.146)

In contrast to the representation of G H×  where the elements g and h vary indepen-
dently (see eq. (3.141)), irreducible representations T T,(1) (2) of group G usually makes 
it possible to obtain reducible representation T of group G. Expansion into irreducible 
representations T T T= (1) (2)⊗  is the so-called Clebsch–Gordan problem.

A one-parameter subgroup g{ }α  of group G corresponds in the representation T the 
subgroup of operators

T v w T v T w( ) = ( ) ( ).g g gα α α
⊗ ⊗� (3.147)

By differentiating with respect to α, obtain the operators of the Lie algebra in the rep-
resentation T:

⊗ ⊗i d
dα

T v w i d
dα

T v T w( ) = ( ( ) ( )) .g α g g α=0 =0α α α
� (3.148)

The rule for differentiating a tensor product is derived the same way as for usual dif-
ferentiation, and from eq. (3.149), obtain the operator corresponding to the generator 
of the subgroup g{ }α  in the representation T:

⊗ ⊗ ⊗ ⊗i d
dα

T v T w iT v d
dα

T w A v w v A w( ) ( ) + ( ) ( ) = + ,g α g g g α=0 =0 1 2α α0 0
� (3.149)
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where A and A, 1 2 are the generators of the subgroup g{ }α  in the representations T (1) and 
T (2), respectively. In particular, the operators of the Lie algebra act on the basis vectors 
σ τ,  as follows:

A σ τ A σ τ σ A τ, = + .1 2⊗ ⊗� (3.150)

Having in mind the action of operators A andA 1 2 described in eq. (3.151), we can write 
briefly

A A A= +1 2� (3.151)

where operators A A A, ,1 2  represent the generators of the corresponding one-parame-
ter subgroups G H K, , .

In view of the isomorphism φ, the pairs g φ g( , ( )) constitute in G H×  a subgroup G∼ 
which is also isomorphic to G, because the law of multiplicating pairs

g φ g g φ g g g φ g φ g g g φ g g( , ( )) ⋅ ( , ( )) = ( , ( ) ( )) = ( , ( ))1 1 2 2 1 2 1 2 1 2 1 2� (3.152)

is exactly the same as in G. Therefore, we can consider the tensor product of represen-
tations defined by eq. (3.146) as a presentation of the constructed subgroup G∼ (rather 
than the first factor of G H× ).

Consider, for example, groups G = SO(3) and H = SU(2) with generators Ak and τk 
(k = 1, 2, 3), respectively. Then the correspondence A τ→k k defines an isomorphism of 
Lie algebras, and the equation

φ e e=
∑ ∑i α A i α τ− −

k
k k

k
k k

=1

3

=1

3










� (3.153)

defines the local isomorphism of G and H (i.e. isomorphic mapping connecting the 
vicinities of the identities of these groups). From two given representations T T{ }, { }g h  
of groups SO(3), SU(2), their tensor product can be constructed which is a local repre-
sentation of G∼ with elements O φ O( , ( )).(3) (3)
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4.1 The concept of spin

Spin is an “internal degree of freedom” of the electron and has no classical analog. 
To describe the spin, in 1926, Pauli suggested representing electron states by two-
component wave functions:

ψ
ψ x y z
ψ x y z

=
( , , )
( , , )

.1

2

















� (4.1)

The summation of state vectors ψ and their multiplication by complex numbers are 
component-wise:

ψ φ
ψ x y z φ x y z
ψ x y z φ x y z

λψ
λψ x y z
λψ x y z

+ =
( , , ) + ( , , )
( , , ) + ( , , )

, =
( , , )
( , , )

,1 1

2 2

1

2

































� (4.2)

and their scalar product is defined as

∫ψ φ ψ φ ψ φ d x= ( + ) .1 1 2 2
3∗ ∗� (4.3)

Vector ψ is said to be normalized if ψ ψ ψ= = 1. Transition probabilities between 
normalized vectors ψ and φ are ψ φ 2. If the state of an electron is defined by a nor-
malized two-component wave function ψ, the probability to find the electron in the 
region D is

∫ ψ ψ d x( + ) .
D

1
2

2
2 3� (4.4)

Thus, electron-spin states are described (in the nonrelativistic theory) by two-compo-
nent wave functions ψ to constitute a Hilbert space. Designate this space R2.

As we saw, rotation group SO(3) is important in Schrödinger’s zero-spin quantum 
mechanics. It is natural to expect that this group acts also in the space 2R  of spin wave 
functions. To find the corresponding representation, we will use the analogy between 
two-component functions (4.34) and vector fields such as velocity field υ x y z( , , ) 
and force field F x y z( , , ). Change of coordinates transforms the vector field the way 
that it is described in both systems by the same mathematical procedure to ensure 
the equality of all coordinate systems. The observer in the “old” coordinate system 
assigns coordinates x y z, ,  to point r and projects the vector field υ r( ) at this point on 
the axes of the “old” system to obtain the components of the field υ x y z( , , )i  (i = 1,2,3). 
The observer in the “new” coordinate system assigns coordinates x y z, ,′ ′ ′ to the same 
point r and projects the same vector field υ r( ) on the “new” axes to obtain the compo-
nents of the field υ x y z( , , )′ ′ ′′

i . The new coordinates are expressed in terms of the old 
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coordinates by the orthogonal transformation x Ox=′ , and so do new components of 
the field with respect to old components:

∑υ x y z o υ x y z i( , , ) = ( , , ) ( = 1, 2, 3)′ ′ ′ ′i
j

ij j
=1

3

� (4.5)

Replacing x′ by х, obtain

∑υ x o υ O x i( ) = ( ) ( = 1, 2, 3)′i
j

ij j
=1

3
−1� (4.6)

The same transform results from the “active” interpretation with constant coor-
dinate system and the whole field rotating; the reader is encouraged to verify this 
statement.

If the two-component wave function (4.1) is considered as an analog of a vector 
field, its transformation under rotation О is natural to search similar to eq. (4.6):

∑ψ x u ψ O x( ) = ( )′ σ
τ

στ τ
=1

2
−1� (4.7)

where u u= ( )στ  is the second-order matrix corresponding to О. Suppose that two rota-
tions O1 and O2 act consecutively. Let u(1) and u(2) denote the corresponding matrices, 
then from eq. (4.7), obtain:

∑ ∑ψ x u ψ O x ψ x u ψ O x( ) = ( ), ( ) = ( )″ ′ ′σ
τ

στ τ τ
ρ

τρ ρ
=1

2
(2)

2
−1

=1

2
(1)

1
−1� (4.8)

Replacing х by O x2
−1  in the second equation of eq. (4.8) and substituting ψ O x( )′

τ 2
−1  in the 

first equation, we have

∑ ∑ ∑″ψ x u u ψ O O x u u ψ O O x( ) = ( ) = ( ) (( ) )σ
τ

στ
ρ

τρ ρ
ρ

σρ ρ
=1

2
(2)

=1

2
(1)

1
−1

2
−1

=1

2
(2) (1)

1 2
−1� (4.9)

Therefore, the result of both transforms O2, O1 also has the form (4.7), and rotation 
O O1 2 corresponds to the product of matrices u u(1) (2) taken in the same order. It is natural 
to assume that the identity rotation O = 1 corresponds to the identity transformation 
ψ ψ=′ , that is, the identity matrix u. This means that matrices u u= 0 corresponding 
to all possible rotations should constitute a two-dimensional representation of SО(3) 
group. If the transition probabilities, that is, scalar products (eq. (4.3)) are to be con-
served, the representation should be unitary. In fact































∗

∗

∗ ∗ ∗ ∗

∫ ∫
∫ ∫

∑ ∑ ∑ ∑

∑ ∑ ∑

ψ φ ψ x φ x d x u ψ O x u φ O x d x

u u ψ O x φ O x d x u u ψ x φ x d x

= ( ) ( ) = ( ) ( )

= ( ) ( ) = ( ) ( ) ( )

′ ′ ′
σ

σ σ
σ τ

στ τ
ρ

σρ ρ

τ ρ σ
στ σρ τ ρ

τ ρ

t
τρ τ ρ

=1

2
3

=1

2

=1

2
−1

=1

2
−1 3

, =1

2

=1

2
−1 −1 3

, =1

2
3

� (4.10)
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(see the proof (1.20)). On the other hand,

∫ ∑ψ φ ψ x φ x d x= ( ) ( ) .
τ

τ τ
=1

2
3∗

To make it equal to eq. (4.10), the condition u u δ( ) =t
τρ τρ

∗ , that is, u u=t −1∗  should be 
satisfied, which means that matrix u is unitary.

Thus, to find the rotation transformation of two-component wave functions, a 
two-dimensional unitary representation of SO(3) is to be found. It turns out that, up 
to equivalence, there are only two such representations: the identity representation 
and the irreducible representation described below. Under the identity representation 
(u = 1O ), the components ψ1, ψ2 are transformed separately according to eq. (4.9); this 
provides no new results as compared to the spinless Schrödinger’s theory. As we will 
see, the additional angular momentum of the electron, which initially was explained 
as a “rotation about its own axis,” is correctly described by some irreducible repre-
sentation.

To construct the representation, use the method described in Section 3.3. The 
basis of Lie algebra of SO(3) consists of three matrices Ак (eq. (3.36)) satisfying com-
mutation relations (eq. (3.75)). Each of them should be put into correspondence to the 
operator acting in a two-dimensional complex space or, in the chosen basis, to the 
second order matrix, so that these matrices obey the same commutation relations. 
Pauli matrices τ σ k= ( = 1, 2, 3)k k

1
2  multiplied by 1

2 can be taken for this goal. Then the 
desired representation of the Lie algebra of SO(3) group is given by eq. (3.115), and the 
corresponding representation of SO(3) group is given by eq. (3.116). One-parameter 
subgroup of rotations about z axis

x x α y α
y x α y α
z z

= cos − sin
= sin + cos
=

′
′
′

� (4.11)

corresponds to the subgroup of matrices

u e e= =α
iατ iα

σ
− − 23

3� (4.12)

(see eq. (3.38)). One-parameter matrix subgroups corresponding to rotations about х, 
у are constructed in a similar way. Since matrices τk are Hermitian and traceless, the 
obtained representation is unitary, and the determinant of its matrices is 1.

The representation is irreducible. In fact, since operators of the representation 
of the Lie algebra are obtained as linear combinations of the representing operators 
of the group and by passage to the limit (see eq. (3.97)), an invariant subspace of 
the Lie group is also invariant for its Lie algebra. If С′ is an invariant subspace of C2 

containing a nonzero vector 
z
z

1

2











, then, without loss of generality, assume that z ≠ 01  

(otherwise it suffices to take, instead of 
z
z

1

2











, vector 

z
z σ

z
z=2

1
1
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
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

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
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


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 also belonging to С′). 
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Since z z
z σ

z
z

2
0

= +1 1

2
3

1

2
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

























 belongs to С′ together with 

z
z

1

2











, С′ contains all vectors w

0




, 

where w is any complex number. Similarly, it can be proved that С′ contains all vectors 
w
0




; but then С′ coincides with C2.

Consider now the transformation law of two-component wave functions (eq. 
(4.7)). Replacing u by the matrix of representation uO on the right side of eq. (4.7), from 
eq. (4.9), it follows that eq. (4.7) defines the representation of SO(3) in the space of 
two-component wavefunctions 2R . From eq. (4.10), it follows that the representation 
is unitary; designate it T{ }O

(2) .
Replacing О in eq. (4.12) by rotation (eq. (4.11)) and u by matrix (eq. (4.12)), obtain 

a one-parameter subgroup of operators T{ }O
(2)

α
 to transform ψ into ψ′α:

ψ e ψ x α y α x α y α z

ψ e ψ x α y α x α y α z

( ) = ( cos + sin , − sin + cos , ),

( ) = ( cos + sin , − sin + cos , )

′

′

α

iα

α

iα
1

−
2

1

2
2

2

� (4.13)

Find the observable corresponding to this subgroup (see eq. (2.15)):
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
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

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


T ψ ψ
α

d
dα

T ψ x
y
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x

ψ
ψ

i ψ
ψ

lim
−

= ( ) = − ∂
∂

− ∂
∂

−
2

1 0
0 1α

α
α α→0 =0

1

2

1

2

� (4.14)

Multiplying both sides by �i , obtained is the Hermitian operator:

� �I ψ
i

x
y

y
x

ψ σ ψ= ∂
∂

− ∂
∂

+
2z 3











� (4.15)

The first term in eq. (4.15) is the operator of the orbital angular momentum Lz, the 
same as in Schrödinger’s one-component theory; it is applied to each component 
separately. The second term, designated Sz, is the electron-spin momentum which 
is a linear matrix operator to transform the components of the ψ function. Simi-
larly, obtained formulas for I I,x y containing the operators of spin angular momen-
tum �S σ=x 2 1 and �S σ=y 2 2. “Spin projections” are new observables of the Pauli’s two-
component theory. The form of these operators is confirmed experimentally as the 
observed values of angular momentum are the eigenvalues of I L S= + . If the spin can 
be neglected, then one-component Schrödinger theory is applicable, and the opera-
tors of the angular momentum are reduced to L. The above derivation of the operators 
of the electron’s total angular momentum is close to the original Pauli’s reasoning 
(see Pauli, 2000).

The operator of the projection of the spin momentum Sz has eigenvalues �± 2 

corresponding to the eigenvalues ± 1 of matrix σ3. Eigenfunctions Sz are 











ψ
0

1  and ψ
0

2










.  

Sx and Sy have the same eigenvalues; the reader is encouraged to exercise in finding 
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their eigenfunctions. Matrices σk are chosen the way that σ3, which corresponds to 
rotations about axis z, has the simplest diagonal view. This can simplify the tasks 
where axis z is oriented in the direction of the external field as is done when consid-
ering Zeeman and Stark effects. As follows from eq. (3.76), operator S S S S= + +x y z

2 2 2 2 
commutes with the operators of spin angular momentum S S S, ,x y z; obviously, it com-
mutes also with L L L, ,x y z and, therefore, with representing operators I I I, ,x y z of the 
Lie algebra of SО(3) group. From Schur’s lemma, operator S2 is constant on 2R ; its 

value is found by taking any vector from R2, for example, ψ
0

1









. After simple calcu-

lations obtain � �S = ( + 1) =2 1
2

1
2

2 3
4

2. The largest eigenvalue of the operators of spin 
angular momentum S S S, ,x y z divided by ℏ, that is, 1

2, is called the spin of the electron. 
Operator S2 is expressed in terms of the spin the same way as L2 is expressed in terms 
of l. Note that operator S is not considered, so that S2 should be viewed as a single 
symbol.

Pauli extended his theory to the particles with any spin. If, instead of two- 
component wave functions, d-component wave functions are taken, where d is any  
non-negative number, the above constructions can be repeated if matrices τk are replaced 
by matrices sk (k = 1, 2, 3) of order d with the same commutation relations. This way, a 
d-dimensional irreducible unitary representation of SO(3) defined in a neighborhood 
of identity is obtained. Using the matrices of this representation uO, a representation 
of SO(3) in the space of d-component wave functions can be constructed similar to eq. 
(4.7) and operators of total angular momentum similar to eq. (4.15). It can be shown 
that eigenvalues of spin operators sk are –s, −(s − 1), … , s − 1, s, where s is such that  
d = 2s + 1; therefore, s is an integer or a half-integer number, that is, …s =  0, , 1, , 2,1

2
3

2  . 
Number s called the spin of the particle described by a d-component wave function. 
Operators of the spin momentum of such particle are related to spin operators as 
�S s= . The value of the Casimir operator S S S+ +x y z

2 2 2 for a particle with spin s is 
�s s( + 1) 2.

Note that the method of constructing representations using Lie algebras ensures 
their uniqueness only in the neighborhood of the identity of the represented group. 
It can be shown that in odd-dimensional spaces, there exists a unique irreducible 
representation of the whole SO(3) group, and in even-dimensional spaces, there is 
only local representation. Appendix B contains a brief description of irreducible rep-
resentations of SO(3) group.

4.2 Isotopic spin

In 1934, Heisenberg applied the concept of spin to describe protons and neutrons. 
In Pauli’s (and Dirac’s) theory of electron, different spin states of the electron are 
associated with the same particle because the electron in all spin states has the same 
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weight and charge and all these states obey the same equation of motion.32 The proton 
and neutron have very close, though different, masses (938.3 and 939.5 MeV, respec-
tively) and, indeed, different charges (+1 and 0). Heisenberg proposed to consider 
these two particles as different states of the same quantum system by analogy with 
spin states of the electron where �S = ±z 2 . The mass “splitting” is explained by analogy 
with energy levels splitting in magnetic fields, where the charge plays the role similar 
to the spin momentum.

The theory considers only spin states of a quantum system rather than its space–
time behavior. In a sense, this approach is opposite to that discussed in Section 1.1, 
where the spin was neglected. Quantum mechanics can be constructed at different 
levels of description: relativistic and nonrelativistic; spin and spinless. Now we want 
to construct a quantum mechanics of the spin. The term will be justified the resulting 
theory has all characteristics of a quantum-mechanical description. We will call this 
system a “two-component spin.”

Consider a two-dimensional complex space C2 with two-component complex 
vectors z called spinors and designated as columns:

z
z
z= .1

2












� (4.16)

Comparing this record with two-component wave functions from Section 4.1, the 
spinor is assumed to provide the information about the spin of the electron, as  z1, z2 
do not depend on the coordinates or on the time. As we will see, such description of 
the spin is useful because it allows applying this concept to the other kind of prob-
lems. Define a scalar product in the space C2,

z w z w z w= +1 1 2 2
∗ ∗� (4.17)

Thereby C2 becomes a two-dimensional Hilbert space.33 This will be the state space of 
our system with state vectors represented by non-zero spinors (eq. (4.16)). We will use 
orthonormal bases in C2 such as, for example, a pair of spinors

e e= 1
0 , = 0

1 .1 2














� (4.18)

Take SU(2) as the symmetry group of the system. Therefore, the representation of the 
rotation group is no more used, because no spatial aspect of the system is considered; 

32 A deeper reason of viewing the “electron with spin ½” and the “electron with spin -½” as the 
states of the same particle rather than two different particles is that the electron is described by the ir-
reducible representations of the Poincare group which explain its spin (see, e.g. Rumer and Fet, 1977).
33 Often Hilbert spaces are assumed to be infinite-dimensional spaces with scalar product; we will 
not introduce another term for the finite-dimensional case.
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unitary unimodular matrices u no longer represent rotations, rather they represent 
themselves, or, in the chosen basis of C2, linear transforms

z u z u z
z u z u z

= +
= +

′
′
1 11 1 12 2

2 21 1 22 2
� (4.19)

As the matrix of the linear transformation is different in different orthonormal bases, 
only the basis (4.18) will be further assumed. Algebraically, representations of matrix 
groups when each matrix corresponds to itself, do not differ from other faithful repre-
sentations and have no special mathematical name; physicists often call them “fun-
damental.” The fundamental representation of SU(2) is irreducible: it is easily verified 
that no vector is carried by all transforms (4.19) into its own multiple; that is, there is 
no one-dimensional invariant subspace. From eq. (4.10), it follows that this represen-
tation is unitary. As was discussed in Chapter 2, the main observables of our quantum 
system are derived from the symmetry group SU(2) and are matrices of its Lie algebra. 
As we know, this Lie algebra consists of traceless second-order Hermitian matrices 
expressed as linear combinations of matrices τk = ½σk (k = 1, 2, 3) with real coefficients 
(eq. (3.37)) and obeying commutation relations (eq. (3.76)). These basis matrices, with 
appropriate factors, are main observables of our system. Polynomial τ τ τ τ= + +2

1
2

2
2

3
2 is 

the Casimir operator and takes value ( )+ 1 =1
2

1
2

3
4 for the fundamental representation.

Now construct the Hamiltonian. As was shown in Chapter 2, the Hamiltonian is 
an element of the universal enveloping algebra of the symmetry groups; in the case 
of “perfectly symmetrical” system, it commutes with the symmetry group, that is,  
proportional to the Casimir operator. Electron spin is an example of such perfectly 
symmetrical system. As the mass is proportional to the energy, we can identify the 
Hamiltonian of such a system with the operator of the weight. In nonrelativistic 
quantum mechanics, the energy is understood as just as a small addition to the “rest 
energy” due to the movement of the particles; but if space–time properties of the par-
ticle are not considered, this addition becomes insignificant and the energy must be 
regarded as the rest energy mc2. This gives rise to the concept of mass operator identi-
fied (up to a factor) with the Hamiltonian. For the electron spin, mass operator should 
be regarded as a multiple of Casimir operator τ2; therefore, all spin states of the elec-
tron are associated, according to the experience, with the same mass.

Now apply the same mathematical formalism to describe the “state of the 
nucleon.” Two “distinguished” states of the system will be considered: the “proton 
state” and the “neutron state,” as the analogs of electron states with spin projections 

�( )S = ±z 2 . To distinguish this new type of spin from the electron spin, we will call it 
the isotopic spin34 or isospin. To avoid confusion, for the isospin case matrices, τk will 
be designated Тk. The observables Т1, Т2, Т3 of the isospin do not commute, and only 
one of them (let it be Т3) may have a definite value. The eigenvalues of Т3 are ±½; 

34 The term has nothing to do with the isotopes of the elements.
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the corresponding spinors are −е1 and е2 (eq. (4.19)). It will be assumed that е1 is the 
vector of the proton state, and е2 is the vector of the neutron state of the nucleon (this 
agreement is conditional, since both vectors are equal). Then the charge of particles 
Q can be expressed in terms of Т3:

Q T= + 1
23� (4.20)

However, simple is the relation, such approach to the electric charge was unusual 
for the traditional quantum mechanics where the charge (along with the mass) was 
always considered a constant numerical characteristic of the particle rather than an 
observable, that is, a Hermitian operator acting on the state vectors. This point of view 
happened to be very fruitful.

In contrast to electron spin, isotopic spin is associated with mass splitting and, 
therefore, with symmetry breaking of the system. Therefore, the Hamiltonian (or the 
mass operator) is taken as

M αT βQ= +2� (4.21)

where operator βQ βT= + β
3 2  is added to the Casimir operator αT 2. Since T3 belongs 

to the Lie algebra G of group SU(2), the polynomial M belongs, as follows from the 
general reasoning of Section 2.4, to its universal enveloping algebra ∼G. Thus, the 
mass of the particle, like its charge, becomes an observable of the quantum theory. 
The neutron and the proton are represented by vectors of the nucleon state, which 
are eigenvectors of operator M, that is, considered as states with a certain mass. 
The second term in the mass formula (eq. (4.21)) is small as compared to the first 
due to small difference between the masses of the neutron and the proton; there-
fore, the second term in eq. (4.21) can be considered as a “perturbation” of the 
symmetric operator of the nucleon mass and explains the idea of “broken symme-
try.”

Along with the family of two nucleons considered by Heisenberg, there are other 
families of particles with very similar masses, that is, small differences between their 
masses compared with the masses themselves: three Σ particles Σ−, Σ0, and Σ+ (charges 
−1, 0, +1), four Δ particles Δ−, Δ0, Δ+, Δ++ (charges −1, 0, 1, 2), and so on. These families 
are called isotopic multiplets (a doublet of two particles, a triplet of three particles, a 
quadruplet of four particles, etc.) which are very important for particle classification. 
They are naturally described by representations of SU(2) of various dimensions like 
it was done in Section 4.1 for spin states of particles of any spin. Thus, three Σ par-
ticles are considered the states of a quantum system “Σ” with a three-dimensional 
state space C3, where an irreducible representation of SU(2) group is defined, and so 
on. In all these spaces, the operators to define the Lie algebra of SU(2) are observ-
ables of the corresponding quantum system. Since the projection of isospin T3 takes 
(integer or half-integer) values T T T T− , − + 1, …, − 1,  which are, similar to the charges 
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of the particles of the multiplet, equidistant from each other, we can expect a relation 
between T3 and Q. It turns out that

Q T n= +
23� (4.22)

where n is a positive or negative integer number depending on the multiplet. The 
number of particles in the multiplet is T2 + 1; the number Т is called the isospin of all 
these particles. Expressing T T T T= + +2

1
2

2
2

3
2 in terms of Т, obtain T(T+1), and, similar 

to angular momentum operators Lk, we have L L L= ( + 1)2 . Finally, mass splitting 
within the isotopic multiplet can be approximately described by a perturbing opera-
tor quadratic in Q; the obtained mass formula is

M αT T β γQ δQ= ( + 1) + + + 2� (4.23)

where coefficients α β γ δ, , ,  are multiplet dependent.
By analogy with the conventional quantum mechanics, mass splitting within 

isotopic multiplets can be regarded as a result of some “interaction.” Without the 
“disturbing” term, all states would have the same masses, like electronic energy 
levels remain degenerate in a spherically symmetric field until the symmetry of the 
field is broken. When external magnetic field is applied, it starts interacting with the  
electron and virtually does not change while electron energy levels split into nonde-
generate levels. The additional term in the mass formula can be considered as some 
interaction to break the symmetry of the “nucleon.” The difference is that there are no 
“nucleons” with unbroken symmetry in nature. The electron in a perfectly Coulomb 
field is also an abstraction since even the proton as the nucleus is something more 
complex than a point charge. However, there is a sufficiently close approximation 
to the Coulomb symmetry to make the violations of this symmetry a perturbation 
of the real state of the system. Of course, in the case of “nucleons,” the reality of 
exact SU(2) symmetry is out of the question. Further, there is no “interaction” with 
the external system: in fact, the “nucleon” interacts with itself similar to the electron 
which “receives weight” due to “self-action” even in the vacuum. Such generalization 
of the concepts of symmetric system state and interaction is very typical of modern 
quantum theory.

While usual systems have states described by infinite-dimensional Hilbert space 
of ψ functions and are interesting as far as their spatial–temporal behavior, in the case 
of isotopic multiplets, we are interested in the “internal degrees of freedom” of the 
particles, and the state space is a finite-dimensional Hilbert space. In other respects, 
it shares all main features of a quantum theory like Hilbert space of state vectors, 
representation of the symmetry group, construction of the observables from the Lie 
algebra of this group and its Hamiltonian from its universal enveloping algebra (i.e. in 
the form of polynomials of the operators of the Lie algebra using the Casimir operator 
of the group).
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Temporal evolution of the system is not considered in this approach. Indeed, in 
ordinary quantum mechanics, a solution ψ x y z t( , , , ) of the Schrödinger equation is 
searched, and the task is reduced to finding eigenfunctions and eigenvalues of the 
Hamiltonian (since the temporal evolution for eigenfunctions ψn is given by the expo-
nential factor �e iE t− /n ). The theory of isotopic multiplets does not contain the time, and 
the states of the multiplet with certain masses corresponding to elementary particles 
are defined by eigenvectors of the mass operator.

The situation is more complicated with the “superposition law.” In the 
usual formulation, the principle states “if …ψ ψ, ,1 2  are the state vectors of a 
quantum system, then all nonzero linear combinations �λ ψ λ ψ+ +1 1 2 2  also 
are vectors to represent possible states of the system.” Under the assumption 
that the state vectors form a Hilbert space, this simply means that the space is 
linear. However, there are cases when a Hilbert space is an appropriate tool to 
describe the system, but not all its vectors can be interpreted as representations 
of physically possible states. First, such a situation was met in quantum electro-
dynamics for systems with some (variable) number of electrons and positrons. 
The quantum theory formalism requires the states of such system to be defined 
by the vectors of the corresponding Hilbert space (the so-called “Fock space”). 
But if, for example, ψ− is a state with some electron and ψ+ is a state of some pos-
itron, the superposition αψ βψ+− + should be interpreted as a state of a parti-
cle which is an electron with probability α 2 and a positron with probability β 2.  
Such state cannot be viewed real. Therefore, the applicability of the “superpo-
sition principle” should be limited: Hilbert spaces are considered a mathemati-
cal tool, but physical meaning is associated with the vectors from only some of 
its subspaces, for example, those with some certain charge. This is the essence 
of Wigner’s “superselection rules” which is especially important in particle clas-
sification: if, for example, e1 and e2 image the proton and the neutron state of a 
nucleon, then for non-zero α, β linear combinations, αe βe+1 2 do not represent real 
physical conditions of a nucleon (though they are necessary for its description, 
since the representation of a symmetry group is constructed in a linear space!) Only 
the vectors which are multiples of e1 or e2 represent physically real conditions of 
a nucleon. This view on the “superposition principle” is essential to understand 
further reasoning.

4.3 SU(3) group

In 1961, Gell-Mann (Calif, 1961) and Neeman (1961) independently suggested a classi-
fication of hadrons to combine isotopic multiplets in larger families. The idea will be 
outlined as a preparation to the following element classification. (A detailed discus-
sion of the theory of unitary symmetry assuming only the fundamentals of quantum 
mechanics, see, for example, in Rumer and Fet, 1970.)
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As mentioned above, mass splitting within isotopic multiplets is considered by 
analogy with energy levels splitting associated with a violation of the Hamiltonian 
symmetry, that is, when some interaction takes place. Such “symmetric” systems as 
“nucleon,” “Σ,” and so on, in their turn can be imagined as the results of violation 
of a higher symmetry of some hypothetical system due to its internal “interaction.” 
Since average masses of isotopic multiplets are very far from each other, this inter-
action should be much stronger than the one to cause mass splitting within isoto-
pic multiplets. It can be thought that before this “stronger” interaction, the system 
had higher symmetry, and therefore, a larger symmetry group than isotopic multi-
plets, and that symmetry violation is associated with a narrowing of this group to 
its subgroup SU(2). When the next “weaker” interaction is “turned on,” the masses 
of isotopic multiplets finally split into the masses of individual real particles. The 
whole family of particles described by a “large” symmetry group is, therefore, com-
bined by some “affinity”: these particles are considered as states of a single quantum 
system. Particles from different isotopic multiplets should thus be considered not so 
much similar as those within the same isotopic multiplet, as splitting of the initial 
object into isotopic multiplets requires stronger interaction than the one needed to 
split the latter into individual particles. Thus, we obtain a “hierarchical” particle 
classification.

The group of unitary unimodular35 matrices of the third-order SU(3) was sug-
gested as a larger symmetry group. Its elements have the form u u= ( )στ , where uστ are 
complex numbers and u u δ∑ =ρ σρ τρ ρτ=1

3 ∗ , (σ, τ = 1, 2, 3), det|uστ| = 1. Each such matrix 
defines a transform of a three-dimensional complex space С3

∑δ u z σ= , ( =  1,  2,  3),′σ
τ

τρ τ
=1

3

� (4.24)

the scalar product being preserved (see eq. (4.17)):

∑ ∑z w z w z w z w= = =′ ′ ′ ′
σ

σ σ
σ

σ σ
=1

3

=1

3
∗ ∗� (4.25)

Equation (4.24) defines the three-dimensional unitary representation of SU(3) in the 
space С3 which is irreducible: to prove it, it is enough to find such matrices in SU(3) 
that the corresponding operators of representation (4.24) translate some vector of 
С3 (for example, z z z( = 1, = 0, = 0)1 2 3 ) into three linearly independent vectors of С3 
(which constitute a basis of this space). The reader is encouraged to do this simple 
exercise.

In contrast to the fundamental representation of SU(2) group, representation 
(4.24) is directly connected with the definition of the group and has no physical 

35 With the unit determinant.
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meaning for the reasons to be discussed later. Now consider Lie algebra of SU(3) 
group. To obtain unitary matrices u in the form e iA− , Hermitian matrices of the third 
order should be taken as A matrices, and like it was the case of SU(2)group, unimod-
ular matrices и are obtained from traceless matrices A. Consequently, the Lie algebra 
of SU(3) group consists of matrices

A
a a a
a a a
a a a

=
11 12 13

12 22 23

13 23 33
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∗ ∗

� (4.26)

where akk are real and a∑ = 0k kk=1
3 . There are eight independent real parameters to 

determine А: these are real and imaginary parts of elements a a a, ,12 13 23 and two of 
the three real diagonal elements. Therefore, the dimension of the Lie algebra, and 
hence of SU(3) group, is eight. The basis of the Lie algebra is composed of any eight 
linearly independent traceless Hermitian matrices of order eight. The matrices will be 
obtained from nine Okubo matrices Aτ

σ (not all belonging to the Lie algebra) obeying 
the linear dependence A A A+ + = 01
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0 0 0
1 0 0

, =
0 0 0
0 0 0
0 1 0

, =
− 0 0
0 − 0
0 0

.

