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Abstract

We study a nonlocal Allen-Cahn type problem for vector fields of unit length, arising from a
model for domain walls (called Néel walls) in ferromagnetism. We show that the nonlocal term gives
rise to new features in the energy landscape; in particular, we prove existence of energy minimisers
with prescribed winding number that would be prohibited in a local model.
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1 Introduction

1.1 Background

We study a model for one-dimensional transition layers, called Néel walls, that occur in thin fer-
romagnetic films. In the theory of micromagnetics, the magnetisation of a ferromagnetic sample is
described by a vector field of unit length. In a typical model for Néel walls, the sample can be as-
sumed to be two-dimensional and the vector field is tangential, which leads to a map with values in
S!. We use a simplified model, also studied by several authors (see e.g. [2, 3, 4, 5, 6, 10, 12, 15, 16]),
where it is assumed that the transition layers have a one-dimensional profile, described by a map
m: R — S!. Our model is variational and the energy functional includes the Dirichlet integral,
a multi-well potential, and a nonlocal term. The geometry of the problem allows us to define a
topological degree (winding number) for the magnetisation that characterises the connected compo-
nents of the relevant configuration space. Therefore, it is natural to study whether these connected
components contain minimisers.

The corresponding problem for an Allen-Cahn type model (without a nonlocal term) is well
understood: most connected components of the relevant space do not contain minimisers (see
Appendix). We will show that the nonlocal term in our model changes the situation. In the
simplest case, we will prove existence of minimisers with any prescribed winding number. We
also study another case where a more intricate scenario aises: depending on a parameter, we have
existence or nonexistence of minimisers for certain winding numbers.

1.2 The variational problem

We now describe the energy functional studied in this paper and the spaces where we look for
minimisers. Our functional comprises three terms, coming from four different physical phenomena:
magnetic anisotropy, an external magnetic field, the stray field generated by the magnetisation, and
the quantum-mechanical spin interaction. The last of these gives rise to a term called exchange
energy, which is modelled simply by the Dirichlet functional. The effects of the anisotropy and
external field have the same general structure and are combined in effective anisotropy term in our
model.



Anisotropy. Fix h > 0 with h # 1 and set k = min{h, 1} € [0,1]. Define an anisotropy potential
W:S! —[0,00) by
1(mq1 — k)2 ifk=h<1,

Lmi— k)P 4+ (h—=1)(1—m) ifk=1<h,

W(m) = %(mf — 2hmy + 2hk — k?) = { (1)
for m = (my,m2) € S'. If h < 1, then W has two wells on S!, at (k,4+v1 — k2), while in
the case h > 1, the potential W has one well on S!, at (1,0). In both situations, if we write
m = (cosf,sinf) € S, then we have a pattern of periodically distributed wells in terms of the
phase 6 and W grows quadratically (in ) near these wells (see Lemma 2.3). This behaviour is
essential for our arguments and it is for this reason why we do not study the case h = 1 in this
paper. In physical terms, W represents a combination of the micromagnetic anisotropy m + m?,
with easy axis parallel to the Néel walls, and an external magnetic field h.,; = he; perpendicular
to the walls.

Stray field potential. Let

RZ =R x (0, 00).
For a given map m = (m1,my): R — S such that m; — k € H'(R), there exists a unique solution
uwe H (Ri), called the stray field potential, of the boundary value problem

Au=0 in R%, 2)
Ju
Fr —m} on R x {0}, (3)

where m/ denotes the derivative of m;. Here H '(R%) denotes the completion of C§° (@) with
respect to the inner product (-, -) i1 (2 given by

Dy = [, Vo Vo

for ¢,1 € C5°(R3). Equivalently, u satisfies the identity
[ee]

Vu-V{dx = / m}¢(-,0)dx; for every ¢ € C5°(R?), (4)
RZ —00

where 2 = (1, x3). The elements of H (R%) are not functions (not even in the almost-everywhere
sense), as the corresponding norm identifies all constants. But it is often convenient to treat them
as functions nevertheless, while keeping the ambiguity in mind. The Dirichlet integral of u, called

the stray field energy, can be computed in terms of the homogeneous || - || 71/2-seminorm of my,
namely [9]
1 2 1 a |2 ’ 1 2
5 22 |Vu| dx = 5 & T:L’l mi d.’l}l = §||m1 — k”Hl/Z' (5)
2

For a discussion of how this arises from micromagnetics, we refer to the work of DeSimone-Kohn—
Miiller-Otto [6].
Energy functional. We now define the functional Ej by the formula

En(m) = 1/ (jm'2 + 2W (m)) da: + 1/ IVl da,
2/ . 2 Jge
where u € H'(R%) is determined by (2) and (3). If h < 1, this is well-defined and finite for any
m € HL (R;S') such that m; — k € H(R) and m, € L*(R). If h > 1, then we need to assume in
addition that m; — 1 € LY(R).

If m € HL.(R;S') with E,(m) < oo, then it is readily seen that the limits lim,, 10 m(z1)
exist and coincide with one of the zeros of W. That is, if h > 1, then

lim my(z1) = (1,0),

r1—to00
and if h < 1, then
gni mi(x1) = (h,:l:\/ 1-— h2>
] o0

(where the signs on both sides of the equation are independent of one another). We choose
a € [0, %} such that k£ = cosa.

(Thus a =0if A > 1.)



Winding number. Let m* = (—ma,my). It is easily seen that the quantity
deg(m) = — m—-m’dx
g(m) = o /_ N 1

exists and belongs to Z + {0,£2} if E4(m) < oo. Moreover, this notion of topological degree
(winding number) can be extended to all continuous maps m: R — St with lim,, 1o mi(z1) =
k. More precisely, for any such continuous map m: R — S!, there exists a continuous function
¢: R — R, called the lifting of m, such that

m = (cos ¢,sin¢p) in R
and ¢(+00) := limy, 100 ¢(21) € 27Z + {—a, a}. Our generalised winding number is given by

p(+00) — ¢p(—o0)
2m

deg(m) = €Z+{0,i%}.

1.3 Main results

For any fixed d € Z 4 {0,£2}, we define
Ap(d) = {m € H. (R;S"): Ej(m) < oo and deg(m) = d} (6)

and
E(d)= inf F .
wd) = dnf | En(m)

Note that {A(d)}aczt (0,42} comprises the connected components of {m € HE (R;SY): Ep(m) <
oo} in the strong H L(R) topology. (The map deg is continuous in the strong H? (R) topology, thus
every connected component is contained in one of the sets Aj(d). To see the connectedness of
Ap(d), we consider the lifting: given two points in Aj(d), we may construct a path connection by
interpolation of the corresponding liftings.) Thus it forms a partition of this set.

The following question is studied in this paper.

Question. Given d € Z 4 {0,£2}, is &,(d) attained? That is, does m € Aj(d) exist such that
Ep(m) = &,(d)?

The answer is clear for d = 0. Since for m € Ay (d) (for any d), we can construct m, m € Ap(—d)
by m(z1) = m(—xz1) and 7y = my, Moy = —mg, it is also clear that the answer will always be the
same for d and —d (and that &,(d) = En(—d)). Therefore, it suffices to consider d > 0.

In the case h < 1 and d = S or d = 1 — 2, the answer to the question is positive and was
proved in the work of Chermisi-Muratov [2] (for h = 0, see also the work of Melcher [15]). In other
words, if h € [0,1), then &,(a/7) and E,(1 — a/7) are attained. These papers also give a lot of
information about the structure of the minimisers. For A > 1 and d = 1, some of their arguments
still work and give a positive answer. The underlying method relies on the symmetrisation of m;
by rearrangements and the observation that the energy is decreased thereby. For higher winding
numbers, the situation is more complicated and requires different arguments.

Our first main result shows that we have energy minimisers of any admissible winding number
if h > 1. They correspond to arrays of Néel walls as observed in physical experiments [8, Fig. 5.66].

Theorem 1.1. Suppose that h > 1. Then &,(d) is attained for any d € Z.

In contrast, for h < 1, we sometimes have a negative answer. In particular, we do not have any
minimisers of winding number 1.1

Theorem 1.2. If h € [0,1), then E,(1) = En(a/m) + En(l — a/7) and &, (1) is not attained.

In general, the case h < 1 is much more subtle than h > 1, because the nonlocal term
% fRz |Vu|? dx in the energy gives rise simultaneously to attractive and repulsive interactions be-
2
tween different parts of the profile of m. We have only partial results here, but we do know the
following.

Theorem 1.3. There exists H € (0,1) such that E,(2 — /) is attained whenever h € [H,1).

! According to the anonymous referee, for h = 0, the non-existence result for minimisers of winding number 1 was
announced by Capella, Kniipfer, and Muratov at the Workshop on Micromagnetics: Analysis and Applications, University
of Heidelberg, August 2014. However, to our knowledge, no such result has been published as of today (June 23, 2017).



We also prove the following Pohozaev identity for every critical point m of our energy, expressing
equality of the exchange energy and the anisotropy energy.

Proposition 1.1. Let m : R — St be a critical point of Ej, with En(m) < oo. Then

/|m’|2 dzy :2/W(m) dzy.
R R

We will also prove some qualitative and quantitative properties of the minimizers of Ej: sym-
metry properties (see Lemma 3.2 below) and decay rates at infinity that are exponential in the case
of h > 1 and polynomial if h < 1, respectively (see Theorems 5.1, 5.2 and 5.3 below).

1.4 Heuristics

The key to the proofs of our results is control of the nonlocal energy. For this purpose, we need to
understand the shape of energy minimising profiles m. A prescribed winding number d gives rise
to a certain number of transitions of m between the wells of the anisotropy potential W. Each of
these transitions represents a Néel wall (to use the micromagnetics jargon). In the case of h > 1,
we have 27-Néel walls, while for 1 > h = cosa (with a € (0, §]), we have Néel walls of angle 2«
and 27 — 2q, respectively (see Figure 1).

m
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Figure 1: Schematic representation of a Néel wall of angle 2« (left) and 27 — 2 (right).

In terms of the m; component, we can distinguish these two types of walls as follows: if h < 1,
then a wall of angle 2a entails that m; attains the value 1 somewhere during the transition and
we expect that m, exceeds cos a throughout, while for a wall of angle 27 — 2, we expect that m;
is below cos« and attains —1 at some point. For h > 1 (i.e., when W has a single well at (1,0)),
only the second alternative can occur (see Figure 2).

Our first observation is that the stray field energy will give rise to attraction between pairs of
walls where m1 — cos a has the same sign, and repulsion otherwise. In particular, in the case h > 1,
we only have attraction. We will prove that this effect of the nonlocal energy term dominates the
interaction coming from the local energy terms.

As our energy controls the H'-norm of m, the only possible cause for lack of compactness is
escape to infinity of some walls. We can rule this out, using the previously described attraction, in
the following cases.

(i) If h > 1, only attraction is possible; this is the situation in Theorem 1.1 (see also Figure 2).

(ii) If h < 1, the attraction between the outermost walls may be strong enough to keep the whole
profile together. This is the case in Theorem 1.3 where a small wall is “sandwiched” between
two large walls (see Figure 3, right).

my

1

Figure 2: For h > 1, a pair of Néel walls of total winding number 2, represented in terms of mj.

On the other hand, if one of the outermost walls is small relative to the adjoining one (or
of comparable size), then there will be a strong repulsion that cannot be compensated by the
remaining profile (as it is further away), in which case we expect nonexistence (see Figure 3, left).
We prove this when ~ < 1 and the winding number is one (see Theorem 1.2).

In the remaining cases, we do not have a proof yet, but the following behaviour seems plausible.
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Figure 3: For h < 1, a hypothetical array of Néel walls of total winding number 1 4+ a/7 (left)
and an existing one of winding number 2 — o/7 (right).

Conjecture 1.1. Ifh € [0,1), then for any d € N ={1,2,...}, neither E,(d) nor E,(d+ o/7) are
attained.

Conjecture 1.2. For any d € N, there exists H € (0,1) such that &,(d—a/7) is attained whenever
he[H,1).

Conjecture 1.3. For any d € N\ {1}, there exists K € (0,1) such that E,(d— a/7) is not attained
whenever h € [0, K].

1.5 Other representations of the energy and the winding number

It is sometimes convenient to represent the energy functional Fj, in terms of a phase (lifting) ¢ of
m such that m = (cos @, sin ¢). Abusing notation and writing W (¢) and Ej(¢) instead of W(m)
and Ej(m), respectively, we have

B0 =3 [ (@ +2w@) dos g [ TuPa.

