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Abstract:

The harbor resonance triggered by double solitary waves (DSWSs) with different wave
parameters (including various wave heights and relative separation distances) is simulated based on
the fully nonlinear Boussinesq model, FUNWAVE-TVD. A long and narrow harbor with different
topographies is adopted. In the current study, effects of incident wave height, relative separation
distance and bottom profile on hydrodynamic characteristics related to the transient oscillations are
mainly investigated. The hydrodynamic characteristics considered include the evolution of the
maximum free-surface elevation, the maximum runup, the wave energy distribution and the total
wave energy inside the harbor. Results show that Green’s law can accurately estimate the evolution
of the maximum free-surface elevation in most part of the harbor area. The impacts of the
topography on the maximum runup exhibit a strong dependence on the incident wave height. The
smaller mean water depth inside the harbor, the larger relative separation distance, and the higher
incident wave height tend to result in greater uniformity of the wave energy distribution. The
normalized total wave energy is always shown to decrease gradually with the incident wave height,
and to increase remarkably at first and then decrease slightly with the increase of the mean water

depth.
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1. Introduction

Harbor resonance is resulted from the gathering and magnification of incident wave energy at
bays or harbors when the incident wave frequencies approach or equate to their eigenfrequencies
(Gao et al., 20164, 2020). Common triggering factors for the phenomenon include low-frequency
waves, short wave groups, tsunamis, barometric variation, vessel-induced bores, local water-surface
disturbance, and shear flow (Dong et al., 2013, 2020b; De Jong et al., 2003; Ma et al., 2020; Rupali
et al., 2020; Fabrikant, 1995; Gao et al., 2017c, 2018b, 2018c, 2019c; Shao et al, 2020; Wang et al.,
2020). Harbor oscillations has direct negative impacts on ship movement and port management. It
can excite excessive movements of ships and unacceptable forces on mooring lines, and cause port
operations poor efficient (Kumar et al., 2016).

Among the above-mentioned triggering factors, transient harbor resonance events excited by
tsunamis have been often observed and many of them were devastating. As tsunamis travel into the
coast, their wave heights usually rise dramatically owing to the persistent decline of the water depth.
Take the Indian Ocean tsunami happening on December 26, 2004, for example. It was generated by
the Sumatra earthquake and travelled for ~2 hours to Colombo Harbor in Sri Lanka, inducing
remarkable resonance with the eigenperiod of ~1.25 hours and the maximum oscillation of ~3.9 m.
It then travelled for ~14 hours to Bunbury Harbor in Australia, producing the maximum oscillation
of ~1.8 m (Pattiaratchi and Wijeratne, 2009). Hence, to minimize both the interference to port
operations and potential devastating impacts, further studies on hydrodynamic characteristics
associated with harbor resonance are of vital importance to enhance related knowledge and thus
improve our predictive ability.

Solitary waves have been widely adopted to represent real tsunamis in lots of studies due to
the fact that some characteristics in real tsunami events, such as the persistent hump-like waveforms,
can be imitated by solitary waves very well (e.g., Craig et al. (2006); Dong et al. (2020a);
Hayatdavoodi et al. (2014); Liu et al. (1995); Seiffert et al. (2014); Synolakis (1987); Wang and Liu

(2020)). However, based on some in-situ surveys which proved that the leading tsunamis was often
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preceded by a depression, Tadepalli and Synolakis (1994) proposed the so called “N-waves” to
represent tsunamis for the first time, and this type of tsunami waveform was further developed by
Madsen and Schéffer (2010). Undular bores have also been frequently seen in the coast as tsunamis
approach the shoreline (Madsen et al., 2008), and their evolutions in the coast can generate a train
of multi-crested waves that are regarded as a train of solitary waves with various wave parameters
(Eletal., 2012; Grillietal., 2012). The concept of double solitary waves (DSWSs) was also proposed
by a few scholars in the last few years (Dong et al., 2014; Lo et al., 2013).

The majority of the harbor-oscillation investigations triggered by tsunamis were performed via
utilizing solitary waves or N-waves (e.g., Dong et al. (2010; 2020a); Gao et al. (2019a; 2019b)). On
the other hand, the wave effects in the coast related to DSWs are basically confined to predicting
their runup/backwash on beaches (e.g., Dong et al. (2014); Lo et al. (2013)). To the best of our
knowledge, up to now, the studies of the transient harbor oscillations induced by DSWs are rare.
Gao et al. (2018a) introduced DSWs for the first time to carry out the research on transient resonance
inside an elongated harbor with a flat bottom, and the influences of various waveform parameters
(including the incident wave height, the number of component solitary waves, and the relative
separation distance between adjacent crests) on the relative wave energy distribution inside the
harbor were investigated. Except Gao et al. (2018a), no more literature on the harbor resonance
triggered by DSWs has been seen by the authors.

