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Abstract: Energy storage and demand response resources, in combination with intermittent renewable generation, are 
expected to provide domestic customers with the capability of reducing their electricity consumption. This paper highlights 
the role that an intelligent battery control, in combination with solar generation, could play to increase renewable uptake 
while reducing customers’ electricity bills without intruding on people’s daily life. The optimal performance of a home energy 
management system (HEMS) is investigated through a range of demand-response (DR) interventions, leading to different 
levels of customer weariness and consumption patterns. Thus, DR is applied with efficient and specific control of domestic 
appliances through load shifting and curtailment. Regarding the uncertainty associated with PV generation, a chance-
constrained (CC) optimal scheduling is considered subject to the operation constraints from each power component in the 
HEMS. By applying distributionally robust optimization (DRO), the ambiguity set is accurately built for this distributionally 
robust chance-constrained (DRCC) problem without the need of any probability distribution associated with uncertainty. 
Based on the greatly altered consumption profiles in this paper, the proposed DRCC-HEMS is proven to be optimally effective 
and computationally efficient while considering uncertainty.  

 

Nomenclature 

A. Sets 

T    Set of time slots. 

A Set of appliances.                                         

  

B. Parameters 

F       Fuse capacity. 

𝑃𝐸𝑆𝑆,𝑐, 𝑃𝐸𝑆𝑆,𝑑                Minimum charging and discharging 

power of ESS. 

𝑃
𝐸𝑆𝑆,𝑐

, 𝑃
𝐸𝑆𝑆,𝑑

 Maximum charging and discharging 

power of ESS. 

𝑆𝑂𝐶 , 𝑆𝑂𝐶                     Minimum and maximum state of 

charge of ESS. 

𝜂𝐸𝑆𝑆,𝑐, 𝜂𝐸𝑆𝑆,𝑑                    Charging and discharging efficiency 

of ESS. 

𝐶𝐸𝑆𝑆,𝑢𝑛𝑖𝑡             Degradation cost coefficient of ESS. 

𝐶𝐸𝑆𝑆,𝑐𝑎𝑝,  
𝐿𝐸𝑆𝑆, 𝐸𝐸𝑆𝑆,𝑡𝑜𝑡𝑎𝑙  

Capital cost, life cycle and total 

capacity of ESS. 

𝑃𝑏  , 𝑃𝑏             Minimum and maximum power 

purchase from grid. 

𝐶𝑏(𝑡)        Unit power purchase cost. 

𝜔𝑓(𝑡) PV output forecast. 

𝑅𝑟𝑒(𝑡), 𝑅𝑠ℎ(𝑡)          Reward when implementing load 

reduction and shifting. 

∆𝑃𝑎
𝑟𝑒(𝑡), ∆𝑃𝑎

𝑠ℎ(𝑡) Minimum load reduction and 

shifting of appliance a at time t. 

∆𝑃𝑎
𝑟𝑒(𝑡), ∆𝑃𝑎

𝑠ℎ(𝑡) Maximum load reduction and 

shifting of appliance a at time t. 

𝜑𝑎
𝑟𝑒(𝑡), 𝜑𝑎

𝑠ℎ(𝑡) Weariness level for load reduction 

and shifting of appliance a at time t. 

𝜆𝐷𝑅 Weighting factor for weariness 

objective. 

C. Decision variables 

𝑃𝑎(𝑡) Power consumption of each 

appliance at time t. 

𝑢𝐸𝑆𝑆,𝑐(𝑡),

𝑢𝐸𝑆𝑆,𝑑(𝑡)         

Status for charging and discharging 

power of ESS at time t. 

𝑃𝐸𝑆𝑆,𝑐(𝑡), 

𝑃𝐸𝑆𝑆,𝑑(𝑡)                    

Charging and discharging power of 

ESS at time t. 

SOC(t) State of charge of ESS at time t. 

𝐸𝐸𝑆𝑆(𝑡) Remaining capacity of ESS at time t 

𝐶𝐸𝑆𝑆,𝑡𝑜𝑡𝑎𝑙 The total operation cost in the entire 

day. 

𝑃𝑏(𝑡)          Power of buying electricity at time t. 

𝐶𝑏,𝑇𝑜𝑡𝑎𝑙  Cost of buying electricity. 

𝜔𝑠(𝑡) Scheduled PV output at time t. 

∆𝑃𝑎
𝑟𝑒(𝑡), ∆𝑃𝑎

𝑠ℎ(𝑡) Load reduction and shifting of 

appliance a at time t compared with 

no DR implementation. 

𝐺𝐷𝑅 Benefit of implementing DR. 



2 

 

 

D. Uncertainty  

𝜖𝑖              Violation probability of chance 

constraint i. 

𝜉(𝑡) Uncertain PV forecast error at time t. 

𝜇0             Statistical mean of 𝜉. 

𝛤0              Statistical covariance of 𝜉. 

 

1. Introduction 

           Due to the current development of renewable energy 

(RE), control and communication technologies, domestic 

electricity consumers can increasingly benefit from a more 

efficient and cost-effective energy usage. Within this context, 

home energy management systems (HEMS), comprised of 

small-scale power components, are suitable for applying 

individual residential services and enabling significant bill 

reductions through an efficient power component scheduling 

[1, 2]. A typical HEMS structure consists of an energy storage 

system (ESS), RE generation of different types and scales, 

and communication technologies. Other than the optimal 

scheduling of power supplies through HEMS, energy cost 

reductions can also be achieved through demand response 

(DR), providing ways of altering the consumption profile 

applied by consumers. Based on DR incentive policies, both 

load curtailment and load shifting can be implemented [3]. 

More specifically, price-based DR is operated based on 

different pricing schemes such as time of use (TOU) and real-

time pricing (RTP) tariffs [4]. Incentive-based DR also 

involves a higher rate of customer participation when 

reasonable penalty and rewards are provided [5]. For example, 

in [6], priorities of DR on appliances are set according to 

customer preferences, where simulation analysis is thus 

carried out to validate its applicability. Following this line of 

research, Chen et al evaluate a real-time price-based DR for 

home appliances considering the price uncertainty developed 

by robust optimization (RO) and stochastic optimization [7]. 

Moreover, in [8], a monthly bill target is optimized 

considering comfort level through a price-based DR with a 

multi-day time horizon.  

