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Abstract 

A novel method for modelling the amount of hydrogen in high-pressure tanks 

containing varying quantities of adsorbent has been extended to allow calculation of 

the energy density and the specific energy of the storage system. An example 

calculation, using TE7 activated carbon beads as an adsorbent, has been conducted 

over a range of temperatures and compared to alternative energy storage methods, 

including conventional high-pressure methods. The results indicate that adsorption of 

hydrogen results in a higher energy density than direct compression up to a certain 

pressure, which is dependent on the temperature.  

A preliminary comparison shows adsorbed hydrogen to be superior to battery storage 

technologies for both energy density and specific energy stored, although further 

calculations are required to expand the system boundaries used. Adsorbed hydrogen 

in a range of materials resulted in much lower energy density and specific energy than 

standard jet fuels such as kerosene, proving that advancement in the materials is 

required, especially intrinsic hydrogen storage capacity, before adsorption becomes a 

competitive energy storage technology for aviation. 
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Nomenclature 

Symbol Unit Definition 

VC  cm3 Container volume 

VB cm3 Bulk hydrogen volume 

VD cm3 Displaced volume 

VT cm3 Total adsorbate volume 

VF cm3 Volume of tank containing adsorbent 

VBI cm3 Volume of bulk hydrogen in the interstitial sites 

VBC cm3 Volume of bulk hydrogen in the tank containing no 

adsorbent 

VBP cm3 Volume of bulk hydrogen in the pores of the adsorbent 

VS cm3 Skeletal volume of the adsorbent 

VP cm3 Open pore volume 

VA cm3 Adsorbate volume 

f - Fill factor 

x - Packing factor of adsorbent 

ΘA - Fractional filling of the pore 

vP cm3 g-1 Pore volume per unit mass of adsorbent 

mS g Mass of the adsorbent 

mH g Mass of hydrogen 

ρB g cm-3 Density of bulk hydrogen 

ρA g cm-3 Density of adsorbate 

ρS g cm-3 Skeletal density 

EH MJ Energy available 

mW g Mass of the system 

mS g Mass of the adsorbent 

b MPa-1 Affinity parameter 
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c - Heterogeneity parameter 

Z - Compressibility factor 

P MPa Pressure 

PB MPa Breakeven pressure 

M g mol-1 Molar mass 

R cm3 MPa K-1 

mol-1 

Gas constant 

T K Temperature 
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1. Introduction 

Hydrogen shows great potential as an energy store as it can be produced sustainably, 

it has the highest energy per unit mass of any chemical fuel, it is abundant in water and 

biomass, and only water is produced as a by-product when releasing the stored 

energy. However, hydrogen has a very low energy density per unit volume which is 

problematic when using it as an energy vector. To make hydrogen commercially viable 

the volumetric density (i.e. its mass per unit volume) needs to be vastly increased, 

particularly for applications where low mass and low volumes are required, such as in 

aviation. Physisorption of molecular hydrogen (H2) in nanoporous materials is one 

promising method of doing this and may improve on conventional storage methods, 

such as liquid H2 at low temperature (< 33 K) or high pressure gas (up to 70 MPa). 

Adsorptive storage is beneficial over chemisorption (storing hydrogen chemically 

bonded to other elements) in that it does not require large energy inputs to recover the 

stored hydrogen from the adsorbent, due to the relatively weak interaction between the 

adsorbent and hydrogen. However, because of these weak interactions, low 

temperatures are required in order to store large quantities of hydrogen. 

Aviation is one industry within which emissions must be rapidly reduced. Using 

conventional jet fuel such as kerosene results in the production of 2-3 % of all global 

carbon emissions [1], as well as releasing short lived gases directly into the upper 

atmosphere, which results in an increase in the radiative forcing values of these gases 

and so causing large impacts on global warming [2-4]. 

