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SUMMARY

There are many sophisticated building simulators capable of accurately modelling the thermal performance of buildings.
Lumped Parameter Models (LPMs) are an alternative which, due to their shorter computational time, can be used where
many runs are needed, for example when completing computer-based optimisation. In this paper, a new, more accurate,
analytic method is presented for creating the parameters of a second order LPM, consisting of three resistors and two
capacitors, that can be used to represent multi-layered constructions. The method to create this LPM is more intuitive than the
alternatives in the literature and has been named the Dominant Layer Model. This new method does not require complex
numerical operations, but is obtained using a simple analysis of the relative influence of the different layers within a
construction on its overall dynamic behaviour. The method has been used to compare the dynamic response of four different
typical constructions of varying thickness and materials as well as two more complex constructions as a proof of concept.
When compared with a model that truthfully represents all layers in the construction, the new method is largely accurate and
outperforms the only other model in the literature obtained with an analytical method.

1 Introduction

Low-carbon policies and the increasing cost of energy is making society more aware of the need for low-
energy solutions. The domestic sector accounts for around 30% of total energy demand in the UK, and it is
responsible for around 27 % of all carbon emissions [1]. The domestic sector has been highlighted as one of the
key vectors for reducing emissions [2]. Building models are fundamental tools used to investigate the thermal
performance and energy use of a design. These models have the potential to be used for designing buildings that
use less energy and that have a lower carbon footprint.

Currently several building simulators exist which are able to model most of the physical phenomena affecting
buildings [3]. However, these simulators need a substantial computational time to perform a yearly simulation.
When the user requires running a large number of simulations, these tools might not be ideal, as their use might
render the study unfeasible due to prohibitive overall computational times. Some authors have faced this
problem and used surrogate models to reduce the computational times (such as [4]) but others have used simpler
simulators to represent buildings (such as [5], [6] or [7]).

Some of these simple simulators, developed in the seventies [8], use linear dynamic models to obtain the
thermo-dynamic response of buildings. The linear dynamic models used are not capable to model radiation and
convection, instead linear approximations are used to model these heat transfer mechanisms.

The equation of heat transfer through solids is, however linear, and can be represented with the so called
electrical analogy when discretised in space. With this analogy, the conductivity of the materials is interpreted as

electric conductivity, and the thermal mass as electrical capacity.



An example of a simulator using this electrical analogy was published by Balcomb et al. where the thermal
behaviour of a building heated with solar gains is modelled with a simple network of resistors and capacitors
(RC-network), that represent conductivities and thermal masses of the building [9].

The advantage of using RC-networks to represent buildings, is that they can be mathematically modelled by a
set of first order differential equations, also called state-space systems (see [10]). The integration of these
systems provides the variables of the model (temperatures of building elements and zones) at a relatively low
computational cost. The short computational times made these models popular during the 70’s when
computational resources were limited. However they are still used when quick building simulators are needed to
perform a large number of simulations [5-7].

Constructing building models with RC-networks implies representing every element of the building with
resistors and capacitors. This is also the case with multi-layered constructions. Each slab of material in a multi-
layered construction has to be represented in the RC-network, with at least two resistors, one capacitor and one
internal node [11] (see Figure 1a). Including all the layers in the construction for all the surfaces of the envelope
leads to large RC-networks; to integrate the set of differential equations of a state-space system the time is

discretised using a time step and the variables can be obtained using Eq. 1.
X0 = e x,+Ku, (1)

where x,; and x, are vectors representing the variables in time step n+/ and n, u is the vector of inputs, and
¢'" and K are calculated matrices to integrate the state-space system [10]. The vector of variables (x,) has to be
multiplied for the matrix ¢** in every time step and so has to be done with matrix K and u. The matrix ¢** could
be calculated once for the whole year simulation; however, the multiplications previously mentioned have to be
performed in every time step, meaning that there exists a high potential for reducing the computational time of
the simulation by reducing the size of these matrices. This can be done by reducing the number of nodes of the
RC-network i.e. creating a Lumped Parameter Model (LPM). As an example, the reduction of an RC-network

with 12 nodes to a simplified LPM with 3 nodes will make the computational time of every time step 16 times

shorter.
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Figure 1 - a) Two resistors one capacitor LPM. When representing a single slab of material R;=R,=0.5/(U-Value*Area).

b) Three resistors two capacitors LPM.



Users of these models based in RC-networks, normally look to simplify the complete model to reduce the
computation even if that implies losing some accuracy. Several works have looked into investigating ways of
reducing complete large RC-networks into Lumped Parameter Models (LPM) (some examples are [12-16]).

Multi-layered constructions contribute largely to the overall size of RC-networks, so special interest has been
seen in the literature in reducing constructions to low-order (few nodes) LPMs of multi-layered constructions
([15-17D).

Two approaches can be taken to find a LPM of a complete RC-network: a numerical approach, in which
numerical methods are used to find the parameters that best approximate the complete RC-network [12, 15, 17],
or, analytical methods, in which the equations of the RC-network are studied to obtain a set of algebraic
equations that will provide the optimal LPM [13, 16]. Although the numerical approach normally finds the best
LPM available for the given problem, it requires some previous information of the complete RC-network, such
as its response in time or frequency. Also, the use of numerical methods to obtain the parameters implies a
computational cost that might make the use of LPMs unattractive.

