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Abstract:  13 

The harbor resonance triggered by double solitary waves (DSWs) with different wave 14 

parameters (including various wave heights and relative separation distances) is simulated based on 15 

the fully nonlinear Boussinesq model, FUNWAVE-TVD. A long and narrow harbor with different 16 

topographies is adopted. In the current study, effects of incident wave height, relative separation 17 

distance and bottom profile on hydrodynamic characteristics related to the transient oscillations are 18 

mainly investigated. The hydrodynamic characteristics considered include the evolution of the 19 

maximum free-surface elevation, the maximum runup, the wave energy distribution and the total 20 

wave energy inside the harbor. Results show that Green’s law can accurately estimate the evolution 21 

of the maximum free-surface elevation in most part of the harbor area. The impacts of the 22 

topography on the maximum runup exhibit a strong dependence on the incident wave height. The 23 

smaller mean water depth inside the harbor, the larger relative separation distance, and the higher 24 

incident wave height tend to result in greater uniformity of the wave energy distribution. The 25 

normalized total wave energy is always shown to decrease gradually with the incident wave height, 26 

and to increase remarkably at first and then decrease slightly with the increase of the mean water 27 

depth.  28 
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1. Introduction 5 

Harbor resonance is resulted from the gathering and magnification of incident wave energy at 6 

bays or harbors when the incident wave frequencies approach or equate to their eigenfrequencies 7 

(Gao et al., 2016a, 2020). Common triggering factors for the phenomenon include low-frequency 8 

waves, short wave groups, tsunamis, barometric variation, vessel-induced bores, local water-surface 9 

disturbance, and shear flow (Dong et al., 2013, 2020b; De Jong et al., 2003; Ma et al., 2020; Rupali 10 

et al., 2020; Fabrikant, 1995; Gao et al., 2017c, 2018b, 2018c, 2019c; Shao et al, 2020; Wang et al., 11 

2020). Harbor oscillations has direct negative impacts on ship movement and port management. It 12 

can excite excessive movements of ships and unacceptable forces on mooring lines, and cause port 13 

operations poor efficient (Kumar et al., 2016). 14 

Among the above-mentioned triggering factors, transient harbor resonance events excited by 15 

tsunamis have been often observed and many of them were devastating. As tsunamis travel into the 16 

coast, their wave heights usually rise dramatically owing to the persistent decline of the water depth. 17 

Take the Indian Ocean tsunami happening on December 26, 2004, for example. It was generated by 18 

the Sumatra earthquake and travelled for ~2 hours to Colombo Harbor in Sri Lanka, inducing 19 

remarkable resonance with the eigenperiod of ~1.25 hours and the maximum oscillation of ~3.9 m. 20 

It then travelled for ~14 hours to Bunbury Harbor in Australia, producing the maximum oscillation 21 

of ~1.8 m (Pattiaratchi and Wijeratne, 2009). Hence, to minimize both the interference to port 22 

operations and potential devastating impacts, further studies on hydrodynamic characteristics 23 

associated with harbor resonance are of vital importance to enhance related knowledge and thus 24 

improve our predictive ability. 25 

Solitary waves have been widely adopted to represent real tsunamis in lots of studies due to 26 

the fact that some characteristics in real tsunami events, such as the persistent hump-like waveforms, 27 

can be imitated by solitary waves very well (e.g., Craig et al. (2006); Dong et al. (2020a); 28 

Hayatdavoodi et al. (2014); Liu et al. (1995); Seiffert et al. (2014); Synolakis (1987); Wang and Liu 29 

(2020)). However, based on some in-situ surveys which proved that the leading tsunamis was often 30 
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preceded by a depression, Tadepalli and Synolakis (1994) proposed the so called “N-waves” to 1 

represent tsunamis for the first time, and this type of tsunami waveform was further developed by 2 

Madsen and Schäffer (2010). Undular bores have also been frequently seen in the coast as tsunamis 3 

approach the shoreline (Madsen et al., 2008), and their evolutions in the coast can generate a train 4 

of multi-crested waves that are regarded as a train of solitary waves with various wave parameters 5 

(El et al., 2012; Grilli et al., 2012). The concept of double solitary waves (DSWs) was also proposed 6 

by a few scholars in the last few years (Dong et al., 2014; Lo et al., 2013).   7 

The majority of the harbor-oscillation investigations triggered by tsunamis were performed via 8 

utilizing solitary waves or N-waves (e.g., Dong et al. (2010; 2020a); Gao et al. (2019a; 2019b)). On 9 

the other hand, the wave effects in the coast related to DSWs are basically confined to predicting 10 

their runup/backwash on beaches (e.g., Dong et al. (2014); Lo et al. (2013)). To the best of our 11 

knowledge, up to now, the studies of the transient harbor oscillations induced by DSWs are rare. 12 

Gao et al. (2018a) introduced DSWs for the first time to carry out the research on transient resonance 13 

inside an elongated harbor with a flat bottom, and the influences of various waveform parameters 14 

(including the incident wave height, the number of component solitary waves, and the relative 15 

separation distance between adjacent crests) on the relative wave energy distribution inside the 16 

harbor were investigated. Except Gao et al. (2018a), no more literature on the harbor resonance 17 

triggered by DSWs has been seen by the authors. 18 

The present work also utilizes DSWs to further investigate the hydrodynamic characteristics 19 

associated with the transient oscillations. This article focuses on the impacts of different incident 20 

wave parameters and the bottom profile inside the harbor on various hydrodynamic characteristics 21 

during oscillations. The resonant hydrodynamics concerned include the evolution of the maximum 22 

free-surface elevation, the maximum runup, the wave energy distribution, and the total wave energy. 23 

