UNIVERSITY OF

BATH

Citation for published version:

Cheng, S, Gu, C, Yang, X, Li, S, Fang, L & Li, F 2022, 'Network Pricing for Multi-Energy Systems under Long-
term Load Growth Uncertainty', IEEE Transactions on Smart Grid, vol. 13, no. 4, 9734759, pp. 2715 - 2729.
https://doi.org/10.1109/TSG.2022.3159647

DOI:
10.1109/TSG.2022.3159647

Publication date:
2022

Document Version
Peer reviewed version

Link to publication

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Mar. 2023


https://doi.org/10.1109/TSG.2022.3159647
https://doi.org/10.1109/TSG.2022.3159647
https://researchportal.bath.ac.uk/en/publications/f15e148c-8934-4a59-917e-496d21606541

>TSG-01017-2021 <

Network Pricing for Multi-Energy Systems
under Long-term Load Growth Uncertainty

Shuang Cheng, Student Member, IEEE, Chenghong Gu, Member, IEEE, Xinhe Yang, Shuangqi Li,
Lurui Fang, Member, IEEE, Furong Li, Senior Member, IEEE

Abstract—The long-term uncertainty of multi-energy demand
poses significant challenges to the coordinated pricing of multiple
energy systems (MES). This paper proposes an integrated network
pricing methodology for MES based on the long-run-incremental
cost (LRIC) to recover network investment costs, affecting the
siting and sizing of future distributed energy resources (DERs)
and incentivizing the efficient utilization of MES. The stochasticity
of multi-energy demand growth is captured by the Geometric
Brownian Motion (GBM)-based model. Then, it is integrated with
a system operation model to minimize operation costs, considering
low-carbon targets and flexible demand. Thereafter, the kernel
density estimation (KDE) method is used to perform the
probabilistic optimal energy flow (POEF) to obtain energy flows
under uncertain load conditions. Based on the probability density
functions (PDFs) of energy flows, an LRIC-based network pricing
model is designed, where Tail Value at Risk (TVaR) is used to
model the risks of loading levels of branches and pipelines. The
performance of the proposed methodology is validated on a typical
MES. The proposed pricing method can stimulate cost-effective
planning and utilization of MES infrastructures under long-term
uncertainty, thus helping reduce low-carbon transition costs.

Index Terms— Flexible demand, long-run-incremental cost
pricing, multi-energy system, network pricing, uncertainty.
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AMISE Approximate Mean Integrated Squared error
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CDF Cumulative Distribution Functions
CHP Combined Heat and Power
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D-LRIC Deterministic Long-Run-Incremental Cost
EB Electric Boiler
GBM Geometric Brownian Motion
LDZ Local Distribution Zone
LRIC Long-Run-Incremental Cost
KDE Kernel Density Estimation
MCS Monte Carlo Simulation
MES Multiple Energy Systems
MIP Mixed-Integer Programming
PDF Probability Density Function
POEF Probabilistic Optimal Energy Flow
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TVaR Tail Value at Risk

Indices and Sets

i Index of electricity generation units

t Index of time periods during the investment horizon

b, QB Index and set of electrical buses

¢, Q° Index of network component

h, QPT Index and set of time periods in a day

Jj, QCHP Index and set of CHP

1, Qline Index and set of electrical branches

0,0¢ Index and set of gas nodes

p,QF Index and set of gas pipelines

q, QB Index and set of EB

5,Q65 Index and set of gas wells

QFtex Set of flexible load nodes

QT Qev Sets of non-gas-fired and gas-fired generating units

A Set of compressors

Parameters

a Solar panel efficiency

d Discount rate

m¢ Mass flow rate of pipelines connected from load
node c to the source node.

r Annuity factor

v Gas price

u The drift in GBM

o The volatility in GBM

W Compressor factor

n Efficiency of the energy device

p Energy flow

®e 0c Simulation parameters of PV production

Pp-Ap Air density and area swept by WT blades

€1, Eg, Ec Carbon emission coefficients of thermal units, gas
units and CHP

Y, Ve Coefficients of power and heat generation of CHP

) Price of scheduling flexible demand

Tgi Ramp rate limit of the generating unit
Gas flow constant of the gas pipeline

n9e,nIt Efficiency of CHP from gas to electricity and from
gas to heat.

0 Voltage angle

Ag Array surface area in square meters

AG Bus-branch and bus-generator incidence matrix

B,M,N CHP-bus, CHP-gas node and CHP-heating source
incidence matrix

Ca Capacity of the network component
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Cp Power coefficient of WT

C,1 Node-gas source and node-gas pipeline incidence
matrix

F Maximum supply of gas well

H,K EB-bus and EB-heating source incidence matrix

Go,Gy Extra-terrestrial and global horizontal radiation

PSo PE it Maximum and minimum power output of generating
units

R Gas-fired unit-gas node incidence matrix

Ton off Minimum start-up and shutdown time of generating

min’ “min .

units

Vit Wind speed

Veur Ves Maximum gas input of CHP and electricity input of
EB

Z Impedance of electricity line

Variables

EFEle pGas Electricity input of EB and gas input of CHP

FGS Gas supply of gas source

F Energy flow

fline fgas  Power flow and gas flow

g Gas production from the gas well

HCHP Heat power generated by CHP

hg Bandwidth of the kernel estimator

K Kernel function

LFD 6P [HD  Electricity, gas and heat demand

LEte Electricity production of CHP

n Sample capacity of the kernel estimator

P¢ Electricity outputs of unit i

pFlex Scheduled power of flexible demand

x AKDE independent variable

x(t) Peak demand growth rate at time ¢

T Nodal gas pressure
T, Lower and upper limits of the nodal gas pressure

I. INTRODUCTION

ULTI-energy systems have been recognized as a cost-

effective way to create a sustainable and low-carbon
future. Although significant research has been conducted to
unlock the potential of MES, the uncertainty of the siting and
sizing of future energy demand and DERs makes it difficult to
plan MES [1]. The uncertainty can also lead to a high likelihood
of overinvestment and inefficient utilization of infrastructure
[2]. For example, as reported by National Grid UK [3], peak
electricity demand could rise by between 5 and 8.1 GWs by
2030 to meet its 2050 carbon reduction target.

Many factors can cause long-term uncertainty in MES
planning, e.g., load growth, generation expansion, market rules,
etc. Load growth uncertainty has been regarded as one of the
most crucial determinants [4], which can cause great risks for
MES planners and investors. It is extensively investigated in
this paper. Some references have investigated MES load
uncertainty modelling approaches. Reference [5] simulates the
dynamics of uncertain customers through a Markov decision
process (MDP) method. The proposed method enables system
operators to parameterize and model multi-energy dynamics in
MES dispatching. However, this paper is focused on short-term
uncertainty rather than long-term demand growth. Reference
[6] models the uncertainties of energy carrier demand response
and various load types in MES by a 2m+1 point estimate

strategy. It simulates the random behaviors of multi-energy
demand but also ignores long-term load growth uncertainty.
Paper [7] resolves the uncertainties of electricity and thermal
load through a scenario-based multistage adaptive stochastic
optimization approach. It can enable networks to accommodate
more uncertain load in the short term. Most papers focus on the
uncertainty of load shifting between multiple energy carriers,
but to the best of the authors’ knowledge, the multi-energy load
growth uncertainty has not been well investigated in MES
planning and pricing.

