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Abstract The uniqueness of absolute minimizers of the energy of a compressible, hypere-
lastic body subject to a variety of dead-load boundary conditions in two and three dimen-
sions is herein considered. Hypotheses under which a given solution of the corresponding
equilibrium equations is the unique absolute minimizer of the energy are obtained. The hy-
potheses involve uniform polyconvexity and pointwise bounds on derivatives of the stored-
energy density when evaluated on the given equilibrium solution. In particular, an elemen-
tary proof of the uniqueness result of Fritz John (Comm. Pure Appl. Math. 25, 617-634,
1972) is obtained for uniformly polyconvex stored-energy densities.

Keywords Finite Elasticity - Nonlinear Elasticity - Uniqueness - Equilibrium Solutions -
Energy Minimizers - Nonuniqueness - Uniform Polyconvexity - Strict Polyconvexity -
Strongly Polyconvex

Mathematics Subject Classification (2010) 74B20 - 35A02 - 49J40 - 74G30 - 74G65 -
35)57

1 Introduction

In this manuscript we consider the uniqueness of absolute minimizers of the energy of a
compressible, hyperelastic body under dead loads. Although one does not always expect
such uniqueness, for example, when a thin rod is subjected to uniaxial compression there
should be more than one buckled minimizer, a result of Zhang [63] for the displacement
problem shows that there is exactly one absolute minimizer of the elastic energy for certain
boundary displacements.
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In addition to the displacement problem we also consider both the traction and the mixed
problem for energy functions that are uniformly polyconvex, that is, when n = 3, stored-
energy densities of the form

()
W(x,F) = %|F|p + @ (x,F,cofF, detF),

where @(x) > @, > 0, p >3, N+ &(x,N) is convex,! detF denotes the determinant of the
3 by 3 matrix F, cofF its cofactor matrix, and |F| the square-root of the sum of the squares
of the elements of F. Our main result, Theorem 4.2, shows (using elementary methods) that
for such energies any (weak) solution of the equilibrium equations that satisfies a certain
pointwise bound will be the unique absolute minimizer of the energy. Moreover, there can
be no other solution of the equilibrium equations that satisfies this bound.

We mention that our results do not require the material to be either homogeneous or
isotropic. Our main theorem applies just as well to a heterogeneous material such as a com-
posite. (See Remark 4.3 and the examples in §6.3.) We note, in Remark 4.5, that our proof
of Theorem 4.2 is also valid when @ is not globally convex. If instead a weak solution of the
equilibrium equations lies at a point of convexity of @ (see (4.16)) and satisfies the required
pointwise bound, then that deformation must be a, potentially nonunique, absolute mini-
mizer of the energy. Theorem 4.2 therefore has implications for stored-energies that admit
phase transitions (see Ball and James [6] or, e.g., Grabovsky and Truskinovsky [27] and the
references therein).

In the special case when the stored-energy density W of a homogeneous body # C R”,
n =2 orn=3,is given by

W(F) = %|F|” + &(F, detF), (L1

where @, > 0 and @ is convex, then our results show that if u. is a weak solution of the
equilibrium equations that satisfies (see (4.6)—(4.8) and Remark A.2)

d
[[A(Vue,det Vue) || 1= () < @/ (2n—3), A(F,detF) := ﬁdJ(F,l) - (1.2)

then u, is the unique absolute minimizer of the elastic energy. Moreover, no other solu-
tion of the equilibrium equations can satisty (1.2);. Furthermore, for the pure-displacement
problem, Theorem 4.2 also shows that the same results are valid if (1.2) is replaced by

HA(Vue,detVue)—vHLm(g) <0)0/(2n—3), (1.3)

where v € R denotes an arbitrary constant.

For the displacement problem we obtain additional results. We first show, in Theo-
rem 5.1, that a result of Zhang [63] is a simple consequence of our main theorem; we prove
that if an equilibrium solution, u., is sufficiently close to a homogeneous deformation (in
the Sobolev space W), then u, is the unique absolute minimizer of the energy and there
are no other equilibrium solutions nearby.

We also consider, in Theorem 5.3, a uniqueness result of John [34], who proved that
there is at most one equilibrium solution with (sufficiently) small strain: E := (Vu)TVu—L
We use a recent result of Silhavy [49], which produces a polyconvex representative that is
invariant under rotations, to show that John’s result is a direct consequence of our proof of

! Here N = (A,B,) for some 3 by 3 matrices A and B and some scalar 7 > 0.
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the above-mentioned result of Zhang. We thus provide an elementary proof of a version? of
the result in [34] that does not require the use and properties of BMO [35].

In §6 we present some illustrative examples of equilibrium solutions that satisty the hy-
potheses of our theorems. We consider the extension of a 2-dimensional, rectangular body
and show that, for both a mixed problem and a pure-traction problem, the homogeneous
solution is the unique absolute minimizer of the energy when the stored-energy density
is compressible neo-Hookean (see (6.2)). We also consider an annulus composed of two
distinct compressible neo-Hookean materials and show that, for small radial boundary dis-
placements, the resulting radial minimizer is the unique absolute minimizer of the energy.
‘We note that a similar analysis will work for an annulus composed of many different layers
that are not necessarily compressible neo-Hookean. In §7 we briefly mention an alternative
approach to the uniqueness of minimizers duc to Gao, Neff, Roventa, and Thiel [24].

We note that it is not clear from our proofs whether or not a condition such as (1.2); or
(1.3) is necessary for the uniqueness of absolute minimizers. However, we do observe that
our results together with the construction of two (or more) equilibrium solutions with equal
energy, such as occurs in the buckling of a rectangular rod (see, e.g., [5S0]) or the twisting
of an annulus (see, e.g., [44]), implies that neither solution can satisfy (1.2); or (1.3). See
Remarks 4.4, 6.1, and 6.4.

Most of the prior literature on uniqueness in finite elasticity considers the uniqueness
of equilibrium solutions rather than energy minimizers. For example, results of Gurtin and
Spector [31] imply that there is at most one solution of the equilibrium equations that lies
in any convex set where the second variation of the energy is strictly positive. Knops and
Stuart [37] (also see Bevan [9] and Taheri [59]) have shown that, for a star-shaped body, a
homogeneous deformation is the unique smooth equilibrium solution that satisfies a homo-
gencous pure-displacement boundary condition whenever the energy is strictly quasiconvex
at that deformation and globally rank-one convex.

Alternatively, there are a number of results that establish the nonuniqueness of equi-
librium solutions for compressible materials.> For example, Post and Sivaloganathan [44]
(verifying a conjecture of John [33,34]) proved that there are (at least) a countably infinite
number of equilibrium solutions for certain pure-displacement problems for an annulus.
Antman [1] has shown that, for the pure-traction problem, a thick spherical shell without
loads has a second equilibrium solution corresponding to an everted deformation. Simp-
son and Spector [50] have proven that, in addition to the homogeneous equilibrium solu-
tion, there are indeed two distinct buckled equilibrium solutions for certain 2-dimensional
isotropic bars subject to uniaxial compression.

We note that there is an interesting result of Spadaro [54] for the pure-displacement
problem in 2-dimensions for constitutive relations of the form (1.1) with n = 2. Spadaro
showed that there must be at least two absolute minimizers of the energy to a certain
boundary-value problem when the body is a disk. However (as he notes), his construction is
not compatible with finite elasticity, since it requires negative Jacobians.

Finally, we mention some interesting open problems suggested by our analysis. Firstly,
we have not considered incompressible elastic bodies, however, we suspect that results sim-
ilar to ours should hold. A good place to start would be the results of Zhang [63], which
were established for such bodies. Secondly, we have only considered dead loads. A unique-
ness result for live loads would be of interest. Here one might want to look at [13,43,46,

2 Our hypotheses on the stored-energy differs from that in [34]. See Remark 5.4.

3 For interesting examples of nonuniqueness for both compressible and incompressible materials see, e.g.,
[3, 8§91, [14, §5.8], [1,8,29-31,44,45], and the references therein.
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551, [14, §2.7], or [48, §13.3]. Lastly, it would be of interest to extend John’s [34] uniqueness
result (as well as Zhang’s [63]) for the displacement problem to the mixed and traction prob-
lems. Our initial thought was that the Geometric Rigidity Theory of Friesecke, James, and
Miiller [23] (see, also, Kohn [36] and Conti and Schweizer [17]) might be useful for such
an analysis, however, one of the referees of this paper suggested that a technique similar to
that of Kristensen and Taheri [38] as well as the paper of Fefferman and Stein [22] could
also prove helpful.