It needs to be emphasized that it is of crucial importance to accurately estimate and comprehensively 24 

study these hydrodynamic characteristics. Both the evolution of the maximum free-surface elevation 25 

and the maximum runup are tightly correlated with the tsunami-triggered flood around the harbor 26 

area (e.g., Kumar and Gulshan (2017, 2018); Gao et al. (2016b; 2019b)); both the wave energy 27 

distribution and the total wave energy offer vital information for accurately predicting the movement 28 

of ships in harbors (Gulshan et al., 2020). 29 

Compared with Gao et al. (2018a) where the transient harbor resonance triggered by DSWs 30 
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has been studied, the research progresses of this article are embodied in three respects. Firstly, Gao 1 

et al. (2018a) assumed the constant water depth inside the harbor. Nevertheless, for real harbors, 2 

their topographies are generally uneven (Gulshan et al., 2020; Kumar and Rupali, 2018). Therefore, 3 

in this article, more complicated bottom profiles are taken into consideration. Secondly, the wave 4 

heights of the DSWs adopted in Gao et al. (2018a) were relatively small; the wave condition was 5 

confined to the weak nonlinearity. On the contrary, the current study expands the wave fields in the 6 

harbor to the strong nonlinearity. Thirdly, the investigations on both the evolution of the total wave 7 

energy and the maximum free-surface elevation inside the harbor triggered by the DSWs are 8 

implemented in this article for the first time. In current research, all numerical cases are performed 9 

utilizing a fully nonlinear Boussinesq model. The harbor is assumed to be long and narrow; the 10 

motion of the free surface inside the harbor then substantially becomes one-dimensional (Gao et al., 11 

2016c; Losada et al., 2008).  12 

The remaining parts of this article is as follows. the numerical model and the data analysis 13 

methodology are first introduced in Section 2. Then, the setups associated with the numerical 14 

experiments are described in Section 3. Simulation results are analyzed and explained in Section 4. 15 

Main conclusions are summarized in Section 5.  16 

 17 

2. Numerical model and data analysis methodology 18 

2.1. Numerical model  19 

In the current study, all numerical experiments are performed utilizing the proverbial numerical 20 

model, FUNWAVE-TVD (Shi et al., 2012). The set of fully nonlinear Boussinesq equations 21 

proposed by Chen (2006) combined with a moving reference level are utilized as the control 22 

equations that are numerically discretized by using a hybrid finite-difference/finite-volume scheme. 23 

To carry out a high-order Total Variation Diminishing (TVD) scheme easily, the control equations 24 

are reorganized as in Ma et al. (2012) and Liu et al. (2020). To parallelize the numerical model, the 25 

Message Passing Interface (MPI) technique with non-blocking communication is introduced into 26 

the model as well. In addition, an adaptive time-stepping algorithm is adopted, which follows the 27 

Courant–Friedrichs–Lewy (CFL) criterion. 28 

With these enhancements mentioned above, the numerical model becomes more robust and 29 

more powerful in predicting various hydrodynamic processes associated with water waves in the 30 
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offshore and coastal areas. These processes include wave shoaling, diffraction, refraction, breaking, 1 

and wave runup/backwash on beaches (Liu et al., 2019; Ning et al., 2019b). To validate the 2 

capability of the numerical model in simulating the harbor resonance excited by transient long waves 3 

(e.g., tsunamis), the physical experiments of Dong et al. (2010) were fairly well reproduced in Gao 4 

et al. (2017a) by using FUNWAVE-TVD. It should be stressed in particular that the capacity of 5 

FUNWAVE-TVD to predict the wave profile evolution of tsunamis (e.g., solitary waves) over 6 

uneven topographies has been fully validated by Ning et al. (2019a) via comparing with 7 

experimental data, which ensures the correctness of the research results about the topographic 8 

influences on the harbor oscillations triggered by DSWs in this article.  9 

 10 

2.2. Data analysis methodology  11 

In order to acquire the total wave energy and the wave energy distribution for the harbor 12 

resonance excited by DSWs accurately, a data analysis methodology, namely, the normal mode 13 

decomposition (NMD) method, needs to be adopted.  14 

The NMD method was developed by Sobey (2006) to estimate eigenmodes, eigenfrequencies, 15 

and response amplitudes of various modes for harbors suffered from tsunamis. The technique 16 

includes two calculation steps. In the 1st step, a series of eigenmodes and corresponding 17 

eigenfrequencies of the harbor are estimated. In the 2nd step, the prediction of the response 18 

amplitudes at various resonant modes are performed, which is expressed as a multi-dimensional 19 

optimization issue. Both the eigenmodes and the eigenfrequencies estimated in the former step are 20 

treated as known parameters in this process. Then, this technique was further ameliorated in Gao et 21 

al. (2015) to estimate eigenmodes and eigenfrequencies more precisely.  22 

Based on the method, Gao et al. (2019a; 2019b) have comprehensively investigated the wave 23 

energy distribution aiming at the harbor resonance triggered by N-waves and solitary waves. For its 24 

detailed theory, the interested reader is referred to Gao et al. (2015) and Sobey (2006).  25 

 26 

3. Numerical setups 27 

3.1. Incident wave parameters 28 

If a solitary wave propagates along the x-axis over a flat bottom, its leading-order wave surface 29 

is expressed as follows (Mei, 1983):  30 
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A0 and c are the wave height and the traveling speed of the solitary wave, respectively, and h is the 4 

water depth. 5 

Similar to Dong et al. (2014), in this article, the incident DSWs are created by the linear 6 

superposition of two component solitary waves with identical wave heights and different relative 7 

separation distances. Therefore, the incident DSWs adopted in all the numerical experiments can be 8 

formulated as 9 

 ( ) ( )( ) ( )( )2 2

0 0 0, sech / 2 +sech / 2x t A k x x ct R L k x x ct R L  = − − −  − − +  
,  (3) 10 

where x0 is the central location of the initial waveform, and L=2π/k can be viewed as the effective 11 

wavelength of the component solitary wave. R, defined as the ratio of the distance between adjacent 12 

crests to L, is the so-called “relative separation distance”. In FUNWAVE-TVD, the initial velocity 13 

of the incident DSWs takes a linear expression as following:  14 

 ( ) ( ), 0 , 0
g

u x t x t
h
= = = .  (4) 15 

 16 

 17 

Fig. 1. Waveforms of the DSWs under conditions of A0=0.100 m and h=14.0 m: (a) waveforms with 18 

