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Network Pricing with Investment Waiting Cost
based on Real Options under Uncertainties

Xiaohe Yan, Member, IEEE, Chenghong Gu, Member, IEEE, Hongcai Zhang, Member, IEEE
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Abstract—EXxisting capacity-based network pricing uses
discounted cash flows to calculate network costs, unable to reflect
the uncertainties and flexibilities of the network users. Such
shortcoming could distort the cost-reflectivity of pricing signals,
particularly those for renewables and flexible technologies,
causing more constraints and curtailment issues in networks.
Corresponding to these issues, this paper designs a new pricing
method, Incremental Cost Network Pricing based on Real Options
(ICOC), which can reflect network user uncertainties on network
investment by using real options theory. Under this concept,
network operators can delay investment for a certain period by
paying waiting cost based on options’ value until more information
is available, thus avoiding non-reversible investment due to
uncertainties. The options’ cost will be levied on network users as
i) rewards if they provide flexibilities to the system, or ii) waiting
costs if they present uncertainties to the system. The reward or cost
to the network users is determined by a binomial tree pricing
under a risk-neutral condition, which is added onto asset present
value as the total cost to be recovered. Such cost is allocated to
network users based on their nodal incremental costs. The
proposed method is demonstrated on a practical network with
different users, i) uncertain, ii) flexible; iii) certain and nonflexible.
The new ICOC pricing scheme can capture the impact of network
user uncertainty on network investment and thus set cost-
reflective price signals to influence their behaviours.

Index Terms—Network investment, Network Charges,
Uncertainty, Real Options, Long-run Incremental Cost

I. INTRODUCTION

To reduce CO; emission, renewables, electric vehicles (EVS)
and energy storage are increasing [1]. Energy storage can
change their energy utilisation behaviour by shifting load and
thus provide flexibility [2] to the power system. For example,
controllable storage can discharge during system peak and
provide alternative ways to meet network capacity requirements,
deferring network reinforcement. By contrast, in some cases,
these technologies can introduce severe uncertainties, reducing
the available capacity of the system and bringing close
investment. For example, uncontrollable energy storage and
EVs might charge at the peak power flow period, bringing along
uncertainties to systems [3] and thus, the system unused
capacity is reduced during peak time.

These new grid-connected technologies pose severe
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challenges on current network pricing schemes, which requests
a new pricing scheme to recover investment costs and guide
network users to use existing networks efficiently. The current
network pricing schemes have two key steps: 1) evaluating
asset costs and 2) allocating asset costs to network users. Since
uncertainty or flexibility will directly increase or reduce system
peak, they will add or reduce costs in evaluating network
investment. Currently, long-run incremental cost (LRIC)
pricing [4] and Forward Cost Pricing (FCP) [5]are investment-
oriented and they are widely used in UK distribution networks.
LRIC is designed based on unused capacity and FCP evaluates
asset investment cost on a 10-year horizon. Although LRIC is
more efficient than FCP to reflect the locational information of
network users [4], they both are not fit for the new environment.

Current schemes assume that the network must be invested
after a certain year, normally determined by the Net Present
Value (NPV) approach [6]. The NPV approach, based on the
discount cash flow method has the following defects. It does not
consider uncertainty or flexibility in timing an investment. On
the contrary, the reinforcement horizon should become
dynamic. The impact of flexibilities and uncertainties should be
considered and evaluated. Uncertainty suggests that there is a
potential cost of forwarding investment. By contrast, flexibility
provides potential benefits by deferring system investment. It is
longer if load growth is small due to those flexibilities can
reduce peak demand, vice versa. Thus, the future investment of
networks should ‘wait and see’ to acquire more information
before making investment decisions [7]. In addition, the current
network pricing schemes cannot reflect the ability of future
demand management of network users. Thus, the traditional
pricing scheme overestimates the use-of-system charge of
flexible loads and underestimates that for uncertain loads. The
network users should get incentives by providing flexibility and
be penalised by posing uncertainties.

One key challenge in incorporating uncertainties into
network pricing is to model them while evaluating investment
costs. Generally, there are two methods, the weighted average
cost of capital (WACC) [8] and real options [9]. WACC
calculates the cost of capital, where each category of capital is
proportionately weighted. It assumes that the risk is constant
and new projects will not impact the risk level, which is
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unrealistic in network pricing [10]. The real options method
uses values associated with net present value and augments this
with the cost of uncertainty [11, 12]. It addresses decision-
making issues in sunk investments, based on giving up waiting
cost resulting from future uncertainties. By paying the waiting
cost, network operators could wait, i.e. defer investment, to
receive more information and thus could reduce the impact of
uncertainties on investment. Thus, it is normally used as a
decision-making tool for future investment [13-15]. The real
option pricing method can be divided into three main classes: 1)
binomial tree model [16, 17]; 2) Monte Carlo simulation
method [18-20] and 3) Black-Scholes model [14, 15]. All these
approaches have some flaws when applied to real options
valuation. Although the binomial tree model is less accurate
than the Monte Carlo simulation method and the Black-Scholes
model, it is a straightforward model and provides an analytical
technique to calculate options costs in network investment. It
offers more flexibility by altering the inputs in each step to
include the differences in the ability to exercise an option. The
optimal risk-averse investment policies also can be analysed via
the real options method [16]. It provides an opportunity to
access more information regarding users’ behaviours in the
future to reduce the impact of uncertainties. Paper [17] uses the
real options method to convert the impact of uncertainties on
future network investment into the waiting costs to reduce the
risk of investment decision making under uncertainty, which
avoids non-reversible investment. Although some studies [21]
evaluate the uncertainty of load by setting a high load growth
rate, it is not accurate to capture the behaviour of network users
on investment.