2 Preliminaries; The Nonlinear Problem
2.1 Preliminaries

We consider a body that for convenience we identify with the region  C R", n =2 orn =3,
that it occupies in a fixed reference configuration. We assume that % # o is a connected,
bounded, open set whose boundary, d.4, is Lipschitz4 (see, e.g., [21]). A deformation of B
is a mapping that lies in the space

Def:= {uc W' (#;R") : detVu > 0 a.e.},

where detF denotes the determinant of F € Lin, (the space of linear maps from R” into
R") and for 1 < p < oo, WP (%;R") denotes the usual Sobolev space of (Lebesgue) mea-
surable (vector-valued) functions u € L”(%;R") whose distributional derivative, Vu, is also
contained in L”. We write 6; j for the Kronecker delta: thus,

0 ifi#£j

Gij = e

1 ifi=j.
We assume that the body is composed of a hyperelastic material whose stored-energy
density W : & x Lin, — [0,0] with x — W (x, F) (Lebesgue) measurable’ for every F € Lin,,.
W (x,Vu(x)) gives the elastic energy stored at almost every point x € % of a deformation

u € Def. We assume that the response of the material is invariant under a change in observer
and hence that, for a.e. x € A,

W(x,QF) =W (x,F) forevery F € Lin; and Q € Orth’, (2.1)

where Lin], denotes those F € Lin, with detF > 0 and Orth,; denotes those Q € Lin;; that
satisfy QlQ=171¢ Lin denotes the identity, i.c, Ia = a for all a € R").
We further assume that, for a.e. x € %,

F s W(x,F) € C(Liny,; [0,00]) N C! (Lin ;RZ),
lim W(x,F)= lim W(x,F) = oo,
|F|—o0 detF—0'!
W(x,F) = 4o ifandonlyif detF <0,

where R™ := [0, ). The (Piola-Kirchhoff) stress is then the derivative

) —
S(x,F) := ﬁW(X,F) : % x Lin, — Liny,

for a.e. x € A. We call the body homogeneous if the stored-energy function W is indepen-
dent of x. We call the reference configuration stress free if, for a.e. x € 2, S(x,I) = 0.

4 This assumption allows for a piecewise C' boundary, for example, a rectangle.
5 1In particular, the stored-energy density may therefore be piecewise continuous.
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2.2 The Nonlinear Problem

We assume the body is subject to dead loads. We take
0% =7U.7 with Z and .7 relatively open and ¥ N.¥ = @.

If 2 # @ we assume that a function d € C(Z;R") is prescribed; d will give the deformation
of 2.1f ¥ # & we assume that a function s € L' (.#;R") is prescribed; for " '-a.e. x €
7, s(x) will give the surface force (per unit area, when n = 3, and per unit length, when
n = 2) exerted on the body, at the point x, by its environment. Finally, we suppose that a
function b € L' (%;R") is prescribed; for a.e. x € 4, b(x) will give the body force (per unit
volume, when n = 3, and per unit area, when n = 2) exerted on the body, at the point x, by its
environment. Here, and in the sequel, #7* denotes k-dimensional Hausdorff measure. The
set of admissible deformations will be denoted by

of = {u € DefNW'"(B;R")NC(%;R") :u=don Z}.

Remark 2.1 A result of Vodop'yanov and Gol’dshtein [61] (see, also, [58, Theorem 4]) im-
plies that each u € W'"(%;R") with strictly positive Jacobian has a continuous represen-
tative. Thus, discontinuities such as cavitation (see, e.g., Ball [4]) are not allowed in this
manuscript.

The fotal energy E of a deformation u € <7 is defined by

E(u) := [Z {W (x,Vu(x)) —b(x) u(x)} dx — /ys(x) u(x)dsgn (2.2)

Under suitable additional hypotheses on W one might hope to show that any u that is a
minimizer (local in an appropriate topology or global) of E has first variation zero, i.e.,

0 :/ [S(X7Vu(x)) : Vw(x) — b(x) w(x)} dx—/ s(x)-w(x)ds"! (2.3)
# &
for all variations w € Var, where
Var := {w € W' (Z;R")NC(%;R") :w=0o0n 2},

F: G :=tr(FGT), trM denotes the trace of M € Lin,, and MT denotes its transpose.
Moreover, one would then want to show that w is a classical solution of the equations of
equilibrium, that is,° u € C?(#; R")NC' (%;R") N .of satisfies

DivS(x,Vu(x)) +b(x) =0 forxc % (2.4)
and the traction boundary conditions
S(x,Vu(x))n(x) =s(x) forxe.”. (2.5)

Unfortunately, such results’ have not been obtained for arbitrary minimizers. In general, in
this manuscript we will therefore assume that one or more solutions of (2.3) are given.

6 If.¥ — @, then u € C*(%;R") N « suffices.

7 In general, one can only prove that a minimizer is a weak solution of alternative forms of the equilib-
rium equations. See [5, Theorem 2.4] and the references therein. However, Lemma 2.9 shows that additional
hypotheses may imply that a minimizer is in fact a weak equilibrium solution.
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Remark 2.2 There are a number of well-known classical equilibrium solutions that are of
interest. Among these are:

1. Homogeneous solutions (see Remarks 2.7 and 4.8, Proposition 4.7, and §6.2);

2. Solutions obtained using the implicit function theorem (see Remark 5.2); and

3. Radial solutions when the body, in its reference configuration, is a disk, an annulus, a
ball, or a thick spherical shell (see §6.1 and §6.3).

Definition 2.3 We say that u. € & is a weak equilibrium solution if E (ue) < oo,

x> S(x,Vue(x)) € L" (%;Lin,), s —, (2.6)
n—
u, satisfies (2.3) for all w € Var, and if ¥ = &,
/ [u(x) —x]dx =0. 2.7
B

If 2 = 0% we will call u, a weak solution of the (pure) displacement problem. If ¥ = 0%
we will call u, a weak solution of the (pure) traction problem. Otherwise, we will refer to
such a u, as a weak solution of the (genuine) mixed problem.

Remark 2.4 When .¥ = 9% any translation of a weak equilibrium solution u. will satisfy
both (2.3) and (2.6). Equation (2.7) eliminates this nonuniqueness.

Remark 2.5 Our assumption that S € L" is, in general, more stringent than expected for
an absolute minimizer u € W' of E. However, it is necessitated by (2.3) which requires
S : Vw to be integrable for w € Var C Wi As will become evident, our conditions for
uniqueness, ¢.g., (4.6) and (4.7), may sometimes require a weak equilibrium solution ue to
satisfy ue € W1 (%;R"). See Remark 4.6.

Remark 2.6 Any classical solution of (2.4) and (2.5) is also a weak equilibrium solution.

Remark 2.7 Let the body be homogeneous and 2 # @. Fix F, € Lin;, a € R”, and define
Ue(x) := Fex +a for all x € 4. Then u.(x) = d(x) :=Fex+aforallxc 2. If & # @
assume, in addition, that s(x) := S(F.)n(x) for " !-a.e. x € .#, where, for such x, n(x)
denotes the outward unit normal to the boundary. Then u. is an admissible deformation
that satisfies both the equilibrium equations (2.4) (with b = 0) and the traction boundary
conditions (2.5); thus u, is a classical equilibrium solution.

Although it is not known if an arbitrary minimizer of the energy is a solution of the equi-
librium equations, it will be if the mapping happens to satisfy certain additional conditions.
In order to illustrate this we first formally define what we mean by a local minimizer.

Definition 2.8 Let uy, € o7. We say that uy, is a weak relative minimizer® of the energy E
provided that there exists a § > 0 such that

E(un) <E(um+w)

for all variations w € VarNW!=(2:R") that satisty ||W||;=(s) + || VW||1(5) < .

8 See, e.g., Del Piero and Rizzoni [19] and the references therein for results concerning weak relative min-
imizers in Elasticity. See Grabovsky and Mengesha [25,26] for results concerning the relationship between
such minimizers and strong relative minimizers, although not for Elasticity.
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The next lemma then illustrates a circumstance where such a uy, does indeed satisfy the
equilibrium equations. The proof follows from the mean-value theorem together with the
bounded convergence theorem (see, e.g., Ball [5, §2.4] or [18, §3.4.2]).

Lemma 2.9 Letuy, € o7 N\W'=(%;R") be a weak relative minimizer of E that satisfies
detVu > € a.e. 2.8)
for some € > 0. Suppose, in addition, that either
S € C(# xLin)) or 8 is bounded on compact subsets of % x Lin], . (2.9)

Then uy, is a weak equilibrium solution.

3 Uniform Polyconvexity

Let n =2 or n = 3. Define

5’2 = Linz, 53 = Lin3 X Lin3,

& :=Linj, & :=Linj xLinj.

We assume that the stored-energy density is uniformly polyconvex,® that is, there is a con-
stant p > n and functions ® : & — R~ and @) : B x & x R™ = R, R™ := (0,00), that
satisfy, for all F € Lin™ and a.e. x € 4%,

& (x,F,detF ifn=2.
W<X»F)=w(X)IF|"+ 3(X’ detF), e 3.1)
P ®0O)(x,F,cof F,detF), ifn=3,
where |F| := VF: F,

I. @€ L”(%A) satisfies w > o, for some constant @, > 0;
. x— @ (x,M, ) is measurable for every M € &, and A > 0; and, for a.e. x € 4,
I (M, 1) > @ (x,M,2) is convex on its domain and differentiable on & x R”.

Also, if the body is homogeneous we assume that both ® = @, and ") are independent of
x. Here, and in the sequel, cof F € Lin, denotes the tensor of cofactors of F € Lin;; thus,

cof F = (detF)F~ T forall F € Lin .

