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Abstract

This paper presents results from modelling work investigating the effects of social
networks on the adoption of energy technologies in the domestic sector. This work
concerns ideas on social network interventions which have been successfully applied in
other domains but which have seldom been applied to energy policy questions. We
employ a dynamical multi-parameter network model where households are represented
as nodes on a network for which the uptake of technologies is influenced by both

personal benefit and social influences. This is applied to demonstrate the usefulness of
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this type of model in assessing the likely success of different roll-out strategies that a
local authority could pursue in promoting the uptake of domestic energy technologies.
Local authorities can play a key role in the retrofit of energy-efficiency and low-carbon
energy-generation technologies in order to realise carbon reductions and alleviate fuel
poverty. Scenarios are modelled for different local authority interventions that target
network interactions and uptake threshold effects, and the results provide insights for
policy. The potential for the use of this type of modelling in understanding the adoption
of energy innovations in the domestic sector and designing local-level interventions is

demonstrated.

Keywords: Modelling, local authorities, domestic sector retrofit, social networks,

residential, energy efficiency



1. Introduction

Much recent work in complex systems theory has highlighted the role of social
networks in influencing individual behaviours (Barabasi, 2003). However, the
implications of these ideas have not been fully exploited in the context of the adoption
of domestic energy technologies and energy-demand-reducing behaviours. In a recent
review paper, Wilson and Dowlatabadi (2007) call for integrated approaches to
modelling domestic energy decision-making that better characterise heterogeneity and
can be used to help design interventions aimed at influencing behaviours. Models based
on individual behaviour tend to assume rational choice or reflect only individual
psychological motivations (Nye et al., 2010), whereas approaches that address the social
context of decision-making tend to be more qualitative (Shove, 1998). In response to
this need, we have conducted new interdisciplinary modelling work to demonstrate the

value of a quantitative approach combining personal and social motivation factors.

We present results from a simulation of energy-innovation diffusion on a social
network, employing real-world data. In the model, households are represented as
dynamical nodes (connection points) on a network who choose whether or not to adopt
an energy technology (or energy-efficiency measure) depending on both personal
benefit and social influences. (For simplicity, we treat the household as a single decision
maker, though in reality, people within the household may vary according to individual
personal and social benefit.) Building on our previous work exploring the general
mathematical features of a simpler version of this model (Bale et al., 2013b; McCullen
et al., 2013), the present work develops the model to the point where it can be used to
compare potential roll-out strategies available to a local authority aiming to increase

uptake of energy technologies in the domestic sector. We examine interventions using
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social networks to promote adoption (‘network interventions’) and also those reducing
barrier(s) to adoption (‘threshold interventions’). This provides preliminary insights for

policy design and highlights the potential for further work.

The objectives of the paper are to:

1. evaluate the potential for applying social network theories to energy
policy using a network model for the adoption of energy technologies in the

domestic sector;

2. apply the model to explore different strategies that could be

implemented by a local authority;

3. identify those interventions that are likely to lead to the highest uptake,

providing insight for policy implementation;

4. inform data gathering to enable refinement of this type of model to make

it useful as a decision support tool for local authorities.

In section 2, we discuss the empirical challenges that we aim to address and the
theoretical approaches on which we draw. In section 3, we discuss the methodology of
the modelling work, including the data used, assumptions, and related limitations. We
then, in section 4, discuss the results from modelling different interventions that a local
authority could take. In section 5, we discuss the insights for local-level policy based on

the outputs from the model and areas for further research.



2. Empirical challenges and theoretical approaches

2.1 Local authority decision-making

Local authorities have a significant role to play in the adoption of technologies that
reduce domestic energy consumption. This role can be either direct, through the
provision of free installation programmes (e.g. Wrap Up Leeds (Leeds City Council and
Yorkshire Energy Services, 2012)), or indirect, through energy advice services (e.g.
Actio2n Woking (Woking Borough Council, 2012)). Often, initiatives are tailored in an
ad hoc manner to suit a given funding scheme, and are limited by available finance
(Bale et al., 2012b). Nonetheless, local authorities still have to make choices as to how
best to engage with residents on any given initiative. For a simple intervention such as
offering free or reduced-cost insulation, local authorities can choose from a range of
roll-out strategies, each of which may deliver different adoption rates. This suggests that
local authorities need tools in order to be able to assess which strategies would be most

successful.

Local authority initiatives (both in the UK and elsewhere) aimed at installing domestic
energy-efficiency measures represent a significant opportunity for achieving carbon
reductions in line with national targets (Comodi et al., 2012; Hoppe et al., 2011,
Sheldrick, 1985). Large-scale retrofit of energy-efficiency and renewable and low-
carbon generation technologies in domestic properties (together termed ‘domestic
energy technologies’) will be required in order to meet the UK’s legally-binding target
of reducing greenhouse gas emissions of 80% by 2050 (compared with 1990 levels)

(Great Britain, 2008). In addition, energy-efficiency measures can provide benefits to



local residents by tackling fuel poverty and improving health and wellbeing (Clinch and

Healy, 2001).

Insulation levels in domestic properties in Great Britain present one opportunity for
improvement; it is estimated that, at the start of January 2012, only 60% of homes with
lofts had loft insulation of at least 125mm and 59% of homes with cavity walls had
cavity wall insulation, while only 2% of homes with solid walls had solid wall
insulation (Department of Energy and Climate Change, 2012). Local authorities have a
unique role to play in encouraging adoption of energy-efficient measures in the both the
social and private domestic sectors (Committee on Climate Change, 2012) as they are
both a trusted source of information (which energy companies tend not to be (Bale et
al., 2013a)) and have local knowledge of the needs of their residents and communities
(which central government does not). In this paper, we examine how local authorities
may be able to maximise this influence by harnessing or enhancing existing social
networks to promote adoption of domestic energy technologies such as insulation or

photovoltaic (PV) panels.