The cost allocation method can be classified into two main
groups, which are 1) levied averagely over the network users
(such as postage stamp [22], DRM [23]and FCP [5]) and 2)
levied based on the cost causation principle [24] (such as LRIC
and LMP [25]). LRIC and LMP allocate the cost based on the
incremental or marginal effect of load change considering the
location differences, which have significant advantages to give
cost-reflective incentives to the load and generations.

This paper proposes a novel Incremental Cost Network
Pricing based on the Real Options (ICOC) approach, which can
reflect the uncertainties of the network users. Firstly, the
original reinforcement horizon of networks is calculated based
on the present value and peak flows of branches. Then, the
waiting cost or rewards of network assets/branches to be
invested is quantified to reflect uncertainties based on the risk-
neutral theory. The uncertainty level is classified into different
scenarios to show their contributions to peak branch flows.
Thus, the investment cost is determined by asset present value
and augmented with waiting cost or rewards. After evaluating
the cost to be levied from uncertain and flexible loads, it is
allocated to network users based on their contribution to peak
power flows along branches. Network users providing
flexibility can receive negative waiting cost, i.e. rewards,
resulting from investment deferral. The waiting cost or reward
is allocated to the network users according to the impact of
uncertainty on peak branch flow the binomial option pricing
model. The proposed method is compared with the LRIC

Authorized licensed use limited to: UNIVERSITY OF BA

pricing method by demonstrating on a UK GSP network.
This paper has the following key contributions.
= |t designs a new network pricing method with a dynamic
network investment horizon, which can capture the impact
of customer uncertainties on network investment, thus
making investment more flexible and efficient;

= It defines the costs of uncertainty and rewards for

flexibilities via real options method based on customer's

impact on future network investment, in which way the
price signals are more cost-reflective to influence customer
behaviours;

= enhances the fairness of the pricing scheme. It means

flexible users receive more incentives and uncertain users

pay higher charges.

The rest of the paper is organised as follows: Section Il
designs the ICOC pricing method based on real options for
different types of users under uncertainty or flexibility. Section
Il gives an outline of the whole process. Sections IV
demonstrate the model in a practical distribution network.
Section V draws the conclusion.

Il. NETWORK PRICING METHOD BASED ON REAL OPTIONS

Network pricing scheme design contains two key steps, 1)
investment cost evaluation and 2) cost allocation. The impact
of uncertainty on network investment decision making is
evaluated as waiting cost based on the real options method in
previous work [17]. This work focuses on cost allocation based
on the uncertain and flexible features of different users. It shows
that the waiting cost can be captured by the real options method,
which could evaluate the additional cost resulting from network
investment deferral. Paying the waiting cost provides an
alternative way for network owners under uncertainties,
reducing risks and costs simultaneously. [17] provides a
theoretic method for this work to evaluate network costs under
uncertainty and flexibility. In traditional LRIC, the allocated
cost is asset cost over its whole life span with a certain
reinforcement horizon. The ICOC is designed to reflect the
impact of uncertainty on network prices by combining the LRIC
and the real options method.

A. Cost in Traditional Network Pricing

Traditional network pricing scheme uses discount cash flow.
The present value of assets is determined in (1). The time to
reinforcement horizon is calculated in (2) to show the time
horizon when the power flow reaches branch capacity [4].

Asset)

PVo = (1+dr)™ 1)
n = log C;—log P; (2)
L log(1+17)

where power flow P, can grow to capacity C, after year n; with
the load growth rate r;, dr is the discount rate, and Asset, is the
asset cost of this branch.

Normally, the mean value of predicted peak demand is used
in the calculation, which means the actual demand peak may be
higher than the predicted value under the worst-case. Thus, with
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the same predicted mean value, uncertain load contributes more
to the system peak, reducing network unused capacity. For
example, uncontrolled electric vehicle charging might increase
system peak. Flexible load has the capability to reduce peak
load and increase spare capacity for the system by offering
flexibility. For example, energy storage can discharge during
the system peak period when the energy price is high, providing
flexibility to the system. The flexibility level is evaluated in
terms of peak reduction.

B. Options Pricing Method for Uncertainty

The real options method provides an opportunity for network
owners to defer system investment by paying the waiting cost
based on the real options method. This allows network investors
waiting for more information about systems in the future to
make investment decisions, which reduces the impact of
uncertainties on system planning. To reflect the impact
resulting from uncertainties, asset cost evaluation should be
reformed by adding waiting cost with asset present value.

To evaluate the options cost resulted from uncertainty, the
binomial options pricing method [9] is applied, which is a
numerical method. The binomial pricing model uses binomial
lattice (tree) to determine the present value in a number of time
steps from now to the end. Each node in the tree represents a
possible present value of the asset in a particular time step,
called the term and it is assumed to be one year in this paper.
The binomial options method performs recursively, starting
from each final node (the step at right side treetop) and then
calculating backwards through the tree towards the first node
(the left side root of the tree), as shown in Fig.1. There are three
key steps in determining the option's value: 1) creating a
binomial tree; 2) calculating the waiting cost at the final node;
3) calculating the waiting cost back to the start node.

Current year
(first node)

I year later (final node)

PV,
0P,

Fig.1. The tree method for one term.

Under an uncertain environment, by assuming the time step
to be one year, the asset present value is PV, in the current year.
The asset present value is shown in (3). With a probability of p,
the asset present value will grow u times to PV;,,. By contrast,
with a probability of 1 — p, it will decrease d times to PV;, one
year later.

PV; =PV, Xp+PViz X (1—p) (3)
— P

Y= )
— PVia

d= PV ®)

0P, and OP,; are the waiting cost for asset present value
change resulting from the possibility of present value increase
or decrease one year later, shown in (6-7).

Oplu = max(o, PVlu - PVl) (6)

Authorized licensed use limited to: UNIVERSITY OF BA

0P1d = max((), PVld - PVl) (7)

Based on the risk-neutral method, the difference between the
probability present value and the options’ value equals the risk-
free portfolio (the present value one year later PV;) in (8).

