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Abstract

In 1948, R.S. Rivlin showed that if a cube of incompressible neo-Hookean
material is subjected to a sufficiently large uniform, normal, dead-load on its
boundary, then an asymmetric deformation is the minimiser of the energy in
the class of homogeneous deformations. J.M. Ball showed in 1982 that, for
classes of compressible elastic materials, if a ball of the material is subjected
to a sufficiently large uniform radial dead-load, then a deformation forming a
cavity is the minimiser of the energy in the class of radial deformations. In this
paper we treat compressible hyperelastic materials and show that under such
dead-loading, if a local minimiser of the radial energy forms a cavity, then there
necessarily exists an asymmetric homogeneous deformation with less energy.
Our approach extends and generalises previous results of Abeyaratne and Hou
for the incompressible case.
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1 Introduction

Consider a ball of compressible, hyperelastic, isotropic material occupying the region
B := {x € R": |x| < 1} in its reference configuration. We consider deformations
u: B — R ueWh(B;R") for n = 2,3 and for ¢ < n. The bulk energy stored in
the deformed body under such a deformation is given by

B(u) = /B W (Vu(x)) dx. (1.1)

where W : M?*" — R is the stored energy function and M}*" denotes the real
n X n matrices with positive determinant. The equilibrium equations for (1.1) are
the Euler -Lagrange equations given by

0 {8W

% aF(; (Vu)] =0. (12)

It is well known that W is isotropic if and only if there exists a symmetric function
¢: R}, —R, R}, ={z = (1, 22,....,0,) € R" : ; >0},

such that
W(F) = (b(vbv% (RS Un) VF ¢ Mixn, (13)

where the v; are the singular values of F', which are also called the principal stretches.
We write ®; = %, etc. We assume that ®;(1,1,...) = 0 so that the undeformed
configuration is a natural state.

The Piola-Kirchhoff stress tensor S is given by
0%

S=—. 1.4
OF (14)

In the dead-load traction boundary value problem we specify
SN=t on 0B, (1.5)

where t is given, IN is the unit outward normal on B and P > 0 is the applied
normal stress. The associated energy functional is then given by

Ep(u) = /BW(Vu)dX—/aBt.u ds (1.6)



and (1.5) is then the natural boundary condition associated with (1.6). In this paper
we consider the case in which the ball is subjected to a uniform radial dead-loading
on the boundary so that

SN =PN on 0B, (1.7)

where N is the unit outward normal on 0B and P > 0 is the applied normal stress.
Hence, the associated energy functional takes the form

Ep(u) = /BW(Vu)dX — /83 Pu.N dS. (1.8)

1.1 Rivlin Instability

Homogeneous deformations u” are deformations of the form u”(x) = Ax + ¢ and

these always satisfy (1.2). The total energy (1.8) of a homogeneous deformation of
B is then given by!

Eu(u") = “2[W(A) = Ptr(A)], (1.9)
and minimisers in the class of homogeneous deformations will satisfy the natural
boundary condition (1.7).

Consider the class of purely homogeneous deformations which take the form

u(x) = (0121, .ry VpZy) Ui,y ..., U > 0, (1.10)

for x = (z1,...,2,) € B. The principal stretches associated with (1.10) are clearly
vy, ..., U, and the total energy associated with any such deformation, for the dead-load
traction problem with radial dead-load P, is then given by

E.(vi,...,v,) := Ep(u) = % [@(v1,...;vn) — P(og + ... +v,)] - (1.11)

The Euler-Lagrange equations?® for (1.11) are
S, (vq,...,v,) — P =0, fori=1,...,n. (1.12)

Rivlin [1], [2] studied bifurcation of solutions to the dead-load traction problem for
an incompressible neo-Hookean material in the class of purely homogeneous deforma-
tions. He showed that, for small P, the only homogeneous solution was u”(x) = x,

"Where w,, denotes the area of the unit sphere in R™.
2Clearly a minimiser exists for continuous energy functions (1.3) under mild growth assumptions

V‘l’é‘F) — o0 as |F| — cc.

such as



but that, for larger values of P, there was a bifurcation into an asymmetric homo-
geneous state of the form u(x) = diag(p, v, v)x (here n = 3) with u? = 1, p # v.
This result can be obtained by analysing the bifurcation of solutions vy, v9, v3 to the
algebraic equations

D i (v1,v9,v3) —plv; ) =P, i=1,2,3, (1.13)

7

from the trivial solution v; = vy = v3 = 1, under the constraint v;vevs = 1 (where p
is the hydrostatic pressure).