R varying from 0.2 to 0.8 with an interval of 0.2; (b) the definition of the wavefront. The circle and 19 

the arrow in figure (b) indicate the wavefront and the direction of wave propagation, respectively. 20 
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 1 

For all the simulations considered in the present research, a constant water depth of 14.0 m is 2 

arranged outside the harbor. Fig. 1 presents the comparisons of the waveforms for the DSWs with 3 

A0=0.100 m and various relative separation distances under the condition of h=14.0 m. It is seen 4 

that when R=0.2, the two component single waves fuse into one wave. As R rises to 0.4, there appear 5 

two distinctly-separated crests in the waveform, and their height, ηmax, has already become 6 

extremely close to the wave height of the component solitary wave, A0, that is, ηmax=1.026A0. 7 

Therefore, only the DSWs with R ≥ 0.4 are considered in this article. 8 

 9 

Table 1. Incident wave parameters for DSWs and topographic parameters for the harbor  10 

Group Initial waveform A0 (m) Type of topography topographic parameters 

A 

DSWs with R=0.4 

0.025, 

0.050, 

0.075, 0.1, 

0.15, 0.2, 

0.25, 0.3 

arc-tangent-type  
h1=14 m, h0=4 m, α=6.8 m, h =12.43 m 

B h1=14 m, h0=4 m, α=8.3 m, h =10.73 m 

C constant slope h1=14 m, h0=4 m, h =9.00 m 

D 
hyperbolic-cosine-type 

h1=14 m, h0=4 m, κ=0.15, h =7.69 m 

E h1=14 m, h0=4 m, κ=200, h =6.54 m 

F 

DSWs with R=0.6 

0.025, 

0.050, 

0.075, 0.1, 

0.15, 0.2, 

0.25, 0.3 

arc-tangent-type  
h1=14 m, h0=4 m, α=6.8 m, h =12.43 m 

G h1=14 m, h0=4 m, α=8.3 m, h =10.73 m 

H constant slope h1=14 m, h0=4 m, h =9.00 m 

I 
hyperbolic-cosine-type 

h1=14 m, h0=4 m, κ=0.15, h =7.69 m 

J h1=14 m, h0=4 m, κ=200, h =6.54 m 

K 

DSWs with R=0.8 

0.025, 

0.050, 

0.075, 0.1, 

0.15, 0.2, 

0.25, 0.3 

arc-tangent-type  
h1=14 m, h0=4 m, α=6.8 m, h =12.43 m 

L h1=14 m, h0=4 m, α=8.3 m, h =10.73 m 

M constant slope h1=14 m, h0=4 m, h =9.00 m 

N 
hyperbolic-cosine-type 

h1=14 m, h0=4 m, κ=0.15, h =7.69 m 

O h1=14 m, h0=4 m, κ=200, h =6.54 m 

 11 

The incident wave parameters for the DSWs utilized in all numerical experiments are listed in 12 

Table 1. Fifteen groups of numerical experiments (namely, Groups A-O) are taken into consideration, 13 

and each consists of eight cases with A0 varying from 0.025 m to 0.300 m to systematically 14 

investigate the effects of the wave height on the resonant hydrodynamic characteristics. The DSWs 15 

with R=0.4, 0.6, and 0.8 are used as the incident waves in Groups A-E, F-J, and K-O, respectively. 16 

The main purpose of designing Groups F-O lies in finding out how the relative separation distance 17 

affects the transient harbor oscillations triggered by DSWs. 18 
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In order to facilitate describing the setups of the NWT that will be shown in Subsection 3.2 and 1 

interpreting some research results that will be shown in Section 4, the concepts of “wavefront” and 2 

“wavelength” for the DSWs are defined here. The wavefront refers to the location at which the free-3 

surface elevation equates to 0.05 times ηmax (refer to Fig. 1b). In this paper, the wavelength of the 4 

DSWs, L0, is defined as double the length between the wavefront and x0. For the same A0, the 5 

wavelength of the DSWs increases gradually with R. Table 2 further lists all the wavelengths of the 6 

incident DSWs with various wave heights and relative separation distances adopted in the present 7 

study. For the three waveforms of DSWs shown in Fig. 1b, their wavelengths gradually increase 8 

from 1310.2 m when R=0.4 to 1794.6 m when R=0.8. Besides, for the DSWs with the same relative 9 

separation distance, their wavelengths decrease gradually with the increase of A0. Take the DSWs 10 

with R=0.4 for example. Their wavelengths decrease from 2620.0 m to 756.0 m as A0 rises from 11 

0.025 m to 0.300 m. 12 

 13 

Table 2. Wavelengths, L0, of the DSWs with various relative separation distances and wave heights. 14 

The unit of the wavelength is meter.  15 

A0 (m) 0.025 0.050 0.075 0.100 0.150 0.200 0.250 0.300 

L0 when R=0.4 2620.0 1852.8 1512.6 1310.2 1069.8 926.4 828.6 756.0 

L0 when R=0.6 3108.0 2198.0 1794.2 1554.0 1268.8 1099.0 982.6 897.2 

L0 when R=0.8 3590.0 2538.0 2072.0 1794.6 1465.4 1269.0 1135.0 1036.2 

 16 

Prior to performing the numerical experiments of the current study, it is necessary to check out 17 

the ability of the numerical model to generate DSWs. For this purpose, a simple numerical wave 18 

tank (NWT) is established (not shown in the paper). The NWT has a length of 8000 m, and the still 19 

water depth h for the whole computational domain is set to 14.0 m. The generated waves are set to 20 

propagate from left to right. The coordinate origin (i.e., x=0) is positioned at the left boundary. At 21 

the moment of t=0, the central location of the waveform is set to x0=2000 m. To record the incident 22 

wave train, a wave gauge is placed at x=4000 m. The uniform grid size of 1.0 m is adopted. The 23 

comparisons of the simulated and the analytical incident DSWs with A0=0.100 m and various 24 

relative separation distances are presented in Fig. 2. The incident DSWs generated by the model are 25 

shown to be in good agreement with the analytical ones. 26 



 

9 

 