2.2 Social networks

The importance of social network influences on behaviour is well recognized outside of
the energy policy domain, and network interventions can be used to accelerate
behaviour change (Valente, 2012). In this paper, we define network interventions as
purposeful efforts to use social networks to accelerate the increase of adoption of energy
technologies in domestic properties. By ‘social network’, we refer to all inter-household

interactions that are relevant to energy either face-to-face or online (although the latter



currently account for only a small proportion of actual total interactions (King, 2012;

Southwell et al., 2012)).

Network interventions have been used successfully for tackling health-related issues
(Valente, 2010), and much theoretical work exists on various diffusion processes on
networks (Watts, 2002). Yet the insights from social network theory have so far been
under-exploited in the area of energy policy. The role of social networks and network
interventions in the spread of information on energy technologies and behaviours, and
the subsequent adoption rates of both, is a relatively new area for research. There are
some early examples of such ideas in the literature e.g. Coltrane et al. (1986), Darley
and Beniger (1981), and, in relation to climate change, Maibach et al. (2008). In
addition, there has been some recent empirical work on the role of social networks in
the diffusion of energy innovations (Fell et al., 2009; McMichael and Shipworth, 2013;

Michelsen and Madlener, 2013).

2.3 Modelling diffusion of innovations on a network

Diffusion of innovations (Rogers, 1983) is a social communication process that
influences individual adoption of a specific innovation. The theory has been applied in
the context of domestic energy consumption (Wilson and Dowlatabadi, 2007). The
spread of ideas or technologies has been widely studied across different domains as
diffusion on networks (Valente, 2005). One of the most commonly studied network
diffusion processes is the spread of infection by a single contact where transmission
occurs from one individual to another, but, for a consumer product (or behaviour) to
spread, empirical studies show that many people wait for a proportion of their social

group to precede them in the process (Granovetter and Soong, 1983; Valente, 1996).



Threshold models have been developed to account for this phenomenon (Grénlund and
Holme, 2005; Watts, 2002). Diffusion models usually consider only the social aspects
of spreading, which is appropriate in many cases. However, the decision to adopt a
technology may be based on a combination of factors, including ability to install/use the
technology and the willingness to purchase, which will not only include personal
considerations but also social influence from peers and the wider population. Modelling
therefore needs to take into account these multiple factors: ability to adopt, personal
usefulness of the item (as perceived by the householder), and the benefits of aligning
with the social norm (Deffuant et al., 2005; Delre et al., 2010; Valente, 1996). In this

work we include both personal and social aspects of diffusion in the model.

Mathematical network models can be constructed to reproduce features found on real-
world networks (Castellano et al., 2009). Such features include the small-world effect
(Watts and Strogatz, 1998) and scale-free degree distributions (Barabasi, 2003). In the
real-world, people often share common groups of friends, where a friend of a friend is
also a friend. This is known as clustering (or transitivity) and is found to play a
significant role in the dynamics of diffusion on such models (McCullen et al., 2013).
However, often the clustering is not uniform across the whole network, with individuals
being part of groups or communities within which links are denser between individuals
than with the outside world. More realistic network models have been constructed that
take this feature into account by linking individuals by associating them through group
interactions (Newman, 2003). We use a variation on this type of network model, with
added individual links and geographical information (similar to Hamill and Gilbert
(2009)). This has the potential to be parameterized using real-world data; the method is

described in more detail in the Section 3.



2.4 Network data

Although there has been a considerable amount of research and analysis of social
network structures, this has mainly been conducted for networks for which the data is
relatively easy to obtain, such as either moderately small systems or online social
networks. There is limited empirical data available on the networks that may operate
between households in relation to energy technologies or behaviours, and this remains a
challenge for modelling the influence of social networks on the adoption of energy

innovations. Information is needed on the following aspects of the system:

e The structure of the network — Who do people exchange information

with regarding domestic energy technologies?

e The density of the networks — How many others do people

communicate with about energy?

e The weight of the links on the networks — What influence do certain

links to individuals or groups have on adoption decisions?

In section 3.2.1 we discuss our approach to the inclusion of empirical data, where
available, and the assumptions that we have made in the absence of appropriate
information. A more detailed discussion of the data requirements for this type of

modelling can be found in Bale et al.(2013b).

By its nature, diffusion on networks is intrinsically very sensitive to the structure and
properties of the network. In an urban area the true structure of the social network
cannot be known exactly (and will ceaselessly change over longer time-scales), and the
factors affecting individual decision-making are complex and varied. Given these
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limitations, methods are required which can assess the most probable outcome of an

intervention by means of simulation and scenario analysis over a range of possibilities

rather than by means of predictive tools. This is common practice in other disciplines,

where models are very sensitive to details and ensembles are used to derive useful

insights (Stephens et al., 2012).

2.5 Approach to application of the model in policy-making

Adapting a general complexity policy-making approach proposed by Room (2011), we

follow the following process:

Identify the stakeholders and their relationships: we consider households and

those wishing to influence them.

Use real-world data to map out the connectivity between the various elements of
the system (in these cases between households), as well as the options open to
policy-makers, and use these to build a conceptual model which will guide the

network and dynamical models.

Modify the system parameters to re-shape the outcomes: we change the
parameters of the model in ways that relate to real-world interventions in order

to study the resulting variation in uptake.