By definition, the potential W depends only on m;j, so we abuse notation further and write
W{(my) instead of W (m) when convenient. Since the stray field energy is determined by m; as
well, we can rewrite the energy Ej in terms of m; only:

En(m) = %/OO (1(77_1’1;; +2W(m1)> dwy + %/R

— 00

2

1
2
difl.

dxl ml

In fact, often it is convenient to study our variational problem in terms of m; only, ignoring the
second component ms. Then we note that the winding number is characterised implicitly by the
following simple observation.

Lemma 1.1. Let d € N+ {0, 2} U {%}. Let mi: R — [~1,1] be a continuous function with
lim,, 100 mi(x1) = k. Suppose that there exist ai,...,ar € R with a1 < a2 < -+ < ay and
there exists € € {1} such that my(a;) = e(=1)7 for j =1,...,1. Further suppose that one of the
following conditions is satisfied:

) ) .

(i) Izsoddandd:%l_%

(ii) Iisaddandd:%+%

iii) I is even and d =L and h < 1.
2

Then there exists a continuous function mg: R — [—1,1] such that the map m = (mqy,mq) takes
values in S' and deg(m) = d.

and € =1; or

and e = —1 and h < 1; or

Proof. We only give the arguments under the condition (i), as the proof is similar for the other
cases. Since we need to satisfy m? +m3 = 1 everywhere, we only need to determine the sign of ms.
Assuming that (i) is satisfied, we can do this as follows: in (—oco, a;), we choose mg = /1 —m?;
in [aj,a;41), we choose my = (—1)7y/1—m? for j = 1,...,1 — 1; and in [as,00), we choose
mg = —y/1 —m3. This clearly gives rise to m = (my, mz) with the desired winding number. O



1.6 Notation

The stray field potential U(m). Recalling the Neumann problem (2)—(3) for m; — k € H*(R), we
highlight that the solutions u in H'(R%) have a limit for [z| — oo. Indeed, if we extend u to R?
by even reflection, then we obtain a harmonic function near co with finite Dirichlet energy, and
it is well-known that the limit exists at co. Then we normalise this constant and define U(m)
(sometimes also denoted U(m;)) to be the unique solution of (4) in H*(R2) with

U(m) =0 as|z| — .

If we denote the Fourier transform with respect to x1 by F, then the solution U(m) is given by [9,
Proposition 4]

e~ l€lz2

FUm)(E, s) = \/% /R U (m) (@) dn = S Fnd)(©). €€R 0. (7)

Note that U(m) € L*(R2) if, and only if, m; — k € H~'/?(R), where the homogeneous Sobolev
space H*(R) (for s € R) is the set of tempered distributions f such that Ff € LL (R) and

11 ) = /R|£|25\J-"f|2d£ < 0.

The conjugate harmonic potential V(m). In addition, we consider the conjugate harmonic function
V(m) € H'(R?) (sometimes also denoted V(m1)) with

ViV(m)=-VU(m) in Ri.
In other words, V' (m) is the unique solution of the Dirichlet problem

AV(m)=0 inR7, (8)
V(m)=my—k onR x{0}. (9)

Equivalently, V' (m) is the unique minimiser for the problem

/RQ VV(m)|2dx:inf{/R2

+

\Vu[?de: v € HY(R2) with (9)} .
It is given by the following formula, similar to (7) [9, Proposition 3]:
FV(m)(€,x0) = e €172 F(my — k)(€), € €R, 23> 0. (10)
As F (331 — wzrﬁ) (&) = /5e e~*2lél we deduce the following Poisson formula:
1 2

_ T2 my(t) —k 2
Vim)(a) = = /Ru—muxg dt, Rl

The Dirichlet-to-Neumann operator A. Consider the operator A: H'(R) — L?(R) given by

Nifo— (=) £ te. FANE=—EFFE, R

We can represent A by the following formula [7, (3. 1)]

Af( PV/ 40 t—x ) t, x1 €R. (11)
By (7) and (10), we obtain
Almy —k)(z1) = 8?31 U(m)(x1,0) = 8?:2 V(m)(z1,0), =z €R. (12)

Therefore, this is a Dirichlet-to-Neumann operator for the boundary value problem (8)—-(9). If
u = U(m), we will often write «’ for the quantity u'(x1) = %U(m)(azl, 0), where z; € R.

Remark 1.1. The Dirichlet-to-Neumann operator can be also defined on the space H'/? (R), such
that A: H'/?(R) — H~'/2(R). Moreover, it is not difficult to see that

A (Hbe N I* N HAR)) € Lho 0 HA(R).

Convention. Throughout the paper, when we speak of a universal constant, we mean a constant
that depends neither on the parameter h nor on any of the variables of the problem.



1.7 Organisation of the paper

The rest of the paper is devoted to the proofs of our results. We first prove a few auxiliary
statements in Sect. 2. Among these are estimates for &, a proof that W (¢) grows quadratically in
the phase ¢ near its zeros, and estimates of the energy for a profile localised with a cut-off function.

In Sect. 3, we state the Euler-Lagrange equation for critical points of Ej and a regularity
result. We prove Proposition 1.1 here and we establish further consequences of the Euler-Lagrange
equation, in particular a result on the symmetry of minimisers and H?2-estimates.

As the control of the nonlocal part of the energy is crucial for our analysis, we study this
term in Sect. 4. We derive several estimates based on cut-off arguments and we establish the
attraction/repulsion described in Sect. 1.4.

In Sect. 5, we analyse the tails of energy minimisers and their decay as 1 — +oo. For h > 1,
we obtain exponential decay. For h < 1, we can expect polynomial decay at best, and we prove
this for winding numbers a/7 and 1 — o/7 with the help of a linearisation of the Euler-Lagrange
equation. These estimates are important in order to see that the attraction or repulsion of the
nonlocal terms dominates everything else.

In Sect. 6, we establish a general concentration-compactness result that allows to prove existence
of minimisers by finding good estimates for the energy. Finally, in Sect. 7, we combine all the
ingredients and prove Theorems 1.1-1.3. In order to compare our results with the situation for
a similar functional without a nonlocal term, we discuss the known results for the latter in the
Appendix.

Acknowledgements. Part of this research was carried out at the ICMS Edinburgh, and the authors
wish to thank the centre for its hospitability. RI acknowledges partial support from the ANR
project ANR-14-CE25-0009-01.

2 Preliminary observations

2.1 A simple energy estimate

Suppose that h € [0,1) and we study E,(a /7). While the work of Chermisi-Muratov [2] gives a lot
of information about this situation (especially concerning the structure of the energy minimisers),
we also need to know how & (a/m) depends on « (and therefore on h). In particular the growth
behaviour in « near 0 is important, e.g., for the proof of Theorem 1.3. An estimate can be obtained
by a scaling argument as follows.

Lemma 2.1 (Cubic growth in «). There exists a universal constant C > 0 such that for all

he0,1),
En(a/m) < Ca?,

where o € (0, 5] with cosa = h.

Proof. Choose an increasing, smooth function ¢ : R — R such that lim,, 400 ¢(z1) = £7/2 and
m = (cos ¢,sin @) € H(R;S). Let @ = U(m) as defined in (7). Note that m € Ay(1/2) according
to the notation introduced in (6). Now define

mp =1—(1—cosa)(l—m).

Then there exists a function 1y : R — [—1, 1] such that 7 = (1, h2) € Ap(a/7). Let @ = U(m).
We compute
/

/ (1 — cosa)?dxy = (1 — cosa)2/ m? dxy.

— 00

|Va|? de = (1 — cosa)2/ |Va|? de

2 2
+ R

and

Moreover, we have
1—my =(1—cosa)(l—mq),

while
14+my > 1+m.

e’} . e} (m/)Q e <] (m/)Q
/_OO |/ |? dy = / . _lm% dry < (1 - cosa)/ . _17%% drq.

— 00 — 0o

Hence

7



Finally, let m(z1) = 7 (z13/1 — cos ). Then it follows that
En(m) < (1 — cosa)¥2Ey(m),
which implies the desired inequality. O

For the transition angle 1 — «/m, we have the following uniform energy estimate.

Lemma 2.2. There ezists a universal constant C' such that for all h € [0,1) with a = arccosh €

(0, 3],
En(l—a/m) < C.

Proof. Choose n € C*°(R) with n =01in (—oo,—1] and n = 1 in [1, 00). Define ¢ = o+ (27 — 2a)n
and m = (cos ¢, sin ¢). Then it is clear that m € A, (1 — o/7) and

[m/ 2@y = 19" | L2y < 27017 L2(w)-

Furthermore, as supp(mi — h) C [—1,1], we have |[m1 — h|L2®) < 21/2. By standard interpolation
inequalities, we obtain a uniform estimate for [|my — hl| g1/2g) as well, and the claim follows. [

2.2 Behaviour of the anisotropy W near its zeros

The function ¢ — W(cos ¢,sin ¢) grows quadratically near its zeros. This behaviour is crucial for
our analysis and we will need the following estimates.

Lemma 2.3. There exists a universal constant v > 0 such that for all m = (cos ¢,sin ¢) € St with
¢ € [=m, 7], the following inequalities hold true. If h € [0,1) with a = arccosh € (0, 5], then

W(m) > 7*(¢* — a?)%.

If h > 1, then

W(m) > (h—1)(1 —cos¢) > (h — 1)y2¢>.
Proof. Suppose first that h € [0,1). Define the function w: R? — R by w(¢, o) = 3(cos ¢ — cos a)?
and note that W(m) = w(¢, @) when m = (cos ¢, sin ¢). The function w is smooth with vanishing
derivatives up to third order at (0,0). Moreover, we compute

0w *w 0*w *w 0w
W(an) _37 m(oao) _07 W(()?O) - _17 W(O,O) _07 W(()?O) =3.

Therefore, by Taylor’s theorem, we have

lim _w($a) 1
(¢.)—(0,0) (2 —a2)2 8

Similarly, we see that for any o € (0, 3],

.2
lim w(p,a)  sin“a

¢p—ta (92 —a2)2  8a?

This implies that the function (¢, o) — w(¢, a)/(¢? — @?)? has a continuous, positive extension to
[—m, 7] x [0, §]. By the compactness of this domain, the claim follows in this case.

Now suppose that i > 1. Then W(m) = (h — 1)(1 — cos ¢) + 1(cos ¢ — 1)%. As there exists a
number ¢ > 0 such that 1 — cos ¢ > c¢? for every ¢ € [—7, 7], the desired inequality follows. O

2.3 Localisation

For minimisers m of Ej, the function m; — k will decay at a certain rate as x; — +o00, as we will
eventually see. This will allow us to replace m by a map m such that m; — k has support in a
bounded interval, while changing the energy by only a small amount. Quantifying this amount is
also essential for the proof of existence of minimizers in our main results. More precisely, we have
the following.



Proposition 2.1. There exists a constant C' > 0 with the following property. Suppose that ¢ €
H (R) is such that m = (cos ¢,sin ¢) satisfies Ep(m) < co. Furthermore, suppose that there exist
two numbers £y € 2nZ+ {—a, a} and three measurable functions w,o,7: [0,00) — (0,00) such that

(1) — o] <w(z1) and |p(—z1) — 4| <w(z1) forallzy >0

and
|¢' (1) < o(|x1]) and |A(mq —k)(x1)| < 7(|21])  for all 71 € R,

where k = min{h,1}. Let r > 1 with

s ifh<l1
sup w(zry) << 2 Zf
T1>T b th > 1

Then for any R > r there exists m € HL (R;S') such that

0y — 0

or

deg(m) = my =k in (—oo, —2R] U [2R,00), m1 =my in [-R, R],

and |mq — k| <|mq — k| everywhere, and such that
Eh(fn) < Eh(m) +CA th <1

and

. 1/2
En(1) < Ep(m) +C G%/ o dx1> +CA ifh>1,
R

00 1/2 0o 0o 2
AzB—i—(/ w2dx1> Bl/2+/ wrdry and B:/ <w2+02> dx.
R R R R

Proof. Choose an even function n € C11(R) with n(z1) = 0 for |21| > 1, n(z1) = 1 for 0 < |zq| < 4,
n(z1) = (1= |21])? for 3 < |zy| < 1, and {5 < p(z1) < 1for § < 1] < 3. Fix R > r and set
ii(z1) =1 (5%) for every 1 € R. Now define

where

my = nmq + (1 —’ﬁ)k in R.