Although Rivlin’s results were derived ostensibly for deformations of a cube, they
apply to any reference shape of body. Rivlin’s analysis was subsequently extended
and generalised to separable stored energy functions in an interesting paper by Ball
and Schaeffer [3] (and they note that their methods extend to more general forms
of the energy function). In particular, they studied Mooney-Rivlin materials, which
have the form

D(vr, v ) = S(0 + 05 +0f = 3) + (07 +0p” + 052 3),

where p, k > 0, and they were able to give a comprehensive analysis of the existence
and stability properties of the asymmetric bifurcating homogeneous solutions in this
case. They found that for large dead-loads the trivial solution became unstable and
that there was a bifurcation into branches of “rod-like” and “plate-like” solutions.
For k < 3 the plate-like solutions are always unstable and the rod-like ones neutrally
stable?. For finite k& > 3, the plate-like solutions are initially neutrally stable (with
the rod -like solutions being unstable) and as the dead-load increases they found a
secondary bifurcation into a neutrally stable solution with three unequal stretches
which joined the plate-like branch to the rod-like branch (after this point the rod-like
solutions became neutrally stable). Ball and Schaeffer also adapted an argument of
Rivlin [5] to argue that the bifurcation picture would remain qualitatively the same
in the case of a slightly compressible Mooney-Rivlin stored energy function.

It is not our intention in this paper to give comprehensive references to the large
body of existing work on the Rivlin cube problem however, for illustration, we men-
tion a number of such contributions and refer the interested reader to these and the
references therein. Rivlin and Beatty [6] studied the stability of pure homogeneous
deformations of a compressible cube subjected to a dead-load. They found necessary
and sufficient conditions for stability of purely homogeneous deformations. They
found that for neo-Hookean materials, in the limiting case of incompressibility, these

3In fact, they showed that any non-trivial equilibrium solution is at most neutrally stable (see
also previous work in [4]).



conditions were the same as those found by Rivlin in [1], [2]. Tarantino [7] has also
studied the compressible problem, including a numerical study for neo-Hookean and
Mooney-Rivlin materials. His numerical results corroborated the analytic results of
Ball and Schaeffer [3] for certain compressible versions of the Mooney-Rivlin stored
energy. Extensions to the case of anisotropic materials are contained in the work of
[8]. Other interesting contributions include the work of Sawyers [9], Ogden (see, e.g.,
[10]), Chen and MacSithigh (see, e.g., [11], [12],[13]).

There has also been much work on the related phenomena of bifurcation into
asymmetric homogeneous deformations of a square membrane of incompressible elas-
tic material under uniform planar dead-loading. Steigmann [14] found necessary and
sufficient conditions for stability in isotropic materials. Haughton [15] has studied
bifurcation and stability of solutions of a biaxially loaded cube made of a compress-
ible material. He found that, for sufficiently large loads, the trivial solution loses
its stability and bifurcates into a neutrally stable asymmetric homogeneous solution.
Other contributions include work of Kearsley [16], Macsithigh [17] and Batra et al
[18].

1.2 Cavitation Instability

Ball [19] studied energy minimisers for the dead-load traction problem in the class
of radial deformations

T(Zg)x forx € B, R = |x]|, (1.14)

u(x) =

of a ball. In the case of radial deformations, the principal stretches are v; = v, and
Vg = ... = VU, = Uy Where

v, =1'(R), vp=r(R)/R for0<R<1. (1.15)
The the energy functional (1.8) takes the form

Ep(u) = w,Ip(r) = w, (/01 R (r’, }%, %) dR — Pr(l)) , (1.16)

and the corresponding equilibrium equations (1.2) reduce to the single ordinary dif-
ferential equation

d

e, (v )] = - R, (V). (1.17)
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called the radial equilibrium equation. The dead-load boundary condition (1.7) on
the outer boundary of the ball takes the form

o4 (r'(1), r(1),.,r(1)) = P. (1.18)

Ball showed that for sufficiently large P any energy minimiser of (1.16) must satisfy
r(0) > 0 (so that the deformed ball contains a hole of this radius) and the natural
boundary condition

lim T'(r(R)) =0, (1.19)

R—o00

where T is that radial component of the Cauchy stress given by

T(r(R)) = (r};))n_l o, (r’(R), Tf),.., T(Jf)) . (1.20)

For further references on this radial problem see [20] and [21].

