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Objectives: 1	

This study identified the difference in energy expenditure and substrate 2	

utilization of patients during and upon liberation from mechanical ventilation.   3	

 4	

Methods: 5	

Patients under intensive care who were diagnosed with septic shock and 6	

mechanical ventilation-dependent were recruited.  Indirect calorimetry 7	

measurements were performed during and upon liberation from mechanical 8	

ventilation.   9	

 10	

Results:  11	

Thirty-five patients were recruited (20 males and 15 females; mean age 69 ±10 12	

years).  Measured energy expenditures during ventilation and upon liberation 13	

were 2090 ±489 kcal·d-1 and 1910 ±579 kcal·d-1, respectively (p<0.05). 14	

Energy intake was provided at 1148 ±495 kcal·d-1 and differed significantly 15	

from all measured energy expenditures (p<0.05). Mean carbohydrate 16	

utilization was 0.17 ±0.09 g·min-1 when patients were on mechanical 17	

ventilation compared to 0.14 ±0.08 g·min-1 upon liberation (p>0.05).  Mean 18	

lipid oxidation was 0.08 ±0.05 g·min-1 during and 0.09±0.07 g·min-1 upon 19	

liberation from mechanical ventilation (p>0.05).   20	

 21	

Conclusions:  22	

Measured energy expenditure was higher during than upon liberation from 23	

mechanical ventilation.  This could be the increase in work of breathing from 24	

the continuous positive pressure support, repeated weaning cycles from 25	

mechanical ventilation and/or the asynchronization between patients’ 26	

respiration and ventilator support.  Future studies should examine whether 27	

more appropriately matching energy expenditure with energy intake would 28	

promote positive health outcomes. 29	

  30	
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Introduction  31	

Critically ill populations are especially susceptible to malnutrition due to their 32	

hypermetabolic state combined with suboptimal nutrition support1,43. Sepsis is 33	

a complex and progressive physiological stress response to infection among 34	

patients, involving multiple organs and high mortality rate2.  The related stress 35	

response changes energy expenditure and can differ during various stages of 36	

sepsis (i.e. highest in complicated sepsis but similar to healthy individuals in 37	

septic shock5,6).  38	

 39	

Energy expenditure is positively related to the duration of sepsis7 and   40	

substrate utilization can also be altered during such critical illness.8,10. In 41	

addition to the clinical condition per se, treatment with mechanical ventilation 42	

support has the capacity to increase a patient’s energy expenditure40. This 43	

observation is particularly apparent amongst patients on partial pressure 44	

support, which requires increased work of breathing to reach the sensitivity 45	

threshold that triggers the ventilator to complete the respiration36.  46	

 47	

In this study, the focus was the change in energy expenditure during 48	

liberation, defined as cessation of any pressure support from the ventilator.  A 49	

common technique in intensive care unit is to gradually liberate patients from 50	

mechanical ventilation using a repeated “work” and “rest” cycle.  This cycle 51	

allows respiratory muscles to rest adequately with partial pressure support 52	

from the ventilator so that atrophied respiratory muscles may be strengthened 53	

and self-breathing can begin in a less fatigue state30. However, there is 54	

evidence that energy expenditure may gradually elevate through each “work” 55	

and “rest” cycle30.  Based on the available evidence, we hypothesized that 56	

energy expenditure would vary over time in the process of weaning from 57	

mechanical ventilation to the fully liberated state when pressure support from 58	

the ventilator is entirely withdrawn. 59	

 60	
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I. Methodology 61	

This study complied with the 2013 version of the Declaration of Helsinki and 62	

approval was obtained from the ethics committee of the Kowloon East Cluster 63	

hospitals, Hospital Authority, Hong Kong SAR (approval reference: KC/KE-64	

09-0107/ER-2).   65	

Participant Recruitment 66	

Patients aged 18 and above who were admitted into the intensive care unit 67	

with initial diagnosis of septic shock and mechanical ventilation dependent 68	

were recruited.  Patients must have been hemodynamically stable at the time 69	

of indirect calorimetry measurement.  Patients with significant post-operative 70	

bleeding, major pulmonary complications, under isolation protocol and/or with 71	

comfort care directives were excluded.   72	

 73	

The stature of patients was measured from the crown to the bottom of their 74	

feet in the supine position using a measuring tape.  Body mass was obtained 75	

from either past records, next of kin or by calculating the ideal body weight.  76	