           However, the introduction of intermittent RE within 

the HEMS will result in an inaccurate output forecast, 

affecting the optimal scheduling and control of other system 

units. Accordingly, the uncertainty caused by renewable 

generation (RG) needs to be considered carefully, which is 

mainly addressed by RO and chance-constrained 

programming (CCP) in the wider literature.  

           On the one hand, RO strictly ensures there are no 

constraint violations within the boundary of the uncertainty 

set. In RO, the uncertainty is treated as uncertain variables 

bounded within the uncertainty set, without the association 

with any probability distribution. Particularly, in [9] and [10], 

the uncertainty in RG, load and market price has been 

investigated by the application of RO on HEMS. A more 

realistic model, considering specific home appliances, is also 

investigated to minimize the cost of electricity for a smart 

home in [11], which is designed for residential services only. 

However, restricting the analysis to the worst-case scenario 

will inevitably lead to conservative results.  

           On the other hand, another common approach for 

modelling uncertainty is CCP, which ensures a constraint is 

satisfied under a predefined probability. On this research 

topic, Liu et al investigated two grid-connected microgrids by 

the application of CCP, while considering an output 

restriction from RG within a specific confidence level. The 

problem is thus formulated as a linear programming case in 

[12]. Other examples of the latest use of CCP include [13], 

where the optimal scheduling of a combined heat and power 

(CHP) microgrid is handled by CCP and solved by particle 

swarm optimization (PSO). In [14], both PSO and two-point 

estimate methods are used to solve chance-constrained (CC) 

HEMS with DR. Accordingly, CCP either requires a large 

number of samples to approximate the uncertainty 

distribution, which is practically challenging and 

computationally demanding, or assumes a specific 

distribution based on historical data, which is over-optimistic. 

Beta distribution has been widely used to model the output 

probability from the intermittent photovoltaic (PV) 

generation. However, it can be considered as a forcing 

approach, and impractical to estimate accurately. 

           Based on all previous considerations, distributionally 

robust optimization (DRO) considers no assumption of 

uncertainty distribution, which only requires limited 

statistical data such as moment information. Previous 

research in power systems has shown that DRO outperforms 

RO and CCP in terms of less conservatism and weakened 

assumption on specifying uncertainty distributions [15-17]. 

With DRO, the ambiguity set is constructed by statistical 

information to restricting possible distributions, such as 

moment information [18, 19]. Based on more valuable 

distribution information, further research finds that the best 

estimate of the distribution can be obtained through the 

statistical fitting. Accordingly, statistical distance 

information can be added in the ambiguity set and thus the 

size of the ambiguity set can be controlled [20, 21]. Reference 

[15] proposes a DRO model for economic dispatch in a two-

stage scheme. A two-stage unit commitment considering 

wind uncertainty is proposed in [16] by using DRO method. 

Reference [22] proposes a distributionally robust optimal gas-

power flow in the sense of Wasserstein distance. Kullback-

Leibler divergence is utilized in [23] to measure the distance 

between distributions in a unit commitment problem.  

           DRO can also be used to approximate CCP and 

therefore distributionally robust chance-constrained 

programming (DRCCP) is formed, requiring no exact 

uncertainty distribution. As of the same feature than CCP, 

DRCCP allows a permittable violation of certain constraints 

under a specific confidence interval, and the reformulation is 

always tractable. Compared with RO, DRCCP considers the 

worst distribution rather than the worst-case scenario, thus to 

address the conservativeness [18]. Compared to CCP, only 

specific and limited information is needed in DRCCP, which 

only requires statistical data such as moment information, 

with no need for an exact uncertainty distribution. For 

example, in [24], an energy management CC problem for an 

islanded microgrid is presented by considering uncertain RG 

and variable demand. In that case, the demand analysis is 

reformulated by DRO as a second order conic programming 

(SOCP) problem with mean and variance moment 

information, where the unique box-type ambiguity set is used 

to specify a box region for moment information with bounds. 

Also, in [25], an optimal power flow analysis is approximated 

in terms of a two-sided chance constrained set, but still a 

SOCP reformulation is made. Finally, both semi-definite 
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programming (SDP) and SOCP reformulations are yielded in 

[26], where two innovative DRCCP approaches are compared 

with two traditional CCP approaches.  

           In this paper, the DRCCP method is directly applied to 

the HEMS with respect to solar energy uncertainty, which 

also incorporates DR participation by customers. To describe 

the relative inconvenience and tiredness caused by DR to 

electricity consumers, instead of using the frequent term 

‘dissatisfaction’ which is commonly used by power utilities, 

the term ‘weariness’ is defined in this paper [27]. The 

frequently used ‘inconvenience’ or ‘dissatisfaction’ is not 

appropriate to describe the volunteering DR in this paper, 

because these two terms are normally used to evaluate the 

impact associated with utilities [27, 28]. However, the scope 

of this paper is not on utility side, but only considers the over 

participation in DR, which will result in ‘weariness’ on DR. 

Accordingly, the proposed distributionally robust chance-

constraint home energy management system (DRCC-HEMS) 

approach will benefit electricity users by realistically 

considering the RG within home energy systems. This 

approach further improves deterministic optimization 

techniques, as these do not consider the uncertainty arising 

from RG, and thus optimistically consider the generation 

output to be certain without any variation. The ambiguity set 

of DRCCP is given by mean values and the covariance matrix 

of uncertain variables, and thus the DRCC-HEMS is 

reformulated in this paper as a SOCP problem using 

Chebyshev’s inequality method. The main contributions of 

this paper are: 

ⅰ. Compared to work [2, 8, 14] which develops HEMS 

without considering DR, this paper proposes a new 

optimization framework considering DR benefit 

function, which can reflect the impact on end 

customers regarding customer’s comfort and 

weariness due to participation; 

ⅱ. 

 

It for the first time proposes a novel DRCC-HEMS. 

Compared to CC-HEMS that requires a large amount 

of PV usage information [12-14], DRCC-HEMS has 

the advantages of: 1) being less data dependent 

through using moment information, which avoids 

violating the extensive PV usage privacy of 

customers; and 2) being higher computational 

efficiency with less data required. 

ⅲ. Compared to traditional robust HEMS which usess 

deterministic uncertainty sets [9-11] that would 

produce very conservative decisions, DRCC-HEMS 

is capable of capturing distributional information to 

mitigate the conservativity and thus is more cost 

effective for end customers. 

ⅳ. The novel DRCC-HEMS can help customers to use 

electricity wisely and economically through an 

optimal appliance load scheduling, an optimal ESS 

dispatch, and energy purchase scheme. 

