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Integration of Price-Responsive Appliances in the
Energy Market through Flexible Demand Saturation

Antonio De Paola, Member, IEEE, David Angeli, Fellow, IEEE, and Goran Strbac, Member, IEEE

Abstract—This paper proposes a novel decentralized technique
for efficient integration of flexible demand in the electricity
market. The analysis focuses on price-responsive appliances that
schedule their power consumption on the basis of a demand/price
signal received by a central entity. Previous work has shown
that, when the devices population is sufficiently large to be
described as a continuum, it is possible to provide necessary and
sufficient conditions for the existence of a Nash equilibrium (no
device has unilateral interest in changing its scheduling when
considering the resulting profile of aggregate demand). These
results are now extended in order to achieve an equilibrium also
when the mentioned conditions are violated. To this purpose,
a time-varying proportional constraint (equal for all devices) is
introduced on the power rate of the price-responsive appliances
so as to limit the variation of flexible demand that they can
introduce at critical time instants. The proposed design technique
not only guarantees existence of a Nash equilibrium but it also
minimizes the global operation time of the appliances population.
Simulation results are provided and it is shown that, under the
considered assumptions, each individual appliance completes its
task in minimum time.

Index Terms—Electric power networks, flexible demand, game
theory, distributed control.

NOMENCLATURE

D Broadcast demand signal (GW ).
Di Inflexible demand profile (GW ).
D f Flexible demand profile (GW ).
Da Aggregate demand profile (GW ).
Dr Reference for flexible demand (GW ).
Π Energy price function (£/KWh).
QD Cumulative distribution (h).
ΛD Negotiable valley capacity (GW/h).
Λ f Power density of task durations (GW/h).
Etot Energy required for task completion (KWh).
tmin Minimum task time at rated power (h).
qmax Max value of broadcast parameter tmin (h).
Γ(t) Task time of appliances with tmin = t (h).
m(t,E) Unnormalized distribution of parameters tmin and Etot .
f ′(t) Energy density of devices with tmin = t (GW ).
u∗ Scheduled profile of power consumption (KW ).
α Proportional constraint on max power consumption.
F̄ Control input for demand shaping (GW/h).
F̄∗ Task-time minimizing control (GW/h).
F̃∗ Optimal feedback control law (GW/h).
(ᾱI , F̄I) States of forward dynamical system (h,GW ).
(ϕ̄α , ϕ̄F) Solution of forward dynamical system (h,GW ).

A. De Paola, D. Angeli and G. Strbac are with the Department of
Electrical and Electronic Engineering, Imperial College London, London,
SW7 2AZ UK (e-mail: ad5709@imperial.ac.uk; d.angeli@imperial.ac.uk;
g.strbac@imperial.ac.uk).

(α̃ε
I , F̃

ε
I ) States of backward dynamical system (h,GW ).

(ϕ̃ε
α , ϕ̃

ε
F) Solution of backward dynamical system (h,GW ).

(ϕ̃α , ϕ̃F) Limiting solution of backward dynamical system
(h,GW ).

γε(T̂ ) Maximized final state α̃ε
I (T̂ ) (h).

γ(T̂ ) Limiting value of γε(T̂ ) (h).

I. INTRODUCTION

A clear trend in the evolution of power systems is the
growing diffusion of new devices, such as “smart” appli-

ances and electric vehicles, that have flexibility in the alloca-
tion of their power consumption. The potential benefits of this
development are significant [1], [2]: electricity costs sustained
by private customers could be reduced and the network could
achieve an improved reliability, with a more efficient utiliza-
tion of its assets. In order to fully realize this potential, it is
crucial that the increasing amount of flexible demand is prop-
erly managed and coordinated. The main challenge is repre-
sented by the fact that, when the penetration of flexible demand
in the system becomes significant, it is necessary to take into
account the changes in demand and energy price introduced
by the aggregate operation strategies of the appliances. For
example, if all devices schedule their power consumption
during the hours characterized by lower energy prices, the
demand at those times will increase, altering the original price
function and making their scheduling suboptimal. Different
techniques have been proposed in the literature to tackle this
problem, considering centralized mechanisms [3], distributed
control strategies designed through stochastic optimization [4]
and game theory [5]. Using the latter approach, we have
proposed in [6] a decentralized scheduling for price-responsive
devices. The single device, on the basis of a demand/price
signal broadcast by some central entity, determines its power
consumption in order to minimize its individual energy cost.
By comparing two functions that abstract the properties of the
power system and of the appliances population, we provide
necessary and sufficient conditions for a Nash equilibrium.
When these are satisfied, the power scheduling determined by
each individual appliance on the basis of the broadcast signal
(corresponding in general to the inflexible demand) is also
optimal when the resulting aggregate demand is considered.

If the penetration of flexible demand in the system is above
a certain threshold, the mentioned equilibrium conditions do
not hold and it is not possible to determine a broadcast signal
which ensures a stable system behaviour. In other words, the
power scheduling of the devices will always be susceptible
to renegotiation when the aggregate demand replaces the
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broadcast signal in the cost function of the individual agent.
In practice, this would cause “rebound peaks” [7], [8]: the
flexible appliances, trying to operate when energy is cheap,
introduce a new peak demand which is potentially higher than
the original one. This scenario corresponds to higher costs for
the customers which now consume power at peak times. In
addition, the power system is put under considerable stress as
a result of high power transfers on transmission lines and use
of costly fast generators.

A significant amount of research has focused on designing
effective strategies to approach this issue. In order to limit
the volatility and the instability phenomena in the system,
[9] suggests the adoption of a pricing scheme that combines
incremental updates of the electricity market price and stochas-
tic elements. Pursuing similar objectives, [10] determines in
an iterative fashion the price signal to be broadcast by the
system operator in order to optimize the total utility of the
agents. The introduction of a discontinuous price function is
suggested in [11] to disincentivize the allocation of flexible
demand after a certain threshold and limit the final energy
price variation that the appliances can introduce. A stochastic
technique is proposed in [12], broadcasting a randomized
price to each appliance in order to avoid synchronicity of
the power scheduling. With the same purpose, [13] suggests
to introduce randomness on the controllers of the individual
devices, considering at the same time an intermediate entity
(aggregator) between the energy market and the individual
customer. A stochastic distributed algorithm is also described
in [14] for the specific case of electric vehicles, determining
the charging profiles through an iterative procedure.

The approach proposed in the present work uses the
theoretical analysis of [6] as a starting point and, through
additional control actions that limit the flexible demand at
critical time instants, achieves much more general results.
In particular, the proposed technique always induces (under
very general assumptions and for any level of flexible demand
penetration) a Nash equilibrium in the electricity market.
To do so, the flexible demand profile is reshaped through
a proportional constraint on maximum power consumption,
determined through the resolution of a Cauchy problem. By
considering the differential equations in the opposite sense of
integration and exploiting the monotonicity of the resulting
dynamical system, it is possible to calculate the new constraint
in order to induce an equilibrium and minimize the total time
required by the appliances to complete their tasks. Similar re-
sults for large populations of flexible appliances (in particular,
electric vehicles during charge) have been presented in [15]
and [16]. These works show that, under certain assumptions,
decentralized algorithms converge to a Nash equilibrium which
is also socially optimal. We advocate that, in these cases, the
cost function of the appliances includes artificial quadratic
terms (deviation from previous iteration of the algorithm and
from mean behaviour, respectively) that do not have real
correspondence in the utility of the single devices. As a non-
trivial consequence of their choice of utility function, the
proposed methods guarantee convergence in a decentralized
fashion to the social optimum, but this can be considered a
Nash equilibrium only in a loose sense. In the present work

we only consider the (linear) energy cost incurred by each
device to complete its task. Moreover, convergence to a Nash
equilibrium is guaranteed in one step and does not depend on
the number of considered agents.