Some papers incorporate uncertainties in optimal MES
planning. Reference [8] proposes an expansion planning model
to minimize the total costs of investment, operation, potential
risks under uncertainty and unserved energy. Nevertheless, only
the uncertainty of wind power generation is modelled. Paper [9]
addresses MES optimal planning by considering the uncertainty
of net load demand. Reference [10] proposes a unified
operation and planning method to quantify the flexibility value
under long-term price uncertainties. However, these papers
passively design the planning methodology with stochastic
models instead of proactively guiding the system development
and increasing the utilization of network infrastructures.

To efficiently utilize MES, economic incentives [11] can be
used to guide the sizing and siting of future demand and DERs.
Reference [12] formulates a forward-looking clearing and
pricing framework for day-ahead markets to integrate gas and
electricity systems. Reference [13] investigates dynamic
pricing by developing a two-leader multi-follower bi-level
model. However, these models aim to allocate resources and
ensure energy balance efficiently in the wholesale market.
Infrastructure investment is not considered in the short-term
pricing mechanisms. In terms of long-term pricing approaches
in the gas system, Local Distribution Zone (LDZ) customer
charges [14] are adopted in natural gas systems through a
consumption-relevant three-tier pricing method. The method
can be divided into three categories based on the capacity
charge for supply points and the fixed charge depending on the
meter reading. However, the charging method is simplified by
ignoring the impact of nodal incremental demand on the
utilization of the gas network since it assumes that the system
is fully utilized. Regarding heating networks, there is no
nationally regulated heating pricing method [15]. In most cases,
a dual tariff scheme is applied to district heating based on fixed
investment costs and variable fees (e.g., fuel purchase).

Use-of-system (UoS) charge is one such economic signal to
recover network investment costs and affect network use by
customers [16]. Forward cost pricing (FCP) [17] calculates the
zonal network prices by dividing the distribution network into
isolated groups, using zonal charges to recover the expected
costs of network reinforcement. The LRIC method is a forward-
looking system charging method for electricity systems to
quantify the discounted future reinforcement cost due to
incremental nodal energy demand and allocate investment costs
[18]. It reflects both the capacity-related cost and the degree to
which the network is utilized. However, its accuracy and
efficacy are challenged with more volatile load growth. To
accommodate uncertain load growth, reference [19] develops a
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novel network pricing method based on the fuzzy model. Paper
[20] proposes a probabilistic model to quantify the demand-side
uncertainty and incorporate it into the network pricing model to
incentivize uncertainty reduction. Adopting LRIC in MES
pricing can provide coordinative forward-looking price signals.

It is challenging to represent the effects of uncertainty [21] in
LRIC. Traditional LRIC ignores uncertainties and regards
electricity demand as deterministic, which misleads MES
planning due to inaccurate cost-reflective signals. Therefore,
the unbalanced distribution of DERs and demand [22] not only
encourages excessive investment but also impedes
decarbonization.

Considering power flows with and without nodal energy
increments are key factors in the traditional LRIC method,
stochastic energy flows are required to address MES network
pricing under long-term uncertainty. Probabilistic energy flow
is one of the most powerful tools to analyze MES with volatile
generation and demand. Generally, there are three methods to
solve probabilistic energy flow problems [23]: Monte Carlo
simulation (MCS), analytical methods, and estimation methods
[24]. Based on numerous iterations, MCS has high
computational costs. In terms of analytical methods, the strict
assumptions that the system states and output variables have
normal density functions inhibit their applications to
complicated energy systems [25]. Even though point estimation
methods solve the computational problem, they cannot provide
PDFs of the estimated random variables [26]. In comparison,
the KDE method can generate nonparametric PDFs for complex
systems in an easy manner. However, the fixed KDE has [27]
low accuracy to capture long-tailed distributions. Adaptive
KDE methods with variable bandwidth are more efficient to
capture the long-tails and thus provide a satisfactory estimation.

In summary, the drawbacks of existing literature are: 1) Most
literature emphasizes the uncertainty of multi-energy load
shifting and short-term demand uncertainty in MES. The
uncertainty of long-term load growth has not been investigated
in MES planning and pricing. 2) In terms of probabilistic energy
flow modelling, the computation burden of MCS, strict
assumptions of analytical methods and long-tailed distribution
problems of fixed KDE methods cannot provide satisfactory
results. 3) Most research focuses on MES optimal planning
under uncertainty, which passively react to future
generation/demand. There are no long-term MES pricing
models to proactively plan networks through economic signals.

To fill the gap in network pricing and probabilistic energy
flow calculation for MES, this paper develops an LRIC oriented
pricing method for MES. The proposed methodology aims at
filling these gaps by modelling GBM-based demand
uncertainty in long run, estimating probabilistic optimal energy
flows through adaptive KDE, and integrating LRIC in MES
network planning. Firstly, a stochastic model based on GBM
[28] is designed to model uncertainties of energy demand
growth. The GBM approximation can capture the load growth
uncertainty, considering the time value of deferring investment.
The GBM simulation presents that the demand uncertainty
would increase as time elapses, which is aligned with the
current situation that, due to the emergence of new

technologies, the accuracy of load forecast reduces over time.
The variables are parameterized to incorporate the impacts of
the paradigm shift in energy system load based on the Future
Energy Scenarios in [3].

This paper develops a POEF model, based on the PDF of load
growth. PDFs of energy load growth are input to the system
operation model to minimize the total costs of energy supply,
scheduling flexible demand and carbon emissions. The POEF
model adopts a non-parametric method, i.e., adaptive KDE
[29], to capture probabilistic energy flows. It can not only
reduce the computational time but also obtain complete PDFs
of energy flows. Compared to other models, the adaptive KDE-
based model has the following advantages: 1) It has a better
fitting effect for datasets with long-tailed distributions; 2) It is
more effective to provide the PDFs of datasets with non-normal
distributions; 3) It does not require strict assumptions and thus
is easy to implement in a complex energy system.