 1 

 2 

Fig. 2. Comparisons of the simulated and the analytical incident DSWs with A0=0.100 m and various 3 

relative separation distances. 4 

 5 

3.2. Numerical wave tank 6 

 7 

 8 

Fig. 3. Top view of the NWT used in all simulations.  9 

 10 

Fig. 3 presents the NWT used in all simulations. The dimensions of the NWT and the harbor 11 

are 8000 m × 200 m and 2000 m × 40 m, respectively. All the boundaries are fully reflective. There 12 

are 101 wave gauges (i.e., G01–G101) deployed along the central line of the harbor, and the space 13 

between any two adjacent gauges is 20 m. G01 is arranged at the harbor entrance (x=0), and G101 is 14 

at the backwall (x=2000 m). The water depth outside the harbor is set to a constant of h1=14.0 m. 15 
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The grid sizes are uniform in 1 m along both the x- and the y-axes. As the initial condition, the 1 

wavefronts of the incident waves are always set to be located at the entrance (i.e., x0 is always set to 2 

−L0/2) at the beginning of the simulation. The total simulation time for all cases is set to 800 s. In 3 

the adaptive time-stepping algorithm of FUNWAVE-TVD, one parameter C, termed as Courant 4 

number, needs to be preseted, which is set to 0.5 for all cases. The output time interval for the free-5 

surface elevations at all gauges is set to 0.04 s. 6 

To study the impacts of the topographic variation inside the harbor on the resonant 7 

hydrodynamic features induced by DSWs, three types of bottom profiles (including a hyperbolic-8 

cosine-type bottom, a plane slope bottom, and an arc-tangent-type bottom) are adopted in this paper. 9 

The water depth inside the harbor, hd(x), is formulated as (Gao et al., 2017b): 10 

 

( )

( )

0

d 1

0

hyperbolic-cosine-type bottom

constan

cosh

( )

at

t-slope bottom

arc-tangent-type bottan om

h L x

h x h x

h L x

 



 
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
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

+ −   

,  (5) 11 

where h0 denotes the water depth at the backwall and is set to 4.0 m. α, β, γ, κ and μ are topographical 12 

parameters, and comply with the following relationships:  13 

 

1/

1 0 1 0 1

0

1 1
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h h h h h
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. (6) 14 

The types of the bottom profiles and the values of the topographic parameters used in all groups are 15 

also presented in Table 1. In this table,  16 

 I

0

1
( )

L

h h x dx
b

=  ,  (7) 17 

which denotes the mean water depth inside the whole harbor. 18 

 19 

 20 

Fig. 4. Comparisons of various topographies inside the harbor 21 
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Fig. 4 illustrates all the five topographies adopted in the present study. The harbor utilized in 23 
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Groups A, F, and K has the arc-tangent-type topography, and the mean water depth h  is 12.43 m. 1 

The harbor in Groups B, G and L has the arc-tangent-type bottom profile as well. Nevertheless, h  2 

declines to 10.73 m due to a larger magnitude of α. The harbor in Groups D, I, and N has the 3 

hyperbolic-cosine-type topography, and h  is 7.69 m. Because of the increased κ, h  in Groups E, 4 

J, and O decreases to 6.54 m. The harbor in Groups C, H, and M has a constant-slope bottom, and 5 

has =9.00 mh .  6 

 7 

 8 

Fig. 5. Time histories of the free-surface elevations at various wave gauges under conditions of 9 

A0=0.050 m and R=0.4. (a)-(e) correspond to Groups A-E, respectively.  10 

 11 

4. Results and discussion 12 

4.1. Time histories of free-surface elevations 13 

Fig. 5 illustrates the time histories of the free-surface elevations at gauges G01, G51, and G101 14 

for the five cases with A0=0.050 m and R=0.4 in Groups A-E. FiA   and BiA   in the figure 15 

respectively denote the wave-crest elevations of the front and the back component solitary waves at 16 
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the ith gauge. The five cases have the same incident waves but various bottom profiles (refer to Table 1 

1). Three phenomena can be seen from the figure. Firstly, for all these cases, the wave-crest 2 

elevations of the front component solitary waves at gauges G01 and G51 are almost equal to the 3 

corresponding ones of the back component solitary waves. However, for gauge G101, the value of 4 

A101F becomes remarkably larger than that of A101B. Secondly, because the local water depth declines 5 

continuously as the incident DSWs travel from the entrance to the backwall, the maximum 6 

elevations at all the three gauges increase gradually. Thirdly, the wave-crest elevations at gauges 7 

G51 and G101 gradually rise with the decline of the mean water depth inside the harbor, overall. It 8 

can be attributed to the fact that the smaller mean water depth leads to the more obvious shoaling 9 

effect (i.e., the more remarkable wave height amplification).  10 

 11 

 12 

Fig. 6. Time histories of the free-surface elevations at various wave gauges under conditions of 13 

A0=0.3 m and R=0.4. (a)-(e) correspond to Groups A-E, respectively.  14 
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Fig. 6 further demonstrates the time histories of the free-surface elevations at gauges G01, G51, 16 

0 50 100 150 200 250 300

0

2

4

6

8

10

η
/A

0
 

t (s)

(e) 

t51B=148.16 s

A51B/A0=1.98t51F=123.72 s

A51F/A0=2.12

t1B=45.04 s

A1B/A0=1.68

t1F=22.00 s

A1F/A0=1.66

t101F=257.40 s

A101F/A0=8.01

t101B=279.32 s

A101B/A0=4.94

0

2

4

6

8

10

η
/A

0
 

(d) 
t51B=140.88 s

A51B/A0=1.90
t51F=116.84 s

A51F/A0=1.97

t1B=45.04 s

A1B/A0=1.66
t1F=21.96 s

A1F/A0=1.66

t101F=242.04 s

A101F/A0=8.14

t101B=264.76 s

A101B/A0=4.47

0

2

4

6

8

10

η
/A

0
 

(c) 