PVlu - 0P1u = PVld - 0P1d:PV1 (8)

Based on the discount cash flow model, the present value of
the investment one year later is determined by riskless interest
rate n. in (9). Thus, in the current year, the waiting cost (OP,)
can be evaluated in (10) based on the [9]. Combining (8) with
(9), the present value change probability over time is derived in
(11).

PVy = et x (PVyy — OPy,) ©)

OPy = e ™ x [0P;, X p + OP;4 X (1 —p)]

e'rt_q u—e”
u_

vt (10)
X 0Py + 72 X OPy]

=e Tt x|

rrt_
p="—° (11)

where, specific factors u and d describe the present value
change from the current year to the next year, and t is the length
of the period.
C. Multi-Terms Binomial Options Pricing Model

If an investment horizon is n; years, the binomial pricing
method should be extrapolated to n; years, which is the
concatenation of the single term trees introduced in (3-11).

Current year PV, 14 0P,

/ Ip

IEREE

First year PV;

ip P 1

PVyg2
0Py
Ap p‘/,-"' *n.\\]-p

Second year PV,

Pl
OP

PV 2PVynig 2 PVyyan-1
0Py 20P 014 2 0Pyyqn-s

n; year PV,

Fig.2. Multi-Terms of the option.

Thus, the waiting cost calculates the value from the final
node in the year n, to the current year. Based on the binomial
tree method, the waiting cost in year n, — 1 can be calculated
based on the waiting cost in the year n;. Therefore, the waiting
cost for users with uncertainties can be iterated to the current
year with n; times recursivation, shown in (12). This procedure
is shown in Fig.2.

ny!

0Py = et x [T, x p' x (1 - p)" x APV] (12)

iIx(ng—i)!

APV = max(0,u! x d™~% x PV, — PV},) (13)
where APV is the present value difference between the starting
node and the final node, i is the index of the year (i < n;).
D. Incremental Cost Allocation

The current pricing schemes assume that networks should be
invested after a certain year when the capacity is fully loaded
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and asset cost is allocated to network users based on their
contribution to system peak power change.

The peak power flow change due to nodal power changes is
determined by the linearised DistFlow model [26, 27]. An index
matrix, inspired by the power transfer distribution factor, is
built by the sensitivity of the injected nodal power on branch
power flow changes in (14). The power flow change on branch
L is AP, due to the additional power change (APy) on node N.
Index M, is used to measure the impact of load or generation
located at node N on branch I’s flow.

APy
M‘I’l,l = APy

(14)
The reinforcement horizon will change to n; ,,,, with the
nodal injection or withdrawal, expressed as [4]:

log C;—log(Pj+APy)
N new = % (15)

In the incremental cost pricing, the change of the present
value and the waiting cost resulting from the nodal energy
change are calculated respectively in (17-18) [4] :

Asset;
(1+dr)"Lnew

PVl_new = (16)

N new!

OPy new = €77 X [Z?:om X plx (1 —p)tnew=t x APVneW] 17)

APV, = max(0,u’ X d™new™ X PV 1o, — PV, (18)

Since the waiting cost allows network investors to obtain
more information before making an investment decision, it is
reasonable to add the waiting cost in evaluating the cost to be
recovered under uncertainties. Therefore, the waiting cost is
added to the present value (PV + OP), forming the recovery
cost (Rct). The incremental cost for network users with
uncertainties is:

ARE) _ Bil(PViyeyy +OPoyey,)=(PV1+OPO)]

ICOCN = APy APy

xaf (19)

where, the annuity incremental cost of the branch is calculated
based on the difference between the sum of asset present value
in terms of APy. af is the annuity factor. The incremental cost
to support node N is the summation of the incremental cost
overall branches it uses.
E. Reward Method for Flexibility

Since uncertainties reduce the available capacity of the
system, the load with flexibility addresses this challenge by
moving away the demand from peak time. Because peak power
flow can be reduced due to flexibility, the present value at the
final node is smaller than that at the start node. Thus, the waiting
cost for customers, setting as a reward i.e. negative cost, can be
calculated based on the risk-neutral theory for customers
providing flexibility. At the final point, the incentives of the
probability value for the users providing flexibility, OPf;,, and
OPf, 4, are derived in (20-21) from (6-7). The reward for users

Authorized licensed use limited to: UNIVERSITY OF BA

providing flexibility at the current point is in (22).

OPf,,, = max(0,PV; — PV;) (20)
Rd = —0P; = —e"t X [S—% x 0P, + =2 x OPf,4(22)

The reward is added to the present value (PV + Rd) as the
cost recovery (Rct). Therefore, if uncertainty load evolves into
flexible load, they can get incentives instead of the punishment
by reducing system peak and consequently total investment.

I1l. IMPLEMENTATION PROCESS

There are two main stages in setting pricing signals to
network users, which are cost evaluation and cost allocation.
These two steps are depicted in Fig.3 to show the whole
implementation procedure.

| Input system data and power flow ‘

‘ >I Time to investment horizon |

|

|

L 1

Present value of branches |
|

|

= |
| Option cost or reward at the final node |
|

Nodal

|

|

|

|

| L
| njection
|

|

|

|

|

Step 1 ry

- |
‘ Option cost of reward at current year | |
4

|

|

™ |

Recovery cost (Ret) difference due ‘
to the nodal change }

L |

[ ICOC forbranch! | =N

Fig. 3. Flowchart of the whole implementation process

A. Stage 1: Recovered Cost Evaluation

Two parts of the cost, asset present value and addition cost
(waiting cost or reward), should be recovered from network
users. The cost to be recovered is recalculated by considering
the uncertainty of network users through the real options
method. In this stage, the reinforcement horizon of network
assets and the recovered cost are determined. Firstly, with
system data, system peak power flow can be determined and
accordingly the reinforcement horizon for each branch can be
calculated. Because the present value converts the asset cost
from the future year back to the current year, the final node of
the waiting cost or reward should be calculated at the year when
investment occurs. The number of terms of the binomial tree in
options calculation equals the reinforcement horizon. The
waiting cost or reward is directly determined by network users’
uncertainty or flexibility level. With reinforcement horizon (n;)
and waiting cost or reward at the final node in the year n,, it is
easy to calculate waiting cost or reward in the current year
backwards from n;.