Only one method to find LPMs of multi-layered constructions using an analytical method has been found in
the literature which reduces a multi-layered construction into a second order system consisting of three resistors
and two capacitors (Fraisse et al.) [16]. However for some multi-layered constructions this methodology
produces LPMs with low accuracy. In this paper we present a new analytic methodology to obtain LPMs of
multi-layered constructions. Contrary to previous methods to obtain the reduced LPM, the method firstly is
created without using transfer coefficients and secondly, it is built to be accurate in a range of frequencies that
corresponds with the most significant frequencies of the inputs. The model presented is found to outperform the
models created with the methodology of Fraisse et al for a wide range of constructions when they are used to

simulate real constructions.

2 Method

2.1 Dynamic response of constructions.: Range of relevant frequencies

The work presented in this paper focuses on finding a low-order model to represent multi-layered
constructions. Multi-layered constructions are a superposition of layers of different materials. Each layer
contributes to the dynamic response of the building and therefore, they have to be modelled as independent
elements in the thermal model (addition of elements such as the one in Figure 1a forming an RC-network as the
one in Figure 2). Modelling the layers independently makes the thermal model rather complex, hence the
motivation to find a methodology that will reduce the number of elements in the thermal model that are needed

to represent the thermal response of multi-layered constructions but keep the overall accuracy of the full model.
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Figure 2 - RC network representing a construction with n layers subjected to a time-varying outside temperature, 7,(?),
and time-varying internal gains, g;(?). Note: the voltage source has been represented as sinusoidal, but it should be considered

as a time series.

For the purpose of modelling buildings it is crucial that the reduced model is accurate under the normal
operational conditions of a building. The main two boundary conditions of a construction used for the building
envelope are: the outside ambient temperature which is applied to the most external layer of the construction (n,
in Figure 2), and the gains in the living space of the building (equivalent to #n;in Figure 2).

These two boundary conditions are time dependent, the outside temperature is read from a weather datafile,
and the gains are generated on-the-go following occupant’s patterns previously created by the user and heating
requierements. The internal gains are therefore unknown before carrying out a dynamic simulation as the heating
system is trigered by control mechanisms that read the internal temperature of the zone.

The first thing that was studied in our research was the range of frequencies of the inputs (outside temperature
and internal gains). Every time series can be discompose into a set of harmonics with different frequencies (for
example using the Fast Fourier Transform), if that is done with the inputs of the systems, one could obtain the
frequencies of their main harmonics. A model of the construction that is accurate for those harmonics will be
accurate in real-world simulations. Instead of considering individual harmonics, we have looked for a range of
angular frequencies in which most of the harmonics of the inputs can be found. Creating a LPM that is accurate
for that range was the aim of this research.

Firstly, the variables read from a weather data file were considered. Most dynamic simulators normally use
data from weather files which contain a time-series of weather variables with one hour sampling period. Even
though some simulators interpolate these time series, the Shannon-Nyquist theorem [ 18] established that a
continuous function can be totally determined from a discrete time-series only if this original function has no
harmonics higher than a frequency of half the sampling frequency (f;) of the discrete series. This means that the
continuous function from the discretized data can only be determined when it is assumed that the original
function did not have harmonics with frequencies higher than half the sampling period. Harmonics higher than
this value cannot be known from the interpretation of the sampled data as they are masked by the sampling.
Under the assumption that these “fast” harmonics are not known. It has been assumed in this work that the
accuracy of the model for those unknown higher frequencies is not relevant. As a result, it is possible to

introduce an upper bound for the range of relevant frequencies given by:



fUB:fSN: I/ZTS 21/2 h1 , and, wWyp= ZﬂﬁqNZ mrad h'! , (1)

where f;;5 is the upper bound frequency, fsy is the Shannon-Nyquist frequency, wyp is the upper bound angular
frequency, and Ty is the sampling period.

This limit is justified for variables which are read from the weather data file which have a sampling period of
one hour. However, the internal gains are generated on the go, and they can have other harmonics much higher
than those equivalent to the ones with half an hour period. To verify that this upper bound of the range of angular
frequencies is valid for the gains, a Fast Fourier Transform (FFT) has been applied to a time series of the internal
gains obtained with EnergyPlus with a sampling period of one minute. The simulation performed included solar,
electric and metabolic gains together with a heating system that is controlled by a thermostat. The results of this

FFT can be seen in Figure 3.
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Figure 3 - Representation of the harmonics of a time series of internal gains in a building simulation (1 year) from data
sampled at a resolution of 1 minute. Note: The peak representing the harmonic with the largest amplitude corresponds with

the24 hour period.

The upper bound determined in the previous paragraph is conservative enough as there are no substantial
harmonics for frequencies higher than 0.5 h' (equivalent to an angular frequency of: w rad/h) .

For the calculation of the lower bound, it is possible to use the physical properties of the construction. There
are angular frequencies for which the construction will behave as in a steady state. The simplest method to obtain
the order of magnitude of those frequencies is using the largest time constant of the system. The time constant is
a measure of the time needed by the construction to react to a change in the input, and is calculated for each layer
as the resistance multiplied by the capacitance (r=RC). Also, an angular frequency can be associated to this time

constant, and that provides the angular frequency at which the system starts having dynamic effects (see [10]).