The present work also utilizes DSWs to further investigate the hydrodynamic characteristics
associated with the transient oscillations. This article focuses on the impacts of different incident
wave parameters and the bottom profile inside the harbor on various hydrodynamic characteristics
during oscillations. The resonant hydrodynamics concerned include the evolution of the maximum
free-surface elevation, the maximum runup, the wave energy distribution, and the total wave energy.
It needs to be emphasized that it is of crucial importance to accurately estimate and comprehensively
study these hydrodynamic characteristics. Both the evolution of the maximum free-surface elevation
and the maximum runup are tightly correlated with the tsunami-triggered flood around the harbor
area (e.g., Kumar and Gulshan (2017, 2018); Gao et al. (2016b; 2019b)); both the wave energy
distribution and the total wave energy offer vital information for accurately predicting the movement
of ships in harbors (Gulshan et al., 2020).

Compared with Gao et al. (2018a) where the transient harbor resonance triggered by DSWs
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has been studied, the research progresses of this article are embodied in three respects. Firstly, Gao
et al. (2018a) assumed the constant water depth inside the harbor. Nevertheless, for real harbors,
their topographies are generally uneven (Gulshan et al., 2020; Kumar and Rupali, 2018). Therefore,
in this article, more complicated bottom profiles are taken into consideration. Secondly, the wave
heights of the DSWs adopted in Gao et al. (2018a) were relatively small; the wave condition was
confined to the weak nonlinearity. On the contrary, the current study expands the wave fields in the
harbor to the strong nonlinearity. Thirdly, the investigations on both the evolution of the total wave
energy and the maximum free-surface elevation inside the harbor triggered by the DSWSs are
implemented in this article for the first time. In current research, all numerical cases are performed
utilizing a fully nonlinear Boussinesq model. The harbor is assumed to be long and narrow; the
motion of the free surface inside the harbor then substantially becomes one-dimensional (Gao et al.,
2016c; Losada et al., 2008).

The remaining parts of this article is as follows. the numerical model and the data analysis
methodology are first introduced in Section 2. Then, the setups associated with the numerical
experiments are described in Section 3. Simulation results are analyzed and explained in Section 4.

Main conclusions are summarized in Section 5.

2. Numerical model and data analysis methodology
2.1. Numerical model

In the current study, all numerical experiments are performed utilizing the proverbial numerical
model, FUNWAVE-TVD (Shi et al., 2012). The set of fully nonlinear Boussinesq equations
proposed by Chen (2006) combined with a moving reference level are utilized as the control
equations that are numerically discretized by using a hybrid finite-difference/finite-volume scheme.
To carry out a high-order Total Variation Diminishing (TVD) scheme easily, the control equations
are reorganized as in Ma et al. (2012) and Liu et al. (2020). To parallelize the numerical model, the
Message Passing Interface (MPI) technique with non-blocking communication is introduced into
the model as well. In addition, an adaptive time-stepping algorithm is adopted, which follows the
Courant-Friedrichs—Lewy (CFL) criterion.

With these enhancements mentioned above, the numerical model becomes more robust and

more powerful in predicting various hydrodynamic processes associated with water waves in the
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offshore and coastal areas. These processes include wave shoaling, diffraction, refraction, breaking,
and wave runup/backwash on beaches (Liu et al., 2019; Ning et al., 2019b). To validate the
capability of the numerical model in simulating the harbor resonance excited by transient long waves
(e.g., tsunamis), the physical experiments of Dong et al. (2010) were fairly well reproduced in Gao
et al. (2017a) by using FUNWAVE-TVD. It should be stressed in particular that the capacity of
FUNWAVE-TVD to predict the wave profile evolution of tsunamis (e.g., solitary waves) over
uneven topographies has been fully validated by Ning et al. (2019a) via comparing with
experimental data, which ensures the correctness of the research results about the topographic

influences on the harbor oscillations triggered by DSWs in this article.

2.2. Data analysis methodology

In order to acquire the total wave energy and the wave energy distribution for the harbor
resonance excited by DSWs accurately, a data analysis methodology, namely, the normal mode
decomposition (NMD) method, needs to be adopted.

The NMD method was developed by Sobey (2006) to estimate eigenmodes, eigenfrequencies,
and response amplitudes of various modes for harbors suffered from tsunamis. The technique
includes two calculation steps. In the 1% step, a series of eigenmodes and corresponding
eigenfrequencies of the harbor are estimated. In the 204 step, the prediction of the response
amplitudes at various resonant modes are performed, which is expressed as a multi-dimensional
optimization issue. Both the eigenmodes and the eigenfrequencies estimated in the former step are
treated as known parameters in this process. Then, this technique was further ameliorated in Gao et
al. (2015) to estimate eigenmodes and eigenfrequencies more precisely.

Based on the method, Gao et al. (2019a; 2019b) have comprehensively investigated the wave
energy distribution aiming at the harbor resonance triggered by N-waves and solitary waves. For its

detailed theory, the interested reader is referred to Gao et al. (2015) and Sobey (2006).

3. Numerical setups
3.1. Incident wave parameters
If a solitary wave propagates along the x-axis over a flat bottom, its leading-order wave surface

is expressed as follows (Mei, 1983):
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n(x t)= Asech?[k(x—ct)], (1

where

k:\/%,andc:,/g(Aﬁh). ()

Ao and c are the wave height and the traveling speed of the solitary wave, respectively, and h is the
water depth.