           The rest of the paper is structured as follows: Section 

2 proposes the mathematical modelling of the HEMS 

appliances, PV generation and ESS. Section 3 proposes the 

expression of DR and operation strategies. DRCCP and its 

associated reformulation is proposed in section 4. In section 

5, the performance of DRCC-HEMS is evaluated on demand 

changing, daily expected operation cost and computation 

time, plus a comparison is made by CC-HEMS.        

2. HEMS Modelling 

           The HEMS proposed in this paper contains ESS, PV 

and different types of loads categorized for DR. Through 

controlling each power component at every single time slot, 

the comprehensive objective incorporating both operation 

cost and weariness can be achieved. Time is discretized into 

1, 2, . . . , 48 as T for every half hour. Accordingly, the 

appliance demand is grouped as set A.  

 

2.1. Domestic Home Appliances 
 

           If an efficient DR is to be implemented, a general load 

representation cannot be directly used to represent all types 

of domestic appliances. This is mainly due to: (ⅰ) not all the 

appliances are suitable for DR, (ⅱ) the unique electric 

characteristic of each appliance is different, (ⅲ) users have 

different preferences for each appliance. Thus, the aggregated 

general load should be decomposed into different load 

categories based on their electrical characteristics. The DR 

implementation incorporates load shifting and reduction 

which will inevitably create a ‘weariness’ of customers to 

some extent by DR actions. For the analysis in this paper, the 

typical consumption from the domestic load sector in the UK 

[29] is divided into 9 different categories (top up heating and 

storage heating are combined into storage heating which have 

similar characteristics): (a) consumer electronics, (b) cooking, 

(c) wet loads, (d) cold loads, (e) storage domestic hot water 

(DHW), (f) direct DHW, (g) direct heating, (h) storage 

heating and (i) lighting.  
 

2.1.1 Critical and Cold Loads: The domestic load 

considered ‘critical’ in this paper consists of consumer 

electronics, cooking and lighting. In total, the critical load 

consumes around 40% of the daily electricity demand [8], 

[29], which means an effective DR application could result in 

a considerable cost reduction. However, critical loads tend to 

be used in fixed periods based on consumer preferences. In 

this paper, only a small portion of critical loads are considered 

to participate in DR. Similarly, even though cold loads (e.g. 

appliances such as fridges and freezers) consume about 16% 

of the daily demand [29], consumers would still prefer to 

make free use of these over the entire day and not to commit 

to any predefined usage pattern.   

 

2.1.2 Wet Load: Wet loads (e.g. dishwashers and washing 

machines) are normally classified as non-interruptible loads 

[30] in this type of studies since the directly-connected motor 

cannot complete a cycle instantly, and thus cannot participate 

in rapid-response DR schemes. However, since most of the 

current wet loads are equipped with a timer, users can set any 

starting time at off-peak time periods.  

 

Fig. 1.  Schematic diagram of HEMS 
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2.1.3 Heating and Hot Water: The direct heating load 

proposed in this analysis refers to the instant use of any 

heating appliance on demand, while in the storage heating 

scenario the boiler is switched on previously when the 

electricity tariff is low, and thus more appropriate for DR.      

Similarly, the use of DHW includes direct DHW and storage 

DHW. Within this context, the application of DHW on 

demand, i.e. direct DHW, is not considered suitable for DR 

as instantly changing the timing of hot water consumption 

would result in a high user weariness. As for the storage 

DHW, the water can be pre-heated at off-peak time periods 

and therefore it can be stored and used most effectively later.  

            

2.1.4 Overload Fuse Capacity: In terms of protection to 

the HEMS, a maximum load limit needs to be set in case the 

sum power of all the appliances at time t is too large and may 

cause a trip in the system. The sum of 𝑃𝑎(𝑡) should be smaller 

than or equal to the fuse capacity 𝐹. 

 

∑ 𝑃𝑎(𝑡)

𝐴

𝑎=1

≤ 𝐹 

∀t ∈ T, ∀a ∈ A (1) 

 

2.1.5 Energy Storage System: The ESS in this study 

considers a power unit that is capable to store any excessive 

energy flow within the HEMS and discharge any required 

energy when mostly needed. Charging and discharging power 

𝑃𝐸𝑆𝑆,𝑐(𝑡) and 𝑃𝐸𝑆𝑆,𝑑(𝑡) at each time slot are restricted by the 

maximum and minimum values as follow: 

  

𝑢𝐸𝑆𝑆,𝑐(𝑡)𝑃𝐸𝑆𝑆,𝑐 ≤ 𝑃𝐸𝑆𝑆,𝑐(𝑡) ≤ 𝑢𝐸𝑆𝑆,𝑐(𝑡)𝑃
𝐸𝑆𝑆,𝑐

, 

∀t ∈ T 
(2) 

  

𝑢𝐸𝑆𝑆,𝑑(𝑡)𝑃𝐸𝑆𝑆,𝑑 ≤ 𝑃𝐸𝑆𝑆,𝑑(𝑡) ≤ 𝑢𝐸𝑆𝑆,𝑑(𝑡)𝑃
𝐸𝑆𝑆,𝑑

,  

∀t ∈ T 

(3) 

 

            Binary variables are used to control the status of ESS. 

 

𝑢𝐸𝑆𝑆,𝑐(𝑡) + 𝑢𝐸𝑆𝑆,𝑑(𝑡) ≤ 1, ∀t ∈ T (4) 

 

            Regarding the state of charge (SOC) of the system, 

this is maintained within a specific range at all times over the 

day in (5), to provide the battery with a longer lifetime. In 

addition, as the analysis in this paper runs through a complete 

day period, the initial and final SOC states of the ESS are set 

to equal values in (6). 

𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶, ∀t ∈ T (5) 

  

𝑆𝑂𝐶(𝑡 = 1) = 𝑆𝑂𝐶(𝑡 = 48), ∀t ∈ T (6) 

  

           Where the SOC of ESS can be described as in (7) and 

(8). Either the charging or discharging power at time slot t can 

represent the energy at that specific time period. It should be 

noted that the charging efficiency is higher than the 

discharging efficiency for the analysis in this paper. 