1.3 Relative occurrence of the two instabilities

For the incompressible case, Ball comments in [19] that the critical value of the
dead-load at which bifurcation to the Rivlin instability occurs may be greater or
less than the critical value at which bifurcation into the cavitation instability occurs,
depending on the material parameters.

In an interesting paper Abeyaratne and Hou [22] show that for incompressible
materials, the cavitating radial energy minimiser of Ball is never a global minimiser
in any class of deformations that includes the radial deformations and the asymmet-
ric homogeneous deformations studied by Rivlin. In particular, they showed that, for
any given value of the applied stress P > 0, if there exists a stable cavitation defor-
mation, then necessarily there exists a stable asymmetric homogeneous deformation
with less energy for the same value of P.

Hou [23] has taken this comparison further for neo-Hookean materials. He defines
a class of semi-inverse deformations that includes both radial cavitating deformations
and asymmetric homogeneous deformations as well as some axisymmetric deforma-
tions. In particular, Hou was able to show that the radial cavitated deformations are
unstable in this larger class of deformations for moderate P but that they become
stable for sufficiently large P.

In the current paper we extend and generalise the results of Abeyaratne and
Hou [22] to the case of compressible materials. A major difficulty in effecting such
an extension is that, in the incompressible case, the radial cavitation solution is
explicitly known from the kinematic constraint of incompressibility, whereas, in the



Radial Cavitation

Asymmetric Homogeneous

Figure 1: Cavitation instability and the Rivlin instability

compressible case, it is only implicitly defined as a solution of the radial equilibrium
equation (1.17). Though our methods in this compressible case are therefore very
different, we would like to acknowledge the many insights we have gained from the
work of Abeyaratne and Hou for the incompressible problem.

The main steps in the proof of our main result are:

(i) The total energy (1.8) of a radial cavitation solution u (i.e. of the form (2.3))
to the dead-load traction problem can be expressed in terms of the values of u, Vu
on the boundary 02 (this follows from a divergence identity due originally to A.E.
Green)

(ii) This total energy can be shown to be equal to the total energy of a related
asymmetric homogeneous deformation,

(iii) This related (asymmetric) homogeneous deformation is not in general a global
minimiser of the total energy in the class of all homogeneous deformations (see The-
orem 4.2). Hence the radial cavitation solution cannot be a global energy minimiser.

Our approach yields the results of [22] as a special case (see concluding remarks in
section ).



2 The energy of a smooth solution of the dead-
load traction problem.

In this section we calculate the total energy (1.8) of a smooth (not necessarily sym-
metric) solution of the dead-load traction boundary value problem: i.e., a solution
of (1.2) on some domain € that satisfies the boundary condition (1.7) on 9. To do
this we use the following divergence identity for smooth solutions of (1.2) which is
originally due to Green:

Div =nW(Vu). (2.1)

W (Vu)x + (%—VE(W))T (u — Vux)

If we apply this to an equilibrium solution u € C?(2) N C*(Q) on the domain  with
an imposed dead-load t = PN, P > 0, on its boundary d€2 we find by (1.8) that

1 —1 .y 1 o
Ep(u) = — [ W(Vu)x.NdS — t /89 t'u'dS — — /69 u'pat' dS

n Joo n n
1 -1 1

= — [ W(Vu)x.INdS — P/ (Mu + —(Vux)) NdS. (2.2)
n Joo a0 n n

Now suppose that = B and that u € C?*(B\{0}) is a cavitating radial equilibrium
solution, then
r(R)

u(x) = —5 X for x € B, R = x|, (2.3)

where r(0) > 0 and (1.19) is satisfied. In this case, the singular values of Vu are
constant on OB and are given by v; = r'(1), vy = r(1), ..., v, = (1) on 9B.* Hence,
the first part of the energy integral in (2.2) is equal to