Similar to Dong et al. (2014), in this article, the incident DSWSs are created by the linear
superposition of two component solitary waves with identical wave heights and different relative
separation distances. Therefore, the incident DSWs adopted in all the numerical experiments can be

formulated as

n(x t)= /-\{sechz(k(xfx0 —ct—R-L/2))+sech?® (k(x—x, —ct+R'L/2))] , (3)
where Xg is the central location of the initial waveform, and L=2xz/k can be viewed as the effective
wavelength of the component solitary wave. R, defined as the ratio of the distance between adjacent

crests to L, is the so-called “relative separation distance”. In FUNWAVE-TVD, the initial velocity

of the incident DSWs takes a linear expression as following:

u(x,t=0)=,/>n(x,t=0). 4)

(@
<
=
80 60 40 20 0 20 40 60 80
(X-Xg) /n
(b) 15 ‘ ‘ ‘ ‘ ‘
—R=04 R=0.6 ——R=0.8
g
=
=

-80 -60 -40 -20 0 20 40 60 80
(X-%g) /h

Fig. 1. Waveforms of the DSWs under conditions of 4¢=0.100 m and 4=14.0 m: (a) waveforms with
R varying from 0.2 to 0.8 with an interval of 0.2; (b) the definition of the wavefront. The circle and

the arrow in figure (b) indicate the wavefront and the direction of wave propagation, respectively.
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For all the simulations considered in the present research, a constant water depth of 14.0 m is
arranged outside the harbor. Fig. 1 presents the comparisons of the waveforms for the DSWSs with
Ao=0.100 m and various relative separation distances under the condition of #=14.0 m. It is seen
that when R=0.2, the two component single waves fuse into one wave. As R rises to 0.4, there appear
two distinctly-separated crests in the waveform, and their height, #max, has already become
extremely close to the wave height of the component solitary wave, Ao, that is, #max=1.026A.

Therefore, only the DSWs with R > 0.4 are considered in this article.

Table 1. Incident wave parameters for DSWs and topographic parameters for the harbor

Group  Initial waveform Ao (m) Type of topography topographic parameters
A 0.025 hi=14 m, hy=4 m, ¢=6.8 m, h=12.43 m
— ? arc-tangent-type —
B 0.050, hi=14 m, ho=4 m, a=8.3 m, h=10.73 m
C DSWs with R=0.4  0.075, 0.1, constant slope =14 m, h=4 m, h=9.00 m
D 0.15, 02, o m=14 m, ho=4 m, k=0.15, h=7.69 m
E— 025. 0.3 hyperbolic-cosine-type —
E T hi=14 m, ho=4 m, k=200, h=6.54 m
F 0.025, m=14 m, ho=4 m, 0=6.8 m, h=12.43 m
arc-tangent-type —
G 0.050, hi=14 m, ho=4 m, a=8.3 m, h=10.73 m
H DSWs with R=0.6  0.075, 0.1, constant slope =14 m, h—=4 m, h=9.00 m
I 0.15,02, o mi=14 m, hy=4 m, k=0.15, N =7.69 m
0.25. 0.3 hyperbolic-cosine-type —
J ey B hi=14 m, ho=4 m, k=200, h=6.54 m
K 0.025, hi=14 m, hy=4 m, ¢=6.8 m, h=12.43 m
arc-tangent-type —
L 0.050, hi=14 m, ho=4 m, ¢=8.3 m, N =10.73 m
M DSWs with R=0.8 0.075, 0.1, constant slope hi=14 m, ho=4 m, h=9.00 m
N 0.15, 02, o m=14 m, ho=4 m, k=0.15, h=7.69 m
025. 0.3 hyperbolic-cosine-type —
o T hi=14 m, ho=4 m, =200, h=6.54 m

The incident wave parameters for the DSWs utilized in all numerical experiments are listed in
Table 1. Fifteen groups of numerical experiments (namely, Groups A-O) are taken into consideration,
and each consists of eight cases with 4o varying from 0.025 m to 0.300 m to systematically
investigate the effects of the wave height on the resonant hydrodynamic characteristics. The DSWs
with R=0.4, 0.6, and 0.8 are used as the incident waves in Groups A-E, F-J, and K-O, respectively.
The main purpose of designing Groups F-O lies in finding out how the relative separation distance

affects the transient harbor oscillations triggered by DSWs.
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In order to facilitate describing the setups of the NWT that will be shown in Subsection 3.2 and
interpreting some research results that will be shown in Section 4, the concepts of “wavefront” and
“wavelength” for the DSWs are defined here. The wavefront refers to the location at which the free-
surface elevation equates to 0.05 times #max (refer to Fig. 1b). In this paper, the wavelength of the
DSWs, Lo, is defined as double the length between the wavefront and xo. For the same Ao, the
wavelength of the DSWs increases gradually with R. Table 2 further lists all the wavelengths of the
incident DSWs with various wave heights and relative separation distances adopted in the present
study. For the three waveforms of DSWs shown in Fig. 1b, their wavelengths gradually increase
from 1310.2 m when R=0.4 to 1794.6 m when R=0.8. Besides, for the DSWs with the same relative
separation distance, their wavelengths decrease gradually with the increase of Ao. Take the DSWs
with R=0.4 for example. Their wavelengths decrease from 2620.0 m to 756.0 m as Ao rises from

0.025 m to 0.300 m.