𝐸𝐸𝑆𝑆(𝑡) = 𝐸𝐸𝑆𝑆(𝑡 − 1) + 𝜂𝐸𝑆𝑆,𝑐𝑃𝐸𝑆𝑆,𝑐(𝑡) −
𝜂𝐸𝑆𝑆,𝑑𝑃𝐸𝑆𝑆,𝑑(𝑡), ∀t ∈ T 

 

(7) 

 

𝑆𝑂𝐶(𝑡) = 𝐸𝐸𝑆𝑆(𝑡)/𝐸𝐸𝑆𝑆,𝑡𝑜𝑡𝑎𝑙, ∀t ∈ T (8) 

 

           Accordingly, the operation cost of ESS is yielded by 

the frequent charging and discharging over the entire daily 

time periods, which can be described as: 

𝐶𝐸𝑆𝑆,𝑡𝑜𝑡𝑎𝑙 = ∑[𝐶𝐸𝑆𝑆,𝑢𝑛𝑖𝑡𝜂𝐸𝑆𝑆,𝑐𝑃𝐸𝑆𝑆,𝑐(𝑡)

𝑇

𝑡=1

+ 𝐶𝐸𝑆𝑆,𝑢𝑛𝑖𝑡𝜂𝐸𝑆𝑆,𝑑𝑃𝐸𝑆𝑆,𝑑(𝑡)] 
∀t ∈ T (9) 

 
           Where 𝐶𝐸𝑆𝑆,𝑢𝑛𝑖𝑡 can be represented by the ESS capital 

cost 𝐶𝐸𝑆𝑆,𝑐𝑎𝑝  , its life cycle 𝐿𝐸𝑆𝑆 and ESS capacity.    

 

𝐶𝐸𝑆𝑆,𝑢𝑛𝑖𝑡 = 𝐶𝐸𝑆𝑆,𝑐𝑎𝑝/(2 𝐿𝐸𝑆𝑆𝐸𝐸𝑆𝑆,𝑡𝑜𝑡𝑎𝑙),   
∀t ∈ T 

(10) 

 

2.1.6 Grid Energy Arbitrage: The HEMS is connected to 

the grid and the customer can purchase electricity at any time. 

Hence, determining the optimal electricity purchase time 

moment is important for saving operation cost. The following 

constraint defines the upper and lower limits for 𝑃𝑏(𝑡).  

 

𝑃𝑏 ≤ 𝑃𝑏(𝑡) ≤ 𝑃𝑏,  ∀t ∈ T (11) 

 

           The equation below can represent the cost of buying 

energy, where 𝐶𝑏(𝑡) is the time-varying tariff.  

𝐶𝑏,𝑇𝑜𝑡𝑎𝑙 = ∑ 𝐶𝑏(𝑡)𝑃𝑏(𝑡)

𝑇

𝑡=1

 

∀t ∈ T (12) 

  

2.1.7 HEMS Power Balance: A power balance constraint 

is used to ensure all the power supply sourced from the ESS, 

PV and energy purchase at time slot t is equal to the total 

power demand.   

𝑃𝐸𝑆𝑆,𝑑(𝑡) − 𝑃𝐸𝑆𝑆,𝑐(𝑡) + 𝜔𝑠(𝑡) + 𝑃𝑏(𝑡) = ∑ 𝑃𝑎(𝑡)

𝐴

𝑎=1

 

∀t ∈ T, ∀a ∈ A (13) 

 

2.1.8 PV Generation: Based on historical data from PV 

generation, PV output forecast is required for the optimal 

application of HEMS [31, 32]. For that purpose, K-means 

clustering is applied in this paper by dividing a one year PV 

generation into sunny, cloudy and rainy days [33]. Then, 

based on the unique characteristic of each weather condition, 

artificial neural network (ANN) approach is used with known 

irradiance, ambient temperature and wind speed with back-

propagation learning algorithm [34]. The forecast result is 

shown in Fig. 2, which shows the forecast and historical data 

approximately form a y=x regression line. Based on the 

forecast PV generation, the CCP expression is formulated. 

Equation (14) represents that the scheduled PV output 

exceeds a certain level at least chance of 1 − ϵ  across the 

entire time horizon. The predefined upper level consists of the 

PV output forecast and uncertainty. It is considered to set the 

output higher the predefined value with a large probability 
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1 − 𝜖 , but lower than the predefined value with a large 

probability 𝜖. 

 

Pr(𝜔𝑠(𝑡) ≥ 𝜔𝑓(𝑡) + 𝜉(𝑡)) ≥1 − ϵ , ∀t ∈ T (14) 

 

 

2.2. Demand Response Implementation  
 

           TOU pricing scheme, as is presented in Fig. 4 [35], is 

applied containing peak, off-peak and super off-peak time 

periods, which encourages users to alter their consumption 

pattern voluntarily. Based on DR encouragement, load 

demand at each specific time slot could be reduced or shifted 

to other time slots. (15) describes the benefit of the user that 

participates in DR. The first term represents the reward 

because of certain load reduction ∆𝑃𝑎
𝑟𝑒(𝑡). The second term 

represents the reward due to demand shifting ∆𝑃𝑎
𝑠ℎ(𝑡). (16) 

and (17) limit the load reduction and shifting respectively. 

𝐺𝐷𝑅 = ∑ [𝑅𝑟𝑒(𝑡)∆𝑃𝑎
𝑟𝑒(𝑡) + 𝑅𝑠ℎ(𝑡)∆𝑃𝑎

𝑠ℎ(𝑡)]

𝑇,𝐴

𝑡=1,𝑎=1

 

 

∀t ∈ T, ∀a ∈ A (15) 

 

∆𝑃𝑎
𝑟𝑒(𝑡) ≤ ∆𝑃𝑎

𝑟𝑒(𝑡) ≤ ∆𝑃𝑎
𝑟𝑒(𝑡), ∀t ∈ T, ∀a ∈ A (16) 

∆𝑃𝑎
𝑠ℎ(𝑡) ≤ ∆𝑃𝑎

𝑠ℎ(𝑡) ≤ ∆𝑃𝑎
𝑠ℎ(𝑡), ∀t ∈ T, ∀a ∈ A (17) 

           

           The reward encouragement will result in cost 

reduction and load reduction that will benefit both customers 

and utilities. However, it will also bring weariness on DR 

when the accustomed behaviours of users will be altered due 

to DR schemes. The weariness function 𝑊𝐷𝑅 is therefore 

defined to evaluate the user weariness as presented in (18). 