B. Stage 2: Cost Allocation
To allocate the cost to be recovered to network users, the
incremental cost pricing method is implemented. The
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incremental cost is derived by a nodal power injection at each
node. Then, the difference of the recovery cost as a result of the
nodal injection can be calculated for each branch. For network
users at node N, the recovery cost difference due to the nodal
injection is summarised from all the branches that support them.
The steps will terminate to calculate ICOC for different network
users.
IV. PRACTICAL NETWORK DEMONSTRATION

A practical UK Grid Supply Point area distribution network
is selected to demonstrate the proposed models in Fig.4 [28].
The slack bus is modelled as a generation (G1008). To simplify
the demonstration, the peak demand, normally evaluated via
worst case, is assumed as 3-sigma higher than the predicted
mean value. It assumes that the peak power flow occurs at the
peak load period assessed by the coincidence factor.

6

1008
1010
-

17

-
1015

1004 1006
21

J;on

66 KV
22KV
11KV

22
24
1014
—
G2

Fig.4. A Grid Supply Point area test system.

There are three scenarios are set to analyse the performance
of the proposed pricing scheme: 1) The load at bus 1003 has
EVs. On the one hand, it may contribute 5SMW more than the
predicted mean value to the peak demand due to its uncertain
charging. On the other hand, it may offer SMW flexibility if it
is well regulated. 2) The network users at bus 1006 with
controllable energy storage can provide 3MW flexibility to the
system. 3) An auxiliary generation (G1) is located at bus 1005
with a peak predicted output of 5SMW (mean value), which may
generate less IMW and contribute to peak power flow due to
the uncertainty. Assuming the branches asset lifespan is 40
years with an annuity factor 0.0831 [4]. Typical load growth is
2% and the discount rate is 5.6% and network losses are
neglected in this work.

The capacity of branches No.2 and No.3 is 24MW. The
interconnector (branch No.23) between two voltage levels has
a capacity 6.5MW. The highest asset cost is £1.85 billion from
branch No.2, which has a significant impact on network charges
for load and generation. Although the transformers have

different capacities, the asset costs are assumed as .44 million.

A. Pricing Signal for Non-regulated EVs

The non-regulated EVs, as uncertain load, at busbar 1003
reduces the unused capacity of the system due to its uncertainty
and the waiting cost and network charges from the branches that
support this load are analysed.

Since the uncertainty of network users increases the peak
demand, the branches that support this node will have positive

Authorized licensed use limited to: UNIVERSITY OF BA

waiting costs with their power flow increases. The predicted
mean value of the demand peak for the users at busbar 1003 is
28.4MW, which may increase to 33.4MW due to its uncertain
charging. As shown in Table I, the waiting cost for branch No.2
is £122.8k and the waiting cost for branch No.15 is only £21.8k.
This is because of the asset cost difference and the contribution
difference of the load at busbar 1003 to these branches.

TABLE |
The waiting cost of each branch (MW)
Branch No.2 No.3  No.l4 No.l5 No.16 No.l7  No.23
Cost(£k) 122.8 114.5 22.6 21.8 53.3 42.5 334

With the determined waiting cost of each branch, the network
cost can be calculated and compared with the existing LRIC
pricing method, which is shown in Fig.5. The blue bars
represent the branch charges from the LRIC pricing method and
the red bars are determined from the ICOC pricing method. The
network charge from branch No.2 increases £42.8/MW from
£7555.9/MW to £7998.7/MW due to the reduced unused
capacity from the uncertainty. It increases £165/MW from
branches No.14&15. However, this uncertainty also makes the
branches network charges decrease from -£1.8/MW to -
£96.4/MW from No.4 and decrease from -£319.8/MW to -
£329.6MW from branch No.23.

In total, the network charge for the non-regulated EVs at bus
1003 is £20876.1/MW, considering the waiting cost of
uncertainty. Although the demand peak only increases 5SMW
resulting from uncertainty, the use of system charge is
£1106.3/MW higher than that calculated from LRIC, which is
£19769.8/MW.

’3‘ 8500
£ 7000
ol

5000 -

3000

1000

Network Charge (

N
(=3
(=1
[=}

2 3 4

16 17 23

14Branch Nc:l‘5
Fig.5. The network charges for non-regulated EVs from different branches.

B. Pricing Signal for Energy Storage Offering Flexibility

The pricing for energy storage, as flexible load, at bus 1006
offering system flexibility is demonstrated. It can offer MW
branch flow decreases at the peak power flow time, which can
reduce its demand peak from 20.2MW to 17.2MW.

Based on the risk-neutral theory, the reward of different
branches, listed as negative cost, are shown in Table Il. The
branches that support this node will have a reward if their
branch flows are decreased. Branches No.2 & No.3 have the
lowest reward, £118.1k & £110.2k, due to the high asset cost
and the flexibility contribution from the network user at bus
1006. The flexibility offered by the customers significantly
defers future investment, giving more incentives to promote
flexibility.

TABLE Il
The reward of each branch (MW)
Branch No.2 No.3  No.l4 No.15 No.16 No.l7  No.23
Cost(&) -1181  -1102  -224 -21.6 -529  -422  -32.3
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Based on the reward for the flexibility from energy storage
at bus 1006, the network charges are determined in Fig.6. The
blue bars are network charges from LRIC and the red ones are
from the proposed ICOC method. The flexibility of energy
storage reduces network charges. The network charge at branch
No.2 decreases by £354.1/MW from £274.2/MW in LRIC to
$920.1/MW in ICOC. The charge at branch No.3 is
£5187.0/MW from the LRIC pricing method, which drops to
£5838.0/MW by the proposed ICOC. The network charges at
branch No.23 increases from -£338.8/MW to £319.6/MW, but
this impact is very small compared to the reduction of the other
two branches.
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Fig.6. Network charges for energy storage at bus 1006 from different branches.