Hydrogen has the potential to be a cleaner, safer fuel, whilst improving performance, 

lowering direct operating costs, and having a more favourable availability and 

economic impact compared to current jet fuels [5, 6]. There have been various 

hydrogen prototype planes such as the Tupolev Tu-155 [7], the Antares DLR-H2 [8], 

the Boeing phantom eye [9] and the ENFICA-FC Rapid 200-FC [10], all of which have 
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utilised the current conventional hydrogen storage methods of compression or 

liquefaction.  

Physisorption of hydrogen has not been used in aircraft to date due to the immaturity of 

the technology. The potential issue with the use of physisorption of hydrogen over 

direct compression is the additional requirement of the adsorbent in the tank, as aircraft 

require very low weight technology [11]. 

In order for the benefits of adsorptive storage of hydrogen to be quantified, there is a 

need for a method for calculating the amount of energy stored via hydrogen per unit 

volume and per unit mass of the system. This equation has been derived, from which 

the comparison between compressed hydrogen and physisorbed hydrogen can be 

made, and additionally can be loosely compared to other potential aircraft propulsion 

systems including kerosene, lithium-ion batteries and lead-acid batteries.  

2. Materials and Methods 

All materials and methods used in this work are equivalent to that in our previous work 

[12]. 

3. Theory and calculation 

3.1. The new model for a tank filled with an adsorbent  

We have previously derived a method for comparing the amount of hydrogen stored in 

a set volume when using varying quantities of adsorbent, which can be depicted as a 

design curve [13]. These equations have been altered to account for a density variation 

within the pores of nanoporous materials, as described in our previous work [12], which 

we believe to be a more accurate representation of the hydrogen in the pores. The 

development of this model presented here includes a factor to account for the 

hydrogen in the intergranular space, as observed in Fig. 1, where VC represents the 

volume of the container, VB is the volume of the bulk hydrogen, VD is the displaced 
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volume, VT is the total volume of the adsorbent, and VF is the volume of the tank 

containing the adsorbent (VT plus intergranular volume). The bulk hydrogen 

contribution can be separated into the following volumes: VBI is the volume of the bulk 

hydrogen in the interstitial sites between the adsorbent, VBC is the volume of the bulk 

hydrogen in the section of the container containing no adsorbent and VBP is the volume 

of the bulk hydrogen in the pores of the adsorbent. The skeletal volume of the 

adsorbent including the closed pores is VS, the open pore volume is VP, and the volume 

of the adsorbate is VA. f is the fill factor indicating the ratio of the volume of the tank 

containing the adsorbent to the total volume of the tank, x is the packing factor of the 

adsorbent, indicating the ratio of the total volume of the adsorbent to the total volume of 

the adsorbent plus intergranular space, ΘA is the fractional filling of the pore i.e. the 

ratio of the adsorbate volume to the pore volume, and vP is the pore volume per unit 

mass of the adsorbent, mS, after degassing. 

Fig. 1 – Representation of the nomenclature used to calculate the amount of hydrogen in a tank 

containing adsorbent. 

Using this nomenclature, the following derivation for the total amount of hydrogen 

within a tank containing adsorbent is achieved, 

 H B B A A ρ ρm V V   (1) 

where mH is the mass of hydrogen, ρB is the density of bulk hydrogen and ρA is the 

density of the adsorbate. 

 H B BC B BI B BP A A ρ ρ ρ ρm V V V V     (1a) 

 H B C F B F T B P A A A ρ ( ) ρ ( ) ρ ( ) ρm V V V V V V V        (1b) 

 H B C B C C B P A A A ρ (1 ) ρ ( ) ρ ( ) ρm V f fV xfV V V V        (1c) 

 H B C B P S A A P S A ρ (1 ) ρ (1 Θ ) ρ Θm V fx v m v m      (1d) 
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where vP is the specific pore volume. The mass of the adsorbent can be varied and so 

the following substitution is required  

 S S Sρm V  (2) 

where ρS is the skeletal density  

 S S T Pρ ( )m V V   (2a) 

 S S T P Sρ ( )m V v m   (2b) 

Rearranging Eq. (2b) gives 

 T S
S

P S

ρ

1 ρ

V
m

v



 (2c) 

