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Abstract 

Surface roughness is a result of the cutting parameters such as: cutting speed, feed per tooth and 

the axial depth of cut, also the tool's geometry, tool wear vibrations, etc. Moreover, the surface 

finish influences mechanical properties such as fatigue behaviour, wear, corrosion, lubrication and 

electrical conductivity and the combination of cutting parameters influence the power consumption 

during the machining process affecting the environment. The research reported herein is focused 

mainly on searching for an optimum combination of cutting parameters to obtain a low value of 

surface roughness and minimize energy consumption when milling an austenitic stainless steel in 

different cutting environments. The experiments were conducted on a Siemens 840D Bridgeport 

Vertical Machining Centre 610XP2. The selection of this workpiece material was based on it's widely 

applications in cutlery, surgical instruments, industrial equipment and in the automotive and 

aerospace industry due to its high corrosion resistance and high strength characteristics. The results 

show that the dry cutting environment is the best option in terms of power consumption and 

surface roughness values to conduct the milling of an austenitic stainless steel under the selected 

cutting parameters. 
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1 Introduction 

Metal machining processes generates heat due to tool friction, increasing tool wear and as a 

consequence reducing the tool life. Despite the fact that the use of cutting fluids benefits the cutting 

process as they remove heat more rapidly, some conventional cutting fluids are ineffective in 

controlling the high cutting temperature and the rapid tool wear as well as knowing how they 

deteriorate the environment. Due to the fact of pollution caused by cutting fluids in terms of 

recycling, disposal, works health issues, etc. the use of dry machining has increase in the workshops, 

however it can lead to reduce tool life and poor part quality.  

In order to avoid these problems flood-cooling methods can be used to enable efficient cutting of 

metals. In order to lead to a conscious, clean and eco-friendly environment cryogenic cooling has 

showed great benefits as there is no need to recycle and/or disposal the cutting fluids.  

                                                            
* Corresponding author:  



Based on the theory of cryogenic hardening, the field of cryogenics cutting (below 180 °C) advanced 

during the World War II when scientist found that besides contributing to an eco-environment, 

metals showed excellent wear resistance at frozen stage, better surface finish and improved tool life 

when comparing it to a dry cutting process. 

The cooling process usually uses liquid nitrogen as is a fluid which can cause rapid freezing, it 

absorbs the heat from the cutting process and it becomes part of the air as it evaporates into 

nitrogen gas (79% of the air is composed by nitrogen). Other fluids commonly used are liquid helium 

and liquid CO2 [1]. Researchers Hong and Broomer [2] conducted a cryogenic study when machining 

304 stainless steel at V=3.05-3.82m/min. They concluded that despites the benefits of an eco-

friendly environment when using cryogenic machining, the liquid nitrogen produced an increased on 

the cutting forces and a reduced of tool life when machining this steel. However the process 

improved when injecting a small amount of liquid nitrogen to the chip-tool interface.  

In 2008 [3] compared the effects on tool life when using conventional cooling and cryogenic cooling 

when turning 304 stainless steel, where the results showed an increase of tool life of more than four 

times when using cryogenic cooling, also it was found to be more effective at higher cutting speeds. 

Advantages of cryogenic machining over dry machining were also studied by [4]. In this case they 

studied the tool wear and the cutting forces generated during the cryogenic turning of 202 stainless 

steel. Their experiments showed an advantage of using cryogenic machining over dry machining as a 

decrease of 37% of the tool flank wear and 14.83% of the cutting forces were obtained.  

In 2011 [5], studied the effect of cryogenic cooling when milling in different directions a 304 stainless 

steel. In their studies they did not observe an advantage of using cryogenic machining against dry 

machining as they obtained almost 8% of increase on the cutting forces when using cryogenic 

machining. Also it was highlighted that conventional milling yield the best results in terms of tool 

failure under both type of machining processes. Bermingham et al. [6] studied the tool life, the 

cutting forces and the chip morphology when cryogenic turning titanium, Ti– 6Al–4V. They 

concluded that a better tool performance was obtained when using cryogenic coolant and the main 

cutting forces decreased with this application. Also cryogenic coolant produced changes to the chip 

morphology and tool-chip contact length. Despite not having a significant effect on the chips 

thickness and the distance between serrations it appeared that this process has an effect on the 

tool-chip contact length and the primary shear band angle.  