In general, invariance under a change in observer, (2.1), does not imply that the function
@) must satisfy!”
o™ (x,QM,1) = @ (x,M,1) foreveryM € & ,Q€Orth,,AcR",  (3.2)
and a.e. x € A. In fact, ") is not uniquely determined by (3.1) (see, e.g., [18, p. 158]). A
particular choice of @) may satisfy (3.2), while another does not. However, a recent result
of Silhavy [49] identifies a particular &) that satisfies (3.2). In §5.2 we will have occasion
to require that this @ be used in (3.1).

9 This terminology for (3.1) has previously been used in [52].
10 For K € Lin and M = (F,A) € &3 we write KM := (KF,KA).
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Let n = 2. For such stored-energy functions the Piola-Kirchhoff stress is given by
S(x,F) = o(x)|F|”*F +B(x,F) + A(x,F) cof F
for a.e. x € 2 and every F € Linj, where

0@ (x,F,A)

0PV (x,F 1)
5F A(x,F):=

Bl = A—detF o

(3.3)

A=detF

Let n = 3. For stored-energy functions that satisfy (3.1), it follows that the Piola-
Kirchhoff stress satisfies, for a.e. x € %, every F € Lin§ ,and every H € Lins,

S(x,F):H=H: [CO(X)|F|F72F+B(X,F) +A(X,F)cofF] +D(x,F): K(F)[H], (3.4

where
0B (x,F,A, 1) d®)(x,F,A, detF)
B(x,F) := — Qo A:COfF, D(x,F) := IA )
A=detF A=cofF
G)(x,F,cofF, A d(cof F
A(x,F) = ( I ) , K(F)[H]:= (dF )[H]
A=detF 3.5)

4 Uniqueness of Minimizers
4.1 Equilibrium Solutions

In this subsection we consider the displacement, traction, and mixed problems and obtain a
uniqueness result that is valid for all of them. For the pure-displacement problem & = 0.4,
Var = WOI’”(,%’; R") OC(@; R"™), and we have the following identities (see, e.g., [3] or [42,
pp. 28-31]), forall z € W' (2;R") and w € W, " (%;R"),

/ Vz: cof Vwdx = 0, / det Vwdx = 0. 4.1

For the mixed and traction problems (4.1)1 is satisfied by all w € Var and z € Trac,, where!!
e o J ZEW(BRY s z=00n 7} if.7 %0,
Wl R) ity -0z,

i.e., those mappings that are equal to zero on the portion of the boundary where dead-load
tractions are prescribed.

Lemma 4.1 Assume that W is uniformly polyconvex. Let u. be a weak equilibrium solution.
Then, for any v € o/, z € Trac,, 0 € L”(%;[0,1]), and v eR (v =0if D # 05)

£ 26w+ [ 0P Va2 w0 + Lo vw ) ds
» 4.2)
+/ (x,Vue(x)) — v] deti(x)dx+5n;/ Xez(X) : cof Vw(x) dx,

!l The equality on the boundary is to be taken in the sense of trace.
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where W :=V — e, K, > 0 is given by Proposition A.1, and
Xe2(x) :=D(x, Vue(x)) + A (x, Vue (x) ) Vue (x) — Vz(x). 4.3)

Proof We prove the result when n = 3. The proof for n = 2 is similar. Suppose that W is
uniformly polyconvex. Let F,G € Linj and define H := G —F. For clarity of exposition we
suppress the x in our calculation. We note that the convexity of @B yields (for a.e. x € %)

23)(G) > @) (F) +B(F) : H+D(F) : [cof G — cof F] + A (F)[detG —detF], (4.4)

where 43(3)(G) = <’P(3)(G,cofG,detG). If we now multiply (A.1), witha =G and b =F,
by @/p and add the result to (4.4) we find, with the aid of (3.1)2, (3.4), (B.2), and (B.3),
that, for any o € [0, 1],

1 K,
F)+S(F):H+o( > [1-o][F" 2H?+LoH]
W(G) > W (F) +S(F) +w<2[ o] [F|P*H|* + > °l |> 4.5)

+D(F) : cof H+ A(F) (detH+F : cofH).

Next, let u. be a weak equilibrium solution, v € .27, and define w := v — u.. Suppose
that o € L*(%;[0, 1]). If we now take G = Vv(x), F = Vu.(x), and H = Vw(x) in (4.5)
and then integrate the result over % and subtract (4.1);, we conclude, with the aid of (2.2),
(2.3), and (4.3), that (4.2) is satisfied with v = 0. Finally, if 2 = d % then (4.2) follows upon
subtracting Vv times (4.1); from (4.2) with v = 0. O

We now make use of Lemma 4.1 in order to establish the uniqueness of an energy
minimizer subject to certain constraints. We first recall that a mapping u. € W' (%;RR") N
C(%:;R") is a weak equilibrium solution if detVu, > 0 a.e., u, is a weak solution of the
equations of equilibrium (2.4) (see (2.3) on p. 6), and u, satisfics u. =d on Z.

Theorem 4.2 (Uniqueness of Energy Minimizers) Assume that W is uniformly polycon-
vex. Let ue be a weak equilibrium solution.

(a) If n =2 suppose that v, satisfies, for some v € R (v =01if 9 # dPB) and a.e. x € B,
|A (%, Vue(x)) — v| < w(x)|Vue(x)|p_2. (4.6)

(b) If n = 3 suppose that u. satisfies, for some z € Trac,, V€ R (v =0 if 9 # d%) and
a.e.x € 4,

212 () + Bp|A (x, Vue(x)) — v||Vue(x)| < o(x)|Vue (x) [P 2. (C%))

Then v, is an absolute minimizer of E. Moreover, if, in addition, (4.6) or (4.7) is a strict
inequality almost everywhere, then . is the unique absolute minimizer of E. Further, there
are no other weak equilibrium solutions that satisfy (4.6) or (4.7) with strict inequality
almost everywhere. Here Ig 4 is the largest principal stretch of Xe, given by (4.3), K, is
given by Proposition A.1, and

] 1/(p-2)
. 4.8)

_ 2|
=303 |,

Remark 4.3 We observe that Theorem 4.2 does not require the body to be either homoge-
neous or isotropic. In particular, (4.6) and (4.7) apply to heterogeneous materials such as
composites. In Section §6.3 we construct an example, in 2-dimensions, of a simple compos-
ite that has a unique solution for certain boundary values.
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Remark 4.4 1t is not evident from our proof that the failure of (4.6) or (4.7) necessitates the
existence of more than one absolute minimizer of E. However, the example in §6.2 indicates
that the failure of (4.6) might lead to multiple equilibrium solutions. See Remark 6.4. In
addition, in any problem in which one can show that two weak solutions of the equilibrium
equations, which have the same energy, do indeed exist, one can immediately conclude that
both solutions fail to satisfy (4.6) or (4.7). See Remark 6.1.

Proof We will prove the result for the pure-displacement problem. The result for the mixed
and traction problems will follow from the same calculations with v = 0. We first show
that E(v) > E(u,) for all v € 7. Fix z € Trac, and v € R. We first note that, in view of
Lemma 4.1, it suffices to show that there exists a measurable function ¢ : Z — [0,1] such
that, for every H € Lin, and a.e. x € 4,

1-— K,O
o[H|? %WueV’_z + L2 HP2] (A - v)detH + 8,3 (Xe‘z : cofH) >0. (4.9)
p

If n =2 then (4.9) follows from (4.6), Hadamard’s inequality:
2/ detH] < [HP,

and the choice 0 =0. If n = p = 3 then (4.9) follows from (4.7), (4.8), Hadamard’s inequality
(see, e.g., [53, p. 408)):
3%/2|detH| < [H]?,

the cofactor inequality (B.5), and the choice
|A (x,Vue(x)) — V|
CL)(X) K3 \/§ -

Now assume that n =3 and p > 3. Then Hadamard’s inequality and (B.5) reduce (4.9) to
showing that there exists a measurable function o : Z — [0, 1] such that, for every H € Lin3
andag.e. x € A,

o(x) =

(1 _G) |V“e|p72+ KPO-|H|p72 _ |A —V|

2 p 33/2

H| -1, >0, (4.10)

where I¢, > 0 is the largest principal stretch of Xe , given by (4.3).

Before we determine o such that (4.7) implies (4.10), we first consider the implications
of 0(x,) = 0 at some X, € Z. We note that (4.10) with o(x,) = 0 is satisfied for every
H € Lin;z if and only if

]A (X0, Vue(x,) ) — v’ =0 and 203 4(X%o) < @(Xo)| Ve (Xo0)|7 2.

‘We therefore conclude that:

(i) If|A(x0,Vue(Xo)) — V| = 0 at some x, € %, then (4.7) yields (4.10) with 6(x,) = 0.
(i) If |A (X0, Vue(Xo)) — v| # 0 for some x, € 4, then o(x,) # 0.