The rest of the paper is structured as follows: Section
II summarizes the modeling choices and the main results
presented in the previous work while Section III describes
the optimization strategies and equilibrium conditions with
saturated demand. The design technique for the proportional
constraint is presented in Section IV and evaluated in simu-
lations in Section V. The minimization of the individual task
times with the proposed control scheme is proved in Section
VI while Section VII contains some conclusive remarks.

II. MODELLING AND UNCONSTRAINED NASH EQUILIBRIA
IN THE ENERGY MARKET

The main modelling elements and the equilibrium condi-
tions provided in [6] are shortly summarized here for a clearer
exposition of the additional results presented in this paper. It
is assumed that each flexible appliance, at the beginning of the
considered time interval [0,T ], broadcasts to a central entity
the total energy Etot required for its task and the minimum
time tmin needed to complete it by operating at rated power
Pr = Etot/tmin. The sets of distinct values broadcast by the
whole population for the required energy and minimum time
are denoted by E and T , respectively. If the appliances pop-
ulation is sufficiently large to be described by a continuum, it
is possible to derive the unnormalized distribution m(tmin,Etot)
of the parameters, where

∫ t2
t1

∫ E2
E1

m(t,E)dE dt corresponds to
the number of devices with E1 ≤ Etot ≤ E2 and t1 ≤ tmin ≤ t2.
The appliances population can then be characterized by the
following functions:

f (t) =
∫ t

0

∫
E

E ·m(τ,E)dE dτ f ′(t) =
∫

E
E ·m(t,E)dE

(1)
where f (t) represents the total amount of energy required by
the appliances with tmin ≤ t.

Assumption 1: The function f ′(t) =
∫
E E · m(t,E)dE is

assumed of compact support:

supp( f ′) = [qmin,qmax]⊂ (0,T ].

This assumption simplifies the notation and the subsequent
analysis on Nash equilibria. Nevertheless, most of the pre-
sented results still hold if m is integrable and f ′ is a well-
defined bounded function.

Remark 1: The derivative f ′(t) quantifies the total energy
required by devices with tmin = t. Therefore, its support
corresponds to the set T of distinct values for the parameter
tmin taken by the whole population:

T = supp( f ′) = [qmin,qmax].

An interval for T may correspond to different typologies of
appliances or, rather, represent the case of few homogeneous
devices with different tasks, e.g. electric vehicles that require
total charge and have different battery levels at t = 0.
The energy market is abstracted with the strictly monotone
increasing function Π : [0,+∞)→ [0,+∞) which returns, for
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a value of aggregate demand Da(t), the corresponding energy
price p(t) = Π(Da(t)). The aggregate profile Da will be given
by two distinct components: an inflexible profile Di, known
a priori, and the flexible component D f which corresponds
to the aggregate power profile of the appliances population.
In the considered price-based program, the devices receive
from the mentioned central entity a certain demand signal D(t)
(or equivalently the price Π(D(t))), and schedule their power
consumption u in order to minimize their total energy cost:

min
u(·)

∫ T

0
Π(D(t)) ·u(t)dt

s. t. 0≤ u(t)≤ Etot

tmin∫ T

0
u(t)dt = Etot

(2)

The analysis is restricted to a specific class of broadcast
profiles D for which (2) has a unique optimal solution:

Assumption 2: The broadcast demand D : [0,T ]→ [0,+∞)
is a continuous function with no level sets of positive measure.
For any d ∈ Im(D) = [dmin,dmax], it must hold:

µ ({τ ∈ [0,T ] : D(τ) = d}) = 0 (3)

where µ represents the Lebesgue measure.
It has been shown in [6] that, under Assumption 2, the
solution of (2) always exists and is unique up to sets of
zero measure. It corresponds to operate at maximum feasible
power during the tmin hours characterized by lowest demand
D (and lowest price Π(D)). We now denote by u∗D(t,s,x) such
solution as a function of time t, for devices with tmin = s
and Etot = x. A Nash equilibrium is obtained if the power
profile u∗D, determined on the basis of the broadcast signal
D, is still optimal when the resulting aggregate demand Da,D
is considered. Equivalently, the following must hold for all
tmin = s ∈T and Etot = x ∈ E :∫ T

0
Π(Da,D(t))u∗D(t,s,x)dt = min

u(·)

∫ T

0
Π(Da,D(t)))u(t)dt

s. t. 0≤ u(t)≤ x
s∫ T

0
u(t)dt = x

(4)
The analysis is conducted by considering the sublevel sets
of the broadcast demand profile. To this end, the following
quantity is introduced:

Definition 1: Given a function D fulfilling Assumption 2,
we define its cumulative distribution QD : [dmin,dmax]→ [0,T ]
as:

QD(d) := µ ({τ ∈ [0,T ] : D(τ)≤ d}) . (5)

Under Assumption 2, QD is continuous, strictly monotone
increasing and takes the following values at the endpoints of
its domain:

QD(dmin) = 0 QD(dmax) = T.

With the introduction of QD it is possible to replace the time
t with the measure q = QD(D(t)) in our analysis, denoting
the corresponding quantities in the new variable with a bar
superscript. This allows the application of the theoretical tools

and the extension of the equilibrium results presented in
[6]. For a broadcast profile D fulfilling Assumption 2, the
corresponding D̄ is defined as:

D̄(q) := Q−1
D (q). (6)

The quantity D̄(q) represents the demand value which induces
a sublevel set of the broadcast signal D with measure q or,
equivalently, such that QD(D̄(q)) = q. Its relationship with the
corresponding quantity in time is straightforward to obtain:

D(t) = D̄(QD(D(t))) ∀t ∈ [0,T ].

Remark 2: The representation in the variable q can be
extended to any ρ : [0,T ]→ R for which it holds:

ρ(t1) = ρ(t2) ∀t1, t2 ∈ [0,T ] : D(t1) = D(t2). (7)

In this case, ρ̄(q) is equal to the function ρ evaluated at
any time t ∈ [0,T ] such that QD(D(t)) = q. The following
relationship holds between ρ and ρ̄:

ρ(t) = ρ̄(QD(D(t))) ∀t ∈ [0,T ].

Two functions are now introduced: the negotiable valley
capacity ΛD(q) = d

dq Q−1
D (q), which describes the amount of

flexible power that can be allocated in the valleys of the
broadcast price signal while preserving an equilibrium, and
the power density of task durations Λ f (q) =

f ′(q)
q , which

specifies how the appliances population will allocate their
power consumption. The Nash equilibrium condition (4) is
fulfilled (by choosing D = Di) if and only if the following
inequality is satisfied [6, Theorem 1-2]:

Λ f (q)≤ ΛDi(q) ∀q ∈ [qmin,qmax]. (8)

III. SATURATION OF FLEXIBLE DEMAND

The possibility to extend the equilibrium conditions pre-
sented in [6] and summarized in the previous section is now
investigated. When (8) does not hold, the sublevel sets of
the broadcast profile and of the resulting aggregate demand
do not correspond. This means that the power absorption
of the flexible appliances introduces peaks in the aggre-
gate profile at time instants when the broadcast demand is
particularly low (and therefore energy is considered cheap).
The resulting high energy prices at such peaks make the
original scheduled profiles suboptimal for the aggregate de-
mand and prevent the existence of a Nash equilibrium. To
avoid this and limit the demand variation introduced by the
flexible appliances at critical time instants, we consider an
additional constraint on their maximum power absorption.
The function α : [0,T ]→ [0,1] is introduced for this purpose,
defining a time-varying proportional constraint (equal for all
the appliances) on the power consumption u. For devices
with minimum task time tmin, total required energy Etot and
rated power Pr = Etot/tmin, it must hold:

0≤ u(t)≤ α(t) · Etot

tmin
∀t ∈ [0,T ]. (9)

It is supposed that (7) is satisfied for ρ = α and therefore it
is possible to define the proportional constraint as a function
ᾱ(q) of the measure q = QD(D(t)), as specified in Remark 2.
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The main idea is to design ᾱ in order to modify the global
behaviour of the appliances, shaping a new profile of flexible
demand which always corresponds to a Nash equilibrium.