The equation that relates them is w=1/7 (with @ angular frequency and 7 the time constant). If the largest time
constant is considered, and the equivalent angular frequency obtained, then for any smaller angular frequency the

system will have a steady state response. The lowest frequency, f;3, considered is hence:

fLB: 1/271' 1/(20”Rk Zo"ck), and, wyp= 1/(20”Rk Zo"ck), (2)

where Ry, is the resistance (o< 1/U-Value) of the &” layer of the construction, # is the total number of layers, Cj, is
the thermal capacity of the " layer and w, gis the lower bound angular frequency.
With this, the range of relevant frequencies are determined by [wy3p, @;3z], and the model will be constructed

such that the maximun accuracy is achieved within this range.

2.2 Topology of the LPM

To obtain an LPM that represents the dynamic response of a construction, the topology of the model needs to
be determined first. The first models that represented constructions dynamically were based on two resistors and
one capacitor[19]. This topology of the LPM has been used by other authors and has shown to provide good
results (e.g. [14]). However, more recent work has demonstrated the need for more complex models to represent
constructions, especially those with larger thermal mass [17] [15]. The first order model assumes that the thermal
capacity of the construction is contained in one single node; however, in most constructions, there is an
intermediate layer with low thermal conductivity and low thermal capacity (insulation and/or air gap) which
makes the dynamic response of the layers at either sides of this insulating layer rather independent. Gouda et al.
proved the lack of accuracy of first order models of constructions [17], where the application of heat flow to the
interior layer of the construction (the one in contact with the air of the zone, and therefore the one that receives
the gains ultimatelly) highlights the deviation of the first order model from the complete model. The second
order model (consisting of three resistors and two capacitors) has been found to provide a good compromise

between accuracy of the response and complexity of the model [9,11].

2.3 The Dominant Layer Lumped Parameter Model

The linearity of the elements of the RC-network allows the application of superposition. We have considered
the temperature of the internal surface of the construction, i.e. that which is in thermal contact with the internal
air of the building (n;in Figure 2) as the most interesting output of the dynamic system (the construction). When
the dynamic model of the construction is considered, this internal temperature can be calculated as the sum of
two responses from two models (or circuits): one with only outside air temperature as an input (7},), and another

with the only input being incidental/internal gains (g;).

External temperature, Tu(f)> G ( d/df)

Internal lemperature.Tl{f) >

Internal gains, g,(t) > H (d/dt)

Figure 4. Internal temperature as the sum of the response of two linear systems.



Firstly, the model with incidental gains as the only input was considered (H(d/dt) in Figure 4). This model has
a heat gain (or current source, see right side of Figure 2) applied to the node which represents the internal surface
of the construction (n; in Figure 2), and the node that represents the outer layer of the construction (n, in Figure
2), is considered to be earthed, i.e. the outside temperature/voltage is set to zero.

The first equation of this system is obtained by considering steady-state conditions, for this, capacitors have
infinite impedance and the circuit is reduced to a set of resistances in series. This produces the first requirement

for the LPM:

ZCanstructiun Ri ZZLPMR j» (3)

where R; are the inverses of the conductivities of the different layers of the construction (i.e. « 1/U-Value) and R;
the equivalent for the LPM.

The next equation to be derived will be obtained from studying the dynamic response of the system. To
represent the dynamic behaviour of the construction the most significant dynamic characteristics of the complete
network have to appear in the LPM. The cyclical nature of gains causes the heavy weight layers to have a much
larger contribution to the dynamic response of the construction. If the construction is considered from the inside
(from n;to n,), one is likely to find a layer of material that will store and release the majority of the heat during
the repeated heating cycles. This dominant layer plays an important role in the dynamic response; the LPM
presented in this paper is designed to represent this layer and therefore its effect on the dynamic response at the
expense of other less important layers. The assumption will be that including this layer of material directly in the
LPM will improve the accuracy.

The dominant layer is found from the consideration of the influence of each layer. The vertical branches of
the circuit in Figure 2 represent the heat capacity of the layers within the construction. The impedance of each
branch to the heat flow (i.e. the current) injected at the inner surface of the construction (the inside node #;) could
be considered as the impedance of the capacitor plus the sum of the resistances from the node of the branch to
the inside node. This impedance varies with the frequency; however, we have created an influence value that is a
measurement that averages the impedance for the range of angular frequencies previously defined (i.e. over the
relevant range of angular frequencies, from w; to wyp). The influence value (with units 4#/(Qrad)) of each

branch is defined as:
Infi= (lors” (1 1j0Cy +Ri/2+Y i) R; D), “4)

where w;gand wyp are the lower and upper bound of the angular frequency, w is the integration variable, j is the
imaginary unit, Ry, is the resistance of the k" layer of the construction, # is the total number of layers, and Cj, is
the thermal capacity of the " layer.

