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Abstract: With the popularization of electric vehicles, vehicle-to-grid (V2G) has 
become an indispensable technology to improve grid economy and reliability. However, 
battery aging should be mitigated while providing V2G services so as to protect 
customer benefits and mobilize their positivity. Conventional battery anti-aging V2G 
scheduling methods mainly offline operates and can hardly be deployed online in 
hardware equipment. This paper proposes a novel online battery anti-aging V2G 
scheduling method based on a novel two-stage parameter calibration framework. In the 
first stage, the V2G scheduling is modeled as an optimization problem, where the 
objective is to reduce grid peak-valley difference and mitigate battery aging. The online 
deployment of the developed optimization-based V2G scheduling is realized by a rule-
based V2G coordinator in the second stage, and a novel parameter calibration method 
is developed to adjust controller hyper-parameters. With the parameter calibration 
process, the global optimality and real-time performance of V2G strategies can be 
simultaneously realized. The effectiveness of the proposed methodologies is verified 
on a practical UK distribution network. Simulation results indicate that it can effectively 
mitigate battery aging in providing V2G services while guaranteeing algorithm real-
time performance. 

Keywords: Battery degradation; battery protective strategy; electric vehicle; energy 
management; energy storage system; transportation electrification; vehicle to grid. 
 

I. Introduction 
In recent years, there has been an increasing demand for transportation 

electrification in response to the need for a more economical and environmentally 
friendly urban energy system [1]. Electric vehicles, as one of the most important 
components of the modern transport system, have been greatly promoted to reduce 
greenhouse gas emissions and fossil fuel consumption [2, 3]. The penetration of electric 
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vehicles, specifically, the energy storage capacity in the battery of grid-connected 
electric vehicles (GEVs) provides a new solution for improving the economy, 
efficiency, and stability of the power grid [4]. According to [5], only 4% lifetime of 
electric vehicles is used for transportation, while most are spent in parking lots and 
garages. Known as vehicle to grid (V2G) services, the energy storage in GEVs can be 
used to provide power balancing [6, 7], frequency regulation [8, 9], and voltage control 
services [10] to the power grid. Numerous studies in existing literature have explored 
the optimal operation of the power grid with GEVs and renewable energy penetrations 
[11-13]. 

Compared to the frequency and voltage regulation, the peak-shaving service is of 
great significance to the modern urban energy system with large-scale renewable 
energy penetration [14, 15]. The GEVs can be used to reduce grid peak-valley 
difference and improve grid energy utilization efficiency by deferring their charging 
demand in time or even in space and acting as dynamic storage devices [16, 17]. 
However, different from frequency and voltage regulation service, the battery of GEVs 
may undergo many deep cycles that harm their longevity when providing peak-shaving 
service to the grid [18]. In recent years, many studies have been conducted to mitigate 
the battery aging in V2G scheduling [19, 20]. 

The rule-based algorithm is one of the most commonly used V2G scheduling 
methods because of its remarkable real-time performance and hardware applicability 
[21, 22]. In the rule-based V2G scheduling method, the target of battery aging 
mitigation is usually realized by limiting battery depth of discharge (DOD) and 
discharging rate (C-rate) in the controller [23]. An event-based dynamic V2G 
scheduling method is developed in [24] for aggregators and charging pile control in 
large-scale V2G applications in GEV car parks. V2G behaviors are controlled by a 
series of underlying rules that reflect the charging requirement of GEVs, and the aging 
is mitigated by limiting the C-rate and DOD of vehicle battery during participating in 
providing services. In [25], the fuzzy logic algorithm is further used to schedule the 
charging behavior of GEVs, and the DOD is subjected to fuzzy rules to protect the 
battery from over-discharging and charging. The C-rate and DOD constraints are 
adopted in rule-based V2G scheduling methods to mitigate battery aging. However, 
because the vehicle battery is an integrated electrochemical system with complex aging 
mechanisms, the shallow external characteristics can hardly comprehensively and 
accurately capture its aging factors [26]. Therefore, battery aging is not able to be 
effectively suppressed in rule-based methods. 