t51B=135.68 s

A51B/A0=1.81
t51F=111.88 s

A51F/A0=1.87

t1B=45.04 s

A1B/A0=1.66
t1F=21.96 s

A1F/A0=1.65

t101F=226.56 s

A101F/A0=6.67
t101B=251.32 s

A101B/A0=4.32

0

2

4

6

8

10

η
/A

0
 

(b) 
t51B=130.88 s

A51B/A0=1.71
t51F=107.20 s

A51F/A0=1.77

t1B=45.04 s

A1B/A0=1.65
t1F=21.96 s

A1F/A0=1.65

t101F=210.56 s

A101F/A0=5.08
t101B=236.00 s

A101B/A0=4.09

0

2

4

6

8

10

η
/A

0
 

 G01       G51       G101

t51B=128.84 s

A51B/A0=1.65
t51F=105.20 s

A51F/A0=1.71

t1B=45.00 s

A1B/A0=1.65

(a) 

t1F=21.96 s

A1F/A0=1.65

t101F=197.88 s

A101F/A0=4.51
t101B=222.76 s

A101B/A0=3.67



 

13 

 

and G101 for the five cases with A0=0.300 m and R=0.4 in Groups A-E. Compared to Fig. 5, some 1 

different phenomena appear. Although the wave-crest elevations of the front component solitary 2 

wave still keep almost identical to the ones of the back component solitary wave at gauge G01, the 3 

former becomes notably larger than the latter at gauge G51. In addition, because of the larger incident 4 

wave height, the free-surface elevations at gauges G51 and G101 present remarkable wave 5 

nonlinearity, which is specifically embodied in two respects. Firstly, apparent asymmetry can be 6 

seen in the front component solitary wave at gauges G51 and G101. For the front component solitary 7 

waves at gauge G101 in Fig. 6a and b and that at gauges G51 in Fig. 6e, their free surfaces rise 8 

promptly from zero to the maximum elevations, while their paces of decline are much slower. 9 

Secondly, for gauge G101 shown in Fig. 6c-e, except the two wave crests generated directly by the 10 

incident DSWs, there still exist one or more secondary peaks between the two wave crests. In 11 

general, the smaller mean water depth inside the harbor and the larger incident wave height lead to 12 

the more significant wave nonlinearity.  13 

 14 

4.2. Evolution of the maximum free-surface elevation 15 

Considering that the maximum free-surface elevation is tightly related to the tsunami-triggered 16 

flood around the harbor area, its evolution inside the harbor is comprehensively investigated in this 17 

subsection as the incident DSWs propagates from the harbor entrance to the backwall. Via reading 18 

the time histories of the free surfaces at all gauges, the maximum elevation evolution inside the 19 

harbor can be directly acquired. Fig. 7 illustrates the evolution of the maximum free-surface 20 

elevation for Groups A, F and K under different incident wave heights. The three groups have the 21 

maximum mean water depth inside the harbor, 12.43 m. Because the local water depth continuously 22 

decreases as the incident DSWs travel to the backwall, the maximum free-surface elevation 23 

gradually increases as expected, except at the area where the incident and the reflected waves 24 

interact with each other near the backwall. Based on the linear wave theory and the assumption that 25 

the wave energy due to the reflection is neglected, the wave height of the long waves travelling over 26 

mild slopes can be estimated theoretically using Green’s law (Mei, 1983):  27 

 
1 4

,
hA

A h





 
=  
 

  (8) 28 

where A  refers to the wave height at a certain reference position, and h  refers to the local water 29 

depth there. The evolution of the maximum free-surface elevation estimated by Green’s law is 30 
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presented in this figure. It is noted here that the reference position for the calculation of Eq. (8) is 1 

set at gauge G02 rather than at gauge G01 to remove the boundary effect caused by the harbor entrance.  2 

 3 

Fig. 7. Evolutions of the maximum free-surface elevations for Groups A, F and K. Black dots and 4 

red curves denotes the maximum free-surface elevations obtained directly by the simulations and 5 

those predicted by Green’s law, respectively. 6 

 7 

It is seen from this figure that for all these cases, Green’s law predicts the numerical results 8 

very well inside the whole harbor except at the area where the incident and the reflected waves 9 

interact with each other near the backwall. In addition, it can be easily observed that for a given 10 

value of R, the spatial range where Green’s law is valid gradually increases with the increase of the 11 

incident wave height. Similarly, it can be found that for a given value of A0, the valid spatial range 12 

of Green’s law also increases gradually with the decrease of R, no matter whether A0 is large or 13 

small. They are because the interaction area of the incident and the reflected waves contracts 14 

gradually as A0 increases and as R decreases, which coincides with the dependency of the incident 15 

wavelength on these two parameters (refer to Table 2).  16 
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 1 

Fig. 8. Evolutions of the maximum free-surface elevations for Groups E, J and O. The meanings of 2 

black dots and red curves are identical to those in Fig. 7.  3 

 4 

Fig. 8 further shows the evolution of the maximum free-surface elevation for Groups E, J and 5 

O under various incident wave heights. Different from Fig. 7, all three groups in this figure have the 6 

smallest mean water depth, 6.54 m. Similar to Fig. 7, Green’s law is also shown to predict the 7 

maximum elevation accurately in most part of the harbor except at the small area around the 8 

backwall, and its valid spatial range increases gradually with the decline of R as well.  9 

However, because of the decline of the mean water depth, a different phenomenon can be 10 

observed from Fig. 8. As the incident wave height increases, the valid spatial range of Green’s law 11 

does not monotonically increase any more. Instead, the valid spatial range of Green’s law becomes 12 

to first increase and then remarkably decrease with the rise of the incident wave height, which can 13 

be attributed to the secondary peak phenomenon shown in Fig. 6. As mentioned above, the larger 14 

incident wave height and the smaller mean water depth tend to cause the more significant wave 15 

nonlinearity (including the occurrence of the secondary peak phenomenon). The secondary peak 16 

can result in the narrower spatial span of the front wave crest, and the wave energy there becomes 17 

more concentrated. Hence, it results in the remarkable increase of the maximum free-surface 18 

elevation there. Through examining the free-surface elevations in these cases (the related results are 19 

not shown here), it is found that the secondary peak phenomenon begins to appear when A0=0.150 20 

m and becomes more and more evident as A0 further increases. It is accordance with the phenomenon 21 
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in Fig. 8 that the valid spatial range of Green’s law increases notably as A0 rises from 0.150 m to 1 