The influence of cryogenic cooling on surface integrity was studied by Umbrello et al. in 2012 [7]. In 

their studies an AISI52100 steel was turned with cubic boron nitride tools with chamfered and 

horned geometries. The results showed that cryogenic machining offers a potential benefit for 

surface integrity (improved of the surface roughness) enhancement for improved product life. 

Depending on materials mechanical, physical and chemical properties they are easier or more 

difficult to machine. The stainless steel has been defined as a difficult-to-machine ferrous alloy [8], 

basically due to its low thermal conductivity, where the heat generated during the cutting process 

concentrates in the cutting zone producing diffusion as main tool wear mechanisms as well as Built 

Up Edge (BUE) formation, this last increases the machining instability producing chipping on the 

cutting edge and poor surface quality. With regards to quantities of coolant, special attention should 

be given as a large amount can have a negative effect on the machinability and tool life by 

unfavourable cooling, which prevents heat softening of the workpiece material [9].  



Based on all these reviews, the aim of this research is to study the optimal combination of cutting 

parameters for a low power consumption and low value of surface roughness when face milling a 

AISI303 austenitic stainless steel in different cutting environments such as: dry, flood coolant and 

cryogenic.  

2 Experimental procedure  

The importance in conducting this experiment is the contribution in the manufacturing field towards 

the eco-friendly machining of difficult-to-cut materials, through the application of different 

environments; as well as the possibilities of reducing power consumption and surface roughness 

based on an optimal combination of cutting parameters. 

 2.1 Workpiece material  

303 Annealed stainless steel bars of 65 mm diameter and 120mm length were pre-machined to 

120x55x32mm3 as shown in Figure 1. Tables 1 and 2 show the chemical composition and the 

mechanical properties of this AISI303 stainless steel respectively.  

2.2 Tool characteristics  

A coated end mill and tool holder of 14mm diameter with 3 flutes was used for the climbing milling 

experiments, with the following code Guhring GTN 03872. This type of tool is recommended for the 

machining of stainless steel under different cutting environment. Figure 2 shows a scheme of the 

tool geometry. 

 
Figure 1, Scheme of the workpiece geometry used in this study (units in mm). 

Table 1, Chemical composition of AISI303 stainless steel bars used for the experiments 

%C %Cr %Fe %Mn %Mo %Ni %P %Si %S 

<=0.15 18 69 <=2.0 <=0.6 9 <=0.2 <=1.0 >=0.15 

 

Table 2, Mechanical properties AISI303 stainless steel bars used for the experiments 

BHN σu (MPa) σy (MPa) 

160 620 240 

 



 
Figure 2, Scheme of the tool geometry 

 

2.3 Cutting parameters and machining process  

Dry, Flood Coolant and Cryogenic (liquid nitrogen) were selected as cutting environment and the 

cutting speed and feed per tooth were the cutting parameters chosen for the study, since from 

previous research it was observed that these variables had the most influence on the surface 

roughness. Selected cutting parameters are shown in Table 3. Due to the restriction on the amount 

of material, the machining process was conducted based on the workpiece dimensions 

(120x55x32mm3) and considering two trials per block, one in each side of the block.  

Five passes with ae=11mm were used to cover the width of the workpiece (55mm). In order to 

guarantee that the vice was holding enough material, only a maximum depth of 18mm could be 

reached, so three passes with ap=3mm each were used to cover a 9mm depth for a trial on side A 

and 9 mm depth for the trial on side B. By taking into account these two factors the total length of 

cut is 1800mm (120x5x3) per trial. Once side A was machined the block was turned over and a new 

setup of experiments was conducted for side B.  