The influence value of the branches is an indicator of the dominant layer; the higher its value, the larger the
current that will pass through it, and thus, the impact of this branch on the dynamic response. The dominant layer

is such that:

Inﬁiominantzmaxn {Infk } (5)



Identification of the dominant layer using Eq. (5) is the first step in the derivation of the LPM in our
methodology as the contribution to the dynamic response from the layer is crucial. To include the dynamic effect
of the dominant layer, the last capacitor and the last resistor (the ones in contact with the inside node) of the
LPM are defined to represent the dominant layer. This is achieved by making the last capacitor of the LPM have
the same value as the capacitance of the dominant layer and the last resistor of the LPM to have the same value

as the sum of the resistances of the layers between the dominant layer and the inside node.

R3 = 0~5*Rdam +Zi:dum+1nRia (7)
Cr = Caom (8)

with R; the third resistor of the DLM, C, the second capacitor of the DLM, dom the dominant layer, # the total
number of layers, and R; the resistance of layer i.

The explicit consideration of a dominant layer, as introduced in this paper, is the key element of the
methodology; as such the LPMs obtained with this methodology have been called Dominant Layer Models
(DLMs).

For the second model (or circuit, G(d/dt) in Figure 4 ), the time-varying outside temperature is incident on the
node representing the external surface (7, in Figure 2) of the construction and the internal gains are eliminated.

This RC-network is a set of T-networks (Figure 1a) in cascade, and each of those networks is a low pass filter
as the input and output are respectively the voltage in the left and the right side of the T-network and each of the
layers of material will stop high frequency changes of the outside temperature influencing the inside
temperature.

It is therefore possible to calculate the cut off angular frequency for each layer which is given by w. = 1/RC or
obtain the time constant t=RC ( where C is the capacitance of the layer of material and R is half of the
resistance). However, the different layers are connected in cascade, and therefore, each of the layers will have a
resistance from the other layers on both sides (except for the external layers). According with the methodology
of Matthews et al. [13], one can calculate two time constants for each of the layers that will relate with the cut
off angular frequencies from the inside and from the outside (n; and n, respectively in Figure 2). The time
constant of each layer for the outside (z,,) is therefore calculated by summing all the resistors previous to the
layer (from the outside in) and multiplying them by the capacitor of the layer, and the time constant for the inside
(;5) 1s calculated by summing all the resistors after the layer (from the outside in) and multiplying them by the
capacitor of the layer.

However, the dominant layer has already been included in the LPM, so the relevant first-order model (Figure
la) ignores the layers which have taken into account by the dominant layer, being this the ones between the
dominant layer and the last layer adjacent to the zone. We have assumed that due to the nature of the RC-
network resultant when using outside temperature as single output, the first order model will be able to produce
accurate responses in conjunction to the resistors and capacitor defined to represent the dominant layer, the result
is a LPM with the topology shown in Figure 1b.

Matthews et al. showed that the most accurate first order model for the outside temperature can be obtained

calculating the summation of the time constants from the inside and outside of each layer. As the dominant layer



and the layers after this (from the outside in) are already in the LPM, the equation to calculate the summation of

the time constants will be:

‘L'ig=20':1)(d"m'1) C] (Rj/2+Rdom/2 Z(k:j+1)(d‘""'1) Rk ) and (9)
10=Y =1 " C; (R/2+Y 0=)"" Ry), (10)

where ;5 and 7,4 are the time constants relative to the two sides of the circuit (inside and outside respectively)
and C; and R are the capacity and the resistance of the j th and k" layer respectively and dom represents the
position of the dominant layer starting from the outside. The summation of the time constants has to be equal to

the time constants of the first order model. Therefore the following equations can be written:

R] = (Rt’*rao)/( Tis + Tos)’ (1 1)
RZ = (Rt’*ris)/( Tis + Tos)’ (12)
Cr =1/R; = 1/R;, (13)

There are now two equations that together with the steady state conditions and the dominant layer will
determine completely the LPM. Although the topology of the DLM is the same as that developed by the work of
Gouda and Xu among others ([15-17, 20]); in opposition to those, the methodology presented in this paper does
not explicitly include a requirement that forces the total capacitance of the LPM to be equal to the total

capacitance of the model of the whole construction.

2.4 Summary of the DLM

Given the topology of the simple model defined by Figure 1(b), it is straightforward to obtain the parameters

of the simplified model for a given construction:

Find the dominant layer using Eq. (5) and (6).
Assign the capacitance of the dominant layer to C,.
Obtain R; with Eq. (7).

Obtain R; with Eq (11).

Obtain R, with Eq (12).

Calculate C, with Eq. (13).

A N A W IN -

3 Validation

For numeric modelling, a simplified model has the aim of representing real constructions while reducing the
computational time. To demonstrate the accuracy of the DLM, six constructions have been modelled creating the
RC-networks that represent each multi-layered construction.

The layers of material used in the test constructions were transformed to T-networks as seen in Table 1. The
constructions are defined in Table 2. This table shows that the constructions used to validate the method have
similar materials and topologies to those in real buildings, except for the last two (proof and all heavy).These

were included to check the method accuracy in extreme cases.



Fraisse presented a way of obtaining the parameters of a LPM with the same topology as the DLM, also in an
analytical way, but using a different method [16]. As the DLM is an alternative to Fraisse’s approach, the two
are compared in the following. Although Fraisse’s methodology uses an analytical approach, it must be noted

that the computational time to obtain the DLM is shorter and the method more intuitive.