Then clearly |1 —k| = 7|m1 —k| < |m1—k|. It follows in particular that W (m) < W(m) pointwise
in R. Moreover, since the conditions on w prevent large oscillations of m; in (—co, —R]U[R, c0), it
is clear that there exists mso: R — [—1,1] such that the map 1 = (riq, 7)) belongs to H (R;S')

with deg(m) = deg(m) = €+2_7:L'

Step 1: estimate ||| z2(r). We compute

my =nmi +7'(m1—k) inR.
We distinguish the cases h <1 and h > 1. If h < 1, then

1
o St —m? < Cy(1—mi) for |z >R,
1
where C; > 0 is a constant that depends only on «a (because of the condition sup,, >, w(r1) < §).
It follows that

(m})* 72 (m)? + ()% (my — k)? (m4)* 2 ()2 2
<2 <2 + 2 — f > R.
T S T2 < Cll—m% Ci(7")*(m1 — k)* for |z1] > R

= (p)? " () =, W
/Ool—ﬁl%dxlg 7R1_m%df£1+02 i o +ﬁ dxrq

for some constant Co = Cy (v, ).
Ifh>1,then 14+m; >14+m; > 1in (—oo,—R]U[R,00) and 1 —m; = 7(1 — my) in R.
Therefore,
(')
n

Therefore,

)2
—27'm} +

[ (1 —=mq) for|z1] > R.



Clearly, we have

1\2 [e’e]
/ n (m) dr, < 4/ o? dx.
R\(—R,R) I—m R

By the choice of 7, we have (')?/n € L>(R). Hence there exists a constant C3 = C3(n), such that

- N R? R\(—R,R) R? Jg

0o 04 2R 1 00 1/2
flwﬁ/mﬁdxlgf/}% odxy < Cy (R/R 02d1’1>

for a constant Cy = Cy(n). It follows that

00 (2 1\2 R 1\2 oo 2 oo 1/2
(1) / (m7) / 2, Csw 1 / 2
dr; < d 4 d 2 — d .
-/—ool_m% x; < g x1 + i o” + 2 x1 + 2Cy 7/, o”dxy

Step 2: estimate ||y — k|| g1/2(g)- We now consider both the cases h <1 and h > 1 together. Note
that m1 —my = (1 — 77)(k — mq), and therefore,

oo ~/\2 oo
/ () (I =mq)dx; < @ |1 —cos¢|dxy < @ w?dxy.

Moreover,

oo
[m1 — mlH%z(R) < 2/ w? dzy.
R

Moreover,
00 UJ2
=712 2
[[m} — mI1||L2(R) <Cs /R (0 + R2> dx;

for a constant Cs = C5(n). By interpolation, we find that there exists Cg = Cg(n) such that

. SN 1/2 ~ 1/2
|lmq — m1||H1/2(R) <Cs o+ 2 dry w* dxy .
R R

Finally, we consider v = V(m) and © = V() defined by (8)—(9). We have

/|Vf1|2dac=/ |W\2daz+/ Vo —Viol2de—2 [ Vov-(Vv—Vd)dr.
R% RZ RZ R2

By the above estimate, we have

} s ~ Jo%e) wz 1/2 jo%s) 1/2
L, rov= ot L im = il <o ([, (4 5) @) (f, Fan)
R R R

2
2
An integration by parts and (12) yield

oo oo

(mq —m1)A(my — k)dzy, < 4/ wT dzy.

-2 Vv-(Vv—Vf/)da:=2/
R

]Ri —00
Hence

/|Vﬁ\2dx1§/ Vo2 de + (Cs + 4)(A — B),
R2 RZ

where A and B are defined in the statement of the proposition. Combining these estimates, we
obtain the desired inequality for the energy. O

When we apply Proposition 2.1, the following estimate is useful.

Lemma 2.4. For any ¢,C > 0, there exists a number R > 0 such that for any m € HL _(R;S')
and any x1 € R, the following holds true. If E,(m) < C and |mi(x1) — k| > ¢, then |my — k| > ¢/2
in (x1 — R,z1 + R) and

z1+R 1 Tz1+R 2R
/ W(my)dxy > 7/ (k—my(s))*ds > —.
:El—R 2 ml—R 4

10



Proof. Choose R = ¢ Then for every t € (x1 — R,z1 + R), we have

16C"
z1+R 2
|ma(t) —mq(z1)* < 2R Im/y(s)|? ds < 4RC = T
z1—R
The conclusion is now straightforward. U

As a consequence of Proposition 2.1, we have the following localisation result.

Corollary 2.1. Lete >0 and d € Z+{0,xa/7}. Then for any m € Ap(d), there exist m € Ap(d)
and R > 0 such that
Eh(’ﬁl) S Eh(m) +e€

and m is constant in (—oo, —R] and in [R,00).

Proof. 1t follows from Lemma 2.4 that lim,, 4. m1(z1) = k. Thus if we choose ¢: R — R with
m = (cos ¢, sin ¢), then Proposition 2.1 applies with £+ = limg, 1. ¢(21) and

w(z1) = [p(x1) — Ly | + [p(—z1) — €],
o(z1) = ¢ (x1)| + |9’ (=x1)],
7(x1) = [Ama — k) (z1)| + [A(my — k) (=21,

provided that r > 1 is chosen sufficiently large. Since w, o, 7 € L?(0,00), we have
(o]

lim (w? + 0% 4+ 7%)dxy = 0.
R—oo J

Thus for a sufficiently large R, the inequalities of Proposition 2.1 lead to the desired conclusion. [J

2.4 Monotonicity and subadditivity of the function &

In this section, we examine how the number &, (d) depends on d. To this end, we construct suitable
maps m € Ap(d) and estimate their energies.

Proposition 2.2 (Monotonicity). Suppose that dy,ds € Z + {0, a/7} such that 0 < dy < dy. If
h < 1, suppose that do —d; # 1 — 270‘ Then &, (d1) < En(da).

Proof. We may assume that 0 < d; < da. Suppose that m € Ap(dz). Then there exist t1,ts €
R U {00} with t; < ty such that? m(t;) = (cos a, £ sina), m(tz) = (cos a, % sin ), and

to
m*-m' dx, = 2rd,.

ty

We then define a map m = (11,mz2): R — St as follows. For 1 € (t1,t2), we define m(z1) = m(z1).
For 1 ¢ (t1,t2), we define mq(x1) = mi(z1) and ma(x1) = *|mao(zq)|, with the sign locally
constant and chosen such that 7o is continuous. Then deg(m) = d; and m € Ap(dy). On the
other hand, we clearly have Ej(m) = Ep(m). Therefore, we have &,(d1) < Ep(m). The desired
inequality then follows. O

Proposition 2.3 (Subadditivity). Suppose that di,ds,d € Z + {0, +a/7} with d = dy + da. If
a =% and d2 — dy € Z, suppose that d € Z. Then

En(d) < En(dr) + En(da).
Proof. Choose m! € Ay, (dy) and m? € Ay (dz) and fix € > 0. We want to find m € Ay,(d) with
Ey(m) < Ep(m*) + Ep(m?) + 3e. (13)

Using Corollary 2.1, choose R > 0 and m! € A, (d1) and m? € Ap,(dz) such that both are constant
in (—oo, —R] and in [R, 00) and

Ep(m!') < Ey(m') +e and EpL(m?) < Ep(m?) + e

There exist ¢1, ¢2 : R — R such that m! = (cos ¢1,sin ¢1) and m? = (cos ¢, sin ¢2). Furthermore,
there exist two numbers 1, 82 € 27Z + « such that ¢1 = 81 in [R,00) and ¢o = P2 in (—o0, —R].
We can assume without loss of generality that 83 — 81 € 2nZ. This can be achieved by either

2Here we use the notation m1(£o0) = limg, — 400 m1(x1).
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e exchanging d; and ds; or
e replacing ¢1(z1) by —¢1(—x1) or ¢a(x1) by —¢2(—z1); or
e if a = T, replacing ¢o by ¢ + .
For r > R, define
W(z1) = {(/51(1’14-7“) %fﬂh <0,
pa(wy —7) — P2+ B if x> 0.

Then obviously we have

/_ ()2 doy = / (64)? duy + / (6))? da
and

/ W (cos 1, sintp) day :/ W (m') dx; +/ W (m?) d; .
— 00 —00 —00
Let u' = U(m') and u? = U(m?) be defined by (7). Furthermore, let w = U(cosv,sin). As (7)
determines w uniquely, we deduce that w(z1,z2) = u'(z1 + 7, 22) + u?(x1 — 7, 22). Hence
/ |Vw|? do = / |Vu'|? da +/ |Vu?|? dz + 2/ Vul (zy + 7, 29) - Vu? (21 — 7, 22) da.
R2 R2 RZ R3

Parseval’s identity, the dominated convergence theorem, and the Riemann-Lebesgue lemma lead to

Vul(zl +rx9)- Vuz(osl —r,x9)dx = / dxa / eQiéTf(Vul)(ﬁ, x9) - F(Vu?) (&, x2) dé =0 0,
0 R

2
]R+

where we use the fact that Vu!, Vu? € LQ(Ri). Hence if r is sufficiently large, the map m =
(cos ), sin ) will satisfy (13). By construction, we have m € Ap(d), which concludes the proof. O

3 The Euler-Lagrange equation

3.1 Statement and immediate consequences

We now discuss critical points m of the energy E},. If m € Ay (d) is a critical point of Ej,, then it is
critical relative to Aj(d) as well, because Ay (d) is an open set in {m € H} _(R;S"): E,(m) < oo}

under the strong H'-topology. Write m = (cos ¢,sin @) € A (d) and let u = U(m) be the function
defined by (7). Then the Euler-Lagrange equation is

"=(h—cos¢+u)sing in R. (14)
We can write the equation in terms of m, noting that m” = —(¢’)?m + ¢"’m*. This leads to
m" 4+ |m/|*m = (h — my + v/ )mam®  in R. (15)

Away from m;*({£1}), we can write the Euler-Lagrange equation in terms of the function

f=my—k=cos¢— cosa.

2

Indeed, observing that 1 —m? = sin® a — 2f cosa — f2, we find the equation

L p— §f/)2(f+coso‘) +(sin?a—2f cosa— f2)(f—Af—h+k) in R\ f({£1—k}), (16)
sin“a — 2f cosa — f2

where A: H'(R) — L?(R) is the Dirichlet-to-Neumann operator introduced in (11).
The equation admits a regularity theory. In particular, the following can be shown with the
arguments of Ignat-Kniipfer [10, Theorem 1.1] (even though they study a slightly different problem).

Proposition 3.1 (Regularity). If ¢ € HL_(R) with cos ¢ — k € H'/?(R) solves equation (14), then
¢ € C*(R).

It is an open question whether minimisers of Ej subject to a prescribed winding number (or
more general, solutions of (15)) necessarily correspond to a monotone phase ¢. On the other hand,

we can show that a minimiser m will pass through the points (41,0) exactly as many times as the
winding number requires and in a transversal way.

12



Lemma 3.1 (Passages through (+1,0)). Suppose that m € Ap(d) minimises Ey in Ap(d). Then

Imyt({£1})| =2/d| -1 ifh>1andd € Z\ {0},
Imy  ({£1})] = 2/d| ifh<1anddeZ,
imyt({£1})] =20 -1 ifh<1land|d=0—1+2 orl|d =(—2 for some { €N.

Furthermore, if a € R with my(a) = £1, then mb(a) # 0.

Proof. We may assume that d > 0. Suppose that ¢: R — R is such that m = (cos ¢,sin¢). By
Proposition 3.1, we know that ¢ is smooth.

Step 1: prove the second statement. Here we show that ¢'(a) # 0 if ¢(a) € 7Z for some a € R.
(This will then imply the second statement of the lemma.) To this end, consider the Euler-Lagrange
equation in the form (14). Suppose that ¢(a) = jm with j € Z. Then the initial value problem

Y =(h—cos¢+u)siny inR,
P(a) = jm,
¥'(a) =0,

has the solution 1(z1) = jw. The function ¢ also satisfies the ordinary differential equation and the
first initial condition. But since solutions of the initial value problem are unique and ¢ cannot be
constant, it follows that ¢ does not satisfy the second initial condition. That is, we have ¢’(a) # 0.
(This kind of argument was also used by Capella-Melcher-Otto in [1].)