! W(vu)x.Ndszl/ @(a,ﬁ,...,ﬁ)x.NdS:/W(Vuh) de,  (2.4)
0B B

n JoB n
where u” the corresponding homogeneous deformation

u"(x) = (axy, By, ..., Bay) (2.5)

4Our derivation of (2.2) assumed smoothness of the solution throughout B. However, the same
result can be obtained by first excluding a small neighbourhood B.(0) around the origin, then
applying the above argument to Q. = B\B(0), and finally letting ¢ — 0. In this process, it can
be shown that the contribution from the boundary integral on 0B, converges to zero as € — 0 by
(1.19)- see [24, Section 3].




with

a=r7r"(1),8=r(1). (2.6)
On noting that N = x on 0B, it follows that the second integral term in (2.2) is
then given by

/ag ((n e %W“X)) Nds = /m ((n U+ l(r’(l)x)) NdS

n n n
-1 1
— / (M@+ (a)) ds
90 n n
0 I
0
- l/ Sl N N ds
n Joq :
T 0

(2.7)
and hence by (2.4), (2.7) it follows that
Ep(u") = Ep(u), (23)

so that the energy of the radial cavitation solution equals the energy of the corre-
sponding homogeneous deformation (2.5).

Remark 2.1. The last result (2.8) could be obtained more directly using the radial
version of the conservation law (2.1) (see, e.qg., [19, expression (6.12)]), however, our
intention in the above derivation is to highlight the general n-dimensional structure
of the underlying problem.

3 The energies associated with the cavitation and
Rivlin instabilities
Having obtained the above result, our approach in the following sections is to now

show that the homogeneous deformation (2.5) is not a global minimiser in the sub
class of asymmetric deformations of the general form

u"(x) = (yzy, 629, ..., 02,), v, > 0. (3.1)

To this end we first recall a basic property of the radial cavitation solutions.

9



3.1 Energy of the radial cavitation deformations

Proposition 3.1. Given any cavitation solution r € C?*((0,1)) (i.e. a solution of
(1.17) satisfying r(0) > 0 and the natural boundary condition (1.19)), this can be
extended to a solution o € C?((0,00)) satisfying. Given any cavitation solution v
of the dead-load traction problem with dead-load P, there exists o« > 0 such that
r(R) = arg (g) Moreover, by rescaling rq if necessary, we may assume without loss
of generality that ro(0) = 1 so that o corresponds to the radius of the cavity formed
by the deformation.

For each p € (Auig, 00) we define (i) to be the unique positive number satisfying

1
i = alwro (wo) (32)
so that a(u) corresponds to the radius of the cavity formed by a cavitating deforma-
tion that is equal to u on the outer boundary of the ball.

We refer to [25] for a variety of hypotheses on the stored energy function under
which the last proposition holds. A simple class of such energy functions is given by
the class of Ogden materials in the following example.

Example 3.2. The following class of energy functions are such that Proposition 3.1
holds:

M n N n
D (vy, ..., vp) = an (va‘j — n) + ZV]‘ (Z vfj - n) + h(vy...v,),
=1 j=1 i=1

i=1

where M,N >0, 1m; >0 for1 <j< M, v;>0for1 <j< N, n>a >.. >
ay >1,n/(n—1)>p; > ..> By >0and h:(0,00) = R is C?, strictly convex
and satisfies

: o h(d)
SO = i mg = 3
and
| (d)d| < const. (1 + h(d)), for all d > 0. (3.4)

We can use (3.2) to parametrise the energy of a cavitation solution using p and
we correspondingly define

En() = nle (). 1u(R) = alior (). (3.5)

10



On making the change of variables R = R/a(p) in (3.5) we obtain

1/a(p) i L i
Ep(p) = wn [/O (a()" B 0(rG(R),ro(R)/R, ...)dR — Pp | , (3.6)

where Ep(p) = Ep(r,).