1
1

2
3

1
3

1
3

1
2

1
3

2
1

2
2

1
3

2
3

1
3

2
3

3
1

3
2

3
3

1
3

1
3

2
3

� (4.27)

All these matrices are traceless, but only three of them are Hermitian: A A A, ,1
1

2
2

3
3. Eight 

Gell-Mann matrices are expressed in terms of the Okubo matrices:

λ A A λ
i

A A

λ A A λ
i

A A

λ A A λ
i

A A

λ A A λ A

= + , = 1 ( − ),

= + , = 1 ( − ),

= + , = 1 ( − ),

= − , = − 1
3

.

1 1
2

2
1

2 1
2

2
1

4 1
3

3
1

5 1
3

3
1

6 2
3

3
2

7 2
3

3
2

3 1
1

2
2

8 3
3

� (4.28)

(the numbering of the matrices and the coefficient − 1
3  at λ8 are unessential and 

are used by tradition). As is easily verified, Gell-Mann matrices are traceless, 
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Hermitian, and linearly independent; thus, they form a basis of the Lie algebra of 
SU(3) group. And vice versa, Okubo matrices can be expressed from eq. (4.28) and 
A A A+ + = 01

1
2
2

3
3  as linear combinations of Gell-Mann matrices with complex coeffi-

cients:

A λ i λ A λ i λ

A λ i λ A λ i λ

A λ i λ A λ i λ

A λ λ A λ λ

= 1
2

+
2

, = 1
2

−
2

,

= 1
2

+
2

, = 1
2

−
2

,

= 1
2

+
2

, = 1
2

−
2

,

= 1
2

+ 3
2

, = − 1
2

+ 3
2

.

1
2

1 2 2
1

1 2

1
3

4 5 3
1

4 5

2
3

6 7 3
2

6 7

1
1

3 8 2
2

3 8

� (4.29)

Evidently, Okubo matrices belong to the complex envelope of the Lie algebra (see 
Section 3.3). As follows from eq. (4.29), commutation relations for λj matrices com-
pletely determine those for matrices Aσ

τ; conversely, if commutation relations for Aσ
τ 

are known, eq. (4.28) can be used to obtain commutation relations for λj. Commuta-
tion relations for Okubo matrices are even simpler, they are given by a single equa-
tion:

A A δ A δ A σ τ λ μ[ , ] = − ( , , , = 1, 2, 3)τ
σ

μ
λ

μ
σ

τ
λ

τ
λ

μ
σ� (4.30)

where δ = 1τ
σ  for σ τ=  and δ = 0τ

σ  for σ τ≠ . The resulting commutation relations for λj 
can be easily derived.

According to Section 3.3, to construct a representation of SU(3) group in some 
space, operators Tλj

 with the same commutation relations as those for matrices λj are 
to be defined in this space. However, it is more convenient to proceed in a different 
way: first a correspondence is set up between matrices Aτ

σ and operators TAτ
σ with the 

same commutation relations (eq. (4.30)) as those for matrices Aτ
σ, and then TAτ

σ is used 
to express operators Tλj

 by the same linear combinations as eq. (4.28). Repeating the 
derivation of commutation relations for λj from those for Aτ

σ, the same commutation 
relations are obtained for Tλj

as those for matrices λj and the needed representation is 
therefore constructed. For simplicity, we will write further Aτ

σ instead of operator TAτ
σ.  

We will consider only unitary representations where operators A  (σ=1,2,3)σ
σ  are Hermi-

tian (along with λj).
In contrast to SU(2) group whose maximal system of the main commuting observ-

ables is a single matrix τk, SU(3) group has two such observables represented by any 
two matrices Aσ

σ. We take the observables A1
1 and A3

3. These matrices commute with 
each other but not with other Aτ

σ (except A A A= − −2
2

1
1

3
3). In different representations, 

they correspond to commutation operators whose eigenvalues depend on the rep-
resentation. Thus, in a three-dimensional representation (eq. (4.24)), these eigen-
values are 2

3 and −1
3 for the vector (1,0,0); −1

3 and −1
3 for the vector (0,1,0); and −1

3 
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and 2
3 for the vector (0,0,1), so that in this case, the values of the observables A1

1, A3
3 

uniquely define basis vectors; however, as we will see, this representation (unlike the 
fundamental representation SU(2)) has no clear physical interpretation. In other rep-
resentations, the eigenvalues of operators A1

1, A3
3 do not define basis vectors. The addi-

tional quantum number can be obtained from subgroup SU(3) constituted by matrices

u u
u u

0
0

0 0 1

11 12

21 22



















� (4.31)

This subgroup can be defined as matrices u such that vector (0,0,1) is preserved under 
linear transformations (eq. (4.24)). Matrices (4.31) are evidently in a one-to-one cor-
respondence with matrices SU(2) and are multiplied the same way as matrices SU(2); 
therefore, the subgroup (4.31) is isomorphic to SU(2) group; we denote it simply SU(2). 
So, there is a chain of groups:

⊃SU SU(3) (2)� (4.32)

Now construct a Lie subalgebra of SU(2) subgroup. As is seen from eq. (4.31), the gen-
erators of one-parameter subgroups SU(2) have zero elements in the third lines and in 
the third columns. Therefore, the basis of the subalgebra consists of matrices























































T A A T
i

A A

T A A

= 1
2

( + ) =
0 0

0 0
0 0 0

= 1
2

( − ) =
0 − 0

0 0
0 0 0

= + 1
2

=
0 0

0 − 0
0 0 0

i

i1 2
1

1
2

1
2

1
2 2 1

2
2
1

2

2

3 1
1

3
3

1
2

1
2�

(4.33)

with the same commutation relations as those forτk(see eq. (1.12)). Matrices Tk define 
isospin operators in any representation SU(3), and Casimir operator T T T T= + +2

1
1

2
2

3
3 

of SU(2) subgroup is constant on each irreducible space SU(2). In particular, after 
representation SU(3) is reduced to subgroup SU(2), we obtain irreducible subspaces 
SU(2) such that T T T= ( + 1)2  on each of them and which, therefore, have a definite 
value Т of the isospin. By definition given in Section 2.2, quantum number is the 
value of the Casimir operator T T( + 1); but since it is determined by isospin value Т, 
the latter is also called a quantum number. The dimension of this subspace is 2Т + 1  
and, as shown above, it has a basis composed of eigenvectors Т3 with eigenvalues 

…T T T T− , − + 1, . − 1, . All such bases together, by the definition of the reduction  
of a representation, constitute a basis of representation SU(3).36 But since some of 

36 Further, for the sake of brevity, we write “a basis of the representation” rather than “a basis of the 
representation space.”
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representations contain more than one irreducible subspace SU(2) of the same 
dimension, the vectors of this basis cannot be numbered by quantum numbers T T( , )3 .  
If, however, two operators A1

1 and A3
3are taken instead of T A A= +3 1

1 1
2 3

3, then three 
quantum numbers T A A( , , )1

1
3
3  can be shown to define a one-to-one numbering of the 

basis of any representation of SU(3) group, that is different basis vectors correspond 
to different sets of these quantum numbers.

Unlike conventional quantum numbers such as H L L( , , )Z , the set T A A( , , )1
1

3
3  con-

tains no eigenvalue of the energy operator (in our case, mass operator). This fact has 
two meanings. First, the states of the system described by some representation SU(3) 
can be classified by quantum numbers of the state which are associated with some 
physical meaning, while masses are not used. Second, if the mass operator M com-
mutes with T 2, A1

1, and A3
3, then the eigenvectors of these three operators will be also 

eigenvectors of M and, therefore, the eigenvalues of М must be expressed in terms of 
these quantum numbers; if M approximately commutes with these three operators, 
then the states associated with quantum numbers can be considered as approxima-
tions to the states with definite masses.

We illustrate this approach on the example of the baryon octet, which is the first 
family of elementary particles described by SU(3) symmetry group.

4.4 Baryon octet and decuplet

In terms of the mass, elementary particles are divided into light particles, or leptons 
(electron, muon, various types of neutrinos, and their antiparticles), and heavy 
particles, or hadrons; also, there is the photon, which belongs to neither of these 
two categories. Besides the masses, these two groups of particles have more impor-
tant differences associated with the nature of the interactions they participate in. 
Hadrons include particles with integer spin, or mesons, and particles with half-inte-
ger spin, or baryons. SU(3) group describes symmetry properties of hadrons and 
has no relation to the leptons and to the photon. Families of particles described by 
irreducible representations of this group consist either of baryons or mesons. It is 
natural to assume that particles from each family should have other common prop-
erties besides the common representation of the symmetry group. In the beginning, 
the theory of unitary symmetry considered mainly the eight most studied baryons 
with the same spin ½ and the same intrinsic parity +: the proton Р and the neutron 
N with very close masses to form the isotopic doublet; two Ξ particles, Ξ− and Ξ0 
(the superscripts indicate the charges measured in absolute values of the electron 
charge) which also have very close masses and considered an isotopic doublet; three 
Σ particles, Σ−, Σ0, and Σ+ to constitute the isotopic triplet; and finally, Λ particle with 
zero charge and the mass differing from those of all other particles (such particle is 
associated with a one-dimensional representation of SU(2) group and is called an 
“isotopic singlet”).
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According to the above scheme of particle classification, these eight baryons is 
possibly described as states with definite mass values of some quantum system (“the 
octet”) whose state space is the space of eight-dimensional irreducible representation 
of SU(3) group. Further, when reduced to the subgroup SU(2), this space should expand 
into the sum of irreducible subspaces of SU(2) subgroup whose dimensions correspond 
to the number of particles in the isotopic multiplets of the octet, that is 2, 2, 3, 1. Such 
representation of SU(3) group was in fact discovered, the charges and, in a sense, the 
masses of the particles were naturally described; from these eight particles came the 
allegorical name “Eightfold Way” given to SU(3) symmetry by its discoverers.37

Now the eight-dimensional irreducible representation of SU(3) will be described; 
Appendix B outlines the mathematical approach to obtain it (as well as the 10-dimen-
sional representation that we will need below).

Consider an eight-dimensional complex space C8 with coordinates …z z, ,1 8 and 
the scalar product

∑z w z w=
λ

λ λ
=1

8
∗� (4.34)

Eight matrices of order eight can be defined to represent matrices Aτ
σ and to obey  

the same commutation relations (eq. (4.30)); let these matrices be denoted by the 
same letters. This will define a representation of basis matrices λj of Lie algebra with 
the same commutation relations, and, therefore, a representation of SU(3) group in 
space C8 which turns out to be irreducible. Since the matrices representing λj turn out 
to be Hermitian, the constructed representation is unitary. The above method of using 
Lie algebras provides only local (defined only in the vicinity of the identity) represen-
tations of the group; however, for SU(3) group, the representation of the Lie algebra 
can be proved to correspond to a global representation (uniquely defined on the 
whole group). The representation matrices would be hardly understandable without 
preceding derivation, so we will describe only the properties of this representation. 
Each matrix of representation Aτ

σ defines the operator in C8:

…∑z A z λ= ( ) ( = 1, , 8),′ λ
μ

τ
σ

λμ μ
=1

8

� (4.35)

where σ τ, = 1, 2, 3 designate the number of the operator corresponding to the number 
of the matrix (eq. (4.27)); if the orthonormal basis in C8 is properly chosen, all basis 
vectors are eigenvectors of the commuting operators A A,1

1
3
3 together with T A A= +3 1

1 1
2 3

3.  
Table 4.1 shows the corresponding eigenvalues for some numeration of the basis. 
Further, it turns out that the representation is reduced to subgroup SU(2), space C8 is 
decomposed into the orthogonal sum of the following irreducible subspaces of SU(2): 

37 This name is borrowed from the Indian philosophy where it means “the right way” in quite a dif-
ferent sense.
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one three-dimensional space, two two-dimensional spaces, and one one-dimensional 
space. For the chosen numeration of basis vectors, one of the two-dimensional sub-
spaces is generated by vectors e e,1 2, the three-dimensional space is generated by 
vectors e e e, ,3 4 5, one-dimensional space by vector e6, and the second two-dimensional 
by vectors e e,7 8 (the actual reason for such numeration will be explained below). The 
decomposition is as follows:

⊕ ⊕ ⊕C C C C C= ′8 2 3 1 2� (4.36)

Casimir operator T T T T= + +2
1
2

2
2

3
2 of the subgroup SU(2) has on these subspaces con-

stant values T T( + 1) = , 2, 0,3
4

3
4, respectively; therefore, the values of the isospin Т on 

subspaces are , 1, 0,1
2

1
2. All these data are presented in Table 4.1.

Now quantum numbers A A T( , , )1
1

3
3  in the constructed eight-dimensional representa-

tion receive a physical interpretation. To begin with, the decomposition in the SU(2) 
subgroup corresponds exactly to isotopic multiplets of the family of eight baryons: 
two two-dimensional subspaces correspond to doublets Ξ and N, the three-dimen-
sional subspace corresponds to triplet Σ, one-dimensional subspace corresponds to 
singlet Λ. Quantum number Т defines therefore the number of particles 2Т + 1 in the 
isotopic multiplet containing the given particle. The isospin of a particle is its “collec-
tive” property: to find it experimentally, it is not enough to know this particle, rather 
we have to know the number of particles with close masses which form together with 
it the isotopic multiplet. Quantum number T distinguishes between multiplets only 
with different number of particles while quantum number A3

3 is used to distinguish 
between multiplets with the same number of particles. As is seen from eq. (4.30), 
matrix A3

3 commutes with the isospin matrices (eq. (4.33)), and therefore with all 
matrices of subgroup SU(2). Thus, A3

3 (along with T 2) is a Casimir operator of this sub-
group. The values of A3

3 on C2 and C ′2  (1 and −1, respectively) (Table 4.1) distinguish 
these subspaces. Later we will discuss physical interpretation of A3

3 in more detail.

Table 4.1: Eigenvalues and the values of Casimir operator on the irreducable subspaces.

Particle Mass, MeV 1
1A A3

3 T

Ξ− 1320.8 −1 1 1/2
Ξ0 1314.3 0 1 1/2
Σ− 1197.1 −1 0 1
Σ0 1192.4 0 0 1
Σ+ 1189.4 1 0 1
Λ 1115.4 0 0 0
N 939.5 0 −1 1/2
P 938.3 1 −1 1/2
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Physical meaning of quantum number A1
1 is immediately seen when comparing 

Table 4.1. with the charges of eight baryons: for e e e e e e e e, , , , , , ,1 2 3 4 5 6 7 8 eigenvalues of 
A1

1 are, respectively, the charges of particles N PΞ , Ξ , Σ , Σ , Σ , Λ, ,− 0 − 0 + . Thereby, opera-
tor A1

1 in the eight-dimensional representation can be identified with the operator of 
charge Q which, therefore, has the meaning of the main observable of SU(3) group. The 
values of A1

1 belonging to the basis vectors e e, …,1 8 explain the chosen numeration of 
the basis: it corresponds to the eight baryons arranged in the in descending order of 
the weights. Now the meaning of quantum number A3

3 becomes clear: as can be seen 
from Table 4.1, A− 3

3 is the double average of the particle charges contained in the iso-
topic multiplet. The observable Y A= − 3

3 is called a hypercharge of the particle; similar 
to the isospin, it is a “collective” property of a particle. Even before the SU(3) theory 
was developed, Y had been known to take integer values for all particles; Table 4.1 
corresponds to this experimental fact.

As Table 4.1 shows, state vectors of the octet to represent eight baryons with spin 
½ can be given by the eigenvalues of Casimir operators T2, Y of SU(3) subgroup, and 
the eigenvalue of operator Q of the Lie algebra of SU(3) group. Table 4.2 shows the 
relation between the particles from the baryon octet with the quantum numbers of 
SU(3) group. The masses of the particles are not yet described by the theory; this will 
be done later using the “mass formula.” Thus, it is clear that quantum numbers T, Y, 
Q have a group origin: they relate to the chain of groups (eq. (4.32)). Since the baryon 
octet is associated with an eight-dimensional irreducible representation of SU(3) 
group, and operators T2, Q, Y could be interpreted as operators of the isospin, the 
charge, and the hypercharge, respectively, it can be suggested that other irreducible 
representations SU(3) also describe some natural families of particles, and operators 
T2, Q, Y have the same physical meaning also in other representations. The assump-
tion will be shown true for the baryon decuplet.

Consider a 10-dimensional irreducible representation of SU(3). As is shown in Appen-
dix B, it can be constructed by the same general method as the eight-dimensional 

Table 4.2: Relation between the particles from the baryon octet with the quantum numbers of SU(3) 
group

Particle Q Y T T3

Ξ− −1 −1 1/2 −1/2
Ξ0 0 −1 1/2 1/2
Σ− −1 0 1 −1
Σ0 0 0 1 0
Σ+ 1 0 1 1
Λ 0 0 0 0
N 0 1 1/2 −1/2
P 1 1 1/2 1/2
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representation. Matrices Aτ
σ are associated with the 10th-order matrices to define linear 

operators in the 10-dimensional complex space C10 with commutation relations (eq. 
(4.30)). This defines an irreducible 10-dimensional representation of SU(3)group. It is 
also unitary, as matrices of the Lie algebra correspond to Hermitian matrices. When 
reducing the representation to the subgroup SU(2), C10 is expanded into one four-di-
mensional, one three-dimensional, one two-dimensional, and one one-dimensional 
irreducible subspaces of SU(2):

C C C C C=10 1 2 3 4⊕ ⊕ ⊕� (4.37)

As basis vectors, common eigenvectors ek of operators A A,1
1

3
3 are chosen. They are 

numerated the way that e1 generates subspace C1; e2, e3 generate subspace C2; e4, e5, 
e6 generate subspace C3; e7, e8, e9, e10 generate subspace C4. Table 4.3 shows the cor-
responding eigenvalues A A,1

1
3
3 and the values of isospin operators T3 and T 2 (T is 

presented instead of T(T + 1)). Casimir operators T 2 and A3
3 of subgroup SU(2), like in 

the case of the eight-dimensional representation, distinguish between irreducible 
subspaces of SU(2), but only one of them is needed since their eigenvalues are 
dependent in the 10-dimensional representation: A T= 2(1 − )3

3 . Three quantum 
numbers T A A( , , )3

3
1
1  (actually, only the pair T A( , )1

1  or A A( , )1
1

3
3 ) completely defines a 

basis vector.

Physically, 10-dimensional representation is interpreted by comparing it with known 
particles. When SU(3) symmetry was proposed in 1961, nine baryons with the same 
spin 3

2 and the same parity 4 were known to constitute isotopic multiplets: doublet 
Ξδ of particles Ξ , Ξδ δ

− 0, triplet Σδ of particles Σ , Σ , Σδ δ δ
− 0 +, and quadruplet Δδ of particles 

Δ , Δ , Δ , Δδ δ δ δ
− 0 + ++ (upper indices show the charge). When comparing the multiplets with 

Table 4.3, we can see that they correspond exactly to the subspaces C C C, ,2 3 4, and 
vectors e e e e e e e e e, , , , , , , ,2 3 4 5 6 7 8 9 10 should, according to the charge Q A= 1

1, represent 

Table 4.3: Eigenvalues of operators 1
1

3
3A Aand

Particle Mass, MeV A1
1

3
3A T

Ω− 1679 −1 2 0
Ξδ

− 1535 −1 1 1/2
Ξδ

0 1535 0 1 1/2
Σδ

− 1385 −1 0 1
Σδ

0 1385 0 0 1
Σδ

+ 1385 1 0 1
Δδ

− 1238 −1 −1 3/2
Δδ

0 1238 0 −1 3/2
Δδ

+ 1238 1 −1 3/2
Δδ

++ 1238 2 −1 3/2
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particles Ξ , Ξ , Σ , Σ , Σ , Δ , Δ , Δ , Δδ δ δ δ δ δ δ δ δ
− 0 − 0 + − 0 + ++, respectively. Thus, Q is again interpreted as 

the operator of charge. The eigenvalues Y A= − 3
3 are again double average (integer) 

charges of the particles of the isotopic multiplet which confirms the interpretation of 
Y as a hypercharge operator.

However, in 1961, there remained an empty space in Table 4.3; vector e1 did not 
correspond to any known particle. Nine baryons could not be described by an irreduc-
ible representation of SU(3) group which has no nine-dimensional irreducible repre-
sentation; therefore, a correct description of isotopic multiplets and charges would 
require a 10-dimensional representation. This way a lacking tenth particle could be 
predicted: Table 4.3 shows that it should be a singlet with charge −1. Since all other 
particles in Table 4.3 had the usual spin 3/2, it could be predicted that the lacking 
particle should be of the same spin. Moreover, its mass also could be predicted: as 
follows from the mass formula (§5), the masses of the particles of the decuplet are 
equidistant, that is, are spaced with the same value as is confirmed by experimentally 
measured masses; the mass of the tenth particle could be found from the differences 
between the masses of the rest nine particles.

In 1964, there was discovered a particle Ω− which had all these properties. It was 
a triumph of theoretical physics like the prediction of lacking elements by Mendeleev 
or of a lacking planet by Adams and Le Verrier. Table 4.4 shows the relation between 
the baryon decouplet and the 10-dimensional representation of SU(3).

Irreducible representations of SU(3) have dimensions N p q p q( , ) = ( + 1)( + 1)1
2  

p q( + + 2), where p, q are non-negative integers38; hence N = 1, 3, 6, 8, 10, 21, 24, 
…27, 28, 35, 36, 42, 45, 48, 55,  The eigenvalues of operators corresponding in these 

38 A detailed discussion of the representations of SU(3) group see in Rumer and Fet (1970, ch. 5).

Table 4.4: Relation between the baryon decouplet and the 10-dimensional representation of SU(3).

Particle Q Y T T3

Ω− −1 −2 0 0
Ξδ

− −1 −1 1/2 −1/2
Ξδ

0 0 −1 1/2 1/2
Σδ

− −1 0 1 −1
Σδ

0 0 0 1 0
Σδ

+ 1 0 1 1
Δδ

− −1   +  1 3/2 −3/2
Δδ

0 0   +  1 3/2 −1/2
Δδ

+ 1   +  1 3/2 1/2
Δδ

++ 2   +  1 3/2 3/2
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representations to matrices Q A= 1
1 and Y A= − 3

3 of the Lie algebra depend on the 
representation and should, as is seen from the examples of the octet and the decu-
plet, be interpreted as the values of the charge and the supercharge. Experimentally 
(though not theoretically), values of Q and Y are known to be always integer. There-
fore, we obtain an empirical method to “discard” representations: only those with 
integer values of operators Q, Y are allowable. Then the dimensions of allowable 
representations N p q( , ) require the condition of р-q being a multiple of 3,39 that is, 

…N = 1, 8, 10, 27, 28, 35, 55,  Currently, we know many octets and decuplets consist-
ing of hadrons (or baryons, or mesons); besides, there are “SU(3)-singlets”, that is, 
hadrons corresponding to the one-dimensional representation of SU(3) and thus 
having no “similar” particles in the sense of this symmetry group. Other dimensions 
of “allowable” representations, beginning with 27, apparently do not describe any 
family of known particles; supposedly, the particles of higher representations are 
unstable and therefore cannot be observed.

4.5 Mass formula in the SU(3) symmetry

In ordinary quantum mechanics where symmetry group is a group of space–time 
transformations or some of its subgroup, the energy operator is a polynomial of 
the operators of the Lie algebra of the symmetry group. Thus, the Hamiltonian is 
expressed in terms of the momentum, the coordinate, the momentum projections, 
and the spin. But now, we have a symmetry group not related to the space–time 
behavior of the particles. The “interaction” to split the “octet” or the “decuplet” into 
“isotopic multiplets” and then into particles relates to the so-called internal degrees 
of freedom of a quantum system which are similar to the spin, as is exemplified by the 
isotope mass splitting. In a sense, what is discussed here are energy effects associated 
with the interaction of dynamic “spin” variables. Therefore, the set of observables 
originating from SU(3) group is sometimes called a “unitary spin.” The formal method 
to construct the Hamiltonian remains the same: mass operator is constructed as a 
polynomial of the observables of the quantum theory, that is, in this case, the opera-
tors of the Lie algebra of SU(3) group. This operator acts in the representation space 
of SU(3) group which defines the quantum system, for example, in the eight-dimen-
sional space of the octet or in the 10-dimensional space of the decuplet.

Elementary particles are considered as states of the system with certain masses, 
that is, as pure states of the mass operator, while particle masses are considered as 
corresponding eigenvalues. Thus, particles with … PΞ , ,−  should be represented by 
eigenvectors of the mass operator from С8. But we have already found in С8 eigenvec-
tors of operators T Y Q, ,2  having definite values of isospin, charge, and hypercharge 

39 See Rumer and Fet (1970, ch. 11).
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and uniquely described by these values (as always, up to a factor). If certain values 
of these observables correspond to actually existing particles, basis vectors should 
image the same octet states as the eigenvectors of the mass operator. In other words, 
the mass operator should commute with T Y Q, ,2  and its eigenvalues should be 
expressed in terms of quantum numbers used above to specify basis vectors. In fact, 
if the values T Y Q, ,  are given, then their common eigenvector and, thereby, the mass 
M is also known.

The actual situation is somewhat more complicated: real particles have, of 
course, definite masses and charges, but their “isotopic relationship” is not so def-
inite. Roughly speaking, a particle with a given charge seems to be mainly associ-
ated with some isotopic multiplet (e.g. Σ0 with a triplet, Λ with a singlet); but to some 
extent, it is also associated with some other isotopic multiplet containing a particle of 
the same charge (e.g. Λ with a triplet, Σ0 with a singlet). Mathematical expression of 
this so-called “mixing” of the particles is that state vectors with definite masses only 
approximately coincide with the vectors defined by quantum numbers T Y Q, , .

But then the expression of mass operator M can contain also other observables 
of SU(3) group. A good description of masses is obtained by suggesting that besides 
SU(2) subgroup (eq. (4.31)) consisting of the matrices to transform only z z,1 2 but 
not z3 there is another subgroup of the same type whose matrices do not change z1.  
Designate this group SU(2)′ and write down, along with the main chain of groups (eq. 
(4.32)), also another chain which plays a role in the symmetry of the octet particles:

⊃SU SU(3) (2)′� (4.38)

The new isospin associated with this subgroup is called “U-spin,” in contrast to  
“Т-spin,” that is, ordinary isospin described above by chain (eq. (4.32)). A detailed 
discussion of this subject is seen in Rumer and Fet (1970, ch. 9, 14, 15, 18).

Since the splitting of octet masses is clearly “hierarchical,” that is, associated 
with great differences between the masses of isotopic multiplets and small differ-
ences inside them, mass operator M is naturally supposed to have a “step-like” nature 
like the classical Hamiltonian (eq. (1.81)):

M M M M= + + ,0 1 2� (4.39)

where M0 is the Casimir operator of SU(3) group, M1 is the Casimir operator of SU(2) 
subgroup, and M2 is the operator constructed from the observables of SU(3) group 
but not of SU(2) subgroup. Equation (4.39) describes therefore a consistent symmetry 
breaking to split octet (or decuplet) masses.

Gell-Mann (1962) and Okubo (1962) derived the mass formula of such structure.40 
M0 is constant in this formula for the given representation of SU(3). The “first pertur-
bation”

40 Here only the final result is presented. See Rumer and Fet (1970, ch. 17).
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
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


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

M α βY γ T T Y= + + ( + 1) − 1
41

2� (4.40)

where α β γ, ,  the are constants depending on the representation (and not derived 
from the theory), Y and T2 are the Casimir operators of SU(2) subgroup, and operator 
T T T T= + +2

1
2

2
2

3
2 is replaced by its value Т(Т + 1) on the isotopic multiplet. Perturba-

tion M1 breaks SU(3) symmetry but preserves SU(2) symmetry. Finally, the “second 
perturbation”
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M α β Q γ U U Q= + + ( + 1) − 1
4

′ ′ ′2
2� (4.41)

has the same form but is related to the subgroup of U spin because it contains Casimir 
operators Q and U U U U= + +2

1
2

2
2

3
2 of this subgroup. With respect to the main chain of 

symmetry (eq. (4.32)), the term M2 represents SU(2)-symmetry breaking.
The term (4.40) is of the most importance. From eq. (4.40) obtain for the octet 

“average masses” of isotopic multiplets: substituting values T, Y from Table 4.2 and 
designating m0 the value of operator M0, we have

m m α β γ

m m α γ
m m α

m m α β γ

= + − + 1
2

,

= + + 2 ,
= + ,

= + + + 1
2

.N

Ξ 0

Σ 0

Λ 0

0

� (4.42)

The question arises how the validity of the mass formula can be verified if the constants 
m α β γ( , , , )0  are unknown. Since all expressions (eq. (4.42)) contain the term m α+0 , 

there are three unknown constants m α β γ+ , ,0  and four equations. Excluding these 
constants, easily obtain the relation between the masses of isotopic multiplets:

m m m m+ = 1
2

(3 + )NΞ Λ Σ� (4.43)

Though the masses cannot be found theoretically, eq. (4.43) can be verified by substi-
tuting experimental data (in MeV):

m m m m= 1318, = 1192, = 1115, = 939NΞ Σ Λ

Expressing mΞ in terms of other masses, obtain from eq. (4.43) that m = 1330Ξ  which is 
<1% different from the experimental value.

Gell-Mann–Okubo mass formula is true for any multiplet of SU(3) group, for 
example, for the baryon decuplet discussed in Section 4.4. Considering only average 
masses of isotopic multiplets, that is, the term M1, we find from Table 4.4 that the 
number δ T Y= − 1

2  is the same (=1) for all isotopic multiplets (this is a special property 
of the 10-dimensional representation of SU(3), but not of other representations). 
Expressing M in terms of Y and δ, obtain:
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M β δ Y α δ δ β Y α
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4

= 1
2

+ 1
2

+ + 1 − 1
4

= 1
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1
2

Evidently, when Y increases by unity, the mass grows by the same value. But Table 
4.4  shows that Y A= − 3

3 increases by unity when the number of the particles of 
the isotopic multiplet increases; thus, the masses of the singlet, the doublet, the 
triplet, and the quadruplet to constitute the decuplet should form an equidistant 
sequence m m m m m m− = − = −Δ Σ Σ Ξ Ξ Ωδ δ δ δ δ

. The experimental masses known in 1961 
were

m m m= 1532, = 1385, = 1238,Ξ Σ Δδ δ δ

so that the first two differences were −147. Hence the mass of the lacking particles can 
be predicted as m m= + 147 = 1679Ω Ξδ

 which coincides with the experimental value of 
Ω− particle.

4.6 SU(6) group

In 1964, a wider group of symmetry was suggested to contain SU(3) as a subgroup. 
It was SU(6) group of sixth-order unitary matrices with determinant 1 (Gürsey and 
Radicati (1964), Pais (1964)). We discuss here only the facts needed to describe the 
Mendeleev homologous series.