With probabilistic energy flows, TVaR [30] [31] is adopted
to derive the expected overloading levels of network
components under long-term uncertainty. Thereafter, an LRIC-
based network pricing method is designed, derived from the
present value differences with and without nodal energy
withdrawal and injection. Different from short-term pricing
models (e.g., locational marginal pricing) [32] [33], the
proposed pricing method can produce forward-looking nodal
UoS charges that not only reflect the utilization of MES but
affect the sizing and siting of customers. Therefore, it can
stimulate efficient utilization of MES, thus enabling network
planners to de-risk investment by strategically managing the
system capacity. The main contributions of this paper are:

o [t for the first time proposes a new GBM-based stochastic
model for uncertain multi-energy load growth in the long
term, considering the changing variances over time.
Existing uncertainty modelling methods [5] [6] [7] [20] only
accommodate uncertain load dynamics in the short term.
The proposed method emphasizes the demand growth
uncertainty, which has been regarded as one of the most
crucial determinants in MES planning. Such a model has a
lognormal probability density function to better capture the
skewness of load growth uncertainty. Unlike fixed variance
models [10], the proposed method adopts variable variances
to reflect the fact that from the point of prediction, as time
elapses, the accuracy of load forecast would decrease. The
results demonstrate that the simulated demand growth
trajectories can better align with and sufficiently disperse
around their averages to incorporate future scenarios. Thus,
it can better capture the long-term stochasticity of the multi-
energy demand growth.

e [t designs a novel POEF model by the non-parametric
estimation method, i.e., adaptive KDE. It can obtain PDFs
of MES flow variables easily. The high computational costs
of MCS [34] and strict assumptions of analytical methods
[25] interfere with their applications in complex MES.
Although the fixed KDE estimation approach [27] has
reasonable accuracy and needs low computation, it cannot
effectively estimate the long-tails of density functions. In
comparison, the proposed adaptive KDE model uses
variable bandwidth to achieve a better fitting effect for
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datasets with long-tailed distributions. Moreover, it is more
effective to provide PDFs of datasets with a much lower
deviation for non-normal distributions.

o [t for the first time proposes a coordinative long-term
forward-looking pricing model in MES, where TVaR is
adopted to quantify the average value of expected energy
flows at risk. It distinguishes price signals based on load
growth uncertainty and network utilization levels. Different
from short-term price signals [32] [33] to satisfy allocative
operational efficiency, the proposed pricing model enables
rational utilization of existing systems and efficient MES
planning. Unlike other long-term pricing methods, e.g., the
zonal pricing method FCP [17], and the three-tier
consumption-relevant pricing method [14], the LRIC
approach can reasonably reflect the effect of nodal
incremental multi-energy demand on the predicted
investment horizons of branches and pipelines. Thus, it is
more cost-reflective to incentivize effective sitting and
sizing of future demand. Compared with the deterministic
LRIC method, it shows a better performance to address
demand growth uncertainty.

The remainder of this paper is organized as follows. Section
IT presents the detailed formulation of MES. Section III
formulates the LRIC-based pricing model. Section IV
demonstrates the implementation of the proposed method.
Section V validates the efficacy of the proposed method. The
conclusions are drawn in Section VI.

II. MODELLING OF MES

This section demonstrates the detailed formulation of MES,
including the stochastic model and the system operation model.

A.  Stochastic Modeling of load growth and DERs
1) Stochastic modelling of load growth

Considering the risk of future load fluctuations, the GBM
model [35] is used to capture the long-term stochastic behaviour
of load growth rates, as shown in (1).

dx(t) = x(t)[udt + adB(t)], x, = x(0) @)

where the drift yu denotes the instantaneous conditional
expected percentage change in x per unit time; o is the
instantaneous conditional standard deviation per unit time;
dB(t) represents a standard Brownian motion (i.e., Wiener
process). The energy systems with higher levels of u have a
bigger load growth, while those with higher levels of o are
characterized by greater uncertainty over the whole investment
horizon. Therefore, by solving the Fokker-Planck equation of
(1), the PDF of load growth rates can be derived, as shown in
(2). The corresponding expected value and variance are given
by (3) and (4). The variable growth rates x(t) has a lognormal
distribution with parameters Inx, + it and o/t.

1 ((lnx—lnxo—ﬁt)z) g2 ( )
x,t) = e 202t A= —— 2
fx,t) ~oTot A=p--
ot
E(x(t)) = xpe"* 7 ©)
Var(x(t)) — x0262ut+52t(602t -1) 4)

2) DER modelling

In this paper, photovoltaics (PV) and wind turbines (WTs)
are considered as DERs. The output power of PV and extracted
wind power are shown as (5) and (6):

1
PV = @ x Ay X Go X | F(Gy/Goi 53 0) 5)
0

1
WT == CoppApV, (6)
where the global horizon radiation G, is scaled into [0,1].

Parameters ¢; and o; are estimated through fitting Beta
distribution into the historical solar irradiance. The variable of

the integral part is G—g, whose probability function is estimated
0

from the pre-determined parameters ¢, and g;. Since short-
term DER uncertainty is not the main driver of MES network
reinforcement [36], the parameters of equations (5) and (6)
remain the same for the time horizon to provide a typical hourly
renewable output curve.

B.  System Operation Model

To investigate the optimal energy flow, this part formulates
the economic and low-carbon operation model of MES to
minimize the electricity generation costs, natural gas purchase
costs and carbon emission costs, as follows:

min Yeqpr C9 + €995 + Cf1ex + ¢ (7
2
Cg = ZiEQTU (ai + bipi(,;h + Cipit,;h ) (8)
9% = Zseﬂas(vsgs,h) (9)
crlex = 3, arex(8,| PEE*|) (10)
C¢ = k[ZieQTU(STPiC,;h) + ZiEQGU(SgPi,Gh) (1 1)

+ Yicacnr ec(vp P + yHHE}IZP)]'

Equation (7) aims to minimize the total operating costs. The
first term (8) is the operation cost of non-gas-fired thermal
generators, which is a quadratic function. The second term (9)
is gas production costs from gas wells. The third item (10)
denotes the total scheduling costs of flexile demand, which is
the product of scheduling price and scheduled power. The
fourth term (11) is the total carbon emission costs of non-gas-
fired thermal generators, gas-fired generators and CHP units.
yp and yy are the coefficients that describe the relationships
between fuel consumption and power and heat productions of
CHP, respectively.

The objective function is subject to the following constraints.
1) Power system constraints

PGini < P& <SPS h € 0PT,vie QT u QY (12)
|PG — Pla| <7 (13)
Ti(,)iz1 = Tr?LTiln‘ Ti,oI{f 2 Trfljicr]:’ Vh € ‘QDT' Vi (14)
€ QTU U QGU

Zienguung” Gb’inh + Z]-EﬂgHP Bj,bLﬂf +

Y ieqtine Ap fii*¢ = Li5 — PLE* + (15)
quﬂgB Hq'quEyl,f ,Vb € OB, vh € QPT

f47€ = Omn = Onn)/ 2 (16)
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where Q7Y QSY, O and QSHP are the set of non-gas-fired
thermal units, gas-fired thermal units, EB units and CHP units
at bus b, respectively.

Constraint (12) enforces the capacity constraints of
electricity generation units. Constraints (13) and (14) denote the
ramp up and ramp down constraints and the minimum start-up
and shutdown constraints for generating units, respectively.
Constraint (15) ensure the nodal electricity load balance. The
direct-current (DC) power flow is used, as shown in (16). It
defines the power flow through electricity line [. fi*¢ is the
power flow in line [ at time h. 6,, , and 6, , are the voltage
angles of the two end nodes of line [ at time h, respectively. Z,
is the impedance in line I. The line power flow constraints are
ignored in the operation model but considered in the pricing
model. To calculate the cost of advancing or deferring future
investment with nodal demand injection, the expected
reinforcement year should be derived when the line power
flows exceed a threshold. This process inherently enforces line
capacity constraints to the proposed pricing approach and is
demonstrated in Part B of Section III.

