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Optical microcavities supporting exciton—polariton quasi-particles offer one of the most powerful platforms for the
investigation of the rapidly developing area of topological photonics in general, and of photonic topological insulators
in particular. Energy bands of the microcavity polariton graphene are readily controlled by a magnetic field and
influenced by the spin-orbit (SO) coupling effects, a combination leading to the formation of linear unidirectional
edge states in polariton topological insulators as very recently predicted. In this work we depart from the linear limit of
non-interacting polaritons and predict instabilities of the nonlinear topological edge states resulting in the formation
of the localized topological quasi-solitons, which are exceptionally robust and immune to backscattering wave packets
propagating along the graphene lattice edge. Our results provide a background for experimental studies of nonlinear
polariton topological insulators and can influence other subareas of photonics and condensed matter physics, where

nonlinearities and SO effects are often important and utilized for applications.
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1. INTRODUCTION

Topological insulators and topologically protected edge states
attract unprecedented attention nowadays in diverse areas of
science, including solid-state physics, acoustics, matter waves,
graphene-based applications, and photonics (see, e.g., [1,2] for
recent reviews). Topological insulators are characterized by the
presence of the complete bandgap in the bulk of the material,
like in a usual insulator, while at the same time they admit in-
gap edge states propagating at the surface, where conduction of
electrons becomes possible in the presence of a magnetic field.
These edge states are generally allowed if materials placed in con-
tact have bulk Hamiltonians characterized by different topological
invariants, Chern numbers. Apart from their conductive proper-
ties, edge states in topological insulators are immune to backscat-
tering through their topological protection [1,2]. Topological
edge states were shown to exist in HgTe quantum wells, BiSb
alloys, and some other materials, where their unidirectional char-
acter and immunity to backscattering were also confirmed [1,2].
Spin-orbit (SO) interactions for electrons is the key phenomenon
underpinning the existence of the topological insulator phase
whose physics is closely linked with the quantum Hall effect
and integer Hall conductance [1,2].

Electromagnetic topological edge states have also been under
intense investigation [3]. They were predicted and observed in
gyromagnetic photonic crystals with a pronounced Faraday effect
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in the microwave range [4,5], in arrays of coupled resonators
[6,7], and in metamaterial superlattices [8]. One of the most spec-
tacular realizations of unidirectional edge states at optical frequen-
cies was reported in honeycomb arrays of helical waveguides [9].

The electronic and photonic edge states mentioned above are
purely linear. Though nonlinearities associated with either optical
transitions or with interparticle interactions are inherent in the
majority of optical systems, the investigation of their impact on
non-topological and topological edge states is in its infancy at this
moment. Thus, non-topological edge states in photonic graphene
have been recently studied in [10]; the edge states were shown to
exist in the presence of nonlinearity, while an attempt to observe
soliton effects gave initial localization subsequently accompanied
by noticeable radiation into the bulk, indicating coupling to the
extended modes of the lattice. Nonlinearity was shown to strongly
affect transmission and reflection of edge modes at the corners of
graphene-like photonic structures [11]. Photonic graphene stripes
of small width (ribbons), where the edge effects are mixed with
the bulk dispersion, were considered in [12] and various non-
topological nonlinear localized states were found that bear more
from the solitons in the bulk of the lattice.

Even more rare results on nonlinear topological states that
were obtained so far are connected with scalar optical models
describing the evolution of excitations in arrays of twisted wave-
guides. Bulk nonlinear modes (i.e., modes located in the depth
of a periodic structure and not on its surface) of topological
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insulators made of helical waveguides were obtained in [13].
Traveling topological states in helical arrays were constructed
n [14], but only in the frames of a simplified discrete model.
Dynamical excitation of their very well-localized continuous
counterparts considered in the unpublished Ref. [15] illustrates
that longitudinal oscillations of waveguides introduce strong
radiative losses leading to a notable reduction of peak power
after already traversing ten sites of the structure. We should also
mention here a paper linking topology and nonlinearity in a one-
dimensional dimer chain [16].