SU(6) group is intended to describe both the “unitary spin” and the “conventional 
spin.” Therefore, it should contain subgroups isomorphic to SU(3) and SU(2). The first 
of them (designated simply SU(3)) consists of matrices


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






U

u
u

=
(3) 0
0 (3)F� (4.44)

where u(3) is a matrix of SU(3) group. Matrices UF are multiplied the same way as the 
corresponding unitary matrices of the third order u(3); therefore, eq. (4.44) actually 
defines a subgroup isomorphic to SU(3). The second subgroup (designated simply 
SU(2)) consists of matrices















U
u e u e
u e u e

=
(3) (3)
(3) (3)J

11 12

21 22

� (4.45)

where e(3) is the identity matrix of the third order, and u σ τ( )( , = 1, 2)στ  form matrix 
u of SU(2) group. It is easily verified that matrices UJ are multiplied the same way 
as the corresponding second-order matrices u, that is, from u u u=3 1 2, it follows that 
U U U=J J J3 1 2 , and hence the subgroup UJ is isomorphic to SU(2).
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Lie algebra of SU(6) includes, on one hand, operators of the Lie algebra of SU(3) 
subgroup such as A A,1

1
3
3, and so on, represented by sixth-order matrices
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A
A

(3) 0
0 (3)

,� (4.46)

where A(3) is the third-order traceless Hermitian matrix such as A A,1
1

3
3, and so on, and, 

on the other hand, operators of SU(2) subgroup such as sk represented by sixth-order 
matrices











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a e a e
a e a e

(3) (3)
(3) (3)

11 12

21 22

� (4.47)

where a( )στ  is the traceless second-order Hermitian matrix, for example, τk. In any rep-
resentation of SU(6), the operators to represent matrices (4.46) play the role of the 
operators of the unitary spin (isospin, charge, and hypercharge), while the opera-
tors to represent matrices (4.47) play the role of the operators of the ordinary spin. 
Evidently, subgroups SU(3) and SU(2) commute; therefore, the observables of the 
unitary spin (eq. (4.47)) commute with those of the ordinary spin (eq. (4.69)). Thereby, 

…T Y Q, , ,k  are Casimir operators of subgroup SU(2), and s s s, ,1 2 3 are Casimir operators 
of subgroup SU(3). Together with the subgroup of isotopic spin SU(2)T which is part of 
SU(3) (and which should not be confused with the above subgroup of ordinary spin!), 
we have a chain of groups to define SU(3)-symmetry of elementary particles:

⊃ ⊃SU SU SU(6) (3) (2)T� (4.48)

Not all dimensions have irreducible representations of SU(6). If the charge and hyper-
charge eigenvalues are requested to be integers, then only dimensions 1, 20, 35, 56, 70, 
189, 405,… are allowed. The most important are 56-plet barions and 35-plet mesons 
filled with already known particles. We have considered only the first of them (see 
Rumer and Fet (1970, ch.13) for detailed discussion).

It can be shown that there is a 56-dimensional irreducible unitary representa-
tion of SU(6) which decomposes into the following irreducible representations of 
SU(3) subgroup: four 10-dimensional and two eight-dimensional representations. 
The value of the Casimir operator s2 is ( )+ 13

2
3
2  on the 10-dimensional subspaces, and 

( )− + 11
2

1
2  on the eight-dimensional subspaces. The values of the Casimir operator s3 

are , , ,−3
2

−1
2

1
2

3
2 on the 10-dimensional subspaces, and ,−1

2
1

2 on the eight-dimensional 
subspaces. Designating them by corresponding indices, obtain the decomposition

C C C C C C C=56
−3

2
10

−1
2

10
1

2
10

3
2

10
−1

2
8

1
2

8⊕ ⊕ ⊕ ⊕ ⊕� (4.49)

The representations of subgroup SU(3) on the irreducible subspaces of C10 and C8 
are equivalent to those for baryon decuplet and baryon octet, respectively. Therefore, 
in all these subspaces, eigenvectors for the observables T Y Q, ,2  can be chosen,  as 
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it was done above. The resulting orthonormal basis of C56 is interpreted as follows: each 
eigenvector with given values T Y Q s s, , , , 3 represents the state of the 56-plet corre-
sponding to the particle of the decouplet (Ω, Ξ , Σ , Δ )δ δ δ  or the octet Ν(Ξ, Σ, Λ, ) with the 
same values T Y Q, ,  and the projection of the ordinary spin s3. For example, the vector 
with T Y Q s s= , = 1, = 1, = , = −1

2
1

2 3
1

2 represents the proton with spin −1
2.

Thus, physical interpretation of the “states of the 56-plet” combine the mean-
ings of the unitary and the ordinary spins: each state is not only a certain elementary 
particle as far as its mass, charge, and so on, but also its spin state. This viewpoint 
is natural to the group classification of particles, though differs from the approach 
of the experimental physics. In fact, the very concept of the “elementary particle” 
depends on the symmetry group underlying its description. As shown by Wigner, the 
common use of the term is associated with the Poincare group. If a family of par-
ticles is described by some irreducible representation of group G and is classified 
according to the chain of subgroups of G to characterize this symmetry, then basis 
vectors are naturally assumed to be associated with certain quantum numbers of 
group G corresponding to the “elementary particles” of this group. The eigenvalues of 
the mass operator may happen to be degenerate, so that different (in the above sense) 
particles have the same masses. For example, when describing the ordinary electron 
spin by SU(2) group, the electron states with s = −13  and s =3

1
2 are to be considered 

different particles of the same mass. Note once again that the concept of “elementary” 
particle does not exist independently on its theoretical description, and since such 
description is determined by the symmetry group, the resulting ambiguity of the term 
should not be a surprise. Group classification of particles should base on the concepts 
associated with the chosen symmetry group rather than tradition.

Table 4.5 shows the classification of the 56-plet baryons in SU(6) symmetry. The 
values of the charge Q and spin projection s3 are indicated by the right and left super-
scripts of the particle symbol, respectively. The proton Р is designated N+.

Vertical columns of Table 4.5 image the multiplets of the largest symmetry subgroup 
SU(3) (see eq. (4.48)), that is, two octets and four decuplets. Each vector of the basis is 
assumed, as in the case of SU(3) symmetry, to correspond to the individual particle.

When expanded in terms of the next subgroup SU(2) of the chain (4.48), each  
multiplet SU(3) splits into multiplets of SU(2)T subgroup imaged by the rectangles of 
Table 4.5. Each of these “small” multiplets is characterized by values T Y,2  of the Casimir 
operators of this subgroup (the eigenvalues T T( + 1) of the first of them are replaced by 
corresponding values T having no direct algebraic sense). Finally, individual particles 
are distinguished by sets s s T Y Q( , , , , )3  of quantum numbers of SU(6) group to define 
the “address” of the particle in Table 4.5. The classification presented in Table 4.5 cor-
responds to physical properties of the particles. In fact, the multiplets of the smallest 
subgroup SU(2)T are isotopic multiplets of closely similar particles. Multiplets of the 
larger subgroup contain particles which are more distantly related by SU(3)-symmetry. 
Compared to SU(3) group, SU(6) symmetry gives an additional quantum number s to 
describe the spin of octet particles and the spin 3 2 of the decuplet particles.
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SU(6) classification corresponds to the mass formula (Beg and Singh, 1964)41 which 
we do not discuss here. As already mentioned, the eigenvalues of the mass should be 
degenerate due to the (ordinary) spin. Similarly, the 35-plet of mesons is classified; 
there is also a number of particles apparently belonging to the 20-plet and the 70-plet.

If, according to the group theoretical viewpoint, the 56-plet is assumed to 
describe 56 “elementary particles of SU(6) group,” then there are not only “large” 
and “small” multiplets but also “mostly close” particles which differ only by the 
spin projection s3 and standing in the same line of Table 4.5, for example, Ξ , Ξ− 1

2 0 1
2 0 

or Ω , Ω , Ω , Ω− 3
2 − − 1

2 − 1
2 − 3

2 −. There is a method to specify these closest analogs: the Lie 
algebra of SU(6) group contains operators s s is= ++ 1 2, s s is= −− 1 2 transforming these 
similar particles into each other, and these operators commute with the operators of 
the unitary spin which act inside “large” multiplets (see Fet, 1975, p. 326). The same 

41 See also Rumer and Fet (1970, ch. 17).
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Table 4.5: Classification of the 56-plet baryons in SU(6) symmetry. 
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is true for the meson 35-plet. Further general ideas of group classification will be dis-
cussed to specify series of similar particles. It will be shown that this principle applied 
to the classification of chemical elements provides a natural algebraic description of 
Mendeleev homologous series such as alkali metals, alkaline earth metals, and so on, 
and explains Seaborg’s analogy between lanthanides and actinides.

4.7 Classification principles in a quantum theory

The examples discussed in Chapters 1, 2, and 4 illustrate the general concept of 
classifying the states of quantum systems. The concept is equally true for classical 
systems such as atoms, molecules, or individual elementary particles, and for gen-
eralized systems such as “isotopic multiplet,” “octet,” “decuplet,” and so on. Sta-
tionary states, that is, those with a definite energy, are always most interesting. In 
classical problems of quantum mechanics, the energy is viewed as a small addition 
to the rest mass and stationary states are certain excited states of atoms, molecules, 
and so on, such as, s p d f−, −, − , and − states of the hydrogen atom. In the theory of 
hadron multiplets, where the energy is the rest mass, stationary states are the states 
with certain values of the mass multiplet corresponding to multiplet particles, for 
example, Ξ , Ξ , Σ− 0 −, and so on. Classification principles are the same in all cases. First, 
we will discuss the classification of states in general, and then, pursuing our goals, 
classification of particles.

Any change in the state of a quantum system is called a quantum transition. Sim-
plest transitions have geometric or kinematic nature when the system changes its 
position in space as a whole or starts a constant motion. These transitions are ideal-
ized descriptions of some interaction processes such as control of the electron or ion 
beam with an external electromagnetic field. Since the field in this interaction can be 
considered constant, it is not a part of the quantum system; therefore, “active” inter-
preting of such transitions is formal and does not take into account other systems to 
cause these transitions.

In a more common sense, the term “interaction” implies reactions between the 
particles. A full description of the reaction includes all involved particles, so that the 
initial and the final set of the (same or different) particles with the parameters of 
their motion are considered the states of the same system. But in some cases, it is 
possible to focus on some particles and to neglect others by excluding them from 
the system. If, for example, we consider baryons and mesons and neglect leptons, 
the reaction N Pe v→ −  of a neutron decay into a proton, an electron, and a neutrino, 
can be considered a transition of the system N P→ ; reaction NπΣ →− − can be consid-
ered a transition of the system NΣ →− , and so on. Of course, such formal description 
does not provide conservation of the energy, unlike, for example, the transition of an 
electron with spin projection s = −3

1
2 into the state with spin projection s = +3

1
2. From 

the viewpoint discussed in Chapter 4, transitions N P→ , NΣ →− , and so on, can be 



� 4.7 Classification principles in a quantum theory   109

considered as quantum transitions of the “octet” whose symmetry is broken by some 
“internal interaction.” The kinematics of the octet, that is, the description of its pos-
sible states and transitions, does not change due to this interaction, which is typical 
for a quantum-mechanical description of interactions.

Let S be the quantum system, that is, its states are represented by vectors of some 
linear space R (in contrast to classical systems whose states are usually described by 
points of nonlinear phase spaces). Further, space R is complex, that is, vectors R can 
be multiplied by complex numbers. To describe quantitatively the transitions in space 
R, a positive definite scalar product ψ φ  is introduced to transform R into a Hilbert 
space. Each nonzero vector ψ of R images some state of the system S, the same state 
is imaged by vectors ψ, λψ (λ ≠ 0), different states are imaged by noncollinear vectors. 
Zero-vector images no state of the system and is introduced only for the completeness 
of mathematical description (so that sums ψ φ+  and multiples λψ always are possi-
ble). If the states ψ φ,  are imaged by normalized vectors, that is, ψ = 1, φ = 1, the 
transition probability ψ φ→  is ψ φ 2.

The kinematics of the system should describe its possible states and transitions. 
The set of states is defined by vectors of a Hilbert space R; the transitions are defined 
by some group of operators which acts in R and is called the symmetry group of the 
system. Thus, a representation of some group G is defined in space R; denote this 
representation T{ }g . In our cases, G can be considered a Lie group. The operators of 
the complex envelope of the Lie algebra T iT+A B are assumed to image all possible 
quantum transitions of the system. If, for example, G contains a subgroup of rotations 
SO(3), the operators A A iA= ±± 1 2 translate the vector of the system with quantum 
number m into the vector with quantum number m + 1 or m − 1; if G = SU(3), the Okubo 
operators Aτ

σ translate the octet states into each other (see eq. (4.35) or Appendix B for 
a more detailed discussion).

If representation T{ }g  is reducible and R′ is an invariant subspace of R, then the 
operators of the Lie algebra act within R′ and therefore all possible quantum states of 

′R  are translated into the states of ′R . But then the states of R which do not belong to ′R  
are unreachable from R′ and there are no reasons to assume that all states of R refer to 
the same quantum system. Therefore, it is natural to assume that representation T{ }g  is 
irreducible. Thus, the space of state vectors R is the space of the irreducible represen-
tation of the symmetry group G. This defines the kinematics of the quantum system.

In the simplest case of complete symmetry, the dynamics of the system is also 
defined by group G. Observables of the system are defined by operators TA to represent 
Lie algebra of group G. If the observables are to have real eigenvalues, TA should be 
Hermitian and, consequently, operators Tg should be unitary. So, T{ }g  is assumed a 
unitary representation. In the case of complete symmetry, the Hamiltonian of the 
system should commute with all operators Tg, that is, it should be a Casimir operator 
of group G.

If group G has more than one Casimir operators, additional physical consider-
ations are needed to choose the Hamiltonian.
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Of course, the choice of the symmetry group depends on our knowledge. For 
example, if the electron is not supposed to leave the atom, all electronic states and 
transitions would be covered by the space of bound electron states (see Chapter 1) 
with irreducible representation of symmetry group SO(4,2). Or, before SU(3)-symme-
try was discovered, isotopic multiplets were considered individual quantum systems, 
but later they turned out to be part of a wider system with a larger symmetry group.

In the previous discussion, the symmetry group G was interpreted as a group 
of operators to change the state of the system. But in some cases, the same group 
describes a variety of systems; for example, the Galilean group (in the nonrelativis-
tic theory) or the Poincare group (in the relativistic theory) describes any free parti-
cle; similarly, SU(3) group describes a number of octets and decuplets, baryons and 
mesons, and so on. In this regard, it is often useful to define group G as a mathemat-
ical object (such as a matrix group) independently on the state space of the system; 
and then, if the group describes transformations of the states, the operators are built 
to represent the elements of G in the state space of the system. This way the role of 
group representations in quantum mechanics is clarified.

It may happen that a totally symmetric Hamiltonian, that is, a Casimir opera-
tor of some group, correctly describes the kinematics but not the dynamics of the 
system. For the electron in the Coulomb field, it is the Casimir operator of SO(4,2) 
group (see Section 1.3). Since the whole space of electron states R is irreducible for 
this group, this Hamiltonian gives the same energy for all electron states, that is, it 
has a single infinitely degenerate eigenvalue. The electron of the hydrogen atom is 
never observed in such state of “complete symmetry” which is purely theoretical. In 
the same way, the “completely symmetric” mass operator of the octet is a Casimir 
operator of SU(3) group and it has the same value M0 for all vectors of the eight- 
dimensional state space; the value M0 is eightfold degenerate and is never observed 
experimentally, therefore, the “completely symmetrical” state of the octet is a theo-
retical construction.

Symmetry breaking can be interpreted as an “activation” of some additional inter-
action which is assumed much weaker than the one described above and, accordingly, 
it can cause smaller number of transitions.42 The transitions possible due to weak 
interactions are assumed even more possible due to stronger interactions, so some of 
the previous transitions remain but no new transitions appear. It means that the new 
interaction is described by a subgroup of G which we denote G1. The assumption of 
a weaker nature of this new interaction is mathematically expressed by the fact that 
besides the “completely symmetrical” Hamiltonian (which commutes with all oper-
ators of group G), a much smaller “perturbing” term is also considered to commute 

42 This formal interpretation of interactions considers only their relative values rather than their 
physical nature. The terms “strong interaction” and “weak interaction” are not used and even sup-
posed to be known.
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only with subgroup G1, so the perturbed Hamiltonian of the system also commutes 
only with G1. In the case of the electron, perturbation leads to the usual Coulomb 
Hamiltonian which commutes with subgroup SO(4) but not with SO(4,2). Energy 
eigenvalues now have finite multiplicities and are observed experimentally. For the 
octet, the perturbed mass operator no longer commutes with the whole group SU(3) 
but commutes with the isospin subgroup SU(2). The eigenvalues of the perturbed 
mass operator (see Section 4.5) have multiplicities 2, 3, 1, 2, but the corresponding 
states (“isotopic multiplets”) are theoretical constructions which are not observed as 
degenerate states. When a still weaker interaction is turned on, degenerate energy 
levels of the electron split. In this specific case, the new interaction can actually be 
added (as a magnetic field). In the case of the octet, the “activation” remains purely 
theoretical, but the values of the resulting mass operator (without the symmetry) are 
observed as masses of eight individual particles.

It is natural to assume that operators of the symmetry group or of its subgroup 
connect similar particle states; if it is a complete symmetry group, the similarity can 
be manifested in the very possibility of such transition between the states; if it is a 
subgroup, the possibility of a transition due to weaker interaction can be interpreted 
as a closer similarity, so that irreducible representations of a subgroup comprise more 
similar states or particles. A chain of subgroups leads to a hierarchical classification 
of states or particles according to the degree of their similarity. Of course, this classifi-
cation depends on the chosen chain to define the symmetry. If the symmetry is found 
properly, the above similarity is revealed in physical properties of the particles or the 
states such as the proximity of energy levels, masses, common values of the observ-
ables, regular change of properties within the family of similar states or particles. 
Such is the case of the hydrogen energy levels split by external magnetic field or of 
the isotopic mass splitting.

Now we can describe a general scheme to classify the states of a quantum system. 
To be specific, we will talk about the classification of particles and refer to the mass 
rather than to the energy.

The symmetry is defined by a chain of embedded Lie groups:

⊃ ⊃ ⊃ ⊃G G G G G= … k0 1 2� (4.50)

A system with this symmetry is defined by an irreducible unitary representation of 
group G in some Hilbert space R. Main observables of the system are obtained as oper-
ators of the Lie algebra of group G. Other observables of the system are operators to 
represent the elements of the universal enveloping algebra of group G. The reduction 
of the representations of group G to subgroup G1 decomposes R into orthogonal sum 
of irreducible subspaces of this subgroup Ri

(1):

R R R R� �⊕ ⊕ ⊕ ⊕= i1
(1)

2
(1) (1)� (4.51)

The reduction of representation G1 to subgroup G2 decomposes subspaces i
(1)R  into irre-

ducible subspaces ij
(2)R  of group G2:
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R R R R� �⊕ ⊕ ⊕ ⊕=i i i ij
(1)

1
(2)

2
(2) (2)� (4.52)

and so on.
Then a maximum system of commuting observables of group G is chosen. Their 

eigenvalues are called quantum numbers of the system. Let quantum numbers be 
numbered in some order λ λ λ, , …, l1 2 , so that the set completely defines (up to a factor) 
the state vector of the system λ λ λ, , …, l1 2  which is an eigenvector for all chosen 
observables with specified eigenvalues, and such vectors for all possible sets λ λ( , …, )l1  
constitute a basis of space R. We call this basis a distinguished basis. Assume further 
that (1) several first quantum numbers λ λ, …, r1 1

 are the values of the Casimir operators 
of subgroup G1, so that all selected basis vectors with these quantum numbers belong 
to one of the spaces Ri

(1); (2) the following quantum numbers λ λ, …,r r+11 2
 are the values 

of the Casimir operators of subgroup G2, so that vectors with values λ λ, …, r1 2
 belong 

to one of spaces Rij
(2), and so on; and, finally, (3) the last part of quantum numbers in 

the above sequence defines the position of the vectors of the distinguished basis sub-
groups in the irreducible subspace of subgroup Gk.

Mass operator is constructed as

�M M M M M M= + + + + +k k0 1 2 +1� (4.53)

where Mj is a Casimir operator of group Gj (j = 0,1,…,k) expressed in terms of the main 
observables of this group, and Mk + 1 is expressed as a polynomial of the main observ-
ables of group G. Operators Mj + 1 are assumed small compared with Mj (j = 0,1,…,k), 
that is, matrix elements Mj + 1 are small compared with matrix elements Mj.

Elementary particles are states with definite masses, that is, their vectors are 
eigenvectors of the mass operator. The corresponding eigenvalues are assumed non-
degenerate (i.e. there is a single particle of the given mass).43

The distinguished basis can usually be chosen to make mass eigenvectors close 
to the vectors of the distinguished basis. Suppose (in some approximation) that states 
with a definite mass value are defined by the vectors of the distinguished basis. Then, 
replacing the main observables in the expression of operator M by corresponding 
eigenvalues of these observables, particle masses are expressed as polynomials of 
quantum numbers λj; this expression is called the mass formula and is usually used 
instead of eq. (4.53) to express the mass operator in terms of the operators of observ-
ables. Thus, masses of particles depend on their quantum numbers. If the symmetry 
of system (eq. (4.50)) is found properly, any other measurable property of particles P 
can also be assumed to depend on quantum numbers, that is, there is a quite regular 
relationship

43 This assumption is sufficient for our further purposes but unnecessary in the general case. We will 
discuss this point below.
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…P P λ λ= ( , , )l1� (4.54)

All particles of the system constitute a multiplet of group G. Particles with state vectors 
belonging to the irreducible subspace j

(1)R  of subgroup G1 constitute a multiplet of this 
subgroup, and so on. The correctness of this “hierarchical” classification is confirmed 
by similar particle properties within “small” multiplets in contrast to “big” multip-
lets; the similarity is not necessarily to be quantitative, rather, it is a regularity in the 
change of their properties within the multiplet and its lack beyond the multiplet. So, 
the proximity of masses and regular charge changes are observed within isotopic mul-
tiplets. Below a number of examples will be discussed to illustrate the classification 
of chemical elements.

If the mass operator has degenerate eigenvalues, then state vectors of individual 
particles are characterized by a set of quantum numbers λj. This is the case of the 
hydrogen atom where the degeneracy of energy eigenvalues makes it necessary to 
use orbital angular momentum L2 and its projection Lz to characterize the states. Of 
course, such description of states implies some arbitrariness (for example, the choice 
of Lz instead of Lx or Ly).

Some particles of the system may happen to have very similar properties even 
though they belong, according to the group classification, to different multiplets of 
the chain of subgroups (4.50). Such particles whose “similarity” is not associated with 
the “easiness of transitions” within small multiplets are called the homologs of the 
system. For SU(6) symmetry, the states of the 56-plet or the 35-plet which differ only by 
the projection of the (usual) spin (see Section 3.6), are homologs. A simple principle 
to distinguish homologous series is as follows (see Fet, 1975, p. 326). Suppose homol-
ogous particles in the multiplets of subgroup Gi are to be found. Assume that the Lie 
algebra of group G contains operator Г which translates homologous state vectors 
into each other, for example, v v= Γ2 1, where vj belongs to the j-th multiplet (j = 1,2). If 
A is an operator of the Lie algebra of subgroup Gi, the vectors v Av=′

i 1 and v Av=′
2 2 can 

be assumed, due to their similar algebraic connection with v1, v2 in the corresponding 
multiplets, to be also homologous relative to each other. But then v v= Γ′ ′

2 1, that is, 
A v AvΓ = Γ1 1. If each particle belongs to some homologous series, then for v1, any basis 
vector can be chosen; therefore, АГ = ГА, that is, operator Г commutes with all opera-
tors of subgroup Gj. Such operators are called affinity operators.

“Superposition principle” for our systems is understood only in the sense that 
the spaces of state vectors are linear but not in the usual sense that superposition of 
physically possible states is a physically possible state. For example, a linear combi-
nation of the proton state of the neutron state does not correspond to any physical 
state of the octet. Only individual states corresponding to individual values of masses 
are real; in this sense, the systems considered in the particle classification are the 
extreme case of Wigner’s “superselection principle.”



5 The symmetry group of chemical elements

5.1 Description of the system of elements

Dmitri Mendeleev was the first to suggest that properties of the atoms depend on their 
positions in the whole integral system they form. If atoms are arranged in the order of 
increasing atomic weights, their chemical properties change periodically and homol-
ogous series of elements with similar properties can be identified. Thus, the first clas-
sification of particles originated long before the beginning of atomic physics when 
the very concepts of the atom and the molecule were challenged say nothing of any 
physical explanation of these regularities.

Such explanation was suggested in 1921 by Bohr who based it on his theory of 
atom suggested in 1911 and later developed by other authors, especially by Sommer-
feld. At present, this theory is known as the “old quantum mechanics.” After the  
creation of modern quantum mechanics (1925–1926), the arrangement of elements 
proposed by Bohr was interpreted in terms of many-electron Schrödinger equation 
and lead to the so-called “model of electron shells.” That is how Bohr’s model was 
born which is now a conventional tool to describe the atoms.

To understand the following ideas, the relation between the group description of 
elements and the Bohr’s model is to be clarified and its place in quantum mechanics 
is to be discussed.

As is known, multielectron Schrodinger equation allows no exact solution, and 
all its consequences are obtained approximately based on simplifications. Bohr’s 
model assumes each electron is in a central field made up of the Coulomb field of 
the nucleus and the fictitious field of a spherically symmetric charged shell used to 
describe the total charge of all other electrons. Such replacement is intuitively jus-
tified by the idea that electrons move within the atom sufficiently fast and quite 
independently of each other and form a continuous charge distribution to “shield” 
the nucleus while the “isolated” electron moves in this field. Since the positions of 
individual electrons are believed to be almost independent, the distribution of such 
fictitious charge should not have privileged directions, so its density can be assumed 
spherically symmetric. Of course, distinguishing between the “isolated” and “the 
other” electrons is a purely theoretical construction which contradicts the principle 
of electrons undistinguishability, and therefore it is to be corrected, which will be 
done later when discussing the Pauli exclusion principle. This assumption allows 
describing the electron in a multielectron atom like that in a hydrogen atom and the 
exact solution of the Schrödinger equation can be obtained. Stationary states of this 
“hydrogen” electron are described by quantum numbers n, l, m and the “spin projec-
tion” s = ± 1

2 suggested in 1925 by Pauli.
Then Pauli principle is applied to this to prohibit two different electrons occupy 

the same state. The Pauli principle is considered a general law of nature, but its 
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application in each case requires a correct description of possible states, that is, kin-
ematics of the quantum system. It is assumed that, though the systems are different, 
the electron states in both multielectron atom and in one-electron atom are correctly 
described by the same set of quantum numbers n, l, m, and s. This way Pauli principle 
makes it possible a step-by-step procedure to fill electron shells.

A classical description of this procedure can be found in Sommerfeld’s trea-
tise (Sommerfeld, 1923, vol. 1, ch. 3), where the procedure was shown to describe 
successfully spectra and chemical properties of elements in accordance with the 
Bohr’s model. However, this model is not a logical consequence of general princi-
ples of quantum mechanics and the idea that atom consists of nuclei and electrons. 
It was evident for the founders of quantum mechanics; in particular, Sommerfeld 
emphasizes twice a “somewhat cabalistic” nature of the above procedure (Sommer-
feld, 1923, vol. 1, ch. 3, paragraphs 3–4). From the viewpoint of modern quantum 
mechanics, Bohr’s model should be regarded as an approximate method to solve the 
multielectron Schrödinger equation. These remarks, of course, in no way diminish 
the significance of Bohr’s model and have the only goal to remind that it is not a 
single logically possible description of the elements consistent with the principles of 
quantum mechanics.

Evidently, Bohr’s model does not describe the atoms of different elements 
as a single quantum system. In fact, the concept of a quantum system assumes a 
Hilbert space whose vectors represent all possible states of the system, and a Ham-
iltonian defined on this space whose eigenvectors represent stationary states of the 
system; in this case, these states should represent the atoms of all elements. Bohr’s 
model lacks such description (which was not possible before the ideas of isospin 
and unitary symmetry were suggested); moreover, Bohr’s model has no symmetry 
group operators to carry into each other state vectors corresponding to different ele-
ments. Quantum system considered in the Bohr’s model is an atom of a single fixed 
element with a given atomic number Z; stationary states of the system are different 
energy states of the same atom. The atomic number Z is not a quantum number of the 
theory, but a parameter in the multielectron Schrödinger equation, and the task of 
the Bohr’s model is to find the approximate solution of this equation. A stable state 
of the atom is described as a state with the lowest energy, and then such states of 
different quantum systems with different Z values are arranged into ascending order 
of energy.

Numbers n, l, m, and s are not quantum numbers in Bohr’s model in the sense 
defined in Chapter 2; these numbers define the states of a single atomic electron, 
whereas numbers п, and l may serve to label electron shells. Since Bohr’s model does 
not comprise any integral quantum-mechanical description of elements, it numer-
ates the elements by means of the atomic number Z to separate atoms as individual 
quantum systems rather than to unify them. As to numbers n, l, m, and s, they cannot 
serve in Bohr’s model to numerate elements and are not used as such (Sommerfeld, 
1923).
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The first attempt to apply the “hydrogen” quantum numbers n, l, m, and s to 
number the elements was made by Madelung who noticed in the 1920s that these 
numbers are convenient classification of elements according to their properties. 
Since this numbering had no theoretical justification, Madelung called it “empiri-
cal”; in particular, he could not relate it to Bohr’s model. Perhaps for this reason, 
he published it in an unusual way, in his Reference Book on mathematical methods 
of physics which run into several editions (Madelung, 1964).44 However, the table in 
Madelung (1964) says nothing about the nature of the Madelung numbers.

Compare Madelung numeration with Table 5.1 cited from the paper written by 
Rumer and Fet in (1971). Columns of the table define value п, rows define values l and 
m. For example, Mn corresponds to п = 3, l = 2, m = 0. Each triplet n, l, m corresponds 
to a pair of elements designated by the number s = ± 1

2; so, Mn is numbered by values 
(3,2,0,−1

2), Fe by (3,2,0,1
2). Numbers n, l, m, s in Table 5.1 do not coincide with those of 

Madelung but are related to them by a simple change of variables. The ranges for the 
numbers are as follows:

…
…

…

n
n l n
n l m l l l l
n l m s

= 1, 2, ;
for given  :    = 0, 1, , − 1;
for given  , :   = − , − + 1, , − 1, ;
for given  , , :   = − , .1

2
1

2

� (5.1)

Now compare Table 5.1 with Table 1.1 to represent the basis of some irreducible rep-
resentation of the conformal group SO(4,2). As is easily seen, numbers n, l, m vary 
within the same limits in both tables. This suggests the idea that the system of ele-
ments is related to this special representation of the conformal group which was used 
in Chapter 1 to describe energy spectrum of the hydrogen atom. Mendeleevian homol-
ogous series make rows in Table 5.1, that is, they are obtained for fixed l, m, s, and 
varied п. This indicates that Madelung numbers and, therefore, the conformal group 
are closely related to chemical properties of the elements.

However, the realization of the plan meets two obstacles. First, the Madelung 
number s is in no way related to the conformal group and needs to be explained. Each 
basis vector of the representation in Table 5.1 (identical to the initial table proposed by 
Rumer in 1970) is associated with two elements rather than with one element. Further, 
as we will see, the properties of the elements depend on п + l rather than on Madelung 
numbers п, l as such. But before we proceed to construct the symmetry group and the 
representation, explain the fundamental meaning of this theory.

44 The author learned about Madelung’s numeration only at a late stage of the work, after Fet (1975) 
had been published. The numeration in Fet (1975), essentially identical to that of Madelung, was 
suggested by Yuriy Kulakov (Byakov et al., 1976). In this book, we do not follow our original line of 
thought; rather, we start with the Madelung numbers to facilitate understanding of the method to be 
described below.
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The atoms of all possible elements are assumed to form a multiplet of a certain 
symmetry group G in the sense discussed in Section 4.7, that is, they correspond to 
the eigenvectors of some mass operator defined in the space of an irreducible repre-
sentation of group G. Then a chain of imbedded subgroups (eq. (4.50)) is constructed 
to define the symmetry of the corresponding quantum system. The reduction of the 
representation of group G upon these subgroups divides the multiplet of all elements 
into smaller multiplets, which are found to be natural families of elements and thus 
define a classification of the element. Therefore, atoms of all elements are described 
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Table 5.1: Periodic table from the paper by Rumer and Fet (1971). 
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as an integral quantum system similar to the multiplets of the unitary symmetry (in 
contrast to Bohr’s model).