Table 1 - Resistance and heat capacitance values for a Im? layer of the materials used.

Material Thickness (mm) Resistance (K/W) Capacitance (Wh/K)
Air gap n/a 0.1500 n/a

Brick 101.6 0.1142 42.80

Concrete 300 0.1538 168.0

Gypsum 19 0.1187 4.602

Insulation 125 4.1667 1.806

Table 2- Constructions.

Light Outside — gypsum — insulation — gypsum — Inside

Heavy O. — brick — ins. — concrete — gypsum — 1.

Sandwich1 O. — brick — air — brick — L.

Sandwich2 O. — brick — air — brick — insulation — I.

Proof 0. — gypsum — ins. — gypsum — conc. — gypsum — brick — air — brick — gypsum — I.
All heavy 0. — gypsum — conc. — gypsum — brick — conc. — brick — gypsum — 1.

To evaluate the accuracy of the DLM, Bode diagrams and time-domain responses were generated. Bode
diagrams represent the relationship between the outputs and the inputs in different frequencies in magnitude and
phase. The Bode diagram of magnitude shows how much the input will be amplified or reduced at the output
location depending on the frequency of the input. The Bode diagram of phase shows the lag between an
oscillation at the input and the corresponding response at the output depending on the frequency of the input, (for
more information about Bode diagrams and frequency response of dynamic systems see [10]).

It was described before that the response of the construction can be studied independently affected only by
outside temperature of only by internal gains. The accuracy of the reduction method presented in this paper has
been tested for both inputs separately. The response (internal temperature) was analysed under outside
temperature (7,), and internal gains (g;). The results are two separate sets of Bode diagrams like the ones in

Figure 5. After that, the accuracy of the models under both inputs was tested in the time domain.
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Figure 5 - Example Bode diagram for the construction named sandwich 2. Input: external temperature (7},) (left pair);

internal gains (g;) (right pair). Solid line: complete model; dashed: DLM; points: LPM obtained with Fraisse’s method.

4 Results and discussion

Figure 5 shows example Bode diagrams comparing the complete model with the DLM and the LPM with
parameters obtained by Fraisse’s methodology. In plots a and ¢ of Figure 5 the system is driven by a sinusoidal
varying outside temperature; in plots b and d by sinusoidal varying internal gain. These bode diagrams were
obtained for every construction. However, for simplicity, the discrepancy in these diagrams has been shown by
the values of the curves at the angular frequency at which the differences between models are largest. For
example Figure 5 shows that Bode diagrams present the maximal differences at 3.14 rad/h for diagram a; two
pair of bars will be shown with values: -97.4 (complete) with -71.3 (DLM) and -97.4 (complete) with -71.3
(Fraisse). That shows that both models are similar for this construction. When representing the plot d, the values
will be shown as two pairs of bars with values: -68.8 (complete) with -71.4 (DLM) at frequency 0.52 rad/hour
and -68.8(complete) with -36.8 at the same frequency. For this case the DLM clearly outperforms Fraisse’s
model and so is shown in the bar diagrams (Figures 6 and 7 construction sandwich 2).

The first response studied in the frequency domain was under outside temperature.
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Figure 6 - Values of magnitude and phase for the three models when using T}, as input. The pairs of bars show the value of
the Bode diagram for the complete and the reduce model (DLM or Fraisse’s) and the angular frequency at which the

maximum difference is found (the angular frequency is in rad/hour).

Figure 6 shows pairs of bars representing the values of the curves in the Bode diagrams at which the
differences between the complete model and the DLM and the Fraisse model were the largest. The plot has been
generated for the six constructions and for magnitude and phase, considering 7, as the input. The number under
the bars represents the angular frequency at which the maximum difference is found.

The first conclusion from Figure 6 is the fact that, in the magnitude plot, the values are large. A magnitude
value of 100dB in the Bode diagram represents a reduction by a factor of 10°. As an example: if the construction
sandwich 2 is considered, it is seen that the value of magnitude at which the maximum difference is found is
around 100 dB. A change of outside temperature of 1 degree, will contribute to a change in internal temperature
in: 10 degrees, what can be considered negligible for a building simulation. Performing the comparison
between the two models (completed and any of the LPM) for the same example (sandwich 2), a change of
temperature in the outside temperature of one degree is translated in a change in inside temperature of 10**’
degrees for the complete model and 107~ degrees for the DLM or Fraisse’s model, this implies an absolute
difference of: 0.000262 degrees for the worst case scenario.

If one considers the construction /ight, as it has the smallest attenuation of the input; 1 degree oscillation at the
angular frequency of Figure 6a will lead to: 10> degrees for the complete model and 107 degrees for
Fraisse’s model in internal temperature, this results in an absolute difference of 0.00730 degrees. Therefore, the
differences seen in these Bode diagrams are substantial, but they occur at frequencies where the response have

been reduced enough to be considered negligible.



The graph in Figure 6a also shows that the models generated with the DLM have in general the same
differences with the complete model as the ones generated with Fraisse’s methodology, only in constructions
sandwich 1, proof and all heavy the model created with Fraisse’s methodology have smaller error than the DLM
(with a difference between the two of: 6.07%, 3.68% and 4.72% respectively). The DLM outperforms the model
created with Fraisse’s method for construction /ight, with the difference between complete and reduced model of
27.65% for this method and 10.91% for the DLM.