0.300 m.    2 

 3 

4.3. Maximum runup 4 

Observing Figs. 7 and 8 can find that the maximum runup of the incident DSWs always occurs 5 

at the backwall, no matter whether the mean water depth, the relative separation distance, and the 6 

incident wave height are large or small. Fig. 9 shows the normalized maximum runups, Au/h0, for 7 

the three topographies with h =12.43 m, 9.00 m, and 6.54 m. Two apparent phenomena can be seen 8 

from the figure. Firstly, the maximum runups caused by the incident DSWs with the same incident 9 

wave height and various relative separation distances are almost identical to each other when A0 ≤ 10 

0.150 m for all these three topographies. However, as A0 further increases, the maximum runups 11 

with R=0.4 gradually becomes larger than those with R=0.6 and 0.8. The maximum runups with 12 

R=0.6 are still almost identical to those with R=0.8, regardless of the bottom profile inside the harbor 13 

and the incident wave height.  14 

Secondly, although the maximum runups increase monotonously with the increase of A0 for all 15 

these three topographies at the variation range of A0 considered, their growth characteristics closely 16 

depends on the topography. For the topography with h =12.43 m (Fig. 9a), the maximum runup 17 

seems to always increase linearly with A0. For the topography with h  =9.00 m (Fig. 9b), the 18 

increasing rate of Au seems to remain unchanged when A0 ≤ 0.150 m and then rises gradually as A0 19 

increases further. While for the topography with h =6.54 m (Fig. 9c), the increasing rate of Au first 20 

remains unchanged when A0 ≤ 0.100 m, then increases, and then decreases with the increase of A0.   21 

 22 

 23 

Fig. 9. The normalized maximum runups, Au/h0, for the three topographies with (a) 12.43 mh = , (b) 24 
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9.00 mh = , and (c) 6.54 mh = . 1 

 2 

 3 

Fig. 10. Variations of the maximum runups with respect to the mean water depth induced by the 4 

DSWs with different values of R.  5 

 6 

To better explain the impacts of the topography on the maximum runup, Fig. 10 illustrates the 7 

variations of the maximum runups with respect to the mean water depth subjected to the incident 8 

DSWs with different values of R. It is seen that when A0 ≤ 0.100 m, the topographic variation inside 9 

the harbor has very little effect on the maximum runup. Nevertheless, as A0 further increases, the 10 

effects of the topographic variation on the maximum runup relies heavily on both the relative 11 

separation distance and the incident wave height. For the incident DSWs with R=0.4 (Fig. 10a), 12 

when 0.100 m ≤ A0 ≤ 0.250 m, the maximum runup decreases monotonously with the increase of 13 

h . As A0 increases to 0.300 m, the maximum runup becomes to first increase slightly, and then 14 

decrease sharply with the rise of h . While for the incident DSWs with R=0.6 and 0.8 (Fig. 10b and 15 

c), the maximum runup always declines monotonously with the increase of h  when A0 is at the 16 

range of 0.100 m – 0.300 m. 17 

     18 

4.4. Wave energy distribution and total wave energy 19 

4.4.1. Computing process for the response amplitudes of various resonant modes 20 

This subsection presents the detailed computing process of the NMD method for extracting the 21 
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response amplitudes of various modes from the wave fields inside the whole harbor. The time 1 

histories of the free-surface elevations at gauge G01 for the three cases with A0=0.075 m in Groups 2 

A, F and K are illustrated in Fig. 11. Only the wave fields inside the harbor from t0 to t1 are adopted 3 

to calculate the response amplitudes of various modes. t0 and t1 denote the moment that the incident 4 

DSWs totally travel into the harbor and the moment that the reflected DSWs from the backwall 5 

begin to travel away from the entrance, respectively. Because the incident DSWs in these three cases 6 

have different relative separation distances and hence different wavelengths (refer to Table 2), the 7 

values of both t0 and t1 are different from each other. As R increases from 0.4 to 0.8, the value of t0 8 

increases gradually from 170 s to 200 s, and that of t1 rises gradually from 320 s to 350 s.  9 

 10 

 11 

Fig. 11. Time histories of the free-surface elevations at gauge G01 for the three cases with A0=0.075 12 

m in (a) Group A, (b) Group F, and (c) Group K.   13 
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 16 

Fig. 12. Comparisons of the simulated and the fitted wave fields for the three cases with A0=0.075 17 

m in (a) Group A, (b) Group F, and (c) Group K.   18 

 19 

Fig. 12 demonstrates the comparisons of the simulated and the fitted wave fields for the three 20 

cases presented in Fig. 11. The simulated wave field is directly acquired via the numerical 21 

simulations, and the fitted one is obtained by the NMD method. Good agreement between them is 22 

observed for all the three cases. Take the case with A0=0.075 m in Group A for example (Fig. 12a). 23 

The simulated wave field has two maximum runups at x=2000 m. The first one has a value of 24 

A101F=0.3092 m at t=223.80 s, and the second one is A101B=0.2819 m at t=271.00 s. At the identical 25 

positions and moments, the fitted wave field has the first and the second maximum runups of 0.3088 26 

m and 0.2820 m, respectively.  27 

To assess the fitting accuracy quantitatively, the numerical fitting error (NFE) of the NMD 28 

method is defined here (Gao et al., 2018a):  29 
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A A
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  

,  (9) 1 

where (A101F)fitted and (A101B)fitted respectively denote the fitted first maximum runup and the fitted 2 

second one at the backwall. The NFEs for the three cases in Fig. 12a–c are 0.13%, 0.10% and 0.14%, 3 

respectively. Table 3 further presents the NFEs for all the cases with A0 ranging from 0.025 m to 4 

0.100 m. It is seen that the NFEs for these cases are all less than 5.00%. It indicates that the data 5 

analysis methodology estimates the response amplitudes of different modes accurately. The 6 

estimated response amplitudes for these cases will be presented in Subsection 4.4.2. 7 