This description was first proposed in 1971 by Rumer and Fet, where the repre-
sentation space corresponding to Table 5.1 was already constructed, but SU(2) × SO(4) 
group was taken as a group symmetry. Konopelchenko (1972) introduced SO(4,2) as 
a symmetry group for elements by extending Fock’s representation to the representa-
tions of the conformal group; this extension was applied previously to the hydrogen 
atom in Malkin and Manko (1965). The conformal group was independently proposed 
to describe the elements by Barut (1972) and Novaro and Barrondo (1972); however, the 
approach of these authors differs from ours: they considered the symmetry as a symme-
try of electronic shells without distinguishing it from the Bohr’s model. Meanwhile, a 
different point of view was formulated in Rumer and Fet (1971) where it was clearly 
stated that the suggested symmetry is the symmetry of the system of atoms as a whole. 
This interpretation, developed by the author in Fet (1974, 1975) and Byakov et al. (1976), 
is confirmed by mass formula to describe atomic weights (Fet, 1979a,1979b, 1981). 
Further, the chain of symmetry groups built in these studies has also advantages as far 
as revealing some previously unseen experimental regularities in chemical properties.

The representation of the symmetry group to describe the elements is of infinite 
dimension; this means that the number of elements is assumed infinite. It is not a 
contradiction because elements with high quantum numbers are unstable and are 
not met in nature. For example, in SU(3) symmetry, only the dimensions 8 and 10 are 
realized from all theoretical possibilities 8, 10, 27, 35, … Stability of the particles is 
not the subject to such theories. We note only that our system does not distinguish 
isotopes of elements and provides no quantum numbers for them.

Note that the proposed model “ignores” the structure of atoms which underlies 
Bohr’ model. Evidently, all information depending on the atomic structure is lost, but 
some new information hidden by the complex picture of the electron shells can be 
obtained. Moreover, the mass formula and some other results relate to atomic nuclei 
rather than to Bohr’s model. Applying the same group approach to the atoms and to 
“elementary” particles can hardly draw objections: now hadrons are also known to 
have a complex structure. As shown in Chapter 4, the very concept of elementary par-
ticles depends on the symmetry group underlying the description.

In the conventional language of the structural theory, our symmetry describes 
both the nuclei and the electron shells; it may seem strange as nuclear and Coulomb 
forces differ in nature and magnitude. However, the theory describes (in terms of the 
structural theory) the symmetry of certain configurations of nucleons and electrons 
rather than the symmetry of nuclear or Coulomb fields. Naturally, any symmetry of 
nuclear configurations should call forth a similar symmetry of electron shells: as Som-
merfeld emphasized, “the structure of atom from its interior to the periphery is uniquely 
defined by the value of the nuclear charge” (Sommerfeld, 1923, vol. 1, Ch. 3, Section 13).

Though the same (conformal) group is used to describe the hydrogen atom and 
the system of elements, it does not mean that the theory is the same. Conformal group 
is often used in modern physics and seems to be as universal as the Lorentz group; 
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there is a lot of conformal and relativistic theories. In the conformal group, there are 
“raising” and “lowering” the operators of Lie algebra, similar to L L iL= ±± 1 2; but in 
the case of the hydrogen atom, they carry into each other different excited states of the 
electron, whereas in our case, they work on the atoms of different elements.

Hence, the most important difference between the proposed model and Bohr’s 
model is that the latter considers a quantum system as an atom of a single element 
(with atomic number used in the theory as a parameter, so there are as many quantum 
systems as elements) while in our model atoms of all elements are considered as the 
states of an integrated quantum system connected by actions of a symmetry group.

5.2 The conformal group

Consider a six-dimensional space R6 with real coordinates …ξ ξ, ,1 6. All linear homo-
geneous transformations

�

�

ξ c ξ c ξ

ξ c ξ c ξ

= + +
..............................

= + +

′

′

1 11 1 16 6

6 16 1 66 6

� (5.2)

preserving the quadratic form

…Q ξ ξ ξ ξ ξ ξ ξ ξ( , , ) = + + + − −1 6 1
2

2
2

3
2

4
2

5
2

6
2� (5.3)

that is, such that

… …Q ξ ξ Q ξ ξ( , , ) = ( , , )′ ′1 6 1 6� (5.4)

constitute a group denoted О(4,2). The subgroup of О(4,2) composed of all transfor-
mations with determinant 1 is called a conformal group and is denoted SO(4,2). Write 
the form (5.3) as

∑Q ξ g ξ ξ( ) =
α β

αβ α β
, =1

6

� (5.5)

where

g g g g g g= = = = 1, = = −111 22 33 44 55 66� (5.6)

Then the condition (5.4) takes the form

∑ ∑g ξ ξ g ξ ξ=′ ′
α β

αβ α β
γ δ

γδ γ δ
, =1

6

, =1

6

� (5.7)

or, from eq. (5.2)

∑ ∑g c c ξ ξ g ξ ξ=
α β γ δ

αβ αγ βδ γ δ
γ δ

γδ γ δ
, , , =1

6

, =1

6

� (5.8)
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Since this equation must be identical with respect to ξγ, it is equivalent to

∑g g c c=γδ
α β

αβ αγ βδ
, =1

6

� (5.9)

or, in the matrix form:

G CGC=t� (5.10)

Since the determinant of the product of matrices is the product of their determinants, 
from Gdet = 1 and C Cdet = dett  obtain that Cdet = 12 , that is,

Cdet = ± 1� (5.11)

for all transformations C of the group O(4,2).
Since one-parametric subgroups O(4,2) consist of matrices Cα continuous in 

α, C Cdet = det = det 1 = 1α 0 . So all these subgroups belong to SO(4,2), and the Lie 
algebra of this subgroup coincides with that of the whole group (like in the case of 
SO(n)). To find this Lie algebra, write these one-parametric subgroups in the form (3.31):

C e=α
iαA−� (5.12)

where A belongs to the Lie algebra. Then from eq. (5.10), it follows

C e Ge G= =t
α

iα A iαA−1 − −1t� (5.13)

or

� �iα A iαGAG1 + + = 1 − +t −1� (5.14)

where the dots denote the higher order terms in α, whence

A GAG= −t −1� (5.15)

This condition, similar to the antisymmetric property of the orthogonal group, com-
pletely defines the Lie algebra of the conformal group. We write it as

∑a g a g= −βα
γ δ

αγ γδ δβ
, =1

6
−1� (5.16)

Since G G=−1  and g g δ=αγ αα αγ, this is equivalent to

∑a g δ a δ g g a g= = −βα
γ δ

αα αγ γδ δβ ββ αα αβ ββ
, =1

6

� (5.17)

So a = 0αα , and the matrix А is completely determined by the elements above its main 
diagonal. Therefore, the dimension of SO(4,2) is 15, which is the number of generators 
of its Lie algebra.

It is easy to find a simple system of generators corresponding to 15 one-parameter 
subgroups. The subgroups of rotations in the planes ξ ξ( )α β , α β1 ≤ < ≤ 4 of the form
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ξ ξ α ξ α

ξ ξ α ξ α

ξ ξ x α β

= cos − sin

= sin + cos

= ( ≠ , )

′

′

′

α α β

β α β

x x

� (5.18)

correspond, as in the case of orthogonal groups, to the generators Lαβ with two nonzero 
elements: L i( ) = −αβ αβ

 and L i( ) =αβ βα
; or

L i δ δ δ δ α β α β( ) = − ( − )( , = 1, …, 4, < )αβ στ ασ βτ βσ ατ� (5.19)

The subgroups of transformations in the planes ξ ξ( )γ δ , γ1 ≤ ≤ 4, δ = 5, 6, preserving 
ξ ξ−γ δ

2 2 and having the form (see eq. (2.26))

ξ ξ chα ξ shα

ξ ξ shα ξ chα

ξ ξ x γ δ

= −

= +

= ( ≠ , )

′

′

′

γ γ δ

δ γ δ

x x

� (5.20)

correspond to the generators Lγδ with nonzero elements L i( ) =γδ γδ
 and L i( ) =γδ δγ

; that is,

…L i δ δ δ δ γ δ( ) = ( − )( = 1, , 4, = 5, 6)γδ στ γσ δτ δσ γτ� (5.21)

Finally, the one-parametric subgroup of rotations in the plane ξ ξ( )5 6 , written for sim-
plification as

ξ ξ α ξ α
ξ ξ α ξ α

= cos + sin
= − sin + cos

′

′
5 5 6

6 5 6

� (5.22)

(changing the sign of α as compared to eq. (5.18)), corresponds to the generator L56 
with nonzero elements L i( ) =56 56

, L i( ) = −56 65
; that is,

L i δ δ δ δ( ) = ( − )
στ σ τ σ τ56 5 6 6 5� (5.23)

The number of operators (5.19), (5.21), and (5.23) is 6, 8, and 1, respectively, so that 
their total is 15; it readily verified that they are linearly independent. Since the dimen-
sion of the group and, therefore, of the Lie algebra, is 15, we have a complete system 
of generators of SO(4,2).

Now, define matrices Lαβ with α β>  by

L L β α= − 1 ≤ < ≤ 6αβ βα� (5.24)

and note that eqs. (5.19) and (5.23) are true for these matrices, and eq. (5.21) is true 
if the sign is changed. Then the following commutation relations are evidently true:

…

L L i g L g L g L g L
α β γ δ α β γ δ

[ , ] = ( + − − )
( , , , = 1, , 6, ≠ , ≠ )

αβ γδ αγ βδ βδ αγ αδ βγ βγ αδ� (5.25)
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We perform the calculations for α β γ δ1 ≤ , , , ≤ 4 and leave the remaining cases to the 
reader. It is sufficient to assume α β γ δ< , < , since other possibilities are reduced to this 
one using eq. (5.24). From eq. (5.19), we have

∑ ∑L L L L δ δ δ δ δ δ δ δ( ) = ( ) ( ) = − ( − )( − )αβ γδ στ ρ
αβ σρ γδ ρτ ρ

ασ βρ βσ αρ γρ δτ δρ γτ
=1

6

=1

6

� (5.26)

Removing the brackets and using identities like δ δ δ∑ =ρ αρ γρ αγ=1
6 , we get

δ δ δ δ δ δ δ δ δ δ δ δ− + + −ασ βγ δτ ασ βδ γτ βσ αγ δτ βσ αδ γτ� (5.27)

The elements of the matrix L Lγδ αβ are obtained by substituting γ, δ instead of α, β, 
and vice versa. Subtracting these elements from eq. (5.27) and using eq. (5.19), we 
find

L L i δ L δ L δ L δ L[ , ] = (− − + + )αβ γδ βγ αδ αδ βγ βδ αγ αγ βδ� (5.28)

which coincides with eq. (5.25), as g δ for α β= 1 ≤ , ≤ 4.αβ αβ

Further generators Lαβ and their commutation relations will be used to construct 
representations of the group SO(4,2) as described in Section 3.3. It will be more conve-
nient to use the system of generators suggested by Yao (1967) instead of the “simplest” 
generators. Take the 18 matrices

J L L J L L J L L

K L L K L L K L L

P L L P L L P L L

Q L L Q L L Q L L

S L L S L L S L L

T L L T L L T L L

= 1
2

( − ), = 1
2

( − ), = 1
2

( − )

= 1
2

( + ), = 1
2

( + ), = 1
2

( + )

= 1
2

(− − ), = 1
2

( − ), = 1
2

(− − )

= 1
2

( − ), = 1
2

( + ), = 1
2

( − )

= 1
2

(− + ), = 1
2

(− − ), = 1
2

( − )

= 1
2

(− − ), = 1
2

( − ), = 1
2

(− − )

1 23 14 2 31 24 3 12 34

1 23 14 2 31 24 3 12 34

1 35 46 2 45 36 0 34 56

1 35 46 2 45 36 0 34 56

1 15 26 2 25 16 0 12 56

1 15 26 2 25 16 0 12 56

�

(5.29)

connected by three relations

J K P Q J K S T P Q S T− = − , + = − , + = + .3 3 0 0 3 3 0 0 0 0 0 0� (5.30)

Since generators L α β( < )αβ  are independent, matrices (5.29) form a “redundant” 
system of generators of group SO(4,2) from which a basis of the Lie algebra is obtained 
by eliminating three generators using eq. (5.30). The commutation relations for the 
generators (eq. (5.29)) are obtained from eq. (5.25) by apparent though somewhat 
tiresome calculations. They are more convenient written for the operators of the 
complex envelope of the Lie algebra. If we define
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J J iJ P P iP S S iS
K K iK Q Q iQ T T iT

= ± = ± = ±
= ± = ± = ±

± 1 2 ± 1 2 ± 1 2

± 1 2 ± 1 2 ± 1 2
� (5.31)

then

J J J J J J J J J

K K K K K K K K K

P P P P P P P P P

Q Q Q Q Q Q Q Q Q

S S S S S S S S S

T T T T T T T T T

J K i j

[ , ] = [ , ] = − [ , ] = 2

[ , ] = [ , ] = − [ , ] = 2

[ , ] = [ , ] = − [ , ] = −2

[ , ] = [ , ] = − [ , ] = −2

[ , ] = [ , ] = − [ , ] = −2

[ , ] = [ , ] = − [ , ] = −2

[ , ] = 0( , = +, −, 3)i j

3 + + 3 − − + − 3

3 + + 3 − − + − 3

0 + + 0 − − + − 0

0 + + 0 − − + − 0

0 + + 0 − − + − 0

0 + + 0 − − + − 0

J P J P T J P J

J P T J P J P J

J P P J P P J P

J Q S J Q J Q J

J Q J Q S J Q J

J Q Q J Q Q J Q

J S J S Q J S J

J S Q J S J S J

J S S J S S J S

J T P J T J T J

J T J T P J T J

J T T J T T J T

K P S K P K P K

K P K P S K P K

K P P K P P K P

[ , ] = 0 [ , ] = − [ , ] = − 1
2

[ , ] = [ , ] = 0 [ , ] = 1
2

[ , ] = 1
2

[ , ] = − 1
2

[ , ] = 0

[ , ] = [ , ] = 0 [ , ] = 1
2

[ , ] = 0 [ , ] = − [ , ] = − 1
2

[ , ] = − 1
2

[ , ] = 1
2

[ , ] = 0

[ , ] = 0 [ , ] = − [ , ] = − 1
2

[ , ] = [ , ] = 0 [ , ] = 1
2

[ , ] = 1
2

[ , ] = − 1
2

[ , ] = 0

[ , ] = [ , ] = 0 [ , ] = 1
2

[ , ] = 0 [ , ] = − [ , ] = − 1
2

[ , ] = − 1
2

[ , ] = 1
2

[ , ] = 0

[ , ] = − [ , ] = 0 [ , ] = 1
2

[ , ] = 0 [ , ] = [ , ] = − 1
2

[ , ] = − 1
2

[ , ] = 1
2

[ , ] = 0

+ + + − − + 0 +

− + + − − − 0 −

3 + + 3 − − 3 0

+ + + + − + 0 +

− + − − − − 0 −

3 + + 3 − − 3 0

+ + + − − + 0 +

− + + − − − 0 −

3 + + 3 − − 3 0

+ + + + − + 0 +

− + − − − − 0 −

3 + + 3 − − 3 0

+ + + + − + 0 +

− + − − − − 0 −

3 + + 3 − − 3 0

� (5.32)
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K Q K Q T K Q K

K Q T K Q K Q K

K Q Q K Q Q K Q

K S K S P K S K

K S P K S K S K

K S S K S S K S

K T Q K T K T K

K T K T Q K T K

K T T K T T K T

P Q i j

[ , ] = 0 [ , ] = [ , ] = − 1
2

[ , ] = − [ , ] = 0 [ , ] = 1
2

[ , ] = 1
2

[ , ] = − 1
2

[ , ] = 0

[ , ] = 0 [ , ] = [ , ] = − 1
2

[ , ] = − [ , ] = 0 [ , ] = 1
2

[ , ] = 1
2

[ , ] = − 1
2

[ , ] = 0

[ , ] = − [ , ] = 0 [ , ] = 1
2

[ , ] = 0 [ , ] = [ , ] = − 1
2

[ , ] = − 1
2

[ , ] = 1
2

[ , ] = 0

[ , ] = 0( , = +, −, 0)i j

+ + + − − + 0 +

− + + − − − 0 −

3 + + 3 − − 3 0

+ + + − − + 0 +

− + + − − − 0 −

3 + + 3 − − 3 0

+ + + + − + 0 +

− + − − − − 0 −

3 + + 3 − − 3 0

P S P S K P S P

P S K P S P S P

P S S P S S P S

P T P T J P T P

P T J P T P T P

P T T P T T P T

Q S Q S J Q S Q

Q S J Q S Q S Q

Q S S Q S S Q S

Q T Q T K Q T Q

Q T K Q T Q T Q

Q T T Q T T Q T
S T i j

[ , ] = 0 [ , ] = [ , ] = −

[ , ] = − [ , ] = 0 [ , ] =

[ , ] = [ , ] = − [ , ] = 0

[ , ] = 0 [ , ] = − [ , ] = −

[ , ] = [ , ] = 0 [ , ] =

[ , ] = [ , ] = − [ , ] = 0

[ , ] = 0 [ , ] = − [ , ] = −

[ , ] = [ , ] = 0 [ , ] =

[ , ] = [ , ] = − [ , ] = 0

[ , ] = 0 [ , ] = [ , ] = −

[ , ] = − [ , ] = 0 [ , ] =

[ , ] = [ , ] = − [ , ] = 0
[ , ] = 0( , = +, −, 0)i j

+ + + − − + 0
1
2 +

− + + − − − 0
1
2 −

0 +
1
2 + 0 −

1
2 − 0 0

+ + + − + + 0
1
2 +

− + − − − − 0
1
2 −

0 +
1
2 + 0 −

1
2 − 0 0

+ + + − − + 0
1
2 +

− + + − − − 0
1
2 −

0 +
1
2 + 0 −

1
2 − 0 0

+ + + − + + 0
1
2 +

− + − − − − 0
1
2 −

0 +
1
2 + 0 −

1
2 − 0 0

Transformations (5.2) preserving ξ ξ,5 6, that is, such that ξ ξ ξ ξ= , =′ ′
5 5 6 6, have matri-

ces C with elements c c= = 056 65 , c c c c β= = 1, = = 0(1 ≤ ≤ 4)β β55 66 5 6 . From eqs. (5.9) and 
(5.6), it follows that

∑ c γ− 1 = −1 for = 5, 6,
α

αγ
=1

4
2� (5.33)
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So that c α γ= 0(1 ≤ ≤ 4, = 5, 6)αγ . Thus, the matrix C has the form



















C
c

=
0

0 1 0
0 1

αβ

� (5.34)

and from eq. (5.3) follows that matrix c α β( )(1 ≤ , ≤ 4)αβ  preserves the form ξ ξ ξ ξ+ + +1
2

2
2

3
2

4
2.  

Therefore, the subgroup of transformations to preserve ξ ξ,5 6 is found to be in a one to 
one correspondence with the group matrices of fourth order SO(4), so that multipli-
cation of matrices (5.34) corresponds to multiplication in SO(4). This means that the 
above subgroup is isomorphic to SO(4), and we denote it simply SO(4). Its Lie algebra 
is generated by one-parametric subgroups of rotations in the planes ξ ξ α β( )(1 ≤ , ≤ 4)α β ; 
that is, it has generators Lαβ with the same indices. Instead of these, we can take linear 
combinations J K k, ( = 1, 2, 3)k k  defined in eq. (5.29) as generators.

Transformations of SO(4) to preserve also ξ4 constitute a subgroup isomorphic to 
SO(3), and we denote it simply SO(3). Its matrices have the form











C

c
=

0
0 1
αβ� (5.35)

where o α β( )(1 ≤ , ≤ 3)αβ  is an orthogonal matrix of the third order with determinant 1, 
and 1 in the lower right corner is the unit matrix of the third order. Generators of the 
Lie algebra of SO(3) subgroup are L α β(1 ≤ , ≤ 3)αβ  or their independent linear combina-
tion J K k+ ( = 1, 2, 3)k k .

So we have described in detail the construction of the chain of groups (eq. (1.82)).
As is readily verified using eq. (5.31), generators J k( = 1, 2, 3)k  form a Lie subal-

gebra with the same commutation relations as those of SO(3); hence, the matrices 
O e=J

i α J α J α J− ( + + )1 1 2 2 3 3  constitute a subgroup of SO(4) isomorphic to SO(3). Denote this 
subgroup SO(3)J. Similarly, generators K k( = 1, 2, 3)k  generate a subgroup of matrices 
O e=K

i α K α K α K− ( + + )1 1 2 2 3 3  isomorphic to SO(3) which we denote SO(3)K. From eq. (5.31), we 
have J K k l[ , ] = 0( , = 1, 2, 3)k l  and the exponential expansion shows that ОJ commutes 
with ОK.

Writing the rotation matrices of the fourth order О(4) in the form e e e=iA iA iA− − −J K,  
where A α J A β K= ∑ , = ∑J k k k K l l l=1

3
=1

3 , one can verify that matrices sufficiently close to 
unity are uniquely represented as products of commuting matrices from subgroups 
SO(3)J and SO(3)K, respectively, and also close to the unity matrix. This is expressed 
by the following definition: group SO(4) is locally a direct product of the two above 
subgroups:45

45 Note that in the large (i.e. without assuming all matrices to be near unity), the decomposition 
(eq.  (5.36)) is not unique, because the correspondence between the elements of a Lie group and its 
Lie algebra need to be a one-to-one correspondence. Even the local expansion (eq. (5.36)) is, in some 
sense, exceptional: SO(4) is the only SO(n) group which can be expanded this way.



126   5 The symmetry group of chemical elements

SO(4) = SO(3) × SO(3)J K� (5.36)

5.3 A special representation of the conformal group

We need a special representation of the group SO(4,2). To construct it, we begin with 
representations of the subgroups SO(4). The procedure is facilitated by the expansion 
(5.36); further, we will consider only local representations, so that the local nature of 
this expansion will not be an obstacle to use it.

All irreducible representations of SO(4) can be constructed by means of eq. (5.36) 
(see Appendix B). Denote SO(3)J, SO(3)K the subgroups of SO(4) with generators 
J K k, ( = 1, 2, 3)k k , respectively. Then every irreducible representation Т of group SO(4) 
has the following structure. Space R of the representation Т is a tensor product of 
spaces 1R , 2R  with irreducible representations Dj1, corr. Dj2 of the subgroups SO(3)J, corr. 
SO(3)K having dimensions 2j1 + 1, corr. 2j2 + 1, so that the dimension T is j j2 + 1, 2 + 11 2  
(j1, j2 are integral or half-integral numbers). The representation T is constructed from 
D D,j j1 2

 according to eq. (3.141) with the bases σ , corr. τ  consisting of eigenvectors of 
the operator J3 K σ j j j j τ j j j j( = − , − + 1, …, − 1, ; = − , − + 1, …, − 1, )3 1 1 1 1 2 2 2 2 . Action of gener-
ators Jk, Kk upon the basis vectors σ τ,  is given by

J σ τ j σ j σ σ τ
J σ τ j σ j σ σ τ
J σ τ σ σ τ

K σ τ j τ j τ σ τ
K σ τ j τ j τ σ τ
K σ τ τ σ τ

, = [( + + 1)( − )] + 1,
, = [( + )( − + 1)] − 1,
, = ,

, = [( + + 1)( − )] , + 1
, = [( + )( − + 1)] , − 1
, = ,

+ 1 1
1/2

− 1 1
1/2

3

+ 2 2
1/2

− 2 2
1/2

3

� (5.37)

(where vector σ τ,  is replaced by zero for σ j τ j> , >1 2 or σ j τ j< − , < −1 2). The described 
representation of SO(4), denoted Dj j1 2

, is irreducible and unitary (see Appendix B, 
Section 2).

Since factors SO(3)J, SO(3)K are isomorphic, obtain local representation of SO(3) 
as a tensor product ⊗D Dj j1 2

 (see eq. (3.146)) from the constructed representation of 
their local product SO(4) = SO(3) × SO(3)J K. As follows from eq. (3.152), generators 
of SO(3) are represented by operators J K+k k. But the same representation is true 
for the generators of SO(3) to preserve ξ4. Thus, the reduction of Dj j1 2

 onto this sub-
group results in its representation ⊗D Dj j1 2

. The latter is, by Clebsch-Gordan theorem, 
decomposed into a sum of irreducible representations SO(3) of dimensions j2 + 1, 
where j j j j j j j= − , − + 1, …, +1 2 1 2 1 2.

Now describe the structure of Fock representation of group SO(4) introduced in 
Chapter 1 (see eq. (1.71)). Denote the space of the representation Φ, and its irreducible 
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subspaces defined in spaces Fn denote Φn (see eqs. (1.72) and (1.33)). Then (see Appen-
dix B), the irreducible representation Φn decomposes into the sum of irreducible rep-
resentations of the subgroup SO(3) of dimensions 1, 3, …, 2n − 1 (see eqs. (1.73) and 
(1.34)). In view of the above-described structure of irreducible representations of the 
group SO(4), the smallest dimension 1 is j j2 − + 11 2 , whence j1 = j2; so the representa-
tion Φn has the form Dj j1 2

. Since the highest dimension is n j j j2 − 1 = 2( + ) + 1 = 4 + 11 2 , 
we have j = n − 1

2  and

⊕ ⊕ ⊕ ⊕ DΦ = Φ Φ … Φ …, where Φ =n n n n1 2 −1
2 , −1

2
� (5.38)

Thus each subspace Fn has an orthonormal basis σ τ,  which we denote j σ τ, ,  ( )j = n − 1
2 .  

All these bases constitute an orthonormal basis of the Fock space F:

… … …( )j σ τ j σ j j j j τ j j j j, , = 0, 1
2, 1, 3

2, ; = − , − + 1, , − 1, ; = − , − + 1, , − 1,� (5.39)

where the Lie algebra of SO(4) acts according to eq. (5.37) with j j j= =1 2 .
With basis (5.39), the Fock representation of SO(4) will be extended to a unitary 

representation of the conformal group SO(4,2) in the same space F. To do that, the 
method described in Section 3.3 will be used: generators of group SO(4) correspond 
to Hermitian operators acting in space F with the same commutation relations. It is 
more convenient to use linear combinations of generators with complex coefficients 
J±, J3, … (see eq. (5.31)) rather than generators as such, making sure that operators 
corresponding to J1, J2, J3, … be Hermitian. Operators will be denoted with the same 
letters as the generators of the Lie algebra they represent. Then the desired operators 
are defined as follows:









J j σ τ j σ j σ j σ τ
J j σ τ j σ j σ j σ τ
J j σ τ σ j σ τ

K j σ τ j τ j τ j σ τ
K j σ τ j τ j τ j σ τ
K j σ τ τ j σ τ

P j σ τ i j σ j τ j σ τ

P j σ τ i j σ j τ j σ τ

P j σ τ j σ τ j σ τ

, , = [( + + 1)( − )] , + 1,
, , = [( + )( − + 1)] , − 1,
, , = , ,

, , = [( + + 1)( − )] , , + 1
, , = [( + )( − + 1)] , , − 1
, , = , ,

, , = [( + + 1)( − + 1)] + 1
2

, + 1
2

, − 1
2

, , = − [( + )( − )] − 1
2

, − 1
2

, + 1
2

, , = + − + 1
2

, ,

+
1/2

−
1/2

3

+
1/2

−
1/2

3

+
1/2

−
1/2

0
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Q j σ τ i j σ j τ j σ τ

Q j σ τ i j σ j τ j σ τ

Q j σ τ j σ τ j σ τ

S j σ τ i j σ j τ j σ τ

S j σ τ i j σ j τ j σ τ

S j σ τ j σ τ j σ τ

T j σ τ i j σ j τ j σ τ

T j σ τ i j σ j τ j σ τ

T j σ τ j σ τ j σ τ

, , = − [( − + 1)( + + 1)] + 1
2

, − 1
2

, + 1
2

, , = [( − )( + )] − 1
2

, + 1
2

, − 1
2

, , = − − − 1
2

, ,

, , = − [( + + 1)( + + 1)] + 1
2

, + 1
2

, + 1
2

, , = [( + )( + )] − 1
2

, − 1
2

, − 1
2

, , = + + + 1
2

, ,

, , = [( − + 1)( − + 1)] + 1
2

, − 1
2

, − 1
2

, , = − [( − )( − )] − 1
2

, + 1
2

, + 1
2

, , = − + − 1
2

, ,

+
1/2

−
1/2

0

+
1/2

−
1/2

0

+
1/2

−
1/2

0

























�

(5.40)

where symbols j σ τ, ,  on the right not satisfying the conditions j σ j− ≤ ≤ , j τ j− ≤ ≤  are 
assumed to be replaced by zeros.

Commutation relations for these operators are readily verified. For example, find 
Q S[ , ]+ − . According to eq. (5.40),

S j σ τ i j σ j τ j σ τ, , = [( + )( + )] − 1
2

, − 1
2

, − 1
2

.−
1/2� (5.41)

Apply to both sides of eq. (5.41) the operator Q+; using eq. (5.40), but substituting j by 
j − 1

2, σ by σ − 1
2, τ by τ − 1

2, we have

Q S j σ τ i i j σ j τ j σ j τ j σ τ, , = (− ) [( + )( + )] [( − + 1)( + )] , − 1,+ −
1/2 1/2� (5.42)

Similarly,

Q j σ τ i j σ j τ j σ τ

S Q j σ τ i i j σ j τ j σ j τ j σ τ

, , = − [( − + 1)( + + 1)] + 1
2

, − 1
2

, + 1
2

,

, , = (− )[( − + 1)( + + 1)] [( + )( + + 1)] , − 1, ,

+
1/2

− +
1/2 1/2

� (5.43)

Using again eq. (5.41), we get

Q S j σ τ j τ j σ j σ j τ j σ j σ j σ τ

j σ j σ j σ τ J j σ τ

[ ] , , = [( + ) ( + )( − + 1) − ( + + 1) ( + )( − + 1) ] , − 1,

= − ( + )( − + 1) , − 1, = − , ,
+ −

−

�
(5.44)
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As Q S[ ]+ −  and J- take equal values for all basis vectors, they coincide; therefore, for the 
operators Q S J, ,+ − −, the following commutation relation is true:

Q S J[ ] = −+ − −� (5.45)

But from eq.(5.32), it follows that the same relation is true for the matrices of the sixth 
order denoted by the same letters. All other relations of eq. (5.32) are verified in the 
same way.