Table 2. Wavelengths, Lo, of the DSWs with various relative separation distances and wave heights.

The unit of the wavelength is meter.

Ao (m) 0.025  0.050 0.075 0.100 0.150 0.200 0.250  0.300

Lowhen R=04  2620.0 1852.8 1512.6 13102 1069.8 9264 8286 7560

Lowhen R=0.6  3108.0 2198.0 17942 15540 1268.8 1099.0 9826 8972

Lo when R=0.8 3590.0 2538.0 2072.0 17946 14654 1269.0 1135.0 1036.2

Prior to performing the numerical experiments of the current study, it is necessary to check out
the ability of the numerical model to generate DSWs. For this purpose, a simple numerical wave
tank (NWT) is established (not shown in the paper). The NWT has a length of 8000 m, and the still
water depth /4 for the whole computational domain is set to 14.0 m. The generated waves are set to
propagate from left to right. The coordinate origin (i.e., x=0) is positioned at the left boundary. At
the moment of /=0, the central location of the waveform is set to xo=2000 m. To record the incident
wave train, a wave gauge is placed at x=4000 m. The uniform grid size of 1.0 m is adopted. The
comparisons of the simulated and the analytical incident DSWs with 40=0.100 m and various
relative separation distances are presented in Fig. 2. The incident DSWs generated by the model are

shown to be in good agreement with the analytical ones.
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Fig. 2. Comparisons of the simulated and the analytical incident DSWs with 4¢=0.100 m and various

relative separation distances.

3.2. Numerical wave tank
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Fig. 3. Top view of the NWT used in all simulations.

Fig. 3 presents the NWT used in all simulations. The dimensions of the NWT and the harbor
are 8000 m x 200 m and 2000 m % 40 m, respectively. All the boundaries are fully reflective. There
are 101 wave gauges (i.e., Goi—Gio1) deployed along the central line of the harbor, and the space
between any two adjacent gauges is 20 m. Go; is arranged at the harbor entrance (x=0), and Gio; is

at the backwall (x=2000 m). The water depth outside the harbor is set to a constant of /#1=14.0 m.
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The grid sizes are uniform in 1 m along both the x- and the y-axes. As the initial condition, the
wavefronts of the incident waves are always set to be located at the entrance (i.e., xo is always set to
—Lo/2) at the beginning of the simulation. The total simulation time for all cases is set to 800 s. In
the adaptive time-stepping algorithm of FUNWAVE-TVD, one parameter C, termed as Courant
number, needs to be preseted, which is set to 0.5 for all cases. The output time interval for the free-
surface elevations at all gauges is set to 0.04 s.

To study the impacts of the topographic variation inside the harbor on the resonant
hydrodynamic features induced by DSWs, three types of bottom profiles (including a hyperbolic-
cosine-type bottom, a plane slope bottom, and an arc-tangent-type bottom) are adopted in this paper.

The water depth inside the harbor, /4(x), is formulated as (Gao et al., 2017b):

h, cosh” [ U ( L- x)} hyperbolic-cosine-type bottom
hy(X) =<h —»x constant-slope bottom , %)
h, +aatan[ B(L—x)] arc-tangent-type bottom

where /o denotes the water depth at the backwall and is set to 4.0 m. a, 5, y, k and u are topographical

parameters, and comply with the following relationships:

ﬂ:%tan(hl;h"j,yzhllho,and,u:%acoshﬁhﬂ] } (6)

0

The types of the bottom profiles and the values of the topographic parameters used in all groups are

also presented in Table 1. In this table,
= 1L |
h ‘Bjo h'(x)dx, (7)

which denotes the mean water depth inside the whole harbor.
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Fig. 4. Comparisons of various topographies inside the harbor

Fig. 4 illustrates all the five topographies adopted in the present study. The harbor utilized in

10
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Groups A, F, and K has the arc-tangent-type topography, and the mean water depth h is 12.43 m.
The harbor in Groups B, G and L has the arc-tangent-type bottom profile as well. Nevertheless, h
declines to 10.73 m due to a larger magnitude of a. The harbor in Groups D, I, and N has the

hyperbolic-cosine-type topography, and h is7.69 m. Because of the increased x, h in GroupsE,

J, and O decreases to 6.54 m. The harbor in Groups C, H, and M has a constant-slope bottom, and

has h=9.00m.
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Fig. 5. Time histories of the free-surface elevations at various wave gauges under conditions of

A0=0.050 m and R=0.4. (a)-(e) correspond to Groups A-E, respectively.