Use mathematical and computational models to help to identify the range of
possible scenarios and outcomes. This is done not to forecast the future but to

guide and inform as to which interventions might provide more leverage.
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e ldentify areas of the model parameter space which give rise to large sudden
changes, as these can indicate instabilities in either the model or the real-world

system.

3. Methodology

In previous work we developed the mathematical basis of a model (McCullen et al.,
2013) to analyse how the diffusion of innovations depends on personal and social
factors. The present paper focuses on developing this model to incorporate the means to
explore roll-out strategy scenarios as required for application to local authorities. We
first summarise, in section 3.1, our previous work on the main features of the approach
and the mathematical basis for the model. Section 3.2 and onwards then describes the

novel development and methodology used for the present work.

3.1 Summary of modelling approach — previous work

In the model, households are represented as nodes on a network, with the links between
the nodes representing lines of communication between householders, for example
between individual households or at workplaces or other group environments. In
McCullen et al. (2012) all nodes were homogeneous in their parameters, making the
model amenable to mathematical analysis. In Bale et al. (2013b) we discussed how the
model could be developed to include empirical data, and reported on the effects of
introducing heterogeneous nodes representing different household archetypes into the

network.
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The nodes on the network are each assigned a binary variable representing the current
adoption state of the household they represent, x; = 0 or 1 for non-adoption or adoption,
respectively. The number and pattern of adopters changes at each time-step (which for
illustrative purposes we take to represent one month) according to the following rules.
The total perceived usefulness or utility of a product to a household is a combination of
factors, broadly divided into personal and social benefit (Delre et al., 2010). Personal
benefit p; is a measure of the perceived benefit of acquiring the technology to the
household. This could include factors such as cost savings, comfort gains, alignment
with pro-environmental attitudes and interest in new technology. Total social benefit is
the utility derived from the perceived benefit of fitting in with others, which can be
divided into two parts: the influence from a household’s personal social links (peer-
group) and the influence from society in general (population) (Valente, 1996). The
relative contribution of personal and social benefit for different households is an
empirical question. The model we have developed thus has three factors, which can be
given relative weightings a;, £ and %, (with a5 + 5 + % = 1), to account for different
preferences of the household. The parameter ¢; is the weighting given to the perceived
personal benefit to the household p;, £ is the weighting given to the perceived benefit
gained from following the influence of adopters within the household’s social network
neighbourhood s;, and # is the weighting given to m, the average uptake over the entire
population, which represents the perceived benefit of aligning with the mainstream
social norm. Different household types will weight these factors differently; we are able
to introduce different archetype groups to reflect this. The total utility to each household
at any one time is therefore given by the equation:

Ui=aipi+ fisi+ym (1)
12



where s; is the mean average level of uptake amongst the network neighbours of
household i (which can be weighted by the strength of communication from each
neighbour (the link weight)), and m is the weighted mean uptake for the whole
population. Both s; and m are recalculated at every time-step. The initial state for all
households is chosen to represent the proportion of the households who have adopted
the technology at the start of the period in question. The decision to adopt a technology
is determined at each time-step if the perceived total utility to the household outweighs
the barriers to adoption, seen as a combined threshold @, i.e. adoption occurs if u; > &,

and is a one-way process.

The model was written in Python using NetworkX for the construction of the networks
and Scientific Python (SciPy) for the dynamical time-stepping. Codes are available at

http://sourceforge.net/projects/netdifmodel/.

3.2 Development of the model — the present research

For the scenario analysis presented here, we base our model on the City of Leeds, where
we conducted a survey to gather some of the data needed for the model. However, the
insights are more broadly applicable to urban areas and could easily be modified to

represent other areas.

In these model runs, the average properties of the network are largely fixed (except for
the exact locations of the links, which are randomized), in order to investigate a dense
set of possible realities covered by the uncertainty in the network structure. We also
investigate the effect of weighting all links to either 1 or 0.5 in order to represent

different innovations (more details given in section 3.2.6).
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We first summarise the main data collection process, and then discuss the approach to
integrating data for the structure and properties of the network, the archetypes

(parameter distributions for «, and ») and the threshold (6)

3.2.1. Data

We have taken primary data from a survey we conducted of domestic households in the
City of Leeds, and these data are intended to be sufficient to inform and illustrate the
operation of the model rather than a definitive work on attitudes to energy use in the

City of Leeds.

To collect empirical data with which to populate the model, a survey of Leeds residents
was undertaken in May—June 2011. Two convenience sampling methods were used to
reach different segments of the population: 1) through an online collection method
whereby participants were recruited by email and social media advertising via large
organisations in Leeds (e.g. the university, council and other large employers) and 2)
attending a twice-weekly drop-in centre for residents in the east Leeds area of
Burmantofts to encourage participation in the survey by low-income households
without access to the internet. Burmantofts is an area with a large proportion (> 50%) of
council-owned homes and has a high score on a number of socio-economic deprivation
indices (Office for National Statistics, 2011). The questionnaire sought information on
attitude and behaviours with regard to energy use in the home as well as demographic
information (including income level, employment status, and geographic area). A series
of questions was also asked about the respondent’s social network, current sources of
information about energy, and likely organisations that they would trust to provide

energy advice. In total, 1068 valid responses were received, which represents 0.34% of
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the total number of households in the metropolitan district of Leeds. The sample was
found to be broadly representative of the population in terms of tenancy, house type and
pro-environmental behaviour (as benchmarked to the Defra Survey of pro-
environmental behaviours (Thornton, 2009)). However, the difficulties in reaching
certain sectors of the population resulted in under-sampling of the unemployed, the

retired and those on lower incomes. SPSS was used to analyse the questionnaire data.

Figure 1 shows the key data that were used to develop the network representation.