Verify now that operator P is Hermitian (the verification for all the other operators 
J K P Q S T, , , ,k k k k k k,  is similar). By definition of P±, we have P P P= ( − )i2

1
2 + −  and from eq. (5.40),











P j σ τ i i j σ j τ j σ τ

i j σ j τ j σ τ

, , = − 1
2

[( + + 1)( − + 1)] + 1
2

, + 1
2

, − 1
2

− (− )[( + )( − )] − 1
2

, − 1
2

, + 1
2

2
1/2

1/2
� (5.46)

Since the basis is orthonormal, the matrix elements of P2 are

}
{j σ τ P j σ τ j σ j τ δ δ δ

j σ j τ δ δ δ

, , , , = 1
2

[( + + 1)( − + 1)]

+ [( + )( − )]

′ ′ ′ ′ ′ ′

′ ′ ′

j j σ σ τ τ

j j σ σ τ τ

2
1/2

, + 1
2 , + 1

2 , − 1
2

1/2
, − 1

2 , − 1
2 , + 1

2

� (5.47)

where δ = 0αβ  for α β≠ , δ = 1αβ  for α β= , α β,  integral or half-integral. There are only two 
nonzero matrix elements:

j σ τ P j σ τ j σ j τ+ 1
2

, + 1
2

, − 1
2

, , = 1
2

[( + + 1)( − + 1)]2
1/2� (5.48)

j σ τ P j σ τ j σ j τ− 1
2

, − 1
2

, + 1
2

, , = 1
2

[( + )( − )]2
1/2� (5.49)

Find the element symmetric to eq. (5.48) relative to the main diagonal. To do that, 
rearrange in eq. (5.48), the vectors j σ τ+ , + , −1

2
1
2

1
2  and j σ τ, ,  and use eq. (5.49) to 

calculate the resulting element:



























































j σ τ P j σ τ j σ j τ

j σ j τ

, , + 1
2

, + 1
2

, − 1
2

= 1
2

+ 1
2

+ + 1
2

+ 1
2

− − 1
2

= 1
2

[( + + 1)( − + 1)]

2

1/2

1/2

� (5.50)

which coincides with eq. (5.48). Thus, matrix P2 is Hermitian, and it follows, like for 
the operators in a finite-dimensional space,

∗P Χ Χ PΨ = Ψ2 2� (5.51)

for any vectors ΧΨ,  of the space F.
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Thus, eq. (5.40) define a unitary representation of the group SO(4,2) in the Fock 
space.46 Denote this representation T{ }C . Note that eq. (5.40) includes relations for J K,k k 
to define representations Φn in the subspaces Fn (see eq. (5.37) forj j j= =1 2 ) and, there-
fore, Fock representation Φ on the subgroup SO(4). Thus, we have actually obtained 
the expansion of Fock representation on the conformal group.

Now we show that representation T{ }C  is irreducible. Since subspaces Fn are irre-
ducible even for subgroups SO(4), it is sufficient to prove that the operators of Lie 
algebra of SO(4,2) connect all these subspaces with each other; then the space F is 
irreducible for the Lie algebra, and, therefore, for the group SO(4,2). Since the opera-
tors of the Lie algebra are linear combinations of those of its complex envelope, it is 
sufficient to prove that the operators P Q S T, , ,± ± ± ± connect these subspaces. It suffices 
to consider the operators

P Q P QΓ = + , Γ = ++ + + − − −� (5.52)

From eq. (5.40), it follows that

j σ τ i j σ j τ j σ τ

i j σ j τ j σ τ

Γ , , = [( + + 1)( − + 1)] + 1
2

, + 1
2

, − 1
2

− [( − + 1)( + + 1)] + 1
2

, − 1
2

, + 1
2

+
1/2

1/2

� (5.53)

j σ τ i j σ j τ j σ τ

i j σ j τ j σ τ

Γ , , = − [( + )( − )] − 1
2

, − 1
2

, + 1
2

+ [( − )( + )] − 1
2

, + 1
2

, − 1
2

−
1/2

1/2

� (5.54)

As Г+ increases j by 1
2, that is, n by 1, eq. (5.53) means that Г+ carries Fn into Fn + 1, and 

similarly Г- carries Fn into Fn−1. Now we show that the right side of eq. (5.53) is always 
nonzero. Since j σ j− ≤ ≤ , j τ j− ≤ ≤ , we have j σ j−( + ) ≤ ± ≤ +1

2
1
2

1
2, j τ j−( + ) ≤ ± ≤ +1

2
1
2

1
2, so 

that both vectors on the right side of eq. (5.53) are nonzero and orthogonal, and having 
nonzero coefficients which proves the statement. For Г-, it is sufficient to show that 
for n  ≥  2, the vector j, , 01

2  is carried into a nonzero vector; but in this case, the right 
side of eq. (5.54) reduces to the nonzero first term.

As it will be shown below, operators Г+, Г- are used to describe Mendeleevian 
homologous series.

Basis vectors Ψnlm of space F (Table 5.1) do not coincide with the vectors of basis 
j σ τ, , : they are eigenvectors of L J K= +12 3 3 and L L L L= + +2

12
2

23
2

31
2  (which belong to 

46 Of course, eq. (5.3.4) is derived with general methods of the theory of representations (se, e.g. 
Yao, 1967), which make it possible to find all unitary representations of the conformal group. Here 
we verify the equations only in the case we are interested in now. In Yao (1967) (p. II, p. 1625), this 
representation is denoted E+.
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eigenvalues m and l(l + 1), respectively) rather than eigenvectors of J K,3 3. The operator 
J K+3 3 belongs to Lie algebra of subgroup SO(3), whereas L2 is the Casimir operator of 
this subgroup and belongs to its universal enveloping algebra. The basis Ψnlm is impor-
tant from the physical viewpoint while vectors j σ τ, ,  are good to construct representa-
tions, as they are associated with the direct decomposition (eq. (5.36)) of SO(4) group.

Note also that the operator L P Q S T− = + = +56 0 0 0 0, which we denote R0, commutes 
with subgroup SO(4)and, therefore, it is its Casimir operator; this is readily seen from 
eq. (5.25). This operator belongs to the Lie algebra of SO(4,2) (but not of its subgroup 
SO(4)). The value of R0 on the space Fn is easily found by applying the operator to 
any vector j σ τ, ,  and using eq. (5.40) for P Q,0 0 or S T,0 0; this value is п. Thus, the 
vector Ψnlm can be described as the common eigenvector of operators R L J K, , +0

2
3 3 with 

eigenvalues n l l m, ( + 1), , respectively. Thus, the numbers n, l, m are characterized as 
the quantum numbers of the conformal group. As already mentioned, number l has no 
direct group-theoretical meaning and is used only to obtain l l( + 1), but is also often 
called a quantum number. The ranges of quantum numbers for the representation T{ }C  
are indicated in eq. (5.1).

5.4 The symmetry group of the system of elements

By comparing Table 5.1 with Table 1.1 to image the basis of the representation of the 
conformal group T{ }C , easily see that quantum numbers of the conformal group n, l, 
m do not provide a one-to-one numeration for the elements: the fourth Madelung 
number s has no group-theoretical interpretation. Compared with Table 1.1, the system 
of elements “redoubles” like it happens with spin splitting of the hydrogen energy 
levels. Just as each set of quantum numbers (n, l, m) corresponds to two hydrogen 
energy levels with different values of “spin projection” s, each set (n, l, m) is associ-
ated with two elements associated with different Madelung numbers s. This suggests 
the idea to introduce a “chemical spin,” that is, to use Pauli’s mathematical approach 
and use two-component wave-functions rather than one-component wave-functions. 
There is, of course, an essential difference between these two systems: whereas the 
splitting of energy levels of hydrogen is small as compared to the energy differences 
corresponding to different sets n, l, m, the elements with the same values of n, l, m and 
different s differ in their atomic weights (and other properties) as much as elements 
with different n, l, m. However, as we saw in the unitary symmetry of hadrons, great 
variation of masses in the multiplets is not an obstacle to describe them with symme-
try groups. So we will use the spin apparatus and neglect the quantitative difference 
between the above systems.

We defined the representation T{ }C  of the group SO(4,2) in the Fock space F,  
consisting of functions ξ ξ ξ ξΨ( , , , )1 2 3 4  of four variables defined on the sphere 
S ξ ξ ξ ξ( + + + = 1)3

1
2

2
2

3
2

4
2  of the four-dimensional Euclidean space R4. Functions Ψ will 

further play a role similar to one-component Schrödinger wave functions ψ x y z( , , ). 
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Introduce two-component functions similar to a two-component wave functions Pauli 
(see eq. (4.1)):

















ξ ξ ξ ξ
ξ ξ ξ ξ

Θ =
Ψ( , , , )
Ψ( , , , )

1 1 2 3 4

2 1 2 3 4

� (5.55)

where Ψ, Ψ1 2 are functions defined on S3, independent of each other and having finite 
integrals over the sphere:

∫ d σΨ Ω < ∞( = 1, 2)
S

σ
2

3
� (5.56)

Introduce in the space of two-component functions Θ a scalar product (see eqs. (1.49) 
and (4.3)): for

































ξ ξ ξ ξ
ξ ξ ξ ξ

T
ξ ξ ξ ξ
ξ ξ ξ ξ

Θ =
Ψ( , , , )
Ψ( , , , )

, =
Φ ( , , , )
Φ ( , , , )

1 1 2 3 4

2 1 2 3 4

1 1 2 3 4

2 1 2 3 4

� (5.57)

define

∗ ∗∫T
π

dΘ = 1
2

(Φ Ψ + Φ Ψ) Ω = Φ Ψ + Φ Ψ
S

2 1 1 2 2 1 1 2 2
3

� (5.58)

(where scalar product on the right are taken in space F). Thus, the two-component 
functions constitute a Hilbert space, which we denote F2.

Now define an action of group SU(2) × SO(4,2) in the space 2F . We will not follow 
eq. (4.7), where the same rotation group SO(3) simultaneously acts for wave functions 
ψτ and transforms the components using matrix (uστ).This construction corresponds 
the so-called “strong spin–orbit coupling.” In our case different groups will be used 
to transform functions Ψσ and to obtain linear transformations of the components of  
Θ. This construction is similar to “weak spin–orbit coupling.” The group to act on 
space F2 will be

SU(2) × SO(4, 2 )� (5.59)

Elements of o group (eq. (5.59)) are pairs (u, С), where u is a matrix of SU(2) and С is a 
matrix of SO(4,2) (see Section 3.5); the multiplication of such pairs is given by

u C u C u u C C( , )( , ) = ( , )1 1 2 2 1 2 1 2� (5.60)

Now define representation T{ }u C,  of group SU(2) × SO(4,2) in the space of two-compo-
nent functions F2 by the rule described in Section 3.5. Construct a space ⊗C2 F, where 
С2 is a two-dimensional complex space with basis e1, e2. The vectors of this space can 
be represented as

⊗ ⊗e ξ ξ ξ ξ e ξ ξ ξ ξΨ( , , , ) + Ψ( , , , )1 1 1 2 3 4 2 2 1 2 3 4� (5.61)
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Then action of an element (u, С) of the group SU(2) × SO(4,2) on the vector (5.61), as 
defined in eq. (3.141), produces the vector

⊗ ⊗ ⊗ ⊗

⊗ ⊗

T e T T e T u e u e T u e u e T

e u T u T e u T u T

Ψ + Ψ = ( + ) Ψ + ( + ) Ψ

= ( Ψ + Ψ) + ( Ψ + Ψ)
u C u C C C

C C C C

1 1 2 2 11 1 21 2 1 12 1 22 2 2

1 11 1 12 2 2 21 1 22 2

� (5.62)

Writing the vector (5.61) as a two-component function,









…

…









ξ ξ
ξ ξ

Θ =
Ψ( , , )
Ψ( , , )

1 1 4

2 1 4

� (5.63)

and, similarly, vector (5.62) as









…

…









ξ ξ
ξ ξ

Θ =
Ψ ( , , )
Ψ ( , , )

′
′
′
1 1 4

2 1 4

� (5.64)

obtain

T Θ = Θu C,
′� (5.65)

where

∑u u u T= ( ), Ψ = (Ψ ).′
στ σ

τ
στ C τ

=1

2

� (5.66)

This means that components Ψτ are first transformed by operator TC corresponding 
to the matrix С, as defined above, and then the resulting functions are linearly trans-
formed by matrix u.

Now show that eq. (5.66) defines a representation. If u u u= 1 2, C C C= 1 2, then

T T(Θ) = Θ , (Θ ) = Θ ,″′ ′u C u C, ,2 2 1 1
� (5.67)

where

∑

∑ ∑

∑ ∑

u T

u T u u T T

u u T u T

Ψ = ( ) (Ψ )

Ψ = ( ) (Ψ ) = ( ) ( ) (Ψ )

= ( ) (Ψ ) = (Ψ )

″

′

′

ρ
τ

ρτ C τ

σ
ρ

σρ C ρ
ρ τ

σρ ρτ C C τ

τ
στ C C τ

τ
στ C τ

=1

2

2

=1

2

1
, =1

2

1 2

=1

2

1 2
=1

2

2

1 1 2

1 2

	

(5.68)

and hence TΘ" = (Θ).u C,

Show that the representation T{ }u C,  is unitary. Let 




















ZΘ =

Ψ
Ψ , =

Φ
Φ

1

2

1

2
. Since matrix u 

and representation TC are unitary, we have
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









∗ ∗ ∗

∗ ∗

∗ ∗

∗

′∫ ∫

∫

∫ ∫

∫

∑ ∑

∑ ∑

∑ ∑

∑

Z
π

d
π

u T u T d

π
u u T T d

π
δ T T d

π
T T d

π
d Z

Θ = 1
2

Ψ Φ Ω = 1
2

(Ψ ) (Φ ) Ω

= 1
2

(Ψ ) (Φ ) Ω

= 1
2

(Ψ ) (Φ ) Ω = 1
2

(Ψ ) (Φ ) Ω

= 1
2

Ψ Φ Ω = Θ

′ ′ ′
S σ

σ σ

S σ τ ρ
στ C τ σρ C ρ

S τ ρ σ
στ σρ C τ C ρ

S τ ρ
τρ C τ C ρ

τ S

C τ C τ

τ S

τ τ

2
=1

2

2
, , =1

2

2
, =1

2

=1

2

2
, =1

2

=1

2

2

=1

2

2

3 3

3

3 3

3

� (5.69)

Show that representation T{ }u C,  is irreducible. Let F be an invariant subspace of 2F ,  










Θ =

Ψ
Ψ

1

2
 is a vector in ∼F. Then operator Tσ ,13

 of the Lie algebra (σ3 is a Pauli matrix and 

1 is a sixth-order unit matrix) carries Θ into vector 









Θ =

Ψ
−Ψ

′ 1

2
 also belonging to ∼F;  

but 











2Ψ
0

= Θ + Θ′1  also belongs to ∼F. Applying to this vector operators T C1,  and from  

irreducibility of T{ }C  obtain that all vectors of the form 








Ψ
0  and, similarly, 












0
Ψ2

 belong to 
∼
F. But the sums of such vectors constitute F2, so F F

∼ = 2.
Thus, an irreducible unitary representation T{ }u C,  of group SU(2) × SO(4,2) in the 

space of two-component functions Θ has been constructed. To simplify notations, 
denote henceforward operators Tu,1 by u, the operators T C1,  by С, and do the same 
with the operators of the Lie algebra. Then n, l, m still remain quantum numbers of 
the group corresponding to operators R L J K, , +0

2
3 3; the eigenvectors of these oper-

ators 









Θ =

Ψ
Ψ

1

2
 have components which are eigen functions of corresponding opera-

tors of group SO(4,2). All these operators act on each component Θ separately. On 

the other hand, operator τ σ= 1
23 3 from the Lie algebra of subgroup SU(2) × 1, carries 

vector 









Θ =

Ψ
Ψ

1

2
 into 










Θ =

Ψ
−Ψ

′ 1

2
. The eigenvalues of this operator are s = ± 1

2, and corre-

sponding eigenvectors have the form 








Ψ
0  and 









0
Ψ . Thus, the Madelung number s is a 

quantum number of the group SU(2) × SO(4,2). Operator τ3 commutes with all opera-

tors of the subgroup 1 × SO(4,2), and therefore with its Lie algebra. Therefore, opera-
tors R L J K τ, , + ,0

2
3 3 3 commute with each other. Their common eigenvectors are























n l m n l m, , , 1
2

= Ψ
0

, , , , − 1
2

= 0
Ψ

nlm

nlm
� (5.70)
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with eigenvalues, n l l m n l l m, ( + 1), , И , ( + 1), , − ,1
2

1
2  respectively.

From eq. (3.129), we have









τ n l m n l m τ n l m n l m

τ n l m σ σ n l m σ σ

, , , − 1
2

= , , , 1
2

, , , , 1
2

= , , , − 1
2

,

, , , = , , , = − 1
2

, 1
2

+ −

3
� (5.71)

whereas the operators of the Lie algebra of SO(4,2) act only on the numbers n, l, m, but 
not on s. The basis n l m s, , ,  is in am one-to-one correspondence with chemical ele-
ments as suggested by the Madelung numeration (Table 5.1). Since empirical number-
ing Madelung provides good ordering of elements according to their properties (see 
Section 1), and the Madelung number are quantum numbers of group SU(2) × SO(4,2), 
this group is reasonably assumed related to the symmetry of the system of elements.

Now return to the numeration of Madelung. At the first acquaintance with Table 
5.1, we simply noted that some regularities are revealed if the table is filled with 
symbols in a certain order, for example, change of a single number n results in Men-
deleevian homologous series to occupy horizontal rows of the table. Obviously, there 
is a relationship between an element and its “address” in the table, that is, the set of 
numbers (n, l, m, s). To find the relationship, the elements are to be denoted. From 
a group-theoretical viewpoint, the elements are naturally denoted by the sets of 
their quantum numbers; but since our goal is a correspondence with the traditional 
description, we will represent them by their atomic numbers which have a direct 
experimental meaning. Note that atomic number is not a quantum number, neither 
a part of our theory, and serves only as an experimental characteristic of an element 
to introduce it into the group description. So, it is necessary to establish a one–one 
correspondence between positive integers Z = 1, 2, 3, … and a set of numbers (n, l, m, 
s) satisfying condition (5.1):

Z n l m s↔ ( , , , )� (5.72)

This correspondence is given by the “Madelung lexicographic rule”:
1)	 The elements are arranged in order of increasing atomic number Z.
2)	 The sets (n, l, m, s) are arranged in order of increasing п + l; for fixed п + l, in order 

of increasing п; for fixed n + l, n, in order of increasing т; for fixed n + l, n, т, in 
order of increasing s.

3)	 Z-th element corresponds to the Z-th set.

Evidently, the elements of Table 5.1 satisfy this rule. Note again that the Madelung 
rule is not a part of our present theory but only a way to connect it with the experi-
ment. Therefore, it is not the rule (5.72) itself which is to be justified, but the choice 
of parameters n, l, m, s obeying rule (5.1) and serving to numerate the elements; the 
justification is that these parameters are quantum numbers of group SU(2) × SO(4,2) 



136   5 The symmetry group of chemical elements

and that group-theoretical approach allows classification of the elements according 
to their properties.

First of all, group interpretation shows that Madelung numeration is not very 
natural and needs to be changed. In fact, “lexicographic rule” includes the sum n + l 
together with n, m, s rather than numbers n, l, m, s as such. As mentioned above, l by 
itself is not a genuine quantum number, that is, an eigenvalue of some operator from 
the universal enveloping algebra of group SU(2) × SO(4,2); such quantum number is 
l(l + 1) which is the eigenvalue of operator L L L L= + +2

12
2

23
2

31
2 , whereas l merely labels 

this quantum number.
In this sense, l is sometimes called a quantum number. This means that the sum 

n + l has no group-theoretical meaning: it is a sum of a genuine quantum number n 
(eigenvalue of the operator R L= −0 56) and number l (which is not a quantum number). 
Therefore, from the group-theoretical viewpoint, number n + l cannot be part of the 
“lexicographic rule.” Therefore, Madelung numeration is to be replaced by another 
numeration which would describe the regularities of element properties and would 
be free of the above defect.

If Table 5.1 is watched “along the diagonal,” value n + l is found to be con-
stant for the rectangles on the diagonals. Consider all rectangles with odd values of 
n + l and define for them v n l= ( + + 1)1

2 . For v = 1, we obtain the rectangle (Н, Нe);  
for v = 2, a series of rectangles (Na,Mg),(B–Ne); for v = 3, a series of rectangles 
(Rb,Sr),(Ga − Kr),(Sc − Zn); and so on. For rectangles with even values, n + l define 
v n l= ( + )1

2 . For v = 1, obtain a rectangle (Li, Be), for v = 2, a series of rectangles 
(K, Ca),(Al − Ar); for v = 3, a series of rectangles (Cs, Ba),(In − Xe),(Y−Cd), and so on. 
Table 5.2 shows the diagonal series with odd n + l placed in odd vertical columns 
and diagonal series with even п + 1 in even vertical columns. Now, the odd and, 
correspondingly, even columns of Table 5.2 form a table of the same structure as in 
Table 5.1. In both tables, the columns are numbered by v (instead of n) and quantum 
numbers l, m, s remain the same. Each of them can therefore be related to representa-
tion T{ }u C,  in the same sense as it was done with Table 5.1. We therefore get two equiv-
alent representations of group SU(2) × SO(4,2). To specify the new arrangement of the 
elements, define l λ m μ s σ= , = , = ; for instance, in the “odd” table, N is numbered as 
v λ μ σ( = 2, = 1, = 0, = )−1

2 , Cr as v λ μ σ( = 3, = 2, = −1, = )1
2 ; in the “even” table, Сl is 

numbered as v λ μ σ( = 2, = 1, = 1, = )−1
2  and U as v λ μ σ( = 4, = 3, = −2, = )1

2 . In Table 
5.2, “odd” and “even” tables are combined, so that the columns of the “odd” table 
are labeled by numbers δ = − 1

2, and the columns of the “even” table are labeled by 
numbers δ = 1

2. In fact, looking at Table 5.1 “along the diagonal” gives exactly Table 5.2.
The rule to fill Table 5.2 is also “lexicographic”:

1)	 The elements are arranged in the order of increasing atomic number Z.
2)	 The sets v δ λ μ σ( , , , , ) are arranged in order of increasing v; for fixed v, in order 

of increasing δ; for fixed v δ, , in order of decreasing λ; for fixed v δ λ, , , in order of 
increasing μ; and for fixed v δ λ μ, , , , in order of increasing σ.

3)	 Zth element corresponds to the Zth set.
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Evidently, the elements of Table 5.2 satisfy this rule. If we succeed in interpreting 
v δ λ λ μ σ, , ( + 1), ,  as quantum numbers of some group, the above numeration will 
be free of the defect of Madelung numeration implying unnatural combinations like  
n + l. Fixing δ = − 1

2 or δ = 1
2, we obtain a basis v λ μ σ, , ,  exactly the same as basis 

n l m s, , ,  of the space F2. Thus, we actually have two copies of the space which we 
denote 2−F  and F2+; a representation of group SU(2) × SO(4,2) is defined in each of them 
the same way it was done in Section 3 for a representation in space 2F . However, the 
obtained representation acts separately in each of the spaces 2−F , F2+ and does not 
connect them with each other, so that two vectors with δ = −1

2 and δ = 1
2 correspond 

B Al Ga
Ge
As
Se
Br
Kr

Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu Ag

Pd
Rh
Ru
Tc
Mo
Nb
Zr
Y

Xe
J
Te
Sb
Sn
In Tl

Pb
Bi
Po
At
Rn

Lu
Hf
Ta
W

CdZn

Si
P
S
Cl
Ar

N
O
F
Ne

C

H Hi
Be Mg

Na K Rb Cs Fr
RaBaSrCaHe

Re
Os
Ir
Pt
Au
Hg

Lr
Ku

La

Pr

Pm

Eu
Gd
Tb

Ho

Tm
Vb No

Md

Es

Bk

Am

Np

Pa

Ac
Th

U

Pu

Cm

Cf

FmEr

Dy

Sm

Nd

Ce

ν  = 1 

λ = 0

λ = 1

µ = –1

µ = 0
σ = – 1 ⁄2

δ = – 1 ⁄2 δ =  1 ⁄2 δ =  1 ⁄2 δ =  1 ⁄2 δ =  1 ⁄2δ = – 1 ⁄2 δ = – 1 ⁄2 δ = – 1 ⁄2

σ =  1 ⁄2

µ = 0

µ = 1

λ = 2

λ = 3

ν  = 2 ν  = 3 ν  = 4

Table 5.2: A table obtained from Table 5.1 by looking “along the diagonal”. 
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to each set of quantum numbers v λ μ σ( , , , ); but number δ has not yet a group-theoret-
ical interpretation. So, another “doubling” of the space is needed. It will be done the 
same way as in the previous section. Consider vectors










X =

Θ
Θ

1

2
� (5.73)

which can be considered as four-component functions of ξ ξ ξ ξ, , ,1 2 3 4 (as Θ , Θ1 2 are  
two-component, see eq. (5.55)). Introduce a scalar product in space F4 of vectors X.  
For





















X Y

T
T=

Θ
Θ , = ,1

2

1

2
� (5.74)

define

X Y T T= Θ + Θ ,1 1 2 2� (5.75)

(where scalar products on the right are taken in spaces F F,2− 2+). Proceeding from the 
representation T{ }u C,  of group SU(2) × SO(4,2) defined in space 2F , we construct now a 
representation of the group in space F4

G = SU(2) × SU(2) × SO(4, 2)′� (5.76)

where SU(2)′ is another copy of SU(2) group. To do this, it is enough to repeat the pro-
cedure (5.65) and (5.66):

T X X= ,′′u u C, ,� (5.77)

where























∑

X X u u

u T

=
Θ
Θ , =

Θ
Θ , = ( ),

Θ = (Θ )

′
′
′

′ ′

′ ′

στ

σ
τ

στ u C τ

1

2

1

2

=1

2

,

� (5.78)

Operators Tu u C, ,′  are related to Tu C,  the same way as Tu C, to TC and repetition of the above 
reasoning shows that eqs. (5.77) and (5.78) define an irreducible unitary representation 
of G.

Group G is the group of symmetry of chemical elements. Operator σ × 1 × 1′
3  of its 

Lie algebra has eigenvalues δ = ± 1
2 belonging to eigenvectors



















X X= Θ
0 , = 0

Θ+ −� (5.79)

Vectors Х_ and Х+ constitute a subspace which can be identified with 2−F , and F2+, 
respectively. Thus, δ can be regarded as a quantum number of group G. Since subgroup 
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1 × SU(2) × SO(4,2) can be identified with SU(2) × SO(4,2), numbers v λ λ μ σ, ( + 1), ,  are 
also quantum numbers of group G. Consequently, the addresses of the element in  
Table 5.2 are indicated by sets of quantum numbers of group G to number basis vectors 
of space 4F

v δ λ μ σ, , , , .� (5.80)

As will be shown in the next section, the additional quantum number δ introduced 
from algebraic considerations is essential for the mass formula for atomic weights, 
which justifies the second “doubling” of the representation space.

Denoting τ τ, ′
k k the generators of the Lie algebra of groups SU(2) and SU(2)′, respec-

tively, the action of operators to represent them in space 4F  is given by (see eq. (5.71)):

τ v δ λ μ v δ λ μ τ v δ λ μ v δ λ μ

τ v δ λ μ σ σ v δ λ μ σ

τ v λ μ σ v λ μ σ τ v λ μ σ v λ μ σ

τ v δ λ μ σ δ v δ λ μ σ

, , , , − 1
2

= , , , , 1
2

, , , , , 1
2

= , , , , − 1
2

,

, , , , = , , , ,

, − 1
2

, , , = , 1
2

, , , , , 1
2

, , , = , − 1
2

, , , ,

, , , , = , , , ,

′ ′

′

+ −

3

+ −

3

� (5.81)

whereas operators of Lie algebra of SO(4) act only on quantum numbers v λ μ, ,  accord-
ing to eq. (5.40), n, l, m being replaced by v λ μ, , .

Now construct the chain of symmetry subgroups (eq. (5.76)). Fixing the unity in 
group SU(2), obtain subgroup 1 × SU(2) × SO(4,2). Further, taking subgroup SO(4) of 
group SO(4,2), as described in Section 5.2, obtain subgroup 1 × SU(2) × SO(4); the 
elements of this subgroup are completely defined by matrix u from SU(2) and by four- 
dimensional rotation O(4) from SO(4). Omitting factor 1, denote this group G1:

G = SU(2) × SO(4)1� (5.82)

Since each of the spaces Fn is irreducible for SO(4), operators J K,k k of its Lie algebra 
carry each vector (eq. (5.80)) into the vectors generating Fn (see eq. (5.37)). These oper-
ators do not change δ, σ. On the other hand, operators τ±, belonging to the complex 
envelope of the Lie algebra of SU(2), change σ = −1

2 to 1
2 and vice versa. Thus, each 

column of Table 5.2 is the basis of an irreducible representation of G1, which defines 
the reduction of the basic representation T{ }′u u C, ,  of G to G1.

To obtain the next subgroup of the symmetry chain, take subgroup SO(3) in 
SO(4,2) as described in Section 5.2; the group

G = SU(2) × SO(3)2� (5.83)

consisting of elements defined by a matrix u from SU(2) and a three-dimensional rota-
tion O(3) from SO(3) is a subgroup of G1. Operators SO(3) act on μ and do not change 
all other quantum numbers (see Section 5.3); in particular, J K+± ± increase, while corr. 
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decrease μ by one. On the other hand, operators τ± of SU(2) increase, corr. decrease σ 
by one. Therefore, each rectangle of Table 5.2 is a basis of an irreducible representa-
tion of G2, and the reduction of basic representation of G to subgroup G2 is therefore 
obtained.

Thus, the group chain is

⊃ ⊃G = SU(2) × SU(2) × SO(4, 2) SU(2) × SO(4) SU(2) × SO(3)� (5.84)

(where SU(2)′ is replaced by SU(2) in the first factor of G, that is, for the second copy 
of SU(2) introduced above). The chain of groups (5.84) defines the symmetry of the 
system of elements and is considered as a key result of our theory. In Chapter 6, the 
symmetry will be compared with experimental data in detail, and now note some 
evidence to support the choice of the group chain (5.84). According to the general 
principles of particle classification discussed in Section 4.7, reduction of the basic 
representation of the symmetry group G to the consequent subgroups of the chain 
provides a natural decomposition of the particle multiplet into smaller multiplets 
connected with each other by some common properties. Later the role of subgroup 
G1 will be discussed, and now consider multiplets of subgroup G2 imaged by vertical 
rectangles of Table 5.2. Evidently, their elements constitute well-known s-, p-, d-, and 
f-families. In particular, lanthanides and actinides naturally come from our classifi-
cation as multiplets of subgroup G2; thus, our group-theoretical approach removes 
the inappropriate cohabitation of each of these families in the same cell of traditional 
tables, and each element occupies a unique cell defined by its “address” in the table 
v δ λ μ σ( , , , , ), that is, by the corresponding set of quantum numbers of the symmetry 

group. So, the atoms of all possible elements are put in a one-to-one correspondence 
with the vectors of the orthonormal basis (eq. (5.80)) in the space of the basic repre-
sentation of the symmetry group G. According to the classification principles (Section 
4.7), these basis vectors represent the states of a system with definite mass; that is, 
they are eigenvectors of a mass operator. Such operator will be constructed in the 
next section.

Some more comments are needed about the multiplets of G2 subgroup. As Table 5.2 
shows, not all actinides are present in the multiplet v δ λ( = 4, = , = 3)1

2 : according to 
the proposed classification, Lr and Ku already start a new family v δ λ( = 4, = , = 2)1

2 .  
Thus, actinides are divided into families which should be manifested in their prop-
erties when new transuranic elements are discovered. Moreover, our classification 
excludes Lu from the family of lanthanides v δ λ( = 4, = , = 3)−1

2 .47 It belongs to the 
family v δ λ( = 4, = , = 2)−1

2  along with Нf, Ta, and so on.

47 The conventional model of electron shells leads to the same conclusion, see Landau and Lifshitz 
(1972, p. 321).



� 5.5 Mass formula for atomic weights   141

5.5 Mass formula for atomic weights

The mass formula for atomic weights of elements is similar to Gell-Mann–Okubo 
formula discussed in Section 4.5 for the masses of hadrons which are multiplets of 
the SU(3) group. For hadrons, each multiplet SU(3) is divided into isotopic multiplets, 
that is, multiplets of subgroup SU(2), and masses of particles inside these multiplets 
are very close to each other compared to the differences between isotopic multiplets. 
Owing to this fact, the mass formula for hadrons consists of two terms (not counting 
the “unsplit” mass of the multiplet M0): summand M1 (see eq. (4.40)) to give average 
masses of isotopic multiplets, and a smaller summand (see eq. (4.41)) to give the devi-
ation of masses of separate hadrons from average masses of isotopic multiplets which 
contain them.