4. Results and discussion
4.1. Time histories of free-surface elevations
Fig. 5 illustrates the time histories of the free-surface elevations at gauges Goi, Gsi, and Gior

for the five cases with 4¢=0.050 m and R=0.4 in Groups A-E. A. and A; in the figure

respectively denote the wave-crest elevations of the front and the back component solitary waves at

11
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the it gauge. The five cases have the same incident waves but various bottom profiles (refer to Table
1). Three phenomena can be seen from the figure. Firstly, for all these cases, the wave-crest
elevations of the front component solitary waves at gauges Go; and Gs; are almost equal to the
corresponding ones of the back component solitary waves. However, for gauge Gio1, the value of
Aio1r becomes remarkably larger than that of 41018. Secondly, because the local water depth declines
continuously as the incident DSWs travel from the entrance to the backwall, the maximum
elevations at all the three gauges increase gradually. Thirdly, the wave-crest elevations at gauges
Gs1 and Gio1 gradually rise with the decline of the mean water depth inside the harbor, overall. It
can be attributed to the fact that the smaller mean water depth leads to the more obvious shoaling

effect (i.e., the more remarkable wave height amplification).
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Fig. 6. Time histories of the free-surface elevations at various wave gauges under conditions of

A¢=0.3 m and R=0.4. (a)-(e) correspond to Groups A-E, respectively.

Fig. 6 further demonstrates the time histories of the free-surface elevations at gauges Go1, Gsi,

12



10

11

12

13
14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

and G for the five cases with 40=0.300 m and R=0.4 in Groups A-E. Compared to Fig. 5, some
different phenomena appear. Although the wave-crest elevations of the front component solitary
wave still keep almost identical to the ones of the back component solitary wave at gauge Goi, the
former becomes notably larger than the latter at gauge Gs;. In addition, because of the larger incident
wave height, the free-surface elevations at gauges Gsi and Gior present remarkable wave
nonlinearity, which is specifically embodied in two respects. Firstly, apparent asymmetry can be
seen in the front component solitary wave at gauges Gs; and Gioz. For the front component solitary
waves at gauge Gio; in Fig. 6a and b and that at gauges Gs: in Fig. 6e, their free surfaces rise
promptly from zero to the maximum elevations, while their paces of decline are much slower.
Secondly, for gauge G101 shown in Fig. 6¢-e, except the two wave crests generated directly by the
incident DSWs, there still exist one or more secondary peaks between the two wave crests. In
general, the smaller mean water depth inside the harbor and the larger incident wave height lead to

the more significant wave nonlinearity.

4.2. Evolution of the maximum free-surface elevation

Considering that the maximum free-surface elevation is tightly related to the tsunami-triggered
flood around the harbor area, its evolution inside the harbor is comprehensively investigated in this
subsection as the incident DSWs propagates from the harbor entrance to the backwall. Via reading
the time histories of the free surfaces at all gauges, the maximum elevation evolution inside the
harbor can be directly acquired. Fig. 7 illustrates the evolution of the maximum free-surface
elevation for Groups A, F and K under different incident wave heights. The three groups have the
maximum mean water depth inside the harbor, 12.43 m. Because the local water depth continuously
decreases as the incident DSWs travel to the backwall, the maximum free-surface elevation
gradually increases as expected, except at the area where the incident and the reflected waves
interact with each other near the backwall. Based on the linear wave theory and the assumption that
the wave energy due to the reflection is neglected, the wave height of the long waves travelling over

mild slopes can be estimated theoretically using Green’s law (Mei, 1983):

4
A8

A

where A, refersto the wave height at a certain reference position, and h, refers to the local water

depth there. The evolution of the maximum free-surface elevation estimated by Green’s law is
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presented in this figure. It is noted here that the reference position for the calculation of Eq. (8) is

set at gauge Goo rather than at gauge Go; to remove the boundary effect caused by the harbor entrance.
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Fig. 7. Evolutions of the maximum free-surface elevations for Groups A, F and K. Black dots and
red curves denotes the maximum free-surface elevations obtained directly by the simulations and

those predicted by Green’s law, respectively.

It is seen from this figure that for all these cases, Green’s law predicts the numerical results
very well inside the whole harbor except at the area where the incident and the reflected waves
interact with each other near the backwall. In addition, it can be easily observed that for a given
value of R, the spatial range where Green’s law is valid gradually increases with the increase of the
incident wave height. Similarly, it can be found that for a given value of 4o, the valid spatial range
of Green’s law also increases gradually with the decrease of R, no matter whether A is large or
small. They are because the interaction area of the incident and the reflected waves contracts
gradually as Ay increases and as R decreases, which coincides with the dependency of the incident

wavelength on these two parameters (refer to Table 2).
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Fig. 8. Evolutions of the maximum free-surface elevations for Groups E, J and O. The meanings of

black dots and red curves are identical to those in Fig. 7.

Fig. 8 further shows the evolution of the maximum free-surface elevation for Groups E, J and
O under various incident wave heights. Different from Fig. 7, all three groups in this figure have the
smallest mean water depth, 6.54 m. Similar to Fig. 7, Green’s law is also shown to predict the
maximum elevation accurately in most part of the harbor except at the small area around the
backwall, and its valid spatial range increases gradually with the decline of R as well.