Remark 3: The proportional power constraint α can be
directly enforced on the appliances. Alternatively, it can be
implemented through discontinuous price functions, strongly
penalizing those devices that exceed their prescribed fraction
of power consumption. The fairness of this approach is guar-
anteed by Theorem 2, showing that the individual task times
of all appliances can be minimized at once.
The power scheduling performed by each device on the basis
of the broadcast D and the constraint α is discussed next. The
design technique proposed for these quantities is presented in
Section IV.

A. Optimal Scheduling of the Individual Device

The optimization problem solved by each appliance when
a profile D is broadcast and the proportional constraint is
introduced becomes:

min
u(·)

∫ T

0
Π(D(t)) ·u(t)dt

s. t. 0≤ u(t)≤ α(t)
Etot

tmin∫ T

0
u(t)dt = Etot

(10)

In order to derive the optimal solution for (10), the minimiza-
tion is analysed in the variable q = QD(D(t)). To this end, we
introduce the following preliminary result:

Lemma 1: Under Assumption 2, given an integrable function
ρ : [0,T ]→ R that verifies (7) and therefore admits ρ̄ as
specified in Remark 2, we have:∫ T

0
ρ̄(q)dq =

∫ T

0
ρ̄ (QD(D(t))) dt =

∫ T

0
ρ(t)dt. (11)

The application of Lemma 1 for ρ(t) = Π(D(t))u(t) allows to
consider the equivalent problem in the q variable:

min
ū(·)

∫ T

0
Π(D̄(q)) · ū(q)dq

s. t. 0≤ ū(q)≤ ᾱ(q)
Etot

tmin∫ T

0
ū(q)dq = Etot

(12)

If one introduces the integral ᾱI(q)=
∫ q

0 ᾱ(τ)dτ of the propor-
tional constraint ᾱ(q), it is possible to provide a closed-form
expression for the solution of (12).

Proposition 1: Consider a profile D which fulfils Assump-
tion 2 and ᾱ : [0,T ]→ [0,1] such that ᾱI(T ) =

∫ T
0 ᾱ(τ)dτ ≥

qmax. Problem (12) has a unique solution ū∗D(q,s,x) for appli-
ances with tmin = s ∈T and Etot = x ∈ E :

ū∗D(q,s,x) =


ᾱ(q)

x
s

if ᾱI(q)≤ s

0 ᾱI(q)> s

(13)

Proof: For the feasibility of ū∗D, consider that the inequal-
ities in (12) hold by definition. Given that ᾱ(q) takes values
in [0,1], the function ᾱI(q) is continuous and nondecreasing.

Since αI(0) = 0 and, from Remark 1, tmin = s≤ qmax ≤ ᾱI(T ),
there always exists a unique q̃(s) ∈ [0,T ] such that:

ᾱI(q̃(s)) = s
ᾱI(q)≤ s ∀q≤ q̃(s) ᾱI(q)> s ∀q > q̃(s).

Hence, the integral constraint in (12) is satisfied for Etot = x:∫ T

0
ū∗D(τ,s,x)dτ=

∫ q̃(s)

0
ū∗D(τ,s,x)dτ

=
∫ q̃(s)

0
ᾱ(τ)

x
s

dτ = ᾱI(q̃(s))
x
s
= x.

Consider that, as a result of the strict monotonicity of Π and
(from Assumption 2) of QD and its inverse D̄(q) = Q−1

D (q),
the following inequalities hold:

Π(D̄(q1))< Π(D̄(q2)) ∀q1,q2 ∈ [0,T ] : q1 < q2.

To show that ū∗D is the unique minimizer for the objective
function in (12) it is sufficient to notice that the total integral
of any feasible control is fixed and ū∗D corresponds to the
maximum feasible value of ū in the interval [0, q̃(s)].
We can conclude that, if the scheduling problem is con-
sidered in the variable q = QD(D(t)), each device will
operate (at maximum feasible power ᾱ(q) · Etot/tmin) dur-
ing an interval [0, q̃(tmin)] which corresponds to the low-
est values of demand and ensures task completion since∫ q̃(tmin)

0 ū∗D(τ, tmin,Etot)dτ = Etot .

B. Characterization of Flexible and Aggregate Demand
Having calculated the power profile ū∗D scheduled by the

single flexible device when D is broadcast, it is possible to
derive the total demand variation D̄ f introduced by the appli-
ances population as a function of the measure q. Taking the
weighted integral of ū∗D over the set of broadcast parameters
tmin = s ∈T and Etot = x ∈ E yields:

D̄ f (q)=
∫

E

∫
T

ū∗D(q,s,x)m(s,x)dsdx

=ᾱ(q)
∫

E

∫ T

ᾱI(q)

x
s

m(s,x)dsdx

=ᾱ(q)
∫ T

ᾱI(q)

1
s

∫
E

xm(s,x)dxds = ᾱ(q)
∫ T

ᾱI(q)

f ′(s)
s

ds.

(14)
Remark 4: The scheduled power profile u∗D and flexible

demand D f can be obtained as functions of time by eval-
uating the corresponding expressions in the q variable at
q = QD(D(t)):

u∗D(t,s,x) = ū∗D(QD(D(t)),s,x) D f (t) = D̄ f (QD(D(t))).
(15)

Optimality of u∗D for problem (10) is straightforward to prove
with the same arguments used in the proof of Proposition 1.
From Remark 4, it is possible to calculate the aggregate
demand as a function of time:

Da,Di(t) = Di(t)+D f (t) = Di(t)+ D̄ f (QD(D(t))) . (16)

Like the unconstrained case in [6], when the inflexible demand
is broadcast (D = Di) the aggregate demand can be expressed
as a function of the current broadcast demand value d = Di(t):

Da,Di(t) = K(d) = d + D̄ f (QDi(d))

= d + ᾱ(QDi(d))
∫ T

ᾱI(QDi (d))

f ′(s)
s

ds. (17)
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Remark 5: It is possible to provide an expression for the
time Γ(s) required by each appliance with parameter tmin = s
to complete its task when α and D are broadcast. From (13),
considering (5) and Assumption 2, it holds:

Γ(s) = µ({t : ᾱI(QD(D(t)))< s})
= µ({q : ᾱI(q)< s}) = minq {q : ᾱI(q)≥ s} . (18)

IV. CONDITIONS FOR NASH EQUILIBRIA

In the following analysis, we assume that the demand signal
D broadcast to the appliances is equal to the inflexible demand
Di. This assumption is motivated by the results provided in [6],
where it is shown that D=Di is the only broadcast profile that
can guarantee a Nash equilibrium in the unconstrained case.
Moreover, this corresponds to a “rational” scheduling since
the appliances population will allocate more power when the
base profile Di is lower and vice versa. The objective of this
section is to design the constraint α(t) (or alternatively ᾱ(q))
in order to obtain a Nash equilibrium when condition (8) for
the unconstrained case does not hold. This result is achieved
if the power scheduling of each device, determined on the
basis of the signal D = Di, preserves its optimality when the
resulting aggregate demand Da,Di is considered in the objective
function of (10). Equivalently, the following must hold for all
tmin = s ∈T and Etot = x ∈ E :∫ T

0
Π(Da,Di(t))u

∗
D(t,s,x)dt =min

u(·)

∫ T

0
Π(Da,Di(t))u(t)dt

s. t. 0≤ u(t)≤ α(t)
x
s∫ T

0
u(t)dt = x

(19)
A preliminary result which considers the demand profiles as
functions of the measure q is provided next. This is used in
Section IV-A to approach the problem as a reshape of the
flexible demand, calculating the corresponding constraint ᾱ

through the resolution of a Cauchy problem. By exploiting
the monotonicity of the resulting dynamical system in the
opposite sense of integration, as discussed in Section IV-B,
we provide in Section IV-C a design method for ᾱ which
induces a Nash equilibrium and minimizes the total task time
of the appliances. Such technique is summarized in its main
phases by the scheme in Fig. 1.