Next, since ®(x) > @, > 0 and detVu, > 0 a.e., we can fix x, € # and assume that
O (Xo)|Vue(xo)| > 0, |A (%0, Vue(Xo)) — v| > 0, and (hence) 6(x,) € (0,1]. (4.11)
Define 7 := |H| > 0. Then (4.10) can be viewed as

f(t):==at’ 2 —bt+¢>0 forallr >0, (4.12)
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where, in view of (4.7), ¢ = f(0) >0, b > 0, and a > 0 (since o > 0). A necessary and
sufficient condition for (4.12) to be satisfied is that f be nonnegative at the unique #,, that
satisfies f’(tn) =0, i.e., a(p— 2)r{,’f3 = b. If we substitute f,,, into (4.12) we find that (4.10)

is a consequence of
1/(p=3)
p—3 b
=c—b| ——= >0
flom) = <p—2> [a(p—Z)} -

or, equivalently,

_ vlp—2 1/(p—3)
205, + 8, [%} < w|Vue|p_2(1—0'), 4.13)
where
. 2(p—3) {E} 1/(11*3). @1
P [33/2([7 B 2)] (p=2)/(r=3) | K,
Next, define

o|Vu. |2 21,

.: _ 2L, + (p—3) 0| Vu P2
= -DoNul

>0, -0
(p—2)@[Vu[r2

>0,

where o € (0,1) follow from Ig, > 0, (4.7), and (4.11). With this choice of ¢ inequality
(4.13) becomes

(p=2)|Vuelr A =v[P 2V 2L, + (p—3) 0| Vue| 2
o Vu |2 2L, B (r=2) ’

21, + 5, [

which, after some algebra, reduces to

(p—2) (p=3)/(p—2)
Riee=]

However, (4.8) and (4.14) yield

(p—2)"P2)|Vu,||A — V| < 0| Vu |2 — 215, (4.15)

(p_z)l/(pr) {@)M =B,

(p—3)

which shows that (4.15) and (4.7) are identical.

We next note that it is clear that if (4.6) or (4.7) is a strict inequality almost everywhere
then (4.2) and the above proof yield E(v) > E(u.) unless Vv = Vu, a.e. Since £ is open
and connected it follows that v =u. +a a.e. forsome a € R". If ¥ # &, thenue = v =d on
the nonempty, relatively open set &, while if 2 = &, then (see (2.7))

] (p—3)/(p—2)

/ﬁ}f(ue —v)dx=0.

In either case a = 0.

Finally, if we suppose that v, # u, is a weak equilibrium solution that satisfies (4.6) or
(4.7) with strict inequality almost everywhere (and with u, replaced by v,), then the above
argument yields E(ue) > E(Ve), which is a contradiction. O
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Remark 4.5 Suppose we replace the assumption that (M, A) — @) (x,M, 1) is (globally)
convex with the weaker assumption'? that, for a.e. x € 4,

(Me(x),detVue (X)) is a point of convexity of (M, 1) o (x,M,1), (4.16)

where M. (x) = Vue(x) if n =2 or M (x) = (Vue(x),cof Vue(x)) if n = 3. Then it is clear
from the proof of Theorem 4.2 that any weak equilibrium solution u, that satisfies (4.16) and
either (4.6) or (4.7) is an absolute minimizer of E. Theorem 4.2 therefore has implications
for stored-energies that admit phase transitions (see Ball and James [6] or, e.g., Grabovsky
and Truskinovsky [27] and the references therein); while one would not expect uniqueness
of minimizers for such constitutive relations, Theorem 4.2 yields conditions under which an
equilibrium solution is an absolute minimizer of the energy.

Remark 4.6 (a) Suppose that p = n and, for a.e. x,
|A(x,F)| > @(F), where @(F)— oo as [F| — oo. 4.17)

Then any admissible deformation u € o7 that satisfies (4.6) or (4.7) must have additional
regularity, i.e., u € W= (2;R").
(b) Suppose that p > n and, for a.e. X,

|[A(x,F)| > @(F), where ¢@(F)— o as detF—0". (4.18)
Then any u € & that satisfies (4.6) or (4.7) will satisfy, for some € > 0,
detVu(x) > ¢ fora.e.x€ A.

The next result, which is an immediate consequence of Remark 2.7 and Theorem 4.2,
shows that, for the genuine mixed problem on a homogeneous body with @) continuously
differentiable, the set of homogeneous deformations that satisfies (4.7) with strict inequality
and z = 0 or (4.6) with strict inequality is an open subset of Lin,,”.

Proposition 4.7 Let both 9 and . be nonempty. Assume that the body is homogeneous
and that W is uniformly polyconvex with @) continuously differentiable.

(a) If n =2 suppose that F. € Linj satisfies
A (Fe)| < a|Fe|” 2. (4.19)

(b) If n =3 suppose that F. € Linj satisfies
203+ Byl A(Fe)|[Fe| < @oFel?” 2 (4.20)

where I¢ is the largest principal stretch of Xe := D(Fe) + A (Fe)Fe.

Suppose further thatb =0, d is given by d(X) := Fex+a for some a € R" and all x € 9, and
s is given by s(x) :=S(Fe)n(x) for x € .7, where n(x) denotes the outward unit normal to the
boundary (for #"'-a.e. x € .%). Then the classical equilibrium solution u.(x) := Fex+a
is the unique absolute minimizer of the energy E. Moreover, there does not exist a weak
equilibrium solution ve # u. that satisfies (4.19) or (4.20) with F. replaced by Vve(X).

12 We say that A is a point of convexity of the differentiable, real-valued function X — ¢ (X) whenever the
graph of ¢ is (globally) above its tangent plane at A, i.e., $(X) > ¢(A) + V@ (A) - (X—A) forall X.
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Remark 4.8 Proposition 4.7 can be viewed as a simple analogue, for the mixed problem, of
the well-known result of Knops and Stuart [37]. Consider a homogeneous star-shaped body
7. Fix Fe € Lin,” and consider the pure-displacement problem: . = & with d(x) := Fex
for x € d.7. Then results in [37] show that, in the absence of body forces, there is at most one
deformation ue € C2(.7;R") NC! (7 ;R") N.o/ that satisfies the equilibrium equations (2.4)
provided that the stored-energy function W is strictly quasiconvex at F, and (globally) rank-
one convex. Similarly, Bevan [9] has shown that there is at most one weak relative minimizer
uy, € C'(T;R")N o for certain stored-energy functions W (F) = ¥W(F) + h(detF) with &
convex, W strictly quasiconvex, and both functions having appropriate growth.

4.2 Weak Relative Minimizers

We now assume that we are given an admissible deformation uy, that is a weak relative
minimizer (see Definition 2.8) rather than an equilibrium solution. Then the additional hy-
potheses of Lemma 2.9 allow us to conclude that uy, is a weak equilibrium solution and so
we can then apply the results from the previous subsection. The next result follows directly
from Lemma 2.9 and Theorem 4.2.

Proposition 4.9 Let uy, € o7 N W' (%;R") be a weak relative minimizer of E that satisfies
(2.8) and either (4.6) or (4.7) with strict inequality on a set of positive measure. Suppose,
in addition, that S satisfies (2.9). Then uy, is a weak equilibrium solution that is the unique
absolute minimizer of E.

Remark 4.6 together with the above proposition then gives us the following result.

Corollary 4.10 Assume that p = n. Let uy, € o7 be a weak relative minimizer of E that sat-
isfies (4.6) or (4.7) with strict inequality on a set of positive measure. Suppose, in addition,
that S satisfies (2.9) and that A satisfies (4.17) and (4.18). Then uy, is a weak equilibrium
solution that is the unique absolute minimizer of E.

5 Further results for the Displacement Problem: a Theorem of Zhang and a Theorem
of John

5.1 A Theorem of Zhang

We now present a result of Zhang [63] who showed that, in 3-dimensions for the pure-
displacement problem, there is at most one equilibrium solution u, that is uniformly close,
inwhe to0a given homogeneous deformation and, moreover, that u. must then be the min-
imizer of the energy obtained by both the direct method of the calculus of variations and the
implicit function theorem.

Theorem 5.1 (Zhang [63]) Suppose 2 = 0B and that W is homogeneous and uniformly
polyconvex." Fix F, € Lin™. Assume that (M, 1) — ®") (M, 1) is continuously differen-
tiable at (Fo,detF,) if n="2 or (F,,cof Fy,detF,) if n = 3. Then there existsa & = 6 (F,) >0
such that any weak equilibrium solution u. that satisfies

[Vue —Fo |,y < & (5.1)

(#)

'3 Zhang [63] instead assumes that W (F) = a|F|? + b| cof F|¢ + ®(F.cof F, detF) witha > 0,5 >0, p > 2,
q>p/(p—1),and @ convex.
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is a strict absolute minimizer of E. Consequently, there is at most one weak equilibrium
solution that satisfies (5.1).

Remark 5.2 The main difficulty is in showing that there are any weak equilibrium solutions,
especially solutions that satisfy (5.1). However, in this instance and with suitable additional
assumptions one can make use of the implicit function theorem to get classical solutions of
the equations of equilibrium (2.4) (see Zhang [63]). In particular, if one assumes that the
boundary is sufficiently smooth, and one replaces b with €b and the boundary condition
u =d on 0% with
u(x) =F,x+ed(x) forxed%,

where b and d are sufficiently smooth, then results of Valent [60] (sce, also, [14, Chapter 6]
or [48, §20.9]) yield the existence of a classical solution of the equilibrium equations for
small €.