2) Gas system constraints

gas GS _ jGD
Zpeﬂp Io,p p.h + ZSEQGS Co,st,h = Lo,h +

G
Seacur My oESE + Sicqou Ry "n—h Vo € (17)
Q% vh € QPT
0 <F% <F,Vs€Q%, vhentt (18)
. 2
pgrclljl = ¢pmSLgn(T[p,h'7Tm,h) (T[p,h) - 7Tm,hz (19)
v(p,m) € QF,vh € QPT
T, < T, < T, Vh € QPT, Vo € O° (20)
Tpn < W, Vh € QPT,V(p,m) € A (21)

Constraint (17) is the nodal gas load balance. Constraint (18)
ensures the gas supply limits of gas wells. Constraint (19) is the
Weymouth equation for pipeline gas flows. Constraint (20) is
the pressure limits for gas network nodes. For a gas pipeline
with a compressor, constraint (21) is the pressure relationship
between inlet and outlet.

3) Energy coupling constraints

The power system and natural gas system are coupled
through gas-fired units and CHP, the relationship of which has
been formulated in the nodal gas load balance constraint (17).
In addition, (22) ensures that the electricity production of CHP
is strictly fulfilled. The heating demand is coupled through CHP
and EB with the electricity system and gas system, as shown in
(23)-(25). Constraint (23) represents the coupling relationship
of heat demand, CHP and EB, i.e., the heating production of
CHP and EB is equal to the heating demand. Constraints (24)
and (25) enforce the capacity constraints of CHP and EB,
respectively.

Liy = nfeEj?,‘jS, vj € Q1P vh € QPT (22)

Fg,f = quQEB anf_l,f + ZjGQCHP T]fhEg_‘,llS ,Ve € (23)
QF,vh € QPT

0 < Ef¥ < Veyp,Vj € Q1P wh € QPT (24)

0 < EL% <Vig,q € QFF,,vh € QT (25)

III. PRICING MODEL FORMULATION

This section presents the proposed probabilistic optimal
energy flow model and the LRIC-based system pricing model.

A.  Probabilistic Energy Flow Model

Given that the traditional deterministic MES operation model
cannot incorporate energy system uncertainties, a POEF is
required to determine the energy flows under specified loading
conditions. In this section, the adaptive KDE [24] is developed
to solve the POEF problem.

With the PDF of the load growth rates modelled in (2),
samples are produced from historical data. Thereafter, the
system operation model solves the optimal energy flows for
each sample path and thus obtain the output variables, i.e., the
daily optimal energy flows. Given that the maximum power
flows are the driving factor for network infrastructure
investment rather than the overall consumption, the maximum
values are selected from the 24-hour output data to perform the
KDE-based POEF model. It is assumed that F;, F,, ... F, is a set
of maximum energy flows for components 1,2,..n with
unknown PDFs. Thus, the KDE-based PDF model can be
expressed as (26).

fre@ ) = 238 Ky (x — F,) =
1 x—F¢
nhg ?=1K( hs )

where the bandwidth hg is the smoothing parameter or
bandwidth, i.e., a given scale parameter. It presents a strong
influence on the resulting estimate. The choice of bandwidth hg
is discussed in detail below. x is the non-parametric KDE
independent variable. The Kernel function K () determines the
shape of bumps which are summed up to the kernel estimator,
while the bandwidth h, determines their width [24]. Selecting
the Gaussian function as K(+), it can be expressed as (27).

_(x_Fc)2

K(X,P;:) =Ee 2hg 2

(26)

27)

Therefore, the estimated PDF of energy flows is determined
by K () and the bandwidth h;. Particularly, the results are much
more sensitive to the choice of hg [37]. To ensure the trade-off
between bias and variance of the estimator, the Approximate
Mean Integrated Squared Error (AMISE) method is used to

select the optimal bandwidth [25], as shown in (28) and (29).
4

h 2
AMISE = = { f uZK(u)du} f {f"(x)}2dx
4
(28)
+ . R(K)
R(K) = sz(u)du (29)
where f''(x) is the estimated PDF through KDE, u = x’:—F‘

AMISE is used to quantify the difference between true
realization and estimated density function. By minimizing
AMISE , the optimal bandwidth can be obtained. The
Likelihood Cross-Validation method is used to find the optimal
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hg index for each output random variable and minimize
AMISE.

B.  LRIC-based System Pricing Model

The difference in the present value of future investment with
and without the nodal connection determines network charges.
Based on this principle, the proposed LRIC charging model is
demonstrated as follows.

1) Deriving contingent overloading

The risk measure, TVaR is used to derive the expected
overloading levels of a network component c, i.e., the pipeline
in the gas system and the branch in the electricity system during
the whole time horizon. The time horizon T represents the time
range when the system operator expects to recover the
investment costs from the network users. It is necessary to
select a sufficient planning horizon (7-10 years) to enable the
MES operator to earn a reasonable rate of return on the capital
invested. In this paper, T is selected as 10 years. Given that the
PDFs of energy flows are derived above, they can be expressed
as fct (p) for component c¢ in year t . Therefore, their
cumulative distribution functions (CDF) can be expressed as

)
Foo (o) = f £ e, Ve € QF, Ve (30)

Therefore, the TVaR, i.e., the expected overloading level of
component ¢ in year t can be formulated as in (31).

Joatt for (wdu an
ote =T 1= Fpy (Ca)
where Ca is the capacity of c. 1 —F, (Ca) represents the

probability of overloading, i.e, when the energy flow in a
network component exceeds its capacity.
2) Deriving network costs to support existing customers

As shown in Fig. 1, the shadow area is the value of 1 —
F..(Ca). With the known PDF f_ . (u) and the pre-set capacity

Ca, the value of fccz U for,(Wdu can be calculated. Therefore,

TVaR ,Vc € Q°,Vt

TVaR.;, can be derived from (31). With increasing power
flows, TVaR,, also increases until reaches the threshold Ca in
year t, when the reinforcement is required.

0.025 Ca

0.02
0.015

0.01
1—F.(Ca)

Probability density

0.005 -

0
4.8 5 5.2 5.4 5.6 5.8 6 6.2

Power flow
Fig. 1. Demonstration of TVaR based on known PDF.

The reinforcement of component ¢ will be triggered when it
reaches its capacity due to energy load growth. Thus, based on
TVaR and the capacity Ca, the expected reinforcement time ¢,
can be derived by equating TVaR and the capacity of
component ¢, as shown in (32), which can be solved through

the Newton-Raphson method.

TVaR,, = Ca (32)

Thereafter, the discount rate d is used to discount the future
reinforcement cost RCost, to the present value as shown in
(33). Notably, generation capacity investment is not considered
in the proposed MES pricing model because: i) Generation
investment is managed by power plants. Network distribution
companies do not have the permission to invest in generation;
il) Network prices for demand are annually calculated on a
rolling base, where the capacity of generation is assumed to be
constant [38].