Similarly to what has been presented in [6], it is possible to
provide conditions in the variable q for which (19) is satisfied.

Proposition 2: For any integrable constraint function ᾱ(·)
taking values in [0,1] and broadcast demand D = Di fulfilling
Assumption 2, the equilibrium condition (19) holds if:

D̄′i(q)+ D̄′f (q)≥ 0 ∀q ∈ [0,T ] (20)

where D̄i(q) denotes the inflexible demand as a function of
the measure q = QDi(Di(t)), as specified in (6) with D = Di,
and D̄ f is the flexible demand profile defined in (14). Primes
denote derivation with respect to the argument q.

Proof: From (13) and (15), devices with minimum time
parameter tmin perform their task by operating at maximum
feasible rate on the following interval:

SDi(tmin) = {t ∈ [0,T ] : ᾱI(QDi(Di(t)))≤ tmin} . (21)

Given the monotonicity of Π, considering the objective func-
tion and the integral constraint in (19), the equilibrium condi-
tion (19) is verified if and only if the following holds for all
tmin ∈T :

Da,Di(t1)≤ Da,Di(t2) ∀t1 ∈SDi(tmin) ∀t2 ∈ [0,T ]\SDi(tmin).
(22)

Notice now that ᾱI(q) and QDi(d) are monotone increasing
functions. From expression (21) for SDi(tmin), the values of
inflexible demand at the time instants t1 and t2 considered
above are such that d1 = Di(t1)≤ Di(t2) = d2. Using the de-
mand function K introduced in (17), the inequalities in (22)
are verified if:

K(d1)≤ K(d2) ∀d1,d2 ∈ [dmin,dmax] : d1 ≤ d2. (23)

This is equivalent to impose nonnegativity of K′(d):

K′(d) = 1+ D̄′f (QDi(d))Q
′
Di
(d)≥ 0. (24)

Dividing both terms of the inequality by Q′Di
(d) and letting q

denote QDi(d) yields:(
d

dq
Q−1

Di
(q)
)
+ D̄′f (q) = D̄′i(q)+ D̄′f (q)≥ 0. (25)

A. Shaping of Flexible Demand

The design of a constraint function ᾱ for which (20) holds
is nontrivial since its relationship with D̄′f is not instantaneous:

D̄′f (q) = ᾱ
′(q)

∫ T

ᾱI(q)

f ′(s)
s

ds− ᾱ
2(q)

f ′(ᾱI(q))
ᾱI(q)

. (26)

For this reason, a desired profile of flexible demand that fulfils
the equilibrium condition of Proposition 2 will be initially
calculated, deriving only as a second step the function ᾱ

needed to generate such profile. In particular, an additional
function F̄ : [0,T ]→ R+ and a reference D̄r for the flexible
demand are introduced with:

D̄r(q) =
∫ T

q
F̄(τ)dτ. (27)

For a given function F̄(·), it is possible to define the following
dynamical system with states ᾱI and F̄I :

˙̄αI(q) = ᾱ(q) =

∫ T
q F̄(τ)dτ∫ T

ᾱI(q)
f ′(τ)

τ
dτ

=
Ftot − F̄I(q)∫ T
ᾱI(q)

f ′(τ)
τ

dτ

˙̄FI(q) = F̄(q)

ᾱI(0) = 0 F̄I(0) = 0
(28)

where Ftot = F̄I(T )=
∫ T

0 F̄(τ)dτ denotes the integral of F̄ over
the interval [0,T ]. Given a feasible control F̄(·), the unique so-
lution of (28) will be denoted by (ϕ̄α(·), ϕ̄F(·)). The definition
of the derivative ˙̄αI(q) = ᾱ(q) guarantees that the resulting
flexible demand D̄ f , defined in (14), is equal to D̄r. Further-
more, for D̄ f = D̄r, the equilibrium condition (20) becomes:

F̄(q)≤ D̄′i(q) ∀q ∈ [0,T ]. (29)

Rather than directly calculating ᾱ , we determine F̄ which sat-
isfies (29) (and therefore guarantees an equilibrium), obtaining
the corresponding ᾱ through (28). In this respect, an additional
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constraint must be taken into account. Since ᾱ(q) represents a
proportional reduction in the maximum power of the devices,
a state (ᾱI(q),F̄I(q)) will be feasible only if:

0≤ ᾱ(q) =
Ftot − F̄I(q)∫ T
ᾱI(q)

f ′(τ)
τ

dτ

≤ 1. (30)

When determining F̄(·) we do not only seek to satisfy the
Nash equilibrium condition (29) but we also aim at opti-
mizing some global properties of the system. In particular,
we are interested in minimizing the total time required by
the appliances to perform their tasks. It is shown in Section
VI that this optimization guarantees minimum task duration
also for the single devices. From (13) and Remark 4, the
interval of power consumption for a device with tmin = s is
equal to SD(s) = {t ∈ [0,T ] : ᾱI(QD(D(t))< s)}. Given the
monotonicity of ᾱI and QD, we have that SD(s1) ⊂SD(s2)
when s1 < s2. Therefore, the total task time of the population
corresponds to Γ(qmax) = µ(SD(qmax)). Considering expres-
sion (18) for Γ, the optimization problem can be defined as:

min
F̄(·),Ftot ,TEND

TEND

s.t. ᾱI(0) = 0 F̄I(0) = 0
ᾱI(T−END) = qmax F̄I(T−END) = Ftot

˙̄αI(q) =
Ftot − F̄I(q)∫ T
ᾱI(q)

f ′(τ)
τ

dτ

˙̄FI(q) = F̄(q)

0≤ ˙̄αI(q)≤ 1 F̄(q)≤ D̄′i(q)
∀q ∈ [0,TEND)

(31)
The derivative constraints in (31) are considered on the in-
terval [0,TEND) as ˙̄αI(q) is not well defined at q = TEND if
ᾱI(TEND) = qmax. In this case, numerator and denominator in
its expression are equal to zero (for the latter term, consider
that

∫ T
ᾱI(q)

f ′(τ)
τ

dτ =
∫ qmax

ᾱI(q)
f ′(τ)

τ
dτ from Assumption 1). It is

worth noticing that (31) corresponds to a minimum-time opti-
mal control problem of a nonlinear system with input and state
constraints. Therefore, it is not possible to determine a priori
existence of its solution. The analysis in the next subsections
will allow to prove in Theorem 1 that an optimal control
F̄ = F̄∗ exists, providing also its closed-form expression.

Remark 6: Once the minimization problem has been
solved, the corresponding proportional constraint is equal to
ᾱ(q) = ˙̄αI(q) of the optimal solution. It is straightforward
to calculate the values of α in the time variable t with
α(t) = ᾱ(QDi(Di(t))). Since all devices complete their task
for q ≤ TEND, the values of ᾱ(q) can be arbitrarily defined
(for example equal to 1) when q > TEND.