The optimization-based scheduling method is employed in some latest researches 
to further reduce the battery aging cost in V2G scheduling, in which the battery anti-
aging is designed as optimization objectives on large time scales [27-30]. A day-ahead 
V2G scheduling model is developed in [31] to coordinate the charging behavior of 
GEVs in a residential area. The aging cost of the battery is modeled as a function of 
surface temperature, average current rate, battery number of cycles (NOC), and DoD. 
The stochastic optimization algorithm is employed to derive the optimal V2G strategies, 
and simulation results indicated that the developed scheduling method could mitigate 
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the battery degradation phenomenon when participating in V2G services. In a further 
study [32], a practical wear cost model is established to evaluate the battery anti-aging 
performance of V2G strategies, and the minimization of battery aging cost is designed 
as an optimization objective in a mixed-integer linear programming model. The 
effectiveness of the developed method is verified in several case studies, and simulation 
results indicated that the integration of the practical wear cost model and linear 
programming model could effectively mitigate battery aging in V2G scheduling. 

Due to the use of large-scale optimization algorithms and comprehensive aging 
models, battery degradation can be effectively suppressed by using optimization-based 
scheduling methods [33]. However, for the same reason, the real-time performance of 
the optimization-based model is usually not satisfactory and thus can hardly be used in 
hardware in the real world [34]. Rule-extraction is one of the most commonly used 
methods to deploy the strategies from the optimization model [35, 36]. In [37], the 
energy management strategy of electric vehicles derived by a dynamic programming 
algorithm is deployed in vehicle controllers by a rule-extraction model. Experimental 
results indicated that the recalibrated rule-based model could manage the online 
operation of vehicle power systems while achieving a similar comprehensive 
performance compared to the dynamic programming model. Combined with the rule 
extraction method, the optimal V2G strategies derived in the optimization-based model 
can be deployed in charging devices in the real world. However, to the authors' best 
knowledge, there is no published work on applying the rule extraction method to 
optimal V2G scheduling. 

To resolve the aforementioned problems, this paper develops an optimal V2G 
scheduling method that can mitigate battery aging while reserving the real-time 
performance of the developed algorithm. Firstly, based on daily operation information 
of the power grid, including load profiles and GEVs charging requirements, the optimal 
charging strategies are scheduled by an optimization-based V2G scheduling model. In 
the optimization, the peak-shaving requirement of the power grid and battery anti-aging 
requirement of V2G participants is considered. Then, a novel online V2G coordinator 
is established by extracting rules from the derived optimal strategies in the 
optimization-based scheduling model. The calibrated rule-based controller is used to 
manage the charging and discharging behaviors of GEVs. The built rule-based 
controller can provide similar peak-shaving and battery anti-aging V2G strategies 
compared to the optimization-based model but avoid using complex optimization 
processes. The key contributions of this paper are summarized as follows: 
1) This paper is the first attempt to explore the online deployment of battery anti-

aging V2G strategies. The grid peak-shaving requirement, mitigating of battery 
aging, and real-time performance of scheduling algorithm are comprehensively 
handled. 

2) A novel two-stage parameter calibration framework is designed for V2G 
scheduling, which overcomes the shortages of optimization-based and rule-based 
scheduling methods by using the parameter calibration process to adjust controller 
hyper-parameters. The global optimal strategies and real-time applicability can be 
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simultaneously achieved. 
3) It comprehensively considers the grid peak-shaving requirement and battery anti-

aging requirements in a novel optimization-based V2G behavior management 
model. With the developed optimization model, the optimal V2G strategies can be 
achieved. 

4) A novel parameter calibration method is developed to adjust hyper-parameters in 
the rule-based V2G coordinator that is used to schedule the charging behavior of 
GEVs online. After the parameter calibration process, the established rule-based 
coordinator can reproduce the optimal V2G strategies derived in the optimization-
based scheduling model in real-time. 
The rest of the paper is organized as follows: The developed two-stage parameter 

calibration framework is discussed in Section II. Section III presents the developed 
optimization-based V2G management model. The developed online rule-based V2G 
coordinator and the parameter calibration method are in Section IV. The simulation 
platform and the performance of the proposed V2G scheduling method are evaluated 
in Sections V, followed by concluding remarks in Section VI. 