Figure 3 shows a scheme of the cutting process 

Trial Environment V(mm/min) F(mm/min) fz(mm/tooth) ap(mm) ae(mm) 

1 Dry 105 480 0.067 3 11 

2 Dry 157 717.6 0.067 3 11 

3 Dry 157 535.5 0.05 3 11 

4 Dry 157 364 0.0335 3 11 

5 Flood  105 480 0.067 3 11 

6 Flood  157 717.6 0.067 3 11 

7 Flood  157 535.5 0.05 3 11 

8 Flood  157 364 0.0335 3 11 

9 Cryogenic 105 480 0.067 3 11 

10 Cryogenic 157 717.6 0.067 3 11 

11 Cryogenic 157 535.5 0.05 3 11 

12 Cryogenic 157 364 0.0335 3 11 

 



 
Figure 3, Scheme of the cutting process 

For the cryogenic machining the liquid nitrogen was delivered through a special nozzle designed for 

previous research and located close to the tool-workpiece interface [10]. A schematic setup of the 

cooling system is shown in Figure 4.  

2.4 Equipment characteristics  

A Siemens 840D Bridgeport Vertical Machining centre 610XP2 with a maximum spindle speed of 

8000 rpm was used for the face milling operations. The tests were conducted under three different 

cutting environments, dry, flood coolant and cryogenic (liquid nitrogen). Since the cutting length is 

small (L=1800mm) the tool wear is not considered as a criterion that will affect the result of the 

cutting process.  

2.5 Power consumption analysis  

In order to consider in the future the cost of cutting techniques and energy efficient process 

planning, the power consumption was registered using a Hioki 3169-20 Power Hitester. The 

collection data was fixed to a frequency of 50 Hz with 1sec interval. 

 

 
Figure 4. Schematic setup for cryogenic machining [10]. 

 



2.6 Surface integrity  

2.6.1 Roughness measurements  

The surface roughness was measured across the direction of the machined surface lay (feed 

direction) using a non-contact white lamp profilometer ProScan 2000. The roughness average value 

of each specimen was determined by measuring five points, located in the centre of the specimen, 

where maximum and minimum values were neglected.  

The idea of measuring the roughness at the workpiece centre was in order to make sure that the 

obtained values of surface roughness were not affected by possible vibrations due to the impact of 

the tool entering the workpiece. Then an average of these three values was used to represent the 

surface roughness value of the specimen (Ra). Also the 2D surface roughness profile and 3D surface 

were obtained.  

2.6.2 Microstructure analysis  

The samples were prepared for metallographic study in order to analyze the microstructure of each 

sample machined under different cutting conditions. The samples were etched with a solution of 

1HNO3+1HCl+1H2O for a period of 2min. Figure 5 shows a scheme of the samples preparation.  

2.6.3 Microhardness tests  

In order to analyze possible changes in hardness below the machined surface, Vickers microhardness 

tests were conducted in each sample using a LECO M400 hardness equipment using a load of 50gr 

for a period of 15sec.  

2.7 Chip morphology  

Once each trial was conducted the chips were collected in order to compare their appearance, 

morphology, etc. A Jeol JSM6060LV was used for SEM images. Also a Sartorius analytic scale with an 

accuracy of 0.0001gr was used to weigh the chips.  

 
Figure 5, Scheme of metallographic preparation 

 



2.8 Material removal rate (MRR) 

The material removal rate was calculated for each of the trial in order to obtain the optimal 

combination of cutting parameters for the highest MRR without compromising the power 

consumption and surface roughness. In this case Eq. (1) was used.  

MRR = (ap x ae x F)/1000 

where MRR is material removal rate in cm3/min;  ap is radial depth of cut in mm; ae is axial depth of 

cut in mm and F is feed rate in mm/ min. 