Substituting Eq. (2c) into Eq. (1d) gives  

 T S T S
H B C B P A A P A

P S P S

ρ ρ
 ρ (1 ) ρ (1 Θ ) ρ Θ

1 ρ 1 ρ

V V
m V fx v v

v v
    

 
 (3) 

   P T S
H B C B A A A

P S

ρ
 ρ (1 ) ρ 1 Θ ρ Θ

1 ρ

v V
m V fx

v
    


 (3a) 

   C P S
H B C B A A A

P S

ρ
 ρ (1 ) ρ 1 Θ ρ Θ

1 ρ

xfV v
m V fx

v
    


 (3b) 

3.2. Introducing the design curve per unit volume and per unit mass 

Eq. (3b) gives the total amount of hydrogen in a tank of volume, VC. This can be easily 

rearranged to give the volumetric hydrogen capacity 

     H P S
B B A A A

C P S

ρ
 ρ 1 ρ 1 Θ ρ Θ

1 ρ

m xfv
fx

V v
    


 (4) 

(Note, this only includes the internal volume of the tank, introducing a bias if comparing 

to other systems such as batteries which require no additional tank.) 
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Eq. (4) can be adjusted to calculate the energy available per unit volume instead of the 

quantity of hydrogen available per unit volume, providing an easier comparison with 

other systems such as batteries and kerosene. The energy is accounted as follows, 

assuming the production of H2O(g) and not H2O(l)  

 
   1

2 1

1

2

H O g 241.8 kJ mol
  120 MJ kg  

(  2.016 g mol)

fH

M H







   (5) 

Therefore, a factor of 120 can be used in order to convert Eq. (4) from grams of 

hydrogen per cm3 to mega joules of energy available, EH, per L.  

     H P S
B B A A A

C P S

ρ
1  20 ρ 1 ρ 1 Θ ρ Θ

1 ρ

E xfv
fx

V v

 
     

 
 (6) 

Eq. (3b) can also be adjusted in order to look at the amount of hydrogen stored per unit 

mass of the container, using the internal walls of the tank as the system boundary.  

The mass of the contents of the tank, mW, is W H Sm m m   (7), where mS is the mass 

of the adsorbent and mH is the mass of the hydrogen. The mass of the hydrogen has 

been calculated (Eq. (3b)) and the mass of the adsorbent is given in Eq. (2c). 

Substituting these into Eq. (7) gives 

   C S C P S
W B C B A A A

P S P S

ρ ρ
ρ (1 ) ρ 1 Θ ρ Θ

1 ρ 1 ρ

xfV xfV v
m V fx

v v
     

 
 (7a) 

     C S
W B C P B A P A A

P S

ρ
ρ 1 1 ρ 1 Θ ρ Θ

1 ρ

xfV
m V fx v v

v
     


 (7b) 

Eq. (7b) and Eq. (3b) can be used to observe the amount of hydrogen per unit mass of 

the system 
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  

    

C P S
B C B A A A

H P S

C SW
B C P B A P A A

P S

ρ
ρ (1 ) ρ 1 Θ ρ Θ

1 ρ

ρ
ρ 1 1 ρ 1 Θ ρ Θ

1 ρ

xfV v
V fx

m v

xfVm V fx v v
v

   




    


 (7c) 

Eq. (7c) utilises internal tank walls as the system boundary for the weight and so can 

be used to compare physisorption of hydrogen to direct compression but will not 

account for the different weights of the tanks required for each system, which is 

relevant as there are different types of tanks rated for different pressures. This 

limitation of the system boundary also makes it difficult to compare to other systems 

such as batteries, which do not require heavy tanks. 