II. Two-stage parameter calibration framework for V2G scheduling 
This section develops a novel two-stage optimization and parameter calibration 

framework (OPCF) to derive the global optimal V2G strategies and guarantee real-time 
performance simultaneously. 

 

Fig. 1. The two-stage optimization and parameter calibration framework for V2G scheduling. 

 All GEVs should be synergistically scheduled to improve the quality of peak-
shaving services provided by V2G. While to mitigate battery aging in providingV2G 
service, GEVs charging and discharging should be optimized for a long period. Large-
scale optimization should be used to obtain the globally optimal solutions in V2G 
scheduling. Therefore, as shown in Fig. 1, in the first stage, an offline scheduling model 
is built, where the optimal V2G behavior management is modeled as a large-scale 
optimization problem. The reduction of the peak-valley difference and mitigation of 
battery aging are designed as optimization objectives, while the charging requirements 
of GEVs are set as constraints. The grid load profiles and vehicle charging requirements 
are used as the inputs to calculate the V2G power states of all GEVs. The generated 
V2G strategies, including the aggregated V2G power profile and GEVs charging 
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behaviors, are further saved in a rule base and will then be used as a benchmark to guide 
the establishment of the online V2G power coordinator. With the developed 
optimization-based V2G behavior management model, all GEVs can be synergistically 
scheduled to provide peak-shaving services to the grid, and battery aging can be 
mitigated in the whole scheduling period. 

The globally optimal V2G strategy can be derived from the established 
optimization-based scheduling model. However, the use of the large-scale optimization 
algorithm makes it hardly be used in charging devices in the real world. To enable 
online scheduling, a fuzzy V2G power controller is established in the second stage, as 
shown in Fig. 1. The generated V2G control strategies in the rule-based controller are 
compared with the optimization-based scheduling model. The difference between the 
two models is used as a feedback signal to optimize the parameters of the rule-based 
model further. 

With the above-developed OPCF method, the optimal V2G strategy derived by the 
optimization-based method can be transcribed to the fuzzy controller. Therefore, both 
optimal scheduling performance and real-time control can be realized at the same time. 
In the rest of the paper, the mathematical principle of the developed optimization-based 
V2G scheduling method, the fuzzy V2G power coordinator, and the parameters 
calibration method will be detailed. 

III. Optimization-based V2G behavior management model 
This section presents an offline optimization-based behavior management model 

to derive the optimal V2G strategies that can schedule GEVs to provide grid peak-
shaving service and mitigate the battery aging simultaneously. 

As a type of distributed energy storage system, GEVs can stabilize grid operation 
by consuming energy from the grid or providing it back. Demand from the grid side is 
mainly about realizing load shifting, and demand from the user side is to complete EV 
charging within the set deadline while at the same time minimizing battery degradation 
caused by V2G service. The V2G scheduling essentially is an optimization problem 
that coordinates the charge/discharge power for each GEVs. The optimal solutions can 
be obtained by using the optimization algorithm with several objective functions and 
constraints representing the need of both the grid and user sides. The optimization 
variable in the developed optimization-based V2G behavior management model is 
designed as the charging power of GEVs: 

(1) ( ) ( )o o o o
i i i iP P t P n =  P                 (1) 

1
o

o

o
m

 
 =  
  

P
P

P
                               (2) 

Where: oP  is the optimization variable, which consists of V2G power sequences of 
m  GEVs o

iP ; ( )o
iP t  is the charging power of iGEV  at t . The first optimization 
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objective is to reduce the grid peak-valley difference: 

11

2

ref( ) ( () )
m

ps load
it

n
o

iP t P t POBJ t
==

 + ∑ = −
 

∑                 (3) 

Where: ( )loadP t  is grid load state at t ; refP  is a reference load line that reflects the 
preferred point-of-loading value. refP  is formulated by grid operators to guide the 
operation of the power distribution system [38]. In this study, the value of refP  is 
assumed to be the median load level within the simulation period. In equation (3), the 
minimization of grid load fluctuation variance is designed as the objective. With this 
optimization objective function, the V2G strategy oP  can guide GEVs charging and 
discharging behaviors to provide peak-shaving service to the grid. 