B. Backward-integrated Dynamical System

One of the main challenges in the resolution of (31) is that
the final value Ftot of the state F̄I , corresponding to the total
integral of the control F̄(·), appears in the dynamics of ᾱI(q).
For this reason, a different system is introduced in order to
model the same dynamics of (28) in the opposite direction of
integration. It will be shown that, for certain conditions on
controls and final states, the solutions of the two systems are
related and therefore it is possible to solve the optimization

problem (31) without directly operating on (28). The new
system is described by the following equations:

˙̃αε
I (q) =

F̃ε
I (q)∫ qmax

qmax−α̃ε
I (q)

f ′(τ)
τ

dτ

=
F̃ε

I (q)
h(α̃ε

I (q))
˙̃Fε
I (q) = F̃(q)

α̃ε
I (0) = ε F̃ε

I (0) = 0
(32)

where the function h(x) =
∫ qmax

qmax−x
f ′(τ)

τ
dτ is used for a more

compact expression of ˙̃αε
I . Notice that (32) defines a family

of Cauchy problems parametrized by the initial condition ε of
one of the state variables. Fixed a control profile F̃(·), the
unique solution of (32) will be denoted by (ϕ̃ε

α(·), ϕ̃ε
F(·)).

Taking into account that ˙̃αε
I is not well defined when(

α̃0
I (0), F̃

0
I (0)

)
= (0,0), we consider decreasing values of ε ,

denoting by (ϕ̃α(·), ϕ̃F(·)) the limit of solutions of (32) for ε

that tends to zero. Such a limit exists and is unique as equation
(32) defines a cooperative system (monotonicity with respect
to initial conditions). Notice also that the ϕ̃ε

F component is
actually independent of ε . It is now possible to provide a first
result on the relationship between the state trajectories of the
two discussed dynamical systems (28) and (32):

Proposition 3: Consider any F̄(·) defined on [0, T̂ ], T̂ > 0,
which is feasible for (28) and such that, for the corresponding
solution (ϕ̄α(·), ϕ̄F(·)), we have:

ϕ̄α(T̂−) = qmax ϕ̄F(T̂−) = Ftot (33)

Denote now by F̃(·) the control input of system (32) defined
by F̃(q) = F̄(T̂ −q) for all q∈ [0, T̂ ]. Given the corresponding
limiting solution (ϕ̃α(·), ϕ̃F(·)), the following holds for all
q ∈ (0, T̂ ]:

ϕ̄α(T̂ −q) = qmax− ϕ̃α(q) ϕ̄F(T̂ −q) = Ftot − ϕ̃F(q)
(34)

Proof: See Appendix A.
A similar property holds in the opposite direction:

Proposition 4: Consider any F̃(·) defined on [0, T̂ ] which
is feasible for (32) and such that the corresponding solution
(ϕ̃α(·), ϕ̃F(·)) when ε tends to zero satisfies the following
conditions:

ϕ̃α(T̂ ) = qmax ϕ̃F(T̂ ) = Ftot (35)

If one denotes by F̄(·) the control input of system (28) such
that F̄(q) = F̃(T̂ − q), the resulting solution (ϕ̄α(·), ϕ̄F(·))
fulfills the following equations for all q ∈ [0, T̂ ):

ϕ̃α(T̂ −q) = qmax− ϕ̄α(q) ϕ̃F(T̂ −q) = Ftot − ϕ̄F(q)
(36)

Proof: See Appendix B.
Proposition 3 and 4 show the correspondence between the
state trajectories of the dynamical systems (28) and (32)
if certain conditions are verified for the control inputs and
final states. In the next subsection an optimization will be
performed on the states of (32), using the equivalent for
system (28) of the resulting optimal control to solve the time
minimization problem (31) and induce a Nash equilibrium.
The choice to operate on system (32) is motivated not only
by the dependency of ˙̄αI in the original system (28) from the
final state Ftot but also by its monotonicity properties:
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Proposition 5: The dynamical system described by (32) is
cooperative [17].

Proof: It is sufficient to consider the sign of the following
partial derivatives:

∂ ˙̃αε
I

∂ F̃ε
I
=

1
h(α̃ε

I )
≥ 0

∂
˙̃Fε
I

∂ α̃ε
I
= 0

∂ ˙̃αε
I

∂ F̃
= 0

∂
˙̃Fε
I

∂ F̃
= 1 > 0

(37)

C. Task-time Minimizing Solution

The sets of admissible states
(
α̃ε

I , F̃
ε
I
)

and controls F̃(·) for
system (32), respectively X and UT̂ , are defined as follows:

X =
{(

α̃ε
I , F̃

ε
I
)

: F̃ε
I ≤ h(α̃ε

I )
}

UT̂ = {F̃(·) : F̃(q) ∈
[
0, D̄′i(T̂ −q)

]
∀q ∈ [0, T̂ ]}.

(38)

From Proposition 5, system (32) is monotone for the orders in-
duced from the positive orthants in the state and control space.
Therefore, it is possible to maximize its state components by
applying, at each q, the maximum feasible control. Each value
of T̂ induces a corresponding maximizing solution. With the
proper choice of the parameter T̂ , it is then possible to satisfy
(35) and apply Proposition 4, extending the same result to
the forward system (28) and allowing to solve the original
optimization problem (31). In order to do so, reminding
that h(x) =

∫ qmax
qmax−x

f ′(τ)
τ

dτ , the following feedback law as a
function of q and current states α̃I and F̃I is introduced:

F̃∗(q, α̃I , F̃I) =

 D̄′i(T̂ −q) if F̃I < h(α̃I)

min
(
D̄′i(T̂ −q),h′ (αI)

)
if F̃I = h(α̃I)

(39)
We denote by ΦT̂ (x0,q) the solution of the ODEs in (32) at
‘time’ q and with initial conditions x0 (q = 0) when the (time-
varying and discontinuous) feedback law F̃∗ is applied. The
value function γε of the following optimization problem and
its limit when ε tends to zero are defined as:

γ
ε(T̂ ) := max

F̃(·)∈UT̂

α̃
ε
I (T̂ ) γ(T̂ ) := lim

ε→0
γ

ε(T̂ ) (40)

Considering the monotonicity of system (32) from Proposition
5 and the fact that F̃∗ represents the maximum feasible control
at any time instant and current state, for any T̂ ≥ 0 it holds:

γ
ε(T̂ ) = Φ

T̂
α([ε,0], T̂ ) (41)

where ΦT̂
α denotes the component of ΦT̂ corresponding to α̃I .

Moreover, it is possible to show that the maximized final state
γε(T̂ ) increases if we choose higher values of T̂ :

Proposition 6: The function γε(T̂ ) is Lipschitz continuous
and monotone increasing.

Proof: See Appendix C.
It is now possible to provide the main result of this section,
describing the solution of the optimization problem (31):

Theorem 1: If problem (31) is feasible, there exists
T ∗ ∈ [0,T ] defined as the minimum t such that γ(t) = qmax.
Denote now by ψ̃∗(q) the following signal:

ψ̃
∗(q) = lim

ε→0
F̃∗
(

q,ΦT ∗ ([ε,0],q)
)
. (42)

The control F̄∗ defined below is feasible and optimal for (31):

F̄∗(q) = ψ̃
∗(T ∗−q) ∀q ∈ [0,T ∗]. (43)

Proof: See Appendix D.
From the results of Theorem 1, we can conclude that the task-
time minimizing profile of flexible demand in the q variable
D̄∗f (q) (and the function ᾱ∗(q) that induces it when broadcast
to the devices) can be calculated operating “backward”. Fixed
a certain final instant T̂ , we evaluate the feedback control F̃∗ of
the backward system (32), maximizing its final state α̃I(T̂ ).
There exists T̂ (equal to T ∗ in the theorem statement) such
that α̃I(T̂ ) = qmax. This guarantees a correspondence with the
forward system, as specified by Proposition 4. By considering
the equivalent control F̄∗(q) = F̃∗(T̂ −q) forward in time, we
solve the optimization problem (31). This means that the re-
sulting value ᾱ∗(q) = ˙̄α∗I (q) in system (28) is the proportional
constraint in the variable q that, if broadcast to the devices,
achieves a Nash equilibrium and minimizes the total task time
of the population. Since ᾱ has been set in order to guarantee
that D̄ f in (14) is equal to D̄r in (27), the expression for the
flexible demand induced by the optimal solution of (31) is:

D̄∗f (q) =
∫ T ∗

q
F̄∗(s)ds. (44)

Remark 7: In practical implementations of the proposed
control strategy, the final time T ∗ (whose existence is guaran-
teed by Theorem 1) can be easily calculated numerically. It is
sufficient to iteratively integrate (32) with F̃ = F̃∗, updating at
each step the chosen value of T̂ . Exploiting the positivity of the
state derivatives in (32) and the monotonicity of γ , the value
of T̂ at each step can be chosen with a bisection technique,
obtaining a quick convergence to the sought value T ∗.
A summary of the main steps in the implementation of the
proposed control strategy is provided by the scheme in Fig. 1.