In summary, the network charge for the user with energy
storage at busbar 1006 is the summation from the supported
branches. The LRIC for this user is £12616.6/MW and it
decreases by £735.6/MW in ICOC by £11881.0/MW when
considering flexibility in the pricing method.

C. Pricing Signal for Renewable Generation with Uncertainty

For renewable generation at bus 1005, the uncertainty
increases network charges from positive waiting cost, shown in
Table I1l. The waiting cost of branch No.2 is £11.7k and for
branches No.16 & No.17, the waiting costs are £1.4k and £3.5k.

TABLE Il
The waiting cost of each branch (MW)

Branch No.2 No.3 No0.14 No.15 No.16 No.17 No.23
Cost(£) 11.7 10.9 2.4 2.3 4.4 3.5 2.6

Branch No.23 is taken as an example for analysis in Fig.7.
This binominal tree shows the present value and options value
change on branch No.23. In the current year, the peak power
flow is 5.85MW and the present value is £50.6k with renewable
generation at bus 1005 (peak predicted output of SMW). With
the load growth rate, the power flow peak will increase to
5.97MW according to the Power Transmission Distribution
Factor (PTDF) matrix based on the DC power flow, with 5SMW
renewable output at busbar 1005. However, because of the
uncertainty from the renewable generation, its peak output is
assumed to be 4MW, which will reduce less peak power flows
on branch 23. The peak power flow on this branch will be
6.06MW according to the PTDF matrix based on the DC power
flow with a possibility of 97%.

Current year One term later
66.8 (PVoy)
P L P=6.06
0Py
60.6 (PVg) =
0P, YRR
o P 64.1 (PVoq) )
Pf=5.85 ! Pf=5.97
0Pyq

Fig.7 The binomial tree for branch No.23 under renewable uncertainty

The network charges for the renewable generation are
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negative from both LRIC and ICOC pricing methods, which is
because generation gains benefit from the network by reducing
peak branch flows shown in Table IVV. However, due to the
uncertainty of renewables, this benefit reduces resulting from
the positive waiting cost, shown in Table IV. The network
charges increase from -£37.1k to -£35.1k for branch No.16 and
from -£29.6k to -£28.0k for branch No.17.

Therefore, the network charges for the generation at busbhar
1005 increase 22.5% from -£1307k/MW produced LRIC model
to -£1067k/MW generated from the proposed ICOC model due
to the uncertainty.

TABLE IV
The network charges for renewables at bus 1005 from different branches
Branch No.16 No.17 No.23
LRIC (£k) -37.1 -29.6 -23.1
1COC (£k) -35.1 -28.0 -21.9

D. Pricing Signal Change for Regulated EVs

The EVs can provide flexibility if they are well regulated by
the network operators. This section compares the pricing signal
difference for regulated and non-regulated EVs. Sensitivity
analysis is conducted to show the waiting cost or reward and
network charge change with different loading levels from
10MW to 40MW. It assumes that the network users with EVs
at busbar 1003 contribute 10% of the peak demand due to the
uncertainty. However, if these EVs are properly controlled, the
uncertainty can be transferred as the flexibility to the system,
which is assumed to offer to 10% decrease of the peak demand.
This case analyses the network charges change for EVs with
uncertain and flexible features.

Fig.8 shows the waiting cost or reward change resulting
from the EVs providing uncertainty with increasing the demand
level. With behaviour change, the EVs are regulated and thus
uncertainty changes to flexibility. The blue line represents the
ICOC pricing signal change and the red one is the ICOC change
with flexibility. When the loading level is low, the waiting cost
or reward for different users is low. At loading level 10MW, the
waiting cost is £2710 for the uncertain EVs operation and the
reward is £1070 for the regulated EVs for their flexibility. The
reward for flexibility increases more dramatically with
increasing load level. This is because the slope of the present
value is steeper at a higher loading level, which means the
present value change for the flexibility is more significant,
which is reflected directly in the waiting cost or reward
calculation. At loading level 40MW, the waiting cost for the
uncertainty resulting from EVs is £122.9k and the reward is
£184.7k for EVs if it provides flexibility. This means the
network users with EVs can obtain more benefits if they are
well regulated and offer flexibility under less unused capacity.
x10°
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Fig.8. The waiting cost or reward change with demand increase
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Fig.9 shows network charge differences for EVs providing
uncertainty, flexibility, and without both uncertainty and
flexibility resulting from the status of its operation. If EVs are
without any uncertainty or flexibility, the network charges for
them are the same as LRIC pricing, which is represented in the
blue bars. At a low loading level of L0MW, these three types of
network charges for EVs are similar, around £1200/MW. This
is because the unused capacity of the branches is sufficient to
accommodate the load uncertainty. For network charges with
uncertainty, represented by the orange bars, it increases higher
than LRIC, which means the uncertainty makes EVs pay more
network charges. It is £13930/MW, which is 5% higher than
that from the LRIC pricing signal (£13230/MW) at loading
level 40MW. The charges for regulated EVs that can offer
flexibility to the system are depicted in the yellow bar. It
increases slower than those in LRIC and ICOC. This means
EVs providing flexibility will obtain more savings at high
loading levels. At 40MW, the ICOC for flexible EVs is
£12180/MW, which is 8.6% less than the LRIC pricing signal
and 14.3% less than ICOC for the EVs with uncertainty at the
same loading level.
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Fig.9. Network charges comparison with load increase

E. Sensitivity Analysis for the Uncertainty Level Change

The sensitivity analysis is applied to the load on busbar 1001.
The transmission capacity is 45 MW between busbar 1008 and
1001, and the peak demand on bus 1001 is 30MW in the current
year. The load with certainty will grow under load growth rate
r;. Thus, the waiting cost or reward is zero and network charges
for these customers are the same as the charges calculated by
the original LRIC.