Figure 6b shows the values of the bode plot of phase at which the differences were the largest. As in Figure
6a, the deviations for both Fraisse’s and the DLM with respect to the complete model are similar. The only
construction that produces a significant difference is light. For this construction the DLM shows a smallest
maximum difference with the complete model than the model created with Fraisse’s methodology. However, it
can be seen that for constructions Sandwich 2, proof and all heavy, Fraisse’s model is slightly better than the
DLM, with relative improvement over the DLM of 9.75%, 2.57% and 1.28% respectively over the complete
model. The difference between the two in heavy and sandwich I are negligible and for /ight, the DLM is an
18%closer to the complete model than Fraisse’s model. The impact of these discrepancies in real simulation
(time-domain) will be studied further in this section.

Figure 6 shows that the differences in the Bode diagrams of the complete and the reduced models can be
large. However, the maximum differences are found at points where the input has been reduced largely. It will be
shown that because of this differences happening when the inputs are negligible, the reduced models perform

well despite their limitations.
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Figure 7 - Values of magnitude and phase for the three models when using g; as input. The pairs of bars show the value of
the Bode diagram for the complete and the reduce model (DLM or Fraisse’s) and the angular frequency at which the

maximum difference is found (the angular frequency is in rad/hour).



The graph in Figure 7 shows the values of the curves of the Bode diagrams at which the differences between
the three models were largest. The DLM equals or outperforms Fraisse’s model in almost all constructions.
Although the order of the magnitude plot (Figure 7b) implies a reduction of the input as high as the one shown
by Figure 6a, one should consider that the input for this graphs (internal gains) has variations that are normally
between one to two orders of magnitude larger than variations in outside temperature (see the profile of realistic
gains and outside temperature in Figure 8).

Under gains, the magnitude bode diagrams of the DLM are similar to those of the complete model. The
reduced model generated with Fraisse’s method outperform the DLM in constructions seavy and sandwich 1 by
a small amount (1.53% and 2.62% respectively). The Fraisse method works well for most constructions in
magnitude. However, the error for construction Sandwich 2 is larger than in any other with a 13.5% deviation.

Figure 7b shows the value of the Bode diagrams where the largest differences are found between models.
Constructions /ight and sandwich 2 show a substantial difference between the complete model and Fraisse’s
model, the difference is smaller than the difference between the complete model and the DLM. For constructions
heavy, sandwichl, proof and all heavy, the reduced models are not able to follow accurately the complete model
and that is shown in substantial differences in the Bode diagrams of the reduced and the complete models.
Although both models show substantial differences the DLM outperform the Fraisse’s model in constructions
proof and all heavy.

After comparing the discrepancies in the frequency domain, three periods of 48 hours have been simulated in
the time domain, to show the implication of the disparities in the bode diagrams are in the time-domain response.
The three periods are from 100 to 148 hours, from 2000 to 2048 hours and from 4000 to 4048 hours with this we
aim to visualise the response in winter, spring and summer to show the accuracy of the models for three different
periods of weather. This is relevant because the resistances taken in the models based in RC-networks to
represent convection and radiation were fixed, and we know that those will take different values depending on
the weather conditions. The constructions were used to create a simplistic building model consisting on a box of
10x10x5m that was simulated with the outside temperature given by a weather file of London [21] and a
modulating realistic gain (see Figure 8). With this, it is possible to visualise the effect of the discrepancies in the

Bode diagrams (previously shown) in the simulations carried out in the time domain.
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Figure 8 - Inputs of the dynamic models. Outside temperature and heat flow for three 48 hours periods in winter, spring

and summer.

A series of figures have been generated with the temporal responses from the simulations described in the

previous paragraph. However, to reduce the number of figures, only the most significant have been included in



the paper. In these simulations, the response using EnergyPlus was included as a reference. The starting
temperature for the dynamic simulation has been adjusted to be the same as the one in the EnergyPlus
simulation. Three periods of 48 hours in winter spring and summer has been selected to show the accuracy of the
different models.

The bar diagrams in Figure 6 and 7 show little difference in the frequency domain between the models
(complete, DLM, Fraisse’s) for the construction /ight. Figure 9 illustrates the similarity of the responses of the

different models in the time domain.
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Figure 9 - Temporal response for the model when using that use the construction "Light".

The internal temperature of the construction /ight under the input in Figure 8 is shown in Figure 9. The
responses of the three models and EnergyPlus are in general similar. It should be noted that Fraisse’s model
seems to over predict the response slightly. This difference is particularly noticeable around the periods 2025-
2035 hours and 4045-4048 hours. These differences could be related to the significant difference found in Figure
7 in phase for this construction, but in general the differences are small.