100%
90% — —
80% — —
70% — —
60% — —
50%

T No
40% " HYes
30% -

20% -
10% .

Family Friends Work  Neighbours Groups
colleagues

Figure 1: Responses (valid percentage, excluding missing values 3—7 %) to the question
‘Do you currently talk to any of the following people about energy use and/or saving
money on energy?’ from 1068 households in Leeds.

Our survey showed that around 40-50% of people discuss energy use issues with
family, friends or work colleagues, whereas only 10-20% talk about energy use to
neighbours or members of other social groups to which they belong. These results are
comparable with those reported by Southwell et al., (2012) who found that one third of
a sample of people in the US reported sharing information about energy use.

Importantly, they also found that, of those households, 85% shared information verbally
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and only 3% reported sharing through online social networking sites. These findings
suggest that, although sharing energy information is not nearly ubiquitous, there is a
significant proportion of the population that can be targeted by the local authority and

their existing social networks utilised.

It was not possible to ascertain the relative weight that people assigned to the views of
others in their social network or the wider population, without undertaking a more in-
depth survey. For all model runs, p;, the personal benefit of the innovation to the
household, is set to 0.5 for all nodes. Through the modelling, we investigate how the
decision to adopt depends on the relative weighting of this personal benefit and the
social benefits derived from others adopting, relative to that household’s uptake

threshold value.

3.2.2 Network

We gathered information on the network links related to energy information that exist in
the City of Leeds. Using information from questions in the survey of 1068 respondents,
we developed a social network relating to the sharing of information on energy between
households. In the network, each node representing a household shares information with
other nodes in the network with which it has individual, group or workplace links, as
shown in table 1. Suggested types of group were given in the questionnaire to aid
understanding (although the type is not important for the modelling):
community/volunteer groups, religious meeting places, social groups, sports groups,

groups related to children’s activities or other. The option of ‘none’ was also available.

If respondents reported talking to friends, family and/or neighbours about energy they

were assigned 5, 3 and 2 (or combinations thereof, up to a maximum of 10) links to
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other nodes, respectively. It was not feasible in a questionnaire format to ask

respondents to keep track of and report the number of these links, so these are arbitrary

values for each category. If the respondent reported talking to groups about energy, then

that household was associated with their reported number of groups. Workplace links

were assigned if the respondent was employed and reported talking to colleagues about

energy. From 1068 responses it was found that 756 households reported talking about

energy-related issues to at least one other individual household, group (local) or

workplace (long distance). The remaining 312 households are represented as nodes that

are unconnected to the network but are able to adopt if seeded, or if their combination of

personal benefit and the influence of the total population exceeds their threshold value.

Table 1 — Number of households with various links on the network.

Active Individual Links

Active Group Links

Active Workplace Links

# of # of % of # of # of % of # of # of % of
Links Nodes | Nodes | Links Nodes | Nodes | Links Nodes | Nodes
0 394 37 0 948 89 0 588 55

1 0 0 1 50 5 1 480 45

2 24 2 2 40 4

3 90 8 3 25 2

4 0 0 4 3 0

5 192 18 5 2 0

7 42 4

8 247 23

10 79 7

The construction of a model network based on association with groups (as well as

individually) is shown in figure 2.

17




(@) (b)

(c) (d)

Figure 2: Building a network to include groups association (a) each node is associated
with others as part of association with various groups or individually, (b) the red dots
show locations (based on the 476 lower level super output areas (LLSOA) in Leeds) for
households and the larger green dots for theoretical group locations (based on the 108
middle layer super output areas (MLSOA), (c) household nodes are associated with
local groups, (d) links are formed to five of the other households with whom they share
group membership. Further stages in the process involve forming links through
workplaces (in a similar manner to local groups) and individual links. Some nodes are
present but remain unconnected on the network, representing those households that do
not talk to any other household or group about energy.

18



3.2.3 Archetypes

The archetypes in the model refer to the segments of the population with different
preferences with regard to the weighting of factors p, s and m; that is, we define a
particular (j) archetype Aj=(¢;, £, 7). None of the interventions we investigate in the
present work change the number and/or types of archetypes; instead the interventions
are aimed at altering the network, threshold, or both. This translates to the interpretation
that in the real world it would be very difficult for a local authority to alter individual
household preferences as to whether decisions are led by personal or social (peer or
population norm) benefit. We do, however, set the archetypes to include heterogeneity
in the population, as would be seen in the real world. Every run presented in this paper
is set with three different archetypes: A; = (0.7, 0.3, 0.0), A,=(0.4, 0.3, 0.3), A3=(0.1,
0.1, 0.8), with proportions P(A1, Az, As) = (0.3, 0.5, 0.2). This implies that, for half the
population, personal, social and societal factors are all significant, whereas other parts
of the population are more strongly personally oriented or strongly influenced by
society. The values, for both the relative weighting in each archetype and the proportion
of that archetype in the population, were chosen on the basis of where meaningful
results arose in previous analytical work and in order to reflect what is known about the
proportions of people who exhibit different behaviour in diffusion theory, e.g. early or
late adopters (Rogers, 1983). From previous work (Bale et al., 2013b), we know that the
proportion of different archetypes will make a significant change to the simulations.
However, here we maintain the archetype groups in these proportions, as the aim of this

work is to compare intervention scenarios for a set population.
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3.2.4 Threshold

In the model we introduce further heterogeneity by allocating different thresholds across
the nodes, relating to households’ ability to adopt. The threshold categories and values
are estimated as shown in table 2. The percentage of households (nodes) assigned to
each category are based on household income, house type and tenancy using empirical
data collected from the survey. We grouped households into threshold categories. Those
living in flats, halls of residence, or in shared or rented accommodation are deemed
unable to adopt, as they will typically not be able to change the physical fixtures and
fittings.