3 Results and discussion  

Once experiments were concluded the following results were obtained. Table 4 shows the average 

power consumption, the average surface roughness and the material removal rate obtained for the 

AISI303 stainless steel machined under different cutting conditions.  

3.1 Power consumption analysis  

As previously mentioned, while the machining process was conducted the power consumption was 

registered. Table 4 reports the average power consumption for each trial during the machining 

operation which takes into account the cutting time and dead time. 

Table 4, Average power consumption, average surface roughness and material removal rate obtained for the 

AISI303 stainless steel machined under different cutting conditions 

Trial Environment V (m/min) fz(mm/tooth) ap(mm) ae(mm) P (W) Ra (μm) MRR(cm
3

/min) 

1 Dry 105 0.067 3 11 260 1.29 15.84 

2 Dry 157 0.067 3 11 259 0.945 23.68 

3 Dry 157 0.05 3 11 250 0.841 17.67 

4 Dry 157 0.0335 3 11 249 0.71 12.02 

5 Flood 105 0.067 3 11 269 1.234 15.84 

6* Flood 157 0.067 3 11  – 23.68 

7 Flood  157 0.05 3 11 271 0.871 17.67 

8 Flood 157 0.0335 3 11 268 0.759 12.02 

9 Cryogenic 105 0.067 3 11 1510 1.18 15.84 

10 Cryogenic 157 0.067 3 11 1710 1.229 23.68 

11 Cryogenic 157 0.05 3 11 1600 0.974 17.67 

12 Cryogenic 157 0.0335 3 11 1500 0.932 12.02 

* No results are show for trial 6 due to technical problems during the execution. 

3.1.1 Influence of the cutting speed on the average power consumption  

Figure 6 shows the influence of the cutting speed on the average power consumption for AISI303 

stainless steel machined under different cutting conditions. As observed it seems that the cutting 

speed has a neglected effect on the power consumption under the studied cutting conditions when 

using a dry cutting environment. However, the situation is different when cutting in a cryogenic 

environment where it can be observed that the average power consumption increased when the 

cutting speed was increased. In this case an increase of 50% of the cutting speed (from 105 m/min to 



157 m/min) produced an increase of 13% of the average power consumption (from 1510 W to 1710 

W). This result is in agreement with previous research [11]. 

 

 
Figure 6, Influence of the cutting speed on the average power consumption for AISI303 stainless steel 

machined with fz =0.067 mm/tooth, ap=3 mm and ae=11 mm. 

3.1.2 Influence of the feed on the average power consumption  

Figure 7 shows the influence of the feed per tooth on the average power consumption for AISI303 

stainless steel machined under different cutting conditions. When analyzing Figure 7 it is observed 

that once again in a dry and flood coolant environment the feed per tooth seems to have a 

neglected effect on the power consumption when working under the established experimental 

condition; however, when using the cryogenic environment it is observed that the average power 

consumption increases when increasing the feed per tooth.  

In this case an increase of 100% of the feed per tooth (from 0.0335mm/ tooth to 0.0670mm/tooth) 

produced an increase of 14% on the power consumption when cryogenic machining and 4% when 

using a dry environment. This result is in agreement with previous research [11]. The fact that the 

power consumption of the machine tool becomes so high when using a cryogenic environment 

when compared to the dry and flood coolant environment is probably due to a possible increase on 

the materials hardness as an effect of using super cold liquid nitrogen. This result is in agreement 

with previous research [8]. 

 
Figure 7, Influence of the feed per tooth on the average power consumption for AISI303 stainless 

steel machined with V =157 m/min, ap=3 mm and ae=11 mm. 