RCost,
1+ d)te
3) Deriving network costs of incremental injection or
withdrawal

With additional energy withdrawal AE at a node, the
probabilistic energy flows in the system will change, as well as
the TVaR. Therefore, the reinforcement time will be deferred
or advanced. The TVaR along with component ¢ due to
additional energy demand or generation is

A QL
1-F¢¥(Ca)
where the PDF and CDF of energy flows are updated with

incremental energy withdrawal. Therefore, the present value of
the future reinforcement cost is

PV, = (33)

TVaRISY = Ve € Q°, Vit (34)

pynew — RCost, (35)
¢ 1+ d)yee™
where t2°" is the updated reinforcement time, which can be
derived by (32) and (34).

4) Deriving LRIC charges
The change in the present value due to incremental
withdrawal at node b is shown in (36), derived by (33) and (35).

APV, (b) = PV (b) — PV, (b)

Vb e QB uUQfuUNE (36)

Thereafter, the annuity factor r is applied to the annualized
incremental costs of all components in the system, which is the
LRIC charge of the node, as shown in (37).

cr-APV.(b
LRIC(b):ZCEQ c( )
,Vbh e QF U QfuQF
where AE is the nodal incremental withdrawal.

G37)

IV. IMPLEMENTATION

This section illustrates the implementation of the proposed
method. The stochastic model, the MES operation model, the
POEF model and the LRIC-based pricing model are integrated
as shown in Fig. 2. Based on the framework, Fig. 3 presents
how the proposed method can be implemented. The procedures
are clarified as follows:

1) Initialize the expected reinforcement time. The expected
reinforcement time t, for all network components is initialized
as 0.

2) Calculate probabilistic energy flows in year t.. The PDF of
uncertain load growth and system parameters are input to the
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system operation model and the POEF model to calculate the
PDF of the maximum energy flow in year t,.

3) Calculate the expected loading level in year t,. The
expected loading level of component c, i.e., TVaR is calculated
for the base case and nodal incremental case. As shown in Fig.
3, the judging criteria is the same for these two cases: If the
value is smaller than the capacity and t, is within the time
horizon T, increase t,. by 1 and go back to step (2). Otherwise,
go to step (4).

4) Calculate the incremental present value of future
reinforcement cost. With the expected reinforcement time with
the base case and the incremental case, their present values of
future reinforcement costs are calculated. Thus, the changes in
these present values, i.e., the incremental costs are obtained.

5) Calculate the nodal LRIC charge. The incremental costs for
all network components are annualized and summed up to
calculate the nodal LRIC charges.

System operation model ‘

PDF of random Set of deterministic
load growth optimal energy flows

Stochastic model

Maximum power flow
extraction

Set of deterministic
v maximum energy flows

’ Probabilistic model of energy flows ‘

PDF of maximum energy
v flows

’ LRIC-based system pricing model ‘

Fig. 2. Framework of the model formulation.

Start

Initialize the expected reinforcement time ¢ of network
component c.

System topology and

PDF of stochastic
parameters

load growth

PDF and CDF of maximum energy flows during the time
horizon 7

TVaR with the base
demand
I

TVaR with nodal
incremental demand
]

te=tct+1

No

Calculate the change in the present value of future
reinforcement cost with incremental demand
Annualize and sum up the changes in future costs for all
components

v

Calculate the nodal LRIC charges

End
Fig. 3. Implementation of the proposed method.

V. CASE STUDY

A modified 39-bus power system and a 20-node natural gas
system [39] are used to validate the effectiveness of the

proposed method. The IEEE 39-bus system is scaled down to
kW to represent the district-level MES. Fig. 4. shows the
topology of the system. The power system has 11 generating
units, including two micro gas turbines G4 and G8 on buses 33
and 37, respectively. They are supplied by nodes N6 and N 19,
respectively in the gas system. Generators G4 and G8 are PV
and WT, respectively. The others are diesel generating units.
The cost functions of gas-fired and diesel generators are
quadratic. The total generation capacity of the power system is
7367kW. Buses 3, 4, 5, 6, 7, 8, 9 have flexible demands, the
capacity of which are shown in Table I. The upper limits denote
the maximum volumes of load increasing, while the lower
limits denote the maximum volumes of load shedding.

Fig. 4. Topology of the system.

TABLEI
PARAMETERS OF FLEXIBLE DEMAND
Bus Upper limits of controllable [Lower limits of controllable
demand/kW demands/kW
3 150 -100
4 150 -100
7 150 -100
8 100 -60
9 350 -200

The 20-node gas system has 6 gas wells and 18 pipelines.
There are 9 gas loads, with nodes N3, N6, and N19 supplying
the CHP, the gas-fired generator G4 and G8, respectively. The
CHP and EB are connected with the heating load H1. The EB
is connected with Bus 24 in the power system. The capacity
parameters of the gas wells are shown in Table II. The
parameters of the stochastic model and the network charging
model are shown in Table III. Considering the MES operation
model is a complicated and constrained nonlinear optimization
problem, it is solved by Gurobi 9.1.0. The mixed-integer
programming (MIP) optimality gap is set as 107°. All case
studies are implemented by MATLAB 2019 on a PC with Intel
Core 17/2.2-GHz-based processor and 16 GB of RAM.

TABLEII
PARAMETERS OF GAS WELLS
Gas well Production Upper limits Lower limits
costs /10°Mm?® /10°Mm?3
/E-Mm™3
W1 0.085 1.7391 0.9
W2 0.085 1.26 0
W3 0.085 0.72 0
w4 0.062 2.3018 1
W5 0.062 0.27 0
W6 0.062 1.44 0
TABLE III

SIMULATION PARAMETERS
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Parameter Value
Initial electricity load growth rate 0.2
The percentage drift u for electricity load 0.07
The percentage volatility ¢ for electricity load 0.05
Initial gas load growth rate 0.03
The percentage drift u for gas load 0.08
The percentage volatility ¢ for gas load 0.07
Investment cost of electricity branches 70,964 £ - kw1
Investment cost of pipelines 1,750,000 £
Discount rate 6.9%

According to the predicted demand growth in National
Grid’s annual future energy scenarios report [3], the total
electricity peak demand is simulated through the GBM model
as an example. The simulated sample paths and PDFs are
illustrated in Fig. 5 (a) and (b), respectively. It can be found that
load uncertainty has a positive correlation with the time
horizon. With the accuracy of load predicting declining over
time, the variance of electricity peak demands becomes greater,
illustrating the characteristics of long-term uncertainty. The gas
demand growth rates are modelled using the same model but
with different parameters, as shown in Table III. The values of
the drift and the volatility are determined by referring to the
report [3]. Remarkably, as predicted by National Grid in [3], the
peak gas demand is quite likely to show a downward trend.
Thus, the parameters of the gas demand growth are chosen to
capture the potential negative growth scenarios.
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(a) Realizations of GBM-based overall electricity peak demand in 10 years.
Simulated sample paths are 2000.
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Fig. 5. Overall electricity peak demand based on the proposed stochastic model.
u=0.07.0 = 0.05. xy = 0.2. The original demand in year 0 is 100 kW.