6
35 x10

3

PVyy (20%)

PV, (10%)

30 32 34 36 38 40 42 44 46
Power flow (MW)

Fig. 10. The present value change for different uncertainties

Assuming that the load grows to 36.43MW under small
uncertainty (10%) and grows to 39.74MW with big uncertainty
(20%). In the current year, the power flow is 30MW with the
present value of £1046.5k (PV,) for the branch. The peak will
grow to 33.12MW with no uncertainty (the present value PV,
of the branch is £1373.9k) after one term. Under small
uncertainty, the present value of the branch will grow to
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£1785.6k (PV;,, 10%) and grow to £2268.4k (PV;,, 20%) under
big uncertainty, which is given in Fig. 10.

To determine the waiting cost of network users under small
uncertainty (10%), the binomial tree is built in Fig.11. Based on
(1-7), the possibility (p) is determined to be 9.91% and the
waiting cost at the current year is £38.1k. It also assumed that
it has (1 — p) possibility to keep the same loading level, which
with the waiting cost zero. Similarly, the waiting cost for the
network users with big uncertainty is £50.1k. Thus, the cost to
be recovered (Rct) is £1084.6k and £1096.6k for the branch
under small and big uncertainty respectively.

Current year One term later (PV, = 1373.9)
1785.6 (PVy,,)
P 0Py,
1046.5 (PV,)
OF,
0 I 1046.5 (PV,4)
0Pyq4

Fig.11. The binomial tree under small uncertainty

A Option
385 value (£k)
384
83 { 1
I
I
w2 [\l 1e
YV ARARAAAAAA A A2,
|
380 1 ¢
379 Number of steps
37.8 . - T —p
0 5 10 15 20 25 30 35 40 45 50

Fig.12 The convergence of the cost of the optibns

If the term (yearly) can be divided into shorter iteration terms
(in months), the waiting cost at the final node is more accurate.
Fig.12 shows the convergence of the waiting cost for network
users with small uncertainties. Dividing the original annual
term into shorter terms, although the waiting cost of the first
iteration term is £38.0k not equal to the convergence value, the
difference is less than 0.3% and is neglectable.

For the customers who can provide flexibility to the system,
it is assumed that those with big flexibility can offer 20%
branch peak reduction and 10% peak reduction with small
flexibility. Based on the binomial pricing method, the reward is
determined through the binomial tree. It assumes that the
loading level will have a possibility of (1-p) to keep the same
for network users with flexibility. The PV,, will change to
£783.1k and £566.3k for the users with small and big flexibility
respectively. Therefore, for network users with small flexibility,
the reward is £54.3k. It is £1.0k for network users with big
flexibility. These are the investment savings due to the
flexibility of the customers, which will give them lower use-of-
system charges. This special change is mainly because 1) the
negative cost means that the cost to recover from network users
is lower than that in the original asset present value in NPV or
LRIC model due to the investment deferral; 2) the reward for
users can offer large flexibility is smaller, but its absolute value
is high, which means they can enjoy more reduced revenue
recovery. Thus, it makes the new present values £92.2k and
£985.5k for the branches under small and big flexibility.
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Considering the uncertainty and flexibility of network users,
the cost to be recovered is changed by adding the waiting cost
or reward to the asset present value. The present value, waiting
cost or reward and incremental pricing signal for users under
different levels of uncertainty or flexibility are shown in Fig.13.
The area in blue shadow represents the original present value
(£1046.5k) in the current year without considering any
uncertainty or flexibility of network users. The grey bar above
the present value in the figure represents the waiting cost, which
means the total cost to be recovered from customers (Rct in the
red) becomes larger due to its uncertainty. The green bar is the
reward, which means the total cost to be recovered from
customers becomes lower due to the flexibility it provided.
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Fig.13. Pricing signal for users under different uncertainty or flexibility

The pricing signals can be calculated from the difference of
asset value change based on the incremental cost with nodal
injections. The original network price is £7999.3/MW in LRIC,
which is the same for network users without uncertainty or
flexibility. It increases to £283.6/MW and £374.0/MW for
users with small and big uncertainty respectively based on
ICOC. For network users that can provide small or big
flexibility to the system, the network cost will reduce to
£7585.4/MW and £7533.8/MW respectively. This implicates
that network users with more flexibility will have lower
network charges and network users with more uncertainty will
have higher charges.

V. CONCLUSIONS

This paper designs a novel pricing scheme for network users
to capture their uncertainty and flexibility, and consequently the
impact on network investment. It can help network operators to
reward or penalise network users according to their contribution
to network investment deferral. Through extensive
demonstration, the following key findings are obtained:
= The flexibility or uncertainty of network users can be
captured by the risk-neutral theory and reflected in the
network cost evaluation.

= The proposed ICOC pricing scheme efficiently incentivises
flexible load and penalises uncertain load,;

= The load with high flexibility enjoys low network charges,
which allows the existing network to accommodate more
load and generations without reinforcing the branches.

This work is beneficial to further the capability increase of
distribution networks to accommodate increasing renewable
penetration. In addition, it provides a powerful tool for network
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operators to evaluate users’ behaviour and it can affect the use
of system behaviour of network users to increase the efficiency
of network utilisation. Since the key innovation of this work is
to design the new pricing scheme for uncertain and flexible load,
the evaluation of uncertainty and flexibility levels are not
considered but will be conducted in future work.

REFERENCES

[1] BusinessGreen, "UK energy storage tipped to exceed 1.6GW by 2020,"
http://www.businessgreen.com/bg/analysis/2442158/uk-energy-storage-
tipped-to-exceed-16gw-by-2020, 2016.