Step 2: prove the first statement. Now we show that ¢(a) < ¢(b) for any a,b € R with a < b,
¢(a) € 7Z and ¢(b) € wZ. (This will imply the first statement of the lemma.) We argue by
contradiction here. Suppose that ¢(a) > ¢(b). Since
lim ¢(z1) > lim ¢(zq)
Tr1—>—00

Tr1—00

and there can be no local extrema at a or b by the first part of the proof, it follows that there exist
a’,b € R with @’ < ¥’ such that ¢(a’) = ¢(V') € 7Z. Now define

- ~#(z) ifx; <a orax >V,
olz1) = {2¢(a’) —¢(z1) ifa <z <V,

and 7m = (cos ¢,sin ¢). Then 7 € Ap(d) and 701 = my. Therefore, we have Ej(m) = Ep(m) and
m is another minimiser of Ej, in A, (d). Proposition 3.1 implies that ¢ is smooth. Since we already
know that ¢'(a’) # 0, this is impossible. Therefore, we have in fact ¢(a) < ¢(b). O

3.2 Pohozaev identity

Next we prove the Pohozaev identity from Proposition 1.1, which gives equipartition between the
exchange and the anisotropy energy for critical points of Ej.

Before we give the rigorous proof, however, we describe the central idea informally. For ¢ > 0,
let m'(z1) = m(tz1) for every z1 € R. We compute |, m(z1) = z1m/(z1) and

1 [ 2 1 [
Ep(m') = 5‘/ (t|m’|2 T tW(m)) dzy + 5/

— 00

1 2
2

mq d.l?l,

_d_
dxl

noting that the H'/2_seminorm is invariant under scaling in R. If m is a critical point of E, we

expect that
d

T dt

For energy minimisers, the formula from Proposition 1.1 follows in fact immediately. For solutions
of the Euler-Lagrange equation, however, we need additional arguments.

En(mt) = %/00 (jm/[* = 2W (m)) da;.

t=1 —0o0

0

Proof of Proposition 1.1. We write m = (cos ¢,sin¢). Let u = U(m) be the function defined in
(7). By Proposition 3.1, we know that ¢ is smooth in R.

We now use an argument similar to a proof in our previous paper [11, Lemma 12]. As u is
harmonic, we calculate, for every R > 0, that

1
div <2Vu|23: — (z- Vu)Vu) =0 in B} ={zeR* |z| < R,z3 >0}.

13



Denote CE = {as € 83}': To > O} and 9,u = \:%I - Vu. The Gauss theorem gives

R
/ (R|Vu|2 - R(@ru)z) da+/ Ou Ou =0, R>0.
Ch

- T — ——
2 R 181‘1 8.132

Then (3), (14), and an integration by parts yield

B du du R y ,
/Rxlaia:léi@dxl —/_Rl'l( —8¢W(¢))¢ dl’l

- % |:a:1(((b')2 _ 2W(¢))r _ = /R ((¢')? — 2W () d.

R —R

As Ej(m) < oo we deduce that the function

R <<¢’<R>>2 +2W(O(R)) + (¢/(~R))" +2W (9(—R)) + /C L IVal? da>

R

belongs to L'(R.). Therefore, there exists a sequence Ry — oo such that

Ry <<¢’<Rk>>2+2W<¢><Rk>>+<¢’<—Rk>>2+2W<¢<—Rk))+ /C . Vu2do—> =0, koo

Ry
In particular,

Ry

{xl((QS’)Q - 2W(¢))] " /C (Jz’WWF — Ry, (8ru)2> do—0, k— oo.

n
Ry
The dominated convergence theorem implies that
1o 2 1 2
3| (@R -2w@)dn g [ (02 -2 @) dor, ko
—Ry, R

The conclusion is now straightforward. O

3.3 Symmetry

As mentioned previously, if h < 1 andd = £ ord = 1— 2, orif h > 1 and d = 1, then
symmetrisation arguments are crucial for the construction of energy minimisers in A, (d). Although
the same arguments do not work for higher winding numbers, there is still some symmetry.

Definition 3.1. We say that a map m: R — S! is symmetric if m; is an even function and my is
an odd function.

We prove that such symmetry holds true for minimisers of Ej, in Ay (d) with the exception of
the case h < 1 and d € Z.

Lemma 3.2 (Symmetry). Suppose that d € Z+a/m andm € Ap(d). Then there exists a symmetric
map m* € Ap(d) with Ep(m*) < Ey(m). Furthermore, if m € Ay(d) is a minimiser of Ey, in Ap(d),
then there exists tg € R such that m(- — to) is symmetric.

Proof. Without loss of generality, we may assume that m1(0) = 1if d € 2Z + /7 and m4(0) = —1
if d € 2Z + 1+ a/m and that

0 o)
/ m* - m/ dzy :/ m* - m' dz, = 7d.
—00 0

Define m* = (m},m3) € An(d) and m~ = (m],m3) € Ax(d) as follows:

mt (21) = my(z1)  ifxz >0, mif (21) = ma(x1) if z1 >0,
L my(—xz) if 1 <O, 2 —mg(—xz1) if z1 <0,
e () = my(—zy) ifx; >0, my (1) = —mao(—x1) ifx; >0,
e mi 1‘1) if z1 <0, 2 m2($1) if z; <O.
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Define v = V(m) and v* = V(m*) as in (8)-(9). Then Avt = 0 in {z2 > 0} (in particular,
vT is smooth in {z2 > 0}), and by the symmetry of m™, the function v*(-,z2) is even, so that

‘gé’; (0,z2) = 0 for every zo > 0. Of course, we also have v (z1,0) = my(z1) — k for z; > 0.

It follows that the restriction of v to (0,00)? is the unique minimiser of the Dirichlet energy in
(0,00)? subject to these boundary data on (0,00) x {0} and free boundary data on {0} x (0, 00).

In particular,
/ Vot |2 dr < / |Vo|? d,
(0,00)? (0,00)?

with equality if, and only if, v = v*. Similarly,

/ |Vo~ | dx < / |Vo|? de,
(—00,0) % (0,00) (—00,0) x(0,00)

with equality if, and only if, v = v~. Therefore, by the symmetry of v*, we have

1
7/ (Vo |? + Vo~ |?) da:g/ |Vo|? d,
2 ]R2 R2

+ +

with equality if, and only if, v = vy = v_ (which, in particular, would mean that m; is even). It
is clear from the construction that

%/OO (|mY )2 + |(m7) )P+ 2W (m™) + 2W(m™)) day = /OO (|m/|* 4+ 2W (m)) da;.

—0o0 — 00

Thus we have 1
(En(m™) + En(m™)) < En(m),

N

with equality if, and only if, m; is even. So either m* or m~ has the required properties for the
first statement.

If m is an energy minimiser, then it follows immediately that m; is even. By Lemma 3.1, there
exist exactly as many points in m;'({#1}) as required by the winding number. Therefore, the
function my is determined uniquely by m, and the winding number, and it follows that ms is odd.
So m is symmetric. O

3.4 H?-estimates based on the Euler-Lagrange equation

In this section we use the Euler-Lagrange equation (14) to derive some H2-estimates for minimisers
m of Ep, in Ap(d). Recall that by Lemma 3.1, such a minimiser m passes through the points (£1,0)
a finite number of times, which means, in particular, that ms # 0 on an interval of the form (a, 00).
We prove the following estimate for critical points m of Fj under the assumption that the second
component mz does not vanish on (a, o).

Lemma 3.3. There exists a universal constant C' such that for any solution ¢ € C*(R) of (14)
with w = U(cos @), if there exists a number a € R such that sin¢ # 0 in (a,00), then

/ ((¢//)2 + (¢/)2 sin2¢+ (¢/)4(1 +C0t2 ¢)) dxy +/ ‘v2u|2 dr < CEhém)
a+R (a+R,00) % (0,00) R
for any R > 0.

Proof. The following arguments rely on ideas from our previous paper [11, Lemma 11]. We first
note that o

sin ¢
by (14). Differentiating, we obtain
d)/ll B ¢//¢/ cos ¢

sing  sin?¢

=h—cos¢p+u in (a,0)

+¢'sing +u”,

and hence
¢" = ¢"¢ cot ¢ + ¢ sin® ¢+ u" sing  in (a,00). (17)
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Let n € C§°(R?) with n(z1,0) = 0 for 21 € (a,0). Let v = V(cos ¢,sin ¢) be defined as in (8)—(9).
Then v (21,0) = 8; (71,0) and v'(x1,0) = —¢'(x1) sin ¢(z1). Multiplying (17) by 7%(-,0)¢’ and
integrating by parts, we obtain

/ (") diy = — / 2 ((8(¢) cot é + (&) sin 6 + u” & sin ) day — 2 / e
a a i , , - ( (z)) a
—1()°] = (cos

= _/OO n2(¢l)2 sinngd:m — %/OO n2(¢l)4(1 +COt2 ¢) dxl

> 1
+ 2/ ' (3(¢’)3cot¢ - ¢”¢’> dx, —/ n?|Vo'[? da
a R?F
— 2/ n'Vn - Vo' dx.
r?
We estimate - | -
_2/ 7777/¢”¢/ dl‘l S 5/ "72(¢N>2 dl‘l + 2/ (n/)2(¢/)2 dml

and
5| @ etodn < ¢ [ @) ot ode + 5 [ )R

Furthermore,
1
—2/ 'V - Vo'dz < f/ n? V' |2 dx + 2/ V2| Vul|? d.
RZ 2 Jr2 RZ

2 02
v, we have % =_%u . Therefore, the Hessian satisfies
x5 oz ax

As wu is harmonic and Vu = —V+

the following identity:
|V2ul> =2|Vv'|? inR3.
Hence it follows that

/OO n? <(¢”)2 + 2(¢')?sin? ¢ + 1(gz)’)‘*(l + cot? ¢>)> dzy + 1/ n?|V2ul? dx
a 3 2 ]Ri

16 [
S5 (n)?(¢')? day + 4/ (V2| Vul? da.
a R?F

A suitable choice of 7 now gives the desired inequality. O

4 The nonlocal terms

4.1 Some estimates in H'/2

Here we derive some inequalities that we will use to estimate the stray field energy % fR2 |Vul|? dz
=

appearing in &,. This part of the energy is the most difficult to control and is chiefly responsible
for the interesting pattern of existence and nonexistence of minimisers described in Sect. 1.
As we have seen, we can write

2 7 _ 2
[ 19 o = s = o
2
if u € H'(R2) is the unique solution of (2)-(3). Therefore, the subsequent analysis is also about the
space H'/?(R) and its inner product (-, -) s, /2(r)» Which can be expressed either through harmonic
extensions to R2 or by [13, Theorem 7.12]:

(f9) e = /Afgdxl —/ / JO)No(s) = 9() 5. 4 (18)

(s —1t)?

WU [ Gy (p). vV i(g)do = / VU(f)- VU(g) do

2 2
R2 R2

for f,g € H/ 2(R). From this formula we obtain some inequalities in particular if f and g have
disjoint or almost disjoint supports.
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Lemma 4.1 (Repulsion between positive and negative parts). Let f € H/2(R) and define f, =
max{f,0} >0 and f_ = min{f,0} <0. Then

1 oy 2 1 sy + 1200 ey
with equality if, and only if, f does not change sign (i.e., either {1 =0 or f_ =0).
Proof. By the bilinearity, this statement is equivalent to

<f+a f—>H1/2(R) >0,

with equality if, and only if, either f4 =0 or f_ = 0. Using (18) and the fact that f. f- =0in R,

we obtain L e e o))
<f+af—>H1/2(R) = 7;/7 [ +(88_7t7>2d8dt.

It is clear that the right-hand side has the required properties. O

The following inequalities are based on similar ideas.
Lemma 4.2. Suppose that f,g € L*(R) N HY?(R) and there exist a € R and R > 0 such that
supp f C (—oo,a — R] and suppg C [a + R,0). Then

||fHL2(]R)||g||L2(R)
271 RV6

‘<f79>H1/2(R)‘ <

Proof. We may assume that a = 0. We have

L s>j<§)<8>—9<t>>dsdt
L[y,

/2
< f(s)] ®as N7 flew
/,oo (s—op = Wl </m <s—t>4> T B RE

-S| = 7

For any t > R,

Thus

= f(s)llg )] > g@)l
/_oo/_oo s-np < Wlee [ —mems i

<|IfllL2®llgll L2 (/OO dt)l/z _ ||fHL2(R)||9HL2(R)
< (R) ®\ | 30t R? 2RV6 ‘

The claim now follows. O

Lemma 4.3. Suppose that f,g € Hl/z(R) are nonnegative functions and R > 0 with supp f C
[-2R, —R] and suppg C [R,2R]. Then

1
I R2 Il @ gl < (f, 9 peg) < WHfHLI(R)HgHLl(R)-

([, 9 inrw) = / / Is tz) ds dt.