Length of stay, duration on ventilator and APACHEII28 were collected (Table 77	

1).  78	

Indirect Calorimetry 79	

CCM Express29 was selected for indirect calorimetric measurement in this 80	

study.  The connecting circuitry is composed of a DirectConnectTM volume-81	

measuring flow sensor and umbilical, which connects to the terminal and all 82	

expiratory gas from patients directed through DirectConnectTM.   A face-mask 83	

and canopy were not options for measuring devices as patients had either 84	

tracheostomy or endotracheal tube insertion.   85	

 86	

A system calibration on CCM Express is performed according to American 87	

Thoracic Society recommendation using a 3-liter syringe for volume 88	

calibration.  A designated volume of air is introduced by the syringe into the 89	
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flow sensor several times at different flow rates in three separate trials.  CCM 90	

Express utilizes an external gas calibration device for calibration with two 91	

gases; reference gas (21% of gas volume oxygen and nitrogen typical of 92	

atmospheric composition) and calibration gas (12% oxygen, 5% carbon 93	

dioxide and nitrogen similar to atmospheric composition).  An auto-calibration 94	

which includes correcting continuous bias flow was also performed.  Bias flow 95	

minimizes the work of breathing by allowing the patient to tap into a 96	

continuous gas flow rather than initiate flow through a delivery circuit.  The 97	

system is able to differentiate between gas delivery to the patient’s lungs and 98	

gas continuously flowing through the circuit 33.  Measurements from indirect 99	

calorimetry were deemed valid once steady state can be achieved by the 100	

patients20.    	101	

Nutrition support  102	

Nutrition support was the provision of formulated enteral or parenteral 103	

nutrients to appropriate patients for maintaining or restoring nutrition 104	

balance21.  It was provided to this cohort through either tube feedings or oral 105	

diets.  The route of tube feedings was either nasal gastric, nasal jejunal tube or 106	

jejunosotmy.  The rate of feeding was controlled by electric feeding pumps 107	

that dispensed feeding continuously at a fixed rate.  All feeding regimens 108	

remained unchanged pre- and post-indirect calorimetry measurement.  Tube 109	

feedings were withheld 4 hours prior to indirect calorimetry measurement in 110	

order to minimize the influence from thermogenesis of food.   111	

Patients Care-Specific Measurement Protocols 112	

Indirect calorimetry measurements only commenced after 90 minutes 113	

following procedures such as bathing, turning, physiotherapy, change of 114	

ventilator setting, change of dosage of sedatives or inotropes or hemodialysis 115	

with possibility of excess accumulation of bicarbonate in the blood.  116	

Physicians also gradually tapered the level of sedation with a decreased level 117	

of ventilator support. Energy expenditure was measured once during a stable 118	
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ventilator setting (Pre-MEE).  It was measured again after 90 minutes of 119	

liberation or cessation of pressure support from mechanical ventilation (Post-120	

MEE).  The results were deemed valid when the patient did not require 121	

reintubation for at least the following 12 hours.   122	

Automatic Tube Compensation Protocol 123	

Patients were often mechanically ventilated either by tracheostomy or 124	

endotracheal-tube to create an external airway to the lungs.  The endotracheal-125	

tube was used for short-term ventilator support and removed when the patients 126	

are able to wean themselves off mechanical ventilation.  The direct connection 127	

of the endotracheal tube to the circuitry of the indirect calorimetry for 128	

measurement is then no longer available.  Hence, a specific protocol was 129	

developed to accommodate the measurement for patients who utilized 130	

endotracheal tube for mechanical ventilation.  Automatic Tube Compensation 131	

(ATC) mode in mechanical ventilators relieves the pressure imposed by the 132	

endotracheal-tube inside the airway and its subsequent impact on work of 133	

breathing.  This ATC protocol allowed the cohort to retain the endotracheal 134	

tube for connecting to the indirect calorimeter circuitry.  The setting of the 135	

ventilator was adjusted to supply only oxygen without pressure support to 136	

simulate self-breathing16.  Indirect calorimetric measurements were performed 137	

after 90 minutes of cessation of pressure support for proper acclimatization 138	

and patients were then extubated after the measurement.  Data were again 139	

deemed valid when patients did not require reintubation for the next 12 hours. 140	

Modification In Resting Energy Expenditure and Substrate Utilization 141	

Calculation 142	

The indirect calorimeter automatically determined the concentration of oxygen 143	

consumed and carbon dioxide produced by patients and data were converted 144	

into energy expenditure (kcal·d-1)14 with carbohydrate utilization and lipid 145	

oxidation were then determined based on the respiratory exchange ratio13. 146	

Urinary nitrogen was not collected in this cohort because of practical 147	
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limitations in laboratory capacity.  Research indicated that there was only 1% 148	

of error for every 12.3% of total calories metabolized from protein and thus, 149	

the equation could be simplified by excluding urinary nitrogen14.  150	

111
2

1
2 min1400)min17.2)(min106.1()min914.3( ×××+× daygmnLVCOLVO  151	

Statistical Analysis 152	

All statistical analysis was performed by EXCEL 2010 version 12.0 153	

(Microsoft Inc.).  Mean values and standard deviation were used to express 154	

descriptive statistics.  Paired-t tests were used to examine mean differences 155	