Proof of Theorem 5.1 We prove the result when n = 3. The proof for n = 2 is similar.
For clarity of exposition, we suppress the variable x as well as the “almost every x” that
should accompany most of our inequalities. Fix F, € Lin”™ and assume the hypotheses of
the theorem. We will show that, if § < %|FO| in (5.1), then the right-hand side of (4.7) is
bounded away from zero, while the left-hand side of (4.7) goes to zero as § approaches
zero. This will allow us to apply Theorem 4.2 to obtain the desired uniqueness.
Define
o R
T T2 By ol 1]

where f3, is given by (4.8). Then in view of the continuity of D and A at F, there exists a
0 = 6(F,, €) > 0 such that, for G € Linj,

IG-Fo| <6 — [A(G)—A(F)|<e, [D(G)—D(F,)|<e. (53)

5.2)

Without loss of generality, we assume that
28 < |F,|. 54

Let ue be a weak equilibrium solution that satisfies (5.1) with d given in (5.3)—(5.4). We
note that by the triangle inequality, (5.1), and (5.4)

2|F,| < 2|F, — Vue| + 2|Vue| < |Fo| +2|Vug|,
2|Vue| < 2|Vue — Fo| 4 2|F,| < 3|F,|, (5.5)

and hence, in particular,
@o|Fo|P 2 < 0,27 2|V |P 2. (5.6)

Next, by the triangle inequality, (5.1), (5.3) with G = Vu,, and (5.5),
|[D(Vue) + A (Vue)Vu] — [D(Fy) + A (Fo)Vu
< [D(Vue) — D(Fo) | + |[A(Vue) — A (Fo) | Vue | < e(1+2[F,|).

5.7

Finally, define
v:=A(F,), z(x) ;= D(Fo)x+ A (Fo)ue(x) (5.8)

and note that (5.7); is the norm of X, ; given by (4.3). Therefore, (5.1), (5.3) with G = Vue,
(5.5), (5.7), and (5.8), together with (B.5) (I¢; < |Xe.|), yield

215+ Bp|A(Vue) — V|| Vue| < 2€[(2+4 B,) [Fo| +1]. (5.9)
The desired uniqueness now follows (5.2), (5.6), (5.9), and Theorem 4.2. 0
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5.2 A Theorem of John

We next show that our results also imply a result of John [34] who showed that, in 3-
dimensions, there is at most one solution of the pure-displacement problem with small strain
E:= }[(Vu)"Vu-1].

We first recall that §ilhav§/ [49] identifies a particular @™ that satisfies (see (3.2))

o™ (QM, 1) = @™ (M,A) forevery M€ &, Q€ Orth;, L € R™, (5.10)

when W is homogeneous. Suppose that this @ is used in (3.1). It follows from (5.10) that
the derivatives of @™ (see (3.3) and (3.5)32) satisfy, for every F € Lin; and Q € Orth},

A(QF) =A(F),  D(QF) = QD(F).

Standard representation theorems (see, e.g., [ 14, Theorems 3.3-1 and 4.2-1] or [28, §25, §27]
and [48, Theorem 8.3.3]) then yield functions'* A* : Psym,, — R and D* : Psym; — Sym;
that satisfy, for every F € Lin],

A(F)=A*(F'F), D(F)=FD"(F'F). (5.11)
John’s theorem then follows from (5.11) and our proof of Zhang’s thecorem.

Theorem 5.3 (John [34]) Let 2 = 0.8 and let W be homogeneous and uniformly polycon-
vex. Suppose that A satisfies (5.11)1 with A* continuous at 1. If n = 3 suppose, in addition,
that D satisfies (5.11), and that D* is continuous at T with D* (1) = &1 for some € € R. Then
there exists a 6 > 0 such that there is at most one weak equilibrium solution u. that satisfies

T
[(Vue) ' Vue —1| . ) < 8. (5.12)
Moreover, if such a . exists it is a strict absolute minimizer of E.

Remark 5.4 The corresponding theorem in [34] does not assume polyconvexity.! Instead,
John assumes that the stored-energy function W € C3(Lin3;R) satisfies'®

W(F) = u|E* + JA(rE)* + O(|E[?), (5.13)

where (1 > 0 and 2 > 0 denote the Lamé moduli and E := 1[FTF —1]. The proof in [34]
makes usc of the properties of BMO developed by John and Nirenberg [35] rather than the
elementary techniques used herein.

Remark 5.5 Let n =3 and suppose that W is isotropic. Then results of Silhavy [49] yield
a @) that is isotropic. It follows that the corresponding D is isotropic and hence, by the
representation theorem for isotropic tensor-valued functions, D(F) = ¢; (B)I+ ¢»(B)B +
¢3(B)B?, where B := FFT and ¢; : Psym; — R. Thus, D*(I) = D(I) = &I follows from
isotropy. Whether or not W is isotropic, one can show that the assumption S(I) = 0, which
is implicit in (5.13), yields B(I) — D(I) = nI for some 1 € R.

14 We write Sym,, for those H € Lin,, that satisfy H — H'; Psym,, denotes those H € Sym, that are strictly
positive definite.

15 The proof in [34, Eqns. (8)—(11)] is also not compatible with W (F) = +oco when detF = 0.

16 More generally, it is not difficult to show that the results in [34] are valid for any W € C3(Lin,;R) with
S(I) = 0 and C(I) strongly elliptic, where C(F) := dS/dF here denotes the elasticity tensor. In particular,
for a W that satisfies (5.13), 4 > 0 and u + A > 0 suffice. See, e.g., [14, Theorem 4.10.2] for examples of
polyconvex energies that are consistent with (5.13).
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Proof of Theorem 5.3 We prove the result when n = 3. The proof for n =2 is similar. Assume

the hypotheses of the theorem. We will show that, if § < % in (5.12), then the right-hand

side of (4.7) is bounded away from zero, while the left-hand side of (4.7) goes to zero as &

approaches zero. This will allow us to once again apply Theorem 4.2 to obtain the desired
uniqueness.

Define
eim %o
2(4+Bp)’

where fB, is given by (4.8). Then, in view of the continuity of A* and D* at I and the fact
that D*(I) = EL there exists a 6 = 8(€) > 0 such that, for C € Psyms,

(5.14)

[C-I|<é = JA"(C)—A*(D)|<e, |D(C)—E&I<e. (5.15)
Without loss of generality, we assume that
26 < 1. (5.16)

Let u, be a weak equilibrium solution that satisfies (5.12) with é given in (5.15)—(5.16).
We note that, by the triangle inequality, (5.12), (5.16), and the Cauchy-Schwarz inequality,

2V/3 = 2[1) < 21— (Vue) "V | +2|(Vue) "Vue | < 1+2|Vu |,
[Vue|> =1I: [(Vue) " Vue —1+1] < V3|(Vue) "Vu, — 1| +3 < 4, (5.17)

and hence, in particular,

@, < | V| 2. (5.18)

Next, by the triangle inequality, (5.12), (5.15) with C = (Vue)TVue, and (5.17),

’ [VuD* (V) TVae) + A* (V) TVue) V| — [EVa, + A* (1) V]

(5.19)

< |Vue [0 (Vue) ") — €1+ | [4" ((Vue) TVue) — A” (D] Vu | < de.

Finally, define
vi=A*1), z(x) := [E+ A (D) ]ue(x) (5.20)

and note that, in view of (5.11) and the fact that D*(I) = &L, (5.19); is the norm of X,
given by (4.3). Then (5.11), (5.12), (5.15) with C = (Vu,)TVu,, (5.17), (5.19), and (5.20),
together with (B.5) (Ie; < |Xezl|), yield

2134+ Bp|A(Vue) — v||Vue| < 2e(4+B,). (5.21)

The desired uniqueness now follows (5.14), (5.18), (5.21), and Theorem 4.2. 0
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6 Examples
6.1 An Application of Theorem 5.1 to a Thick Spherical Shell or an Annulus

Fix b >a > 0and let 8 := {x € R" : a < |x| < b}, where n =2 or n = 3. Suppose that
u is prescribed on both the inner and outer boundary, viz., u(x) = ax when |x| = a and
u(x) = Bx when |x| = b, where 0 < aa < Bb. Then for a large class of homogeneous,
isotropic, stored-energy functions it has been shown (see, e.g., [4,51,56,57]) that there is
a unique minimizer of the energy, X — um, (X, @, B), among all radial deformations, i.c.,
deformations that satisfy

u(x, o, B) = Mx, R:=|x| ©6.1)

for some absolutely continuous, strictly increasing function R — r(R, a, ). Moreover, it
turns out that up, is a classical solution of the equilibrium equations. In addition, the con-
tinuous dependence of a solution (and its derivative) of a second-order ordinary differential
equation on its initial data can be used to show that

Uy, (@, B,X) = ax uniformly in C' (%;R?) as f — a.

Thus, such solutions satisfy (5.1) with F, = oI and hence Theorem 5.1 implies that when
the radial minimizer of the energy, uy,,, is sufficiently close (in CH to ax, it is the unique
absolute minimizer of the energy among all admissible deformations, not just the radial
ones.