[2] A.Nikoobakht, J. Aghaei, M. Shafie-Khah, and J. P. S. Catal&p, "Assessing
Increased Flexibility of Energy Storage and Demand Response to
Accommodate a High Penetration of Renewable Energy Sources," IEEE
Transactions on Sustainable Energy, vol. 10, no. 2, pp. 659-669, 2019.

[3] M. Pertl, F. Carducci, M. Tabone, M. Marinelli, S. Kiliccote, and E. C.
Kara, "An Equivalent Time-Variant Storage Model to Harness EV
Flexibility: Forecast and Aggregation,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 4, pp. 1899-1910, 2019.

[4] F.LiandD. L. Tolley, "Long-run incremental cost pricing based on unused
capacity," Power Systems, IEEE Transactions on, vol. 22, no. 4, pp. 1683-
1689, 2007.

[5] H. Y. Heng, "Long-term distribution network pricing and planning to
facilitate efficient power distribution,” Thesis (Ph.D.) - University of Bath,
Bath, 2010.

[6] R. C. Garcia, J. Contreras, P. F. Correia, and J. I. Mufbz, "Transmission
assets investment timing using net present value curves," Energy Policy,
vol. 38, no. 1, pp. 598-605, 2010.

[7] S.-E. Fleten, K. Linnerud, P. Moln&, and M. Tandberg Nygaard, “"Green
electricity investment timing in practice: Real options or net present
value?," Energy, vol. 116, pp. 498-506, 2016.

[8] J. A. Miles and J. R. Ezzell, "The Weighted Average Cost of Capital,
Perfect Capital Markets, and Project Life: A Clarification," The Journal of
Financial and Quantitative Analysis, vol. 15, no. 3, pp. 719-730, 1980.

[9] J. C. Cox, S. A. Ross, and M. Rubinstein, "Option pricing: A simplified
approach," Journal of financial Economics, vol. 7, no. 3, pp. 229-263, 1979.

[10] W. Ding and R. Z. Cao, "An approach to calculate the value of a
company,” in Proceedings of 2011 IEEE International Conference on
Service Operations, Logistics and Informatics, 10-12 July 2011 2011, pp.
89-94.

[11]M. Tahon et al., "Real Options in Telecom Infrastructure Projects — A
Tutorial," IEEE Communications Surveys & Tutorials, vol. 16, no. 2, pp.
1157-1173, 2014.

[12]N. Aguiar, V. Gupta, and P. P. Khargonekar, "A Real Options Market-
Based Approach to Increase Penetration of Renewables,” IEEE
Transactions on Smart Grid, vol. 11, no. 2, pp. 1691-1701, 2020.

[13]B. Zou, J. Wang, and F. Wen, "Optimal investment strategies for
distributed generation in distribution networks with real option analysis,"
IET Generation, Transmission & Distribution, vol. 11, no. 3, pp. 804-813,
2017.

[14]D. Liu, G. Li, N. Hu, and Z. Ma, "Application of Real Options on the
Decision-Making of Mining Investment Projects Using the System
Dynamics Method," IEEE Access, vol. 7, pp. 46785-46795, 2019.

[15]L. Kauppinen, A. S. Siddiqui, and A. Salo, "Investing in Time-to-Build
Projects With Uncertain Revenues and Costs: A Real Options Approach,"
IEEE Transactions on Engineering Management, vol. 65, no. 3, pp. 448-
459, 2018.

[16]A. C. Passos, A. Street, and L. A. Barroso, "A Dynamic Real Option-Based
Investment Model for Renewable Energy Portfolios,” IEEE Transactions
on Power Systems, vol. 32, no. 2, pp. 883-895, 2017.

[17]X. Yan, C. Gu, H. Zhang, F. Li, and Y. Song, "Waiting Cost based Long-
Run Network Investment Decision-making under Uncertainty,” IEEE
Transactions on Power Systems, vol. 36, no. 4, pp. 3340-3348, 2021.

[18]B. Hassi, T. Reyes, and E. Sauma, "A Compound Real Option Approach
for Determining the Optimal Investment Path for RPV-Storage Systems,"
The Energy Journal, vol. 43, no. 3, 2022.

[19]F. Mariscal, T. Reyes, and E. Sauma, "Valuing flexibility in transmission
expansion planning from the perspective of a social planner: A
methodology and an application to the Chilean power system," The
Engineering Economist, vol. 65, no. 4, pp. 288-320, 2020.

ublications_standards,

rg/] /publications/rights/index.html for more information.
. Downloaded on March 29,2022 at 14g::f4:16 UTC from IEEI%J Xplore. Restrictions apply.



0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution r

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3158349, IEEE

Transactions on Power Systems

[20]G. Blanco, F. Olsina, F. Garces, and C. Rehtanz, "Real option valuation of
FACTS investments based on the least square Monte Carlo method," IEEE
Transactions on power systems, vol. 26, no. 3, pp. 1389-1398, 2011.

[21]A. K. Dixit, R. K. Dixit, R. S. Pindyck, and R. Pindyck, Investment under
uncertainty. Princeton university press, 1994.

[22]R. G. Keith Belll, Ivana Kockar, Graham Ault and Jim McDonald,
"Academic Review of Transmission Charging Arrangements
https://www.ofgem.gov.uk/sites/default/files/docs/2011/05/project_transm
it_final-report_strath_birm_0.pdf, 2011.

[23]C. Gu, "Long-Run Network Pricing for Security of Supply in Distribution
Networks," ed, 2010.

[24]P. Chakraborty, E. Baeyens, and P. P. Khargonekar, "Cost Causation Based
Allocations of Costs for Market Integration of Renewable Energy," IEEE
Transactions on Power Systems, vol. 33, no. 1, pp. 70-83, 2018.

[25]L. Fangxing, "DCOPF- Based LMP Simulation: Algorithm, Comparison
With ACOPF, and Sensitivity," IEEE Transactions on Power Systems, vol.
22, no. 4, pp. 1475-1486, 2007.