The second optimization objective is to mitigate battery aging in providing V2G 
services. The battery SoC trajectory of GEVs in V2G scheduling can be calculated by 
the following equation:  

( )( ) ( 1) 100%
o

i
i

i
i

t TSOC t SOC Pt
Q

= − − ×


                (4) 

Where: ( )iSOC t  and ( 1)iSOC t −  are the battery energy state of iGEV  at t and t-1 
respectively; iQ  is the battery capacity; T  is the duration of a scheduling period. The 
rain-flow cycle-counting (RCC) algorithm is usually used for analyzing the fatigue data 
and was firstly used in metal fatigue estimation [39, 40]. In this research, this method 
is used to extract the irregular charging and discharging cycles from the GEVs battery 
SoC trajectory in V2G scheduling. Basically, the cycle counting can be achieved by the 
following three steps: 
(1). Firstly, the adjacent points are extracted by distinguishing the local maxima and 
minima information in the battery SoC trajectory. As shown in Fig. 2, 1S  to 7S  are 
the extracted adjacent points in a daily V2G power profile. The extracted adjacent 
points are further used to label the battery DOD and NOC.  
(2). Secondly, the battery number of full-cycles (NFC) and the number of half-cycles 
(NHC) are labeled by analyzing the amplitude and phase of the extracted adjacent 
points. It is worth noting that all half discharging and charging sub-cycles are added up 
together to form complete full-cycles in the RCC algorithm to enforce the feasibility of 
the battery anti-aging. 
(3). At last, the battery NOC and the corresponding DOD data ( 1DOD  to 4DOD ) are 
extracted for further analysis. 
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Fig. 2. The extracted battery NOC and DOD in rain-flow cycle counting algorithm. 

Based on the extracted battery NOC and DOD information from V2G power time-
series, the second V2G optimization objective is designed to reduce battery life loss 
when participating in V2G services: 

1
( , )

m

ctf i iag
i

f NOCB D DO OJ
=

=∑                      (5) 

Where: iNOC  and iDOD  are the battery NOC and DOD of iGEV . ctff  is used to 

calculate percentage battery life loss based on the extracted NOC and DOD of each 
cycle, and the corresponding cycle-to-failure profile is given in [41]. Based on the 
above analysis, the following optimization model is established for deriving the optimal 
V2G strategies: 

{ }
1    

,min
o o

m
ps agF OBJ OBJ=

P P

                   (6) 

By minimizing psOBJ  and agOBJ , the generated V2G strategies can guide GEVs to 
provide peak-shaving services to the power grid while mitigating battery aging. The 
constraints adopted in the defined optimization-based V2G scheduling model are given 
in Eq. (7) ~ (9): 

max max
,discharg , ch arg ( )i i iP PtP− ≤ ≤                       (7) 

min , maxSoC SoC SoCi t≤ ≤                       (8) 
end set 
i iSoC SoC≥                           (9) 

Firstly, the scheduled V2G power should not exceed the maximum discharging power 
max
,dischargiP  and charging power max

, ch arg iP  of iGEV . Then, the lower limit and upper limit 
of battery energy state are also adopted to protect the battery from over-discharging and 
overcharging, minSoC  and maxSoC  of all GEVs are preset as 10% and 95%, 
respectively. set 

iSoC  reflects the charging requirement of V2G participants, and the 
final battery energy state end 

iSoC  should be higher than the preset value. 
Fig. 3 summarizes the inputs, constraints, and objectives employed in the 

established V2G scheduling model. In summary, the optimal strategy is derived by 
solving the optimization model with GEV status information as an optimization 
variable, grid load demand status loadP  and refP  as optimization inputs, user and 
GEV charging requirements in Eq. (7) ~ (9) as constraints, and cost function in Eq. (6) 
as objective. In this study, the cooperative differential evolution algorithm [42], which 
has been widely used in smart grid energy resource management, V2G scheduling, and 
smart home energy management, is used to solve the defined optimization model. 
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Fig. 3. The established V2G behavior optimization mathematical model. 

IV. Online rule-based V2G coordinator 
With the developed optimization-based V2G behavior management model, the 

global optimal strategy can be derived. In this section, a rule-based online V2G power 
coordinator and a parameter calibration method are developed to enable the deployment 
of the derived strategy. 