But t — s < 4R for t € suppg and s € supp f. Hence

1
(fs >H1/2 ]R) lﬁﬂRg/ / f(s)g(t) dsdt = W||f“L1(R)HgHL1(R)~

The other inequality follows similarly. O

Proof. Again we have
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4.2 Pointwise estimates for the Dirichlet-to-Neumann operator

When analysing the Euler-Lagrange equation for minimisers of E}, we need to control in particular
the term involving the non-local Dirichlet-to-Neumann operator A defined by (11) (written as v’
n (14)). In this section we derive some pointwise estimates that will help to achieve this.

Lemma 4.4. For any f € H*(R), any a € R and any R > 1,

21
|Af(a’ + R)| < E”fHLQ(]R) + 9||f/||L2(a,oo) + HfHHLz(a,oo)-

Proof. We may assume that a = 0. Let

0 if 1 <0,

8z%/R? if 0 <2y < R/A4,
x@) =9, _ 2(1 —221/R)? if R/A < a1 < R/2,

1 if 21 > R/2

Then x € CH1(R) with [x/| < 4/R and |x”| < 16/R?. We split A into two operators: for f € H?(R),
let
Apf=AKxf) and A_f=A(1-Xx)f)

Then it follows from Plancherel’s theorem that
4
IA fllzzw) = 1) (2@ < EHf”L?(o,oo) + 11122 (0,00)

Moreover,

16 8
A+ N2y = 10 2@y < Tz llflle20,00 + Z 1 220,00 + 17 1]22(0,00)-
Both inequalities combined imply that

Ay f(R)| < A4 fllorr reny + 1(As ) 21 (r R4 1)
20
< §\|f||L2(o,oo) + 91 N £2(0,00) + I1f” 1 22(0,00)-

For A_f, we have

t
0

R/2 (1 _
A_f(R) = l/_ (1 (t)i(t]?)J;(t) d

by (11). Hence

'/T /2 t4

1/2
1 * dt _
A_f(R)] < = </R > Ifll2@) < B2 fll p2w)-

Combining these estimates, we finally obtain the desired inequality. O

Lemma 4.5. There exists a universal constant C' with the following property. Suppose that ¢ €
C>*(R) is a solution of (14) and there exists a number a € R such that sin¢ # 0 in (a,00). Then
forzi >a+1,
C E},(cos ¢, sin ¢)
Acosd — k <
[A(cos ¢ — k) (@1)] < x1 —a\ min{l,h—1}

if h>1

and

|[A(cos p — k) (z1)] < ¢
T

— E;(cosg,sing) if h < 1.

Proof. Set m = (cos ¢,sin¢) and f = cos¢ — k. Then by Lemma 3.3, we have a universal constant
C1 such that for every R > 0:

q
1|22 (0t Rioo) < N6 14 (0t Rooo) + 1107 | 22(at Rioo) < & VEn(m)
and

. C
£ 2 (a4 Ryoe) = 10" SN ]| L2 (a4 Ryo0) < fl Ep(m).

18



If h > 1, then W(m) > (h — 1)|f], so that

E
1 Fllzey < /201 F @) < m
I fllr2@® < V2ER(m).

Hence the claim follows from Lemma 4.4. O

If h < 1, then

The following is another useful estimate based on a cut-off argument as in Lemma 4.4.

Proposition 4.1. Let p € (1,2) and q € [1,00). Then there exists a constant C = C(p,q) > 0
such that the following holds true. Suppose that f € H'/?(R) N HE_(R) N LY(R) and a € R. Then
for any R > 0,

C (1+ |logR|)

C
RiHip (R f" | Lo (a=Roasr) + 1f | Lo (o= Roatr)) + WHJC||LQ(R)~

[Af(a)] <

For the proof, we need the following inequalities.

Lemma 4.6. For every p € (1,00) and every R > 0,

R
/ |logt|P dt < pR|log R|” + p”R.
0

Proof. An integration by parts and Holder’s and Young’s inequalities imply

R R
/ |[log t|? dt = R|log R|P — p/ |logt|P~2logt dt
0 0

p—1

P

R
< R|log R|P + pR'/? (/ |logtpdt>
0

p—1 ("
< R|log RIP + p"P 'R + 7/ |log ¢|? dt,
p 0

and the claim follows. O

Lemma 4.7. Let I C R be a bounded, open interval. Suppose that p € (1,2) and f € W2P(I).
Then for any x € Cy''(I) \ {0},

XN e iy 1 Ny 2
2[Ix" Ml o= ) p—1

Proof. For € > 0, set f. = \/f2+ ¢2 and note that f/ = ff'/f. and f’ = ff"/f. +(f)?/f3 >

f1"/fe. Hence using Holder’s inequality, an integration by parts, and Holder’s inequality again,
we find that

p/2 1-p/2
[veiran < ([oopare2an) ([ i)
p/2 1—p/2
= (1129/1((X/)2fé'f§’_1 +2X' X" L) da:1> </1 7 dxl)

1 N2 e —2 Lo et el p/2 1-p/2
< (Ha/z((X) FUEFP2 4 X fLfP )dml) (/Iffdgg1>

/2
1 2 7 2 ” ! gt b p/2
< (p_ TIX N zoe ) 1 F ey + o1 TIX 2o X fell ey [ fellZor-

IX"f' ey < X" | Lo ()| fll Lo (1) -

Now Young’s inequality yields

1/2
XN LN 2oy 2 1/2
/ E/ » < / E/ » + ( ) < " o : » )
X felloe(ny < <|Xf [7305) 2T~ - Izl fellzr ey

X0 () I F" o) 1
AlIx" Lo (1) p—1

1
< 5\\X'fé||m(1) + X" | Lo ()l fell o1y
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We conclude that

XNy ILf e ()
2[Ix" I o= (1) p—1

X' fll ey < X" (I Loe ()l fell o (1)-

The claim now follows from Lebesgue’s dominated convergence theorem. O

Proof of Proposition 4.1. We may assume without loss of generality that a = 0. Let v € H 1(R3_)
be the harmonic extension of f to the half-plane, i.e., v = V(f) as defined in (10). By the Poisson

formula, we have
za [ f(t)
== — = dt.
U($17x2) P /;oo (t—l'l)Q +£L’%

As in the proof of Lemma 4.4, we choose a cut-off function x € Cé’l(—R, R) with 0 < x < 1 and
with x =1 in (—R/2, R/2), such that
IX'| <4/R and |x"| <16/R*. (19)
We decompose
v=wvy+v1, v9=V(xf), v1= V((l — X)f);
that is,
zz [ f{t)x() ) /°° ) A —x(t))
== — e dt d e st
vo(@1, 72) T /,OO (t — 1) + 23 and vy, w2) = T ) oo (t—21)% + 23

By (12), we have
Ov Ovy Ovy

A10)] = | 0.0 < | T2 0.0)] + |52 0.0,

Step 1: estimate for 5 duL (0 0). For any ¢ > 1, we have the estimate

vy g 0)' < l/ |f(2)| gt
0z T JrR\(-R/2,R/2)
g=1 _gt1

gt 0 1/2g—2\"7 (R\
2 - q = — - q .
( /];/2 tgq/(q_1)> ”f”L (R) = < q+1 ) <2> ”f”L (R)

A similar inequality also holds if ¢ = 1.
Step 2: estimate for 2—52(0, 0). We write g = xf € H*(R) with suppg C [-R, R]. For vy, we then
perform the change of variables ¢t = x9s + x1 and obtain

1 oo
vola1, z2) = ;/ Md&

qg—1

<

3=

I !
Hence 5 L sy )
Vo sg (28 + 1
— = — =~ ds.
oo = [ M
As

d (1 9 9 9 s
@(210‘%(“:28 +13) Tt

an integration by parts yields

81}0 xT9 e

8—@(3:1, T9) = "o ) g (z95 + x1) log(z3s® + 23) ds
1 oo
=5 g’ (t)log((t — x1)? + x2) dt.

In particular,

81}0 1 o 7
-9 S 1
R (0,0) ﬂ/ g"(t)log |t| dt,

—o0
which implies, for p € (1,2), that

p—1

v 1 R _ B
‘axz (0, 0)‘ — (2/0 |log [P/ = 1) dt) lg” | Lo (®)
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As a consequence of this and Lemma 4.6, we obtain a constant C; = C1(p) such that

Ov _
o(0,0) < € 1+ g B RO e

It remains to estimate the LP-norm of ¢”. To this end, we observe that ¢ = xf" +2x'f' + x"f.
Hence

9" ey < N Ner=rry + 20X Fll ey + X" oo @) |l Lr (=R, R)-

Lemma 4.7 provides an estimate for the second term. Using (19), we then see that there exists a
constant Cy = Ca(p) satisfying

Cs
9" ey < 20" |ILr(—r,R) + ﬁ“fﬂm(f&m-

Now it suffices to combine the above inequalities. O

5 Analysis of the Euler-Lagrange equation

We now analyse the Euler-Lagrange equation for minimisers m = (cos ¢, sin ¢) of Ej in Ay (d) for
a given d € N in the case h > 1 and for d = o/m or d = 1 — /7 in the case h < 1. Of particular
interest is the rate of decay of m, near +oo.

5.1 Exponential decay for h > 1

We proceed to establish exponential decay of minimisers ¢ and its derivatives. To this end, we first
prove the following lemmas.

Lemma 5.1. Let h > 1 and a > 0, and let ¢: R — R be a smooth function such that 1 — cos ¢ €
H'?(R) and

¢ is solution of (14) in (a,00),

0<¢<m and |A(l—rcose)|l <2 in (a,00).
Then ¢ <0 in [a,00).

Proof. Suppose, by way of contradiction, that there exists b > a with ¢'(b) > 0. Then there exists
¢ > bsuch that ¢/ > 0 in [b,c) and ¢/(c) = ¢/(b)/2. Assing > 0 and [A(1—cos )| < 252 in (a, 00),
equation (14) implies

& > %(h —cosg)sing i (a,00). (20)
Hence d
@) 2 (- cos 9)sindl 6 >0 (b0).
It follows that ¢/(c) > ¢/(b) > 0, in contradiction to the choice of c. 0

Proposition 5.1. Let h > 1. Then there exists a constant ¢ > 0 with the following property. Let
a>0 and let ¢: R — R be a smooth function such that 1 — cos¢ € H/?(R) and

¢ is solution of (14) in (a,00),
0<¢<1 and |A(l—cos¢)| <E3L in (a,00),
limg, 00 ¢(x1) = 0.
Then
d(x1) < ecla—1) for all x1 > a.
Remark 5.1. It will not be necessary to know the value of ¢ explicitly, but we will prove the

inequality for ¢ = yv/h — 1, where « is the constant introduced in Lemma 2.3.

Proof. Under the hypotheses of the lemma, equation (14) gives rise to the inequality (20) in (a, c0)
again. As ¢’ <0 in [a,00) by Lemma 5.1, this implies that limsup,, ., ¢'(z1) <0 and

4
dZZ?1

((@e0)? = 3= cos(e)?) <0 in fa.0)
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As limg, o0 ¢(21) = 0, we deduce limsup,, .. ¢'(z1) = 0 and lim,, ,cos¢ = 1, so it follows
that

(¢/(x1))* > % (cos? ¢(z1) — 2h cos p(x1) + 2h — 1) = W (cos ¢(z1),sin¢(z1)) for all z1 > a.

Therefore,

¢ (x1) < —/W(cos ¢p(z1),sin¢(x1)) for all z; > a.
Since W (cos ¢,sin ¢) > ¢2¢? for ¢ = yy/h — 1 by Lemma 2.3, we conclude that ¢’ < —c¢ in [a, 00),
from which we finally obtain the desired inequality. O

For minimisers in A4y (d) with d € Z, we can now prove exponential decay at +oo. For conve-
nience, we consider negative winding numbers in the statement of the next result, but of course we
immediately obtain a statement for positive winding numbers as well.

Theorem 5.1 (Exponential decay for h > 1). Leth>1,d € N, § < 2, and let m = (cos ¢,sin ¢) €
Ap(=d) be a minimiser of Ey, in Ap(—d) such that

lim ¢(z1) =0.