We will now perform a second change of variables so that the new variable of
integration is the tangential principal stretch through the body, v = &Rm' We note
here that by definition v = a(v)ro(1/a(v)), which implies that R = 1/a(v). This
then yields

n

Er) = (ol [~ 4 (o) 2o v pul. (37)
where R
O(v)=d(p(v),v,...) (3.8)
and p(v) = r{(1/a(v)).
Remark 3.3. For u = X\ to minimise Ep(,u) we must have that
EW(\) =0, E5(N) > 0. (3.9)

Note that if the first condition in (3.9) holds, then the corresponding radial map (see
Proposition 3.1) is a cavitating equilibrium solution to our dead-load traction problem
since it satisfies (1.17), (1.18), (1.19).

Remark 3.4. We note for later use that, in the variables p, p(p) used above, the
radial equilibrium equation can be written as (see also [19])

d _ () [ 22 (p(r) o ) = B (p(1), s o )]
@ {(I)al (:0<:U'>7M7M7 )] - ( 1) p(u) — :

(3.10)

Remark 3.5. [t is of interest to note the following alternative expression for E\}
suppose that u(x, i) is a one-parameter family of solutions of the equilibrium equa-
tions (1.2), parametrised by p. We next calculate the derivative of the energy func-

11



tional (1.8) evaluated on such a family, at fized P, with respect to .
d
i) = 2| [ WTum e~ [ Puxpnas]
dp [/ B
ow 0! / ou'
= - (Vyiu)———(x, ) dx — P n' dS
/B 3F;( )&’va@u( g o On
9 [ou' oW ot
= — . — P td
[ e (G g v = P gt s

- /OB ?;; BZ (Vu)n® — Pnz} ds (3.11)

In the case that u(-, 1) (given by (1.14)) is a family of solutions of the radial equilib-
rium equation (1.17) and the natural boundary condition (1.19), the above derivation
still holds (see section 2), and if u(x) = pux for x € B, the above expression yields

d , ‘ .
Epa) = [ [@pl) s~ Pa] dS
K OB
= wy [P1(p(u), p, i, ...) — PJ. (3.12)
Taking a second derivative and using Remark 3.4 then yields
d? d
d_’lﬂEP(u('a :u)) = @ Wn [q)al (IO<:U’)7 Hs [, ) - P]

) [(I),Q (p(u), My Ly ) - (I)al (p<:u’)> 1, L, )] ) (313)

= wnln 1 p(i) —

Remark 3.6. It follows from the above calculations that:

(1) If p = X\ satisfies Ep(N) = 0, E%L(X) # 0, then the radial cavitation solution
(3.5) satisfies (1.18) and the corresponding asymmetric homogeneous deformation
(given by (2.5), (2.6), (3.2)) has equal energy by (2.8). However, in this case, (3.13)
shows that the corresponding asymmetric homogeneous deformation cannot be a so-
lution of the Rivlin problem and hence cannot be a critical point of (1.11).

(ii) If ;1 = X satisfies En(\) = E(X) = 0 it follows from (2.8) that the asymmet-
ric homogeneous deformation (2.5) (with o = p(X), B = \) is a solution of the Rivlin
problem for this dead-load P (and corresponds to a critical point of (1.11)).

12



3.2 Energy of corresponding asymmetric homogeneous de-
formations

As previously noted, each cavitating deformation considered in the last section gives
rise to a corresponding homogeneous deformation (via (2.5), (2.6)) with equal energy
(see (2.8)). We parametrise these axisymmetric homogeneous maps by u and denote
the corresponding energies by

Wn

Ea() i= Ep(u") = =2 (&) = P(p() + (0 = V)|, 0 € Qnr0), (3.14)

n

where ® is given by (3.8). From this it follows that

Wn

Ey(m) = 22 [0/ () (@1() = P) + (n = 1)(@s(u) - P)] . (3.15)

n

Since p(p) = p— s,((’; )), it follows that p'(u) = O‘(((’; ,)(O‘M, ;)(’; ) and so we can also write (3.15)
as

n (o))

Remark 3.7. Note that minimisers of Eo(11) (or, more generally, solutions of E! (1) =
0) need not necessarily correspond to solutions of the Rivlin problem (1.12).

