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Abstract

As the debate on policy responses to climate change gathers pace, there has
been an increasing focus on tools to model national scale energy use and
emission characteristics of UK dwellings. This paper reviews some existing
models and highlights limitations of their common underlying methodologies.
We argue that a radically different, integrated, approach is required to tackle
these challenges and ensure that the modelling remain robust and able to
meet future demands. We suggest that Agent Based Modelling (ABM) is
a suitable candidate modelling paradigm to achieve an integrated modelling
framework. We also present DECarb-ABM (an ABM based implementation
of an existing model, DECarb) with many of the desired properties of such an
integrated framework. The new model is validated against both the existing

model and historical data.
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1. Introduction

It is now widely recognized that climate change is a severe threat with
a projected increase in global average surface temperatures between 1.1°C
and 6.4°C by the end of this century [1]. The UK government is committed
to making deep cuts in carbon emissions to mitigate the impacts of climate
change, especially in the light of higher energy prices and reduced availability
of oil. Under the Climate Act of 2008, every household in the UK will need to
contribute to reducing national carbon emissions by 80% by 2050 from 1990
levels of which 34% would have to be met by 2020 [2]. Given the scale of
cuts, it is likely that most households will need to get quite close to, or even
exceed, this figure as other sectors are unlikely to exceed 80%. This target is
a revision of the 60% target previously proposed by the Royal Commission
on Environmental pollution [3] and the Energy White Paper of 2003 [4].
The UK domestic sector is a major focus for both mitigation and adaptation
strategies because it is currently estimated to emit around 26% of the UK’s
CO9.

Meeting the target requires strategic planning, efficient resource man-
agement and technological development. An important tool to assess the
viability of options are long term demand side scenarios that balance future
climate projections, demographic change and user behaviour. For example,
Natarajan and Levermore recently demonstrated the technical challenges and

opportunities that exist in meeting a 60% emission reduction target by 2050



[5]. This work showed that the potential to decrease emissions to such lev-
els exists under at least three different scenarios, but each requires a major
departure from current policy and practice if the required levels of reduc-
tion are to be achieved. For instance, the Tyndall Centre funded 40% House
approach requires a combination of rapid replacement (i.e. demolition of
inefficient stock to be replaced by more efficient buildings) as well as refur-
bishment of existing dwellings and a good spread of domestic low and zero
carbon technologies [6]. The BRE’s Step Change 2 scenario relies heavily
on prescribing a shift towards heat pumps and biofuel boilers to replace all
current and future heating systems [7]. A third scenario suggested by Natara-
jan and Levermore found that failing the above two strategies, only a heavy
uptake of low and zero carbon technologies (particularly solar PV for elec-
tricity consumption and export) could deliver the necessary cuts [5]. Clearly,
achieving an 80% reduction is likely to pose even greater difficulties.

From the supply side, a major focus of recent work has been the potential
impact of distributed generation [8, 9]. This is likely to propel a shift away
from the current demand-led generation model to a supply-led consumption
model. An important factor in this will be the emergence of a smart grid
that can adapt, smooth and self-heal to account for intermittent generation
and time-variable load peaks and troughs. The domestic sector will play
an important role in this equation through smart metering and smart ap-
pliances. Smart metering works through providing real-time consumption
cost (monetary, energetic and environmental) to occupants with the expec-
tation that they will be able to adopt informed cost-reducing behavioural

changes. At the same time these data will be fed back to the district net-



work operators for load management. Smart appliances could provide even
more fine-grained control (both automated and occupant-mediated) over the
operation of individual appliances in the home for load shaping and shifting.
As smart meters and appliances effectively close the loop between demand
and generation, robust communication between the actors at both ends is
essential. Models will be required that can test the combined effectiveness of
policy measures (pricing mechanisms, technology uptake subsidies, initiatives
for the fuel poor etc) and control systems (smart meters and appliances) on
energy efficiency and carbon reductions.

The purpose of this paper is to set an agenda for rethinking bottom-up UK
domestic energy and carbon models and present a preliminary version of an
agent-based simulation that has the potential to address current challenges.
The paper also examines existing approaches to model domestic energy con-
sumption and carbon emissions (DECCE), discusses their limitations and

looks forward to future challenges.

2. Current models and methods

Given the contribution of domestic sector emissions, considerable effort
has gone into building models that can enable analysis of demand side (gen-
erally technology-led, bottom up) or supply side (generally policy-led, top-
down) changes. It is not within the scope of this paper to go into the detailed
differences between these approaches, especially as these have been covered
elsewhere [10] and more recently in a comprehensive review of bottom-up
residential models [11]. This paper will focus on three current bottom-up

UK models each of which was used to produce one of the three scenarios



described in Section 1. The BRE work uses the BREHOMES model [12]; the
40% House work uses the UK Domestic Carbon Model (UKDCM) [6] and
Natarajan’s work uses the Domestic Energy and Carbon model (DECarb)
[13].

A common, and fundamental, feature of all three models is that although
they were produced for different studies, they share the same energy model
to calculate energy use and carbon emissions: the BRE’'s BREDEM model
[14].  This model has a well-established track record for producing accu-
rate predictions of dwelling energy consumption in the UK. It uses building
physics based algorithms coupled with empirical data to arrive at energy
consumption disaggregated by four end-use types (space heating, hot water
consumption, cooking and lights and appliances). As BREDEM is modu-
lar, some elements can be replaced with more detailed sub-models. To date,
this has mainly been done to replace the lights and appliances sub-model
with the comparatively recent DECADE data [15]. With more work being
undertaken to validate other aspects of the domestic energy mix, such as
the BRE’s analysis of domestic hot water consumption from the 1998 EFUS
survey [16], other parts of the model could also be replaced.

All three models have been successful in answering important questions
on the feasibility of achieving long term carbon emission reductions. BRE-
HOMES is frequently used to inform and justify government policy, UKDCM
was used to produce the 40% House scenario—an important set of policy op-
tions to achieve 60% reductions—and DECarb was used to validate these
approaches independently. However, there are some common limitations to

the capabilities of these models, which we now review.