The phenomenology of topological insulators and edge states
was recently transferred to a rapidly developing domain of
exciton-polaritons in microcavities [17,18]. The main advantages
of polaritons include sufficiently strong SO coupling originating
in the cavity induced TE-TM splitting of the polariton energy
levels [19,20], established technology of the microcavity structur-
ing into arbitrary lattice potentials [19,21], and very strong
nonlinear interactions of polaritons through their excitonic com-
ponent. The latter was used for recent demonstrations of super-
fluidity [22,23], generation of dark quasi-solitons and vortices
[24-27], bright spatial and temporal solitons [28-30], and other
effects. The observed polariton effects with linear and nonlinear
lattice potentials include one- [31] and two-dimensional [32,33]
gap polariton solitons, visualization of Dirac cones [34] and flat
bands [35], and visualization of non-topological edge states [21].
Recently, it has been shown theoretically that attractive nonlinear
interaction between polaritons with opposite spins can compen-
sate and exceed Zeeman energy shifts due to a magnetic field
and thereby lead to the inversion of the propagation direction
of the edge states [36]. Apart from this result, the nonlinear effects
with topological polariton edge states remain unexplored.

Thus, to the best of our knowledge, robust (long-living) non-
linear topological edge states confined in the direction parallel to
the surface were never demonstrated in the frames of continuous
physical models and in real-world systems, where unidirectional-
ity and topological protection are provided by physical effects
different from a basic temporal variation of the underlying poten-
tial that always introduces undesirable losses. Moreover, compact
topologically protected nonlinear edge states were never addressed
in current rapidly developing and open for experimental explora-
tion spinor systems, such as SO coupled polariton and Bose—
Einstein condensates, that may feature a much richer dynamics
and provide principally new tools for control of the state of the
system in comparison with conventional scalar settings. It should
be stressed that realization of topological insulators supporting
the surface transport of localized nonspreading excitations over
considerable time intervals is a problem of fundamental physical
importance whose solution may pave the way to a number of
practical applications.

We show here one such system that is represented by the
interacting polariton topological insulator. We use a continuous
model for the SO coupled polariton condensate in honeycomb
arrays accounting for spin-dependent interactions and Zeeman
splitting in the external magnetic field to demonstrate a variety
of new nonlinear topologically protected edge states and to per-
form their rigorous stability analysis for the first time for this class
of topologically protected nonlinear modes. Extended periodic
edge states are found in the exact form as truly stationary non-
linear solutions bifurcating from linear periodic edge states. We
show that their modulation instability results in a splitting of the

extended nonlinear edge states into sets of fully localized edge
quasi-solitons traveling along the interface over very long time
intervals without notable deformations. Such localized quasi-
solitons appear to be very robust objects on any practical time
scale. Even though they radiate as they move along the interface,
the rate of radiation can be exceptionally small in the proper range
of parameters ensuring that such states can traverse huge distances
along the surface of the material without being destroyed or scat-
tered. The approximate expression for the shape of quasi-solitons
is derived.

2. TOPOLOGICAL EDGE STATES IN THE LINEAR
REGIME

A polariton condensate in the lattice potential in the presence of
an external magnetic field can be described by a system of coupled
Gross—Pitaevskii equations for the spin-positive and spin-negative
components ., of the spinor polariton wave function

Y= (yw)! [17,37]:
L, 0w n (o> & pr* (o 0\?
n——=- —+=— — | =—Fi=
o 2m* <0x2 + dy? Vet m* \Ox * Zay Ve

+[egR(xy) ey +eo(lws > +oly+ Py (1)