However, because of the decline of the mean water depth, a different phenomenon can be
observed from Fig. 8. As the incident wave height increases, the valid spatial range of Green’s law
does not monotonically increase any more. Instead, the valid spatial range of Green’s law becomes
to first increase and then remarkably decrease with the rise of the incident wave height, which can
be attributed to the secondary peak phenomenon shown in Fig. 6. As mentioned above, the larger
incident wave height and the smaller mean water depth tend to cause the more significant wave
nonlinearity (including the occurrence of the secondary peak phenomenon). The secondary peak
can result in the narrower spatial span of the front wave crest, and the wave energy there becomes
more concentrated. Hence, it results in the remarkable increase of the maximum free-surface
elevation there. Through examining the free-surface elevations in these cases (the related results are
not shown here), it is found that the secondary peak phenomenon begins to appear when 4o=0.150

m and becomes more and more evident as Ao further increases. It is accordance with the phenomenon
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in Fig. 8 that the valid spatial range of Green’s law increases notably as Ao rises from 0.150 m to

0.300 m.

4.3. Maximum runup

Observing Figs. 7 and 8 can find that the maximum runup of the incident DSWs always occurs
at the backwall, no matter whether the mean water depth, the relative separation distance, and the
incident wave height are large or small. Fig. 9 shows the normalized maximum runups, 4u/ho, for
the three topographies with h =12.43 m, 9.00 m, and 6.54 m. Two apparent phenomena can be seen
from the figure. Firstly, the maximum runups caused by the incident DSWs with the same incident
wave height and various relative separation distances are almost identical to each other when Ao <
0.150 m for all these three topographies. However, as 4o further increases, the maximum runups
with R=0.4 gradually becomes larger than those with R=0.6 and 0.8. The maximum runups with
R=0.6 are still almost identical to those with R=0.8, regardless of the bottom profile inside the harbor
and the incident wave height.

Secondly, although the maximum runups increase monotonously with the increase of Ao for all
these three topographies at the variation range of Ao considered, their growth characteristics closely
depends on the topography. For the topography with h =12.43 m (Fig. 9a), the maximum runup
seems to always increase linearly with Ao. For the topography with h =9.00 m (Fig. 9b), the
increasing rate of A, seems to remain unchanged when 4o < 0.150 m and then rises gradually as Ao
increases further. While for the topography with h =6.54 m (Fig. 9c), the increasing rate of 4, first

remains unchanged when 4o < 0.100 m, then increases, and then decreases with the increase of Aj.
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Fig. 9. The normalized maximum runups, 4./ho, for the three topographies with (a) h =12.43m , (b)
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Fig. 10. Variations of the maximum runups with respect to the mean water depth induced by the

DSWs with different values of R.

To better explain the impacts of the topography on the maximum runup, Fig. 10 illustrates the
variations of the maximum runups with respect to the mean water depth subjected to the incident
DSWs with different values of R. It is seen that when 4o< 0.100 m, the topographic variation inside
the harbor has very little effect on the maximum runup. Nevertheless, as 4o further increases, the
effects of the topographic variation on the maximum runup relies heavily on both the relative
separation distance and the incident wave height. For the incident DSWs with R=0.4 (Fig. 10a),
when 0.100 m < 4o < 0.250 m, the maximum runup decreases monotonously with the increase of
h. As Ao increases to 0.300 m, the maximum runup becomes to first increase slightly, and then
decrease sharply with the rise of h. While for the incident DSWs with R=0.6 and 0.8 (Fig. 10b and

¢), the maximum runup always declines monotonously with the increase of h when 4o is at the

range of 0.100 m — 0.300 m.

4.4. Wave energy distribution and total wave energy
4.4.1. Computing process for the response amplitudes of various resonant modes

This subsection presents the detailed computing process of the NMD method for extracting the
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response amplitudes of various modes from the wave fields inside the whole harbor. The time
histories of the free-surface elevations at gauge Go: for the three cases with 4¢=0.075 m in Groups
A, F and K are illustrated in Fig. 11. Only the wave fields inside the harbor from #, to # are adopted
to calculate the response amplitudes of various modes. #p and #; denote the moment that the incident
DSWs totally travel into the harbor and the moment that the reflected DSWs from the backwall
begin to travel away from the entrance, respectively. Because the incident DSWs in these three cases
have different relative separation distances and hence different wavelengths (refer to Table 2), the
values of both ¢y and ¢, are different from each other. As R increases from 0.4 to 0.8, the value of ¢

increases gradually from 170 s to 200 s, and that of # rises gradually from 320 s to 350 s.

3r(a)
< 2'/\/\ t,=170s £,=320s |
= 1_ 4
0 . . ) ) ) ) /\/\____
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= IM
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Fig. 11. Time histories of the free-surface elevations at gauge Go; for the three cases with 49=0.075

o

m in (a) Group A, (b) Group F, and (c¢) Group K.

(a) Simulated curved surface n (m) Fitted curved surface 5 (m)
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Fig. 12. Comparisons of the simulated and the fitted wave fields for the three cases with 4¢=0.075

m in (a) Group A, (b) Group F, and (c) Group K.

Fig. 12 demonstrates the comparisons of the simulated and the fitted wave fields for the three
cases presented in Fig. 11. The simulated wave field is directly acquired via the numerical
simulations, and the fitted one is obtained by the NMD method. Good agreement between them is
observed for all the three cases. Take the case with 49=0.075 m in Group A for example (Fig. 12a).
The simulated wave field has two maximum runups at x=2000 m. The first one has a value of
A1017=0.3092 m at =223.80 s, and the second one is 41013=0.2819 m at r=271.00 s. At the identical
positions and moments, the fitted wave field has the first and the second maximum runups of 0.3088
m and 0.2820 m, respectively.