As shown in Fig. 5 (a), the red line represents the expected
load growth. The black, blue, yellow, and green lines represent
the peak demand growth in four scenarios (i.e., steady
progression, system transformation, consumer transformation,
and leading the way, respectively) predicted in [3]. The drift is
set as 0.07 so that the simulated average growth rate trajectories
align with the predicted demand growth. The volatility is set as
0.05. This value is such that simulated growth rate trajectories
are sufficiently dispersed around their averages so that they
represent a wide range of possible future scenarios.

In comparison, the traditional stochastic model assumes that
demand growth is subject to the normal distribution with a
constant variance. This model’s PDFs with the same parameters
are presented in Fig. 6. As seen, the average value of demand
growth increases at a fixed rate, while the variance remains
constant. Since the model ignores the increasing variance of
demand growth as time elapses, it implicitly assumes that the
accuracy of load forecast remains the same over the time
horizon. This assumption would incredibly lead to incorrect
impacts of demand uncertainty on the network reinforcement
deferral or advancement. Since the focus of this paper is to
provide investment cost-reflective signals under long-term
demand uncertainty, the proposed stochastic model can better
capture its stochasticity.
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Fig. 6. Probability density distribution of overall electricity peak demand under

the normal distribution with constant variance in 10 years. 4 = 0.07. ¢ = 0.05.
Xo = 0.2. The original peak demand in year 0 is 100 kW.
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A. Base case

The utilization levels of branches in the power system and
pipelines in the gas system in year 0 are shown in Fig. 7. With
multi-energy demand varying, the distributions of energy flow
inevitably change and thus, the utilization levels of networks
change accordingly. The reinforcement is triggered when the
utilization level of a network component reaches 100%. The
network charges aim to incentivize the efficient utilization of
the whole system.

As shown in Fig. 7, branch 20 has the highest utilization rate
with 96% in the power system, while branches 33 and 41 have
the lowest rate below 1%. In the natural gas system, Pipeline 8
is the most utilized component in the natural gas system.
Therefore, if the energy withdrawal of a node has greater
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sensitivity to the highly utilized branches or pipelines, its
network charges are also high, and vice versa. Because when
the utilization is high, the reinforcement becomes imminent and
thus leads to a high charge. In comparison, the energy injection
that can reduce the loading levels of highly utilized branches

contributes to larger negative charges.
90
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Fig. 7. Original utilization rates of network components in the power system
and the gas system in year 0.

The simulation results of the POEF model are probabilistic
energy flows through each network component. Fig. 8 is taken
as an example to depict the PDF and CDF of power flows
through branch 17 and gas flows through pipeline 1 in the 1st,
7th, and 9th years. It can be seen from Fig. 8 (a) that the
probability of the power flow falling within 5.25 kW to 5.4 kW
in the first year is 100%. Therefore, there are small uncertainties
of power flows in the first year. By contrast, in the 7% year, the
probable range of energy flows falls within 4.9 kW to 6kW,
with a larger variance. In the 9th year, the probable power flow
of branch 17 reaches 6.5 kW, with a minimum possible value
of 4.75 kW. The figure demonstrates that both the uncertainty

and the highest probable power flow of branch 17 rise with time.

Fig. 8 (b) shows the probabilistic gas flow rates through
pipeline 1. Similarly, it can be seen from the figure that in the
first year, the gas flow rates are between 1.413 x 10°m3/h
and 1.417 x 10°m3/h , while the variance increases to
1.408 — 1.417 X 105m3/h in year 7. In the ninth year, the
probabilistic gas flow rate falls within 1.406 — 1.418 X
105m3/h. Because the long-term uncertainty of energy load
growth increases over time, the variance of the probabilistic gas
flow function also increases.

Fig. 9 shows the expected loading levels at risk, i.e., TVaRs

of all branches from the first year to the 9th year. It can be found
in the figure that the uncertainty of demand growth has a very
small impact on the utilization of branches 7, 21, 22, 33, 36, 41,
and 46. By contrast, branches 10, 14, 19, 23, 26, 28, 35 have a
significant variation in the expected loading levels over time.
Therefore, the nodal energy demand which imposes more loads
on these branches may be charged more because they can
advance the future investment of highly utilized components,
vice versa.

o
Q
@

0.03 —yeart

year7

RE

|
1 405 141 1.415 142
Gas flow rate (10° m%h)

—vyear1

1
7
—yeart }
year? S ——year7|

o } year9 year9)]
4.5 5 55 6 6.5 1.405 141 1.415 142
Power flow (kW) Gas flow rate  (10° m*/h)

—year1

4.5 5 5.5 6 6.5
Power flow (kW)

=4

Q

s
o
Q
N

o
=

Probability density
g
Probability density

o
o

Probability
Probability
o
o

(a) Power flows through branch 17 (b) Gas flows through pipeline 1
Fig. 8. PDF and CDF of energy flows through example branches and pipelines.
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Fig. 9 Expected loading levels for all branches in the power system.

Fig. 10 illustrates the expected gas flow rates for all pipelines
in the gas system from the first year to the 9th year. Compared
to other pipelines, L5 and L6 have higher risks of overloading,
which are much more sensitive to stochastic demand growth
over time. Based on TVaRs, the expected loading level,
reinforcement horizons and the discounted future investment
costs can be calculated. In the base case, the future costs in the
power system and gas system due to stochastic energy demand
growth are £6.8669m and £0.982m, respectively.
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Fig. 10 Expected gas flow rates for all pipelines in the gas system.

B. Incremental case

The incremental cases demonstrate the impact of nodal
energy demand withdrawal or injection on the probabilistic
energy flows and the future investment costs, which are used to
calculate the annualized network charges. Because Fig. 8.
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shows the energy flows of branch L17 and pipeline L1 in the
base case as an example, this part selects the same components
but in different incremental cases (i.e., incremental energy
demand withdrawal on different nodes).

Fig. 11. shows the updated PDF and CDF of power flows
through branch 17 with incremental demand (1kW) growth on
bus 9 and bus 29 of the power system. The diagrams indicate
that the nodal demand increase of bus 24 lifts the maximum
power flows of branch 17 from 5.4 kW to 6.3 kW in the first
year, from 5.9 kW to 6.3 kW in the 7" year and from 6.45 kW
to 6.8 kW in the 9" year. By contrast, the increment of bus 29
has a marginal effect on the loading level of branch 17.
Therefore, the nodal energy demand growth of bus 9 can
significantly advance the reinforcement of branch L17, leading
to a high network charge for the component L17.

g 0.03 —veart | 2008 —vyear
2 —vyear7 | B < —year?
3 002 ﬂ( AN yeard _§ 0.02 D/ N\ year
2z o\ S VI
= 0.01 = 0.01
2 / 3 / \
2 - bt S o -
& 5 5.5 6 6.5 <] 5 55 6 6.5
Power flow (kW) A Power flow (kW)
1 —— 1 —
& 7
2z / 2z I/
= B y
B / = /
E 05 £ 805 /
S —yeart 8 —yeart
& year? = —year?
7 j year9 &~ e year9
0 = 0
5 55 6 6.5 7 4.5 5 5.5 6 6.5
Power flow (kW) Power flow (kW)
(a) Bus 9 (b) Bus 29

Fig. 11 PDFs and CDFs of power flows through branch 17 with incremental
demand at bus 9 and bus 29.
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Fig. 12 PDF and CDF of gas flow rates through pipeline 1 with incremental
demand at node 1 and node 6.