As previously reported for the hydrogen per unit volume, Eq. (7c) can be adjusted to 

account for the amount of energy per unit mass as opposed to the amount of hydrogen 

per unit mass 

 

    

    

C P S
B C B A A A

H P S

C SW
B C P B A P A A

P S

ρ
ρ 1 ρ 1 Θ ρ Θ

1 ρ
120

ρ
ρ 1 1 ρ 1 Θ ρ Θ

1 ρ

xfV v
V fx

E v

xfVm V fx v v
v

 
    

  
       

 (8) 

4. Results  

4.1. Adsorption vs. compression 

The TE7 carbon beads were chosen as an example adsorbent due to their low cost, 

availability and use as a previous reference material [14]. The TE7 carbon bead 

isotherms were collected at temperatures of 89, 102, 120 and 150 K, and the Tόth 

isotherm equation was used for the fractional filling of the pore, ΘA [15], 

  
A 1/C

C
Θ

1

bP

bP





, where b is an affinity parameter, C is a heterogeneity parameter, 

and both were estimated using a non-linear fit on the isotherms and allowing them to 

vary with temperature, as shown in our previous work [12, 13]. The adsorbed density, 
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ρA, was also estimated from the fitting but assumed to be constant with temperature, 

although it is known that supercritical adsorbates undergo thermal expansion except 

when near saturation. The bulk density, ρB, was set as    ( ) / ( )B PM ZRT   , where Z 

is a compressibility factor, for which a rational function approximation of the Leachman 

equation of state was used, P is the pressure, R is the gas constant, and T is the 

temperature. F and x are variables, and ρS and vP were determined experimentally. 

Fig. 2 shows the volumetric energy density and specific energy, equivalent to the 

gravimetric energy density, (in a tank of 30 L internal volume) for a variety of 

temperatures, pressures, and amount of adsorbate. Arbitrary values were chosen for f 

and x to give a broad range of quantities of adsorbate; from direct compression of 

hydrogen (f = 0) to a combination of adsorption and direct compression of hydrogen (0 

< f < 1) to complete adsorption of hydrogen (f = 1). 

Fig. 2 – The energy available per unit volume (the energy density) (left) and per unit mass (the 

specific energy) (right) in a tank filled with varying quantities of TE7 carbon beads at different 

temperatures and pressures. The insets show zoomed regions of the same data.  

Fig. 2 shows that for the volumetric energy density, there is a pressure up until which 

adsorption is favoured over compression, and above which compression is favoured 

over adsorption, known as the breakeven pressure, PB.  

Fig. 3 – The breakeven pressures for TE7 carbon beads at varying temperatures. 

As seen in Fig. 3, when observing the volumetric energy density for the TE7 carbon 

beads there is an optimum temperature at which adsorption is favoured up to a higher 

pressure than direct compression, independent of the amount of adsorbent present, 

also observed in our previous work [13].  

When observing the specific energy in Fig. 2, compression is always favoured. 

However, the broader the system boundaries, the higher the pressure that adsorption 

would be favoured over compression. 
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These calculations have also been performed for four other materials; a high surface 

area activated carbon, AX-21, and three metal-organic frameworks; MIL-53, NOTT-101 

and MIL-101, all of which have been used for analysis in our previous work [12]. The 

results of these calculations can be found in the Supplementary Data. When we 

compare the breakeven pressures found for the energy density of each material 

against temperature, we observe that there does not appear to be an obvious trend. 

Fig. 4 – The breakeven pressures for a range of materials. 

For AX-21, MIL-53 and NOTT-101, within the temperature range studied for these 

materials, there appears to be a fairly linear increase in breakeven pressure with 

temperature. MIL-101 and the TE7 carbon beads both deviate from this trend and show 

an optimum temperature for the breakeven pressure.  

Fig. 2, Fig. 3 and Fig. 4 suggest that, provided enough energy per unit volume and per 

unit mass can be stored via adsorption below the breakeven pressures, then 

adsorption is favourable to compression, as it diminishes the energy penalty of the 

storage system by using conditions closer to ambient. However, if more energy is 

required to be stored than is possible via adsorption in a set tank volume, compression 

at higher pressures would be a more successful method. 