T1—>00

Then there exist a € R and ¢,C > 0 such that for all x1 > a: ¢'(x1) <0 and

max{|¢(e1)], ¢/ (x1)], [¢" (x1)[} < e (21)

and

C

|A(my — 1)(z1)] < m~

Proof. By Proposition 3.1, we know that ¢ is smooth. By the hypothesis and Lemma 3.1, there
exists @’ > 1 such that
0<sing<¢p<1 in[d,00).

(The fact that the degree of m is —d < 0 is essential for the positive sign of mg = sin ¢ near +00.)
Moreover, by Lemma 4.5, we may assume that

AG —cosg)| < 2 i [a!,00)

as well. Hence, Lemma 5.1 implies that ¢ is monotone in [a’, 00); also, we may apply Proposition
5.1 and we obtain a constant ¢ > 0 such that

d(x1) < ec@' =21)  for o1 > ql.

Using equation (14), we then obtain

3h—1 3h—1
o) < =

|¢" (21)] < @) for 3y > d.
If ' > o is chosen sufficiently large, then it follows that ¢ (x1)| < e(@” =) for 2y > a”. Since
liminf,, o0 |¢'(21)] = 0 (because ¢(z1) — 0 as 1 — 00), this implies

R 1 12
16/ ()] < / 60l dt < L foray >

1

Choosing a sufficiently large, we obtain inequality (21).

It remains to establish the decay of A(mj —1) at co. Lemma 4.5 already gives the decay 1/x; as
x1 — 00. In order to improve it, we may assume without loss of generality that inequalities similar
to (21) hold for 2wd — ¢(x1) and for the derivatives ¢’(z1) and ¢”(x1) when 1 < —a” (because the
behaviour of ¢ as 1 — —oo is similar, albeit with limit 27d). Fix p € (1,2) such that 8 < 1+1/p.
Then it follows immediately that

[cos ¢ — 1Lor) < Ch

"
—a

for a constant C; that depend only on p, ¢ and a”. Moreover, for every x; > 2a” and R = 5%,
we have the inequality

z1+R 1"
[0 + 16 0F) de < om0,
£1—R
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where Cy = Cy(p,c,a’”). We apply Proposition 4.1 for f = 1 — cos¢ and ¢ = p. Since |f"| <
|¢""| + |¢’|?, then there exists a constant C3 with

< G3(1 A [log(a1 — a”)|)

[A(1 — cos @) (z1)] < or — a7 [+ (1 — a”)2ecla”—21)/2)

for all z1 > 2a”. If we choose a > 2a” large enough, then the desired inequality follows for all
T > a. O

5.2 The linearised equation for h < 1

When h = cosa € [0,1) with o € (0, 5], we will not obtain exponential decay of the minimising
profile, because the contribution of the non-local differential operator in (14) is no longer dominated
by the local terms. Our analysis here is motivated by the analysis of Chermisi-Muratov [2] for the
winding numbers & and 1 — &. An important tool is the fundamental solution of the linearisation
of (14) about the trivial solution ¢y = «a, which is calculated in the aforementioned work. The
paper also gives estimates for the fundamental solution, which we improve somewhat here.

We consider the differential operator L, given by>

Lyp = =" + 1) — sina Avp. (22)

The fundamental solution G, for the equation Ly = 0 (satisfying LG, = g, where &g is the Dirac
measure at 0) is computed, using the Fourier transform and contour integration, by Chermisi—
Muratov [2, Lemma A.1]. It is

1 etm ¢ sina [*° te—tlzl
Golz) = — - = dt for all 1 € R. 23
(1) 27r/R§2—|—1—|—|§|sma w /0 t2sin? o 4 (12 — 1)2 ! (23)

That is, for a solution g € H?(R) of the equation Lg = f with f € L?(R), we have
g=Gyx*f.

Lemma 5.2. There exists a constant C' > 0 such that for any o € (0, 5], the fundamental solution
G, of the operator L defined in (22) satisfies, for all x1 # 0, the inequalities

Csina
< < —lz1|/2
O_Ga(ﬂfl)_ 1+$% +O€
and c
L1 Sin o —|z1l/2
0< -G (1) < ——— +Ce™ ™
2] alm) < 14 |z [?
and*
1
0<Gh(z1) <Csina [Tog fo | + Celml/2,

1+ 2| log |21] |
Proof. By definition, the Fourier transform of G, is given by

1 1
V2 2+ 1+ [¢sina’

which immediately implies that G, € H}(R) with

FGqo(E) §ER,

1Galla @) < C1

for a constant C; > 0 independent of a. As LG, = &y, we deduce that G2 € §p + L*(R) (as a
distribution). As a function, however, G, is smooth at every z; # 0 with

r1 sina [ t2etlel
G (1) = — L / dt
o(71) lei] 7 Jo t2sin?a+ (12 —1)2

and

sina [ t3e~tlel
G (x1) = / dt
o(@1) T Jo t2sin®a+ (2 -1)2

®The linearisation of (14) about ¢o = « is then given by L (21 + sin® anp (J2L)).

sin o

“In the sense of distributions, we have Go € do + L*(R), so we estimate the diffuse part of G2 here (still denoted G7).
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Step 1: estimates for |x1| > 1. We have

1/2 t —t|zy| 0o 4 00
/ — ¢ dt < 4/ teterl g = —2/ se” °ds.
o t?sin®a+ (#2 —1)2 0 z1 Jo

Ifa< %, then

/1—511“0‘ te—tlz1l gt < o2 /1—Sin0¢ dt _ e—lz1l/2
1/2 2sinfa+ (12 12 e (t—1)2 sin a

and

/Oo te” ] dt < e—|m1|/°° dt e
Lising t2sin?a 4+ (12 —1)2  ~ lisina =12 sino

as well. Moreover,

/1+Sina teft\:cl\ Ut < 67|m1|/2 /1+sina dt _ 487‘11‘/2
1—sina 12 Sil’l2 o+ (t2 — 1)2 - Sil’l2 Q 1 ’

t =~ sina

—sin «

If a > %, then we observe instead that

> te el > t
dt < e~lm/2 / o
/1/2 t2sinfa+ (12 -1)2 12 2/44 (82 — 1)2

The integral on the right-hand side converges, and the inequalities for G, follow immediately. For
G!, and G, we can use the same arguments when |z1| > 1.

Step 2: estimates for |r1| < 1. For G, we know that |Gy () is bounded uniformly in a. We
conclude that |G (z1)| is bounded uniformly in o € (0, ] and z; € [-1,1].
For G!, and G7, we first observe that

dsina [° dt 2sina
G (1)) < 2Ca(ar) + / & oGl +
us 5 U
and » .
(Gl)] £ 4Ga () + 2% [T et
2
Since 2o
/ tile*t‘“'dtg/ —Jr/ e 22 :log—qt/ e * —S,
2 2 t 2 s lz1] /o s

the desired inequalities follow for |z1| < 1 as well. O

A considerable part of the subsequent analysis is based on the decay behaviour of G, and its
derivatives, together with the following principle: if G, € L'(R) N L*(R), then

(G 1) (1) = / /2(G(t)1/)(x1 — 1)+ G(x1 — 1)Y(t)) dt;
therefore,
(G *9)(x1)| < NG Lo (21 /2,00) [N 1 ) + NGl 21 @) 1P Lo0 (21 /2,00) (24)

5.3 Polynomial decay for h < 1

For h < 1, we will prove polynomial decay for minimisers of Ej, in Aj(d) for d € {2,1 — 2}. The
following decay estimates improve the results of Chermisi-Muratov [2, Lemma 5]. In particular, we
prove cubic and quartic decay of f’ and f”, respectively, as well as a new L'-estimate for f, which
is fundamental for the proofs of our main results stated in Section 1.3.

Theorem 5.2. There exist universal constants ¢,C > 0 with the following property. For every
h = cosa with o € (0, %], there exists a unique increasing, odd function ¢: R — R such that
m = (cos ¢,sin @) is a minimiser of Ey, in Ap(a/m). Furthermore, the function f = cos¢ — cosa
satisfies
C Ca c
0< f(z1) < 5. ()] < g and |[Af(z1)| < gy for all zy > —
1 1 1

Q

and also
I fller ) < Ca.
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Proof. We use various universal constants in this proof, and we will abuse notation and indiscrim-
inately use the symbol C' for most of them. The existence of a unique symmetric minimiser follows
by symmetrization via rearrangement as proved in the works of Melcher [15] and Chermisi-Muratov
[2] (see also Lemma 3.2 above). Moreover, ¢ is increasing with ¢(R) = (—«, «). By the symmetry,
the function ¢ is odd. Thus it suffices to prove the inequalities. To this end, we first rescale the
solutions.

Step 1: rescaling. Set f = cos¢ — cosa and

oe) = —f (1),

sin” «v sin o

As 0 < f <1—cosain R, we deduce that 0 < g < 1. Moreover, as [ satisfies (16) away from
x1 = 0, we know that ¢ is a solution of the equation

")2(gsin® cos
"= _ () (gsin"a + : g) + (g — sinaAg)(1 — 2gcosa — g*sin®a), z; # 0.
1—2gcosa — g2sin” o

Define the operator L as in (22). Then we can write the equation in the form

Lg = A(g")* + gB(g —sinaAg) in R\ {0}, (25)
where .

B =2cosa + gsin® a = cosa + cos ¢(——)

sin «

and ) o )

gsin® a4 cos o . 9 COSQ(—— .

A — — Sin &« R .
B sin aist P in R\ {0}

The function B is bounded (with |B| < 2 in R), whereas A is unbounded for every a € (0, 3] (since
A(z1) — o0 as 21 — 0) and A > 0 for x; # 0. However, for any x; such that |¢(;2-)| > §, we
have A(xz1) < C.

Step 2: prove L?-estimates. We want to show that

o 1/2
(/ mwwm) T lglem + allg' 2 < €. (26)

To this end, we first compute

Ao/ (an))? = o) (o ()" 20

sin” «v sin o

Therefore,

/OO Ag) doy < — /oo (&) day < 2E0™)

oo sin® a J _ o sin® «

where m = (cos ¢, sin ¢). Furthermore, we compute

17122 @) _ 2Bn(m)

2 —
||g||L2(R) sina T sina
and similarly
e ||f/H%2(R) 2E;,(m)
Hg ||L2(]R) = . 5 < . 5 .
sin” « sin® «

Using Lemma 2.1, we obtain (26).

Step 3: prove preliminary pointwise estimates. Next we want to establish the following inequalities:

0<g(zy) < |C | for any x1 # 0, (27)
T
lg'(z1)] < ¢ for any x1 # 0 (28)
TS Vel TR
C
|(Ag)(w1)]| < for |z1| > sin . (29)

Valr|



For the proof of (27), we will in fact show that g(z1) < 931_1/2||g||L2(R) for z; > 0. The inequality
then follows by the symmetry and (26). Assume, for contradiction, that there exists 1 > 0 with

g(x1) > xl_l/2||g||Lz(R). Then for every ¢ € (0,x1), we have g(t) > g(z1) > xl_l/QHgHLz(R), because
g is non-increasing. Therefore,

o, 2 ol 2
dt > —dt = ,
|t lal [ 5-dt= Lol
which is a contradiction.

As ¢(0) = 0 and ¢ is increasing, we have 0 < ¢ < « for £ > 0. Thus we may use Lemma 3.3
(for a = 0 and with R/sin« instead of R) and Lemma 2.1 to conclude that

oo -2 -5
((¢'/)2 + (¢')?sin” ¢ + ((;5/)4) drq, < Csin” a By (m) < Csin’a for any R > 0.
# R2 R2
Hence - o
/R (sin® a(g”)? + (¢')?) day < g for any R > 0. (30)

In particular, the Cauchy-Schwartz inequality implies, for every ¢t > R, that

sina |(g'(R ’<281na/ l9'q" | dxq1 < ﬁ

As ¢’ € L*(R), we know that liminf; , |¢'(t)| = 0; so (28) follows. We finally apply Lemmas 4.5
and 2.1 to obtain

T

(Ag)(z1)| = ——|(AF) (2] <

- for |z1| > sina
sin® «v sina’ T alx ]| [ ’
which is (29).

We also note that as a consequence of (27), there exists a constant a > 1 (independent of «)
such that

10 ( ,xl ) > @ (and hence A(z1) < C) whenever z; > a. (31)
sin o 2
Step 4: improve the decay. We now show that (27) can be improved as follows:

g(z )<— for |z1| > 2a.