Quasi-conservative nonlinear dynamics has been observed
in several experiments with exciton polaritons (see, e.g.,
[19,24,30,31]) and used in many theoretical studies (see, e.g.,
[17-19,37]). Following this trend, we have also chosen to work
here in the idealized conservative limit since the very fact of the
existence of unidirectional edge states is not connected with the
presence of losses, so we do not include them in order to have
the most transparent picture of the phenomenon. Here, the re-
lation between the wave function components in the circular
polarization basis and those associated with TE (subscript ) and
TM (subscript x) polarizations is given by w. = (y, F iy,)/
2172, The f term describes SO coupling originating from the
TE-TM energy splitting of the cavity photons, which translates
into slightly different effective masses 7z, of TM and TE polar-
itons: f = (m, - m,)/4m"*. Accounting for the spinor nature of
the system and transforming into the basis of circular polariza-
tions results in the SO term raised to the second power (see,
e.g., [37]). Parameter ¢, is the Zeeman energy splitting of the
spin + and spin - polaritons proportional to the externally
applied magnetic field. €yR(x, y) describes the potential energy
landscape in the microcavity [19,21,32,33]. In our case,
R(x,y) is a honeycomb lattice that is cut in the x direction.
The distance between the lattice sites is # so that R(x,y) =
R(x,y + a3'/?). ¢, is the scaling coefficient with a dimension
of energy, while R is a dimensionless function. Amplitudes
Wi can be assumed dimensionless and scaled in a way that
the nonlinear energy shift achieved for the unit polariton density
equals €. This scaling reflects the physically realistic situation
when energies associated with the lattice potential, Zeeman effect,
and nonlinearity have the same order of magnitude [17-19]. ¢ =
-0.05 is the strength of the weak attractive interaction of polar-
itons with opposite spins [38]. Local potential minima in R(x, y)
are described by Gaussian functions —pe [ 021/ ich
depth p and width 4.

We scale the physical distance with Z = 3!/2 pm and hence all
energy parameters are conveniently scaled with the characteristic
energy €* = h?/m*[* ~0.1 meV for m* ~ 107! g. Without
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any restriction of generality, since R contains a factor p and
nonlinear terms can be scaled arbitrarily, we choose ¢; = €¢* and
normalize physical time with 7iey! ~ 6 ps. In what follows, the
potential depth is p = 8, corresponding to 0.8 meV, the width
of the individual potential wells is 4 = 0.5, and the separation
between minima is 2 = 1.4 in dimensionless length units, which
corresponds to 0.87 pm and 2.42 pm, respectively. In what fol-
lows the dimensionless Zeeman splitting parameter Q = ¢, /¢ is
chosen to be 0.5 and the SO parameter f = 0.3 (unless stated
otherwise) so that both of them are an order of magnitude less
than the energy shift induced by the lattice. Note that the para-
bolic approximation for the polariton energy momentum depend-
ence dictated by the Gross—Pitaevskii approximation is well
obeyed providing that all other energy shifts in our model are less
than the width of the low polariton branch by a factor of 2-3 or
more, which is well satisfied if we realistically assume that the
latter is ~10 meV wide. With these normalizations, the dimen-
sionless version of Eq. (1) can be written as

Oopr  1(d P a  0\2
o T2 <dx2 o )V TG T G,) v
+ Ry £ Qe + (wel* +olyPwe, (2)

where we retained old notations for the scaled coordinates x, y and
the evolution time .

For these parameters and for f, Q # 0 the simplest linear
mode of an isolated local minimum of the potential is character-
ized by the presence of a vortex with a topological charge of 2 in
the w, component with a ring-like density profile and by a trivial
constant phase of the bell-shaped w_ component. Interestingly,
the next mode carries a vortex in the y_ component, while the
y . component has a trivial phase. The appearance of a charge-2
vortex in one of the components is a consequence of SO coupling
and it can be observed only for f # 0. If the potential has two
well-separated minima, the above-mentioned charge-2 vortices
carried by one of the components and located around each
potential minima split into two charge-1 vortices. When two
potential minima become very close, one observes linear modes

with complex phase distributions with more than 4 phase singu-
larities in one of the components.