E;w):&(%m— ; <<n—1>a'<u>)2+a<u>a"<u>>>. (3.16)

The next result which relates the derivative of the energy functional Ep(p), (3.6), to
that of E,(u) will be central to our main result.

Proposition 3.8. For each ji € (A, 00),

Boli) = 42 @) [ s B (3.17)

Proof. We first calculate the derivative of Ep(u) given by (3.7), noting that 2‘,((’;)) =
a(p)ro(l/a(p)) — ro(1/a(p)), to yield

«

Biu) = wn—'{nm(u))” | b v — Pl — 0] - w}. (3.18)

a a(y)n+1

Performing an integration by parts on the first term in the integral yields

< d(v) . 1 wl@yy
o[ e = b+ [ e

13



and substituting this into (3.18) then yields

L) = wp [ () ()"t . @1/ v —
By(p) = . [ e [ R @w-Pl W)
By the Fundamental Theorem of Calculus, this is equivalent to
5o — o (e Y 1@V
By(n) = [ et [ (a(y)n )
, (3.20)
- (O/(V))Z(a(y))”((n - D))" +av)a (V))> dV] )
which can be rewritten as
5 — o o) e (1 @V
By(n) = [ ) [ (aw )
, (3.21)
_ (al(y)>2((n - D))"+ a(v)a (y))]> dV] .
The result now follows from (3.16) and (3.21). O

Corollary 3.9. Ifry (given by (3.5) )is a cavitating solution for the dead-load traction

A

boundary value problem, then Eb(\) =0 (see Remark 3.3) and so

A
Bolp) = - (0"(0) | s Bu) v for g€ Qo). (322

Remark 3.10. If we rewrite (3.18) using (3.7) and (3.14) we obtain

o ()

Bp(n) = S Ep () — Eu(p). (3.23)

This implies (see Remark 3.3) that if we have a cavitating solution of the radial
equilibrium equations for the dead-load problem, r\(R), then the total energy of the
deformation is that of an asymmetric homogeneous deformation whose stretches are
p(A), A, ..., A, as previously shown in (2.8).



4 Energy minimising properties

In this section we will show that for each P > 0 that if there is a cavitating de-
formation u.,, which minimises (3.6), then necessarily there exists an asymmetric
homogeneous deformation u” which has less energy. Recall that we have so far shown
that for any deformation u.,, which minimises (3.6) the total energy is equal to the
energy of a corresponding asymmetric homogeneous deformation. Since (1.11) has
a minimiser for all P, if we show that this asymmetric homogeneous deformation
is not a minimiser of (1.11), it will then follow that there must necessarily exist an
asymmetric homogeneous deformation u” which has less energy than that of ug,,.

Remark 4.1. For fized P, from differentiating equation (3.23), it follows that if
= A minimises Ep(u), then

~ o/ (AN)n ~
B\ = — EL(N).
P()\) CY()\) a(/\)

It therefore follows immediately that if E\;’()\) # 0, then E;()‘) # 0 and so pp = A

cannot be a local minimiser of E,(\). Hence, if we suppose further that Ep(\) = 0
then, using Remark 3.10, there must exist ji such that

Ea(ﬂ) < EP(A) = E\a(A)a (41)

i.€., there exists an asymmetric homogeneous deformation with less energy than the
symmetric cavitation solution. In particular, any global minimiser of the functional
(1.11) for the Rivlin problem has less energy than this radial cavitation solution.

Thas observation, will yield the main result of this paper in Theorem 4.2. It re-
mains to eliminate the possibility that E(\) = 0 and E)(A\) = 0. To this end, we
will henceforth assume that the following non-degeneracy condition holds:

(N) (Non-degeneracy condition): we assume that E’l’ () vanishes at most at a
finite number of points on the interval [1, 00).

Theorem 4.2. If a radially symmetric cavitating deformation u given by (1.14),
(3.5) and corresponding to p = X\, minimises the radial energy (3.6), then there
exists an asymmetric homogeneous deformation u" such that E(u) > E(u").

Proof. First observe that by Remark 4.1, if E%,(\) > 0 then E’()) # 0 and the result
follows. Hence it remains to treat the case in which E}(A\) = 0. It is in this case
that the non-degeneracy condition (N) above will play a role.