2.1. Awverage dwellings

Although each model operates at a different level of disaggregation, they
all adopt a common approach by defining an average performance for a num-
ber of dwelling categories that are then scaled up to build a UK-wide picture
of domestic carbon emissions. Natarajan has previously demonstrated that
less disaggregated models will produce results with lower confidence whilst
higher levels of disaggregation produce more accurate results as the averaging
process can skew the individual energy and carbon profiles of dwelling cat-
egories unpredictably [13]. For example, in the case of a scenario developed
using a model with only two ‘notional’ dwellings [17] it was shown that the
expected carbon savings predicted by the author were significantly overesti-
mated [5]. Although DECarb, UKDCM and to a lesser extent BREHOMES
went some way towards lowering such reliance on average performance by pro-
ducing heterogenous stock, they do not solve this problem. A second aspect
of this approach is deciding the granularity of the model. Clearly, a model
with only one or two dwelling categories is too coarse—but how many cate-
gories is too fine? Evidently, this will depend on the granularity of available
data to feed these models. DECarb’s base dataset and structure is directly
informed by the granularity of house condition survey data: 8,064 possible
categories for each of six historic age-bands defined from seven metrics (6
wall construction types, 7 dwelling archetypes, 6 heating systems, 4 climatic
regions and binary values for wall, window and roof insulation). Linear trans-
formations are applied to these categories to produce future age-bands with
8,064 categories each on a decadal basis. Where further categories need to be

defined (for uptake of newer technologies such as photovoltaic panels or solar



hot water heating), they are disaggregated from this basic definition using a
weighted average approach. BREHOMES uses 1,000 categories for its base
dataset but only one composite dwelling for predicting future emissions and
UKDCM produces around 20,000 categories by 2050. Clearly, there needs
to be an approach to validate and harmonize these approaches to obtain a
unified and consistent method that delivers the best mix of detail and ro-
bustness of output. However, matching disaggregation to available data is

complicated by the issue of future datasets, discussed below.

2.2. Future datasets

The government is currently undertaking a review of its English Housing
Survey (EHS) and Energy Follow Up Survey (EFUS) to collect up-to-date
data on energy use in the home [18]. The stated objectives of the new study

are:

“(i) understand, monitor and respond to changing patterns of
energy use in households, including appliance use and wastage
(ii) understand the impact in real homes of installing energy ef-
ficiency measures (iii) understand and improve the actual energy

performance of new homes.” [19]

The UK government (through the Technology Strategy Board, TSB) also
recently awarded funding for 87 exemplar projects through its Retrofit for
The Future call [20]. The projects are designed to test the commercial fea-
sibility and replicability of retrofit measures to achieve an 80% reduction in
carbon emissions from existing housing. The Energy Saving Trust (EST) has

been charged with creating and maintaining a common database of collected



physical and environmental monitoring data from all 87 projects to enable
unified analysis of results. At the time of writing, the TSB has also called for
projects on accelerating the integration of smart meters into ‘smart homes’
and case studies of ‘low-impact’ buildings?.

Apart from these government-led initiatives, independent research has
also been carried out to investigate changes and new patterns in: electricity
use through appliances [21], hot water use [16], space heating settings [22]
and energy use in low energy housing [23]. Recent modelling work has fo-
cussed on generating domestic load signatures through innovative simulation
techniques. Richardson et al have developed high resolution time use (i.e.
occupancy profile) data using Markov-Chain Monte Carlo simulations [24].
A slightly different approach for deriving domestic load signatures has been
proposed by Jardine [25]. In addition, approaches from the social sciences
have contributed new understanding on the interaction between occupants,
dwellings, energy saving measures and technologies. For example, it was
recently suggested that householders may not adopt Compact Fluorescent
Lamps (CFLs) as ready replacements for incandescent lamps because they
do not meet the quality of light and design expectations of occupants [26].

As CFL replacements are an important policy tool to achieve energy savings

2http://www.innovateuk.org/content/competition-announcements/

accelerating-progress—-towards-integrating-smart-me.ashx, announced 20
May 2010

Shttp://www.innovateuk.org/content/competition-announcements/
innovating-to-reduce-the-energy-cost-and-carbon-fo.ashx, announced 20
May 2010



and emission reductions — the government has planned a complete phase out
of all incandescent lamps by January 2011 * — reluctance to adopt the tech-
nology can significantly dent speed of uptake and potentially create residual
demand for incandescent lamps or other more energy hungry options.

All of these developments are signposts towards new data on, and un-
derstanding of, domestic energy use that will supersede our current datasets
and understanding. In addition, there will be other studies—either already
planned or not yet conceived—that could significantly impact our under-
standing of domestic energy use. They could be significant because there are
areas where empirical evidence simply does not meet modelled expectations.
For example, in a study of 3,000 dwellings for the Warm Front project, it
was shown that installed energy saving measures (new heating systems and
extra insulation/draught proofing) did not deliver expected energy efficiency
savings [27, 28]. Significantly, the study could not isolate the cause of the
shortfall [29]. As these energy saving measures are a central plank of all
future scenarios, a robust study to tease out the underlying causes is quite
likely to be undertaken. It is therefore essential that any model built today
to investigate future carbon emissions is flexible and adaptable to the data

demands of tomorrow.

‘http://www.energysavingtrust.org.uk/Resources/Features/
Features-archive/Energy-saving-light-bulbs-take-over. Note however that

this does nto include halogens.