𝑊𝐷𝑅  is calculated by adding up the multiplication of 

weariness level (WL) and power deviation at each time slot 

of all appliances. Where the load reduction and load shifting 

of each appliance at each time slot ∆𝑃𝑎(𝑡)  has its 

corresponding WL 𝜑𝑎
𝑟𝑒(𝑡)  and 𝜑𝑎

𝑠ℎ(𝑡) , indicating that the 

WL varies depending on factor of time and appliance. In 

terms of time factor, WL values of all appliances are higher 

in peak time periods. As for appliance factor, the order of 

value for the WL factor of appliances is ‘critical load’ > 

‘heating’ = ‘DHW’ > ‘wet’. DR of cold load is not involved 

in this analysis.   

 

𝑊𝐷𝑅 = ∑ 𝜑𝑎
𝑟𝑒(𝑡) ∆𝑃𝑎

𝑟𝑒(𝑡) + 𝜑𝑎
𝑠ℎ(𝑡) ∆𝑃𝑎

𝑠ℎ(𝑡)

𝑇,𝐴

𝑡=1,𝑎=1

 

∀t ∈ T, ∀a ∈ A (18) 

 
2.3. HEMS Objective function 

 

           When DR is not applied in HEMS, the only objective 

is to determine the most economic result, while DR is being 

applied, both economic and weariness objectives will be 

considered because the impact of DR on user weariness 

cannot be ignored.  

 

𝑀 =  𝐶𝑏,𝑇𝑜𝑡𝑎𝑙 + 𝐶𝐸𝑆𝑆,𝑡𝑜𝑡𝑎𝑙 − 𝐺𝐷𝑅 (19) 

𝑂𝑏𝑗 = 𝑚𝑖𝑛[𝜆𝐷𝑅𝑀 +  (1 − 𝜆𝐷𝑅)𝑊𝐷𝑅] (20) 

 

Therefore, to jointly optimize the objectives from 

both cost of HEMS and user weariness, the weighting factor 

of DR (denoted as λDR) is required to effectively represent the 

weight of weariness in the overall objective. The objective 

function is denoted as Obj, which includes both economic sub 

objective 𝑀  and weariness sub objective 𝑊𝐷𝑅 . The 

economic sub objective 𝑀 includes cost of energy purchase 

and ESS degradation, minus any benefit arising from DR 

actions. While weariness sub objective 𝑊𝐷𝑅  considers the 

implicit DR weariness from demand reduction or shifting. 

3. Methodology 

           The optimization problem defined in this paper for 

application in HEMS must be solved by considering the 

uncertain solar generation and complex chance constrained 

formulation. Accordingly, common methods to handle the 

solar generation uncertainty on HEMS are either RO or CCP 

[14], [36]. In RO, the uncertainty set is easier to estimate only 

based on forecast data, but the drawback is the over-

conservativeness when the worst case lies on bounds with low 

probability. On the other hand, CCP coping with a large 

number of uncertainty samples is computationally demanding. 

And analytical reformulation is normally over-optimistic 

when fitting the historical data to a specific uncertainty 

distribution.  

 

3.1. Distributionally Robust Reformulation for CCP 
 

           As opposed to the previous methods, with DRO, 

neither making assumptions on uncertainty distributions nor 

a large number of uncertainty samples are required, but it only 

requires limited statistical information such as moment 

information. Compared with CCP, DRO provides an 

ambiguity set that considers all the possible distributions 

rather than making assumptions on a certain distribution of 

CCP. Compared with RO, DRO considers the worst 

distribution to reduce conservatism rather than the worst case 

on its own [18, 19]. The ambiguity set is defined by 

incorporating moment information such as mean and 

covariance, which considers all the possible distributions.  

           Regarding the RE power output within HEMS (i.e. 

from PV), a time varying lower bound 𝜔𝑓(𝑡) + 𝜉(𝑡) is set to 

ensure PV generation at each time slot is above a certain level. 

 

𝐴̃𝑖(𝜉𝑖)𝑥 ≥ 𝑏̃𝑖(𝜉𝑖) = {𝜔𝑠(𝑡) ≥ 𝜔𝑓(𝑡) + 𝜉(𝑡)} (21) 

 

           𝐴̃𝑖 is used to represent the ith row of the random matrix 

𝐴̃ and deterministic 𝑏𝑖 is used to represent the ith element of 

vector b. The chance constraint i is satisfied with probability 

1-𝜖𝑖 . In other words, it also means under chance of 𝜖𝑖 , the 

constraint cannot be satisfied. 

            

Pr(𝐴̃𝑖(𝜉𝑖)𝑥 ≥ 𝑏̃𝑖(𝜉𝑖)) ≥1 − 𝜖𝑖   (22) 

 

           𝜉𝑖 is the random variable that affects constraint i. 𝐴̃𝑖 

can be represented by 𝐴̃𝑖 (𝜉𝑖 ) that is defined as the affine 

function including deterministic part 𝐴𝑖0 and uncertain part 

𝐴𝑖𝑘  𝜉𝑖𝑘 [37, 38], where K is the dimension of  𝜉𝑖.  

𝐴̃𝑖(𝜉𝑖) = 𝐴𝑖0 + ∑ 𝐴𝑖𝑘  𝜉𝑖𝑘

𝐾

𝑘=1

 (23) 
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𝑏̃𝑖(𝜉𝑖) = 𝑏𝑖0 + ∑ 𝑏𝑖𝑘  𝜉𝑖𝑘

𝐾

𝑘=1

 (24) 

 

           Then two vectors are formulated and will be used in 

the later reformulation content,  𝐴̅𝑖
𝑥 = 〈𝑏𝑖1 − 𝐴𝑖1𝑥, 𝑏𝑖2 −

𝐴𝑖2𝑥, … 𝑏𝑖𝑘 − 𝐴𝑖𝐾𝑥〉 and  𝑏̅𝑖
𝑥 = 𝐴𝑖0𝑥 − 𝑏𝑖0. The ambiguity set 

𝐷  with the first and second moment information can be 

described as: 
 

𝐷 = {𝑓(𝜉)| {

P{𝑓(𝜉)} = 1

E{𝜉} = 𝜇 + 𝛾1

E{(𝜉 − 𝜇) ∙ (𝜉 − 𝜇)Т} = 𝛾2𝛤

} 

 

 

(25) 

           In this paper, the mean vector and covariance matrix 

are considered as the moment information and DRO is used 

to reformulate CCP to a tractable SOCP problem. Robustness 

is reflected on parameters 𝛾1 and 𝛾2 that can be altered and 

therefore be used to decide the size of the ambiguity set. 