Similar to Figure 9 were the plots of the responses of the three models representing constructions seavy and
sandwich 1. In the three plots, there is a clear difference between the output of EnergyPlus and the outputs of any
of the models based in RC-networks. This shows that the biggest lack of accuracy in these cases is introduced by
phenomena that are not taken into account in the models based in RC-networks (non-linear phenomena such as
radiation and convection). However, the response of the models based in RC-networks is similar despite the fact
that there are small differences in the Bode diagrams of these construction. For the first three constructions, the
internal gains seem to have the same effect in the three models as there are no clear differences with respect to
the heating cycles. Although some differences were observed in the frequency domain of the three models
representing these constructions, the discrepancies seem not to influence in the temporal response of the models

greatly.
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Figure 10 - Temporal response for the model when using construction "Sandwich 2".

The temporal response of sandwich 2 has been shown in Figure 10. The response of the models in this case
highlights a higher accuracy of the DLM compared with Fraisse’s model. This lack of accuracy seems to be
particularly visible in the heating cycles. This is because of the lack of accuracy of the construction under gains
using the Fraisse methodology. As shown by Figure 7, this construction shows the highest difference between
complete and Fraisse’s model for phase under g;. The angular frequency at which the highest difference is found
is one of the lowest at 0.52 rad/hour (close to the angular frequency for the daily cycle: 0.26 rad/hour), making

this difference in the Bode diagram more influential in the time domain under realistic inputs.
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Figure 11 - Temporal response for the model when using construction "Proof".
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Figure 12 - Temporal response for the model when using construction "All heavy”.



Figure 11 and Figure 12 show the temporal response to the constructions proof and all heavy. The differences
from the Bode diagrams predict an overestimation of the effect of the heating cycles in the internal temperature
for construction proof, and all heavy using the model obtained with Fraisse’s method. The differences between
the Bode diagrams are found at low angular frequencies in the case of the model generated with Fraisse’s
methodology (0.072 rad/ hour and 0.25 rad/hour for proof and all heavy respectively), this implies a lack of
accuracy in the representation of the internal temperature under the heating cycles, the shape of the curve that
represents the internal temperature in these two cases is inaccurate using Fraisse’s model. The DLMs for these
two constructions are accurate when compared with the complete model; this improvement in accuracy under
internal gains is much larger than the reduction of accuracy of the models under outside temperature (see Figure
6). The response of the DLM is very accurate in the construction proof. However, the DLM for the construction
all heavy seems to lose accuracy in the third period (summer) and the outputs becomes as inaccurate as the
output from Fraisse’s model, although the DLM outperforms Fraisse’s model for winter and spring. This lack of
accuracy in this specific period shows a lack of consistency in the accuracy of the DLM, although it is not seen

that the DLM produce a response in the time domain that is worse than a response from Fraisse’s model.

5 Conclusions

This work shows the possibility of reducing complex thermal networks representing multi-layered
constructions to a second order dynamic model by the application of a very simple set of rules. The method has
been conceived to generate models that have the highest accuracy under the normal operation of buildings i.e.
generating an accurate response under outside temperature and internal gains.

The models obtained with this methodology have been studied, in the frequency domain, and in the time
domain. All models have been compared with the alternative found in the literature [22] to verify the advantages
of the proposed methodology. To check the accuracy of the models four constructions have been defined similar
to those used in real buildings; also, two complex constructions have been generated to check how scalable the
methodologies are.

The reduced models (the one presented in this paper and the alternative found in the literature) are able to
represent the complete models (truly representing all the layers of the construction) well in most cases. However,
the methodology found in the literature [16] can generate outputs that are not accurate enough when used to
model some of the example constructions.

The DLM, generates outputs in the time domain that equals or outperform in accuracy the models created
with Fraisse’s methodology. This is particularly the case when the constructions have a large number of layers or
substantial levels of intermediate insulation. This shows that the scalability of Fraisse’s method is poor, and that
walls with intermediate insulation (that might become more common due to energy efficiency measures) should
not be represented with these models.

The studies in the frequency response of the models of the partitions are useful to understand the accuracy of
the models, especially considering the accuracy of the models at frequencies close to the frequency equivalent to
the daily cycle. The cyclical nature of the conditions in a building (such as outside temperature and gains) makes
it very important to generate models which are accurate for these specific frequencies (as was done by [22]).The

method presented shows that giving importance to the accuracy of the models at those frequencies is more



relevant than calculating transfer coefficients that are “blind” to the importance of each frequency in a building
simulation.

The methodology presented here fixed the model to be accurate for the internal gains first, and this estimates
the value of the rest of the components to make it accurate for outside temperature. This has been seen to be
favourable, and produce good results, especially when constructions are more complex or have more insulation.
Due to the general trend of building more efficient houses, the methodology presented in this paper should be
adopted for obtaining reduced models of multi-layered constructions to secure more accurate results.

The need to accurately model the dynamic behaviour of the constructions makes up a significant proportion of
the computational time in a whole-building simulation; being able to reduce this computational time will allow
models that run multiple representations of a design, or of driving forces, to be completed more rapidly; for
example in automatic optimisation algorithms [23].

Summarising, the methodology presented in this paper:

e Proofs that second order linear LPMs can represent complex multi-layered constructions (tested with
up to nine layers in this paper).

e  Shows that a range of frequencies can be found that will delimit most of the harmonics obtained after
applying an FFT to the outside temperature and the internal gains of buildings.

e Shows that a method that takes into account the operational conditions of buildings is more accurate
than using transfer coefficients to reduce the model.

e Shows that a simple set of analytic rules is enough to define a LPM of a construction.

e  Shows that producing a LPM that is accurate in representing the effect of internal gains in the

internal temperature is important for the overall accuracy of the model.