2.3. Deterministic versus probabilistic modelling

A recent study that undertook sensitivity analysis of model inputs to large
scale domestic models rightly criticises existing models for not estimating the
effect of uncertainty in model inputs on predictions [30]. This is because de-
terministic models, such as those used in the three studies quoted above, do
not capture such uncertainty due to the use of what are essentially determin-
istic (fixed a priori) inputs. In modelling future emissions both the inputs
and outputs are exploratory and therefore inherently uncertain—the objec-
tive being to develop a robust assessment of future options rather than any
precise computation of a given scenario. Deterministic models are therefore
clearly unsuitable for such a task, although they are very useful in identify-
ing a baseline technical potential® for future emission reductions, as the three
studies quoted above have done. The shift from baseline deterministic mod-
els to more sophisticated probabilistic models is reflected in the current UK
Climate Impacts Programme (UKCIP) climate scenarios (UKCIP-09) and
current EPSRC funded projects based on these probabilistic climate sce-
narios®. Another limitation of current models is the short to medium term
timeframe in which they operate (i.e. up to 2050). Given that the majority

of projected increases in temperatures are likely to be after 2050 [1] and the

5¢Technical potential’ may be defined as a model or scenario that does not explicitly
take into account performance degradations or the likelihood of non-occurrence of events
in an envisioned scenario that might occur due to either technical, operational, economic
or social constraints in the real world. In such scenarios, the probability of a specified

event occurring is always 1.
Gwww.epsrc.ac.uk/CMSWeb/Downloads/Calls/ClimateChangeCall07.doc
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current slow pace of change in emissions reductions, the extended time frame
to 2100 cannot be ignored. Such an extension increases the uncertainty of

projections and is therefore better addressed by probabilistic modelling.

2.4. Human<=building interaction

None of the scenarios described in Section 1 explicitly consider the im-
pact of human-building interaction on energy use. The behavioural aspect
of building performance is often recognized as a major factor in energy con-
sumption although hitherto largely unquantified [31, 32]. For example, the
fourth assessment report of the Inter-governmental Panel on Climate Change
(IPCC) on mitigation states that “occupant behaviour, culture and consumer
choice and use of technologies are also major determinants of energy use in
buildings and play a fundamental role in determining CO9 emissions”. How-
ever, the IPCC report also recognizes that there is limited evidence to support
this [32, p.389]. We have already hinted at the the fact that purely sectoral
approaches to analysis and modelling of domestic energy consumption can
be limited in their capacity to explain the disjunction between modelled and
actual energy use (Section 2.2). While it is widely believed that these dis-
crepancies are due to inadequate characterization of occupant operation of
buildings and systems, there is very little understanding of this phenomenon.

All the models described earlier model energy use behaviour” through

Tt has been suggested that the notion of an ‘energy behaviour’ is a misnomer since the
occupant or user does not use energy, but rather a service (microwave to cook, washing
machine to wash etc.) that results in energy use [33]. In this paper we use the terms
‘energy behaviour’ and ‘energy use behaviour’ interchangeably to mean the use of energy

resulting from the demand for a service.
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defining “normal” behaviour. For example, although BREDEM is able to
model different switching behaviour for heating system operation, the main
document defines standard occupant operation profiles for weekdays and
weekends [14, p.8] which are adopted de-facto by the stock models. Much of
the data underpinning these “normal” building occupant behaviours relates
to studies conducted in the wake of the energy crisis of the late 1970s—
three decades ago—raising the question of their continued relevance. As the
number of households in a given modelling category increases, the impact
of different occupant energy usage profiles can significantly affect the model
outputs. For example, in DECarb’s base dataset, the average number of
dwellings per dwelling category was around 4500, and 70% of dwellings fell
into categories with more than 10,000 dwellings in them. Ignoring the vari-
ance in occupant behaviour within each category could result in an erroneous
estimate of future domestic carbon emissions just like the averaging errors
discussed previously.

The idea of an occupant-centred approach to energy use has primarily
been examined by researchers in the social sciences. The most robust and
important such study was that conducted by van Raaij and Verhallen in the
Netherlands which established a novel model of household energy behaviour
incorporating both the physical aspects of the dwelling and the behavioural
aspects of the occupant showing a 30% variation between least and most
energy efficient household groups [34]. Unfortunately, although this paper
continues to be cited in studies on consumer behaviour and economic psy-
chology, the model has not been developed further by researchers and prac-

titioners in building science. Nearly a decade after van Raaij and Verhallen’s
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study, Lutzenhiser proposed a ‘cultural model of household energy consump-
tion” through a survey of existing approaches in engineering, economics, psy-
chology, sociology and anthropology [35]. In this model, individual actors
(“consumers”) make choices that are ‘culturally-sensible’ and ‘collectively-
sanctioned’” and the engineering (i.e., the building fabric, technologies, etc.)
and economic (i.e., monetary aspects of culture) aspects are subsets of the
overall cultural framework. The model was an outcome of previous research
indicating significant variations in the consumption of individual households’
energy consumption “even when controlling for weather, system efficiencies,
family size, and [...] identically-equipped dwellings” [36, 37, 38]. However,
this model does not appear to have moved beyond a purely theoretical con-
struct.

More recently, efforts have been made to quantify the impact of occu-
pant effects on specific elements of domestic energy consumption—although
in most cases it is difficult to extrapolate these to national levels due to their
limited scope. For example, Yohanis et al found that though domestic elec-
tricity consumption correlates well with total floor area (a well established
metric in BREDEM), households with higher incomes consumed 100% more
than those with lower incomes [39]. However, the study comprised only 27
dwellings in Northern Ireland, whose entire stock represents only around 2.5%
of UK stock [40, p.108]. Firth et al also report wide variations in domestic
electricity use in a monitored sample of 72 UK dwellings, though the study
does not attempt to correlate occupant characteristics to these variations
[21]. Similarly, Gram-Hanssen suggests that heating energy consumption in

Danish households living in identical dwellings may vary by 300%, though
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this appears to be a conclusion based on a small sample of 5 households [41]®.

An important factor in respect of this kind of variation could be ‘habitual’
behaviour (defined as frequent and automatic behaviour) which underpins
most daily decisions. For example, Pierce et al found that much of everyday
consumption behaviour was not the result of conscious or motivated action
on the part of occupants [42]. Instead, they discovered that engagement
with micro-level (e.g. local thermostat settings) and macro-level (e.g. HVAC
standards and infrastructures) systems shaped everyday user experience. For
example, two participants in their study, when asked about why they never
altered the pattern in which they used their washer, replied “...I keep doing it
because it 1s working” and “I’ve never needed different results. I've never had
any reason to change what I do”. Interestingly, the reason for the adoption
for many patterns of use were themselves not the result of a reasoned choice
and in one case, the reason provided was simply that their mother had told
them to do it that way. Habitual behaviour can also be quite powerful. For
example, one participant reported that despite learning that warmer tem-
peratures on the washer were not required for better cleaning and could save
money and energy, they preferred and continued to use the warmer settings.
This demonstrates both the resilience of habitual behaviours, once set, and
also their relatively arbitrary origins. This suggests that while habitual be-
haviours may be hard to change towards more conserving practices, once set

they might be relied upon to continue without change.