Table 2 — Threshold rules and number of nodes assigned to each value for N=1068 (1%
missing values). The percentage of our sample with a threshold of #=1 compares with

41% in this category using data from the 2001 Census for the Leeds area (Office for
National Statistics, 2001).

Threshold Rules for type and Banding threshold | Percentage of
Value (6 tenancy of household level for those population in
with threshold(6) households that model with
are able to adopt threshold (6)
0.25 (Low) Able to adopt High income band 25
House types: Detached; | (> £40,000 pa)
0.45 (Mid) Semi-detached; Terrace. | Middle income 16
Tenancy: Owned | band (£40,000 <
outright; Buying with | £20,000 pa)
0.75 (High) mortgage. Low income band 4
(< £20,000 pa)
1 Not able to adopt 52
House types: Flat; Halls
of residence; Other.
Tenancy: Shared; Rented
(Privately  or  from
Council, HA etc.); Other.

Given the personal utility value, p; = 0.5, that we adopt (see section 3.2.1), this implies

that the adoption of the energy technologies will be personally beneficial to high- and
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middle-income households, but not to low-income households or those unable to adopt
(because, for example, they are in rented accommodation). Whether those households
that are able to adopt actually do so will depend on the relative weighting of their

personal, social and societal benefits.

3.2.5 Estimates

In the absence of complete data, we have had to make estimates in the model, as
follows. For the network representation we assume that households have 5 friends, 3
family links and 2 neighbours. If a household has a group or workplace link then we
assume that the household has five active group contacts within that group. This gives
the numbers shown in table 1. We assume values for p and the archetype groups. Once a
household’s perceived utility exceeds the threshold they immediately become adopters
at the next time-step. In reality, the time taken for making the decision and then
completing the contracting and installation process could be considerably longer, but
this would not change the basic operation of the model. We also assume that all
decisions are made synchronously and at regular (monthly) intervals, which is
computationally convenient but unrealistic in the real world. Although the proportions
of households assigned to each threshold level are those defined by the survey data, the
threshold values are assigned only to give meaningful results in the simulation, as there

are no existing data to enable us to easily quantify these values.

3.2.6 Simulation of policy scenarios

For each simulation, a social network is created based on the above rules and
assumptions, and an initial seeding chosen. The model is run for 36 time-steps. This was

found to be enough to give a stable final configuration. For each initial network
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configuration this is repeated for 100 random realisations to give an average final

uptake.

Having developed a network representation of the city based on empirical evidence
(table 1 and figure 2), we simulated the different roll-out strategies that could be
implemented by the local authority. We largely follow the framework of network
interventions outlined by Valente (2012), informed by strategies that have been
proposed, such as the Committee on Climate Change’s proposal that energy-efficiency
measures be rolled-out in a street-by-street/neighbourhood approach (Committee on
Climate Change, 2009). However, we also propose interventions that are aimed at the
threshold (barrier to adoption) as opposed to altering the network itself. The different
strategies are simulated by altering different parameters in the model and can have
effects in the following ways: seeding different initial conditions for the households that
already have the technology at the outset, or have it imposed on them at time-step 1;
strengthening or adding the weights of the links on the network; or lowering the
threshold value. The first two strategies are closely related to Valente’s categories
segmentation and induction. The incentive and snowball strategies are informed by

ideas from interventions that local authorities have implemented (Bale et al., 2013a)

In addition to the baseline case (Do Nothing scenario), we investigated four different

roll-out strategies:

e Seeded: Free installation of the technology directly to a percentage of
households (that are able to adopt (8 <1)) randomly chosen on the network —

modelled by increasing the initial seed to a range of 5 to 20% of households.
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Communities: Free installation of the technology directly to households that
are connected via a number of (work or local) groups on the network —
modelled by seeding all nodes (who are able to adopt (€ <1)) of a given
number of groups from 0 to 20, an attempt to induce a ‘critical mass’ for

propagation by clustering effects (see McCullen et al.(2013)).

Incentive: A voucher is made available to all households on the network
which lowers their threshold to adoption (if they are able to adopt) —
modelled by decreasing the threshold for all households that are able to

adopt (6<1).

Snowball: A recommend-a-friend voucher is given to each household that
becomes an adopter (which gives them a reward for spreading the word).
Each new adopter is assigned one extra link to another node on the network
(at random) and the threshold to one, two or all of their linked households is
lowered to represent the voucher incentive they can pass on to other

households.

In addition, this is implemented for two specific technology examples: (a) photo-voltaic
(PV) panels and (b) loft insulation, which would have different social diffusion
mechanisms representative of the different characteristics of the technologies. Strong
peer effects have recently been identified in the diffusion of PV panels; Bollinger and
Gillingham (2012) show that additional installation of PV panels increased the
probability of adoption for homes in the same geographic area by a significant and
observable degree. Bollinger and Gillingham propose that increasing the visibility of

adoptions would be expected to increase the rate of adoption. In this modelling work the
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set of archetypes remain the same (as do all other parameters in the given scenario) but
in case (a) the technology is visible and therefore likely to have a higher social diffusion
element compared to case (b), where the technology, once installed, is hidden from
view. In case (b) the network links are weighted to 0.5, whereas in case (a) weighting
remains at 1. The parameter values for all scenarios and both cases can be seen in Table

3. Weighting all links by 0.5 is represented in the model by altering equation (1) to:

U=apit 0.5ﬁi Si + 0.5}4 m (2)

for case (b).