3.2 Surface integrity  

3.2.1 Surface roughness  

Once the milling process was conducted the surface roughness was measured and the average 

roughness is reported in Table 4. It must be highlighted that in general a difference of 20% was 

obtained between the minimum and the maximum value of surface roughness measured on the 

machined surface under the same cutting conditions. Table 5 shows few examples of the average 

surface roughness, plan view, 2D profiles and 3D surface for AISI303 stainless steel bars machined 

under different cutting conditions. As observed from Table 5 the plan view, shows the normal trail 

left by the cutting tool on the machined surface, with clear defined feed marks, the 2D surface 

roughness profile obtained for each trial show a harmonic function, with any kind of irregularity that 

could lead to an imperfection on the machined surface. In general all the results indicate that 

apparently no defect on the tool (such as wear) or high enough vibrations were presented during the 

milling process. 

Table 5, Average surface roughness, plan view, 2D profiles and 3D surface for few AISI303 stainless steel bars 

machined under different cutting conditions 

 

 

 

 



3.2.1.1 Influence of the cutting speed on the surface roughness.  

In Figure 8 the influence of the cutting speed on the surface roughness for AISI303 stainless steel 

machined under different cutting environments can be observed. When analyzing the results for a 

dry cutting environment it can be observed that an increase of 50% of the cutting speed (from 

105m/min to 157m/min) produced a decrease of 37% on the surface roughness (from 1.290μm to 

0.945μm). This result is probably due to the fact that an increase of the cutting speed probably 

produces a suppression of built-up-edge formation in this range of cutting speed. In addition, an 

increase of cutting speed produces an increase of temperature in the cutting zone, this fact makes 

the material softener, the metal machines more plastically and consequently the efforts necessary 

for machining the workpiece decrease.  

When analyzing the results corresponding to a cryogenic cutting environment it can be observed 

that an increase of 50% of the cutting speed (from 105m/min to 157m/min) produced an increase of 

4% on the surface roughness (from 1.180μm to 1.229μm), as previously mentioned probably due to 

a possible increase on the materials hardness as an effect of using super cold liquid nitrogen [8].  

As the increased in roughness was so small (4%), we can consider a neglected influence of the 

cutting speed when machining in a cryogenic environment under this cutting speed and feed per 

tooth under study as a difference of almost 20% between the minimum and the maximum value of 

roughness was obtained when measuring the roughness of each trial. Results obtained in cryogenic 

environment obtained higher values of roughness when compared with dry machining as well as an 

increased of roughness when increasing the cutting speed from 250 m/min [12]. 

 
Figure 8, Influence of the cutting speed on the surface roughness for AISI303 stainless steel machined with  

fz =0.067 mm/tooth, ap=3 mm and ae=11 mm 

3.2.1.2 Influence of the feed rate on the surface roughness  

In Figure 9 the influence of the feed per tooth on the surface roughness for AISI303 stainless steel 

machined under specific cutting conditions can be observed. When analyzing Figure 9 the surface 

roughness increases when increasing the feed per tooth. This result is in agreement with previous 

research and is probably due to the fact that as the feed is increased the thickness of the chip also 

increases resulting in an increase of cutting forces [8, 13, 14]. We can also observe that in general an 

increase of 100% of the feed per tooth from 0.0335mm/tooth to 0.067mm/tooth produced a 

general increase of 32% on the surface roughness when using either a dry or a cryogenic 

environment. 



 
Figure 9, Influence of the feed per tooth on the surface roughness for AISI303 stainless steel machined in 

different environments with V =157m/min, ap=3mm and ae=11mm. 

3.2.2 Microstructure analysis  

Once surface roughness measurements were conducted, samples from dry and cryogenic 

environment were selected for microstructure analysis. Table 6 shows SEM images of few trials 

showing the microstructure below the machined surface and at the centre of the specimen.  

As observed all the specimens showed elongated black spots and the EDAX analysis revealed that 

these correspond to the presence of sulphur as reported in Figure 10 EDAX image. This was expected 

as sulphur is added to this type of steel in order to improve their machinability as they tend to work 

harden very fast. All the samples revealed a normal equiaxed twinned austenitic grain structure as 

well as some slip bands just above the machined surface of specimens cut in dry and cryogenic 

environment. The formation of these slip bands is probably due to the plastic strain caused by the 

machining process when removing the material. 