 8 

Table 3. Numerical fitting errors (NFEs) of the NMD method for all the cases with A0=0.025 m, 9 

0.050 m, 0.075 m, and 0.100 m. The unit of the NFE is %. 10 

A0 

(m) 

Group 

A B C D E F G H I J K L M N O 

0.025 0.14 0.05 0.18 0.17 0.38 0.12 0.11 0.18 

 

0.10 0.28 0.10 0.13 0.38 0.20 0.19 

0.050 0.16 0.32 0.72 1.37 2.24 0.31 0.14 0.74 1.32 2.29 0.26 0.20 0.65 1.23 1.79 

0.075 0.13 0.85 1.99 2.65 3.24 0.10 0.72 1.78 3.07 3.70 0.14 0.75 1.75 2.83 4.32 

0.100 0.53 2.24 2.61 3.50 4.44 0.29 2.10 2.96 4.53 4.70 0.39 1.86 4.00 4.80 4.98 

 11 

4.4.2. Wave energy distribution 12 

To better show the wave energy distribution inside the harbor, the response amplitude of each 13 

mode is normalized by that of the corresponding first mode, i.e., 14 

 ( )
1

1,2,..., 40i

i

A
A i

A
= = ,  (10) 15 

in which Ai denotes the response amplitude of the ith mode, and the normalized response amplitude, 16 

iA , is referred to as “relative amplitude” hereinafter.  17 

 18 
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 1 

Fig. 13. Relative amplitudes of the lowest 40 modes inside the harbor with different topographies. 2 

(a)-(c) correspond to the incident DSWs with R=0.4, 0.6, and 0.8 for A0=0.025 m, respectively; (d)-3 

(f) correspond to the incident DSWs with R=0.4, 0.6, and 0.8 for A0=0.100 m, respectively. 4 

 5 

Fig. 13 presents the relative amplitudes of the lowest 40 modes inside the harbor with different 6 

topographies when A0=0.025 m and 0.100 m. Three apparent phenomena can be observed. Firstly, 7 

for all these cases, the first resonant mode always has the largest response amplitude. Secondly, the 8 

relative wave energy distribution is shown to become more uniform for the larger incident DSWs. 9 

Take the cases with R=0.4 for example. When the incident wave height is small (i.e., A0=0.025 m) 10 

(Fig. 13a), the wave energy is dominated by the lowest few modes. As the incident wave height rises 11 

to A0=0.100 m (Fig. 13d), the proportion of the wave energy occupied by the higher modes is shown 12 

to increase notably. This phenomenon can also be observed for the cases with R=0.6 (Fig. 13b and 13 
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e) and with R=0.8 (Fig. 13c and f). Thirdly, the larger relative separation distance also tends to result 1 

in the greater uniformity of the wave energy distribution, which can be easily seen via comparing 2 

the relative-amplitude curves in Fig. 13a–c or those in Fig. 13d–f. 3 

Although the influences of both the relative separation distance and the incident wave height 4 

on the wave energy distribution can be observed relatively easily, it seems difficult to directly reveal 5 

from Fig. 13 how the variation of the bottom profile influences the wave energy distribution. To 6 

measure the uniformity of the energy distribution quantitatively, the coefficient of variance (CV) of 7 

the response amplitudes of various modes is utilized in the current study. CV is defined as 8 

 CV



= ,  (11) 9 

where 10 

 ( )
40

2

1

1

40
i

i

A 
=

= − ,  (12) 11 

and 12 

 

40

1

1

40
i

i

A
=

=  .  (13) 13 

Apparently, CV directly reflects the deviation degree of these response amplitudes from their 14 

average value; the lower CV indicates the greater uniformity of the energy distribution.  15 

 16 

 17 

Fig. 14. Variations of the CV value with respect to A0 for the three topographies with (a) 18 

12.43 mh = , (b) 9.00 mh = , and (c) 6.54 mh = .  19 

 20 

Fig. 14 demonstrates the variation of the CV value with respect to A0 for the three topographies 21 

with h =12.43 m, 9.00 m, and 6.54 m. For all the three topographies and all the relative separation 22 

0.025 0.050 0.075 0.100
1.5

2.0

2.5

3.0

3.5

C
V

A0 (m)

 Group E (R=0.4)

 Group J (R=0.6)

 Group O (R=0.8)

(c) h =6.54 m

0.025 0.050 0.075 0.100
1.5

2.0

2.5

3.0

3.5

C
V

A0 (m)

 Group C (R=0.4)

 Group H (R=0.6)

 Group M (R=0.8)

(b) h =9.00 m

0.025 0.050 0.075 0.100
1.5

2.0

2.5

3.0

3.5

C
V

A0 (m)

 Group A (R=0.4)

 Group F (R=0.6)

 Group K (R=0.8)

(a) h =12.43 m



 

23 

 

distances, CV always monotonously decreases with the increase of A0, which indicates that the 1 

energy distribution inside the harbor has the greater uniformity as the incident wave height rises. In 2 

fact, the similar tendency can also be observed for the other two topographies (i.e., h =10.73 m and 3 

7.69 m), and their related results are not presented here.   4 

 5 

 6 

 7 

Fig. 15. Variations of the CV value with respect to R under various incident wave heights. 8 

 9 

Fig. 15 shows the variations of the CV value with respect to R for various incident wave heights. 10 

The third phenomenon intuitively observed in Fig. 13 is further proved by this figure. For all the 11 

topographies considered, CV always gradually decreases with the rise of R when A0=0.050 m, 0.075 12 

m and 0.100 m (Fig. 15b–d). When A0=0.025 m (Fig. 15a), this tendency is also observed for the 13 

bottom profiles with h =10.73 m and 9.00 m.  14 

Fig. 16 further presents the variation of CV with respect to the mean water depth for the incident 15 

DSWs with various relative separation distances. For all the relative separation distances considered, 16 

the CV values always decrease monotonously with the decrease of the mean water depth, regardless 17 

of the incident wave height. This indicates that the smaller mean water depth can result in the greater 18 

uniformity of the wave energy distribution, no matter whether the relative separation distance and 19 

the incident wave height are large or small.   20 
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 1 