between during and following liberation from mechanical ventilation in 156	

energy expenditure (pre-MEE vs post-MEE), actual energy consumption 157	

(KCAL), oxygen consumption ( 2OV ), carbon dioxide production ( 2OCV ) and 158	

substrate oxidation.  Spearman’s correlation coefficient was used to assess the 159	

relationship among variables and significance accepted at p≤0.05.  Only 160	

correlations with ‘good’ agreement (i.e r≥0.7) were reported.  Variability of 161	

data was expressed as standard deviation.  162	

 163	

Results 164	

There were originally 37 patients in the cohort and 2 patients terminated their 165	

indirect calorimetry measurements prematurely due to post-operative seizures, 166	

persistent restlessness and/or irritation during measurement. Thirty-three 167	

patients received actual calories from tube feeding, one patient did not receive 168	

any nutrition support and the remaining one was on oral diet during entire 169	

study period.  Disease conditions of the cohort included:   170	

• Central Nervous System (CNS) Infection 171	

• Status epilepticus with sepsis 172	

• Acute cholecystitis 173	

• Type I respiratory failure and septic shock 174	

• Herpes encephalitis 175	
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• Hospital-acquired pneumonia 176	

• Pancreatitis and septic shock 177	

• Urosepsis 178	

• Perforated Peptic Ulcer 179	

• Community-acquired pneumonia 180	

• Parapharyngeal abscess and pneumonia 181	

• Retropharyngeal abscess 182	

• Liver abscess 183	

• Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia 184	

• Neck abscess, right pneumothorax 185	

• Pancreatitis with retroperitoneal collection 186	

• Sepsis 187	

• Septic shock and acute renal failure 188	

• Appendicitis and gangrene 189	

• Cholangitis, septic shock and multi-organ failure (MOF) 190	

• Ischemic gangrenous large bowel 191	

• Brochopneumonia 192	

• Acute cholecystitis with liver abscess and septic shock 193	

• Necrotizing fasciitis, septic shock with amputation  194	

• Severe Community-acquired pneumonia 195	

• Necrotizing fasciitis 196	

• Hip implant infection  197	

• Severe pneumonia with respiratory failure  198	

• Klesbsiella septicemia with meningitis 199	

• Retropharyngeal abscess 200	

• Acute cholecystitis with pneumonia  201	

• Necrotizing fasciitis with septic shock 202	

 203	

Measured energy expenditure, actual calories received, oxygen consumption 204	
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and carbon dioxide production during and upon liberation from mechanical 205	

ventilation were all statistically different (Table 2).  Measured energy 206	

expenditure during mechanical ventilation was 9% higher than without (Figure 207	

1) and the difference was statistically significant (Table 2).  The range of 208	

PREMEE was 1299 to 3115 kilocalories and POSTMEE was 882 to 3290 209	

kilocalories (Figure 2).   The actual calories received met 55% of measured 210	

energy expenditure during ventilatory support and 59% upon liberation from 211	

ventilators (Figure 1). Furthermore, 94% (n=33) of patients during mechanical 212	

ventilation and 77% (n=27) of them upon liberation from ventilator support 213	

received actual calories that were less than their measured energy expenditures.  214	

 215	
Mean respiratory exchange ratio (mean values of individual patient) shown in 216	

Figure 3 was higher during than upon liberation from mechanical ventilation 217	

but it was not statistically different (Table 2). The range of respiratory 218	

exchange ratios during mechanical ventilation was 0.74 to 1.32 and without 219	

ventilatory support was 0.66 to 1.22 (Figure 3)20. 	220	

 221	

The cohort showed 11% higher oxygen consumption (Figure 4) during than 222	

upon liberation from mechanical ventilation (Table 2).  The minimum oxygen 223	

consumption during mechanical ventilation was 0.180 l/min and maximum 224	

was 0.478 l/min, whereas without ventilatory support the range was 0.128 225	

l/min to 0.514 l/min.  Mean carbon dioxide production was 13% higher during 226	

mechanical ventilation than without ventilatory support (Table 2).  Carbon 227	

dioxide production in patients on mechanical ventilation ranged from 0.184 228	

l/min to 0.406 l/min and upon liberation from mechanical ventilation was 229	

0.113 l/min to 0.365 l/min (Figure 5).  230	

 231	

Figure 6 illustrates substrate utilization among the cohort. Carbohydrate 232	

utilization during mechanical ventilation was 238% of lipid oxidation whereas 233	

it was 167% upon liberation from ventilator support.  Minimum carbohydrate 234	
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utilization was 0.05 g/min and maximum was 0.49 g/min during mechanical 235	