Table 6, SEM images of microstructure AISI303 stainless steel obtained by side milling under different cutting 

conditions 

 

 



 
Figure 10, (a) Microstructure of AISI303 Stainless steel 50 (b) detail of elongated black spot and (c) EDAX 

analysis. 

3.2.3 Microhardness studies  

In order to analyze possible changes in hardness especially below the machined surface, Vickers 

microhardness tests were conducted in each sample using a LECO M400 hardness equipment using a 

load of 50gr for a period of 15sec. Figs. 11 and 12 show the changes in microhardness from the 

machined surface towards the centre of the specimen. The material bulk reported a value of 170 HV. 

As observed all the trials reported a higher value of hardness below the machined surface, between 

20μm and 40μm and the hardness started to stabilize at around 100μm from the machined surface. 

Figure 13 shows the changes in hardness from the machined surface towards the centre of the 

specimen of samples machined in dry and cryogenic environment under the same cutting conditions 

dry and cryogenic environment under the same cutting conditions. 

 
Figure 11, Vickers hardness vs. Distance from the machined surface for samples machined in a dry cutting 

environment under different cutting conditions 



 
Figure 12, Vickers hardness vs. Distance from the machined surface for samples machined in a cryogenic 

cutting environment under different cutting conditions 

 

 
Figure 13, Vickers Hardness vs. Distance from the machined surface for samples cut in dry and cryogenic 

environment under the same cutting conditions 

As observed when analyzing this Figure 10, specimen machined in a cryogenic environment achieved 

higher values of hardness below the machined surface compared to specimen machined in a dry 

environment. This is probably due to strain hardness during the cutting process been more 

noticeable in the cryogenic environment due to a decrease of the cutting temperature. In the case of 

the dry environment probably the increase of temperature helped to soften the material easing the 

removal of material. 

3.3 Chip studies  

All the chips were collected after each cutting process and the results are observed in Table 7. When 

analyzing the chips it was observed that all the chips were short. The chips obtained from dry 

machining presented a yellow appearance while cryogenic chips presented a white appearance, this 

is probably due to the difference in temperature between each environment. The chip cross section 

morphology was analyzed using a JEOL JSM6060LV SEM. Table 8 show these images. 

 



Table 7, Example of AISI303 stainless steel chips obtained when milling in dry and cryogenic cutting 

environment under different cutting conditions 

 

As observed when comparing chips obtained in dry and cryogenic environment, cut under the same 

cutting conditions (trial 1 and trial 9 respectively) it can be observed a serrated formation when 

using a cryogenic environment, like if the chips were torn from the workpiece material. This is 

probably due to an increase of hardness due to the cryogenic environment. The increase of hardness 

produces an increase of the cutting forces. This result matches with the power consumption results, 

where a 600% of increase of this value was observed when using a cryogenic environment compared 

to the dry environment. This result is in agreement with previous research [15]. 

Chips were also unfolded and the results are shown in Table 9. It must be highlighted that three 

attempts were made to unfold the chips and the results showed that the chips obtained from a dry 

environment could be unfold easily and 100%, however this was not the case for the chips obtained 

from a cryogenic environment were in the case of trial 9 they were impossible to unfold and for trial 

11 chips tend to fracture making them impossible to unfold 100%. 

Table 8 SEM images of AISI303 stainless steel chips at magnification of X200 obtained from chip cross section -

side milling in dry and cryogenic cutting environment at. V=105 m/min and fz =0.067 mm/tooth 

 

 



Table 9, SEM images of unfolded AISI303 stainless steel chips obtained by side milling under different cutting 

conditions 

 

 

As observed from Table 9, a bigger separation between shear planes is observed in trial 1 when 

compared with trial 3 where a difference of 25% of the feed per tooth was used. Finally the chips 

were weighed and in general all the values kept constant for the same cutting conditions. Table 10 

shows these results. Also it can be mentioned that a decrease of 25% of the feed per tooth 

(fz=0.067mm/tooth to fz=0.05mm/tooth) produced a decrease of 25% of the chip weight from 

0.0162gr to 0.0127gr. 