Larger values of 𝛾1 and 𝛾2 result in more robust results [18]. 

Accordingly, 𝛾1 = 0 and 𝛾2 = 1 that are commonly used in 

research are used in this paper, also considering D′⊂D. Hence, 

the ambiguity set for each chance constraint i is provided by 

equation (26).  

 

𝐷′ = {𝑓(𝜉)| {

P{𝑓(𝜉)} = 1

E{𝜉} = 𝜇0

E{(𝜉 − 𝜇0) ∙ (ξ − 𝜇0)Т} = 𝛤0

} 

 

(26) 

           The uncertainty is reflected on the random 𝜉 matrix, 

which consists of elements in J rows and K columns. Thus, 

𝜉𝑖
𝑗,𝑘

is an element at jth row and kth column. To construct the 

ambiguity set, the mean and covariance matrices are required. 

The covariance value for 𝜉𝑗,𝑘 can be calculated as: 

 

𝛤𝑖
𝑗,𝑘 = 𝐸{ 𝜉𝑖

𝑗
− 𝐸[𝜉𝑖

𝑗
])(𝜉𝑖

𝑘 − 𝐸[𝜉𝑖
𝑘])} (27) 

  

           Hence, the distributionally robust constraint i in (21) 

can be rewritten as: 

 

𝑖𝑛𝑓
𝑓(ξ)∈𝐷,𝜉~(𝜇0,𝛤0)

P ((𝐴̅𝑖
𝑥)Т𝜉 −  𝑏̅𝑖

𝑥 ≥ 0) ≥ 1 − 𝜖𝑖 

 

(28) 

           Which can be further reformulated to the following 

constraint: 

𝑠𝑢𝑝
𝑓(ξ)∈𝐷,𝜉~(𝜇0,𝛤0)

P((𝐴̅𝑖
𝑥)Т𝜉 −  𝑏̅𝑖

𝑥 ≥ 0) ≤ 𝜖𝑖  (29) 

 

           According to the tight multivariate single sided 

Chebyshev bound [39] and the SOCP reformulation by [40], 

a random variable y, with known mean 𝜇 and variance 𝜎, can 

be expressed as: 

 

P(y ≥ (1 + 𝑚)𝜇) =
𝜎

𝜎 + 𝜇2𝑚2
 (30) 

 

           Where m is a constant between 0 and 1. In (30), m is 

given by: 

𝑚 =
 𝑏̅𝑖

𝑥

(𝐴̅𝑖
𝑥)Т𝜇0

− 1 (31) 

 

           Then, equation (29) is equivalent to: 

𝑠𝑢𝑝
𝑓(ξ)∈𝐷,𝜉~(𝜇0,𝛤0)

P{ 𝜉Т𝐴̅𝑖
𝑥 > 𝑏𝑖} =

𝐴̅𝑖
𝑥Т

𝛤0 𝐴̅𝑖
𝑥

𝐴̅𝑖
𝑥Т

𝛤0 𝐴̅𝑖
𝑥 + 𝜇0

Т2
𝑚2

 

 (32) 

 

√𝐴̅𝑖
𝑥Т

𝛤0 𝐴̅𝑖
𝑥 ≤ √

𝜖𝑖

1 − 𝜖𝑖

 ( 𝑏̅𝑖
𝑥 − 𝜇0

Т𝐴̅𝑖
𝑥) (33) 

Therefore, when the DRCCP approach is applied to 

the PV power output within HEMS, it makes sure that at each 

particular time slot, at least chance 1 − 𝜖𝑖 the output can be 

larger than the predefined lower bound. Overall, it also 

ensures the total PV output is larger than the predefined total 

output value for the entire operation time horizon. Thus, the 

equation (34) below can be applied in both DRCCP and CCP 

for performance comparison.  

 

Pr(𝜔𝑠(𝑡) ≥ 𝜔𝑓(𝑡) + 𝜉(𝑡)) ≥1 − 𝜖 , ∀t ∈ T (34) 

  

3.2. Overall DRCC-HEMS Approach  
            

           Based on all previous assumptions, the step-by-step 

methodology applied on DRCC-HEMS is described as 

follows: 

ⅰ. Acquire data: decomposed residential load, solar 

generation, ESS specifications and TOU pricing 

scheme. 

ⅱ. Cluster solar generation into three categories in terms 

of weather conditions and apply forecast.    

ⅲ. Formulate constraints and objective for HEMS and 

set a chance constraint for solar generation. 

ⅳ. Construct ambiguity set and apply distributionally 

robust formulation for CCP through (21)-(33). 

ⅴ. Solve the DRCC-HEMS by an efficient commercial 

solver. 

4. Performance Evaluation 

            This section presents the resulting analysis from the 

HEMS performance. Firstly, a HEMS configuration is 

proposed, followed by the PV forecast which provides the 

raw information required to construct the ambiguity set. The 

DRCC-HEMS is then solved considering DR and 

comparisons on appliance scheduling and operation curves 

are discussed. DRCCP is also compared with CCP method. 

As a result, the overall HEMS objective is optimized, and the 

sub-objectives incorporating operation cost and weariness 

function are separately analysed and discussed. It must be 

noted that all outcome results regarding the daily operation 

cost of HEMS is expected overall cost. All numerical 

simulations are solved by CPLEX 12.8 with Intel i7-7700 

CPU, 3.6 GHz and 16 GB RAM.  

Table 1 Parameters of HEMS 

System parameters 

ESS 𝑃𝐸𝑆𝑆,𝑐=𝑃𝐸𝑆𝑆,𝑑=0,  𝑃
𝐸𝑆𝑆,𝑐

=𝑃
𝐸𝑆𝑆,𝑑

=4.8kW 

𝑆𝑂𝐶=30%,  𝑆𝑂𝐶=90%, 𝜂𝐸𝑆𝑆,𝑐=𝜂𝐸𝑆𝑆,𝑑=0.88  

𝐶𝐸𝑆𝑆,𝑢𝑛𝑖𝑡=0.0042 p.u./kW, 𝐸𝐸𝑆𝑆,𝑡𝑜𝑡𝑎𝑙=4.8kWh                                      

Electricity 

purchase 
𝑃𝑏=0, 𝑃𝑏=4kW             

PV Capacity=1kW 
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4.1. HEMS Setup 
 

           As presented in Fig. 1, the HEMS structure proposed 

in this paper was originally designed and deployed for SoLa 

BRISTOL Project [41] in the city of Bristol (UK), and is 

currently tested in the Smart Grid Laboratory at the 

University of Bath. A PV generator with a DC/DC converter 

and a battery set are connected to a common DC bus, 

supplying the daily energy demand to a domestic load 

emulator through an AC/DC inverter. The technical 

parameters are shown in Table 1 [35, 41, 42], and the base 

case confidence interval of CC is set as 1- 𝜖 =95%. Regarding 

the onsite RE generation, the PV output data is recorded 

annually at the University premises. The forecast error was 

originally normal distributed approximately, which is then 

fitted to be perfectly normal distributed. As described in 

section 2, rather than using historical data directly, the 

forecast PV output is used as the source of information for 

building the ambiguity set in the HEMS optimization. The 

ANN forecast result which corresponds to this analysis is 

shown in Fig. 2.  