A. Online V2G power coordinator 
An online fuzzy V2G power coordinator (FVPC) is developed in this section to 

schedule the behavior of GEVs to provide peak-shaving service to the grid. The two 
input variables and one output variable are adopted in the designed FVPC: 
1) The grid power balance state G , which is used to reflect the peak-shaving and 

valley-filling requirements and can be calculated by the following equation: 

refloadP PG = −                           (10) 
2) The vehicle battery state SoC , which is used to reflect the charging requirement 

of GEVs. 
3) The V2G power state P , which is used to control the real-time V2G power of 

GEVs. 
The range of G  is normalized to [-1,1] according to the characteristic of power 

systems. The negative value indicates that the grid demand is low, and the positive 
value indicates that the appearance of grid demand peaks. The range P  is also 
normalized to [-1,1] according to the rated charging and discharging power of GEVs. 
The negative value indicates the maximum charging power, while the positive value 
indicates the maximum discharging power. 

The performance of the fuzzy controller is affected by the quality of the 
membership function. Therefore, the membership functions (MFs) of all fuzzy 
variables are variable size designed. To simplify the optimization process, all MFs are 
symmetrically designed in this study. The gauss member function is one of the most 
commonly used MFs in the fuzzy logic controller for its wide applicability and simple 
form. Only two parameters are adopted in the gauss member function to describe the 
characteristics: the standard deviation σ , which is used to describe the position of MFs; 
and the mean c , which is used to describe the width of MFs. The gauss member 
function can be depicted by the following equation: 

2

2
( )

2( , , )
x c

f x c e σσ
−

−
=                         (11) 

In this study, the position and width σ  and 2c  are selected as the optimization 
variables to further improve the performance of FVPC. Fig. 4 shows the MFs of the 
fuzzy variables SoC , G  and P . The input variable SoC  is represented by the 
following five MFs: very low (VL), low (L), medium (M), high (H), and very high 
(VH). 1

sM  to 5
sM  are used to describe the width of MFs and 6

sM  to 8
sM  are used 
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to describe the positions. Similar to SoC , five MFs are adopted in G  to describe the 
peak-shaving requirement of the grid: negative high (NH), negative medium (NM), 
medium (M), positive medium (PM), and positive high (PH). 1

gM  to 5
gM  are used 

to describe the width of MFs and 6
gM  to 8

gM  are used to describe the positions. 
Comparing with SoC  and G , the output variable P  is fuzzified into 7 fuzzy 
regions represented by linguistic variables to better refine the V2G power of GEVs: 
negative high (NH), negative medium (NM), negative low (NL), medium (M), positive 
low (PL), positive medium (PM) and positive high (PH). Meanwhile, 12 variables are 
used to move the width and positions of MFs. 1

pM  to 7
pM  are used to adjust the 

width while 8
pM  to 12

pM  are used to adjust the position of gauss member functions. 

 

Fig. 4. Membership functions fuzzy variables. (a) Input variable SoC , (b) input variable G , 
(c) output variable P . 

The output of the fuzzy controller is the V2G power of each GEVs, which is derived 
based on the fuzzy rules. Table I gives the rules used in the established FVPC. The 
energy storage capacity of GEVs is used to provide peak-shaving services to the grid 
based on the power balance state G  and the battery state SoC . When grid peak 
power appears, the MFs of G : PM and PH are functioning, and the V2G power state 
is set as M to PH to schedule GEVs to discharge their energy storage capacity to the 
grid to provide peak-shaving service. On the contrary, when grid valley appears, the 
MFs of G : NM and NH will be functioning, and the V2G power state P  is set as NH 
to M to absorb grid surplus power and improve energy efficiency by charging GEV 
batteries. The fuzzy battery state variable SoC  is used to reflect the charging 
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requirement of GEVs. When SoC is low (VL and L), the V2G power state P  is set as 
NH to M to charge the battery and satisfy the charging requirement of participants. 
While when SOC is high (H and VH), the V2G power state is set as M to PH to provide 
peak-shaving services. 

Table I. Rule base used in the established fuzzy V2G power coordinator. 