Table 3 — Intervention scenarios and parameter values. The value for p = 0.5 is set the
same for all runs. Each scenario is run for a set of archetypes A; = (0.7,0.3,0.0),
A,=(0.4,0.3,0.3), A3=(0.1,0.1,0.8), with proportions P(A;, A2, A3) = (0.3, 0.5, 0.2). For
technology case (a), where innovation is more easily socially diffused (such as solar
panels, as people tend to see and discuss these more), all links are weighted to 1; for
technology case (b), for those that are not (e.g. insulation, where the intrinsic benefits
are considered by potential adopters but the technology, once installed, is hidden from
view), links are weighted to 0.5.

Scenario Type of Example of Parameters
Intervention possible action
taken by LA to
affect intervention
Do Nothing | None. None. 6= values assigned in table
(Fig3 &4) 2
Initial seed =0
Network = Baseline
Seeded Network: Target Free installation of | §= values assigned in table
(Fig 5) individual the technologytoa |2
households on proportion of Initial seed (mg) = 0.05—
network. randomly selected 0.20, randomly assigned
households in the Network = Baseline
city.
Communities | Network: Target Free installation of | 9= values assigned in table
(Fig 6) households the technologytoa |2
connected by a proportion of Initial seeding (mg) for 0—
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group or
community hub.

households in the
city who are
connected to
selected groups.

20 groups, assigned via
groups
Network = Baseline

Incentive Threshold: Reduce | Voucher to refund 6 = values reduced by 0-
(Fig7) threshold for part of the cost of 0.20
random selection installation for all Network = Baseline
of households. households in the
city.
Snowball Threshold and Money-back € reduced by 0-0.20
(Fig 8) Network: One new | voucher(s) for new | for households that receive

link to another
random node on
the network is
added to each new
adopter. In
addition the
threshold is
reduced for 1
(single voucher
scheme), 2 (two
vouchers) or all
(unlimited
vouchers), of the
adopters’ network
neighbours.

adopters which they
pass to other
households whose
threshold is
lowered.

a voucher from a new
adopter on the network.
Network = Baseline +
increased number of links
on the network at each
time-step.

The data used to populate the model show that a significant portion of the social

interactions important to domestic energy-use behaviour are between households that

are not physically adjacent, due to social interactions in other venues (e.g. the

workplace) that affect behaviour at home (Thagersen and Olander, 2003). This was a

typical feature of all of the strategies investigated. Hence, the “communities” strategy,

for example, focuses on communities that are not necessarily geographic, but rather

those that are work-based or social in nature.
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4. Results

In this section we discuss the results from the intervention scenarios modelled (table 3).

4.2.1 Scenario analysis

Model results are shown in Figure 3 for the baseline case where the local authority has
taken no intervention. Note that maximum uptake is limited by the high proportion

(50%) of households in this case who are unable to adopt (threshold value, 8= 1).

— a

0 5 10 15 20 25 30 35

time-step ¢ ("months")
Figure 3: Uptake over 36 time-steps on the baseline model with no initial seeding for
cases (a, red) and (b, blue). The dashed lines give the average of all the runs. In case (a)

links on the network are weighted to 1.0 and in (b) are 0.5. 100 runs are shown to assess
the effect of the initial conditions.

The uptake curves exhibited in figure 3 can be explained as follows. In the first month,
uptake is entirely a consequence of adoption for those households for whom the
weighted personal benefit to them exceeds their personal threshold (ep > 6). In the
following months, those who are initially below the threshold begin to adopt as the
social benefit from peer-group (s) and the wider population (ym) come into effect. The

higher level of uptake for case (a) compared to case (b) is a result of the social effect
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being greater as the connection weighting is stronger (1.0 versus 0.5). This shows the

effect of the greater visibility of the technology inducing social network propagation.

There are two steady states found in case (a): one where the uptake ‘stagnates’ at around
15% and one where uptake of nearly 30% is achieved. This is a particular feature of the
sensitivity of networks, where cascading dynamics can depend strongly on the precise
network structure. For these reasons we look at ensemble averages over 100 different

realizations for the following results.

‘Seeded’ and ‘communities’ scenarios

Figure 4 shows the results from the ‘seeded’ scenario, where we represent the local
authority giving the technology free of charge to a certain number of households. Nodes
in the model are randomly seeded and are therefore assigned to the adopted state at the
start of the model run. The model reveals that there is a certain range in the level of
initial seeding, in which the total rate of adoption is greater than one-to-one with the
level of investment. This level is seen at a lower level of seeding (mp) in case (a) than
case (b). This effect gives rise to more adoption by propagation on the network than
could be achieved by the seeding alone. This demonstrates how such network models
can reveal non-intuitive results that would give the local authority a better return on
investment (‘more bang for their buck’) and could be explored in more detail when

designing interventions of this type.
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Figure 4: Seeded scenario: Increasing the initial level of seeding (mg) randomly across
the network. The average final uptake after 36 time-steps, over 100 realizations, is
shown for case (a; red squares) and case (b; blue dots); the lines show the 1:1 ratio in
rates of increase of seed level to final uptake.

In figure 4, segments of the graph with a slope greater than the 1:1 line indicate levels
where more adoption is induced through the network effects over and above the

increase in seeding level alone.

In figures 5 and 6, the ‘communities’ results are shown, where the seeded nodes are
linked to a certain number of groups, either workplace groups (figure 5) or social groups

(figure 6), instead of being assigned randomly across the network.
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Figure 5: Communities scenario — workplace group case: Results are shown for case (a;
red squares) and case (b; blue dots); the lines show the 1:1 (seed level:final uptake) ratio
in the increase of seeding. A line is drawn in at 10% to allow comparison with the
results in figure 4 and 6. There are 24 households assigned to each workplace and 0-10
workplaces are seeded.
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Figure 6: Communities scenario — social group case: Results are shown for case (a; red
squares) and case (b; blue dots); the lines show the 1:1 (seed level:final uptake) ratio in
the increase of seeding.