V. SIMULATION RESULTS

The design method of the proportional constraint α pre-
sented in the previous section and summarized in Fig. 1 is
now tested in simulations. A typical 24h UK demand profile
[18] is chosen for Di, adopting a time discretization step of
∆t = 0.01h. We consider a case study for which the equilibrium
conditions in the unconstrained case, introduced in [6], are not
satisfied. In particular, the function f ′ is defined as the sum of
two truncated gaussians (with mean equal to 4h and 8h) and
the total energy required by the appliances amounts to 55GWh.
This choice could correspond, for example, to a population of
2 million devices (approximated as infinite) with equal power
rating Pr = 5KW and an average value of Etot corresponding
to Ē = 55GWh/2 · 106 = 27.5KWh. The values of Etot for
the single agents would follow a distribution similar to the
one considered for f ′, with peaks at E1 = 4h ·Pr = 20KWh
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Fig. 1. Procedure to determine the optimal power constraint α(t).

and E2 = 8h ·Pr = 40KWh. The corresponding time parameter
could then be derived as tmin = Etot/Pr. The negotiable valley
capacity ΛDi(q) =

d
dq Q−1

Di
(q) and the power density of task

durations Λ f (q) =
f ′(q)

q for this scenario (defined at the end
of Section II) are compared in Fig. 2. It is straightforward
to verify that a Nash equilibrium cannot be achieved in the
unconstrained case since (8) does not hold and Λ f (q)>ΛDi(q)
in the interval which goes approximatively from q = 2h to
q = 5h. Therefore, a proportional constraint α is introduced
on the power rate of the devices. This is calculated applying
the design technique presented in the previous section, as
summarized in Fig. 1. In order to do so, it is necessary
to evaluate γ and ψ̃∗, defined in (40) and (42) as limiting
functions for the initial state value ε which tends to zero.
These quantities are approximated by evaluating the mentioned
functions at ε = 10−6. It has been verified that the choice of
smaller values does not introduce any noticeable change in the
results. For the considered scenario, setting an error tolerance
δ = 0.01h on the condition α̃I(T̂ ) = qmax, the first step in Fig.
1 converges to T̂ = T ∗ = 12.8h in 10 iterations. The resulting
values of F̄∗ are represented by the green dashed line in Fig.
2 while the demand profiles and the proportional constraint
ᾱ∗ as functions of the measure q are shown in Fig. 3. Note
that F̄∗ replaces Λ f as power density of task durations when
the reshaped flexible demand D̄ f = D̄r is considered. Since F̄∗

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Measure, q (h)

P
ow

er
 d

en
si

ty
, (

G
W

/h
)

 

 

ΛDi (q)

Λf (q)

F̄∗(q)

Fig. 2. Graphical representation of condition (8) for unconstrained equilib-
rium, showing negotiable valley capacity ΛDi (blue trace) and power density
of task durations Λ f (red trace) for the chosen f ′ and inflexible demand Di.
The green line is the optimal control F̄∗ for the minimization problem (31).

is never greater than ΛDi , we can conclude that the original
equilibrium condition (8) is satisfied when the constraint ᾱ

is enforced. Alternatively consider that, by monotonicity of
QDi , the inflexible demand function D̄i(q) = Q−1

Di
(q) is always

monotonic increasing. The opposite holds for D̄ f (q) which
is equal to D̄r(q) in (27), i.e. the integral of the positive
quantity F̄ over the interval [q,T ]. If the sum of the two
profiles, equal to the aggregate demand in the variable q,
is nondecreasing (like in the present case) an equilibrium
is achieved from Proposition 2. Three different intervals, for
decreasing values of q, can be considered in Fig. 2 and 3. In
particular, for q > T ∗, it can be seen that F̄∗ and the flexible
demand D̄ f are equal to zero since all the appliances have
already completed their tasks. In the interval which goes from
approximatively 6h to T ∗, the input F̄∗ corresponds to the
function Λ f (q− ∆) with ∆ equal to about 2h. In this case
the constraint ᾱ∗ is equal to 1 and the resulting demand
profile corresponds to the one obtained if all task times were
increased by ∆. At about q = 6h the function F̄∗ intersects
ΛDi , implying that a constraint ᾱ∗(q) < 1 must be enforced
on the power rate of the appliances. This is done by setting
F̄∗(q) = ΛDi(q) = D̄′i(q) which corresponds to a flat profile of
aggregate demand in the q variable. The demand profiles and
the constraint α∗ across time are shown in Fig. 4. It can be
seen that a proportional limitation is imposed during the first
hours of the day, when inflexible demand (and expected energy
prices) are particularly low. Note that the proposed control
scheme returns a constraint α(t) which achieves a consistent
valley filling, with a flat profile of aggregate demand. To verify
that a Nash equilibrium has been indeed achieved, we show in
Fig. 5 the scheduled interval of power consumption for devices
with tmin equal to 2h, 4h and 8h. These are represented by the
blue, green and magenta areas, respectively. Note that each
group of devices operates at maximum power consumption at
the lowest values of broadcast demand (the inflexible profile
Di), which also correspond to the lowest values of aggregate
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demand Da. This implies that no individual agent has interest
in changing its scheduled power profile. We also point out that,
given the introduction of the proportional constraint α , the
intervals of scheduled power consumption are slightly longer
that the minimum achievable value tmin, as devices cannot
always operate at full power rate.
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Fig. 3. Profiles of inflexible (blue dashed trace), flexible (blue area) and
aggregate demand (red trace) as functions of the measure q when the
proportional constraint ᾱ∗(q) (magenta trace) is imposed.
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Fig. 4. Profiles of inflexible (blue dashed trace), flexible (blue area) and
aggregate demand (red trace) as functions of time when the proportional
constraint α∗(t) (magenta trace) is imposed.

Finally, we compare the proposed distributed control strat-
egy with other techniques that have a higher level of central-
ization. One possibility is to perform a Semi-Decentralized
scheduling (SD): a Nash equilibrium can still be obtained
by an hybrid scheme where all devices independently sched-
ule their power consumption on the basis of broadcast de-
mand/price (with no proportional constraints), introducing
central coordination on time intervals where such signal is flat.
We also consider the Social Optimum case (SO), where the
total power required by the appliances is centrally determined
and allocated across time in order to minimize generation
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Fig. 5. Intervals of scheduled power consumption for devices with tmin equal
to 2h (blue area), 4h (green area) and 8h (magenta area).

costs. The aggregate demand profiles obtained in these three
cases are shown, for the time interval with lowest values of
inflexible demand Di, in Fig. 6. A clear trade-off can be
noticed: the higher is the coordination between appliances, the
more significant the induced valley-filling will be. Notice for
example that, if a fully centralized algorithm is applied (SO
case), the aggregate demand profile is completely flat. Similar
considerations can be made for total generation costs: it is to
be expected that, if all appliances are centrally managed, the
total cost of producing energy for the system can be reduced.
On the other hand, one must take into account that centralized
techniques are unfair towards individual agents, whose utility
may be “sacrificed” for the optimality of some global index.
Moreover, their application could require additional communi-
cation infrastructure and technical solutions that may be more
expensive and difficult to implement.
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Fig. 6. Comparison of aggregate demand profiles and valley-filling achieved
with the proposed power saturation strategy (Da), semi-decentralized schedul-
ing (DSD

a ) and central maximization of social optimum (DSO
a ).
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VI. MINIMIZATION OF INDIVIDUAL TASK TIME