There are three types of termination of extended honeycomb
arrays corresponding to the zigzag (Fig. 1, top left), bearded
(Fig. 1, top right), and armchair edges. The armchair cut usually
does not support the edge states [9], so we do not consider it here.
We first address the spectra of linear modes that are periodic along
the array edge and localized along the x axis on both sides from
the edge. These modes are the Bloch functions w(x,y, ) =
i (5,9, where i (3, ) = 142 (5 + 320), 4t |y e =
0, % is the Bloch momentum, € is the energy shift relative to the
bottom of the polariton energy-momentum characteristic, and
3'/24 is the y period of the potential. The corresponding momen-
tum giving the width of the Brillouin zone is K = 27/3'/24. We
calculated the Bloch functions numerically using a unit cell con-
taining 36 potential minima (the top row of Fig. 1 depicts three
such unit cells, i.c., three periods of potential along the y axis).
Representative spectra for the lattices with zigzag and bearded edges
are shown in Fig. 2 in the form of the energy-momentum diagrams
(k) for different 3, Q values, and for the £ € [0, K] interval rather
than the more traditional £ € [-K /2, +K /2] interval. Due to the
spinor character of the model the spectrum consists of two groups
of bands. At 5, Q = 0 these two groups are fully degenerate and
correspond to the Bloch modes with #, # 0, #. = 0 and #, = 0,
u_ # 0. The inclusion of Zeeman splitting lifts this degeneracy and
results in vertical splitting of two energy bands by 2, clearly visible
in Fig. 2(a) for the zigzag edge. The spectrum in Fig. 2(a) shows
two Dirac points at # = +K /3, where the first and second bands
in each group touch each other. These points are traces of Dirac
points in the spectrum of the bulk honeycomb lattice. The red
branches in Fig. 2(a) correspond to the non-topological edge states
appearing due to truncation of the array, while black branches
correspond to modes concentrated in the bulk. In the bearded edge
case, the edge modes appear in the region £ € [-K/3, +K /3]
between two Dirac points, while for the zigzag edge they appear
outside this domain, at # € [K/3,2K/3]. It should be stressed
that without SO coupling, at f = 0, the edge states are almost
dispersionless with |0”¢/0k”| < 1. The flatness of the energy-
momentum characteristic for the edge states becomes practically

Fig. 1. First row shows examples of the array with zigzag and bearded edges (three periods of the structure are shown in the y direction). The second,
third, and fourth rows illustrate the transformation of the edge-state profiles corresponding to the red lines (top gap) in Figs. 2(c) and 3(a) upon variation
of the Bloch momentum 4. The fifth row shows the edge state on the other end of the lattice. The sixth row shows the edge state corresponding to the
magenta line from the bottom gap. In all cases the x € [-24, 4+24] window is shown, # = 0.3, Q = 0.5. The left and right columns show |y, | and |y _|,
respectively.
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Fig.2. Energy-momentum diagrams e(#) obtained for the lattice with
zigzag edges at (a) f =0, (b) f# = 0.15, and (c) f = 0.3 and for the
lattice with bearded edges at (d) # = 0.3. The black lines correspond
to modes residing in the bulk of the lattice, while the colored lines in-
dicate edge states. The topologically protected edge states in (b)—(d) with
opposite slopes of €(#) belong to the opposite edges of the lattice. In all
cases Q = 0.5.

perfect for larger separations 2 between the potential minima. Also,
for f = 0, the edge states residing at the opposite ends of the lattice
have identical energies.

This picture qualitatively changes when SO coupling is ac-
counted for, see Figs. 2(b) and 2(c) obtained for the zigzag edge.
It leads to opening of the full gap between the first (upper most)
and second bands, and eliminates the Dirac points. The width of
the gap increases with . Most importantly, SO coupling removes
the degeneracy of the edge states so that the states residing on the
opposite sides of the array acquire opposite group velocities
0€/ 0k, associated unidirectionality, and topological protection
features [17]. The degeneracy is removed and the edge states
become unidirectional only for nonzero values of f (the effect
is observable already at f~ 0.01). Thus, SO coupling is an
absolutely necessary ingredient for the observation of all of the
effects associated with unidirectionality that are mentioned below.
It is SO coupling that leads to a nonzero Chern number and the
topological character of the unidirectional edge states, both
the linear ones and bifurcating from them nonlinear modes.
Moreover, SO coupling leads to specific band folding [Fig. 2(b)]
accompanied by opening of the additional lower energy gaps
where topologically protected edge states appear in the intervals
of momenta roughly complimentary to the ones where the edge
states of the primary gap exist. To the best of our knowledge, the
counterparts of these states were not encountered in scalar (non-
spinor) honeycomb lattice models with zigzag termination [21]
and in the Floquet topological insulators formed by helical wave-
guides [9]. The red (residing in the top gap) and magenta (resid-
ing in the bottom gap) curves in Figs. 2(b) and 2(c) correspond to
modes on the left edge of the lattice propagating upward, while the
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Fig. 3. (a) Width w, of linear edge states along the x axis and (b) the
second-order dispersion coefficient 0*¢/dk* for branches associated with
edge states versus k at f = 0.3, Q = 0.5. The red and green circles cor-
respond to the linear modes depicted in Fig. 1. The line colors corre-
spond to the colors used in Fig. 2(c) to denote different branches.

green (top gap) and blue (bottom gap) curves correspond to the
downward propagating modes on the right edge. The dispersion
diagrams obtained for the array with bearded edges also reveal
the presence of edge states in the top and bottom gaps [Fig. 2(d)].