Table 10, Average weight of AISI303 stainless steel chips milled under different cutting conditions 

Trial Environment V(mm/min) Fz(mm/tooth) ap(mm) ae(mm) W(gr) 

1 Dry 105 0.067 3 11 0.0162 

9 Cryogenic 105 0.067 3 11 0.0159 

3 Dry 157 0.05 3 11 0.0127 

11 Cryogenic 157 0.05 3 11 0.0127 

 

3.4 Material removal rate, MRR  

As known, the MRR increases proportionally to the increase of cutting speed and feed per tooth. 

When analyzing Figure 14, which illustrate the results given in Table 4, it is observed that the 

combination of cutting parameters used for trials 2, 6 and 10 achieved the highest material removal 

rate. This represents a 49% increase of MRR when compared to trials 1, 5 and 9 which cutting speed 

is 50% lower, but also a 97% of increase in MRR when compared to trial 4, 8 and 12 which feed per 

tooth is 50% smaller. So it is observed that the feed rate has 100% more influence on the MRR when 

compared to the cutting speed parameter.  

An increase on the MRR means more material can be cut in a shorter time and this is achieved by 

increasing the cutting speed and the feed rate. To do this in an economical way depends on many 

areas related to metal cutting namely the machine tool, the cutting tool, the cutting fluid and the 

materials. With regards machine tools, it is necessary to increase the power and accuracy.  

 



 
Figure 14. Material Removal Rate for AISI303 stainless steel under different cutting conditions. 

The increase of power to remove more material in a shorter time increases the heat generation near 

the cutting edge of the tool, and the power consumed in metal cutting is largely converted into heat. 

This heat is dissipated by the four systems processing the material: the cutting tool, the workpiece, 

the chip formed and the cutting fluid [16]. 

3.4.1 Influence of the material removal rate on the power consumption and the surface roughness  

Figs. 15 and 16 show the influence of the material removal rate on the average power consumption 

and surface roughness respectively when face milling AISI303 stainless steel under different cutting 

environment As observed from Figure 15 as the material removal increases the power consumption 

increases as the cutting forces are increased, been more noticeable when cutting in a cryogenic 

environment. When analyzing Figure 16 as the material removal increase the surface roughness 

improves achieving better results when using a dry cutting environment. 

 

Figure 15, Influence of the material removal rate on the power consumption when  
machining in different cutting environments. 



 

Figure 16, Influence of the material removal rate on the surface roughness when  
machining in different cutting environments. 

4 Conclusions  

 After analyzing the results of AISI303 stainless steel machined under different cutting 

environments it can be concluded that under the specified cutting parameters the dry 

environment is more suitable for the machining process as the surface roughness, power 

consumption and materials microhardness achieved the lowest results.  

 A proper combination of cutting parameters can achieve low values of power consumption 

and surface roughness instead of changing the cutting parameters individually  

 Overall the optimal combination of cutting parameters are V=157m/min and 

Fz=0.050mm/tooth (corresponding to Trial 3, dry environment.) as a low value of power 

consumption, surface roughness and microhardness was obtained as well as a high MRR.  

 It was observed an increase of 15% of the microhardness near the machined surface when 

using a cryogenic environment compared to the dry environment.  

 There were no noticeable changes on microhardness when changing the cutting speed or 

the feed per tooth, however all the specimens hardness started to stabilized at 100 μm from 

the machined surface  

 The power consumption was increased in almost 600% when using a cryogenic environment 

compared to dry and flood coolant when machining under the same cutting conditions  

 Chips obtained from a cryogenic environment presented a more serrated shape in the cross 

sectional area when compared to chips from a dry environment. 

5 Future research  

Authors would like to extend this research by analyzing the consequences of cutting 

environments together with cutting parameters on the residual stresses generated during the 

milling operation. 
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