8The 5 selected households were a subset, ultimately, of 500 households part of a larger
quantitative survey, so this conclusion may be representative of the full set, however this

is not clear in the paper.
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In addition to the impact of individual household decision making on
DECCE savings, it is also important to consider what, if any, impact the
household’s neighbourhood may have on these decisions. van Raiij and Ver-
hallen have explicitly stated this as a critical factor in determining household
energy behaviour [43, 34]. More recent research such as that by Weenig and
Midden [44] has suggested that the level of social cohesion and density of
the social network are important indicators in determining the impact of the
neighbourhood. Although the presence or absence of immediate neighbours
is to some extent determined by dwelling typology, the impact of neighbour-
hood patterns on energy use is currently not explicitly considered in any of
the existing models. This could be an important factor where future policy
depends on self-regulation through peer feedback. For example, in a socially
cohesive neighbourhood, a powerful motivation for DECCE reductions could
be provided by smart meters that ranked individual household consumption
against others in the same neighbourhood. Another potential benefit of such
information could be the capacity for the modelling of local scale scenarios
for a city or a region of the UK. Therefore, the absence of physical neigh-
bourhood information is a weakness of contemporary models that requires
investigation and evaluation.

Since achieving DECCE reduction centres on users adopting lifestyles,
technologies and behaviours that can result in savings, modelling these be-
haviours to quantify both the opportunities and risks in putative strategies

will be essential.
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2.5. Summary of limitations

This section has argued that though current national-scale UK domestic
sector models have been successful in answering important questions, the
approaches they adopt are not inherently sustainable. We highlighted some
limitations common to all these models that will need rethinking if they are
to continue to be useful. These include (i) the use of average dwellings and
the granularity of the model, (ii) the difficulty of including emerging and
future datasets, (iii) the use of deterministic modelling for uncertain futures
and (iv) the difficulty of modelling the impact of building occupants through
their interaction with both the building and the wider socio-economic envi-
ronment. The next section discusses some alternative approaches to solving

these issues.

3. Planning for the future

Section 2 concluded that existing modelling approaches will need to be
reconsidered in order to meet future modelling challenges. Clearly, some of
these issues can be solved by modifying current approaches. For example,
the problem of probabilistic modelling can be attacked by adopting well es-
tablished methods such as Monte Carlo simulations. New datasets can be in-
corporated by making piecemeal changes to existing code. Human<building
interaction can be accounted for through implicit assumptions or through
scenario specification. An example of this would be the current practice to
account for changing thermal comfort expectations by specifying assumed
demand temperatures. Conversely, other issues—such as the use of average

dwellings or the impact of the neighbourhood—are not tractable through
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traditional (equation based modelling) methods. In fact, the use of average
dwelling categories would have to be an inherent feature of any resource-
effective equational model.

As highlighted in Section 2.4, sectorally defined models can only answer
a part of the problem. When framing national policy, it is crucial to under-
stand where outcomes from one sector are being supported or defeated by
outcomes from another sector. We therefore need a single unified modelling
framework that is capable of meeting all of these challenges with a com-
putational cost that is not greater than those available in typical research
facilities. Whilst doing so, we need to remember that a model is only an
idealised representation of the features considered significant from the real
world and is not meant to represent every complexity of the real world.

Before we discuss possible alternative approaches, it is worth noting that
the issues we have raised are neither exhaustive nor selected for the greatest
impact on domestic energy use and carbon emissions modelling. Rather,
they have been selected to demonstrate the range of current and foreseeable
problems with existing approaches. Indeed, the real impact of some of these
issues (e.g. neighbourhood impact) is not known at present. What we are
proposing is that the research community needs a unified and agreed upon
approach that allows us to quantify the impact of these questions without

requiring expensive or exhaustive methods to test them in the real world.

3.1. An alternative modelling paradigm

In reviewing current approaches used to undertake analysis of Domes-
tic Energy Consumption (DEC), Keirstead defines two broad frameworks:

‘disciplinary frameworks” and ‘integrated frameworks’ [45]. The disciplinary
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frameworks he identifies are essentially the same as those identified by Lutzen-
hiser (engineering, economics, psychology, sociology and anthropology), as
described in Section 2.4. However, Keirstead recognises Lutzenhiser’s pro-
posed ‘cultural model of household energy consumption’ as a different kind
of approach which he terms an integrated framework. He defines this as “a
conceptualisation of DEC that acknowledges the expertise of disciplinary ap-
proaches but seeks to situate this knowledge within the broader context of
energy consumption including social and behavioural factors”. Clearly, the
issues we have identified in Section 2 are inter-disciplinary and any effort to
model them as part of the same system must necessarily fall under the defini-
tion of an integrated framework. This position (cited by Keirstead) was also
identified as far back as 1983 by Yates and Aronson [46, p.435], saying that
DEC “can no longer be viewed as a purely technical or economic problem
but as a people problem as well”.

Before moving on to describe the agent-based implementation of DECarb
it is useful, from a modeller’s point of view, to reflect upon the macro-level
requirements that an integrated framework imposes on the modelling tools
that are going to support it. The two essential characteristics of an integrated
model are that:

(i) It comprises multiple discipline-specific models, some of which may be
pre-existing; each of these needs independent and integrated verification
and validation to ensure that isolated and embedded behaviour match;
furthermore, each needs to be independently controllable for fidelity of
modelling both for alignment with other components and for providing

a means for the user to zoom in on particular aspects of the integrated
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model.

(ii) It provides adequate means to specify and control—both at design time
and during run-time—the linkage between the discipline-specific com-
ponents.