  VL L M H VH 

NH NH NH NM NL M 

NM NH NL NL M M 

M NM NL M PL PM 

PM M M PL PM PH 

PH M PL PM PH PH 

B. Parameter calibration based on the global optimized strategies 
To improve the performance of the established FVPC, an optimization model is 

established in this part to search for the optimal width and position of MFs. The value 
of gM , sM  and pM  are further adjusted by utilizing the results of the optimization-
based V2G scheduling model mentioned in Section III, and the optimization variable 
Μ  is designed as follows: 

1 8 1 8 1 12

s

s s g g p pg

p

M M M M M M

Τ
 
   = =   
 
 

M
Μ M

M

        (12) 

The optimization objectives are to adjust the state of FVPC to get the optimal 
performance, and the results in the optimization-based V2G scheduling model are used 
as the reference signal. Firstly, to guarantee the FVPC can provide similar peak-shaving 
performance comparing to the optimization-based model, the first objective function is 
designed to minimize the difference between the aggregated V2G power provided by 
the FVPC and optimization-based model: 

1 , ,
0 1

( , )
n m

o
c t i t i t

t i
J f G SoC P

= =

= −∑∑                    (13) 

Where: cf  is the transfer function of the established FVPC, which is used to calculate 
the V2G power of GEVs based on the grid power balance state and GEV battery state. 
Furthermore, to mitigate the battery aging when participating in providing V2G 
services, the charging behaviors of a single V2G participant are also optimized in FVPC. 
The minimization of the difference between the battery SoC profile in the FVPC 
method and optimization-based scheduling model is designed as the second objective 
function: 

2 , ,
0 1

( ) ( )
n m

o
c i t c i t

t i
J S P S P

= =

= −∑∑                      (14) 

Where: cS  is the transfer function to calculate the battery SoC value based on the V2G 
power profile, as defined in equation (4). The fuzzy controller parameters calibration 

SOC 
G P 
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model is subjected to the following numerical constraints: 

6 7 8
s s sM M M≤ ≤                          (15) 

6 7 8
g g gM M M≤ ≤                          (16) 

8 9 10 11 12
p p p p pM M M M M≤ ≤ ≤ ≤                    (17) 

Equations (15) to (17) constrain the position of MFs to guarantee effectiveness by 
avoiding the peaks overlapping phenomenon between different gauss member 
functions. 

V. Simulation environment and results analysis 
In this section, the simulation environment and the data sources are firstly provided. 

Then the parameter calibration results will be illustrated and the performance of V2G 
scheduling will be qualitatively analyzed. At last, the peak-shaving and battery anti-
aging performance of the developed V2G scheduling model will be quantitatively 
analyzed and compared with other methods. 

A. Data set and simulation method description 
The schematic of the studied power grid with real data source and GEVs 

penetration is shown in Fig. 5. The grid demand data used in this paper comes from the 
Stentaway Primary substation near Plymouth, on the south coast of the UK [43]. The 
approximate (latitude, longitude) coordinates are (50.364, -4.086). The data consists of 
commercial and residential power consumption profiles in Megawatts (MW) in a period 
of January 2018 to May 2018. The national household travel survey data [44] and the 
Monte Carlo model [45] are employed to simulate the travel demand and charging 
behavior of GEVs, including the grid-connected time, departure time, and charging 
requirements. The V2G behavior of 30 GEVs each with a 30kW·h battery is considered 
in this study to provide peak-shaving service to the grid. 

 
Fig. 5. The schematic of the studied power grid with real data sources. 

Based on the above data, the charging behavior of GEVs is firstly scheduled by the 
established optimization-based V2G scheduling method. Then the derived V2G 
strategies, including the aggregated V2G power profile and vehicle battery SoC profile, 
are used to calibrate the parameters in the built FVPC. The historical grid load profiles 
within 120 days (from 1st January to 1st May in 2018) are used to calibrate the hyper-
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parameter in the FVPC by the V2G strategies derived in the optimization-based 
scheduling model, as shown in Fig 6 (a). The performance of the established FVPC is 
verified by using grid load profiles in the same residential area but under a different 
period (from 2nd May to 1st June in 2018), as shown in (b). Grid demand peaks and 
valleys generally appear in the period of 16:00 to 21:00 and 21:00 to 08:00, respectively. 
Therefore, this paper mainly focuses on the period of 16:00 to 08:00 to deploy V2G 
services. 