6 Acknowledgement

Alfonso P. Ramallo Gonzalez would like to thank the Wates Family Enterprise Trust and Matthew E. Eames
would like to thank the EPSRC (grant ref EP/J002380/1) for their support.



7 References

1. DECC, Digest of United Kingdom Energy Statistics, 2011, Department of Energy and
Climate Change: London.

2. Boardman, B., Home truths: A low-carbon strategy to reduce UK housing emissions by
80% by 2050, U.o. Oxford, Editor 2007, University of Oxford's Environmental Change
Institute: Oxford.

3. Crawley, D.B,, et al., Contrasting the capabilities of building energy performance
simulation programs. Building and Environment, 2008. 43(4): p. 661-673.

4. Magnier, L. and F. Haghighat, Multiobjective optimization of building design using
TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Building and
Environment, 2010. 45(3): p. 739-746.

5. Coley, D.A. and S. Schukat, Low-energy design: combining computer-based optimisation
and human judgement. Building and Environment, 2002. 37(12): p. 1241-1247.

6. Kéampf, J.H. and D. Robinson, 4 hybrid CMA-ES and HDE optimisation algorithm with
application to solar energy potential. Applied Soft Computing, 2009. 9(2): p. 738-745.

7. Kershaw, T., M. Eames, and D. Coley, Assessing the risk of climate change for buildings:
A comparison between multi-year and probabilistic reference year simulations. Building
and Environment, 2011. 46(6): p. 1303-1308.

8. Clarke, J., Energy Simulation in Building Design2001: Taylor & Francis.

9. Balcomb, J.D., J.C. Hedstrom, and R.D. Mcfarland, Simulation Analysis of Passive Solar
Heated Buildings - Preliminary-Results. Solar Energy, 1977. 19(3): p. 277-282.

10. Ogata, K., Modern Control Engineering2002: Prentice Hall.

11. Barbaro, S., C. Giaconia, and A. Orioli, Analysis of the accuracy in modelling of transient
heat conduction in plane slabs. Building and Environment, 1986. 21(2): p. 81-87.

12. Coley, D.A. and J.M. Penman, 2nd-Order System-Identification in the Thermal Response
of Real Buildings .2. Recursive Formulation for Online Building Energy Management and
Control. Building and Environment, 1992. 27(3): p. 269-277.

13. Mathews, E.H., P.G. Richards, and C. Lombard, 4 First-Order Thermal-Model for
Building Design. Energy and Buildings, 1994. 21(2): p. 133-145.

14. Gouda, M.M., S. Danaher, and C.P. Underwood, Low-order model for the simulation of a
building and its heating system. Building Services Engineering Research and Technology,
2000. 21(3): p. 199-208.

15. Xu, X.H. and S.W. Wang, Optimal simplified thermal models of building envelope based
on frequency domain regression using genetic algorithm. Energy and Buildings, 2007.
39(5): p. 525-536.

16. Fraisse, G., et al., Development of a simplified and accurate building model based on
electrical analogy. Energy and Buildings, 2002. 34(10): p. 1017-1031.

17. Gouda, M.M., S. Danaher, and C.P. Underwood, Building thermal model reduction using
nonlinear constrained optimization. Building and Environment, 2002. 37(12): p. 1255-
1265.

18. Shannon, C.E., Communication in the presence of noise (Reprinted from the Proceedings
of the IRE, vol 37, pg 10-21, 1949). Proceedings of the Ieee, 1998. 86(2): p. 447-457.

19. Lorenz, F. and G. Masy, Methode d'evaluation de l'economie d'energie apportee par
l'intermittence de chauffage dans les batiments. Traitment par differences finies d'un
model a deux constantes de temps., 1982 (in French), Faculte des Sciences Appliquees,
University of Liege.

20. Goyal, S. and P. Barooah. 4 Method for model-reduction of nonlinear building thermal
dynamics. in American Control Conference (ACC), 2011.2011.



21.DoE, London-Gatwick, weather datafile, U.S.D.o. Energy, Editor 2011,
http://apps|.eere.energy.gov/buildings/energyplus/cfm/weather data3.cfm/region=6_euro
pe_wmo_region_6/country=GBR/cname=United%20Kingdom.

22.Tindale, A., Third-order lumped-parameter simulation method. Building Services
Engineering Research and Technology, 1993. 14(3): p. 87-97.

23. Peippo, K., P.D. Lund, and E. Vartiainen, Multivariate optimization of design trade-offs
for solar low energy buildings. Energy and Buildings, 1999. 29(2): p. 189-205.



http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=6_europe_wmo_region_6/country=GBR/cname=United Kingdom
http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=6_europe_wmo_region_6/country=GBR/cname=United Kingdom

	1 Introduction
	2 Method
	2.1 Dynamic response of constructions: Range of relevant frequencies
	2.2 Topology of the LPM
	2.3 The Dominant Layer Lumped Parameter Model
	2.4 Summary of the DLM

	3 Validation
	4 Results and discussion
	5 Conclusions
	6 Acknowledgement
	7 References