Examples of the profiles for the edge states in the top and bot-
tom gaps are shown in Fig. 1 for the same parameters as used in
Fig. 2(c) (zigzag edges). The edge states extend into the bulk of
the lattice when the momentum # approaches the boundary of
the existence domain (second and fourth rows), but are well local-
ized for 4 values returning energies close to the center of the gap
(third row). The modes residing at the opposite edges, but having
the same energies for different momenta are “mirror images” of
each other (compare fifth and second rows). The edge states from
the bottom gap associated with the magenta line in Fig. 2(c) also
can be well-localized (see sixth row in Fig. 1) provided that their
energy is far from the gap edges. Note that the e(4) plots for the
topological edge states in our system are not antisymmetric
with respect to the # = K /2 line, as in the arrays of the twisted
waveguides [9]. The degree of asymmetry is controlled by the
SO coupling. The asymmetry of the existence intervals with
respect to the # = K /2 point and stronger localization around
this point can be seen well in the dependence of the edge-state
width w, on the momentum [Fig. 3(a)]. The width is defined as
w, = 2/ (4 + 7)1, where

, +n/K © 4
X+ = Uz dy ly s [*dx,
-n/K -0

+r/K © )
Uy =/ d}’/ s [*dx (&)
/K -00

are the integral form-factors and the norms for the two spin com-
ponents defined on one y period of the structure, respectively.

3. NONLINEAR TOPOLOGICAL EDGE STATES
AND THEIR MODULATIONAL INSTABILITY

Solutions accounting for nonlinearity are sought in the same
form as the linear ones i (x, y, #) = u (x, y)e™ . Because
self-repulsive nonlinearity in our model dominates over the weak
counter-spin attraction, nonlinear solutions at a given k exist only
for p < €, with the nonlinearity-induced energy shift (chemical
potential) ¢ becoming € in the linear limit. Nonlinear Bloch func-

tions #4 (x, y) satisfy
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Fig. 4. Transformation of the nonlinear edge state bifurcating from the red branch in Fig. 2(c) at # = 0.55 K with a decrease of y. The left column
shows |y |, and the right column shows |y _]|. In all cases f = 0.3, Q = 0.5.

1/ ¢ L0
Py = -5 ﬁ—i—w—%bk@—k uy + R(x p)uy

o _ (o . 2
+p &ZFZ @-’-lk ur = Quy

+ (lug|* + oluz [P . 4)

We solved Eq. (4) for u(x,y) numerically using Newton’s
method in the frequency domain, thus these solutions are
obtained exactly as truly stationary modes of the governing
Eq. (1). Examples of the transverse profiles of these functions
are shown in Fig. 4. We characterize nonlinear edge states by
the dependence of their total norm U = U, + U_ per the y
period on y (see Fig. 5). On the same figure, we plot also the
dependencies of the peak amplitudes 2, = max |y, | and 2. =
max |y _| of two components versus y as the nonlinear states bi-
furcate from the linear ones. Figure 5 explicitly shows that the
nonlinear edge states bifurcate backward in y from their linear
counterparts. Since, for the selected “upper” group of bands,
the y_ component in all linear modes has a higher amplitude than

D 0.4

16 3.17

2.91

2.3

1.7 ; 0.0 ; and
3.17 3.23 329 0.00 0.26 0.52

ol R
Fig. 5. Norm U per period and peak amplitudes 2, a_ of the spin
components versus 4 for nonlinear edge states with (a) # = 0.45 K and
(b) # = 0.55 K bifurcating from the red branch in Fig. 2(c) at y = e.
(c) The X-width of the nonlinear edge state versus y at # = 0.55 K. The
circles in (c) correspond to the states shown in Fig. 4. The dashed lines
indicate the edge of the band for the corresponding 4 values. (d) The
perturbation growth rate for the nonlinear edge state with g = 3.21 ver-
sus frequency of the small modulation «. In all cases # = 0.3, Q = 0.5.