Remark 6.1 For compressible neo-Hookean materials (see (6.2)) in 2-dimensions, more
general results have been obtained in [32] and [53]. Both papers show that the radial mini-
mizer, Uy, is the unique absolute minimizer of the energy among admissible deformations,
whether or not u; is close to a homogeneous deformation. See, e.g., [10,33,34,44,47] for
additional nonradial, equilibrium solutions to this problem. Each of the nonradial solutions
in these papers generates a distinct mirror image solution with the same energy. Therefore,
Theorem 4.2 implies that the nonradial solutions must violate (4.6).

6.2 Uniqueness for a Rectangle in Uniaxial Tension

Let n = 2. In this subsection we restrict our attention to compressible neo-Hookean materi-
als'7, i.e., constitutive relations of the form:

W (F) = % [F|>+h(detF),  S(F) = @,F+ 4 (detF)cofF, 6.2)
where @, > 0 denotes a constant and i € C2(R™; R”) satisfies
H)=-w,,  h'(1)>0, K >0, lim A(t) = +oo. (6.3)
1—0t

We will use Proposition 4.7 to construct two examples, one for a mixed problem and
one for a traction problem, of homogeneous equilibrium solutions that are each the unique

17 Blatz and Ko [11] showed that the experimental data of Bridgman [12], for certain solid rubbers, is
compatible with (6.2); with h(r) = 1133 see p- 238 and equation (50) (with f = 1) in [11].
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absolute minimizer of the energy when the stored-energy density is given by (6.2)—(6.3). In
both examples the deformation will be of the form, for some & > 0 and A > 0,

ue(x,y) := Fe m . Fe:= [g‘ ﬂ , (6.4)

which is a classical solution of the equilibrium equations. If u. also satisfies appropriate
boundary conditions, then Proposition 4.7 implies that u. is the unique absolute mini-
mizer of the energy whenever

W ()| < @,. 6.5)

Let the body, in its reference configuration, occupy the rectangle % := [~ X, X] x [~Y,Y]
for some X > 0and Y > 0. Fix A > 1 and consider the functional

&) = %(a2+12)+h(al),

which, up to a multiplicative constant, is the total energy of the body when it undergoes the

deformation (6.4). Our hypotheses on & imply that & € C>(R™;R”™) blows up at 0 and +oo
and hence that & achieves its infimum at one or more o > 0. Since

E'a) = oo+ Al (ad) =0, & () = @, + A*h" (o)) > 0, (6.6)
we conclude from the strict convexity of & that @ = a¢(A) is unique and satisfies (6.6);
(which is the condition that the sides of the rectangle, x = X, are free of tractions). For

future reference we note that that (6.6); implies that h'(a(A)A) = —@,0(1)/A and hence
that (6.5) will follow whenever

a(A) < A. ©6.7)

‘We now establish the following result.

Proposition 6.2 Fix A > 1, B:= (—X,X) x (=Y,Y) C R?, and

E(u) := /j; /j;W(Vu(x,y)) dxdy,

where W is given by (6.2)—(6.3). Then the unique absolute minimizer of E among deforma-
tions u € of with

d(x,~Y) = [_‘iﬂ d(x,Y) = [g‘ﬂ —X <x<X, 6.8)

is the homogeneous deformation ue given by (6.4) with o = a (1) given by (6.6)1. Moreover,
there are no other weak equilibrium solutions ve = Ve (x,y) that satisfy

W (detVve(x,y))| < @ fora.e. (x,y) € B.

Remark 6.3 Assumptions (6.2)—(6.3) are sufficient to apply the existence theory of Ball and
Murat [7]. Thus, their minimizer is ue.
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Proof of Proposition 6.2 1t is clear that u. € ¢ is a classical equilibrium solution that
satisfies the displacement boundary condition ue = d, where d is given by (6.8). Thus, as we
previously noted, all that we need to show is that (6.7) is satisfied.

If we substitute ¢ = a(A) into (6.6); and then differentiate with respect to A we find

that
dot W (o) + oA (al)

PR R Y R (69)
where o¢ = ¢¢(1). Consequently,
_,2d a7 20AK"(ad) -
6(2):=2 da [A} @+ A (ad) =9, (6.10)

where we have made use of (6.9), (6.6);, and (6.3)3. In addition, when A = 1 it follows that
o = 1; thus, (6.3); and (6.10) yicld 6(1) < 0, which together with (6.10) implies (6.7). 0O

Remark 6.4 If A € (0,1), then a unique @ = o¢(A) that satisfies (6.6); still exists, however,
in this case A < a(A) and hence |/ (aA)| > @,. Thus, for A € (0, 1), our results have no
implications concerning either the uniqueness of u. or whether or not u. is an absolute
minimizer of E. One might expect'® that for X small (or, equivalently, ¥ large) there would
be two buckled equilibrium solutions, each with lower energy than u.. Although one expects
these solutions to both be absolute minimizers of E, this has yet to be proven.

Next, instead of the displacement boundary condition on the top and bottom of the rect-
angle, y = +Y, we apply tractions. For the deformation u, (with o = (1) given by (6.6);)
we will specify

F (L) = @A+ a(A)H (Aa(R)) (6.11)

(the normal force per unit length applied at y = +Y). We first need to show that for each
Z > 0 there is a unique A = A(.%) > 1 that satisfies (6.11). We start by using (6.6); to
eliminate A’ (A ) from (6.11); thus,

F ) = @k (1 - [%r) with o = at(1). (6.12)

Next, in view of (6.10), (6.3), and the continuity of ", ot(1) /A is strictly decreasing in a
neighborhood of A = 1. Consequently, for every A, > 1 and sufficiently small,

a(h) _ a(e) _ o)

AT A 1
which together with (6.12) implies that .% (1) — +o as A — +co. We next differentiate
(6.12) with respect to A to conclude, with the aid of (6.10) and (6.13), that

L a1 [2]) 20 (4]0

=1 forall A > A,, (6.13)

for all A > 1. Thus, we can consider A as a function of .Z. Since .Z (1) = w, + /' (1) =0
it follows that for each .% > 0 there exists a unique A = A(%) > 1 that satisfies (6.11).
Equation (6.7) and the proof of Proposition 6.2 then yield:

18 A slight change in the boundary conditions at y = %L allows one to prove that buckled solutions exist.
See [50] and also [39, Chapter 10].
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Proposition 6.5 Let F >0, = (—X,X) x (-Y,Y) C R?, and

E(u) :=/_);/_);W(Vu(x,y))dxdy—9/_); [2(x,Y) +us(x,—Y)] dx,

where W is given by (6.2)—(6.3). Then the unique absolute minimizer of E among deforma-

tions u € o/ that satisfy
Y X
/ / u(x,y)dxdy =0
-vJ—x

is the homogeneous deformation u. given by (6.4), where o = (1) is given by (6.6); and
A = A(F) is the unique solution of (6.11). Moreover, there are no other weak equilibrium
solutions Ve = v¢(x,y) that satisfy

‘h/(dethe(x,y)H <, for ae. (x,y) €%

6.3 A Heterogenous Annulus
6.3.1 The Constitutive Relation, the Boundary-Value Problem; Existence of Minimizers

Let n = 2. We herein restrict our attention to a generalization of the compressible neo-
Hookean materials considered in the previous subsection, viz., constitutive relations of the
form:

W(x,F):¥|F|2+h(x,detF), S(x,F) = o(x)F + /' (x,detF)cofF,  (6.14)

where, for some constant @, > 0 and every ¢ > 0,
0>w,>0ae., o <L (A), x — h(x,t) is measurable, (6.15)
and for every T € (0,1) there exists a constant K; > 0 such that, for every 7 € [1,1/17],
h(x,t) <K, fora.e.x € A. (6.16)
In addition we assume that, for almost every x € %,

t— h(x,t) € CA(R™;RZ),  W'(x,1) >0, lim h(x,t) = +oo,
[—

5 52 (6.17)
K (x,detF) := 2 h 2.‘ R (%, detF) 1= —— h(x, A .
(x, detF) oA (x,2) A=detF’ (x, detF) A2 (x,2) A=detF
We now fix b >a > 0and a, B € R, with fb > aa, and consider the energy
E(u) ::/W(x,Vu(x))dx, A:={xeR*:a<|x| <b}, (6.18)
A

where W is given by (6.14); and satisfies (6.15)—(6.17). We consider minimizing £ among
admissible deformations u € .27 that satisfy the boundary conditions

u(x) =ox for x| =a, u(x) = Bx for |x| =b. (6.19)

A result of Miiller [40] or Zhang [62] immediately yields:
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Proposition 6.6 Let %8 = A. Then there exists a Uy, € </ that is an absolute minimizer of
E among those admissible deformations that satisfy (6.19). Furthermore, there also exists
an admissible radial deformation Wy, € < (see (6.1)) that is an absolute minimizer of the
energy among radial deformations that satisfy (6.19).