It is exactly this flexibility, as Keirstead argues, that is provided by agent-
based modelling, encouraging as it does bottom-up thinking, focussing on the
details of interactions between individuals. Such an approach also enables
both the independent testing of small populations in isolation, the encapsu-
lation of existing models by individual agents, as needed, and the integration
of multiple models through individual agent interactions.

Equational- and agent-based modelling are often seen as opposing poles
with no real connection between them, but this is not necessarily the case.
Indeed, we argue there is clear progression from one to the other that is
characterised by the degree of autonomy accorded to each individual:

e at the equational end, the individuals are totally regimented, being
represented at their simplest as a single datum, but perhaps more likely
as a data tuple, and each undergoing a globally defined transformation
that is the equation determining the evolution of the individuals.

e at the opposite end, the individuals are completely autonomous, being
represented at their most complicated as multiple planning systems
with databases of information about their environment, other individ-
uals and themselves. Transformation comes about through communi-
cation with other individuals and consequent updates to the databases,
but at all times, under the control of the individual.

In between, there is a discrete spectrum of recognised modelling approaches

19



that go by various names, depending on discipline and characteristics. For ex-
ample: the transformation can be determined by a combination of the global
rules and the current state—that is using elements of the current state to
navigate conditional transformations, so that individuals are processed by
the same rules, but which subset of those rules apply is a function of local
state. There are a number of ways this can be achieved, but in general such
systems are called “marionettes” [47] and have the attraction of being oper-
ationally very close to Equation Based Modelling (EBM), but through the
random individual value, exhibit some variation in behaviour. We have used
this technique to validate the ABM implementation of DECarb described in
the next section. Other variations on the spectrum between EBM and ABM
are recognisable in cellular automata, the classical Game of Life and swarm
intelligence.

In programming terms, the differences between the variations outlined
above are not that significant; as with programming languages, it is a matter
of choosing the right approach for the domain. What matters is that indi-
vidual behaviour is determined by using some combination of global rules
and individual data to determine the next state of an individual. However, a
simple reorganization of this model enables the progression to full autonomy:
the first step is for each individual to have its own copy of the global rules;
clearly the consequent behaviour would be equivalent to the previous model.
Then, we may allow individuals to have their own distinct rules, leading to

individual behaviours and subsequently to full autonomy as outlined earlier.
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4. An ABM implementation of DECarb

As a first step to realising the desired properties of a domestic stock mod-
elling system, we briefly present an implementation of DECarb as an ABM
system. This implementation does not yet contain many of the requisite
features for a fully fledged model, but does provide a robust framework for
building up to a complete feature-set. To differentiate between the two im-
plementations, we refer to the equation-based model as DECarb-EBM and
the agent-based model as DECarb-ABM.

Firstly, to provide some context, we outline the equational model from
which we started (DECarb-EBM: Figure 1) and briefly describe the main
components. The model consists of an Interface into which a given sce-
nario can be fed. The Interface is supported by Core Data consisting of:
(i) physical dwelling data, separated into six historical age-classes, derived
from house condition survey and national statistics, (ii) spatial data for
dwelling archetypes, (iii) UKCIP climate data (UKCIP02 at present) and
(iv) other supporting data. We group the interface and the core data, as
DECarb Core in the diagram. Information flows from DECarb Core to the
EBM-Engine which uses the Age-Class Builder object to produce new age
class data. These data are then fed into the DECarb Energy Calculator ob-
ject which implements a version of BREDEM to undertake energy and car-
bon emissions calculations. This last component is particularly important,
since we are able to re-use it in the ABM simulation to compute changes for

individual households (see section 4.2.1)
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Figure 1: DECarb-EBM architecture
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4.1. Model setup

When modelling a problem domain, a critical early part of the process is
the identification of individuals and of observables. Observables are measur-
able characteristics of interest that change over time; they can be associated
with either an individual or a collection of individuals [48]. In DECarb-EBM,
the individuals are the 8,064 dwelling categories (for each age class) and the
observables are the attributes of these categories (dwelling type, construction
type etc.). The essence of the computational model is then one of transform-
ing a dataset by applying the same set of mathematical operations to each
individual at each time step® to obtain a new dataset. Thus, the individuals
are passive and the modelling approach is typically called “top-down”. Us-

10 as individuals, it is possible

ing the same observables, but modelling homes
to take a micro, or bottom-up, view of the problem, where the individuals
are active and the behaviour of the model is characterised by observation of
individual interactions, making it a kind of complex system.

A complex system is typically defined as one with emergent properties
that arise from non-linear interactions between its multiple, usually large in

number, interacting constituents. Jennings defines a complex system as many

subsystems related hierarchically, these subsystems work together to achieve

9“Time step’ here is used to mean an arbitrarily long period that is determined by the
requirements of the domain being modelled. We have chosen a time step of one decade,
starting from 2000, because this is appropriate for the phenomena under consideration
and a finer resolution results in unnecessary computation, but this can be adjusted for

other intervals, such as annually, as required.
10Here, by home, we mean both the physical dwelling and the occupying household.
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the functionality of their parent systems [49]. The separate subsystems can
interact with their environment and are able to respond to changes by altering
their internal structure. If a home is to be the finest grain constituent of the

system, it is necessary to decide exactly how one home is represented.

4.1.1. Dwellings as individuals

The immediately intuitive idea is to model a dwelling as an individual.
After all, it is the dwelling to which all these measurable attributes belong;
it is the dwelling that has the insulated walls, double glazing etc. It is
also to the dwelling that any energy consumption related changes will be
made. But there are also problems with this approach: what happens if
the dwelling is demolished? Estimations have placed an upper bound on
the annual demolition rate as being 130,000 by 2030 [6], which would create
a massive turnover every year and affect the continuity of the simulation.
Additionally, a dwelling is a passive object for humans and cannot interact
or exchange stimuli with another dwelling. The argument to model houses as
individuals unravels rapidly from that point onwards. While it is necessary
to model the physical characteristics of a dwelling, we also need to take
account of behavioural properties, leading the discussion on to the concept

of modelling households as individuals.