The choice to design the constraint α which induces a Nash
equilibrium by minimizing the total operation time of the
population can be further justified by showing that the task
time of the individual device is also minimized. Recalling the
definition of task time Γ(tmin) provided in (18) and assuming
that the decentralized control is implemented by designing the
function F̄ as discussed in previous sections, the problem of
minimizing the time required by the single appliance (with
parameter tmin = s) to complete its task can be written as:

min
F̄(·),Ftot ,TEND,Ts

Ts

s. t. ᾱI(0) = 0 F̄I(0) = 0
ᾱI(Ts) = s TEND ≤ T
ᾱI(T−END) = qmax F̄I(T−END) = Ftot

˙̄αI(q) =
Ftot − F̄I(q)∫ T
ᾱI(q)

f ′(τ)
τ

dτ

˙̄FI(q) = F(q)

0≤ ˙̄αI(q)≤ 1 F̄(q)≤ D̄′i(q)
∀q ∈ [0,TEND)

(45)
Similarly to (31), the considered constraints guarantee that

an equilibrium is achieved for the resulting aggregate demand.
Furthermore, condition ᾱI(T−END) = qmax with TEND ≤ T is
introduced to impose that the tasks of the whole population
are completed within the considered time interval [0,T ]. The
power absorption of the single device with tmin = s, in the
q variable, is performed in the interval characterized by
ᾱI(q)< s. Considering the monotonicity of ᾱI(q), it is suf-
ficient to minimize Ts such that ᾱI(Ts) = s. It is now possible
to verify that the solutions of the task time minimization for
the single device and for the whole population (problem (45)
and (31), respectively) coincide:

Theorem 2: The control F̄∗ defined in (43) and optimal
for the problem (31) of global task time minimization, is the
solution of (45) for all s ∈T = [qmin,qmax].

Proof: If F̄∗ is not optimal for (45), there exists another
control F̄� which is feasible and such that, for the correspond-
ing solution (ϕ̄�α , ϕ̄

�
F) of (28), it holds:

ϕ̄
�
α(Ts) = s > ϕ̄

∗
α(Ts) (46)

where ϕ̄∗ denotes the solution of (28) when F̄∗ is applied.
Since ϕ̄�α(T

−
END) = qmax it is possible to apply Proposition

3 and calculate the equivalent control F̃� for (32) to which
corresponds the limiting solution (ϕ̃�α , ϕ̃

�
F) when ε tends to

zero. The same operations are performed for the control F̄∗

with final time T ∗, obtaining the corresponding F̃∗ and the
solution (ϕ̃∗α , ϕ̃

∗
F) for system (32). Considering the relationship

(34) between trajectories in the two systems and the inequality
in (46) yields:

ϕ̃�α(TEND−Ts)< ϕ̃∗α(T
∗−Ts) ϕ̃�α(TEND) = ϕ̃∗α(T

∗) = qmax
(47)

with T ∗ ≤ TEND given the optimality of F̄∗ for (31). Further-
more, ϕ̃I(q) defined in (54) can be considered as a strictly
monotonic increasing function of ϕ̃α(q). Denoting the value of

ϕ̃I when F̃� and F̃∗ are considered with the same superscript,
it holds:

ϕ̃�I (TEND−Ts)< ϕ̃∗I (T
∗−Ts)

ϕ̃
�
I (TEND) = ϕ̃

∗
I (T

∗) =
∫ qmax

0
f ′(τ)dτ.

(48)

It follows from T ∗ ≤ TEND and ϕ̃∗α(0) = 0 that ϕ̃�α(TEND−
T ∗)≥ ϕ̃∗α(0). Given the inequality in (47) and the continuity
of the solutions of system (32) there must exist y ∈ [Ts,T ∗]
such that:

ϕ̃�α(TEND− y) = ϕ̃∗α(T
∗− y) ˙̃ϕ�α(TEND− y)< ˙̃ϕ∗α(T

∗− y)
(49)

where the second condition in (49) corresponds to
ϕ̃�F(TEND− y)< ϕ̃∗F(T

∗− y) from (32). Taking into account the
monotonicity of system (32) with T̂ = y and the properties of
F̃∗, considering as initial states ϕ̃�(TEND−y) and ϕ̃∗(T ∗−y),
it holds:

ϕ̃
�
F(TEND−Ts)≤ ϕ̃

∗
F(T

∗−Ts). (50)

From conditions (48) on the integral ϕ̃I , there must exist an
interval of positive measure T ⊆ [0,Ts] such that:

ϕ̃
�
F(TEND− τ)> ϕ̃

∗
F(T

∗− τ) ∀τ ∈T . (51)

Given the monotonicity of system (32), established in Propo-
sition 5, and the fact that the control F̃∗ always maximizes
the state derivatives, we can conclude that this is not possible.
As a consequence, there is no F̄� for which (46) holds and
therefore F̄∗ is optimal for (45).

VII. CONCLUSIONS

In this paper a novel decentralized control strategy is
presented for the integration of large populations of price-
responsive appliances in the energy market. The conditions
presented in [6] for existence and uniqueness of a Nash equi-
librium are extended to consider a wider range of scenarios.
This is achieved by introducing a proportional constraint on
the power rate of the devices, limiting the flexible demand at
critical time instants. Such constraint is designed in order to
minimize the total time required by the appliances population
to complete their tasks and, at the same time, induce a Nash
equilibrium. Simulation results are provided and it is shown
that the proposed control strategy also minimizes the task time
of each individual appliance.

APPENDIX A
PROOF OF PROPOSITION 3

The equality for ϕ̄F and ϕ̃F is straightforward to verify:

ϕ̄F(T̂ −q) =
∫ T̂−q

0
F̄(τ)dτ = Ftot −

∫ T̂

T̂−q
F̄(τ)dτ

= Ftot −
∫ q

0
F̄(T − τ̄)dτ̄ = Ftot −

∫ q

0
F̃(τ̄)dτ̄ = Ftot − ϕ̃F(q).

(52)
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For the condition on the states ϕ̄α and ϕ̃α , we preliminarily
calculate ϕ̃ε

I (q), corresponding to the integral over [0,q] of the
solution ϕ̃ε

F :

ϕ̃ε
I (q) =

∫ q

0
ϕ̃

ε
F(τ)dτ

a
=
∫ q

0
˙̃ϕε

α(τ)h(ϕ̃
ε
α(τ))dτ

b
= [ϕ̃ε

α(τ)h(ϕ̃
ε
α(τ))]

q
0−

∫ q

0
ϕ̃

ε
α(τ)h

′(ϕ̃ε
α(τ))dτ

c
= [ϕ̃ε

α(q)h(ϕ̃
ε
α(q))− εh(ε)]−

∫ v(ε)

v(ϕ̃ε
α (q))

v(τ̄)
f ′(τ̄)

τ̄
dτ̄

d
= [ϕ̃ε

α(q)−qmax]
∫ v(ε)

v(ϕ̃ε
α (q))

f ′(τ)
τ

dτ +[ϕ̃ε
α(q)− ε]h(ε)

+
∫ v(ε)

v(ϕ̃ε
α (q))

f ′(τ)dτ

(53)

where v(x) = qmax − x. Equality a can be verified by mul-
tiplying ˙̃αε

I in (32) by h(α̃ε
I ) and evaluating the result for

α̃ε
I = ϕ̃ε

α and F̃ε
I = ϕ̃ε

F . Equality b follows from the application
of the chain rule and c is obtained with the change of variable
τ̄ = qmax− ϕ̃ε

α(τ) in the integral. Rearrangement of the result-
ing terms yields d. When ε tends to zero the corresponding
integral ϕ̃I(q) has the following expression:

ϕ̃I(q) = lim
ε→0

ϕ̃
ε
I (q)=[ϕ̃α(q)−qmax]

∫ qmax

qmax−ϕ̃α (q)

f ′(τ)
τ

dτ

+
∫ qmax

qmax−ϕ̃α (q)
f ′(τ)dτ.