 

4.2. Numerical Results 
 

           Firstly, five DR scenarios, with different DR factors 

representing diverse customer preferences on cost saving and 

weariness function are applied for the optimal performance of 

HEMS. The DR scheme with weighting factor λDR=0.5 is 

considered as the base case, and both cost and weariness are 

therefore set as 1 p.u. As compared to the base case, three 

typical DR scenarios, with λDR =0, 0.5 and 1 are denoted as 

scenario 1, 2 and 3 respectively. Secondly, the optimal home 

appliance scheduling after the application of both DR and 

DRCCP for scenarios 1, 2 and 3 are directly compared and 

presented. Finally, this section presents the optimal electricity 

purchase and SOC curves.  
           Based on the previous assumptions, Table 2 presents 

five different scenarios, which are distinguished by five 

different sets of λDR and therefore define the diversity in 

customer preferences on cost saving and weariness function. 

As expected, and as shown in Table 2, the resulting HEMS 

operation cost is reduced as soon as any DR participation is 

considered for the HEMS users (i.e. λDR > 0). On the contrary, 

the user weariness increases accordingly with the rise of λDR. 

The two extremes occur when λDR
 is equal to 0, i.e. when DR 

is not applied at all, and 1, when DR is fully implemented. 

           Fig. 3(a) presents the original power consumption of 

all home appliances in a typical household without any DR 

intervention (i.e. λDR = 0). Unlike the average after-diversity 

demand (ADD) concept, which reflects the overall energy 

consumption of many domestic users, the consumption 

pattern considered for analysis in Fig. 3 represents a single 

individual household with a typical ‘working-pattern’ 

behaviour (i.e. electricity users get off home at 9:00 in the 

morning and return home at 18:00 in the evening). A short-

period peak demand takes place during the morning when 

there is high on-demand consumption of DHW appliances. 

Another long-period peak demand occurs from 18:00, when 

critical and DHW loads are mostly consumed, followed by 

the highest peak demand when wet and heating loads are 

added into the overall consumption.  
           After the application of DR on HEMS (i.e. λDR > 0), 

the load consumption is presented for scenario 2 in Fig. 3(b) 

with λDR = 0.5 ,  which means the DR strategy considers 

equally important the daily operation cost of HEMS and the 

user weariness. The initial DHW and heating loads are 

divided into: i) storage DHW and heating when hot water and 

 

Fig. 2.  PV output forecast for application with HEMS 

 

 
 

 

 
a 

 
b 

 
c 

Fig. 3.  Appliance scheduling curve for HEMS optimization:  

(a) λDR
 = 0, (b) λDR

 = 0.5, (c) λDR
 = 1 

 

 
 

 



8 

 

heat can be stored during off-peak periods and used later, and 

ii) direct DHW and heating when users tend to consume 

DHW and heating immediately. As shown in Fig. 3(b) for 

scenario 2, the highest peak demand in the evening (i.e. from 

19:30 to 20:30) is reduced by 14% and shifted into the night 

between 2:00 and 4:00. This creates a new peak of 92% 

increase when storage DHW and heating are used for storing 

water and heat for later use. In addition, the consumption 

from the 19:30-20:30 peak is decreased due to the 54% shift 

of storage DHW. Apart from the great impact on peak 

demand because of DR, the overall load consumption is 

reduced by 7% through reducing a small amount of demand 

at every time slot. 

           Finally, if the DR intervention simply considers saving 

energy cost as the objective function, thus ignoring weariness 

(i.e. λDR = 1), the resulting load curve after HEMS 

optimisation is shown for scenario 3 in Fig. 3(c). The biggest 

difference from scenario 2 is the wet load shift from 19:30-

20:30 to 4:30-5:30. Additionally, heating and DHW loads are 

further shifted and aggregated to the time period 2:00-4:00 in 

order to switch them off at other time slots and save standby 

energy consumption. Also, since λDR is at its highest value, 

consumption of all the appliance types is further reduced at 

every time period. Overall, compared with scenario 1 and 2, 

24% and 17% of the total electricity demand is reduced 

respectively.  

           Apart from the best-fitted appliance consumption, in 

Fig. 5, the operation of HEMS also results in an optimal 

power scheduling curve for the SOC of ESS and energy 

purchase, including DR scenarios 1,2 and 3 for three different 

weather conditions (sunny, cloudy and rainy). As previously 

discussed, the TOU tariff is presented in Fig. 4, which is an 

essential factor for the optimal power scheduling with HEMS. 

Alternatively, the SOC of ESS and energy purchase from the 

grid largely depend on weather conditions, which is reflected 

in Fig. 5 by the similar power scheduling curves resulting for 

each weather condition. As a general comparison, in cloudy 

days, the ESS is required to produce about 7% and 21% more 

energy than in sunny and rainy days. On the other hand, the 

amount of buying electricity on sunny days is 22% and 53% 

less than in cloudy and rainy days respectively. In scenario 1, 

with no DR intervention at all (i.e. λDR = 0), an increase of 9% 

and 25% in electricity purchase occurs due to higher energy 

consumption, as compared with scenarios 2 and 3 

respectively. 

           For example, in scenario 2 (λDR = 0.5), since a large 

amount of appliance consumption is shifted to the period 

2:00-4:00, an intensive electricity purchase is required 

without discharging the battery. Then, due to the demand 

increase between 7:30 and 8:30 in the morning, ESS is 

slightly discharged until when PV starts to harness power 

again at 8:00. The battery is assumed to be charging at all 

times when the PV is generating and there is no demand from 

HEMS. Because of the high energy consumption during the 

Table 2 Cost and Weariness effect from different λDR 

 λDR                    Cost (p.u.)       Weariness (p.u.) 