ventilation and 0.00 g/min to 0.38 g/min upon liberation from ventilation 236	

(Figure 7).  Minimum lipid oxidation was 0.00 g/min and maximum was 0.20 237	

g/min during mechanical ventilation and 0.00 g/min to 0.25 g/min upon 238	

liberation from ventilation (Figure 8).   239	

The Spearman correlation coefficients (Table 3) demonstrated strong positive 240	

relationship in which elevated oxygen production was observed with an 241	

increase in lipid utilization (r =0.74) both during and upon liberation from 242	

mechanical ventilation (r=0.82).  Similar correlation was found in carbon 243	

dioxide production that also increased with higher lipid utilization upon 244	

liberation from mechanical ventilation (r=0.91).  Furthermore, the correlation 245	

was moderately strong in higher actual calories received with longer duration 246	

of mechanical ventilation support (r=0.55) and length of stay (r=0.41). 247	

Discussion 248	

Healthy people seldom realize the effort to breathe because it is a normal 249	

mechanical process and requires minimal metabolic effort in healthy 250	

individuals.  Respiratory muscles including diaphragm and intercostal muscles 251	

between the ribcage are actively engaged in the ventilation mechanism and 252	

diaphragmatic fatigue contributes to respiratory failure.  The positive 253	

relationship between use of various mode of mechanical ventilation including 254	

total and partial pressure support and rate of diaphragmatic atrophy has been 255	

identified among critically ill patients15,44 and the current study documents 256	

changes in energy expenditure when liberated from mechanical ventilation. 257	

The current cohort exhibited significant negative energy balance both during 258	

and upon liberation from mechanical ventilation.  Underfeeding is common4 in 259	

intensive care because of conservative practice and frequent interruption by 260	

complications, procedures and examinations. A structured nutrition support 261	

protocol or algorithm could provide guidance for clinicians to prescribe 262	

nutrition support appropriately, heighten clinicians’ awareness to minimize 263	
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negative energy balance and reduce potential cumulative energy deficit with 264	

prolonged patients’ length of stay. 265	

 266	

In the present study, the absolute mass of carbohydrate utilized was higher 267	

than lipids oxidized with and without mechanical ventilation, so carbohydrate 268	

metabolism undoubtedly plays an important role among critically ill patients. 269	

However, when considering substrate selection data collected in this 270	

population, factors such as disruption in heart rate and adjustment of ventilator 271	

setting should be considered as these can alter minute ventilation and 272	

temporarily influence carbon dioxide production which can lead to errors.  273	

Similar to high-intensity exercise 18, potentially high rates of glycolytic flux 274	

and glycogenolysis during critical illness can confound standard estimates 275	

based on exclusive oxidation of glucose.  276	

 277	

The limitation of using critically ill patients in clinical trials remains difficult 278	

and requires a lot of technical considerations because of the heterogeneous 279	

nature of the cohort. Recruitment criteria of critically ill patients in most 280	

studies are usually by location and seldom a specific disease and there are 281	

clinical conditions to the formation of syndromes rather than well-defined 282	

diagnosis. Moreover, patients whose disease progression warrants admission 283	

to the intensive care can be in their late and more severe stages.   Nonetheless, 284	

increased understanding of the risk factors of selected conditions and 285	

limitations of the clinical syndrome will allow appropriate patients to be 286	

selected for specific trials23. 287	

 288	

Additional challenges and limitation in this study include variability in 289	

sedation management and body mass. Firstly, sedation prescription was 290	

protocol-driven and levels of sedation were similar among the cohort and 291	

throughout the study; the lower level of sedation upon weaning from 292	

mechanical ventilation in this study cannot therefore account for higher energy 293	



	 	 	 11	
	

expenditure than during ventilatory support.  In terms of metabolically active 294	

muscle mass, this can directly predict energy expenditure yet could not be 295	

directly ascertained or assumed stable in this study due to the addition/removal 296	

of resuscitation fluid and/or loss of muscle mass with prolong total bed rest.  297	

Finally, duration in intensive care represents a major confounding variable 298	

given that caloric intake was positively associated with how long a patient 299	

remained on the ward. The length of stay in intensive care was longer than 300	

duration on mechanical ventilation because patients would usually be weaned 301	

from mechanical ventilation prior to transfer to general care wards (Table 1).   302	

 303	

Conclusion 304	

This study provides novel insight regarding the metabolic profile of critically 305	

ill patients during mechanical ventilation and in the transition towards 306	

liberation.  The observed responses in patients’ respiration and ventilatory 307	

cycles hold potential implications for nutritional support with a view to 308	

improved clinical outcomes. The economic benefits of accurate metabolic 309	

profiling amongst critically ill populations can bring positive impact on 310	

healthcare savings33,38 and should form the focus of future studies. 311	

 312	

  313	
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