Fig. 16. Variations of the CV value with respect to h  for the incident DSWs with (a) R=0.4, (b) 2 

R=0.6, and (c) R=0.8. 3 

 4 

4.4.3. Total wave energy 5 

The total wave energy inside the harbor can be accurately calculated as  6 

 

40
2

1

1

2
i

i

E A
=

= ,  (14) 7 

according to the fact that the total wave field inside the harbor is a linear superposition of various 8 

modes (Sobey, 2006). In this subsection, the normalized total wave energy defined as  9 

 ( )2

00.5E E A=   (15) 10 

is investigated.  11 

 12 

 13 

Fig. 17. Variation of the normalized total wave energy with respect to A0 for the three topographies 14 

with (a) 12.43 mh = , (b) 9.00 mh = , and (c) 6.54 mh = . 15 
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 1 

Fig. 18. Variation of the normalized total wave energy with respect to R for the three topographies 2 

with (a) 12.43 mh = , (b) 9.00 mh = , and (c) 6.54 mh = . 3 

 4 

Fig. 17 shows the variation of the normalized total wave energy with respect to A0 for the three 5 

topographies with h =12.43 m, 9.00 m, and 6.54 m. There are two apparent phenomena that can be 6 

easily seen. Firstly, for all these topographies, the normalized total wave energy decreases 7 

monotonously with the rise of the incident wave height, no matter whether R is large or small. 8 

Secondly, the normalized total wave energy triggered by the DSWs with R=0.4 is always larger than 9 

that excited by the DSWs with R=0.6 and 0.8 at the variation range of A0 considered. Besides, the 10 

normalized total wave energy with R=0.6 is shown to be always extremely close to that with R=0.8. 11 

To present the second phenomenon more intuitively, the variation of the normalized total wave 12 

energy with respect to R for the three topographies are further demonstrated in Fig. 18. It shows that 13 

when R rises from 0.4 to 0.6, the normalized total wave energy presents a certain degree of decline, 14 

while as R grows further from 0.6 to 0.8, the normalized total wave energy becomes insensitive to 15 

R. Similar phenomena to those in Figs. 17 and 18 can also be easily observed for the other two 16 

topographies (i.e., h =10.73 m and 7.69 m). 17 

Fig. 19 further demonstrates the variation of the normalized total wave energy with respect to 18 

the mean water depth under conditions of various relative separation distances and incident wave 19 

heights. As the mean water depth increases from 6.54 m to 10.73 m, the normalized total wave 20 

energy always presents a continuous rise. While as the mean water depth rises further to 12.43 m, 21 

the normalized total wave energy shows a slight decrease, no matter whether the relative separation 22 

distances and the incident wave heights are large or small. The maximum total wave energy always 23 

occurs on the topography with h =10.73 m. 24 

    25 

0.4 0.6 0.8
2

4

6

8

10
 A0=0.025 m  A0=0.050 m

 A0=0.075 m  A0=0.100 m

E

R

(c) h=6.54 m

0.4 0.6 0.8
2

4

6

8

10

E

R

 A0=0.025 m  A0=0.050 m

 A0=0.075 m  A0=0.100 m

(b) h=9.00 m

0.4 0.6 0.8
2

4

6

8

10
 A0=0.025 m  A0=0.050 m

 A0=0.075 m  A0=0.100 m

E

R

(a) h=12.43 m



 

26 

 

 1 

Fig. 19. Variation of the normalized total wave energy with respect to h  for the incident DSWs 2 

with (a) R=0.4, (b) R=0.6, and (c) R=0.8. 3 

 4 

5. Conclusions 5 

In the present study, the transient harbor resonance inside a long and narrow harbor with 6 

various bottom profiles triggered by DSWs with different relative separation distances and wave 7 

heights are simulated by adopting the FUNWAVE-TVD model. Influences of the incident wave 8 

height, the relative separation distance, and the bottom profile on various hydrodynamic 9 

characteristics of the transient oscillation are comprehensively investigated. The hydrodynamic 10 

characteristics considered include the evolution of the maximum free-surface elevation, the 11 

maximum runup, the wave energy distribution and the total wave energy inside the harbor. The 12 

results of the current research have enhanced the understanding on the transient harbor resonance 13 

triggered by tsunamis. 14 

Based on the research results of this article, some main conclusions are drawn as follows:  15 

1. The evolution of the maximum free-surface elevation inside the harbor can be estimated well 16 

by Green’s law, except at the area where the incident and the reflected waves interact with each 17 

other near the backwall. The valid spatial range of Green’s law is intensively dependent on the 18 

topography and the incident wave height.  19 

2. For all the topographies considered, the maximum runups caused by the DSWs with various 20 

relative separation distances and the identical wave height are almost identical to each other 21 

when the incident wave height is relatively small (A0 ≤ 0.150 m). For the incident DSWs have 22 

larger wave heights, the maximum runups with R=0.4 gradually becomes larger than those with 23 

R=0.6 and 0.8. The impacts of the topography on the maximum runup rely heavily on the 24 

incident wave height.  25 

3. The wave energy distribution inside the harbor has the trend of becoming more uniform as the 26 
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incident wave height and the relative separation distance increase. In addition, the smaller mean 1 

water depth can also result in the greater uniformity of the wave energy distribution, no matter 2 

whether the incident wave height and the relative separation distance are large or small.  3 

4. The normalized total wave energy always declines monotonously with the rise of the incident 4 

wave height. As R rises from 0.4 to 0.6, the normalized total wave energy shows a certain 5 

degree of decline, while as R grows further from 0.6 to 0.8, the normalized total wave energy 6 

becomes insensitive to R. The normalized total wave energy is always shown to continuously 7 

increase first and then slightly decrease with the rise of the mean water depth.         8 

Finally, we reaffirm here that these conclusions are only valid for the elongated harbor, the 9 

incident DSWs and the variation ranges of the incident wave height, the relative separation distance, 10 

and the mean water depth inside the harbor considered in the current study.  11 
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