Atomic weights of elements are not similar to hadron masses because elements 
cannot be divided into groups with close masses similar to isotopic multiplets. Assum-
ing that the smallest multiplets of our symmetry, that is, those of subgroup G2, should 
play the same role as isotopic multiplets in SU(3) symmetry, it can be assumed that 
“average” atomic weights of these multiplets (s-, p-, d-, and f-families) are to be 
described by a formula similar to eq. (4.40) for average masses of isotopic multiplets. 
Large dispersion of masses within each of the families indicates a greater symmetry 
breaking than in the case of hadrons. More surprising of all is that the average atomic 
weights of rectangles in Table 5.2 demonstrate an obvious regularity. The very idea of 
looking for a regularity of average masses is suggested by the analogy with mass for-
mulas for hadrons. Since we do not know how to describe the dispersion of masses 
within G2 multiplets, suppose that their “average” masses, characterizing “nonsplit” 
multiplets G2, are equal to arithmetic mean values of the masses of elements to form 
the multiplets. In Table 5.3, these mean values are framed by squares.

It can be seen that the differences between these mean masses (the squares in the 
same horizontal row) are approximately proportional to numbers 1,1,3,3,5,5,… (with 
the exception of the first one), whereas the vertical differences are proportional 

8,02,5 23,7

8,4 7,4 10,0 11,6 14,3

22,2

89,8

33,4

23,621,3
15,3

39,6 86,6

76,632,2

55,3

135,1

123,5

99,9

224,5

210,2

188,0

154,6 244,4

ν  = 1 

5,5 15,7 15,9

16,9

47,0

44,4 46,9

44,6

48,5 89,4

86,7

88,1

ν  = 2 ν  = 3 ν  = 4
δ =  1 ⁄2δ = – 1 ⁄2 δ =  1 ⁄2δ = – 1 ⁄2 δ =  1 ⁄2 δ =  1 ⁄2δ = – 1 ⁄2 δ = – 1 ⁄2

λ = 1

λ = 0

λ = 2

λ = 3

Table 5.3: A table with mean values of elements to form the multiplets. 
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to numbers 1,2,3,… The stabilization is especially noticeable for greater v. A mass 
formula to describe this regularity can be written as













M m a δ v v v b λ λ= + ⋅ (2 − 3) − 5 + 11
2

+ 2( − 1) − ⋅ ( + 1)0
2

	
(5.85)

where m a b, ,0  are theoretically nondeductive factors (similar to those in the mass 
formula for groups SU(3), SU(6)). Some combinations of quantum numbers in eq. 
(5.85) are eigenvalues of Casimir operators: v2 − 1 is the value of Casimir operator of 
group SO(4) (see Section 2.2) and, therefore, of subgroup G1; and λ(λ−1)is the value of 
Casimir operator of group SO(3) and, therefore, of subgroup G2. Varying v, δ, and λ, 
mass differences obeying the above laws are obtained.

As each of the horizontal differences in Table 5.3 occurs twice, the mass formula 
should necessary include the evenness of the column of Table 5.4 expressed by the 
quantum number δ; thus, the replacement of Madelung numeration made above from 
algebraic considerations introduces exactly those quantum numbers which are 
required by the experiment.

For т0 = 8.0, a = 16.1, b = 5.0, we obtain from eq. (5.85) mean masses of multiplets 
(v δ λ, , ) indicated in Table 5.4. As is seen from Tables 5.3 and 5.4, formula (5.85) 
describes 18 masses by three parameters; except the multiplet (1, −1

2, 0) (contain-
ing Н and Не), the accuracy of the description is comparable with that obtained for 
meson octets. This justifies (5.85) as the mass formula for atoms of chemical elements 
in the same sense as Gell-Mann–Okubo and Beg-Singh (1964) formulas for hadrons. 
Formula (5.85) is also in a good agreement with the known P–N curve to image the 
dependence between the number of protons and neutrons (Fig. 5.1).

Heavier masses of multiplets are better described by eq. (5.85) which is to be con-
sidered as “asymptotic.” For т0 = 1, a = 17, b = 5.5, we obtain from eq. (5.85) the follow-
ing average atomic weights for “heavy” elements (Table 5.5).

These values can be compared with those of Table 5.3. The numbers in parenthe-
ses are predicted average atomic weights of the multiplets of transuranic elements; 
for example, for multiplet (4, 1 2, 2), starting with Lr and Ku, the average atomic weight 
should be 274.

0 8,16 24,2 40,3 88,5 136,6 216,9 297,2
287,3
267,5
237,7

207,0
187,2
157,4

126,7
106,9

78,5
58,7

30,314,31
2
3

λ
ν  = 1 ν  = 2 ν  = 3 ν  = 4

δ =  ½ δ =  ½δ =  ½ δ = – ½ δ = – ½ δ =  ½δ = – ½

Table 5.4: Mean masses of multiplets. 
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This point of view on the mass formula (5.85) can be compared with Wigner’s SU(4) 
symmetry for heavy nuclei (Wigner, 1932) unacknowledged for a long time. As it 
turned out these last years, this symmetry is “restored” starting from about А = 120. 
Note that eq. (5.85) also becomes quite accurate for these values А.48 In addition, the 
difference between individual atomic weights of heavy elements is also stabilized as 
is seen from the differences between atomic weights of the elements with v λ= 3, = 1 
and v λ= 3, = 2 when δ changes from 1/2 to −1/2. This allows predicting not only 

48 The group SU(4) is algebraically kindred to the conformal group: both have isomorphic complex 
envelops of their Lie algebras.

Table 5.5: Average atomic weights for “heavy” elements.

 3,-1/2 3,1/2 4,1/2 4,1/2

0 86 137 222 (307)
1 75 126 211 (296)
2 53 104 189 (274)
3 – – 156 241

0

0 50 100 z

10

100

200

A
300

20 3038 48 56 70 8088 102 112

Fig. 5.1: The dependence between the number of protons and neutrons. Average values of m for mul-
tiplets are imaged by (+), the values according to mass formula (○), and multiplets v δ λ, ,  associated 
with P equal to the average atomic number of its elements (•). N = A − P, where A is the average 
atomic weight of the elements.
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average values but also individual atomic weights of trans-uranium elements. For the 
above case, the difference of atomic weights is 88.6. According to eq. (5.85), as the 
differences corresponding to the change from v δ= 4, = −1

2 to v δ= 4, = 1
2 should be 

the same, it is possible to predict atomic weights of ekafrancium Fr′, ekaradium Ra′, 
and so on, which stand in Table 5.4 on the right of Fr, Ra, … Compare the obtained 
values with the predictions of Seaborg (1969) based on the shell model:

In the cases considered by Seaborg, a notable difference was found for At′ only. For 
Ки = Hf′, we obtain from eq. (5.85) number 265, whereas Seaborg’s prediction was 272; 
the experimental value is 261. For Ta′ (Z = 105), formula (5.85) gives A = 270. When 
compared with experimental data, it should be borne in mind that mass numbers 
for transuranic elements are found for lighter (neutron-deficit) isotopes, whereas 
the mass formula relates apparently to the most stable isotopes with higher mass 
numbers.

Table 5.6: Predictions of atomic weights by Seaborg (1969) based on the shell model.

 Fr′ Ra′ Tl′ Rb′ Bi′ Po′ At′ Rn′

Formula 1 312 315 293 296 298 299 299 311
Seaborg 315 316 297 298 – – 311 314



6 Classification and chemical properties of elements

6.1 Small multiplets and chemical properties

To describe chemical properties in detail, the above symmetry is to be modified. 
Namely, we add group G3 to the group chain ⊃ ⊃G G G1 2 (eq. (5.84)) to define the 
symmetry of the system of elements. According to eq. (5.83), G = SU(2) × SO(3)2 . Since 
groups SU(2) and SO(3) are locally isomorphic (group are considered here from the 
local viewpoint), there is an isomorphism φ between their vicinities of the unity. To 
construct it, set a correspondence between generators J K+k k of group SO(3) and gen-
erators τk of group SU(2): then the isomorphism can be defined by

( )φ e e=i α J K α J K α J K i α τ α τ α τ− [ ( + )+ ( + )+ ( + )] − ( + + )1 1 1 2 2 2 3 3 3 1 1 2 2 3 3� (6.1)

(see eq. (3.154)).
Isomorphism φ makes it possible to construct a subgroup of G2 composed of ele-

ments

u O u φ O× , where = ( )� (6.2)

(see eq. (3.153)). This is exactly the required subgroup G3. According to the definition 
of the product of groups,

φ O O φ O O φ O φ O O O φ O O O O( ( ), ) ⋅ ( ( ), ) = ( ( ) ( ), ) = ( ( ), )1 1 2 2 1 2 1 2 1 2 1 2� (6.3)

elements G3 are multiplied like those of SO(3). Thus, G3 is locally isomorphic to SO(3), 
and we denote this subgroup SO(3)C (where index C indicates its chemical signifi-
cance).

Reduction of the basic presentation T{ }u u C, ,′  of group G to subgroup G2 provides 

representation T{ }u O,  to act on vector 









Θ =

Ψ
Ψ

1

2
 of space 2F  as follows:




















 ∑T u T

Ψ
Ψ =

Ψ
Ψ , where Ψ = (Ψ )

′
′ ′u O σ

τ
στ O τ,

1

2

1

2 =1

2
� (6.4)

(see eq. (5.66)). If и is replaced by φ(O) and SO(3), SU(2) are considered as two copies 
of group SO(3), from eq. (3.146), obtain a tensor product of two representations of 
SO(3): a two-dimensional representation φ and a representation T{ }O  in the Fock 
space. As discussed in the end of Section 3.5, this tensor product can be considered as 
a representation of the subgroup SO(3)C obtained by reducing of the basic representa-
tion onto this subgroup (see eq. (5.62)):

⊗ ⊗T z T z T( Ψ) = ( ) Ψφ O O φ O O( ( ), ) ( )� (6.5)
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This representation acts separately on the components of vector X, i.e. leaves 
quantum number δ unchanged. Representation (6.5) corresponds to mathematical  
description of rotations used in atomic physics in the case of “strong spin–orbit  
coupling” (see eq. (4.7)).

Lie algebra of SO(3) has generators

q τ J K= + +k k k k� (6.6)

(see eq. (3.152)) represented in space 4F  by eqs. (5.40) and (5.71).
As mentioned in Section 5.4, representation (6.4) of group G = SU(2) × SO(3)2  

decomposes into irreducible representations numbered by sets of quantum numbers 
v δ λ( , , ) and imaged by rectangles of Table 5.2. Each of them is defined by a funda-

mental representation SU(2) (which can be viewed as a two-dimensional irreduc-
ible representation of SO(3)) and λ(2 + 1)-dimensional irreducible representation of 
SO(3). As a result of the reduction to SO(3)C, we obtain a tensor product of irreduc-
ible representations with j =1

1
2
 and j λ=2 , for which the Clebsch–Gordan sequence 

…j j j j− , , +1 2 1 2 consists of two terms λ λ− , +1
2

1
2 for λ > 0 and one term 1

2
 for λ = 0. 

Consequently, representation v δ λ( , , ) of group G2 reduces for λ > 0 to two irreducible 
representations of subgroup G = SO(3)C3  with dimensions ( )λ λ2 − + 1 = 21

2  and ( )λ λ2 + + 1 = 2 + 21
2 ,  

and for λ = 0 to one two-dimensional irreducible representation (i.e. in this case, the 
initial two-dimensional representation remains irreducible). Thus, for λ > 0, multip-
lets of subgroup G2 are reduced to two multiplets of subgroup G3 (Table 6.1). As for 
all representations of SO(3), quantum numbers ι λ= −λ

1
2 and ι λ= +λ

1
2
 are introduced 

for irreducible representations of SO(3)C to give the dimensions of these representa-
tions λ ι λ ι2 = 2 + 1 and 2 + 2 = 2 + 1λ λ , respectively; of course, the “authentic” quantum 
numbers are values ι ι( + 1)λ λ  of the Casimir operator of group SO(3)C

∑ ∑q τ J K= ( + + ) .
k

k
k

k k k
=1

3
2

=1

3
2� (6.7)

Thus, the chain of groups

⊃ ⊃ ⊃G = SU(2) × SU(2) × SO(4, 2) SU(2) × SO(4) SU(2) × SO(3) SO(3) ,C� (6.8)

has been constructed, which is an extension of the chain (5.84).
According to the principles of particle classification discussed in Section 4.7, the 

vectors of the selected basis, corresponding to the particles of our system, should 
belong to the smallest multiplets of the symmetry, that is, the multiplets of subgroup 
SO(3)C. This means that vectors v δ λ μ σ, , , ,  constructed in Section 5.4 cannot form a 
selected basis as μ σ,  are no longer quantum numbers of the symmetry and the above 
vectors do not belong to multiplets of G3. The basis is changed as follows: as v δ λ, ,  
are associated with groups G G G, ,1 2, they remain quantum numbers of chain (6.8), 
and new quantum numbers associated with G3 are introduced instead of μ σ, . One of 
them, ιλ, is associated with the Casimir operator of subgroup G3. The other quantum 
number, χ, is an eigenvalue of operator q τ J K= + +3 3 3 3 belonging to the Lie algebra of 
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G = SO(3)C3 . As for multiplets SO(3)C, number ιλ is half-integral and χ runs through the 
following half-integral values:

…χ ι ι ι ι ι λ λ= − , − + 1, , − 1, , where = − 1
2

, + 1
2

.λ λ λ λ λ� (6.9)

Quantum numbers v (associated with the eigenvalues of the Casimir operator of SO(4)),  
δ (eigenvalue of a generator of SU(2)′), λ (associated with the eigenvalue λ λ( + 1) of 
the Casimir operator of SO(3), and ιλ(associated with eigenvalue ι ι( + 1)λ λ  of the Casimir 
operator of SO(3)C) define an irreducible subspace v δ λ ι( , , , )λ  of group SO(3)C repre-
sented by rectangles of Table 6.1. Take normed eigenvectors in this subspace

v δ λ ι χ, , , ,λ� (6.10)

of operator q3, where χ takes values (6.9). By definition, vectors (6.10) belong to “small” 
multiplets of the group chain (6.8) and form a special basis for this chain.

Thus, extension of the chain group to define the symmetry of the system changes 
the selected basis whose vectors should represent the elements. The change is like a 
so-called “mixing” of particles in hadron multiplets (see chains (4.32) and (4.38) in 
SU(3) symmetry). In the case of the system of elements, different bases also serve to 
describe the properties of different elements. However, mass formula (5.85) contains 
only quantum numbers v δ λ, ,  included also in the new set of quantum numbers (eq. 
(6.10)), so that the description of atomic weights with the agreed accuracy (i.e. average 
atomic weights of v δ λ( , , ) multiplets) is compatible also with the extended chain (6.8).

The new basis requires new rules of filling the table of elements, that is, a new 
correspondence

Z v δ λ ι χ↔ ( , , , , ).λ� (6.11)

“Lexicographic rule” takes now the following form:
(1)	 The elements are arranged in order of increasing Z;
(2)	 The sets v δ λ ι χ( , , , , )λ  are arranged in order of increasing v; for fixed v, in order of 

increasing δ; for fixed v δ, , in order of decreasing λ; for fixed v δ λ, , , in order of 
increasing ιλ; for fixed v δ λ ι, , , λ, in order of increasing χ.

(3)	 Z-th element is put in correspondence to the Z-th set.

The set v δ λ ι χ( , , , , )λ  is the “address” of the element to determine its place in Table 5.4.  
Evidently, symbols of elements in Table 6.1 satisfy the above rule. Mention again that 
atomic number Z is not a quantum number in our theory and even is not its part and 
is considered as an experimental characteristic of an element; the lexicographic rule 
establishes a correspondence between this characteristic and the sets of quantum 
numbers to define natural numeration of elements in our symmetry. Thus, quantum 
numbers are not observables and the rule is introduced as a link with the experiment.
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The multiplets of the subgroups G G G, ,1 2 3 represented by columns, pairs of adjacent rectan-
gles, and separate rectangles of Table 6.1 define the hierarchic classification of chemical 
elements corresponding to the group symmetry (eq. (6.8)). The naturalness of this classi-
fication is primarily due to the fact that multiplets v δ λ( , , ) of subgroup G2 coincide with 
known s p d−, −, − and f − families of elements. Quantum number λ defines the number 
of elements λ4 + 2, and δ describes the so-called “secondary periodicity” of elements.

ν  = 1 ν  = 2 ν  = 3 ν  = 4

δ =  ½δ = – ½ δ =  ½δ = – ½δ =  ½ δ =  ½ δ =  ½δ = – ½

λ = 0

λ = 1

λ = 2

λ = 3

H
He

Li
Be

K
Ca

Rb
Sr

Cs
Ba

B
C

P
S
Cl
Ar

Sc
Ti
V
Cr

Mn
Fe
Co
Ni
Cu
Zn

La
Ce
Pr
Nd
Pm
Sm

Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb

Am
Cm
Bk
Cf
Es
Fm
Md
No

Ac
Th
Pa
U
Np
Pu

Tc
Ru
Rh
Pd
Ag
Cd

Re
Os
Ir
Pt
Au
Hg

Y
Zr
Nb
Mo

Lu
Hf
Ta
W

Lr
Ku

As
Se
Br
Kr

Sb
Te
I
Xe

Bi
Po
At
Rn

N
O
F
Ne

Ga
Ge

In
Sn

Tl
Pb

Al
Si

Fr
Ra

Na
Mg ιλ = ½

ιλ = ½

X = –

X = 

X = –½
X = ½

ιλ =

ιλ =

ιλ =

ιλ =

ιλ =

Table 6.1: Periodic table representing  multiplets of subgroup G2  reduced to two multiplets of sub-
group G3. 
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To understand the meaning of “small multiplets,” that is, multiplets of sub-
group G3, we start from a general idea of how the properties of quantum particles are 
described in their quantum classification.

If a quantum theory agrees with experimental facts, we can expect that every 
measurable property Р of the particles described by the theory should be expressed 
by a “regular,” that is, analytically correct function of the quantum numbers of the 
theory. Of course, the group-theoretical approach cannot describe these dependen-
cies quantitatively, but it can indicate some qualitative patterns common to all prop-
erties. For example, when one of the quantum numbers changes while others remain 
fixed, property P should naturally depend on the selected quantum number, and 
the dependence should change abruptly when one of the fixed numbers varies, as 
quantum numbers change discretely.

In the case of symmetry (eq. (6.8)), the dependencies should have the form

P P v δ λ ι χ= ( , , , , ).λ� (6.12)

For different properties Р, this dependency may be different and is usually unknown. 
But we can predict some quantitative characteristics of all functions Р. For example, 
assume that values v δ λ ι, , , λ are fixed: v v δ δ λ λ ι ι= , = , = , =λ λ1 1 1 1; then by changing χ 
obtain from eq. (6.12) some regular function P χ( )1 . If now numbers v δ λ ι, , , λ are changed 
as v v δ δ λ λ ι ι= , = , = , =λ λ2 2 2 2, another function P χ( )2  is obtained. In other words, in 
respect to the function P χ( ), the remaining quantum numbers play the role of param-
eters, and discrete change of one of them dramatically changes the form of P χ( ). If 
v δ λ, , > 0 are fixed (i.e. in conventional terms, p d−, − or f − family of elements), then 
dependency P χ( ) should change dramatically when ιλ changes from λ − 1

2
 to λ + 1

2
. This 

can manifest itself as a “gap” in the graph, its maximum, and so on, on the border 
between two small multiplets with the same λ. In Table 6.1, these “transitions” are des-
ignated by narrow spaces between adjacent rectangles (with the same λ but different ιλ).

For the lanthanides family, such division into two subfamilies with different laws 
of changing properties was first observed by Gaissinsky et al. (1969). We now see that 
this separation is a common law related to the group symmetry: each p d−, −, or f − 
family of λ4 + 2 elements is divided into subfamilies of λ2  and λ2 + 2 elements in order 
of increasing atomic numbers, and the dependency of any measurable property of an 
element on its atomic number changes from the first subfamily to the second.

To compare this conclusion with experimental data, we considered various prop-
erties of elements, including those usually associated with their chemical behavior: 
ionization potentials; atomic volumes; enthalpy of formation; polarizability of the 
atoms; boiling point; melting point; heat of evaporation; electron affinity; energy of 
ionic lattices; dissociation energies of diatomic molecules; and dissociation energies 
of lanthanide compounds. All experimental data confirm symmetry (6.8). Below there 
are some typical graphs (Figs. 6.1–6.8) to illustrate the change of regularities between 
small multiplets; the border to separate them is marked as a dashed line. Apparently, 
this pattern was not seen before and, in any case, had no explanation.
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The division of the families into subfamilies described in Rumer and Fet (1971) (see 
table on p. 208)] was first compared with experimental data by Byakov et al. (1976). 
The graphs were selected by Sorokin who chose the most important properties of  
elements.

6.2 Operators of chemical affinity

The larger part of the program to classify particles outlined in Section 4.7 is ready.  
Now find affinity operators to carry particles with similar properties into each other. 
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Fig. 6.1: First ionization potentials.
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According to Section 4.7, these operators must commute with some subgroup of symme-
try group which is a member of the group chain (6.8). Take subgroup G = SU(2) × SO(3)2 .  
We will show that operators Γ , Γ+ − (see eq. (5.52)) commute with this subgroup. In fact, 
from commutation relations of the conformal group (eq. (5.32)), it follows that
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P Q J K P Q J K P Q J K[ + , + ] = [ + , + ] = [ + , + ] = 0.± ± + + ± ± − − ± ± 3 3� (6.13)

Hence Γ , Γ+ − preserve quantum number μ. Further, Γ , Γ+ − commute with the Casimir 
operator J K J K J K( + ) + ( + ) + ( + )1 1

2
2 2

2
3 3

2 of subgroup SO(3) and thereby preserve 
quantum number λ. On the other hand, P QΓ = ++ + + and P QΓ = +− − − commute with 
the operators of subgroup SU(2) and, hence, with τ k( = 1, 2, 3)k , and therefore, pre-
serve quantum number σ. Since Γ+ and Γ− commute with J K+k k and τk separately, they 
commute with the subgroup G = SU(2) × SO(3)2 . Further, Γ , Γ+ − commute with subgroup 
SU(2)′, and therefore, preserve quantum number δ. Finally, as was shown in Section 
5.3, Γ+ carries Fn into Fn+1, and Γ− carries Fn into n−1F ; therefore, operators Γ , Γ+ − in space F4

increase or, respectively, decrease quantum number v by 1.
We prove that for all basis vectors,

v δ λ ι χΓ , , , , ≠ 0.λ+� (6.14)

First, prove a similar statement for the vectors of the previous basis υ v δ λ μ σ= , , , , .  
Such vector belongs to the irreducible subspace of G2 defined by values v δ λ, , . Take 
j = v − 1

2
 and expand υ in the basis of an irreducible subspace of SO(4) with the same v δ,  

(omitting quantum numbers σ δ, ):

∑υ j σ τ= ϑ , , ,
α β

αβ α β
,

� (6.15)
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where only the terms with nonzero coefficients ϑαβ are retained. Since υ is an eigenvec-
tor of operator J K+3 3 with eigenvalue μ, we have σ τ μ+ =α β  for all α β,  (see eq. (5.37)). 
Take the term with the largest value σα (and, therefore, the smallest value τβ). Now 
apply operator Γ+ to the vector (eq. (6.15)). According to eq. (5.53), we obtain vector 
j σ τ+ , + , −α β

1
2

1
2

1
2  with a nonzero coefficient. This vector cannot be reduced by other 

terms as it has the largest value σα. Since basis vectors j σ τ+ , ,α β
1
2  are orthogonal, we 

have v δ λ μ σΓ , , , , ≠ 0+ . As shown above, Γ+ preserves the quantum numbers δ λ μ σ, , ,  
and increases v by 1; therefore, v δ λ μ σ η v δ λ μ σΓ , , , , = + 1, , , ,+ , where η ≠ 0. Apply 
operators J K J K τ τ+ , + , ,+ + − − + − to the previous equation; it is easily seen from eq. (5.37) 
(where the coefficients on the right depend only on λ but not on v δ, ) and eq. (5.81) 
that η does not depend on μ σ, . Thus Γ+ carries orthonormal basis vectors v δ λ μ σ, , , ,  
into corresponding basis vectors v δ λ μ σ+ 1, , , ,  multiplied by η, and is therefore an  
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isomorphic mapping of the space of multiplet v δ λ( , , ) to the space v δ λ( + 1, , ) mul-
tiplied by η ≠ 0. Since vector v δ λ ι χ, , , ,λ  belongs to the first of these two spaces, 
inequality (eq. (6.21)) is proven. So, we have

v δ λ ι χ η v δ λ ι χΓ , , , , = + 1, , , , ,λ λ+� (6.16)

where η ≠ 0.
Now show that

v δ λ ι χ for λ vΓ , , , , ≠ 0, 0 ≤ ≤ − 2.λ−� (6.17)

As P Qandk k are Hermitian operators, Γ+ and Γ− are Hermitian conjugate operators in 
space F4; we have for any vectors υ, w of this space,

υ w υ wΓ = Γ .+ −� (6.18)
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Take υ v δ λ ι χ w v δ λ ι χ= − 1, , , , , = − 1, , , ,λ λ , where λ v0 ≤ ≤ − 2; since for the values of 
quantum number v − 1, the number λ takes values v0, 1, …, ( − 1) − 1, there is a multip-
let v δ λ( − 1, , ), and therefore, vector υ belongs to the basis of space F4. Similarly, vector 
w also belongs to this basis. According to eq. (6.16), υ η wΓ = ′+ , where η ≠ 0, so that the 
left side of eq. (6.18) is nonzero and we obtain wΓ ≠ 0− .

Intuitively operators Γ , Γ+ − are interpreted as those to transfer basis vectors 
depicted by the cells of Fig. 6.1 to the right and left, respectively, along the horizontal 
lines of the table. Specifically, Γ+ always transfers a basis vector of the column v δ( , ) 
into a basis vector of a column of the same parity v δ( + 1, ), multiplying it by some 
nonzero factor. Operator Γ− transfers a basis vector of the column v δ( , ) into a basis 
vector of a column of the same parity v δ( − 1, ), multiplying it by some nonzero factor, 
provided that the latter exists in the table on the same horizontal (and, as can be 
shown, into the zero otherwise).
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Now show that τ τ,′ ′+ − are affinity operators connecting the columns of different parity. 
Since these operators commute with the subgroup G = SU(2) × SO(4)1 , they pre-
serve quantum numbers v λ ι χ, , ,λ  related to G1 and change only quantum number δ  
(see eq. (5.81)):

τ v λ ι v λ ι
τ v λ ι v λ ι

, , , , χ = , , , , χ
, , , , χ = , , , , χ

′
′

λ λ

λ λ

+
−1

2
1

2

−
1

2
−1

2

� (6.19)

The visual interpretation of operators τ τ,′ ′+ − is that τ′+ and τ′− transfer the basis vectors 
of each odd and even column, respectively, of Table 6.1 along the horizontal into the 
basis vectors of the nearest right and left column, respectively. Thus, operators

τ τΓ , Γ , ,′ ′+ − + −� (6.20)

are affinity operators corresponding to subgroup G2.
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Evidently, horizontal rows of Table 6.1 contain precisely Mendeleevian homolo-
gous series, that is, family of elements with similar properties. We have singled out 
these families starting from the general principle of selecting analogs in particle mul-
tiplets described in Section 4.7. Therefore, it is natural to call operators (6.20) as oper-
ators of chemical affinity.

Now the role of subgroup G1 is clarified: its multiplets contain one representative 
of each series of Mendeleevian analogs, provided that this series intersects a corre-
sponding column of Table 6.1. From the viewpoint of the proposed group approach, this 
is the meaning of periodicity.

As is seen from Table 6.1, homologous series containing the element v δ λ ι χ, , , ,λ  
can intersect only such multiplets of G1 that λ v≤ − 1. This is what determines the tri-
angular shape of the table. Note that for v λ= 4, − 3, our affinity operators establish 
a homology between lanthanides and actinides discovered by Seaborg. This homol-
ogy is thus a special case of the Mendeleevian homology understood in the above 
sense. On the other hand, we cannot as yet explain the fact that Не stands in the row 
of alkaline-earth metals. We hope that quantum numbers of our symmetry will be 
useful to describe the properties of chemical compounds. Atoms within molecules 
can be characterized by their quantum numbers. Decomposing the products of corre-
sponding representations of the symmetry group into irreducible representations, we 
can attempt to classify molecules without analyzing the mechanism of the underly-
ing interaction. Besides this qualitative approach, regularities can be searched in the 
properties of molecules in terms of quantum numbers of the elements to compose the 
molecules.



Appendix A. Fock’s energy spectrum of the 
hydrogen atom

A1 Schrödinger equation in the momentum representation

A momentum representation49 of state vectors is obtained by Fourier transform:

� �∼ ∫ψ p π ψ x e d x( ) = (2 ) ( ) ,i px−3
2 − ( )/ 3� (A.1)

where integration is performed over the whole space.
∼ ∼ψ p ψ p p p( ) = ( , , )x y z  is a wave function in the momentum representation to  

represent the same state as ψ x( ). The inverse Fourier transform

� �∼∫ψ x π ψ p e d p( ) = (2 ) ( ) i px−3
2 ( )/ 3� (A.2)

makes it possible to find ψ x( ) from ∼ψ p( ). Plancherel theorem states that Fourier trans-
form preserves scalar products:

∼∼ ∼∗ ∗∫ ∫ψ χ ψ p χ p d p ψ x χ x d x ψ χ= ( ) ( ) = ( ) ( ) = .3 3� (A.3)

Therefore, mean values and transition probabilities can be calculated in the momen-
tum representation.

Applying momentum operators � � �p p p= , = , =x i x y i y z i z
∂

∂
∂

∂
∂

∂  to eq. (A.2), obtain

�
� �∼∫p ψ x

i x
ψ x π p ψ p e d p( ) = ∂

∂
( ) = (2 ) ( ) ,x x

i px−3
2 ( )/ 3� (A.4)

and similarly for p p,y z. Applying eq. (A.4) once more, obtain operator �p = − Δ2 2  in the 
momentum representation:

� �∼∫p ψ x π p ψ p e d p( ) = (2 ) ( ) ,i px2 −3
2 2 ( )/ 3� (A.5)

where p2 under the integral sign is function p p p+ +x y z
2 2 2. This means that Fourier 

transform of function p ψ x( )2  is ∼p ψ p( )2 ; thus, Laplace operator transforms in the 
momentum representation into the operator of multiplying by p2.

We will also need the operator of multiplication by r
1 in the momentum represen-

tation. To do this, find the Fourier integral of ψ x( )r
1 :

49 The term “representation” in this context has nothing to do with group representations and is 
used here by the tradition of quantum mechanics. Fourier transforms in the forms (A.1) and (A.2) 
used in quantum mechanics (with factor 1/ħ in exponent) can be converted into the usual form by the 
change of variables x x= ′� .



� A1 Schrödinger equation in the momentum representation   159

� �∫χ p π
r

ψ x e d x( ) = (2 ) 1 ( ) .i px−3
2 − ( )/ 3� (A.6)

To facilitate the calculation, introduce factor e δ( > 0)δr−  to ensure convergence of inter-
mediate steps:

� �∫χ p π
r

e ψ x e d x( ) = (2 ) 1 ( ) .δ
δr i px−3

2 − − ( )/ 3� (A.7)

Since χ p χ p( ) → ( )δ  for δ → 0, it is enough to find integral (A.7) for δ > 0. From eq. (A.2), 
we have

∼

∼

�

�

� �

�

∫ ∫
∫ ∫

χ p π
r

e e d x ψ p e d p

π ψ p d p
r

e e d x

( ) = (2 ) 1 ( )

= (2 ) ( ) 1 .