Fig. 12 depicts the effects of incremental gas injection of
node 1 and incremental gas demand of node 6 in the gas system
on the flow rates of pipeline L1. It can be found that the nodal
gas injection of node 1 (i.e., gas well 1) leads to the fall in gas
flow rate of pipeline L1 with around 1 x 10*m3/h, while the
nodal gas withdrawal of node 6 (i.e., the gas generator G4) leads
to the rise of around 500m3 /h. Therefore, the incremental gas
injection of node 1 and withdrawal of node 6 will cause
negative and positive network charges, respectively, in terms of
the reinforcement cost for pipeline L1. In other words, the
pricing methodology can reflect the utilization of the system
infrastructures in serving incremental energy injection or
withdrawal, which are drivers of the investment of MES.

To illustrate the effectiveness of the proposed POEF model,
the PDFs of example branches and pipelines are simulated
using the Monte-Carlo method, the parametric method and the
proposed adaptive KDE method, as shown in Fig.13. It can be
seen that the PDFs generated from the proposed method can

10

highly align with the simulated probability density distributions
under Monte-Carlo simulation, particularly in the tail part. If
the probabilistic energy flows are close to a normal distribution,
the parametric method also shows an acceptable fitting effect.
However, it has a non-ignorable deviation in the tail part,
especially when the probability density does not conform to the
normal distribution. The results demonstrate the effectiveness
of the proposed adaptative KDE-based model in fitting the PDF
of energy flows.
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Fig. 13. PDFs of power flows and gas flow rates under the Monte-Carlo
simulation, the parametric method, and the proposed adaptative KDE method.

C. Pricing Results

Table IV shows the breakdown of incremental reinforcement
costs with and without nodal energy withdrawal increments and
their annual network charges. The incremental cost of network
components represents the difference of present values in the
expected reinforcement due to nodal demand injection.
Specifically, nodal demand injection will change the system’s
optimal energy flows under contingency. Nevertheless, the
impact varies from branch to branch and from pipeline to
pipeline. Positive incremental costs of a component ¢ mean that
the contingent energy flow of ¢ increases and thus the
reinforcement horizon is advanced due to nodal demand
injection. Therefore, this nodal demand injection leads to a
growth of the present value in the reinforcement cost, i.e.,
positive incremental costs. Accordingly, positive and negative
incremental costs represent investment time advancement and
deferral, respectively.

As shown in Table IV, the incremental demand injection at
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bus 13 changes energy flow distribution.s It defers the
reinforcement of branch L1 and contributes to the decline of the
present value in its investment costs by —2.2875 X 103£/
MW /yr. It also results in increasing utilization levels of other
network components (e.g., L3, L5, L31) as shown in the table.
In the base case, the expected present value in future investment
costs is 6.8669 X 10*£/MW /yr in the power system and
98.2 £/MW /yr in the gas system. With incremental electricity
demand at bus 13, the present value in future costs grows to
1.0157 X 10°€/MW /yr  and  3.11 X 103£/MW /yr
respectively. Therefore, the annual network charge is 32.898 X
103£/MW /yr and to 2.128 x 103£/MW /yr in the two
systems, which is 3.2898 x 10*£/MW /yr in total.

TABLE IV
BREAKDOWN OF REINFORCEMENT COSTS AND NODAL ANNUAL NETWORK
CHARGES
Incremental Total iITcOrt:rln Annual
Bus Branch/ cost of base
A ental charge
/Node Pipeline components cost B
10%€) (10%€) cost (10°£)
( (103£)
L1 -2.2875
L3,L5L31 0.5419
L16 0.6998 101.57
L4,19,L.11,L13, 68.669 0
L15,L.24,L.28,L 2.9873
Busl3 | 29.130,L42,L45 35.026
P2,P3,P4,
P5,P6,P7,
PI1.PI2.P13P1 0.1637 0.982 3.110
4,P15,P18,P19
L2 1.6386
L3 0.1687
L2 01928 68.669 70.825
Bus29 L31 0.5419 4.120
P3,P4,P5,P6,P7,
P11,P12,P13,P1 0.1637 0.982 2.947
4,P15,P18,P19
L2 1.6386
L3 0.3491
L5 -2.4454 68.669 68.368
Bus 30 L12 -0.1928 1.663
L31 0.3491
P3,P4,P5,P6,P7,
P11,P12,P13,P1 0.1637 0.982 2.947
4,P15,P18,P19
L5 -0.7391
2 0.8980 68.669 68.828
P1, P9, P10,
NN";IC P16, P17 -0.7391 6.443
P2, P5, P6 1.3401 0.982 6.695
P3, P7, P12,
P13, P14, P18 0.8980
L33 1.7517 68.669 70.421
Nod P2 0.0925
ode
- 8.83
Ne  — Pi’;’im - 0.1913 | 5082 | 7.876 7
12,P13,P16,P17 0-8980
P1,P3,P9,P10,P
Nod. 11,P12,P13,P16 0.89797
N"l se P17 0.982 | 87738 | 7.7916
P2 0.09246
P5, P6 -0.1913

The annual network charge of bus 29 is 4.120 x 103£/MW /
yr. The demand connected at gas node N6 only decreases the
utilization levels of pipelines P5 and P6. Thus, it delays the
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reinforcement time of P5 and P6 and advances that of other
pipelines and branches. The charge of bus 13 is higher than
charges of buses 29, 30, and node N6 because bus 13 uses the
network more extensively, i.e., it is served by more highly
utilized branches and pipelines.