For this purpose, we use the fact that g = G, * Lg. As |B| <2 and g > 0 in R, we have
g < GoxAlg)? +2G, * g* + 20G, * g|Ag| for z; # 0. (32)
Applying an inequality of the type of (24), we find

(Gox AlgP)en) = [ (CaOIAW Pl o1 — 1)+ Galer = 04GR0 ) at

,-1/2
< Gallzoo @ /2,00 1AWG ) 22 ®) + 1Gall oo ) 1 AG) 2| L1 (21 /2,00) -

By (31), we have |A(z1)| < C for |x1| > a. Hence when |z1| > 2a, Lemma 5.2, together with (26)
and (30), implies that

o

(G x Alg)) (1) < <.

Ty
Similarly, we use (24) to estimate the other two terms in (32). Owing to (26) and (27), we obtain

(Gox ?)an)| < 2, @y 0.

|21
Because o
lgAgllLre) < llgllLe@llg’ll2m) < ~
by (26) and
C
g(x1)|[(Ag)(z1)] < W’ x1 # 0,
by (27) and (29), we also have
C
la(Ga * g|Agl)(21)] < 5, 1170,
|21[3/

Therefore, the desired decay for g follows when |z1| > 2a.
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Step 5: conclusion. We can use the conclusion of Step 4 to improve the above estimates again.
Namely, we find that
C
(Gaxg®) (1) < —
7
and
la(Ga * gAg)(z1)] <

.

for |x1| > 4a. Hence

0<g(z) < for |x1| > 4a. (33)

8.l Q

Using the formula
g =G, *Lg (34)

and taking advantage of (33), we repeat the arguments from Step 4 to obtain, for |z;| > 8a,

C c C
5 [(Gaxg)(z1)] < (Ga * glAg)(2z1)] <
1

(Gl * Alg)?) ()] <

213 |21

Therefore,

Using this estimate, we obtain

so that |(G”, x A(g")?)(x1)] < &, and finally,
1

C

213

|9 (z1)] < for |z1| > 16a.
As ¢" = GY x Lg, the same method® implies, for |z1| > 32a, that

(G * A(g")*)(@1)] S NGAN Lo @1 /2,00 [ A9 N2y + I Gall ) [A(G) [l (a1 /2,000 <

A

|(Ga * g%)(@1)| < (G, glAg]) (21)] <

|z1|* |z f*
This in turn yields

C
lg" (x1)] < e 21| = 32a.

In order to obtain the desired quartic power decay of g”, we need to improve the estimate of g|Ag|.
To this end, we use Proposition 4.1 (applied with p sufficiently close to 1, ¢ = 1 and R = x1/2).
We find that

C|log|x C|log|x
snitaenl < LR v o » giagh e < CEERL
which yields
C| log |m1|’
1
‘g ($1)| = |(E1‘4
for |z1| > 128a. Applying Proposition 4.1 again, we obtain
[Ag(z1)] < el
leading to
C
lg" (z1)] < e for |x1| > 256a.
1
Now the inequalities for f follow by rescaling. O

®Note that G, does not belong to L™ (by Lemma 5.2) so that we can only use L' estimates near z; = 0.
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We also state a similar statement for minimisers in the set Ay, (1—a/7), but we are not concerned
about the dependence of the constants on « here.

Theorem 5.3. Suppose that h = cosa for a € (0,%]. Then there exists an increasing function
¢: R — R such that ¢ — 7 is odd and m = (cos ¢,sin @) is a minimiser of Ep, in Ap(1 — a/m).

Furthermore, the function f = cosa — cos ¢ satisfies

limsup (] f(21)] + 21| f' (21)] + 23] f" (21)] + 2T |A f (21)]) < oo,

x1—Foo

Proof. This can be proved with the same arguments.

6 Concentration compactness

6.1 Strategy

We want to prove Theorem 1.1 and Theorem 1.3 through the analysis of minimising sequences
for Ej in the sets Ap(d). Similarly to many other variational problems involving topological
information, the main difficulty in proving existence of minimisers is a possible ‘escape to infinity’
of a topologically non-trivial part of the members of a minimising sequence. (This corresponds
to the ‘dichotomy’ case in the concentration-compactness framework of Lions [14].) In order to
prevent this, we want to improve Proposition 2.3 by showing that

En(d) < En(dy) + En(da) (35)

for all appropriate decompositions d = dy + ds into smaller winding numbers. We will achieve this
by constructing a magnetisation profile of winding number d from two energy minimisers in A (d;)
and Ay, (dz2) and estimating the energy (see Theorems 7.1 and 7.2 below). This is where the analysis
of the Euler-Lagrange equation from the previous sections, and in particular the decay at +oo, will
be crucial.

In this chapter, we show how inequalities of the type (35) give rise to minimisers in A (d). Due
to the symmetry proved in Lemma 3.2, we may in fact work with a somewhat weaker hypothesis
than expected.

6.2 Statement

We formulate the following result for d € N — < only (which in the case h > 1 means d € N).
Although a similar statement would always be true, we do not expect that the hypothesis of
Theorem 6.1 will be satisfied if h <1 and d € Nor d € N+ 2. Of course we automatically obtain
statements for d € & — N as well.

Theorem 6.1 (Concentration compactness). Suppose that d = — a/7 for some ¢ € N such that
8h(d) < QSh(d/) + 5h(d — Qd/)

ford =1—-a/m,1,2 —a/m,2,...,0/2 —1,£/2 — /7 if £ is even and for d =1 — a7, 1,2 —
a/m,2,...,(0—1)/2 —a/m,(L —1)/2 if { is odd. Then Ej, attains its infimum in Ap(d).

Proof. We divide the proof in several steps.

Step 1: pick a minimising sequence. Consider a minimising sequence (m?);en of Ej, in Ap(d). By
Lemma 3.2, we may assume that each m/ is symmetric. In particular, we have m’(0) = ((—1)*,0)
for every j € N. It is clear that a subsequence converges weakly in H{ (R;S'). We may assume
without loss of generality that this applies to the whole sequence, i.e., that m? — m weakly in
HL (R;S') for some m € H{ (R;S!). Then m is symmetric as well with m(0) = ((—1)%,0). It is
also clear that the energy is lower semicontinuous with respect to such convergence. Thus

Ep(m) < liminf Ej,(m?) = &,(d).

In particular, we have lim,, ,+o, m1(z1) = k, and the winding number d = deg(m) is well-defined
and belongs to Z + {0, £a/7r}. Because of the symmetry and because m(0) = (£1,0), we have
d # 0. If we can show that d = d, then it follows that m € Aj(d) and that m is a minimiser of Ej,
in this set, which then concludes the proof. The aim of the next steps is to show that d=d.
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Step 2: some properties of the minimising sequence. First note that in the case h < 1, we obviously
have (m; — h)? < 2W(m), whereas in the case h > 1, we have

1 2
(m1 —1)> <2(1—mq) <2(1 —mq) + ——(1 —mq)? = ——W(m).
h—1 h—1
Hence m; — k € L?(R), which implies that
lim (mq1 — k)*dz, = 0.
37700 J1-2§,—4]U15,24]
Without loss of generality, we may assume that
25 1
j 2
/ |m? —m|*dz; < — (36)
—2j J

for every j € N (as we can always select a subsequence with this property and then relabel the
indices). Then

lim (m] —k)?dz; =0 (37)
I700 J[-2j,—4]V15,2]
as well. Since
0 .
lim sup/ |(m?)|? dzy < oo (38)
J—00 —o0

and

<2 m’ — (m?)|| L2y lm — m7 || 12 (~25,25)
L1(-25,25)

d .
—mJ|?
de1|m ™
then (36) and (38), together with the fact that m(0) = m?(0), yield:

lim sup j||m’ — m||poe(—gj.25) = 0. (39)
j—oo
Similarly, as there exist ¢; € (j,2j) and s; € (=24, —j) such that m{(tj),m{(sj) — k as j — oo,
we deduce ‘
Jlggo [mg — Ell oo ((=2j,— 510,257 = O- (40)

Moreover, it follows from (39) that
2j _ ~
lim (m?)* - (m?) dz, = 27d. (41)
J=oo J _oj
Indeed, let ¢ and ¢’ be continuous liftings of m and m?, respectively. Due to (39), we may assume
that [|¢? — @[l Lo (—2j,25) — 0, too. As

/ J (m?)* - (m?) dxy = ¢ (25) — &7 (=2),

—2j
we conclude that (41) holds true.
Step 3: cut-off. Choose n € C*°(R) withn =0in (—00,0], p=11in[1,00), and 0 < n < 1in (0,1).
For j € Z\ {0}, let 9;(21) = n(4w1/j —7) and 7| (x1) = n(4x1/j —4) +n(—4x1/j —4). Now define,
for j € Z\ {0}, the functions
i = iymy! + (1 =)k

(cut off to the left of 25 if j > 0 and to the right of —2j if j < 0) and

m} = (1 —q)mi + ik, j >0

(cut off outside of (—74,7)). Note that for j € N, the functions ! — k, m;? — k and mJ — k
have disjoint support. For j € Z with |j| sufficiently large, owing to (40), there exist functions
mg R — [-1,1] such that mi(z1) = mlzj‘(ajl) if j>0and 21 > 2jor j < 0and ;3 < —25 and
such that M/ = (1], m3) takes values in S'. Similarly, for j € N sufficiently large, there exists a
function 7m4: R — [—1,1] such that md(z1) = mj(z1) for |x1] < j and such that m/ = (md,m3)
takes values in S'. The aim of the next steps is to prove that

limsup (Ep(m?) + E, (i) + Ep (7)) < Eu(d). (42)

j—o0
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Step 4: estimate the anisotropy and exchange energy. Because we have the pointwise inequalities
W (m?) > W(m?) and W (m?) > W (m?), it is clear that

lim sup/ (W) + W(n?) + W) — W(m?)) day < 0.
j—o0 —0o0
In order to estimate the exchange energy, note first that in [—2j, —j] U [4, 2j], we have
N N2 . . A
(6id))" = (= a)? (md)) =201 = i)y (md = k)(md) + (@)% (m] — k)
and ) )
(7)) = a2, ((md)") + 2iagitey (mi — K)(md) + (i) (m] = 1)
In the case h < 1, the integrals of the last two terms in each identity over (—2j, —j) U (J,27)

will tend to 0 as j — oo due to (37), (38), and the inequalities ||(7*7)’|| @) + | (77) || Lo ®) <
17| Lo () /7. Because of (40), we have

1—(md)? s sina and 1— (mi7)? — sin

uniformly in [—2j, —j] U [4, 2j], as well as 1 — (m?)2? — sin® a.. It follows that

(m
/fo ((m{)l) ( ) (A_j ) _ ((m{)/) dzy < 0. (43)

1= (my)? ]12 L—(my?)? 1~ (m])?

lim sup
Jj—o0

In the case h > 1, we note that
1—m]=01-7n;)1-m]) and 1—1m]="n;(1-m])

for j > 0. Due to the uniform convergence of 1+ mJ — 2, 1 + ] — 2, as well as 1 +m] — 2 in
[4,2]] as j — oo, estimating the exchange energy reduces to analysing the following terms:

and

By I'Hopital’s rule,
/ 2
li (77 (xl)) — _277//(1) — O,

w111 = (1)

and thus the function (;% is bounded and supported on [—2j, —j] U [4,2;]. Similar arguments

apply to 7;. Moreover, we obviously have
~/ AV 4 ’ Y
175 (m1) |2 ) < WHU 2@ | (m?) || L2ry = 0

as j — oo. Since the corresponding estimates hold in [—2j, —j] for m;j instead of m{, we conclude
that (43) holds true in the case h > 1, too.

Step 5: estimate the stray field energy. Next we want to estimate [/ — k|l gr1/2(r) and ] —
k|l g2 gy~ Let 05 = V() and 94; = V(1m*7) as defined in (10). Furthermore, let v; = V(m/)
and w; = v; — 0; — 0; — 0 for j € N. Then w;(-,0) = 0 in L*(R) by (37), while w/(-,0) remains
bounded in L2(R) by (38). Thus standard interpolation between H'(R) and L?(R) implies that

. 2 o g 2 _
Jli{{.lc Ri |Vw]| de = jli{go ||wJ( 70)||H1/2(R) 0.