′ ′

′ ′

′

′

δ
δr i px i p x

δr i p p x

−3 − − ( )/ 3 ( )/ 3

−3 3 − ( − ) / 3
� (A.8)

To calculate the inner integral in eq. (A.8), designate 
�

p p k( − ) =′1  and introduce 
spherical coordinates taking direction k as axis z:

�∫ ∫ ∫ ∫

∫ ∫ ∫

∫

r
e e d x

r
e e r drd dφ

π re dr e d π re e e
ikr

dr

π
k

e krdr π
k

k
k δ

π
k δ

1 = 1 sin ϑ ϑ

= −2 (cos ϑ) = 2 −

= 4 sin = 4
+

= 4
+

,

δr ikx
π π

δr ikr

δr
π

ikr δr
ikr ikr

δr

− / 3

0

∞

0 0

2
− cos ϑ 2

0

∞
−

0

cos ϑ

0

∞
−

−

0

∞
−

2 2 2 2

� (A.9)

where �/k p p= −′ . Then we have

� �

∼∫χ p
π

ψ p
p p δ

d p( ) = 1
2

( ) 1
− +

,′
′

′
δ 2 2 2 2

3� (A.10)

and for δ → 0,

�

∼

∫χ p
π

ψ p
p p

d p( ) = 1
2

( )
−

.
′

′
′2 2

3� (A.11)

Apply Fourier transformation to both sides of Schrödinger equation with Coulomb 
potential50:

p
m

ψ x Ze
r

ψ x Eψ x
2

( ) − ( ) = ( ).
2 2

� (A.12)

From eq. (A.5) obtain

50 For simplicity, we will say that the electron is considered in the hydrogen atom, though Z is  
arbitrary here.
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�

∼
∼

∼∫p
m

ψ x Ze
π

ψ p
p p

d p Eψ x
2

( ) −
2

( )
−

= ( ).
′

′
′

2 2

2 2
3� (A.13)

Thus, in the momentum representation, Schrödinger equation becomes an integral 
equation.

We need also the following “virial theorem”: average values of kinetic and poten-
tial energies are related as T U2 = −av av for any stationary state of the electron in the 
Coulomb field. To prove it (see [39, p.234]), mention that that Schrödinger equation 
(A.12) is equivalent to the variation principle

∗∫δ ψ T U E ψd x( + − ) = 0,3� (A.14)

where normalized wavefunctions are varied [35]. Consider, in particular, a special 
variation ψ x λ ψ λx( ) = ( )λ

3
2  arising from the similarity transform x λx λ= ,    > 0′ . Then ψλ 

are normalized for all λ and by change of variables x λx=′ , we find
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∂

+ ∂
∂

+ ∂
∂

( ) = ,′
′ ′

′ ′

λav λ λ

av

3 3
2 2

2

2

2

2

2
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2
2 2

2

2

2

2

2
3 2

� (A.15)

whence

δT d
dλ

T T= = 2 .av λav λ av=0� (A.16)

Assume potential energy U x( ) homogeneous of degree ρ, that is, U λx λ U x( ) = ( )ρ . From 
the calculations similar to eq. (A.15), obtain U λ U=λav

ρ
av

−  and

δU d
dλ

U ρU= = − .av λav λ av=0� (A.17)

From eqs. (A.14), (A.16), and (A.17), we have T ρU2 − = 0av av  and assuming ρ = −1, obtain 
the theorem to be proved. Therefore, T E= −av av and in the stationary state obtain

p
m

E( ) = − 1
2

.av
2� (A.18)

Since only bound states are considered, we have E < 0.

A2 Fock transformation

Consider four-dimensional Euclidean space R4 with coordinates ξ ξ ξ ξ, , ,1 2 3 4 (with no 
physical meaning). Distance between points …ξ ξ ξ= ( , , )1 4  and …ξ ξ ξ= ( , , )′ ′ ′1 4  in R4 is 
given by
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�ξ ξ ξ ξ ξ ξ− = [( − ) + + ( − ) ]′ ′ ′1 1
2

4 4
2 1

2� (A.19)

and a unit sphere S3 centered at the origin is given by

ξ ξ ξ ξ+ + + = 1.1
2

2
2

3
2

4
2� (A.20)

Introduce spherical coordinates in R4. Denote ρ the length of the radius vector of the 
point ξ ξ ξ= ( , …, )1 4  and α its angle with the axis ξ α π(0 ≤ ≤ )4 . Then ξ ρ α= cos4 . Desig-
nate r ρ α= sin , then r is the length of the projection of this radius vector on plane R3 
(ξ = 04 ), that is, the length of the radius vector of point ξ  of this plane.

Introduce in R3 usual spherical coordinates r φ r π φ π, ϑ,   (0 ≤ < ∞, 0 ≤ ϑ ≤ , 0 ≤ ≤ 2 ), 
then

ξ ρ α φ
ξ ρ α φ
ξ ρ α
ξ ρ α

= sin sin ϑ cos
= sin sin ϑ sin
= sin cos ϑ
= cos .

1

2

3

4

� (A.21)

Thus, we take ρ ρ α α π π φ φ π (0 ≤ < ∞),    (0 ≤ ≤ ),  ϑ (0 ≤ ϑ ≤ ),   (, 0 ≤ ≤ 2 ) as spherical coor-
dinates in R4. Also set ρ = 1 on the sphere S3.

Find the area of the unit sphere in R4. Take on S3 a surface element dΩ defined by 
intervals α α dα d φ φ dφ( , + ),  (ϑ, ϑ + ϑ),  ( , + ) and project it on plane R3. The cosine of 
the angle between the normal to the element area dΩ and axis ξ4 is ξ α= cos4 , so that 
the projection

dS d α= Ω cos .� (A.22)

dS is the three-dimensional volume element in R3 defined by intervals of spher-
ical coordinates r r dr d φ φ dφ( , + ),  (ϑ, ϑ + ϑ),  ( , + ), where r α= sin  and, hence, 
dr αdα= cos . Hereof,

dS r drd dφ α α dαd dφ= sin ϑ ϑ = sin cos sin ϑ ϑ ,2 2� (A.23)

Fig. A.1: Stereographic projection of sphere  
S3 on three-dimensional space R3.

O

qξ

ξ

N
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and from eq. (A.22), we have

d α dαd dφΩ = sin sin ϑ ϑ .2� (A.24)

Integrating this expression over the entire sphere S3, obtain its area

∫ ∫ ∫ ∫d α dαd dφ πΩ = sin sin ϑ ϑ = 2 .
π π π

0 0 0

2
2 2� (A.25)

Fock transformation bases on stereographic projection of sphere S3 on the three- 
dimensional space R3 similar to the projection of a sphere on a complex plane used in 
the theory of functions (see Fig. A.1). Connect the North Pole of the sphere (0, 0, 0, 1) 
with its point ξ ξ ξ ξ ξ= ( , , , )1 2 3 4  by a plane and intersect this line with plane R3; the 
intersection point q q q q= ( , , )1 2 3  is called a stereographic projection of ξ. From the sim-
ilarity of triangles ONq ξ ξq,  (Fig. A.1) obtain

q ξ
q

ξ−
=

1
4� (A.26)

(if q is inside the sphere, the drawing changes but eq. (A.26) remains true).

Denoting ξ ξ= 1 −4
2 , find from eq. (A.26)

ξ q
q

= 2
1 +

,2� (A.27)

since vectors ξ q,  have the same direction,

ξ q
q

= 2
1 +

,2� (A.28)

where q q= . Therefore, taking into account the sign of ξ4, we have

ξ q
q

= − 1
+ 1

.4

2

2� (A.29)

Thus, we have found the formulas of stereographic projection:

ξ
q

q
ξ

q
q

ξ
q

q
ξ q

q
=

2
+ 1

,   =
2

+ 1
,   =

2
+ 1

,   = − 1
+ 1

.1
1

2 2
2

2 3
3

2 4

2

2� (A.30)

Introduce the mean square momentum of the electron in state ψ x( ):

p mE= −2 ,0� (A.31)

where E is the average energy in this state; it is equal to the eigenvalue on the right-
hand side of Schrödinger equation (A.12). Use stereographic projection (A.30) to 
transform sphere S3 in the momentum space p p p( , , )1 2 3 . Define

q p
p

= ,
0

� (A.32)
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then

ξ
p p

p p
α φ

ξ
p p

p p
α φ

ξ
p p

p p
α

ξ
p p
p p

α

=
2

+
= sin sin ϑ cos

=
2

+
= sin sin ϑ sin

=
2

+
= sin cos ϑ

=
−
+

= cos .

x

y

z

1
0

2
0
2

2
0

2
0
2

3
0

2
0
2

4

2
0
2

2
0
2

�
(A.33)

The north pole of S3 under this transform is carried into the “infinity point” of the 
momentum space. From eq. (A.30) obtain

α q
q

αdα qdq
q

sin = 2
+ 1

,  sin = − 4
( + 1)

,2 2 2� (A.34)

and

αdα q
q

dqsin = − 8
( + 1)

2
2

2 3� (A.35)

From eq. (A.24), assuming dα > 0, we have

d q
q

dq d dφΩ = 8
( + 1)

sin ϑ ϑ .
2

2 3� (A.36)

Comparing this expression with the volume element in the momentum space

d p p d q p q dq d dφ= = sin ϑ ϑ ,3
0
3 3

0
3 2� (A.37)

we obtain the relation between the elements of three-dimensional volume:

d p dp dp dp p q d p p
p

d= =
8

( + 1) Ω = ( + )
8

Ω.x y z
3 0

3
2 3

2
0
2 3

0
3

� (A.38)

Now transform the integral in the Schrödinger equation (A.13) into the integral on the 
sphere S3. Express the denominator p p−′ 2 in terms of the coordinates of points ξ ξ,′  
related to p p,′  by eq. (A.33). On one hand,

p p p p pp p q q qq− = + − 2 = ( + − 2 ).′ ′ ′ ′ ′2 2
0
2 2 2� (A.39)

On the other hand, the square of the distance in four-dimensional space is

ξ ξ ξ ξ ξ ξ− = − + ( − ) ,′ ′ ′2 2
4 4

2� (A.40)

and from eqs. (A.28) and (A.29), we have
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









′

ξ ξ q
q

q
q

q
q

q
q

q q
q q q q q q

q q

q q
q q q q q q qq q q

− = 2
1 +

− 2
+ 1

+ −1
+1

− − 1
+ 1

= 4
(1 + ) (1 + )

[( + 1) − (1 + ) ] + 4( − )
(1 + ) (1 + )

= 4
(1 + ) (1 + )

{[(1 + ) +(1 + ) − 2(1 + )(1 + ) ] + ( − ) }.
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′

′
′
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′ ′ ′

′

′
′ ′ ′ ′
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2

2 2 2 2
2 2 2

2 2 2

2 2 2 2

2 2 2 2
2 2 2 2 2 2 2 2 2 2 2

�
(A.41)

After identity transformations, the twisted bracket takes the form

q q q q qq(1 + )(1 + )( + − 2 ),′ ′ ′2 2 2 2� (A.42)

and

ξ ξ
q q

q q qq− = 4
(1 + )(1 + )

( + − 2 ).′
′

′ ′2
2 2

2 2� (A.43)

Comparing eq. (A.43) with eq. (A.39), p p−′  is expressed in terms of ξ ξ−′ :

p p p q q ξ ξ p p p p
p

ξ ξ− =
4

(1 + )(1 + ) − = ( + )( + )
4

− .′ ′ ′
′

′0
2

2 2 2 0
2 2

0
2 2

0
2

2� (A.44)

Substituting this into the Schrödinger equation (A.13) and replacing E by − p
m2
0
2
 (see eq. 

(A.31)), from eq. (A.38), obtain

�

∼
∼

∫p p
m

ψ p Ze
π p

ψ p p p
p p ξ ξ

d( + )
2

( ) =
4

( )( + )
( + ) −

Ω .
′ ′

′
′

2
0
2 2

2
0

0
2 2 2

0
2 2 2

� (A.45)

Multiply eq. (A.45) by p p+0
2 2 and define a new function on the sphere S3

∼ξ μ p p ψ pΨ( ) = ( + ) ( ),2
0
2 2� (A.46)

where p  should be expressed in terms of ξ from eq. (A.33), and μ is a normalization 
factor to be chosen, then eq. (A.45) transforms into the following homogeneous inte-
gral equation:

∫ξ λ
π

ξ
ξ ξ

dΨ( ) =
2

Ψ( )
−

Ω ,
′

′
′2 2� (A.47)

where

� �
λ Ze m

p
Ze m

mE
= =

−2
.

2

0

2

� (A.48)

The original Schrödinger equation (A.13) is an equation to find the eigenvalues E and 
corresponding eigenfunctions ∼ψ p( ). Respectively, eq. (A.47) is to find eigenvalues λ

π2 2 
and eigenfunctions ξΨ( ) (factor π1/2 2 means averaging over the area of sphere S3, see 
eq. (A.25)). The two problems are equivalent, since λ is related to E by eq. (A.48), and 
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ξΨ( ) is related to ∼ψ p( ) by eq. (A.46). Due to factor p p( + )2
0
2 2, function ∼ψ p( ) vanishes at 

p → ∞ provided that ξΨ( ) remains finite near the north pole of S3. As will be shown, a 
very simple form of the transformed eq. (A.47) makes it possible to guess the symme-
try group of the Coulomb task.

Now find the normalizing factor μ. From the definition (A.46) of function ξΨ( ) and 
from eq. (A.38),

∼∫ ∫π
ξ d

p μ
π

p p ψ p d p1
2

Ψ( ) Ω =
4

( + ) ( ) .2
2 0

3 2

2
2

0
2 2 3� (A.49)

Since ∼ ∼ ∼p ψ p p ψ p p ψ p( ),   ( ),   ( )x y z  are Fourier transforms of functions p ψ x p ψ x p ψ x( ),   ( ),   ( )x y z  
(see (A.4)), by theorem (A.3),

∼ ∼

( )
∫ ∫

∫
p ψ p d p p p p ψ p d p

p ψ x p ψ x p ψ x d x

( ) = ( + + ) ( )

= ( ) + ( ) + ( ) ;

x y z

x y z

2 2 3 2 2 2 2 3

2 2 2 3�
(A.50)

due to normalization of ψ x( ), the right-hand side of eq. (A.50) is the mean value of 
p p p+ +x y z

2 2 2, that is, p0
2. Therefore,

∫π
ξ d

p μ
π

1
2

Ψ( ) Ω =
8

.2
2 0

5 2

2
� (A.51)

∼

μ π p

ξ π p p p ψ p

If =
8

,

Ψ( ) =
8

( + ) ( ),

0
−5

2

0
−5

2 2
0
2 2� (A.52)

the normalization condition for ξΨ( ) is

∫π
ξ d1

2
Ψ( ) Ω = 1,2

2� (A.53)

where left-hand side is the average value of Ψ 2 over S3. The solutions of integral Fock 
equation (A.47) are further assumed normalized according to eq. (A.53). In particular, 
function ≡ξΨ( ) 1 is normalized in this sense. Since norm preservation results in pre-
serving scalar product, we have

∼ ∼∼ ∼∗ ∗∫ ∫π
ξ ξ d ψ p φ p d p ψ φ ψ φΨ Φ = 1

2
Ψ ( )Φ( ) Ω = ( ) ( ) = = .2

3� (A.54)

A3 Hydrogen spectrum

We use the classical method of Green’s functions to solve the integral (A.47). The 
solutions will be searched as boundary values of harmonic functions defined in the 
four-dimensional sphere K4:
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ξ ξ ξ ξ+ + + ≤ 1.1
2

2
2

3
2

4
2� (A.55)

A “fundamental solution” of the Laplace’s equation uΔ = 04  in the four-dimensional 
space has singularity in point ξ and can be obtained as follows. Denote ξ ξ ξ ξ, , ,1 2 3 4 the 
coordinates of point ξ and fix them; denote ξ ξ ξ ξ, , ,′ ′ ′ ′1 2 3 4 the coordinates of another 
point ξ ξ≠′  assumed variable. Then function of ξ ξ ξ ξ, , ,′ ′ ′ ′1 2 3 4

�ξ ξ ξ ξ ξ ξ
1

2 −
= 1

2
1

( − ) + + ( − )
,

′ ′ ′2
1 1

2
4 4

2� (A.56)

where ξ ξ ξ ξ, , ,1 2 3 4 are the parameters that satisfy four-dimensional Laplace’s equation 
for ξ ξ≠′ .51 It is readily verified using
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∂
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−
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1
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4
2

−1
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� (A.57)

Now fix point ξ inside K4 and take another point η by inversion relative to sphere 
S3, so that the rays Oξ Oη,  be directed in the same direction and ξ η = 1. Denote 
R ξ ξ R ξ η r ξ r ξ= − ,   = − ,   = ,   =′ ′ ′ ′1 , and designate ω the angle between the rays 
Oξ Oξ,   ′. Function

G ξ ξ
R R

( , ) = 1
2

+ 1
2

′ 2
1
2� (A.58)

is called the Green’s function of the third order (for the sphere K4). Being a sum of the 
two fundamental solutions (with singularities ξ η, ), this function of ξ ′k satisfies the 
four-dimensional Laplace’s equation. From the cosine theorem,

R r rr ω r R
r

r
r

ω r= − 2 cos + ,    = 1 − 2 cos +′ ′ ′ ′2 2 2
1
2

2
2� (A.59)

and G ξ ξ( , )′  for r = 1′  (i.e. for point ξ ′ belonging to S3) is easily found:

G
r ω r

= 1
1 − 2 cos +

.′r =1 2� (A.60)

Similarly,

G
r r ω r

∂
∂

= − 1
1 − 2 cos +

,
′ ′r =1 2

� (A.61)

whence

51 In the space of any dimension n ≥ 3, the fundamental solution of the Laplace equation has the 
form 

′n ξ ξ
1
− 2

1
− n−2  (where factor 

n
1
− 2

 is used for simplicity). For n = 3, this gives the usual fundamental 
solution 

r
1 known from the elementary potential theory.
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
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r
+ ∂

∂
= 0.′r′ =1� (A.62)

It is the “third-order boundary condition” which gave its name to the Green’s func-
tion.

Consider now the Green’s formula:







∫ ∫u v v u dx u v

n
v u

n
dS( Δ − Δ ) = ∂

∂
− ∂

∂
,

D Γ

� (A.63)

where D is a domain in R dx,m  is a volume element in Rm, Г is the boundary of D dS,  
is a surface element of Г, 

n
∂

∂
 is the differentiation with respect to the outer normal to 

Г. This formula is true (and is similarly proved) for any dimension т. Applying it to 
the domain of K ε

4 obtained from K4 by excluding from it a ball of small radius ε with 
center in ξ. Define v as Green’s function G ξ ξ( , )′  (depending on ξ ′ in a fixed point ξ), 
and take for u any function of ξ ′ harmonic in K4. Respectively, replace in eq. (A.63) dx 
by d ξ ′4 , dS by dΩ′, D by K ε

4. Since both functions u v and   are harmonic in K ε
4, from eq. 

(A.63) obtain
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∂
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∂
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∂
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′

S S
ε

ε
3 3

� (A.64)

where Sε
3 is the sphere of the radius ε with center in ξ, dΩ′

ε is the surface element of the 

sphere, 
n
∂

∂ ′
 is the differentiation with respect to the outer normal to K ε

4, that is, to the 

inner normal to Sε. Evidently, 
n R
∂

∂
= − ∂

∂′
 and from eq. (A.59), it follows that for ε → 0 

only the following term is preserved in the right-hand side of eq. (A.64):


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



∫ u

R R
d π u ξlim − ∂

∂
1

2
Ω = 2 ( )

ε
S

ε→0 2
2

ε
3

� (A.65)

(the area of Sε
3 is π ε2 2 3). Owing to eq. (A.62), eq. (A.64) takes the form







∫u ξ

π
u
r

u Gd( ) = 1
2

∂
∂

+ Ω .
′

′′

S

r2 =1
3

� (A.66)

We obtained a representation of harmonic function и in K4 from boundary values 
u
r

u∂
∂

+
′

. Boundary values G are given by eq. (A.60).
Apply eq. (A.66) to the harmonic polynomial of degree n − 1, that is, to the homo-

geneous polynomial of ξ ξ ξ ξ, , ,1 2 3 4 of order n − 1 satisfying the Laplace equation:

…u r α φ n= Ψ ( , ϑ, )  ( = 1, 2, ),n
n

−1� (A.67)

where α φΨ ( , ϑ, )n  is a function on S3 obtained from the harmonic polynomial for r = 1. 
Then ′n r= ( − 1) Ψ′

u
r

n
n

∂
∂

−2  for n ≥ 2 (0 for n = 1),
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u n α φ∂
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and eq. (A.66) takes the form

∫r α φ n
π

α φ
r ω r

dΨ ( , ϑ, ) =
2

Ψ ( , ϑ , )
1 − 2 cos +

Ω .
′ ′ ′

′n
n

S

n−1
2 2

3
� (A.69)

The integral in eq. (A.69) remains valid also for r = 1; in this case, the denominator is 

ξ ξ−′ 2
 like in the Fock’s integral (A.72). After the limit transition in eq. (A.69) obtain

∫ξ n
π

ξ
ξ ξ

dΨ ( ) =
2

Ψ ( )
−

Ω ,
′

′
′n

S

n
2 2

3
� (A.70)

where ξ ξ, ′ are points of the sphere.
Thus, the boundary values of harmonic polynomials ξΨ ( )n  or four-dimensional 

spherical functions satisfy the integral Fock’s equation with integer eigenvalues 
λ n n= ,    = 1, 2, …. It can be proved that these are all solutions of the equation (up 
to constant factors). In fact, eq. (A.47) is an integral equation with symmetric kernel 

′ξ ξ
1
− 2, and integral operators with symmetric kernels are Hermitian. Therefore, their 

eigenfunctions corresponding to different eigenvalues are orthogonal. If there were 
an eigenfunction (A.47) linearly independent on spherical functions, it could be 
chosen orthogonal to all spherical functions. But spherical functions can be proved 
to constitute a complete system S3, that is, that a function orthogonal to all functions 
of this system is identically zero. Therefore, Fock’s equation is solved. In particular, 
its eigenvalues are 

…λ n n= ,   ( = 1, 2, ).

Note that energy eigenvalues Е for the hydrogen atoms are related to λ by eq. (A.48) 
from which the energy spectrum of the hydrogen can be obtained:

�
E Z me

n
= −

2
1 .n

2 4

2 2
� (A.71)

Thus, the calculation of the energy levels of the electron in the Coulomb field reduces 
to the solution of the integral Fock’s equation (A.47) which surprisingly no longer con-
tains the Coulomb potential. Fock’s equation reveals high symmetry of the quantum 
system associated with this special form of the potential but not directly visible from 
the Schrödinger equation.

In fact, the representation of the four-dimensional rotation group ξ OΨ( ) = Ψ( )′ ξ
−1  

(eq. (1.60)) obviously translates a homogeneous harmonic polynomial of degree 
…n n− 1    ( = 1, 2, ) in polynomials of the same kind and thereby defines a representa-

tion of SO(4) on the space Fn of such polynomials. Later all these representations will 
be shown irreducible.
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B1 Local representations of SO(3) and SO(4) groups

Consider some local representation of SO(3) in a finite-dimensional complex vector 
space С, that is, a representation defined in a vicinity of the identity. We assume that 
С is a Hilbert space and the representation is unitary.52 The operators to represent gen-
erators A A A, ,1 2 3 of SO(3) group in space С will be denoted by the same letters. Denote 
A A iA A A iA= + ,   = −+ 1 2 − 1 2; then from eq. (3.75), we have the commutation relations

A A A A A A A A A[ , ] = ,  [ , ] = − ,  [ , ] = 2 .3 + + 3 − − + − 3� (B.1)

The role of operators A A,  + − is seen from the following lemma:
Let eigenvector ν of A3 corresponds to the eigenvalue т. Then A ν+  (respectively, 

A ν− ) is an eigenvector A3 with eigenvalue m + 1 (respectively, m − 1) if the vector is not 
a zero vector. In fact, from eq. (B.1), A A ν A A A ν A mν A ν m A ν( ) = ( + ) = ( ) + = ( + 1)3 + + 3 + + + +  
and, similarly, A A ν m A ν( ) = ( − 1)3 − − .

Any linear operator in a finite-dimensional space С has eigenvalue (real for Her-
mitian operators) and finite number of eigenvalues. Designate j the largest eigenvalue 
of A3 and νj the corresponding eigenvector. Then vectors …ν A ν ν A ν= , = ,j j j j−1 − −2 − −1  (if 
only they are not zero vectors) are eigenvectors of A3 with eigenvalues …j j− 1, − 2,  .  
Let this sequence of eigenvectors ends with vector ν ′j  having eigenvalue j′. Then, as 
we will show,

A ν j j m j ν= [ ( + 1) − ( + 1)] ,m m+ +1� (B.2)

where ν = 0m  for m j m j< ,   >′ . P prove eq. (B.2) by backward induction with respect to 
m. For m j= , the right-hand side of eq. (B.2) is zero, while the left-hand side becomes 
zero due to the selection of j and the above lemma. If eq. (B.2) is true for some m, from 
eq. (B.1), we have

A ν A A ν A A A ν A j j m m ν mν

j j m m m ν j j m m ν

= = ( + 2 ) = ([ ( + 1) − ( + 1)] ) + 2

= [ ( + 1) − ( + 1) + 2 ] = [ ( + 1) − ( − 1) ] ,
m m m m m

m m

+ −1 + − − + 3 − +1

and eq. (B.2) is therefore true also for m − 1, which completes the induction.
Now suppose m j= − 1′  in eq. (B.2); since j′ is the smallest eigenvalue of A3, obtain 

j j j j( + 1) − ( − 1) = 0′ ′ . For given j, this equation has two solutions, j j= + 1′  and j j= −′ . 
The first of them should be discarded because of the choice of numbers j j, ′. So, j j= −′ ,  
and since j j− ′ is an integer number, j can have the following values:

52 It is not a limitation, because in a finite-dimensional space of a representation of a compact Lie 
group a scalar product can be defined the way that the representation is unitary in the resulting Hil-
bert space.
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…j = 0, 1
2

, 1, 3
2

, 2,� (B.3)

So we have vectors …ν ν ν ν, , , ,j j j j− − +1 −1  and

A ν mν A ν ν m j A ν j j m m m j

A ν A ν

= ,   = ( > − ),   = [ ( + 1) − ( + 1)]( < ),

= 0,   = 0.
m m m m m

j j

3 − −1 +

− − +� (B.4)

Therefore, j(2 + 1)-dimensional subspace of space С generated by these vectors is irre-
ducible; denote it Cj, and the representation defined by eq. (B.4) denote Dj. If space С 
is irreducible, then C C= j. Therefore, we have obtained the structure of all local irre-
ducible representations of SO(3).

Normalize vectors νm by assuming e ν ν= /m m m . Then from eq. (B.4), we have

e A e i k e A e i k= 0 for ≠ + 1, = 0 for ≠ − 1,i k i k+ −� (B.5)

e A A e i k e A A e j j m m= 0 for ≠ , = ( + 1) − ( + 1).i k m m− + − +� (B.6)

Also A A= ( )− +
+, whence ∗e A e e A e=m m m m+ −1 −1 − , and, due to eqs. (B.5) and (B.6), cal-

culation of matrix elements of the product A A− + gives

e A e e A e e A e e A e j j m m= = = ( + 1) − ( − 1).m m m m m m m m−1 − + −1 −
2

+ −1
2

These matrix elements are non-negative. Indeed, vectors em differ from νm only by 
positive normalizing factors, and from eq. (B.4), we have A e λe A e μe= ,    =m m m m+ +1 − −1,  
where λ μ≥ 0,    ≥ 0. Therefore, nonzero matrix elements of the A A,  + − operators are

A A j m j m( ) = ( ) = ( + )( − + 1) .m m m m+ , −1 − −1,� (B.7)

Since A A A A
i

A A= 1
2

( + ),    = 1
2

( − )1 + − 2 + − , find nonzero matrix elements of operators 

A k  ( = 1, 2, 3)k :

A A j m j m

A A i j m j m

A m

( ) = ( ) = 1
2

( + )( − + 1)

( ) = −( ) =
2

( + )( − + 1)

( ) = .

m m m m

m m m m

mm

1 −1, 1 , −1

2 −1, 2 , −1

3

� (B.8)

Find also the value of Casimir operator A A A A= + +2
1
2

2
2

3
2 of SO(3) group for presen-

tation Dj. Since A A A A A= + −2
+ − 3

2
3 (see eq. (3.131)), from eqs. (B.7) and (B.8), obtain 

A e j j e= ( + 1)m m
2  for all m, and therefore

A ν j j ν= ( + 1)2� (B.9)

for all vectors ν of space Cj.
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Now consider representations of SO(4) group. This group is locally decom-
posed into a product of subgroups SO(3) ,  SO(3)J K (see eq. (5.36)) with generators 
J K k,    ( = 1, 2, 3)k k . Find the structure of local irreducible representations of SO(4). 
Suppose we have a representation of SO(4) in a finite-dimensional Hilbert space С. 
Generators J K,    k k  are represented in space С by operators which will be denoted by the 
same letters. Since operators J K,  3 3 are Hermitian and commute with each other (see 
eq. (5.32)), there is their common eigenvector em m1

0
2
0 in С corresponding to the eigenval-

ues of these operators m1
0 and m2

0. Applying operators J J,  + − of subgroup SO(3)J to vector 
em m1

0
2
0, obtain, like above, a sequence of eigenvectors e e e e, , ..., ,j m j m j m j m− , − +1, −1, ,1 2

0
1 2

0
1 2

0
1 2

0 of 
operator J3 to constitute a basis of an irreducible subspace Cj1

 of this subgroup. Since 
K3 and J J,  + − commute, each vector em m1 2

0 is also an eigenvector of J3 with eigenvalue m1 
and eigenvector K3 with eigenvalue m2

0. Applying operators K K,  + − of subgroup SO(3)K 
to vector em m1 2

0, obtain vectors em m1 2
 which are simultaneously eigenvectors of J K,  3 3 

with corresponding eigenvalues m m,  1 2, unless these vectors are zero vectors.
Now show that the range of change for m2 for which e ≠ 0m m1 2

 does not depend on 
m1. In fact, assume e ≠ 0m m1 2

, m m≠′1 1. Then there is such degree p of operator J+ (or J−) 
that e λ J e= ′m m

p
m m±1 2

0
1 2

0, and such degree q of operator K+ (or K −) that e μλK J e= ′m m
q p

m m± ±1 2 1 2
0,  

where μ λ,  are some nonzero numbers, and sign ± means that both cases are consid-
ered simultaneously. From commutation relations, we have

e μλ J K e μλ J e= ( ) = ,′ ′ ′m m
p q

m m
p

m m± ± ±1 2 1 2
0 1 2� (B.10)

and, consequently, e ≠ 0′ ′m m1 2
. Applying operator K3 to both sides of eq. (B.10) and again 

using commutation relations, obtain m m=′2 2. Therefore, from e ≠ 0m m1 2
, it follows that 

e ≠ 0′ ′m m1 2
, which was to be proved.

Assume …m j j j j= − , − + 1, , − 1,2 2 2 2 2. Then vectors em m1 2
 belong to eigenvalues m1, 

m2 of operators J K,  3 3, respectively. Evidently, operators J K,  ± ± convert, up to a numer-
ical factor, these vectors into each other or into the zero. This defines an irreducible 
subspace of group SO(4) with dimension j j(2 + 1)(2 + 1)1 2 . Denote Cj j1 2

 this subspace and 
Dj j1 2

 the corresponding representation. If the initial representation of SO(4) group in 
space С is irreducible, then C C= j j1 2

. On the other hand, representations Dj j1 2
 can be 

constructed for any integer or half-integer j j,1 2:

… …j j= 0, 1
2

, 1, 3
2

, 2, ;   = 0, 1
2

, 1, 3
2

, 2,1 2
� (B.11)

To do this, it is enough to take a space with basis em m1 2
, where …m j j j j= − , − + 1, , − 1,1 1 1 1 1 

and …m j j j j= − , − + 1, , − 1,2 2 2 2 2, and define operators J K,    k k  by eq. (B.8) so that Jk act 
on index m1 and Kk act on index m2. Thus, we found the structure of all irreducible 
representations of SO(4) group.