To assess the fitting accuracy quantitatively, the numerical fitting error (NFE) of the NMD

method is defined here (Gao et al., 2018a):
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NEE = max{|( AiOlF )fmed - A101F| ’ |(A1018 )ﬁned - A1018|}X100% , (9)

AlOlF AiOlB

where (A101F)fied and (A101B)fited respectively denote the fitted first maximum runup and the fitted
second one at the backwall. The NFEs for the three cases in Fig. 12a—c are 0.13%, 0.10% and 0.14%,
respectively. Table 3 further presents the NFEs for all the cases with 4o ranging from 0.025 m to
0.100 m. It is seen that the NFESs for these cases are all less than 5.00%. It indicates that the data
analysis methodology estimates the response amplitudes of different modes accurately. The

estimated response amplitudes for these cases will be presented in Subsection 4.4.2.

Table 3. Numerical fitting errors (NFEs) of the NMD method for all the cases with 4¢=0.025 m,

0.050 m, 0.075 m, and 0.100 m. The unit of the NFE is %.

Ao Group

(m) A B o D E F G H I J K L M N ]

0.025 0.14 005 0.18 0.17 0.38 0.12 0.11 0.18 o0.10 028 010 013 0.38 0.20 0.19
0.050 0.16 032 072 137 224 031 014 074 132 229 026 020 065 123 179
0.075 0.13 085 199 265 324 0.10 072 178 307 370 014 075 175 283 432
0.100 053 224 261 350 444 029 210 296 453 470 039 186 400 4.80 498

4.4.2. Wave energy distribution
To better show the wave energy distribution inside the harbor, the response amplitude of each

mode is normalized by that of the corresponding first mode, i.e.,

A== (i=12,..,40), (10)

A
A
in which 4; denotes the response amplitude of the i!» mode, and the normalized response amplitude,

A, is referred to as “relative amplitude™ hereinafter.
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Fig. 13. Relative amplitudes of the lowest 40 modes inside the harbor with different topographies.
(a)-(c) correspond to the incident DSWs with R=0.4, 0.6, and 0.8 for A;=0.025 m, respectively; (d)-

(F) correspond to the incident DSWs with R=0.4, 0.6, and 0.8 for A;=0.100 m, respectively.

Fig. 13 presents the relative amplitudes of the lowest 40 modes inside the harbor with different
topographies when Ap=0.025 m and 0.100 m. Three apparent phenomena can be observed. Firstly,
for all these cases, the first resonant mode always has the largest response amplitude. Secondly, the
relative wave energy distribution is shown to become more uniform for the larger incident DSWs.
Take the cases with R=0.4 for example. When the incident wave height is small (i.e., 49=0.025 m)
(Fig. 13a), the wave energy is dominated by the lowest few modes. As the incident wave height rises
to 4¢=0.100 m (Fig. 13d), the proportion of the wave energy occupied by the higher modes is shown

to increase notably. This phenomenon can also be observed for the cases with R=0.6 (Fig. 13b and

21



10

11

12

13

14

15

16

17
18

19

20

21

22

e) and with R=0.8 (Fig. 13c and f). Thirdly, the larger relative separation distance also tends to result
in the greater uniformity of the wave energy distribution, which can be easily seen via comparing
the relative-amplitude curves in Fig. 13a—c or those in Fig. 13d-f.

Although the influences of both the relative separation distance and the incident wave height
on the wave energy distribution can be observed relatively easily, it seems difficult to directly reveal
from Fig. 13 how the variation of the bottom profile influences the wave energy distribution. To
measure the uniformity of the energy distribution quantitatively, the coefficient of variance (CV) of

the response amplitudes of various modes is utilized in the current study. CV'is defined as

cv=2, (1)
7
where
1 & 2
= [—= - 12
o 40i:1(A u) (12)
and
l 40
=— ) 13
iz 4O§A (13)

Apparently, CV directly reflects the deviation degree of these response amplitudes from their

average value; the lower CV indicates the greater uniformity of the energy distribution.
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Fig. 14. Variations of the CV value with respect to Ao for the three topographies with (a)

h=12.43m,(b) h=9.00m,and (c) h=6.54m.

Fig. 14 demonstrates the variation of the C¥ value with respect to Aq for the three topographies

with h=12.43 m, 9.00 m, and 6.54 m. For all the three topographies and all the relative separation
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distances, CV always monotonously decreases with the increase of Ao, Which indicates that the

energy distribution inside the harbor has the greater uniformity as the incident wave height rises. In

fact, the similar tendency can also be observed for the other two topographies (i.e., h =10.73 mand

7.69 m), and their related results are not presented here.
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Fig. 15. Variations of the CV value with respect to R under various incident wave heights.

Fig. 15 shows the variations of the CV value with respect to R for various incident wave heights.
The third phenomenon intuitively observed in Fig. 13 is further proved by this figure. For all the
topographies considered, CV always gradually decreases with the rise of R when 49=0.050 m, 0.075
m and 0.100 m (Fig. 15b—d). When 4¢=0.025 m (Fig. 15a), this tendency is also observed for the
bottom profiles with h =10.73 m and 9.00 m.