the w, component, one has . > 4, also for nonlinear states.
The situation will reverse if one changes the direction of the ap-
plied magnetic field. 2 vanishes at the bifurcation point, indi-
cating the thresholdless character of the unidirectional nonlinear
edge states. The width of the existence domain in y for nonlinear
modes is determined by the difference between the energy of the
linear edge state and the upper boundary of the band where the
bulk modes reside for a given k. This means that the localized
along the x axis nonlinear edge states can have nonlinear energy
shifts p that are smaller than the lower edge of the total gap de-
fined over all momenta # [for instance, at # = K /2 localized non-
linear modes can have u values that are already within a
continuous band for # = K /3, as shown in Fig. 2(c)]. When
u crosses the edge of the band for a given # (shown by dashed
lines in Fig. 5) the nonlinear mode loses localization due to
coupling with the bulk modes. The x-width of nonlinear modes
monotonically increases toward the edge of the band [Fig. 5(c)].
The presence of multiple dark spots (zeroes) in the |y | distri-
bution in Fig. 4 surrounded by brighter regions indicates the
existence of multiple vortices in the y, component. This is a
natural consequence of SO coupling in our model: if one com-
ponent features a local maximum around a certain pillar, the cou-
pling leads to the appearance of a charge-2 vortex in the other
component in this location. These vortices usually split into
two charge-1 vortices, due to perturbations introduced by neigh-
boring pillars, so the resulting phase distribution may be rather
complex.

Stability analysis of nonlinear edge states uy(x,y) was
performed by perturbing them with small (1% in amplitude)
broadband input noise and direct modeling of their subsequent
evolution up to very large times (usually up to 7> 10%).
Nonlinear edge states were found to be unstable (recall that in
the presence of periodic potentials modulation instability is pos-
sible even in the medium with defocusing nonlinearity [39,40]).
The instability is particularly pronounced close to the edge of the
band and is strongly suppressed when one approaches a point
where the nonlinear edge states bifurcate from the linear
spectrum. Only low-frequency perturbations with huge y periods
substantially exceeding the separation between the pillars can
destabilize such modes and their growth rates are so small that
the instability manifests itself at times # > 10%, far exceeding
the lifetime of polaritons, so such modes will appear as stable ones
in experiments. The modulation instability bandwidtch (i.e., the
range of frequency of modulations along the y axis that can
seed instability) becomes smaller with the increase of u. Such
a bandwidth can be calculated from Eq. (2) using initial condi-
tions w(z = 0) = uy(x y)[1 + v cos(ky)] exp(iky), where v
and « are the amplitude and frequency of small perturbations.
Such perturbations experience clear exponential growth at the
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Fig. 6. Instability development for the nonlinear edge state with
u = 3.25, k = 0.55 K stimulated by a small input noise. The first row
shows the peak amplitude of the y_ component versus time, while the
second row shows the array and |y _| distributions at different moments
of time corresponding to red circles. Here f = 0.3, Q = 0.5.

initial stage of instability development as long as « is within the
modulation instability band, which allows us to determine the
instability growth rate § as a function of k. Figure 5(d) shows
the representative 6(k) dependence that reveals the finite instabil-
ity bandwidth.

Typical dynamics of instability development stimulated by
broadband noise are shown in Fig. 6. Instability initially leads
to a pronounced modulation of the edge state in the y direction.
As time goes on, this modulation is becoming accompanied by
radiation into the depth of the array. However, instead of decay
and disintegration, the edge state breaks up into a set of weakly
radiating but fully localized solitons (see the pattern at # = 960 in
Fig. 6). This suggests that predominantly repulsive nonlinearity
and 0%¢/0k* > 0 can give rise to unidirectional bright quasi-
solitons. These can be constructed as in-gap moving topological
solitons, existing only at the edge of the array, and bifurcating
from linear topological edge states.