Denoting m1 as σ, m2 as τ, and basis vectors em m1 2
 as σ τ, , we can see that space 

Cj j1 2
 of representation Dj j1 2

 is a tensor product of spaces C C,  J J1 2
, where irreducible repre-

sentations D D,  J J1 2
 of SO(3) group are defined. The action of operators J J,  ± 3 of subgroup 



172   Appendix B. Representations of some groups

SO(3)J on index σ and operators K K,  ± 3 of subgroup SO(3)K on index τ is defined by eqs. 
(B.7) and (B.8) to result in eq. (5.37).

Above we discussed Casimir operator J J JΛ = 2( + + ) +2
1
2

2
2

3
2  K K K Ζ+2( + + ) = ∑α β αβ1

2
2
2

3
2

<
2  

of SO(4) group (see eq. (2.38) where ℏ should be replaced by 1). It can be easily shown 
that the value Λ2 for representation Dj j1 2

 is j j j j2 ( + 1) + ( + 1)1 1 2 2 ; for j j= = n
1 2

− 1
2 , we 

obtain n − 12 .
Another Casimir operator of SO(4) group has the form Μ J J J= 2( + + ) − 22

1
2

2
2

3
2  

K K K( + + )1
2

2
2

3
2  and is j j j j2 ( + 1) − 2 ( + 1)1 1 2 2  for presentation Dj j1 2

. Thus, both Casimir 
operators define numbers j j,1 2 and, therefore, an irreducible representation of SO(4).

B2 Spherical functions and reduction of representations

The Laplace equation is the source of spherical functions. Harmonic polynomial of 
п-th order is a homogeneous polynomial …u x x( , , )n m1  of n-th order of m variables and 
satisfying the Laplace equation:

�u
u
x

u
x

Δ =
∂
∂

+ +
∂
∂

= 0.n
n n

m

2

1
2

2

2� (B.12)

Denote r the radius vector of point х in space Rm, �r x x= ( + + )m1
2 2 1

2, then un can be 
written as

u x r Y ξ( ) = ( ),n
n

n� (B.13)

where Y ξ( )n  is a function on the sphere �S x x( + + = 1)m
m

−1
1
2 2  uniquely defined by 

polynomial un and, in turn, defining this polynomial. Thus obtained function Y ξ( )n  
is called an m-dimensional spherical function of order п.53 We will further consider 
three-dimensional and four-dimensional spherical functions, but some of the sim-
plest results are proved similarly for any dimension т.

We begin with the following theorem the underlying the expansion of functions 
defined on the sphere by spherical functions:

Let …f x x( , , )n m1  be a homogeneous polynomial of degree п. Then there exists a 
unique harmonic polynomial of the same degree un such that

f u r f= + ,n n n
2

−2� (B.14)

where fn−2 is a homogeneous polynomial of degree n − 2.
Polynomial un is called a harmonic projection of polynomial fn. The proof of the 

theorem has two parts: first the existence of decomposition (eq. (B.14)) will be proved 

53 Note that this term is applied only to functions of a special form which are spherical values of 
harmonic polynomials rather than to any function defined on sphere Sm−1.
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and the formula will be derived to find harmonic projection of the given polynomial fn,  
and then the uniqueness of the decomposition will be proved.

We will further use a formula for a homogeneous polynomial of order k …f x x( , , )k m1 :
r f m k f r fΔ( ) = 2( + 2 ) + Δk k k

2 2� (B.15)

To prove it, apply the Leibniz rule for differentiating a product to r fk
2 :

∑r f mf x
f
x

r fΔ( ) = 2 + 4
∂
∂

+ Δ .k k
j

m

j
k

j
k

2

=1

2� (B.16)

According to Euler’s theorem on homogeneous functions, x kf4 ∑ =j
m

j
f
x k=1

∂
∂

k
j

 which 
results in eq. (B.15). Reapplying eq. (B.15) easily proves the following equation by 
induction with respect to р:

…r f p m k p r f r f pΔ( ) = 2 ( + 2 + 2 − 2) + Δ ( = 1, 2, )p
k

p
k

p
k

2 2 −2 2� (B.17)

and for k n p= − 2 , obtain

r f p m n p r f r f p p nΔ( ) = 2 ( + 2 − 2 − 2) + Δ ( = 1, 2, …, 2 ≤ )p
n p

p
n p

p
n p

2
−2

2 −2
−2

2
−2� (B.18)

Find the harmonic polynomial projection of f x( )n  in the form

∑u α r f= Δ ,n
p

n

p
p p

n
=0

[ /2]
2� (B.19)

where Δp is the pth degree of the Laplace operator (Δ = 10  is the identity operator), n[ /2] 
is the integer part of number n/2, and αp are undetermined coefficients. The summa-
tion in eq. (B.19) is done until fΔp

n becomes zero, that is, p n2 ≤ . Apply Laplace operator 
to both sides of eq. (B.19). Assuming in eq. (B.18) f f= Δn p

p
n−2 , obtain the identity

r f p m n p r f r fΔ( Δ ) = 2 ( + 2 − 2 − 2) Δ + Δ ,p p
n

p p
n

p p
n

2 2 −2 2 +1� (B.20)

and

∑u α p m n p α r fΔ = [ + (2 + 2)( + 2 − 2 − 4) ] Δ ,n
p

n

p p
p p

n
=0

[ /2]

+1
2 +1� (B.21)

where α = 0n[ /2]+1 . The last term vanishes for any fn as p n2( + 1) >  is true in it, the rest 
terms vanish at any fn if the recurrence relations are fulfilled:



 …











α p m n p α p n+ (2 + 2)( + 2 − 2 − 4) = 0 = 0, ,

2
− 1 .p p+1� (B.22)

We assume n > 0 since f0 is a constant with evident expansion (eq. (B.14)) f f r= + ⋅ 00 0
2 .  

Then brackets in eq. (B.22) are positive for all considered values of p, and from eq. 
(B.22), we consistently find all αp if α0 is given. Assume α = 10  and find all other αp 
according to the above reasoning; then eq. (B.19) defines a harmonic polynomial un,  



174   Appendix B. Representations of some groups

the first term in eq. (B.19) is fn, and the rest of them contain factor r 2 which gives 
expansion (eq. (B.14)).

Now prove the uniqueness of eq. (B.14). First show that the spherical functions of 
different orders are orthogonal to each other:

∗∫ Y ξY ξ d l l( ) Ω = 0 ( ≠ ).′′

S

l l
m−1

� (B.23)

By definition, u x r Y ξ( ) = ( )l
l

l  and u x r Y ξ( ) = ( )′
′

′l
l

l  are harmonic polynomials of orders l 
and l′, respectively. Apply to them Green’s formula in the unit sphere K x x( + … + ≤ 0)m

m1
2 2 :











∗ ∗
∗

∗∫∫ u u u u d x
u
n

u u
u
n

d(Δ − Δ ) =
∂
∂

−
∂
∂

Ω.′ ′ ′
′

K
l l l l

m

S

l
l l

l

m m−1
� (B.24)

The left-hand side is zero, and in the right-hand side, differentiation along the outward 
normal coincides with the differentiation along r: lr Y=u

n
l

l
∂
∂

−1l , and similarly, l r Y= ′′ ′
′

u
n

l
l

∂
∂

−1l .  
Introducing it into eq. (B.24) and assuming r = 1, we have ∗∫l l Y Y d( − ) Ω = 0′l l

′ , whence 
obtain eq. (B.23) for l l≠ ′.

The set Hm n,  of all т-dimensional spherical functions of n-th order is a linear space; 
since spherical function Y ξ( )n  and harmonic polynomial u x( )n  mutually define each other, 
this space is isomorphic to the space of polynomials un. This space is finite, because it 
is a subspace of the space of all homogeneous polynomials fn of order n having a finite 
basis of monomials …x xr

m
r

1 m1 . Thus, Hm n,  is a finite-dimensional space. Choose for each n 
an orthonormal basis …Y Y, ,n n

q(1) ( )n  of space Hm n, . Then from eq. (B.23), we have

∗∫ Y Y d δ δΩ = .′ ′ ′
S

l
i

l
j

ll jj
( ) ( )

m−1
� (B.25)

Using eq. (B.14), apply the same formula to fn−2: f u r u r f= + +n n n n
2

−2
4

−4, then to fn−4, 
and so on, and thus obtain the canonical decomposition of the homogeneous poly-
nomial:

�f u r u r u= + + + ,n n n n
2

−2
4

−4� (B.26)

where …u u u, , ,n n n−2 −4  are the harmonic polynomials of the respective degrees, and 
where the right-hand side ends either with the term r up2

1 or the term r up2
0. Assume r = 1;  

designating f( ) spherical values of function f, we have

�f Y Y( ) = + +n n−2� (B.27)

We have thus proved that the values of homogeneous polynomial fn on Sm−1 can be 
represented as a sum of spherical functions of order п or lower. Expressing these 
spherical functions by selected basic functions, obtain the expansion

…∑f c Y n n j q( ) = ( ≤ , = 1, , ).′
′

′ ′n
n j

n
j

n
j

n
,

( ) ( )
′

� (B.28)

Applying a similar expansion to un and fn−2 obtain from eq. (B.15):
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∑ ∑f c Y c Y( ) = + ,n
j

n
j

n
j

n n
n

j
n

j( ) ( )

<

( ) ( )

j
′

′ ′� (B.29)

where the first term on the right-hand side, containing spherical functions of order n 
is u( )n . Multiplying both sides of eq. (B.29) by ∗Y n

k( )  and integrating over Sm−1, find from 
eq. (B.25)

∗∫c Y f d= ( ) Ω.n
k

S

n
k

n
( ) ( )

m−1
� (B.30)

Thus, all coefficients are uniquely determined by polynomial fn which defines u( )n  
and, finally, un. This completes the proof of the decomposition theorem (eq. (B.15)).

We call un a harmonic projection of polynomial fn; assuming u Pf=n n, easily obtain  
that P is a linear operator: indeed, if u P f=n n

(1) (1), u P f=n n
(2) (2), then f f u u+ = +n n n n

(1) (2) (1) (2) 
r f f+ ( + )n n

2
−2

(1)
−2

(2) , and from the uniqueness of eq. (B.15), we have u u P f f+ = ( + )n n n n
(1) (2) (1) (2) .  

Similarly, prove that P λf λP f( ) = ( )n n .
Now we can prove that spherical functions constitute a complete set of functions 

on the sphere Sm−1. As is known, the completeness of an orthonormal system admits 
two equivalent formulations: (a) any (square-integrable) function can be expanded in 
a norm convergent series in terms of the functions of the system; (b) any (square-inte-
grable) function orthogonal to all functions of the system is zero. We will prove that 
completeness of the system of spherical functions in the second formulation. Let f( ) 
be a function on Sm−1 orthogonal to all Y l

j( ). As is seen from eq. (B.27), the values of any 
homogeneous polynomial f( )n  on Sm−1 are decomposed into a sum of spherical func-
tions. Therefore, f( ) orthogonal to all polynomials of …x x, , m1  (homogeneous or not). 
Extend f( ) to function …f x x( , , )m1  defined throughout the space Rm and then approx-
imate it by polynomial …f x x( , , )n m1  using the Weierstrass theorem. Since function f( ) 
is orthogonal on Sm−1 to function f( )n  arbitrarily close to f( ), then f( ) is orthogonal to 
itself and thereby vanishes. This proves the completeness of the system of spherical 
functions and the possibility to expand the functions on the sphere in terms of spher-
ical functions. This decomposition is unique because the coefficients can be derived 
from the orthogonality relations (eq. (B.25)), as it was done above.

Consider now representations of the rotation group mSO( ). For each m, there is a 
representation of this group in the space of harmonic polynomials Hm n, :

Y T Y Y ξ Y O ξ= , where ( ) = ( ).′ ′n o n n
−1� (B.31)

Denote this representation T m n( , ). It can be shown that for m ≥ 3, all representations 
T m n( , ) are irreducible.54

54 A general proof and detailed discussion of representations T m n( , ) and multidimensional spherical 
functions see in B (Vilenkin, 1965, ch. ix). We prove the irreducibility only for m = 3, 4 using special 
properties of these dimensions. For m = 2, the representation will be proved reducible.
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mSO( ) group contains subgroup mSO( − 1) composed of rotations to pre-
serve coordinate xm. Make a reduction of T m n( , ) to this subgroup. Expand the har-
monic polynomial …u x x( , , )n m1  in powers of xm; denoting х point …x x( , , )m1  and 
x′ point …x x( , , )m1 −1 , obtain u x x f x x f x f x( ) = ( ) + ( ) + ( )′ ′ ′n m

n
m
n

n0
−1

1 . Expand f x( )′n  by 
eq. (B.15): f x v x r f x( ) = ( ) + ( )′ ′ ′ ′n n n

2
−2 , where v x( )′n  is the harmonic polynomial of 

…x x, , m1 −1 and �r x x= + +′ m
2

1
2

−1
2 . Replacing r ′ 2 by r x− ( )m

2 2, represent u x( )n  as 
�x f x x f x x f x v x r f x( ) + ( ) + + ( ) + ( ) + ( )′ ′ ′ ′ ′m

n
m
n

m n n n0
(1) −1

1
(1)

−1
(1) 2

−2 , where f x( )′j  is replaced by 
polynomials of the same order f x( )′j

(1) . Applying the same method to f x( )′n−1
(1) , and so 

on, express u x( )n  as

�u x x v x x v x v x r f x( ) = ( ) + ( ) + + ( ) + ( ),′ ′ ′ ′n m
n

m
n

n n0
−1

1
2

−2� (B.32)

where v x( )′j  are harmonic polynomials of …x x, , m1 −1.
Expansion (B.32) underlies the reduction. The terms in eq. (B.32) are not, gener-

ally speaking, harmonic polynomials of …x x, , m1 , but the required expansion Hm n,  into 
irreducible subgroups of subspace mSO( − 1) can be obtained by applying the opera-
tor of harmonic projection P to both sides of eq. (B.32). Since Pu u=n n, P r f( ) = 0n

2
−2 , 

we have

�u x P x v x P x v x P v x( ) = ( ( )) + ( ( )) + + ( ( )).′ ′ ′n m
n

m
n

n0
−1

1� (B.33)

Using eq. (B.19), we can find the form of terms. In fact,











x v x
x

x v xΔ ( ( )) = Δ + ∂
∂

( ( )),′ ′ ′p
m
n j

j
m

p

m
n j

j
−

2

2
−� (B.34)

where Δ′ is a (m–1)-dimensional Laplace operator, and since v xΔ ( ) = 0′ ′j , the right-
hand side of eq. (B.34) is α x v x( )′mnj m

n j p
j

− −2 , where αmnj is a numerical factor. From eq. 
(B.19), we have

( ∑ )P x v x b r x v x( ( )) = ( ),′ ′m
n j

j mnjp
p

m
n j p

j
− 2 − −2� (B.35)

where bmnjp are numerical factors depending only on m n j p, , , , but not on u x( )n . Sub-
stitute expression of eq. (B.35) into eq. (B.33), denote x r α= cosm ,where α is the angle 
between the radius-vector of point х and axis xm, and, finally, assume r = 1. Since 
r r α= sin′ , from eq. (B.33), obtain the expansion of an arbitrary m-dimensional spher-
ical function Y ξ( )n  into the sum of m-dimensional spherical functions of a special form:

∑Y ξ C α α αY ξ( ) = (cos ) cos sin ( ),′n
j

n

mnj
j

j
=0

� (B.36)

where ξ is a point of sphere Sm−1, ξ ′ is a point of sphere �S x x( + + = 1)m
m

−2
1
2

−1
2 , Y ξ( )′j  are 

(m-1)-dimensional spherical functions of order j …j n( = 0, 1, , ), and C z( )mnj  are poly-
nomials of one variable z α= cos  referred to as Gegenbauer polynomials. It can be 
shown that for m = 3, these polynomials coincide (with proper normalization) with 
known Legendre polynomials, and for m = 4, they have the form
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d n α
d α

Const · (cos( + 1) )
(cos )

.
j

j

+1

+1
� (B.37)

For all kinds of m( − 1)-dimensional spherical functions Y ξ( )′j  of order j, the j-th term in 
eq. (B.36) runs through the subspace invariant with respect to the subgroup mSO( − 1); 
in fact, this subgroup acts on ξ ′ only and converts spherical functions Y ξ( )′j  into each 
other. The vectors of this subspace are completely defined by functions Y ξ( )′j , so that 
it is isomorphic to Hm j−1, . Thus, the reduction of eq. (B.37) can be written as:

⊕H H= .m n
j

n

m j,
=0

−1,� (B.38)

Note that we have proved the only invariance of the subspaces in the right-hand side 
relative to mSO( − 1), while in fact, they are irreducible with respect to this subgroup 
(for m ≥ 3).

Consider now in more detail the spherical functions of 1, 2,and 3 variables, that 
is, spherical values of harmonic polynomials of 2, 3, and 4 variables. Harmonic poly-
nomials of two variables are easy to describe. All homogeneous polynomials of order 
n of x y,  are linear combinations of monomials x yn j j−  j n( = 0, …, ). According to eq. 
(B.14), P f P g( ) = ( )2 2  is equivalent to the statement that f g−2 2 divides by r x y= +2 2 2. 
Hence it is easy to deduce that P x y P x( ) = ( )n j j n−  for even j > 0 and P x y P x y( ) = ( )n j j n− −1  
for odd j, while P x( )n  and P x y( )n−1  are not multiples of each other. Consequently, har-
monic polynomials of n-th degree n( > 0) constitute a two-dimensional space. Assum-
ing ς x iy= + , take for basis polynomials ςRe( )n  (multiple of P x( )n ) and ςIm( )n  (multiple 
of P x y( )n−1 ) or their linear combinations ς i ς ςRe( ) + Im( ) =n n n, ∗ς ς ςRe( ) − Im( ) = ( ) .n n n

The action of group SO(2) on these basis vectors is obvious: denoting Tα the rota-
tion of the plane about angle α, we have

∗ ∗T ς e ς T ς e ς( ) = ,   (( ) ) = ( ) ,α
n inα n

α
n inα n−� (B.39)

For r = 1, functions ∗ς r e ς r e= , ( ) =n n inφ n n inφ−  transform into two-dimensional spherical 
functions … …e n  ( = − 2, −1, 0, 1, 2, )inφ , and the expansion of an arbitrary function 
defined on sphere S1 in terms of these functions reduces to expansion of a periodic 
function into Fourier series. Spherical functions of order n have the basis of two func-
tions

Y φ e Y φ e( ) = ,    ( ) = .n
inφ

n
inφ+ − −� (B.40)

As follows from eq. (B.39), space H n2,  decomposes into a sum of two one-dimensional 
irreducible subspaces generated by functions (B.40) n( > 0).

Consider now three-dimensional spherical functions. Using traditional designa-
tions, replace in eq.(B.37) α by ϑ, n by l, and j by m; also denote C c P(cos ϑ) sin ϑ =lm

m
lm l

m
3

( )

(cos ϑ), where clm is a normalization factor. Substituting the expressions of two- 
dimensional spherical functions (B.40) into eq. (B.36), obtain the following decomposi-
tion for three-dimensional spherical functions
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∑Y φ c P c P e c P e(ϑ, ) = (cos ϑ) + [ (cos ϑ) + (cos ϑ) ],l l l
m

l

lm l
m imφ

lm l
m imφ(0)

=1

+ ( ) − (− ) −
0

� (B.41)

where c c c,   ,  l lm lm
+ −

0
 are constant factors and Pl

m( ) are Legendre functions. Since both 
functions P P,  l

m
l

m( ) (− ) correspond to the same polynomial C lm3 , they can differ only by 
a numerical factor.

Thus, the basis of space H l3,  consists of l2 + 1 functions

… …

Y φ P e

l m l l l l

(ϑ, ) = (cos ϑ)

( = 0, 1, 2, ; = − , − + 1, , − 1, ).

m
l
m imφ( )

l

� (B.42)

Now show that this space is irreducible for the representation T l(3, ) of SO(3) group. For 
m l= , obtain the eigenvector of operator ( )L x y= − =i y x i y12

1 ∂
∂

∂
∂

1 ∂
∂

 corresponding to the 
eigenvalue l. According to the local theory of representations of group SO(3) (Section 
1), the irreducible subspace of space H l3,  containing vector Y l

l( ) has the dimension no 
less than l2 + 1. From eq. (B.41), it follows that the number is the dimension of the 
whole space H l3,  which proves the irreducibility of the latter. Thus, odd-dimensional 
representations of SO(3) group are globally realized on the spaces H l3,  of spherical 
functions. These representations of T l(3, ) correspond to Dl.

A vice versa, even-dimensional local representation of SO(3) corresponding to 
half-integer values l do not exist as global representations, that is, they cannot be 
unambiguously continued from a neighborhood of the unity to the whole group SO(3).  
So-called “double-valued” representations are used in physics instead of these non-
existent unique representations. In these representations (which are not representa-
tions of a group in the sense defined in Chapter 1), each element of SO(3) (i.e. each 
rotation О) is associated with two operators T± o acting in an even-dimensional space, 
and either T T T=o o o o1 2 1 2

 or T T T= −o o o o1 2 1 2
 for any choice of signs. In the vicinity of the 

unity operators, To can be chosen uniquely if taken close to the identity operator, then 
they depend continuously on rotation О. Thus, we again obtain local representations. 
In the important case of a two-dimensional representation to transform wave-func-
tions with the spin (Section 4.1), the double-valued nature of the representation 
results in the fact that for “large” rotations, the transformed wave-function is defined 
only up to the sign, that is, to the phase factor unimportant in quantum mechanics.

Finally, consider four-dimensional spherical functions. Again using expansion 
(B.36), obtain for the functions of n-th order the following basis (see eq. (1.54)):

Y α φ α Y φ( , ϑ, ) = Π ( ) (ϑ, ),nlm n l l
m

+1,
( )� (B.43)

where …l n= 0, 1, ,  and …m l l l l= − , − + 1, , − 1,  for the given l. It is easy to calculate 
the number n( + 1)2 of basis vectors (eq. (B.43)) and, therefore, the dimension of space 
H n4, . To prove the irreducibility of the space, note that harmonic polynomial x ix( + )n

1 2  
is also the eigenvector of commuting operators J L L= ( − )3

1
2 12 34  and K L L= ( + )3

1
2 12 34  

(see eq. (5.30)) with the same eigenvalue n
2 . Construct a local representation Dj j1 2

 of 
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SO(4) group from the initial vector x ix( + )n
1 2  as described in Section 1. Then we have 

j j≥ ,    ≥n n
1 2 2 2, so that the dimension j j(2 + 1)(2 + 1)1 2  of irreducible subspace Cj j1 2

 is not 

less than n( + 1)2. Therefore, the dimension is the dimension of the whole space H n4, , 
which thus coincides with Cj j1 2

 to prove its irreducibility.
For m = 4, obtain from eq. (B.37) the decomposition of the four-dimensional 

space of spherical functions of order п into irreducible subspaces of subgroup SO(3):

⊕ ⊕ ⊕H H H H= … .n n4, 3,0 3,1 3,� (B.44)

The basis function (B.42) is an eigenfunction of operators LΛ ,2 2, and L3, with eigenval-
ues n l l( + 1) − 1,   ( + 1)2  and m, respectively.

B3 Some representations of SU(3) group

Here we construct eight- and ten-dimensional irreducible representations of SU(3) 
group necessary to understand Section 4.4. The general construction of any represen-
tations of SU(3) (and nSU( )) is seen in [24].

The octet representation. First consider a nine-dimensional complex space C9 
with the orthonormal basis:

λ μΨ   ( , = 1, 2, 3).μ
λ� (B.45)

Construct in C9 a representation of SU(3) group by defining for Okubo matrices Aτ
σ 

corresponding operators in space C9 denoted by the same letters:

A δ δΨ = Ψ − Ψ .τ
σ

μ
λ

μ
σ

τ
λ

τ
λ

μ
σ� (B.46)

It is easily verified, operators (B.46) satisfy the same commutation relations as Okubo 
matrices (see eq. (4.30)). Besides, corresponding operators λj (see eq. (4.28)) are Her-
mitian, which is readily verified by writing out their matrix elements; therefore, the 
constructed representation is unitary.

To find an irreducible subspace of SU(3) group in C9, note that multiple vectors

Ψ = Ψ + Ψ + Ψ0 1
1

2
2

3
3� (B.47)

are carried into zero by all operators Aτ
σ and thereby constitute an invariant subspace 

C1 of SU(3) group. Since the operators of the unitary representation carry orthogonal 
vectors into orthogonal vectors, the orthogonal complement to C1 in C8 is also invari-
ant. Denote it

⊕C C C= .9 1 8� (B.48)

The basis of C8 consists of the following eight vectors which form an orthonormal 
system and are therefore linearly independent:
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e e e e

e e e e

= Ψ , = −Ψ , = Ψ , = (Ψ − Ψ ),

= −Ψ , = (2Ψ − Ψ − Ψ ), = Ψ , = Ψ
1 3

1
2 3

2
3 2

1
4

1
2 1

1
2
2

5 1
2

6
1
6 3

3
1
1

2
2

7 2
3

8 1
3

� (B.49)

Construct operators Tk of the Lie algebra of subgroup SU(2) (see eq.(4.33)). Denote 
T T iT= ±± 1 2; then T A T A T A A= ,   = ,   = ++ 1

2
− 2

1
3 1

1 1
2 3

3 and from eqs. (B.46) and (B.49),

T e e T e T e e T e T e e T e e

T e e T e e T e
T e e T e e T e
T e e T e T e e

T e T e T e

T e e T e T e e T e T e e T e e

= , = 0, = , = 0, = − 1
2

, = 1
2

;

= 2 , = 2 , = 0,
= 2 , = 2 , = 0,
= − , = 0, = ;

= = = 0;

= , = 0, = , = 0, = − 1
2

, = 1
2

.

+ 1 2 + 2 − 2 1 − 1 3 1 1 3 2 2

+ 3 4 + 4 5 + 5

− 5 4 − 4 3 − 3

3 3 3 3 4 3 5 5

+ 6 − 6 3 6

+ 7 8 + 8 − 8 7 − 7 3 7 7 3 8 8

� (B.50)

As follows from eq. (B.49), space C8 decomposes into the orthogonal sum of irre-
ducible subspaces of subgroup SU(2) generated, respectively, by vectors e e,  1 2, then 
vectors e e e,   ,  3 4 5, then vector e6 and, finally, vectors e e,  7 8. Denoting these subspaces 
in the same order C C C C,   ,   ,   ′2 3 1 2 , we have

⊕ ⊕ ⊕C C C C C= .′8 2 3 1 2� (B.51)

Now prove that the whole space C8 is irreducible for SU(3) group. To do this, it is suf-
ficient to verify that operators of the Lie algebra of this group interconnect subspaces 
C C C C,   ,   ,   ′2 3 1 2 . As is seen from eq. (B.49),

A e e A e e A e e A e e

A e A e e A e e

= , = ; = , = ;

− = 6 ; = − ,
2
3

1 3 3
2

3 1 2
3

5 8 3
3

8 5

2
3

2 1
3

1 6 3
1

6
6

2 6

� (B.52)

which proves the irreducibility of C8.
Applying operators A A,  1

1
3
3 to basis vectors, find the following eigenvalues:

e e e e e e e e

A
A

−1 0 −1 0 1 0 0 1
1 1 0 0 0 0 −1 −1

1 2 3 4 5 6 7 8

1
1

3
3

� (B.53)

The decuplet representation. First consider the complex space C27 with the ortho-
normal basis

λ μ νΨ   ( , , = 1, 2, 3).λμν� (B.54)

Define a representation of SU(3)group in space C27 by

A δ δ δ σ τ
A δ δ δ

Ψ = Ψ + Ψ + Ψ     ( ≠ ),
Ψ = Ψ + Ψ + Ψ − Ψ .

τ
σ

λμν λ
σ

τμν μ
σ

λτν ν
σ

λμτ

σ
σ

λμν λ
σ

σμν μ
σ

λσν ν
σ

λμσ λμν

� (B.55)
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Commutation relations (eq. (4.30)) are readily verified, though the calculation is some-
what cumbersome. Operators λj are again Hermitian, so the representation is unitary.

The invariant subspace we are interested in is generated by 10 orthonormal 
vectors built from vectors Ψλμν by symmetrization over all indices:

e e e

e e

e e e

e e

= Ψ , = (Ψ + Ψ + Ψ ), = (Ψ + Ψ + Ψ ),

= (Ψ + Ψ + Ψ ), = (Ψ + Ψ + Ψ + Ψ + Ψ + Ψ ),

= (Ψ + Ψ + Ψ ), = Ψ , = (Ψ + Ψ + Ψ ),

= (Ψ + Ψ + Ψ ), = Ψ .

1 333 2
1
3 233 323 332 3

1
3 133 313 331

4
1
3 223 232 322 5

1
6 123 132 213 231 312 321

6
1
3 113 131 311 7 222 8

1
3 122 212 221

9
1
3 112 121 211 10 111

� (B.56)

Applying operators (eq. (B.54)) to such symmetrical linear combinations gives linear 
combinations of the same vectors …e e, ,1 10, so the generated space is invariant (which 
will be shown below by direct calculation). Denote this space C10.

The operators of the Lie algebra of SU(2) subgroup act on the basis vectors by the 
formulas following from eqs. (B.55) and (B.56):

T e T e T e
T e e T e T e e T e T e e T e e
T e e T e e T e
T e e T e e T e
T e e T e T e e
T e e T e e T e e T e
T e e T e e T e e T e
T e e T e e T e e T e e

= = = 0;
= , = 0, = , = 0, = − , = ;
= 2 , = 2 , = 0,
= 2 , = 2 , = 0,

= − , = 0, = ;
= 3 , = 2 , = 3 , = 0,

= 3 , = 2 , = 3 , = 0,
= − , = − , = , = .

+ 1 − 1 3 1

+ 2 3 + 3 − 3 2 − 2 3 2
1
2 2 3 3

1
2 3

+ 4 5 + 5 6 + 6

− 6 5 − 5 4 − 4

3 4 4 3 5 3 6 6

+ 7 8 + 8 9 + 9 10 + 10

− 10 9 − 9 8 − 8 7 − 7

3 7
3
2 7 3 8

1
2 8 3 9

1
2 9 3 10

3
2 10

� (B.57)

This shows that C10 decomposes into an orthogonal sum of irreducible subspaces of 
subgroup SU(2) generated by vector e1, then by vectors e e,  2 3, then by vectors e e e,   ,  4 5 6,  
and, finally, by vectors e e e e,   ,   ,  7 8 9 10:

⊕ ⊕ ⊕C C C C C= .10 1 2 3 4� (B.58)

Since these subspaces are connected by operators (eq. (B.55)) σ τ( , = 1, 2, 3), C10 is an 
irreducible space of SU(3) group:

A e e A e e A e e A e e
A e e A e e

= 3 ,   = 3 ;   = 2 ,   = 3 ;
= 3 ,   = 3 .

2
3

1 2 3
2

2 1 2
3

2 4 3
2

4 2

2
3

4 7 3
2

7 4

� (B.59)

The eigenvalues of operators A A,1
1

3
3 for basis vectors are also found from eq. (B.55):

e e e e e e e e e e

A
A

−1 −1 0 −1 0 1 −1 0 1 2
2 1 1 0 0 0 −1 −1 −1 −1

1 2 3 4 5 6 7 8 9 10

1
1

3
3

� (B.60)
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