4.1.2. Households as individuals

A household can be defined as the inhabitants of a dwelling: they are not
physically tied to their residence and they can move freely from one house
to the next. Modelling households as individuals addresses the limitations

that modelling dwellings as individuals posed. If a dwelling is demolished,
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the household will just move to another property. From this perspective, the
physical dwelling simply becomes an attribute of the household. Crucially,
households can have other attributes such as different behavioural character-
istics and traits, facilitating the creation of a heterogeneous model. House-
holds, as actors in a wider environment, can react to changes in the physical
(environmental), political, regulatory and economic climate whilst simulta-
neously responding to changes in other households. For example, a two-
person household with young occupants would have a different occupancy
and heating pattern to a two-person household with Old Age Pensioners
(OAPs). Obviously, these households will exhibit varying energy use for the
same heating set-point. This complexity is manageable with more traditional
EBM methods. However, with a fully autonomous ABM, one could model
the same young two-person household changing at some future time step to
a three-person household with a different requirement for heating set-points
and patterns. The ABM implementation explicitly allows for such traits to
be associated with the household, though this has not been implemented yet.
While BREDEM is somewhat simplistic in its treatment of these variables,
it carries the capability for modelling these variations provided new data on

household energy behaviour becomes available.

4.1.3. RePast
DECarb-ABM uses RePast which is a software framework for agent-based
simulation created by Social Science Research Computing at the University

of Chicago, for ABM in the social sciences'!. It provides an integrated li-

Uhttp://repast.sourceforge.net/index.html
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brary of classes for creating, running, displaying, and collecting data from an
agent-based simulation. RePast has an unconstrained approach—allowing
any type of agent-based model, and also offers explicit support for several
common ABM tasks [47]. In addition to this, RePast was designed to have
a short learning curve and offers comparable performance to similar frame-
works when weighed against its other benefits [50]. It provides a wide range
of library packages which allow the modeller to access features such as Quick-
Time movies and snapshots and uses Java which is largely free of the mem-
ory leaks (found in C, C++ and Objective-C) that are often problematic for

large-scale, long-running simulations.

4.2. DECarb-ABM architecture

A RePast model consists of three kinds of components: (i) a model,
describing the essential elements of the simulation (ii) a space, which controls
the environment (iii) at least one agent, being the entities that co-exist and
interact in the space. Although the model is the most complicated part of
the simulation, most of the details can be hidden from the developer, because
they are the same for many kinds of simulation. Consequently, the developer
typically just inherits this packaged behaviour by creating a subclass of the
standard RePast model class SimModelImpl. A similar situation occurs with
the space object which can just be a standard RePast container for the agents.
DECarb-ABM’s space is a spatial grid rather than an abstract space and
every agent has a location within this space defined by a pair of coordinates.
Modelling the landscape spatially conveniently reflects a physical aspect of
the real world, by giving households actual locations, which provides the

means to model the influence of geographical neighbour’s actions. Although
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we do not address it in the current implementation, we are also aware of the
need to capture social structure, which can also be a strong influential factor
on agent (in the economic sense) actions. RePast also provides the abstract
spaces in the form of networks and these could readily be used to realize
social connections and hence incorporate their influence on agent actions.
Following the conclusion of the discussion in sections 4.1.1 and 4.1.2, the basic
agent (individual) in DECarb-ABM is the household and encapsulates the
seven metrics that define dwelling categories in DECarb-EBM (see Section
2.1)—that is, the dwelling attributes are part of the household object, as
argued above—which are then processed by the stock transformation method.
Figure 2 shows the basic setup for DECarb-ABM and the individual elements
are described below.

It is noteworthy that while this paper primarily ascribes agent-behaviour
to households, almost any entity that interacts with households can be an
agent in the model space. For example, one could seed a Local Authority
agent that set special renewable energy targets, a Central Government agent
that sets time-varying tariffs for exported renewable energy and an Installer
agent that provides free PV installation and recovers cost through a fixed
repayment from the household. Indeed, the model is capable of handling an
almost arbitrary number of (and types of) agents that can be customised to
examine the impact of specific policy or technical measures on the housing
stock. This type of seemingly arbitrary extensibility is extremely difficult to
reproduce with other approaches, such as stochastic or Monte Carlo mod-

elling.
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Figure 2: DECarb-ABM architecture
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4.2.1. Adapter

The adaptor class acts as an interpreter between the re-usable elements of
DECarb-EBM and DECarb-ABM. The make-up of each static age class for
the 1996 housing stock (the base year in DECarb-EBM) is defined in separate
Microsoft Excel files. For each age class, the proportion of the population
that each dwelling category represents is recorded. DECarb-EBM reads in
these files and creates six objects, one for each age class. In DECarb-ABM,
the Adapter passes each such object to the model and using these figures,
agents are generated in a deterministic order and each one is placed at a
randomly determined location on the grid. The effect of populating the grid
in a deterministic order has, at present, not been explored as agent location
does not affect output. In a situation where the location of an agent had a
bearing on the output of the model and the results of the model were being
used to prove a hypothesis, it would be necessary to examine the effect of
placing the agents in a deterministic order versus the effect of placing the

agents in a nondeterministic order.

4.2.2. Model and Space

DECarb-EBM models four different regions, representing different areas
of the UK, whose outputs are added to form a national figure. There are
currently no dependencies between these regions and they can therefore be
modelled separately in DECarb-ABM.

Library functions for 2D-spaces in RePast return all of the agents within
a certain distance of a grid point. There are two common techniques for
determining the neighbours of an agent: Moore and von Neumann (Figure

3) [51]. DECarb-ABM adopts the Moore neighbourhood pattern as it was
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Figure 3: Moore and von Neumann neighbourhoods

felt to capture better the realworld situation. There is no data to test this

against and so this is simply an assumption made in the model.