Fig. 16 further presents the variation of CV with respect to the mean water depth for the incident
DSWs with various relative separation distances. For all the relative separation distances considered,
the CV values always decrease monotonously with the decrease of the mean water depth, regardless
of the incident wave height. This indicates that the smaller mean water depth can result in the greater
uniformity of the wave energy distribution, no matter whether the relative separation distance and

the incident wave height are large or small.
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Fig. 16. Variations of the CV value with respect to h for the incident DSWs with (a) R=0.4, (b)

R=0.6, and (c) R=0.8.

4.4 3. Total wave energy

The total wave energy inside the harbor can be accurately calculated as
40 1 )
E=D oA (14)
i1

according to the fact that the total wave field inside the harbor is a linear superposition of various

modes (Sobey, 2006). In this subsection, the normalized total wave energy defined as

E=E/(0.5A7) (15)
is investigated.
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Fig. 17. Variation of the normalized total wave energy with respect to Ao for the three topographies

with (a) h=12.43m,(b) h=9.00m, and (c) h=6.54m.
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Fig. 18. Variation of the normalized total wave energy with respect to R for the three topographies

with (a) h=12.43m,(b) h=9.00m,and (c) h=6.54m.

Fig. 17 shows the variation of the normalized total wave energy with respect to 4o for the three
topographies with h =12.43 m, 9.00 m, and 6.54 m. There are two apparent phenomena that can be
easily seen. Firstly, for all these topographies, the normalized total wave energy decreases
monotonously with the rise of the incident wave height, no matter whether R is large or small.
Secondly, the normalized total wave energy triggered by the DSWs with R=0.4 is always larger than
that excited by the DSWs with R=0.6 and 0.8 at the variation range of Ao considered. Besides, the
normalized total wave energy with R=0.6 is shown to be always extremely close to that with R=0.8.
To present the second phenomenon more intuitively, the variation of the normalized total wave
energy With respect to R for the three topographies are further demonstrated in Fig. 18. It shows that
when R rises from 0.4 to 0.6, the normalized total wave energy presents a certain degree of decline,
while as R grows further from 0.6 to 0.8, the normalized total wave energy becomes insensitive to
R. Similar phenomena to those in Figs. 17 and 18 can also be easily observed for the other two
topographies (i.e., h=10.73 mand 7.69 m).

Fig. 19 further demonstrates the variation of the normalized total wave energy with respect to
the mean water depth under conditions of various relative separation distances and incident wave
heights. As the mean water depth increases from 6.54 m to 10.73 m, the normalized total wave
energy always presents a continuous rise. While as the mean water depth rises further to 12.43 m,
the normalized total wave energy shows a slight decrease, no matter whether the relative separation
distances and the incident wave heights are large or small. The maximum total wave energy always

occurs on the topography with h =10.73 m.
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Fig. 19. Variation of the normalized total wave energy with respectto h for the incident DSWs

with (a) R=0.4, (b) R=0.6, and (c) R=0.8.

5. Conclusions
In the present study, the transient harbor resonance inside a long and narrow harbor with

various bottom profiles triggered by DSWs with different relative separation distances and wave

heights are simulated by adopting the FUNWAVE-TVD model. Influences of the incident wave
height, the relative separation distance, and the bottom profile on various hydrodynamic
characteristics of the transient oscillation are comprehensively investigated. The hydrodynamic
characteristics considered include the evolution of the maximum free-surface elevation, the
maximum runup, the wave energy distribution and the total wave energy inside the harbor. The
results of the current research have enhanced the understanding on the transient harbor resonance
triggered by tsunamis.

Based on the research results of this article, some main conclusions are drawn as follows:

1. The evolution of the maximum free-surface elevation inside the harbor can be estimated well
by Green’s law, except at the area where the incident and the reflected waves interact with each
other near the backwall. The valid spatial range of Green’s law is intensively dependent on the
topography and the incident wave height.

2. For all the topographies considered, the maximum runups caused by the DSWs with various
relative separation distances and the identical wave height are almost identical to each other
when the incident wave height is relatively small (49 < 0.150 m). For the incident DSWs have
larger wave heights, the maximum runups with R=0.4 gradually becomes larger than those with
R=0.6 and 0.8. The impacts of the topography on the maximum runup rely heavily on the
incident wave height.

3. The wave energy distribution inside the harbor has the trend of becoming more uniform as the
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incident wave height and the relative separation distance increase. In addition, the smaller mean
water depth can also result in the greater uniformity of the wave energy distribution, no matter
whether the incident wave height and the relative separation distance are large or small.

4. The normalized total wave energy always declines monotonously with the rise of the incident
wave height. As R rises from 0.4 to 0.6, the normalized total wave energy shows a certain
degree of decline, while as R grows further from 0.6 to 0.8, the normalized total wave energy
becomes insensitive to R. The normalized total wave energy is always shown to continuously

increase first and then slightly decrease with the rise of the mean water depth.

Finally, we reaffirm here that these conclusions are only valid for the elongated harbor, the
incident DSWs and the variation ranges of the incident wave height, the relative separation distance,

and the mean water depth inside the harbor considered in the current study.
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