4. EDGE QUASI-SOLITONS

To develop a more regular approach to the question of quasi-
soliton existence we rewrite Eq. (2) in the form i0¥/dr =
LY + N, where ¥ = (w,w_)7, the operator £ accumulates
all linear terms, while operator A accounts for nonlinear
effects. The shape of the quasi-soliton can be written in the
form W(x,y, 1) = f_';(];fA(K, DU(x, y, k+ k) e+ - dk, where
spinor U = (uy,u_ )" satisfies the linear equation (L +
€)Ue* = 0 and therefore describes the spatial shape of the linear
Bloch mode with momentum £, and we also take into account
that the corresponding energy € also depends on the quasi-
momentum k4. Here k is the momentum offset from the carrier
soliton momentum # and the amplitude A(x, ) is assumed to be
well localized in k. Using a Taylor series expansion in k for
U(x, y, k + k) in the above integral one arrives at the expression

We ) = et S L uapornionag, o /oy) @

n=0,00

for the shape of the edge-state wave packet, where A(y, 1) =

_-’I'(I%ZA(K, t)e™dk is the envelope function of the correspond-

ing nonlinear edge state. To calculate how £ acts on the spinor
wave function ¥ we move L through the integral in the ex-
pression for W and take into account that LU = —elde™:

LY = - f-KK//Zz e(k+ 1) Ak, U(x, 3, k + x) e *+dk. Using a

Taylor series expansion in k for both e(k+ x) and U(x,y,
k 4 «), by analogy with Eq. (5) one obtains

LY = —¢fertity 20: %[6”(61/{) Jok" 0" Ay, ) /9y").  (6)

We further assume that the spinor U changes with # much
slower than the eigenvalue €, which is a valid assumption, as
simulations show. This allows us to keep only the » = 0 term
in Eq. (5) so that W(x,y,¢) = & HU(x, y, k) A(y, £) and
write 0"(eld) /ok” ~ U"e/0k” in Eq. (6). The nonlinear term
NW¥ in Eq. (2) acquires in this case a particularly simple form
AJAPNU<** | Finally, we multiply the equation i0¥/dr =
LY + N by U from the left and integrate it over one period
along the y axis and along the entire x axis, assuming a slow
variation of the envelope function A(y, #) with y, which allows
us to remove it from all integrands. This yields the nonlinear
Schrédinger equation for the envelope function

A J0A 1,04 ,

i =it 0y+26 e + gAlAl%, (7)
where we kept only first two terms proportional to €' = de/ok
and € = 0%¢/0k* in the Taylor expansion for e(k). The
effective nonlinear coefficient is given by ¢ = [[U'NUdxdy/
JJ U Udxdy. This coefficient can be calculated numerically for
different % values using shapes of linear Bloch modes. It turns out
to be always positive. When ge” > 0 (note that €” > 0 corre-
sponds in our notations to a negative effective polariton mass)
Eq. (7) admits bright soliton solutions,

A(y, 1) = [2(e - ) /g]'/* sechi[2(e - ) /€"]'*(y + €'1)}
x expli(p - €)t], (5]

where y — € <0 is the energy shift due to repulsive nonlinearity.
Note that energy shift in Eq. (8) is introduced such that total wave
function W(x, y, ) = " HU(x, y, k)A(y, ) varies in time as
¢, Equation (8) is valid as long as the envelope function is much
wider than the y period 3'/%4 of the array.

Figure 3(b) shows the dispersion coefficient €” as a function
of k for different linear edge states; we use the same colors as in
Fig. 2(c) to denote different branches. One can see that there
exists momentum intervals where the dispersion coefficient €
is positive (effective polariton mass is negative). All such intervals
for every linear edge mode give rise to unidirectional edge quasi-
solitons. Note that for every branch there exists a unique 4 value
where the dispersion ¢ vanishes and where the excitation with
the broad envelope may evolve almost without broadening even
in the linear limit [shape distortions in this case will be deter-
mined by the weaker ¢’ dispersion that was omitted in Eq. (7)].

The top row of Fig. 7 shows the central result of this work:
evolution of the quasi-soliton constructed using Eq. (5) with the
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Fig. 7. Comparison of nonlinear (top row) and linear (bottom row)
evolution of the edge state with the localized soliton envelope at
u-€=-0.02, k= 0.55 K. The middle row shows the peak amplitude
a_ of the y_ component for the linear and nonlinear cases. The |y _|
distributions in the top and bottom rows correspond to red circles.
Notice that the edge states in all panels in this figure move upward.
To simultaneously stress the fact that the edge state moves in one direc-
tion and to provide details of its shape, we show y_ distributions within a
relatively small vertical window, but we also applied an identical vertical
shift for distributions at time moments ¢z = 420, 540, 660, where the
edge state in the nonlinear medium remains nearly invariable. The dis-
tribution at # = 0 was not shifted. Here f = 0.3, Q = 0.5.