D. Performance Comparison

To demonstrate the benefit of the proposed method, the same
case study is performed using the deterministic LRIC method
and the traditional method that does not consider the utilization
level of the MES network. Table V compares the pricing results
with the three methods. The traditional uniform pricing method
assumes the existing MES network is fully utilized, i.e.,
incremental demands at any nodes will contribute to the
reinforcement of all network components by the same value.
Thus, all nodes are charged at the same amount, i.e.,

1.1086 x 10*£/MW /yr.
TABLE V
RESULT COMPARISON WITH THE PROPOSED METHOD, DETERMINISTIC LRIC
AND TRADITIONAL METHOD

Bus/Node Proposed Deterministic Traditional

method LRIC method method
(103£) (103£) (103£)

Bus 1 3.773 11.986

Bus 9 1.965 11.883

Bus 13 35.026 13.628

Bus 19 0.683 10.834

Bus 29 4.120 12.168 11.086

Bus 30 1.663 11.210

Node N1 8.553 11.660

Node N6 8.645 11.912

Node N19 9.543 12.074

Although the deterministic LRIC (D-LRIC) method
considers the utilized capacity of MES, it assumes that all nodes
share the same fixed load growth rates (i.e., 20%), which
ignores the long-term uncertainty. In terms of the mentioned
nodes and buses in Table V, the charge at bus 33 is the highest
with 1.3628 X 10*£/MW /yr, while bus 19 has the lowest
charge with 1.0834 x 10*£/MW /yr . The buses with the
highest and lowest charges from the proposed method are the
same with D-LRIC, i.e., bus 13 and bus 19, with 3.5026 X
10*£/MW /yr and 683 £/MW /yr , respectively. That is
because the network is more extensively utilized in serving
demands at bus 13. For instance, branches 119, .20, L22, L21,
L28 may be needed by generating unit G3 to support
incremental demands at bus 13. Especially, as shown in Fig. 7,
the existing utilization rate of L20 is the highest with more than
95%. The branches L19 and L28 are also highly utilized with
around 70%. By contrast, Bus 19 is served through L33, the
utilization rate of which is the lowest, i.e., less than 5%. Thus,
the charge for bus 19 is much lower than the others.

The charges calculated from D-LRIC are generally higher
than those from the proposed method with less variation among
different nodes. It is because D-LRIC presumes a high fixed
load growth rate. In reality, however, the load growth rate may
be lower or higher than the predefined value. Under long-term
uncertainty, the ability to defer reinforcement is more valuable
than that under deterministic scenarios [40]. Because the defer
option can provide planning flexibility in response to various
future conditions [41]. Since bus 13 advances the reinforcement
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of L19, L20 and L28 significantly, it kills the option to wait for
new information and productively invest in the future. The
opportunity cost is ignored in D-LRIC. Therefore, the charge of
bus 13 from the proposed method is higher than that from D-
LRIC. The charge of bus 19 from the proposed method is lower
than that from D-LRIC because demand increments at bus 19
can improve the system’s planning flexibility.

E. Pricing sensitivity to load uncertainty

This section investigates the effects of load uncertainty
variance (i.e., ¢ in Fig. 5.) on network pricing results. Fig. 14.
shows the pricing results of four nodes with different nodal
peak demand variances. It can be observed that the variances of
load peak growth increase from 20% to 220%, and the annual
charges of Bus 30, Bus 9, Bus 29 and Node N1 grow by around
8 X 10%£, 3.5 X 10*£, 2 x 10*£, and 2 X 103£, respectively.
The results indicate that with the variance growing, the risks for
more investment measures also increase, leading to higher
charges for all buses and nodes. Nevertheless, the pricing
sensitivity of these components to the variance is different. It
can be seen that among the four nodes, Bus 30 is the least
sensitive, while Node N1 has the biggest change during the
range under study. It is mainly because the incremental demand
at Bus 30 contributes a small proportion to the network
reinforcement through energy flow growth, while Node NI
contributes a large proportion. In other words, Node N1 utilizes
the network most extensively, which leads to a large annual
charge at the base variance rate. Therefore, with the variance of
load growth, nodal demand increments at Node N1 have a
larger impact on the future network reinforcement. The results
demonstrate that the investment risks due to load growth
uncertainty are shared between all network users. The charges
reflect the degree to which the network can serve more demand

growth under long-term uncertainty.
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Fig. 14. Incremental charge under different load growth variances

VI. DISCUSSION

In the UK [42] [43], The price control scheme sets expense
(i.e., investment) and revenue (i.e., recovery from consumers)
allowances for energy network companies. Timely investment
and cost recovery methods are needed to ensure the ongoing
reliability and resilience of the gas and electricity transmission
networks. This paper proposes a long-term network pricing
method for MES, which for the first time considers long-term
uncertainty of multi-energy demand in pricing signals. Key
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findings and achievements can be concluded from simulation

results, as shown below:

1) The GBM-based model can better capture the stochasticity
of uncertain multi-energy demands by considering the
varying variance of demand growth rates. The average
growth rate trajectory of simulation results aligns with the
predicted demand growth scenarios by National Grid. The
simulated growth rate trajectories are also sufficiently
dispersed around their averages to incorporate a wide range
of possible future scenarios. The proposed model enables
system operators to analyse the long-term uncertainty on
multi-energy system planning and investment.

2) The proposed adaptive KDE method shows a good fitting
effect for energy flows with long-tailed and non-normal
distribution. Results show that the obtained PDFs highly
align with those from MSC. Compared with the parametric
estimation method, it has a much lower deviation for non-
normal and long-tailed distributions. The model provides a
beneficial tool to analyse probabilistic energy flows in a
complex system with good accuracy.

3) The proposed LRIC-based pricing method can reasonably
reflect the effect of nodal incremental loads on the predicted
investment horizon of branches and pipelines. The final
locational charges indicate how network users utilize the
energy network. They reflect where the network can serve
more demand without requiring investment. Compared with
the traditional uniform pricing method and the deterministic
LRIC method, the proposed approach can represent the
effect of load growth uncertainty on network development.
Results indicate that long-term uncertainty has a negative
impact on network utilization and thus leads to higher
network charges. The final charges enable system operators
to share the investment risks caused by long-term
uncertainty with MES customers.

The obtained price signals can achieve the tradeoff of
multiple criteria of pricing methods, i.e., cost-reflectivity,
predictability and forward-looking signals. Nevertheless, it can
be further improved to facilitate a more efficient and fair
allocation of network investment costs, allowing for the
paradigm shift and increasing uncertain technologies. The
future research directions include: i) Carbon signals should be
incorporated in the pricing method to incentivize the integration
of low-carbon technologies. ii) Flexible demand ( e.g., battery
storage systems and electric vehicles) should be further
investigated in network pricing to ensure that their flexibility
values are fairly evaluated and awarded. iii) The proposed
pricing model can be extended to generation by modelling the
uncertain development of generation capacity and energy mix.

VII. CONCLUSION

This paper proposes an LRIC-based network pricing
methodology to guide the development of future demand under
the long-term uncertainty of load growth. Case studies indicate
that the proposed method has better performance under
uncertain circumstances, compared with the traditional method
and D-LRIC. The proposed method can not only use nodal
charges to reflect the utilized capacity of MES but also provide
a forward-looking price signal that reflects the expected
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investment costs on MES to supply uncertain multi-energy
demand. Moreover, it investigates how different nodal
increments of energy injection and withdrawal influence the
planning flexibility under long-term uncertainty. Through price
signals, the proposed pricing method enables better utilization
of the MES network by encouraging efficient siting and sizing
of future multi-energy demand and generation.

The proposed method provides an analytical tool to network
operators to collect revenues and recover costs. It also enables
them to guide better sitting and sizing of demand to minimize
investment costs and hedge risks from load growth uncertainty.
In this way, the new pricing approach can help achieve more
efficient MES planning and cost-effective utilization under
long-term uncertainty, thus reducing low-carbon transition
costs.
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