This is a scenario which, in theory, as a result of propagation via clusters, was expected
to show a significant increase in uptake versus the randomly seeded scenario. However,
as can be seen in figure 5, the model does not support this assumption. The results for

the ‘communities’ scenario for seeding up to 10% are no better than in the ‘seeded’
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scenario, and higher levels of seeding do not result in any significant increase in final
uptake. On closer consideration, we conclude that this is because there is no significant
overlap between communities (seeded clusters), and thus even once each cluster is
seeded there is no mechanism for adoption to propagate socially across the whole

network and the results are therefore similar to those in the randomly seeded case.

For the social group ‘communities’ case shown in figure 6, the uptake is much the same
as in the workplace case, however more people are connected to, and talk with
colleagues at, workplace, so there is potentially scope for increased peer reinforcement

towards adoption.

‘Incentives’ scenario

Figure 7 shows the results from the intervention which aims to reduce the threshold to

adoption rather than altering anything related to network properties.
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Figure 7: Incentives scenario: Results are shown for case (a; red squares) and case (b;
blue dots). The thresholds are lowered by increasing amounts (except those with a
threshold of 1, who cannot adopt, and remain unable to do so).

In case 7(a), where there is a higher social spreading component (reflected by the

connection weightings), a small decrease in threshold level significantly increases the
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uptake of the technology at a critical value. This is the point at which the thresholds of
members of one of the archetypes are reduced below the level of their utility required to
induce social spreading, bringing final adoption up to the theoretical maximum. A
larger decrease in the threshold levels is needed in case 7(b), as their utility is lower due
to the reduced weighting on social aspects. In this latter case, several steps can be seen
as increasingly more subgroups are enabled by their threshold crossing below their

utility.

‘Snowball’ scenario

Results are shown in figure 8 for the snowball scenario intervention, where a link is
added to nodes that have just adopted and thresholds reduced for their new network
neighbour, two neighbours, or all of their neighbours. This is a simple model of a
voucher scheme, which would encourage interaction by giving cash-back for the giver,
and make the receiver more likely to listen by giving them an incentive (reducing their
threshold). This can be seen to have a positive effect on uptake. For full comparison
with the other scenarios, more data would be required on the effect on individual
behaviour of such a voucher scheme. However, these results are a first attempt to model
roll-out strategies based on network-based interventions, and can be seen to show

potential gains in levels of adoption.
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Figure 8: Snowball scenario: Results are shown for case (a; red squares) and case (b;
blue dots). A new link is added to every adopting node to another node randomly
selected in the network. In 1 (dotted lines) the newly connected node has the threshold
parameter reduced by a set amount (single voucher scheme), in 2 (dashed lines) this
happens for two network neighbours (two vouchers) of the adopting node, and in 3
(solid lines) all network neighbours have their thresholds reduced (unlimited vouchers).
Results are plotted over a range of this fixed reduction.

4.2.2 Evaluation of scenarios

The aim of modelling the different roll-out interventions is to determine the potential for
employing network models to compare and identify those interventions that will most

likely lead to increased uptake of the technology.

The most easily comparable results are the two seeded scenarios, seeded (where
households are randomly seeded) and communities (where groups are seeded). Here we
can compare directly, as costs for either intervention would be roughly the same
(because they are proportional to the number of people to whom we seed the
innovation). The only difference will be the logistic costs of delivery, as it would likely
be cheaper to install technologies if the seeded households were located close to each

other. In this case we see, unexpectedly, that there is no appreciable difference between
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the effectiveness of the two scenarios. This is at first surprising, as we might have
expected to induce a ‘critical mass’ of adopters from which the innovation would spread
via the clustering effects given in McCullen et al. (2013). Here the model reveals the
possibility that the system does not meet intuitive expectations and we are driven to ask
why, and whether this could arise in the real world. The network topology we use in
these simulations has very little overlap between communities; this is seen as the
primary reason for the lack of enhanced spreading. If many members of one (seeded)
community were also members of another, the cluster-based spreading would take over
as a diffusion mechanism, but this is not the case here. This highlights two findings:
firstly, that these models can reveal possible diffusion dynamics that it would be
difficult to anticipate without a model, which could have a negative or positive effect on
the outcome, and, secondly, that we need to be careful that the essential features
revealed by the model are accurately programmed using real-world data to ensure that
we are seeing the correct behaviour. In general, to quantify and fully compare the
different strategies would need two things: i) better understanding of individual-level
behaviour in response to various incentives and information, in order to quantify the
relative level of modification of the network parameters; and ii) costing of the various

options, so that a cost-benefit analysis could be carried out by a local authority.

In all the modelled scenarios, it is important to note that the results show non-trivial
emergent behaviour that would not have been revealed through conventional analysis.
In this respect, there is a clear case for using this type of complexity modelling to

support the design of local-level policy interventions.
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5. Discussion

We have shown the importance of this type of dynamical network modelling to
understand the role of network interactions in the diffusion of technologies by using
complexity modelling to assess the emergent behaviour of the system. This method
provides several advantages for studying the diffusion of energy technologies, and
assessing interventions, that other methods may not provide. These include the ability

to:

e include the effects of both personal preferences and social influences in the

diffusion process.

e model a heterogeneous population of households with different network
connections, thresholds to adoption, and preferences towards the balance

between personal and social benefits.