 
Fig. 6. Grid load profiles used in this paper to verify the performance of FVPC. (a) 120 
historical profiles for parameter calibrating; (b) 30 profiles for model verification. 

B. FVPC parameter calibration results 
The adjusted width and position of MFs in FVPC before and after the parameter 

calibration process are compared in Fig. 7. Subfigure (a) shows the fuzzy regions 
adopted in the linguistic variable SoC , which is used to distinguish the battery energy 
state of GEVs. Compared to original MFs, the most remarkable change after the 
calibration is that the width of MFs in low and medium SOC states is greatly expanded. 
The value of 1

sM , 2
sM , and 3

sM  are extended from 0.13, 0.16, and 0.16 to 0.18, 0.33, 
and 0.24 respectively. The extended width of these MFs improves the sensitivity of the 
established FVC to identify the low SOC state of the vehicle battery and thus can charge 
the battery timely to satisfy the charging requirement of participants. Meanwhile, the 
position of MFs is generally moved right to improve the degree of membership of low 
battery energy state and improve the charging speed. Similar to SoC , the fuzzy regions 
in linguistic variables G  are also moved to improve the V2G scheduling performance. 
Compared to original MFs, the position of 'NM' is moved left from -0.45 to -0.64 while 
that of 'PM' is moved right from 0.45 to 0.62 to improve the recognition sensitivity of 
FVPC to grid peak-shaving and valley-filling requirements. With the calibrated rules, 
the established FVC can better follow the aggregated V2G power profile in the 
optimization-based model. When grid load levels are distinguished as 'PH',' PM',' NH', 
and' NM', the GEVs are scheduled to provide peak-shaving and valley-filling service, 
which will cause additional battery cycles. With the enlarged gaps between 'M' to 'NM' 
and 'M' to 'PM', the established FVC can clearly differ different grid peak-shaving 
requirement levels and provide more stable V2G strategies to avoid frequent change in 
battery charging and discharging states. Therefore, the additional battery cycles can be 
avoided and battery aging can be mitigated. 
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Fig. 7. The adjusted MFs in online V2G power controller after the parameter calibration process. 
(a) Input variable G , (b) input variable SoC , and (c) output variable P . 

The fuzzy regions in the output variable: V2G power state P  is also calibrated by 
the optimization-based V2G scheduling results. As shown in Fig. 7. (c), the most 
remarkable change is that the position of 'M',' NL', and' NM' are generally moved left. 
The FVPC is optimized by following the battery SoC profile in the optimization-based 
V2G scheduling results, and the left movement of MFs can schedule GEVs to be better 
and timely charged. Meanwhile, it is worth noting that the position of 'M', 12

pM , is 
optimized to the negative value (-0.24) from 0. The fuzzy region '0' frequently changes 
the battery charging state and thus can cause additional battery cycles. Therefore, 12

pM  
is optimized to a negative value to mitigate battery aging. 

C. Analysis of peak-shaving and battery anti-aging performance 
Fig. 8 shows the peak-shaving performance of the developed OPCF in a regular 

day under model verification dataset. Subfigure (b) compares the scheduled peak-
shaving power in the optimization-based model and the calibrated rule-based model. 
Both two methods can respond to grid peak-shaving and valley-filling requirements. 
When grid load peaks at around 20:00 to 22:00, the GEVs are scheduled to provide 
peak-shaving service to the grid, the maximum V2G power reaches 460kW. While 
GEVs are scheduled to charge when grid valley appears after 24:00 to meet the charging 
requirement of V2G participants. The maximum aggregated charging power reaches -
510kW from 02:00 to 05:00, which indicates that grid excess grid power generation 
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capacity can be better utilized. After 06:00, the charging power is gradually reduced 
because most batteries have been fully charged and some GEVs have already been off-
grid. The difference between the scheduled V2G power in the established FVPC and 
the optimization-based method can be limited to 42kw (4.2%), which validates the 
effectiveness of the developed parameter calibration method. Grid load profiles with 
and without GEVs penetration are compared in (a). With the developed OPCM method, 
the energy storage capacity in GEVs can be effectively utilized to reduce grid peak-
valley difference. The grid peak-valley difference can be reduced from 1.72MW to 
1.36MW, and load variance can be reduced from 0.3748 to 0.1605, which indicates the 
energy utilization efficiency can be significantly improved. 