Hence
hm (|V6J +V@J +V1A),]|2 — |V'Uj|2)dl':0 (44)
J]—00 Rfj)r
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by the triangle inequality. Moreover, as the sequences (ﬁ”ﬂl —k)jen and (m{ —k)jez\ {0} are bounded
in H'(R), it follows that

limsup/ (V5 ? + [V |* + |Vi_;[?) do < oo.
j—o0o Ri

By Lemma 4.2, integration by parts yields

lim [ Ve, Vi de 2 — lim [ A — k)mE — k) dey © o
j—o0 Ri j—oo Jp
and
lim | Vi, Vo_;de = 0.

j — 00 2
J RZ

Therefore, in view of (44), we obtain

lim (V5,12 + [V,]* + [ Vi > — |V, |?) dz = 0.
J—00 Ri
Now (42) is proved.

Step 6: conclusion. We conclude from (40) and (41) that deg(mf) = d whenever j is sufficiently
large. Then by the symmetry, we have deg(m*7) = 1(d — d). Because of (42), we have

En(|d]) + 25 (;|d - cz|) < &n(d).

It is clear that £,(6) > 0 whenever § # 0. Therefore, we can draw the following conclusions
from the above inequality. First, we have already seen that d # 0. Second, we conclude that
d < d. (Otherwise, Proposition 2.2 would imply that £, (|d|) > &x(d), which is inconsistent with
the inequality.) Third, we conclude that d > 0. (Otherwise, set d; = 1(d - d) and choose the
largest number do < %(d - J) such that Proposition 2.3 applies to d; and ds. Then di +ds > d and
hence & (d) < Ex(dy) + Ep(da) < 284 (5|d — d|), contradicting the inequality again.) So 0 < d < d.

If h > 1 or a= 3, it is readily seen that the hypothesis of the theorem excludes all possibilities

except d=d. If h <1 and a € (0, %), we note that the assumption d € N — /7 implies that

lim ml(z;) = Fsina
x1—Foo 2( ) +

for every j € N. Due to the construction, /7 agrees with m? in [2j, 00) for j > 0 and in (—o0, —27]

for j < 0, respectively; therefore, lim,, 40 inj (z1) = Fsina as well, and it follows that %(dfd) €
Z + {0, —a/7}. Thus in this case as well, all possibilities are excluded except d = d. O

7 Proofs of the main results

7.1 Proof of Theorem 1.1

For the proof of Theorem 1.1, it now suffices to show that the strict inequalities required for
Theorem 6.1 are satisfied in the relevant situation.

Theorem 7.1. Suppose that h > 1 and di,ds € N are such that Ey attains its infima in Ap(dy)
and in Ah(dg) Then Sh(dl + dz) < gh(dl) + gh(d2)

Proof. Let € > 0. Suppose that m' € A, (d1) and m? € Aj,(ds) are such that
Eh(ml) = 8h(d1) and Eh(mQ) = 5h(d2).

Then by Theorem 5.1 and Proposition 2.1, there exist a,b, ¢ > 0 such that for any R > a, we can
construct m! € Ap(dy) and m? € Aj(dz) with mi =1 and m? = 1 outside of (—2R,2R) and with

En(mt) < &En(dy) +ce™®® and  Ejn(m?) < En(dy) + ce R,
Since dy # 0 and dy # 0, by Lemma 2.4, there exists a universal constant C; > 0 such that

1 —mmillpi® > C1 and |1 =i g > Ci.
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Suppose that m! = (cos $1,sin (51) and m? = (cos $2,sin 452) with cf)l(ml) = 0 for ;1 > 2R and
¢a(z1) =0 for 1 < —2R. Then we define

bi(z1 +6R) if z; <0,
P(x1) = ¢~)1( ! ) . !
¢a2(x1 —6R) if 21 > 0.
Let m = (cos ¢, sin ¢). Then deg(m) = di + da, and we have

/OO (jm'2 + 2 (m)) dx:/oo (Y P 4 |2 4 2W () + 2W (72?)) da.

—00 —00

Let @ = U(m?!) and @y = U(1m?) defined as in (7). Furthermore, let u = U(m). Then, by the
uniqueness of U(m), we have u(z) = @y (21 + 6R, x2) + t2(21 — 6R, x2) for z € R2. We also have

A

By Lemma 4.3, we have

/ a8) |1 —millp@lll — ™3 w - C?
R

|Vul? de = / (IVa|? + |Vae|?) do + 2/2 Vi (z1 + 6R, 73) - Vig(r1 — 6R, z2) d.
]R+

2
= R

V’Fl,l(l'l + GR, SCQ) . Vﬂg(l’l — 6]’%7 1’2) dx S —

2 2567 R2 = 256mR?’
Hence
En(m) < Ep(m') + Ep(m?) — 6712 < En(dy) + Eplds) + 2ce P — ct
= 256mR2 — T ? 256w R?”
Therefore,
bR Ct
di +do) < &E,(d d 2ce™ " — .

En(dy +da) < Ep(di) + En(da) + 2ce T

For R sufficiently large, this yields the desired inequality. O

Proof of Theorem 1.1. Tt suffices to consider d € N; indeed, for d = 0, a constant configuration will
minimise Ej, in A, (0) and the case d € —N is reduced to d € N by a change of orientation.

We prove the statement by induction. For d = 1, it follows from the symmetrisation arguments
of Melcher [15] and Chermisi-Muratov [2] that a minimiser exists. Now suppose that minimisers
exist in Ap(d’) for any d’ = 1,...,d — 1. Then Theorem 7.1 implies that

gh(d) < 5h(d/) + Sh(d - d/)

for d = 1,...,d — 1. Tt follows that the hypothesis of Theorem 6.1 is satisfied and that &, is
attained in Ap(d). O

7.2 Proof of Theorem 1.3

Similarly to the previous section, the following strict inequality is the key here.

Theorem 7.2. There exists a number H € [0,1) such that whenever h = cosa € [H, 1),
En(2—a/m) <28 (1 — a/m) + En(a/m).

Proof. Let m* € Ap(a/7) be a minimiser as in Theorem 5.2 and let m” € Aj(1 — a/7) be a
minimiser as in Theorem 5.3. Set ff = m§ —hand f* =m} —h. Then f# > 0and f> < 0. We have

HquLl(]R) < Cia

for a universal constant C; by Theorem 5.2. Furthermore, by the decay established in this theorem,
we may apply Proposition 2.1 to m? with three functions w, o, 7 that satisfy
2 Co 2
w(x)<— olx) < —— () < ==
( 1)—1:%7 ( 1)—‘1,1'3’ ( 1)-3%3
for z1 > ¢/a, where ¢,Cy > 0 are universal constants. Hence for any R > 2¢/« there exists a
constant Cs (possibly depending on h, but on nothing else) such that there is a map m* € Ay, (a/7)

with m% = cos a outside of [~ R, R] and

Ep(mf) < En(a/T) + %
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Furthermore, the function fﬁ = ﬁ@% — h > 0 still satisfies
1/ 1) < Crov. (45)

Similarly, there exists a map m” € Ay (1 — a/n) such that 7} = h outside of [~ R, R] and

- Cy
BL(7) < &,(1—a/m) + T
where Cy = Cy(h).

Since m” € Ap(1 — a/r) is symmetric, we have m’(0) = —1 (as a complex number on S').
By Lemma 2.2, there exists a universal constant Cy such that Eh(mb) < C5. Thus we obtain a
universal bound for m} — h in H'(R) and therefore in C%/2([—1,1]). The same is true for m} — h
whenever o < ¢ (as R > 2), because in this case, the two functions agree in [—1,1]. It follows that
forf":ﬁzthgO,wehave ~

1770wy = Co (46)
for a universal constant Cg > 0.
Define
m?(z1 +4R) if 21 < —2R,
ﬁ($1) if |],‘1| S QR,
m’(z, —4R) if 21 > 2R.

S

m(x1) =

Then m € A (2 — a/m) and the arguments from the proof of Theorem 7.1 (used to compute the
stray field) yield:

Cs +2Cy
RS
+ (P +4R), (- = 4R)) grjpy + (P (- +4R), ) paagy + (5 (- = 4R) 12y

Ep(m) < &(a/m) +2E,(1 — a/7) +

By Lemma 4.3 and (46), we have a universal constant C7 such that
b ] 07
(PO +AR), (- —4R)) srjam) < TR
On the other hand, using (45), we obtain another universal constant Cg with
- - P Csa
(PG AAR) P pay +(F5 (= 4R)) ey < -
Hence Ca 1 2C o o
3 4 g — U7
+ 3 + o
If we choose o small enough (i.e., H sufficiently close to 1) and R large enough, then

En(m) <&, (a/m)+ 2E,(1 — af)

En(2—a/m) < Ep(m) < Ep(a/m) + 280 (1 — /),
as required.

Proof of Theorem 1.3. This is now a direct consequence of Theorem 7.2 and Theorem 6.1. O

7.3 Proof of Theorem 1.2
The statement of Theorem 1.2 is an immediate consequence of Proposition 2.3 and the following.
Lemma 7.1. If h < 1, then for any m € Ap(1),
Ep(m) > Ep(a/m) + Ep(1 — a/).
Proof. Define m{ = max{my,k} and m; = min{my, k}. Then clearly there exist a;,a_ € R such

that m (ay) =1 and mj (a_) = —1. Thus by Lemma 1.1, there exist mi: R — [~1,1] such that
1 (a4 1 2

mt = (m},m3) € An(a/7) and m™ = (mj,m5) in Ap(1 — a/7). Moreover,

(G wm ) dm = [ (Gl R W)+ gl P W) ) d,

Hence Lemma 4.1 implies that Ep,(m) > Ep(m™) 4+ Ep(m™) > En(1 — a/m) + Ep(a/m). O
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Appendix. Nonexistence of critical points in a local model

In order to highlight the role of the nonlocal term for the existence of minimisers (or even crit-
ical points) carrying a winding number d > 1 for our variational problem, we discuss the corre-
sponding model without the nonlocal term. For h > 0, h # 1, we consider the following Allen-
Cahn type energy defined for ¢ : R — R (representing the angle of an S!-valued transition layer

m = (cos ¢,sin ¢)):
o) =5 [ (@) +2W(0)) d.
Here we use the same potential W as in (1). That is, W(¢) = F(cos¢ — h)? if h < 1 and
W(¢) = 2(2h— 1 —cos¢)(1 —cos ) if h > 1.
The Euler-Lagrange equation associated to a critical point ¢ of F}, is now given by

¢ =W'(¢) inR. (47)
Denote again o = arccos min{h, 1} € [0, 7]. We impose the following boundary condition at infinity:

P(£o00) = tligloo o(t) € 212 4+ {—a, a}.

The following is well known, but we give a proof for completeness.

Theorem 7.3. Suppose that ¢ : R — R is a non-constant solution of equation (47) with boundary
condition ¢(+00) € 2nZ + {—a,a}. Let d = 5-(¢(4+00) — ¢(—00)) be the winding number corre-
sponding to ¢. If h > 1, then one has d = £1. If h < 1, then one has d = +a/m ord = £(1—a/7).

Proof. First, note that every solution ¢ of (47) satisfies

(¢)2—2W()=q K

for some constant ¢ € R. We want to prove that ¢ = 0. Indeed, as ¢ has finite limits at infinity,
the above equation implies that ¢'(+o00) = £1 for some £ € R. It is enough to prove that ¢4 = 0.
For this purpose, consider X = (¢, ¢’) and note that X solves the following system of ODEs,

X' =V(X), (48)

generated by the vector field V(X) = (Xo, W/(X7)). Since t — X (t) stays confined in a compact
set of R? and has a limit point as t — 400 (by our boundary conditions for the solution ¢), this
limit point is a critical point of the vector field V, i.e., we have X’ = (0,0). This implies that
¢y =0, and thus, that ¢ = 0. In particular, the trajectory {X (¢) = (¢(¢), ¢'(¢)) }+er is included in
the zero set of the Hamiltonian

1
H(X1,X5) = §X22 ~-W(X1), X eR2

We denote Z:t = {(Xl,XQ)Z :‘:Xg > O, H(Xl,XQ) = 0} and ZO = {(Xl,O)S H(Xl,O) = O} =
2nZ+{+a}. It is readily seen that any connected component of ZT and Z~ ends at two consecutive
points of Z°. Obviously, any zero of ZU is a stationary solution of (48). Therefore, by the uniqueness
of solutions to initial value problems for (48), the trajectory { X (t) = (¢(t), ¢'(¢))}+ begins and ends
at two consecutive points in Z°. That is, in the case h > 1, we have winding number 1, and in
the case h < 1, we have d = /7 or d = £(1 — a/7).

O
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