4.2.3. Agent Factory

Agent generation is encapsulated using the “factory” design pattern [52].
A static method in the factory returns an agent with a base set of attributes
and the age class to which the agent belongs. Implementing in this fashion
ensured that agent creation was kept separate from the computation in the
model, and as such any changes to the creation of the agents was entirely
hidden from the model. Every agent returned by the factory represents one
UK household. However, as this implementation was developed on a small
laptop machine, a scaling factor was introduced to reduce the number of
agents to take account of the memory available at the time. The scale factor

is defined as:
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total households
agents created

scale factor =

The scale factor in this case was 200, but is calculated by the model
at the start of the simulation to ensure that categories with dwellings less
than 200 can be accounted for. Total households refers to all households in
every dwelling category in the age class—even those that are not represented
in the ABM (i.e. those for which the dwelling category contained fewer
households than the scale factor). This ensures that the correct number of
total households is represented. At any point in the simulation, multiplying
the agent population of an age class by the scale factor provides the total

number of households in that age class.

4.2.4. Buwilding Contractor

The Building Contractor class was designed to allow greater fidelity in
modelling dwelling demolition in DECarb-ABM compared to the demolition
model in DECarb-EBM. In DECarb-EBM, the number of dwellings to be
demolished are calculated from user-supplied data for total population, per-
sons per household and demolition rate per annum. From these data, the
model demolishes dwellings starting from the oldest age class (with the as-
sumption that older dwellings would be more inefficient compared to newer
ones). DECarb-ABM implements the Building Contractor class, initially for
the purpose of replicating this behaviour, and thereby validating the ABM
implementation, but also to allow for the evaluation of other demolition poli-

cies.
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4.2.5. DECarb energy calculator

In the current implementation, the agent attributes produced in the pre-
vious steps are passed to DECarb-EBM, which implements a version of BRE-
DEM to calculate energy consumption and carbon emissions (see Figure 2).
In principle, this can be any model that can undertake such calculations.
Apart from further technical improvements in model physics, future func-
tionality could include modelling of impact on space heating, hot water or
lights and appliance use by accounting for household characteristics (age,

income etc.) supported by empirical data.

4.8. Validation and verification

One of the important tasks for a simulation study is determining how
accurate a simulation model is with respect to the real system [53]. Effective

3 can increase confidence in the model, which

validation'? and verification!
in turn makes the outputs more informative and valuable. Kennedy and
Xiang have separated these methods into subjective (face validation, tracing,
Turing test and parameter sweep) and quantitative (docking and historical
data validation) approaches [53, 54].

As part of our approach to validating the new model, DECarb-ABM cur-

rently employs marionette agents [47, See also]. As described in Section 3.1,

12Validation involves making sure that the correct abstract model was chosen to accu-
rately represent the realworld phenomenon, best captured through a qustion of the form

“Did I produce the right simulation?”
13Verification involves making sure that the code generating the phenomenon has been

written correctly to match the abstract model, best captured through a question of the

form “Did I produce the simulation right?”
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these agents do not possess autonomous behaviour and are guided by sys-
tem level aggregate properties. Agents are assigned probabilites for adopting
various traits (such as adding insulation characteristics) at a global level and
they adopt these traits at each model time-step as a function of their individ-
ual assigned probability for that particular trait. Parunak et al promote this
technique as a middle-ground between ABM and EBM in relation to how the
behavioural decisions of an agent can be determined by evaluating equations
[48]. Agents have no local or global knowledge—they are simply marionettes
acting as they have been instructed. Taken with the case made by Parunak,
we conclude that using marionettes in itself is a means to build confidence
in the abilities of the ABM stock transformation method, and paves the way
for further exploration of using ABM for this purpose, whilst opening the
way to using agents with greater degrees of autonomy.

DECarb-EBM was validated using back-casting from the base year, 1996,
to 1970 and comparing output to known energy use (from the Digest of
UK Energy Statistics, DUKES) and modelled carbon emissions (from the
Domestic Energy Fact File, DEFF)!4. DECarb-ABM uses the same approach
[13]. This allows the output to be docked!® with DECarb-EBM and validated
against known data.

Figures 4 and 5 show the result of docking DECarb-ABM with DECarb-
EBM disaggregated by age-class, of which there are six, from pre-1900 to

14Back-casting is just like forecasting in that it starts from a fixed time point, but the
model is run backwards in time to test the capability of the model to reproduce observed

data. See [13] for a detailed explanation of back-casting.
15Docking is a process of validation through model-to-model comparison
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1980-1996. Every point (p) on the plots is derived from the difference be-
tween the ABM and EBM value (in Peta Joules, PJ or Million tonnes of
Carbon, MtC) for a given age-class (i) in a given year (y) divided by the cor-
responding sum (PJ or MtC) of all age-classes in the EBM for that year!®.
Thus:

ABMM — EBMZ-,y o
1980—1996 0
ZizPre—lQOO EBMi,y

The results for the ABM are the mean averages of twenty runs of the

Diy =

ABM'". The figures show that the differences are very small in comparison
with the total figure for any given year. In both figures, the 1980-1996 age-
class for the year 1990 shows the greatest difference between the two models:
—2% (equivalent to 40.4 PJ) in Figure 4 and —1.5% (equivalent to 0.7 MtC)
in Figure 5, respectively, of total predicted energy consumption and carbon
emissions by the EBM in 1990. It is therefore evident that, whilst there are
small differences, the ABM successfully replicates the behaviour of the EBM.
Figures 6 and 7 compare aggregated DECarb-ABM outputs against DUKES
and DEFF data with DECarb-EBM outputs for reference. Here again, the re-
sults are a mean of 20 runs of the ABM. The differences evident in the 1990
time-point calculation have been documented and discussed for DECarb-

EBM [13], and are due to 1990 being a much warmer year than the 30-year

16By measuring the deviation against the aggregate EBM for each year, we get a better
picture of the ABM’s performance compared to measuring directly against the EBM age-

class.
1"The EBM is run only once as, being deterministic, it always produces the same result.
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Figure 4: Deviation in modelled energy consumption of each age-class (DECarb-ABM; —
DECarb-EBM;) compared to DECarb-EBM’s aggregate for all age-classes, in each year.
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Figure 5: Deviation in modelled carbon emissions of each age-class (DECarb-ABM,; —

DECarb-EBM;) compared to DECarb-EBM’s aggregate for all age-classes, in each year.
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Figure 6: DECarb-ABM and DECarb-EBM modelled energy consumption compared to
actual energy consumption from DUKES [55] data (PJ).
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Figure 7: DECarb-ABM and DECarb-EBM modelled carbon emissions compared to
DEFF [56] modelled data (MtC).