Proof Hypotheses (6.14), (6.15), and (6.17) imply that all except one of the required con-
ditions of [40, Theorem 5.1] and [62, Theorem 3.1] are satisfied. Thus, the existence of an
absolute minimizer follows, provided we exhibit an admissible deformation with finite en-
ergy. Here we make use of (6.16). An admissible deformation with finite energy is given by
(6.1) with

b—R
b—a

R_a]ﬁb: [Bb—aa]R_ (B—oa)ab

r(R,OC,ﬁ)Z=[ b_ b—a b—a

]Oca—!—[ , a<R<b.

Finally, the last statement of the proposition follows from the fact that the set of radial
deformations is a weakly closed subset of <7 (since it is a convex, closed subset of 7). 0O

6.3.2 A Simple Composite; Uniqueness of the Absolute Minimizer

In this subsection we take n = 2 and restrict our attention to a simple, two-phase body. Each
phase is assumed to be composed of a compressible neo-Hookean material. We take % = A,
the annulus of the previous subsection. Let ¢ € (a,b) and suppose that its inner portion,
a < |x| < ¢ (the minus side), is composed of one such material, while the outer portion,
¢ < |x| < b (the plus side), is composed of a second such material; thus

W, (F) = % [F2+ hi(detF),  S_(F) = o.F+H, (detF)cofF, (6.20)

where @_ >0 and @, > 0 denote constants and 1_,h, € C*(R™;R”) satisfy

(1) = -0, WL >0, tl_i}rg)l hyi(t) = +oo. 6.21)

The annulus can be viewed as a single generalized neo-Hookean body (see the previous
subsection) with

W(x,F):=W_(F) if|x| <c,  W(x,F):=W,(F) if x| >c. (6.22)

Instead, we will outline an alternate approach to this problem. Let y satisfy ota < yc < Bb.
Consider the energies

A_={x€A:a< x| <c},

Ei(ui7y) = /A:tW:‘:(Vl_li(x))dx7 Ap = {XEA:C<|X| <b}

and suppose that the deformations are subject to the boundary conditions
u (x)=ox for |x|=a, u(x)=7yx for [x|=¢, u'(x)=pBx for [x| =b (6.23)

Then, as in §6.1, there exist admissible radial deformations uy, (x, &, y) and u, (x,8,7)
that minimize £+ (among such deformations). Moreover, u,, and u;qr each satisfy the equi-

librium equations and the mappings (X, o, y) — uy, (X, o, y) and (x,B,7) — uy, (x,B,7) are
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each contained in C*. Next, for fixed o and B, define a one-parameter family of admissible
radial deformations of A:

w(xy) = u, (x,a,7) ifa<l|x[<c,
S u (x,B.y) ife<[x|<b.

It follows that, for each y € (aa/c,Bb/c), x — ur(X,7) satisfies the equilibrium equations
onA, UA_ and is continuous across the circle |x| = ¢. However, for arbitrary 7, the surface
traction on the inner boundary of A; may not be equal to the surface traction on the outer
boundary of A_.

Finally, consider the functional & € C!((aa/c, Bb/c)) defined by

E(y) = /A, W,(Vur(x,y))der/A Wi (Vue(x,7)) dx. (6.24)

In view of (6.20);, (6.24), and Jensen’s inequality'®

AU/ ][ h (detVa(x, 7)) dx > hy (][ det Vuy (x,7) dx), (6.25)
Ay Ax At

where Ay := area(Ay ). Note that the area of u;(A_) (u:(Ay)) goes to zero as yc \, ota
(yc /* Bb). Consequently, by (6.21)3, the right-hand side of (6.25) becomes infinite as y
approaches cither endpoint of (aa/c, Bb/c). Since & is continuous it must therefore have
an absolute minimizer ¥, = Y (&, B) € (a/c, Bb/c). Moreover, since (X, 7) — u,, (X, ®,7)
and (x,7) — uy, (x,B,7) are each C? (for each fixed o and B) and radial we can take the
derivative?” of & to conclude that

d&
0= d—(ym) :/ S_(Vue(X, %)) : Vuy(X, ¥im) dx
4 A (6.26)
+ A Sy (Vue(x,%m)) : Vuy(X, ¥in) dx,
JAy

where the prime here denotes the derivative with respect to . In order to simplify the right-
hand side of (6.26), we next differentiate (6.23) with respect to ¥ to arrive at

u(x,7) =0 for |x| =a, ul(x,y)=x for [x|=c, ul(x,7)=0 for [x|=b. (6.27)

We now observe that u,ﬁr each satisfy the equilibrium equations, i.e., DivS. = 0. This
together with (6.27), the identity DivSTu = S : Vu+u - DivS, and the divergence theorem
shows that (6.26) implies (cf. (2.3))

0=/ S (Vu(xgm))n xd# + [ S, (Vu(x,ym))n’ xd#),  (6.28)

x[=c [x|=c

where n* denotes the outward unit normal to A.. However, u, is radial and nT = —n—;
consequently, (6.28) reduces to

S (Vur(xX,%))n” =S (Vue(x, %in))n "~

19 The symbol § here denotes the integral of the indicated function divided by the area of the region of
integration.

20" At an arbitrary minimizer this is not possible due to the Jacobian becoming negative with an additive
variation. However, at a radial deformation this difficulty can be overcome. See, e.g., [4, §7.3], [S1, pp. 133-
135], or [56, Theorem 2.6.19] for details.
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and hence u, (-, ¥m) satisfies the equilibrium equations on all of A. We can now apply Theo-
rem 4.2 whenever u,(-, ) satisfies both of the inequalities:

B (detVu.(x, %)) — V| < 0_ foreveryx €A_,
|
B (6.29)
I, (detVuy(X, %)) — V| < @, foreveryx €A,
+

for some constant v € R. Therefore, if u;(-, %) satisfies (6.29), then u (-, Y ) is the unique
absolute minimizer of the energy and hence (-, ) is the function whose existence was
established in Proposition 6.6. Moreover, the absolute minimizer of the energy among all
admissible deformations is the same mapping as the absolute minimizer among radial de-
formations. In particular, we have the following uniqueness result.

Proposition 6.7 There exists an € > 0 such that for every a,3 € (1 —¢€,1+ €) the radial
equilibrium solution X — uy(X, Ym(ct,B)) is the unique absolute minimizer of the energy
(6.18) with W given by (6.20)—(6.22).

Proof We will first show that u(x) = x satisfies (6.29) and, hence, that it is the unique abso-
lute minimizer?! among deformations that satisfy the boundary conditions (6.19) with & =
B = 1. The uniform continuity of (x,a,y) — Vuy, (x,a,y) and (x,8,7) = Vu,, (x,8,7)
then will yield a neighborhood, 4", of (1,1,1) (¢ =1, B =1, and y= 1) such that (e, B,7) €
A implies that u, (-, a,y) and u,, (-, B, y) satisfy (6.29). Finally, we will prove that ¥, =
Ym(ct, B) is continuous at @ = § = 1 and hence that (a, 8, ¥m(B,@)) € .4, when o and f3
are sufficiently close to 1.

Consider @ = 8 = 1. In view of (6.20), and (6.21)1, S=(I) = 0. Thus, u(x,1) = x is an
equilibrium solution that satisfies (6.19). Define v := —min{®™, ® }. Then, by (6.21);,

W () —v|=0"—min{fo",0 } <o -0 <o,

W (H-vl=0 —-mn{o",0o }<o —-0o'<o
and hence u;(x, 1) = x satisfies (6.29). Consequently, by Theorem 4.2, u (X, ¥m) = X with
Ym = 1 is the unique absolute minimizer of E. Therefore, as previously stated, the uniform
continuity of Vuj; yields a neighborhood, .#", of (1,1,1) such that (e, B, y) € .4 implies
that ug; satisfy (6.29).

Finally, we claim that %, = ym(, ) is continuous at & = 8 = 1. Suppose not. Then
there exist sequences o; — 1 and f; — 1 such that ¥ := (0, B;) - ¥m(1,1) = 1. Since
i € (owa/c,Bib/c) is bounded, there is a subsequence (not relabeled) % — ¥, for some
% # 1. However, the functional & defined in (6.24) is a continuous function of &, 3, and 7.
More precisely,

£(a.B,7) ;:/A W,(Vu;lr(x,(x,y))dx+/A W, (Vugh (x.B,7)) dx

is continuous and hence &(a;, fB;, %) — &(1,1,%). However, u:(x, 1) = x is the unique ab-
solute minimizer of the energy when a = = 1: £(1,1,%) > &(1,1,1). Define

n:=[&1,1,%)-&(1,1,1)] /2.
Then, in view of the continuity of &, it follows that, for i sufficiently large,
|éa(ai7ﬂi7yi) - g(L 17YO)| <n, ‘g(ahﬁia 1) _5(17 1! 1)| <n.

Consequently, & (o, B, 1) < & (04, Bi, %), which contradicts the definition of % := Y (04, B;).
Thus, ¥, must be continuous at (1,1). O

21" Modulo a rotation, I is in fact the unique absolute minimizer of F — W (F).
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Remark 6.8 Suppose that, in addition to (6.21), h. satisfy?*> . (t) < 0 for all ¢. Suppose
further that ¢ < 1 and 8 > 1. Then the radial minimizer might be expected to satisfy (6.29)
with v = 0 for all such o and . If this is indeed true, then all such radial minimizers would
be unique absolute minimizers.