[26]M. E. Baran and F. F. Wu, "Network reconfiguration in distribution
systems for loss reduction and load balancing," IEEE Transactions on
Power delivery, vol. 4, no. 2, pp. 1401-1407, 1989.

[27]L. Bai, J. Wang, C. Wang, C. Chen, and F. F. Li, "Distribution Locational
Marginal Pricing (DLMP) for Congestion Management and Voltage
Support," IEEE Transactions on Power Systems, 2017.

[28]C. Gu, F. Li, and Y. He, "Enhanced long-run incremental cost pricing
considering the impact of network contingencies," Power Systems, IEEE
Transactions on, vol. 27, no. 1, pp. 344-352, 2012.

Xiaohe Yan (S’16-M’19) was born in Shaanxi, China. He
obtained the Bachelor degree in electrical engineering from
Xi’an University of Technology, China, in 2013; Master and
Ph.D. degrees from the University of Bath, UK, in 2015 and
2019. He was a research associate at the Macaw University
from 2019 to 2020. He is currently a Lecturer with the Dept. of
Electronic & Electrical Eng., North China Electric Power
University, Beijing, China. His major research is in energy
storage, power system planning, analysis, and power system
economics.

Chenghong Gu (M’14) was born in Anhui province, China. He
obtained Bachelor degree and Master degree in electrical
engineering from Shanghai University of Electric Power and
Shanghai Jiao Tong University in China in 2003 and 2007
respectively. In 2010, he obtained his Ph.D. from the University
of Bath, U.K. Now, he is a Lecturer and EPSRC fellow with the
Dept. of Electronic & Electrical Eng., University of Bath, UK.
His major research is in multi-vector energy system, smart grid
and power economics.

Hongcai Zhang (S'14--M'18) received the B.S. and Ph.D.
degree in electrical engineering from Tsinghua University,
Beijing, China, in 2013 and 2018, respectively. He is currently
an Assistant Professor with the State Key Laboratory of Internet
of Things for Smart City and Department of Electrical and
Computer Engineering, University of Macau, Macao, China. In
2018-2019, he was a postdoctoral scholar with the Energy,
Controls, and Applications Lab at University of California,
Berkeley, where he also worked as a visiting student researcher
in 2016. His current research interests include the Internet of
Things for smart energy, optimal operation and optimization of
power and transportation systems, and grid integration of
distributed energy resources.

Nian Liu (S'06-M'11) received the B.S. and M.S. degrees in
Electric Engineering from Xiangtan University, Hunan, China,
in 2003 and 2006, respectively, and the Ph.D. degree in
Electrical Engineering from North China Electric Power
University, Beijing, China, in 2009. He is currently a professor

Authorized licensed use limited to: UNIVERSITY OF BA

and also the Vice Dean with School of Electrical and Electronic
Engineering, North China Electric Power University. He is the
Director of Research Section for Multi-information Fusion and
Integrated Energy System Optimization, with the State Key
Laboratory of Alternate Electrical Power System with
Renewable Energy Sources. He was the Highly Cited Chinese
Researcher of Elsevier in 2020. He was a Visiting Research
Fellow with the Royal Melbourne Institute of Technology
University (RMIT), Melbourne, Australia, from 2015 to 2016.
His major research interests include multi-energy system
integration, microgrids, cyber-physical energy system and
renewable energy integration.

Furong Li (SM'09) was born in Shaanxi, China. She received
the B.Eng. degree in electrical engineering from Hohai
University, Nanjing, China, in 1990, and the Ph.D. degree from
Liverpool John Moores University in 1997 with a dissertation
on applications of genetic algorithms in optimal operation of
electrical power systems. She is currently a Professor and the
Director of the Center for Sustainable Power Distribution,
University of Bath, Bath, U.K. Her major research interest is in
the area of power system planning, analysis, and power system
economics.

Yonghua Song (F'08) received the B.E. and Ph.D. degrees from
the Chengdu University of Science and Technology, Chengdu,
China, and the China Electric Power Research Institute, Beijing,
China, in 1984 and 1989, respectively, all in electrical
engineering. He was awarded DSc by Brunel University in
2002, Honorary DEng by University of Bath in 2014 and
Honorary DSc by University of Edinburgh in 2019. From 1989
to 1991, he was a Post-Doctoral Fellow at Tsinghua University,
Beijing. He then held various positions at Bristol University,
Bristol, U.K.; Bath University, Bath, U.K.; and John Moores
University, Liverpool, U.K., from 1991 to 1996. In 1997, he
was a Professor of Power Systems at Brunel University, where
he was a Pro-Vice Chancellor for Graduate Studies since 2004.
In 2007, he took up a Pro-Vice Chancellorship and
Professorship of Electrical Engineering at the University of
Liverpool, Liverpool. In 2009, he joined Tsinghua University
as a Professor of Electrical Engineering and an Assistant
President and the Deputy Director of the Laboratory of Low-
Carbon Energy. During 2012 to 2017, he worked as the
Executive Vice President of Zhejiang University, as well as
Founding Dean of the International Campus and Professor of
Electrical Engineering and Higher Education of the University.
Since 2018, he became Rector of the University of Macau and
the director of the State Key Laboratory of Internet of Things
for Smart City. His current research interests include smart grid,
electricity economics, and operation and control of power
systems. Prof. Song was elected as the Vice-President of
Chinese Society for Electrical Engineering (CSEE) and
appointed as the Chairman of the International Affairs
Committee of the CSEE in 2009. In 2004, he was elected as a
Fellow of the Royal Academy of Engineering, U.K. In 2019, he
was elected as a Foreign Member of the Academia Europaea.

glgﬁires IEEE permission. See htt]’;zx//www.ieee4o?g)ublicationsﬁstandardsEublications/right@/indexhtml for more information.
. Downloaded on March 29,2022 at 14:

4:16 UTC from IEEE Xplore. Restrictions apply.