4.2. Comparison to alternative aircraft energy systems 

It is very important to note the boundaries that have been used in these systems as 

mentioned in Section 3.2. For both the energy density and specific energy, the internal 

surface of the tank has been used as the system boundary, due to the uncertainty in 

the rest of the system. However, limiting the system to the internal volume of the tank 

does have its drawbacks, specifically in that it limits the accuracy of the comparison to 

other systems. 
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A preliminary comparison between the energy density and specific energy via 

hydrogen storage and alternative energy technologies is shown for the TE7 carbon 

beads at 89 K. 

Fig. 5 – A comparison of potential aviation energy technologies per unit volume (left) and per unit 

mass (right), compared to hydrogen storage in a tank containing varying quantities of TE7 carbon 

beads at 89 K. The insets show zoomed regions of the same data.   

Fig. 5 shows that hydrogen adsorption in TE7 carbon beads at 89 K has a much lower 

energy density and specific energy than kerosene at all pressures calculated. 

Compressed hydrogen has a higher specific energy than kerosene, but a much lower 

energy density. At high pressures, adsorbed hydrogen shows a higher energy density 

and specific energy than both battery technologies, but a complete comparison would 

require accounting for the full storage system. The system boundaries are particularly 

significant when comparing to battery storage, as these require no additional tank, 

making the quantities for adsorbed and compressed systems overrepresented in both 

graphs shown in Fig. 5. 

It is also worth noting that these calculations do not take into account the amount of 

recoverable hydrogen, which can be significantly smaller than the amount of stored 

hydrogen, although this value depends on the conditions (temperature and pressure) at 

which the hydrogen is extracted from the tank. This is yet another bias in the 

calculations as the same issue would not be as important for either compressed 

hydrogen, kerosene or batteries. 

The same trends observed in Fig. 5 are further confirmed in Fig. 6, which depicts the 

comparison of the energy density and specific energy of various energy storage 

technologies. The change in energy density and specific energy when using the 

different adsorbents is fairly insignificant when comparing to other systems such as 

kerosene. 
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Fig. 6 – (Left) The energy density and specific energy of various energy storage technologies. [16-

18]. (Right) zoomed in to various hydrogen adsorption materials at 20 MPa in a tank half filled with 

adsorbent. 

5. Conclusion 

An equation has been successfully derived to calculate the energy density and specific 

energy for the adsorption of hydrogen in a tank containing varying quantities of 

adsorbent at different temperatures and pressures. It has been observed that when 

using this equation to directly compare the adsorption and compression of hydrogen, 

the energy density of hydrogen stored via adsorption is always better than that of 

compression up to a certain pressure, which for the TE7 carbon beads at 150 K is 

approximately 21 MPa. Therefore, for applications where small quantities of stored 

energy are required, adsorption is preferable to compression as it can occur at 

pressures closer to ambient. 

Compression and adsorption of hydrogen are both deemed comparable to battery 

technologies in terms of energy density and specific energy, but cannot yet compete 

with standard jet fuels such as kerosene. For hydrogen to be utilised in aviation, 

materials with a higher hydrogen capacity are required in order to make the energy 

system comparable to current systems.  
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Figure captions 

Fig. 1 – Representation of the nomenclature used to calculate the amount of hydrogen 

in a tank containing adsorbent. 

Fig. 2 – The energy available per unit volume (the energy density) (left) and per unit 

mass (the specific energy) (right) in a tank filled with varying quantities of TE7 carbon 

beads at different temperatures and pressures. The insets show zoomed regions of the 

same data.  

Fig. 3 – The breakeven pressures for TE7 carbon beads at varying temperatures. 

Fig. 4 – The breakeven pressures for a range of materials. 

Fig. 5 – A comparison of potential aviation energy technologies per unit volume (left) 

and per unit mass (right), compared to hydrogen storage in a tank containing varying 

quantities of TE7 carbon beads at 89 K. The insets show zoomed regions of the same 

data.   

Fig. 6 – (Left) The energy density and specific energy of various energy storage 

technologies. (Right) zoomed in to various hydrogen adsorption materials at 20 MPa in 

a tank half filled with adsorbent.  
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Figure 2: 
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Figure 4: 

 

Figure 5: 
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