Remark 6.9 An analysis comparable to the one presented here shows that an annulus com-
posed of many annular layers of different neo-Hookean materials (or alternating layers of
two such materials) also has a unique energy minimizer, which is radial, when (o, ) is
close to (1,1). This is clear if the reference configuration is stress-free and the body has
layers with k distinct neo-Hookean materials; in this case

V:=—min{w,w, ©03,...,0}.

If the reference configuration is at equilibrium, but not stress-free, i.e., h;(l) =+ —; for one
or more layers, then in order for the reference configuration to be at equilibrium one must
have, for some constant C,

H()+w;=C for i=123,.. k.

In this case the choice
v:=C—min{o,m,®s,..., 0}

will yield a reference configuration that satisfies (6.29).

Remark 6.10 The constitutive relation that we have used in this section can clearly be gen-
eralized to any homogeneous, isotropic material for which a radial existence and regularity
theory is valid. See, e.g., [4,51,56,57] for examples. A similar analysis will, most likely,
remain valid for many anisotropic constitutive relations for which one can establish a radial
existence and regularity theory. See, e.g., [2]. Analogous results are valid for 3-dimensional
spherical shells. The main difficulty there is that the term \F\Z in the stored-energy density as
well as condition (4.6) must then be replaced by |F|? with p > 3 and the more complicated
condition (4.7). (However, the choice p = 3 greatly simplifies (4.7). See (1.3).)

7 An Alternate Approach to Uniqueness

Recently, Gao, Neff, Roventa, and Thiel [24] have established an interesting alternative ap-
proach to proving uniqueness. Assuming the stored-energy density, W, is homogeneous and
invariant under a change in observer, a standard result yields a function?® W € C' (Psym,))
that satisfies W(C) = W(F), where C := FTF. The second Piola-Kirchhoff stress tensor
K : Psym, — Sym,, is defined by
dw
K(C):=2—(C) =F 'S(F).
(€) =255 (C) = F'S(F)

The proof in [24, Proposition 2.1] implies>* the following:
Proposition 7.1 Let u. be a weak equilibrium solution. Define Ce(x) := [Vue (x)]T[Vue (x)].
Suppose that, for a.e. x € B,

22 For example, k' (t) = —w,t ™, m > 0, cf. footnote 17.
23 Recall that Psym,, denotes the set of strictly positive-definite, symmetric C € Lin,,.
2% The uniqueness of the absolute minimizer also requires a result of Ciarlet and Mardare [15, Theorem 2.1].
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1. C.(x) is a point of convexity of W (see foomote 12); and
2. K(C.(x)) is positive semi-definite.

Then u. is an absolute minimizer of E. Suppose, in addition, that 9 # @, for a.e. X € 2,
C.(x) is a point of strict convexity of W, and u, € C'(%B;R") satisfies detVu, > 0 on %,
then e is the unique absolute minimizer of E.

In particular, when W is convex on its entire domain, Psym,,, then one only needs to
consider the sign of the eigenvalues of the second Piola-Kirchhoff stress tensor K. The main
difficulty with Proposition 7.1 is the required convexity of the function C — W (C). Such an
assumption is independent of the polyconvexity of W it is neither necessary nor sufficient
for the existence?® of minimizers. A minor additional problem is the smoothness assumption
on u, that is required for uniqueness. However, when W is in fact convex, Proposition 7.1
may yield results that are better than those produced by Theorem 4.2.

A An Optimal Constant

‘We have made use of a variant of a result of Evans [20, pp. 248-250].

Proposition A.1 Let p € [2,). Then there exists a constant k, € [227P, p2'=P] such that
la? > [b|” + p|b|P~2b- (a—b)+ cKyla—b[P + (1— a)§|b|ﬂ—2|a—b\2 (A1)
foralla,b € R" and ¢ € [0,1].

Remark A.2 1f p =2 then (A.1) reduces to |a]> = |b|> +2b- (a—b) + J]a—b|?; thus &, = 1. Also, it follows
from [41] that 13 = 2 — /2.

Proof of Proposition A.1 (cf. the proof of Proposition A.1 in [41]) In view of the previous remark we assume
that p > 2. We note that when ¢ = 1 this result can be found in Miiller et al. [41, Appendix]. We will prove
the result when ¢ = 0. Inequality (A.1) will then follow upon taking a convex combination of the resulting
inequalities.

Let 6 =0and p > 2. If b= 0 then (A.1) is clear. By homogeneity we may assume |b| = 1. Therefore,
(A.1) will follow if we show that, for all a,b € R" with [b| =1,

|a|1’21+pb-(a—b)+§|a—b|2. (A2)
Suppose now that n =1 and define 7 := sgn(b)(a — b). Then (A.2) reduces to the inequality
- P Po

o) =1[r+1] —l—pt—zt >0. (A3)

If we differentiate ¢ we find that, forr # —1,
¢'(r) = p(e+1)[sgn(t + e+ 11772 = 1].

The only possible solutions of ¢’(t) =0 are t = —1 and = 0. Since ¢(0) =0, ¢(—1) = (p—2)/2 > 0, and
¢ is a continuous function that blows up at o inequality (A.3) follows.

Next,leto =0, p>2,|b| = 1,andn> 1. We writca —b+teand & — e-b, where |¢| = land @ € |1, 1].
Then (A.2) reduces to, forall s € R and o € [—1,1],

o(t,a):— [1 +2(xt+12]p"/2 —1—por — gtz >0. (A4)
When o = %1 the vectors a and b are colinear; (A.4) then follows from the above argument with n = 1.

For fixed ¢ we differentiate 6 with respect to o and set the result equal to zero to conclude that o0 = —1/2.
However, 6(z,—1/2) = 0, which establishes (A.4) and completes the proof of (A.1). O

25 However, see [16] where the implicit function theorem is used to obtain existence for small data.
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B Determinants and Cofactors

B.1 The Determinant of a Sum
A standard identity®® is for every F,H € Lin,,,

det(H+ F) — detF + H: cofF -+ detH, ifn—2, B.1)
| detF+H: cof F+F : cof H+detH, ifn=3. ’

In particular, the choice H = G — F yields

detG — detF+ [G —F] : cof F+ det(G — F), %fn:Z, ®2)
detF+ |G —F]: cof F+F : cof|G — F] +det(G—F), ifn=3.
B.2 The Derivative of the Cofactor in 3-Dimensions
Lemma B.1 Let F.H € Lins. Then
d(cofF
K(F)[H] := (C(;’F ) IH)  cof (F + H) — cof F — cof L. (B.3)

Proof Fix F,H € Lins. Then a simple computation shows that cof(F +H) is a quadratic polynomial in f € R,
i.e., there exist A,B, C € Lins such that, forall t € R,

cof(F+tH) = A+ Bt + C2. (B.4)

At1 =0 we get cof F = A. If we divide (B.4) by 2 and let 1 — oo we find that cof H = C. If we differentiate
(B.4) with respect to r and then let # = 0 we conclude that

d(cofF)
H] =B.
F H
The desired result follows from (B.4) at r = 1 together with our formulae for A, B, and C. O

Remark B.2 1t is clear from the definition that K(F) : Liny — Lins is a linear map for every F € Lins. If we
interchange F and H in (B.3) we find that K(F)[H] = K(H)[F]; consequently, F — K(F)[H] : Lin3 — Lins is
also linear. Thus, (F,H) — K(F)[H] is bilinear.

B.3 An Upper Bound on the Cofactor in 3-Dimensions
Lemma B.3 Let X, H € Lins. Then

IX : cof H| < y|H|* < [X|[H/?, (B.5)
where 'y denotes the largest eigenvalue of VXTX.

Proof We first note that V := v XX is symmetric and positive semi-definite and hence, by the spectral
theorem, has eigenvalues y > 8 > o > 0. Thus,

XP=[VP =’ +B2+7 27,

which establishes the second inequality in (B.5).

26 See, e.g., [14, p. 51]. Alternatively, one can derive (B.1) from the characteristic polynomial.
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We now apply the polar decomposition theorem to conclude H = QU and X = RV, where U and V are
symmetric and positive semi-definite and Q and R are orthogonal. Next, by the spectral theorem, there exists
an orthonormal basis {f|,f>,f3} and real numbers A; > A, > A3 > 0 such that

H= QU = 4,Qf; ®f; + 1L,Qf ®f, + 13Qf3 @13,
cof H= QcofU = LA3Qf; @f| + 11 43Qf, @, + A1 1, Qf3 213,

H? = |QUI” = [U]” = A7 + 5 +43. (B.6)
Consequently,
(COfH) : X = LA3Qf| - RVE| + 4, 4301, - RV, + 1,1, Qf3 - RVf3 B.7)
= AAzer - V| + A1 Aze; - VI, + A1 Ares - Vi3, '
where e; := RTQf;, i = 1,2,3, denote unit vectors. However,
le;- V| < le;| [VE| <7, (B.8)

where 7y denotes the largest eigenvalue of V = v XTX. The desired result, (B.5), now follows from (B.6)—
(B.8), together with the inequality 24;4; < A7 + /'tjz‘ O
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