15



For Ep and E, given by (3.7) and (3.14), we show that if = A is a minimiser of
Ep(p) then there exists a 7 € (0, 00) such that Ep()\) > F,(r) and 7 minimises E,.

To prove this result it suffices to show that ¢ = A is not a minimiser of Ea.
Suppose for a contradiction that p = A is simultaneously a minimiser of (3.7) and
(3.14).

From Corollary 3.9 it follows that
L =

a(y)nEa(V) dv. (4.2)

(1) = —wn(n — D () ()" / '

Using (N) we know that there is an e > 0 such that E/(v) > 0 for all v € (A, A + ¢).
As E!(v) > 0 for all v € (A\, A+ €) we see that Eb(u) < 0 for all u € (A\, X+ ¢),
contradicting the fact that © = A minimises Ep. [

5 Concluding Remarks

In the case of incompressible materials, any admissible deformation u must satisfy the
condition det(Vu) = 1. Next note that the kinematic constraint of incompressibility
implies that the principle stretches must satisfy v;...v,, = 1, which implies that every
radially symmetric deformation must have the form

x, where r(R) = (R" + A”)%, (5.1)

where R := |x| and A is the radius of the cavity formed.

In [22], Abeyaratne and Hou characterise their deformations using the radial

boundary stretch /(1) rather than the tangential boundary stretch @ =r(1). In

the incompressible case, if we perform a corresponding change of independent variable
in (4.2) from v = % to = =1/, then we obtain equation (32) in [22].

We now show that the main results of [22] for incompressible materials follow
from our arguments and our main result Theorem 4.2.

The version of Green’s divergence identity (2.1) for incompressible materials is

Div

W (Vu)x + (%—?(Vn) —p (adjVu)) (u—Vu x)] =nW(Vu), (5.2)

where p is an arbitrary hydrostatic pressure. The conclusions of section 2 now follow
in the incompressible case on replacing (2.1) by (5.2). Next replace W (F) by W (F)+
p(det Vu — 1) and ®(vy,...,v,) by ®(vy,...,v,) + p(v;...v, — 1) in the arguments of
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section 3. Note that in this incompressible case, the function corresponding to the ry
given in Proposition 3.1 is then given by ro(R) = (R" + 1)= and a(p) = (u" — 1)x.

We next recall that our results for compressible materials were obtained under
the assumption that the stored energy function W satisfies the non-degeneracy con-
dition (N) and to obtain the results of [22] we need to replace this condition by its
incompressible counterpart. We recall that this condition is used to ensure that if
= i is a local minimum of E,(x) and E (i) = E"(f1) = 0, then E' (1) > 0 on some
interval (fi, ft + €), € > 0 and similarly that £’ (ux) < 0 on some interval (i — €, ). A
related non-degeneracy condition arises in section 5 of [22] (see their condition (A)).

In the incompressible case, it can be shown that Mooney-Rivlin materials and
certain Ogden materials satisfy the incompressible version of (N). However, it would
be of interest to identify general conditions which guarantee that a given stored
energy function satisfies these non-degeneracy conditions.

Hence, the results of the current paper apply to both incompressible and com-
pressible isotropic hyperelastic materials and demonstrate that if a unit ball of an
elastic material is subjected to a uniform dead-load on the boundary, it is ener-
getically favourable for it to bifurcate into a asymmetric homogeneous deformation
rather than into a radially symmetric cavitated deformation. These results demon-
strate that the radial cavitation solution is never a global minimiser of the energy
but do not rule out the possibility that it is a still a local minimiser in a general class
of possibly nonsymmetric perturbation. The symmetrisation arguments in [26] may
be helpful in studying this problem.

In the compressible case it can be shown that (N) is satisfied by separable stored
energy functions and stored energy function in [27] given by

®(vy,v9,v3) = (v + V3 + v3) + h(vivavs),

where

h(d) = (ad® — 2(a + 1)d + b)

for d > 1 and a,b > 0 are constants®. It is currently unclear to us whether compress-
ible Mooney-Rivlin and Ogden materials satisfy (N).
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