¢ include nodes on the network that, while they may not be ‘active’ in terms of
talking to others about energy, are still important to include, as they may
mediate the spread of technologies by their adoption state being visible to

others and may still be able to be seeded (if they are able to adopt 6< 1)).

e include nodes that are ‘active’ on the network, cannot (under our rules)
themselves become adopters, but may still have a role in the diffusion process.
For example, they could either block diffusion by being non-adopting
neighbours of a potential adopter, or be a potential route to higher rates of

adoption if the barriers to their adoption are specifically targeted.

34



¢ model a population without the need to understand the exact motivation of each
individual household for adopting a certain technology (e.g. pro-environmental
behaviour, saving money, enthusiasm for the technology). With further insight
into the types of household that fall into different archetype groups and
different threshold categories (alongside information on the social network), it
is envisaged that larger datasets of socio-economic information could be used in

future to define a population and assist modelling at the city level.

This work, therefore, provides the basis for decision-making tools that could be used by
a local authority to inform the design of roll-out strategies for initiatives aimed at
encouraging uptake of energy technologies in the domestic sector. Informal feedback
we received from local authority representatives suggested that this type of quantitative
modelling and scenario analysis would be useful in supporting internal business case
development for energy-efficiency retrofit programmes. There are many variations that
could be made to the scenarios as implemented in the model and to the parameters of
the model (thresholds, network properties, archetypes). However, we have chosen
illustrative strategies guided by the literature of technology uptake — see section 2.1. In
the absence of specific data, examining further strategies would not at this stage provide
further insights. Nevertheless, the investigation and development of the model we have
undertaken to date could, with appropriate inputs, form the basis of a decision-making
or assessment tool for specific local-level interventions. Suggestions for future

investigation include:
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e Different policy scenarios where those with barriers to adoption are targeted,
e.g. private rented sector where tenants do not have the power to install

technologies that alter the building.

e The uptake of different energy technologies that each exhibit different social

diffusion properties.

e Uptake of the Green Deal (Department of Energy and Climate Change, 2011) in
the UK. Local authorities are likely to play a significant role in encouraging
uptake (Bale et al., 2012a) and network effects could be used to leverage the

social benefits.

As we consider in detail elsewhere, the issue of availability of data is key, and it is
worth emphasising that more data and experiments in this area, as well as evidence (as
to the success or otherwise) of real-world network interventions for promoting uptake,

are warranted.

Although it would be important to investigate in more detail using data appropriate to
each specific intervention and target population before using models such as ours to
support specific decisions, we are able to draw some useful generic policy implications
for local authorities seeking to influence the likely uptake of an energy technology. As
we have explained above, our model scenarios were parameterized using generalized,

rather than policy-specific, input data (section 3.2.1).

As can be seen from the numbers presented in table 2, we estimate that 50% of our
sample is not able to adopt either insulation or PV panels because they are either in flats

(with limited roof area per resident and where concerted action is needed) and/or rented
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properties (where the decision would be out of residents’ hands). Enabling such
households to adopt specific energy technologies would have an enhanced effect, over
and above simply their own level of adoption, by making them active influences on the
network, ‘unblocking’ obstacles in the whole-system network and allowing spreading to
occur more widely. The return on investment in such cases has the potential to be

greater than that expected when not accounting for network effects.

Initial adopters who adopt because the technology is considered personally beneficial to
their household are needed to trigger spreading on the network. Increasing the perceived
value of the innovation (p) or its average relative weighting in the decision process ()
would increase this activation. It would be difficult for a local authority to change the
intrinsic preferences of a household, and thereby influence the weighting factor a. A
potentially easier route to the same outcome would be to make the personal benefits of
the technology clearer to different groups across the city (including those that are on

low incomes and/or those who are landlords of privately tenanted properties).

An important finding is that network effects can play a significant role in increasing
uptake, as is particularly seen in the Snowball scenario. Potentially beneficial social
network effects can be enhanced by increasing the communication of energy
information between peers on the network. Encouraging communication of energy-
related issues increases the weighting of the links, which in turn can lead to a wider

uptake.

Prior to the application of modelling results in policy decision support, it would be
important to investigate in more detail using data appropriate to each specific case,
where necessary.
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6. Conclusions

In this paper we have highlighted the value of incorporating complex-systems thinking
on social networks into models of energy decision-making and policy interventions.
This is based on consideration of the existing evidence for the success of network
interventions in other domains and the development of a model that enables exploration
of different roll-out strategies for local authority interventions. In this model we have
incorporated both personal benefits (and therefore intrinsic properties of the technology,
e.g. cost) and social influences in order to draw together both sides of the decision-
making process. For a case for which the social influence is reduced, corresponding to a
less visible technology, there are lower levels of technology uptake in the model,
showing the importance of social network effects. Whilst our work does not go all the
way to addressing the problems identified by Wilson and Dowlatabadi (2007), this type
of modelling could be useful in bridging the gap identified between adoption models
based only on individual behavioural motivations and more qualitative approaches
based on the social context of decision-making (Nye et al., 2010). We have shown the
potential for use of these modelling methods in the assessment of local authority
interventions. The results of the simulations have revealed the qualitative dynamics of
the uptake in response to various alternative strategies and provided a strong motivation
for using this type of network model-based thinking to inform policy decisions. Further
work is certainly needed in this area, including more data, experimental evidence for the
success (or otherwise) of different strategies, and a better understanding of household
decision-making related to different energy technologies. Nonetheless, the results

presented here suggest ways in which a dynamical network approach could be used as
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the conceptual basis of a decision-support tool for local authority interventions in

domestic energy demand.

We propose that local authorities could use this type of modelling to their advantage for
maximizing adoption of retrofit domestic energy technologies at a time of limited
resources and great imperative for action in the face of rising fuel bills and climate

change.
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