 
Fig. 8. The peak-shaving performance of the developed OPCF. (a) grid load profiles, (b) V2G 
power profiles. 

The battery anti-aging performance of three different V2G scheduling methods: 
conventional fuzzy logic method [46], optimization-based method, and the calibrated 
fuzzy logic method under the verification dataset are compared in Table II. The battery 
percentage life loss calculation method in [47] is used here to evaluate the anti-aging 
performance. The V2G can be realized in the fuzzy logic method: more than 459.8kWh 
auxiliary power is provided to shave grid peak load profile on average. However, 
because lacking effective life protection mechanisms, the GEV batteries undertake 85 
half-cycles and 176 full-cycles in the fleet. In a quantitative analysis for the single 
participant, more than 26.16 10−× % of battery life is depleted. Compared to the fuzzy 
logic method, the optimal scheduling results can be derived in the optimization-based 
method. 27.8% more auxiliary power can be provided to reduce the grid peak-valley 
difference. Meanwhile, battery number of half-cycles and full-cycles in the GEVs fleet 
can be reduced to 63 and 92. From the perspective of a single participant, battery DOD 
decreases from 125% to 96% and more than 47.2% battery life loss can be avoided 
compared with conventional fuzzy logic method.  
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Table II. The battery anti-aging performance of different V2G scheduling methods. 

Scenario 
Fuzzy logic 

method 

Optimization 

model 
OPCF method 

Average 𝑬𝑬𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 459.8 582.9 570.4 

Average 𝑬𝑬𝒄𝒄𝒄𝒄 963.4 1262 1125.5 

Average battery NHC 85 63 67 

Average battery NFC 176 92 124 

Average sum of DOD of a vehicle (%) 125 107 113 

Average life loss of a vehicle (× 𝟏𝟏𝟏𝟏−𝟐𝟐%) 6.16 3.25 3.83 

To enable the real-time applicability of the derived V2G strategies, the results in 
the optimization-based model are further used to calibrate rules in FVPC. After the 
parameter calibration process, the performance of the fuzzy logic method is 
significantly improved. As shown in Table II, the calibrated FVPC can achieve a similar 
performance compared with the optimization-based method. Compared to the 
conventional fuzzy logic method, an average of 24.1% more auxiliary power can be 
provided, while the battery number of half-cycles and full-cycles can be reduced to 124 
and 107. As a result, the quantified average battery life loss of a single participant can 
be reduced by 37.8%, which validates that the battery aging mitigation performance of 
the developed OPCF method. 

VI. Conclusion 

An online battery anti-aging V2G scheduling method is developed in this paper for 
providing peak-shaving service to the grid. Based on the grid daily operation state 
information, including load profiles and GEVs charging requirements, the optimal 
charging strategies are derived by an optimization-based V2G scheduling model. 
Furthermore, an online FVPC and a rule extraction method are proposed to enable the 
online deployment of the derived optimal V2G strategies. Through extensive 
simulations, the key findings are as follows: 
• The battery anti-aging can be better realized in an optimization-based V2G 

behavior management model. Compared to the rule-based method, more than 47.2% 
battery life loss can be avoided while providing the same peak-shaving service. 

• The parameter calibration process can significantly improve the performance of 
the established rule-based V2G coordinator. With the developed parameter 
calibration method, the established online V2G coordinator can achieve a similar 
peak-shaving and battery anti-aging performance compared to the optimization-
based model.  

• Numerical analyses indicate that 24.1% more auxiliary power can be provided 
while the battery life loss can be reduced by 37.8% compared to the conventional 
fuzzy logic method. 
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In the developed OPCF method, historical grid demand profiles are required to 
optimize the hyper-parameters in the online fuzzy V2G power coordinator. In practical 
applications, the optimization process and the fuzzy logic V2G controller need to be 
carried out and trained for every single place. Future work can be conducted on 
improving the generalization ability of FVPC to adapt to the scenarios in different 
residential areas without parameter calibration processes. 
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