36



Deviation from DUKES Deviation from DEFF
DECarb-ABM  +2.5% (—2.4%) —2.7% (—4.5%)
DECarb-EBM  —5.4% (—1.3%) —0.9% (+2.0%)

Table 1: Average deviation from historical domestic energy consumption data (DUKES)
and modelled carbon emissions (DEFF). Figures in brackets show the deviation if data for

1990 is suppressed.

average climate data used in DECarb!®. Table 1 shows the difference between
DUKES and DEFF data compared to outputs from both DECarb-ABM and
DECarb-EBM, with and without 1990 outputs.

5. Exploration of non-deterministic issues and agent autonomy

This paper has thus far concentrated on the replication of previous, equa-
tion based, results to demonstrate the validity and robustness of an ABM
approach to domestic sector stock modelling. Work is currently in progress
to explore the modelling of non-deterministic issues and agent autnomy. We
discuss some preliminary results below to demonstrate the potential of ABM

in terms of its easy extensibility.

18 As DECarb was built in the first instance to develop long term scenarios using the
UKCIP climate data, it was necessary to use modelled 1960-1990 average UKCIP data
so that changes resulting from climate change could be consistently compared. Since
DECarb-ABM inherits legacy code from DECarb-EBM, it is not possible at present to
use real weather data. We do not see anything to prevent its incorporation in the future

if required, nor would we expect this to have any significant impact the validation results.
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5.1. Demolition Policy

We carried out a preliminary evaluation of three demolition policies'®:
(i) oldest properties are demolished first (ii) random properties are demol-
ished and (iii) least energy-efficient properties are demolished first. The sim-
ulation revealed differences between the three policies that were consistent
with the expectation that demolishing oldest and least efficient properties
would be better options than random demolition. However, the tests also
showed that the magnitude of differences between the three scenarios is very
small—scenarios (ii) and (iii) differed from (i) by only between 0.4% and
2.8%—in terms of eventual overall stock energy characteristics. If true—
and it is worth stressing again that these results are preliminary—this result
could have important policy implications, as it suggests that aggressive re-
placement of inefficient stock may not have a significant net benefit compared
to random (which we take as representative of market-driven) replacement.
The only aspect of demolition that appears to count is the total number
of demolished dwellings replaced with more efficient stock. Under such a
scenario, resources would be better chanelled towards increasing demolition

rates without regard for the nature of stock being replaced.

5.2. Household Behaviour

We designed a simple theoretical behavioural framework to test the ca-
pability of the model to simulate behavioural responses of households to
changing conditions. Using van Raaij and Verhallen’s behavioural model, we

posited that a household’s uptake of double glazing was influenced by three

9That is, demolition of dwellings with the intention to replace with more efficient stock.
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factors: (i) household income (ii) installation by neighbours and (iii) gov-
ernment policy. Preliminary evaluation suggests that the model captures
expected behaviour under variations of all three variables: higher household
income allowed households to adopt double glazing at a faster rate, the more
neighbours with double glazing the greater the rate of adoption and fiscal
incentives from the government stimulate uptake. Here, useful inferences for
policy can be made by replacing the theoretical assumptions of the frame-
work (both the assumptions themselves and the starting conditions) with

empirical data collected, say, from surveys.

5.3. Emergent Properties

What both these examples demonstrate is the value of an ABM approach
for exploring emergent behaviour. In an equational environment, adding such
functionality, if even feasible, would require significant re-coding. We were
able to implement these tests—preliminary as they are—with very little cod-
ing and computational overhead. In both cases, the agents themselves were
no longer marionettes responding to global level instructions. Each household
agent had independent ability to make decisions within the boundaries spec-
ified by the simulation (i.e. they were bounded-rational agents). These two
cases help underline what we see as the prime potential benefit of adopting
ABM: the capacity to explore new issues with relatively small technical and
computational overhead, while keeping the research focussed on the problem

and not diverted by the complication of the tools.
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6. Conclusions

This paper presents a number of arguments for a step change in the
methodology for modelling national scale domestic energy consumption and

carbon emissions. In summary, the paper argues that:

(i) The current use of average dwelling categories to represent dwelling
stock requires validation and testing to achieve an efficient balance be-

tween modelling power and granularity of available empirical data.

(ii) Future datasets from a range of current studies will need to be incor-
porated in stock models which will impact the granularity of dwelling

categories.

(iii) Methods using deterministic modelling are inappropriate for exploratory

analysis of inherently uncertain scenario-based futures.

(iv) The real-world impact of technological options on energy use and car-
bon emissions can only be achieved through incorporating household

adoption, purchasing and maintenance behaviours.

We also argue that these issues can be tackled through the use of an
integrated Agent Based Modelling approach. A preliminary model using
Agent Based Modelling, DECarb-ABM, based on an earlier equational model,
DECarb-EBM, is presented. The ABM model was successfully docked with
the EBM and validated through comparison with historical data. There are

two noteworthy aspects to the results from the validation through docking:
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(i)

DECarb-ABM tracks the results from DECarb-EBM quite closely over
the entire backcast period (1970-1996) using the same input data. How-
ever, enough differences in the data are evident, particularly between
1980 and 1996, to demonstrate that though these results are function-
ally equivalent they arise from methodologically diverse processes. This
is important as it demonstrates that the ABM is not simply mimicking
the EBM, even though the initial conditions for both simulations are

the same.

The back-cast is within £5% of both actual measured domestic energy
consumption obtained from DUKES and modelled carbon emissions
from the well established DEFF data. This suggests that the model is
robust and is able to replicate real-world conditions sufficiently, giving

confidence in future simulations.

Future work will expand the ability and scope of DECarb-ABM as indi-

cated in Section 5 to investigate the effect of different household behaviours

and

demographic and technical scenarios, through both increasing the au-

tonomy of individual agents—combined with regression testing to build and

maintain confidence—and scaling simulations up to benefit from the greater

computational power now available.
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