(54)

The integral ϕ̃I(q) =
∫ q

0+ ϕ̃F(τ)dτ can alternatively be evalu-
ated as:

ϕ̃I(q)
a
=

∫ q

0+
Ftot − ϕ̄F(T̂ − τ)dτ

b
=

∫ q

0+

[
˙̄ϕα(T̂ − τ)

∫ qmax

ϕ̄α (T̂−τ)

f ′(s)
s

ds
]

dτ

c
=

∫ T̂−

T̂−q

[
˙̄ϕα(τ̄)

∫ qmax

ϕ̄α (τ̄)

f ′(s)
s

ds
]

dτ̄.

(55)

Equality a follows from (52) while b can be verified by
multiplying ˙̄αI in (28) by the denominator of its right-hand
side, evaluating the result for ᾱI = ϕ̄α and F̄I = ϕ̄F . Finally,
c is the result of the change of variable τ̄ = T̂ − τ . With
algebraic passages similar to (53), the following expression
can be derived:

ϕ̃I(q) =−ϕ̄α(T̂ −q)
∫ qmax

ϕ̄α (T̂−q)

f ′(τ)
τ

dτ +
∫

ϕ̄α (T̂−)

ϕ̄α (T̂−q)
f ′(τ)dτ.

(56)
The proof is concluded by noticing that ϕ̃I(q) as defined in
(54) is a monotonic increasing function of ϕ̃α(q) and therefore,
considering that ϕ̄α(T̂−) = qmax, the two expressions (54) and
(56) are equal if and only if ϕ̄α(T̂ −q) = qmax− ϕ̃α(q).

APPENDIX B
PROOF OF PROPOSITION 4

For the equality on the states ϕ̄F and ϕ̃F we have:

ϕ̃F(T̂ −q) =
∫ T̂−q

0
F̃(τ)dτ = Ftot −

∫ T̂

T̂−q
F̃(τ)dτ

= Ftot −
∫ q

0
F̃(T̂ − τ)dτ = Ftot − ϕ̄F(q).

To check that also the first equation in (36) holds, the integral
ϕ̄I(q) is evaluated in two different ways:

ϕ̄I(q) =
∫ q

0
Ftot − ϕ̄F(τ)dτ ϕ̄I(q) =

∫ q

0
ϕ̃F(T̂ − τ)dτ

With algebraic steps similar to the ones used in the previous
proof it is possible to show that the two expressions are equal
if and only if ϕ̃α(T̂ −q) = qmax− ϕ̄α(q).

APPENDIX C
PROOF OF PROPOSITION 6

For any T1,T2 ∈ [0,T ] with T1 < T2, the maximum γε(T2)
has the following expression:

γ
ε(T2) = Φ

T2
α ([ε,0],T2) = Φ

T1
α

(
Φ

T2 ([ε,0],T2−T1) ,T1
)
. (57)

To see this, it is sufficient to consider that the only dependency
of ΦT̂ from the parameter T̂ is given by the maximum value
D̄′i(T̂ − q) imposed for F̃∗ in (39) at each time q. To prove
the Lipschitz continuity of γε , the following inequalities are
considered for |γε(T2)− γε(T1)|:∣∣∣ΦT1

α

(
ΦT2 ([ε,0],T2−T1) ,T1

)
−Φ

T1
α ([ε,0],T1)

∣∣∣
a
≤
∥∥ΦT1

(
ΦT2 ([ε,0],T2−T1) ,T1

)
−ΦT1 ([ε,0],T1)

∥∥
1

b
≤ K1

∥∥ΦT2,ε ([ε,0],T2−T1)− [ε,0]
∥∥

1

c
≤ K1K2 |T2−T1|

(58)
where K1 and K2 are positive constants. Inequality a in
(58) follows from the expression of the 1-norm for mul-
tidimensional vectors while b derives from the continuous
differentiability of the solutions of (32) with respect to the
initial conditions [19]. This can be verified by replacing F̃∗ in
the expressions of (32) and noticing that the partial derivatives
of the result with respect to each state component exist and
are continuous (almost everywhere). The last inequality c in
(58) is a result of the boundedness of the state derivatives. For
the monotonicity of γε consider that, when F̃∗ is applied, both
states of (32) are nondecreasing in time. Therefore, following
Proposition 5, for any T1,T2 ∈ [0,T ] with T2 > T1 we have:

Φ
T1
α

(
Φ

T2 ([ε,0],T2−T1) ,T1
)
≥Φ

T1
α ([ε,0],T1) (59)

where the two sides of the inequality denote respectively
γε(T2) and γε(T1) as defined in (57) and (41).

APPENDIX D
PROOF OF THEOREM 1

The existence of T ∗ is initially shown. In this respect,
consider an arbitrary feasible control F̄ for (31) such that,
for the corresponding state trajectory of system (28), it holds
ϕ̄α(T−END) = qmax at some TEND ∈ [0,T ]. Applying the results
of Proposition 3 for T̂ = TEND, it is possible to define F̃ such
that for the resulting limiting solution of (32), considering
(34) at q = T̂ = TEND, it holds ϕ̃α(TEND) = qmax. Given the
optimality of F̃∗ for the value function γε defined in (40),
we can conclude that γ(TEND) ≥ qmax. It follows from the
continuity and monotonicity of γ presented in Proposition 5
that there exists T ∗ defined as in the theorem statement. We
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show now that F̄∗ in (43) is feasible for (31), reminding that
ϕ̄∗ denotes the solution of (28) when F̄∗ is applied and ϕ̃∗

is the limiting solution of system (32) when F̃ = F̃∗ and ε

tends to zero. The final state condition ᾱI(T−END)= qmax in (31)
becomes ϕ̄∗α(T

∗−) = qmax and is satisfied from Proposition 4
with T̂ = T ∗ and q= T̂− since γ(T ∗)= ϕ̃∗α(T

∗)= qmax. For the
inequalities on the state derivatives, considering expressions
(39) and (42), we have:

ψ̃∗(q)≤ D̄′i(T
∗−q)

ϕ̃∗F(q)
h(ϕ̃∗α(q))

≤ 1 ∀q ∈ (0,T ∗].

To verify the second inequality, given the initial con-
ditions of the system, it is sufficient to notice that
ψ̃∗(q) = ˙̃ϕ∗F(q)≤ h′(ϕ̃∗α(q)) when ϕ̃∗F(q) = h(ϕ̃∗α(q)). Using
Proposition 4 on the solution ϕ̄∗ of system (28) when F̄∗ is
applied, the following holds at any q ∈ [0,T ∗):

F̄∗(q) = ψ̃
∗(T ∗−q)≤ D̄′i(q)

0≤ ˙̄ϕ∗α(q) =
Ftot − ϕ̄∗F(q)∫ qmax
ϕ̄∗α (q)

f ′(τ)
τ

dτ

=
ϕ̃∗F(T

∗−q)
h(ϕ̃∗α(T ∗−q))

≤ 1.
(60)

Finally, to show the optimality of F̄∗, we assume that there
exists a control F̄� which is feasible for (31) and such that, for
the corresponding state trajectory ϕ̄ , it holds ϕ̄α(T �−) = qmax
with T � < T ∗. If this were the case, it would be possible to
define the corresponding control F̃� for system (32) using the
results of Proposition 3. For the same reasons detailed above
for the final instant TEND, it would hold γ(T �)≥ qmax with
T � < T ∗ which contradicts the definition of T ∗.
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