envelope function given by Eq. (8) in the nonlinear topological
insulator state. This quasi-soliton corresponds to the red
branch in Fig. 2(c) and # = 0.55 K. This £ value was selected
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approximately in the middle of the domain (in terms of %) where
the dispersion coefficient ¢” for linear edge modes from the red
branch of Fig. 2(c) is positive. Indeed, this branch exists at 0.24 <
k/K < 0.62, while dispersion changes its sign at £ =~ 0.44 K.
The particular momentum value £ = 0.55 K at which we dem-
onstrate edge soliton formation is not preferred in comparison
with other & values at which €” > 0; we were able to generate
similar long-living nonlinear edge states for multiple values of .

One can see that, after the initial transient where the peak
amplitude decreases due to internal reshaping of the input, the
unidirectional quasi-soliton forms with an amplitude that remains
almost constant in time and a velocity that nearly coincides with
€' (see red curve in the central row with dependence of peak
amplitude 2™ of the w_ component). Note that during time
period shown the quasi-soliton traverses over 100 periods of the
array. One can observe a small amount of radiation into the depth
of the array that gradually reduces the soliton amplitude (which is
why we call such states quasi-solitons), but even on the time scales
t~10% itisa negligible effect, so that quasi-solitons found here
are exceptionally robust at any time scale. Similar unidirectional
states were found for other dispersion branches (thus, counter-
parts of the soliton from Fig. 7, but from the green branch, move
in the opposite y direction) and also in arrays with bearded edges.

To confirm that the obtained localized states indeed exist due
to nonlinear self-action, we used the same input but switched off
nonlinearity, as shown in the bottom row in Fig. 7. Without non-
linearity we have observed a pronounced asymmetric expansion of
the wave packet, while the peak amplitude 4™ of the y_ compo-
nent was strongly decreasing upon evolution (see black curve in
the middle row). We have also checked that linear edge states with
€' < 0 do not give rise to quasi-solitons.

To confirm exceptional robustness of quasi-solitons and their
immunity to backscattering in the nonlinear regime we consid-
ered their evolution in the lattice potential that was also made
finite along the y axis (Fig. 8). We used the same quasi-soliton
input as in Fig. 7. One can see that the soliton survives even upon
passing of several array corners and that it returns to its inital
location after making a closed loop along the surface of the array
with a minimal decrease in the peak amplitude of both compo-
nents. Note that the radiation into the depth of the array is pro-
nounced only along the top and bottom armchair edges that do
not formally support edge states and that is why they were made
relatively short.

Fig. 8. Evolution of edge state with the localized soliton envelope at y - € = -0.02, # = 0.55 K in a rectangular array. Only |y _| distributions are

shown. In all cases # = 0.3, Q = 0.5. The left plot shows the array.
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Fig. 9. Dassage of the soliton obtained from the edge state with the
localized envelope at p-€ = -0.02, £ = 0.55 K through a surface
defect. The soliton was allowed to move along the surface of the array
over a considerable time interval before its collision with the defect. Only
the w_ component is shown. Here f = 0.3, Q = 0.5.

Finally, the absence of backscattering on edge defects is illus-
trated in Fig. 9, where we removed one of the micropillars on
the surface of the array. Before collision with this defect, the
quasi-soliton was allowed to evolve over a sufficiently long time
to ensure that its amplitude has reached a “steady state” value.
Note that the soliton experiences considerable reshaping at the
point of collision with the defect so that its amplitude drops by
nearly by a factor of 2, but it returns to its initial value immedi-
ately after passing of the defect.

5. SUMMARY

Summarizing, we predicted the formation of extended nonlinear
edge states in polariton condensates with SO coupling held in
honeycomb lattice potentials. Nonlinear edge states spontane-
ously decay into sets of fully localized quasi-solitons that can also
be selectively excited by using the proper envelope function,
derived in this paper. The edge solitons have been shown to
be robust with respect to the passage through the intervals of
the lattice edges that do not support the edge states in the linear
approximation and through other lattice defects.
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