  0 

  0.25 

 0.5 

  0.75 

            1.30                     0.00                                        

            1.14                     0.43 

            1.00                     1.00    

            0.91                     1.85 

 1             0.83                     2.97 

 

 
 

 

 
Fig. 4.  Daily TOU tariff for HEMS application 

 
a 

 

b 

 

c 

 

d 

Fig. 5.  Buying electricity scheduling and SOC curve for:  

(a) λDR
 = 0, (b) λDR = 0.5, (c) λDR = 1, (d) λDR = 0.07 
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evening peak time, ESS is accordingly discharged all the way 

from the highest SOC of 90% to the lowest SOC value of 30%. 

Therefore, the energy purchased individually supplies the 

HEMS demand from 21:30 to 00:00. A similar power 

scheduling is yielded in cloudy days, however with a larger 

electricity purchase due to a lower availability from the PV 

generation. With the increased demand shift to morning times,  

more buying electricity is needed on rainy days, with a rapid 

charging required from the battery. In that case, due to the 

lack of sufficient PV output during the day, the battery is 

barely used (neither to charge nor to discharge) and SOC is 

kept around 90% for 14 hours during the day time.  
           In order to find out the optimal objective that fulfils 

both daily operation cost and weariness. Instead of 

considering as a fixed coefficient for sub objectives, 𝜆𝐷𝑅 is 

considered as a decision variable to determine the overall 

optimal objective. Calculation is made and the optimal result 

is yielded when 𝜆𝐷𝑅 = 0.07 . Accordingly, the SOC and 

electricity purchase curves are shown in Fig. 5(c). According 

to the resulting 𝜆𝐷𝑅, it can be found that the optimum exists 

when slight concentration is on operation cost while large 

concentration is on weariness. The weighting factor can be 

adjusted by the HEMS operators depending on the customer’s 

preference on cost saving or weariness.  

 

4.3. Performance Comparison with CCP 

 

           In this section, the performance of DRO (i.e. the 

proposed DRCCP technique) and the benchmark approach 

(scenario approach) to solve the CC-HEMS problem is 

analysed by comparing the resulting daily operation cost and 

computation time to solve HEMS optimization. Moreover, as 

an additional comparison, a deterministic optimization 

approach is investigated without considering any uncertainty 

from the PV generation. In particular, the benchmark 

approach CCP uses a scenario approximation, with a large set 

of scenarios, where 𝜖 of scenarios violates the constraint (31) 

but the rest adheres. The dimensionality of the analysis is 

addressed by scenario reduction by comparing moment 

information that includes expectation, variance, skewness 

and kurtosis.  In Table 3, the resulting costs (in per unit values) 

and computation time are compared when DRCCP, CCP and 

deterministic optimization are all applied in sunny conditions, 

with a confidence level of 1- 𝜖 =95%. When λDR =0.5, the cost 

of DRCCP is considered as base case and set as 1 p.u.  
           As compared in Table 3, both DRCCP and 

deterministic optimization analyses require less CPU time as 

compared with CCP, which needs to consider a wide range of 

scenarios. Regarding the cost, as no uncertainty from PV 

generation is concerned, deterministic optimization with a 

fixed PV output yields more optimistic results than CCP and 

DRCCP, which also include the probabilities of PV 

generation varying under a fixed maximum value. In spite of 

the improvement in CPU time, the comparison in Table 3 also 

demonstrates that DRCCP results in a more conservative 

solution than CCP (which requires a high computation 

burden), reflecting on a more conservative PV generation and 

a higher operation cost. With the increase of the DR 

weighting factor (i.e. λDR > 0), more DR involved results in a 

lower cost and less CPU time due to a more efficient and 

economical electricity consumption pattern and a reduced 

load demand. Overall, DRCC-HEMS saves computation time 

as compared with CCP and incorporates the implicit 

uncertainty from PV generation as compared with 

deterministic optimization. The scenario-based CC-HEMS 

yields a reliable result considering uncertainty but requires 

much more computation complexity. While the deterministic 

HEMS results in a more optimistic result solely considering 

the fixed higher values of PV generation but ignoring lower 

generation in probability 𝜖.   
           Finally, in Table 4, a cost comparison is provided 

when DRCCP and CCP techniques are applied to solve the 

HEMS problem with different values of confidence level 𝜖. 

As rthe eference, when 𝜖  is 5%, the cost of DRCCP is 

considered as the base case and set as 1 p.u. Although 𝜖 =5% 

is mostly studied in the proposed CC problem in this paper, 

the impact on the daily HEMS operation cost by changing the 

confidence level 𝜖 from 1% to 10% is also investigated. As 

shown in Table 4, When 𝜖 grows, the confidence interval 1 −
𝜖  decreases, which means it is less probable that the 

scheduled PV power is larger than the predefined level. 

Accordingly, the event of output exceeding violation is less 

frequent. Thus, with the increase of 𝜖, the overall scheduled 

PV output is becoming smaller. Accordingly, CCP results in 

an average 2% reduced operation cost for HEMS. The cost 

difference generally reduces when 𝜖  increases, which is a 

direct effect from a less strict control on minimum PV 

generation. In general, DRCCP yields more conservative 

results than the CCP. It offers large savings in the 

computation burden, similar to those obtained with the use of 

deterministic optimization.  

 
 

Table 3 Comparison of expected cost and CPU time for 

three DR scenarios (1- 𝜖 = 95%) 

 

 

 
 

 

DRCCP CCP Deterministic

Cost (p.u.) 1.30 1.24 1.22

CPU time (s) 0.03 8.80 0.03

Cost (p.u.) 1.00 0.97 0.94

CPU time (s) 0.03 6.84 0.03

Cost (p.u.) 0.83 0.78 0.76

CPU time (s) 0.02 4.75 0.02

λDR  
= 0

λDR  
= 0.5

λDR  
= 1

Table 4 Expected cost for DRCCP and CCP with different 

confidence levels 

 

 

 
 

 

∈ DRCCP CCP

1% 0.994 0.970

2% 0.996 0.973

3% 0.999 0.975

4% 1.000 0.976

5% 1.000 0.977

6% 1.000 0.978

7% 1.007 0.984

8% 1.011 0.989

9% 1.012 0.991

10% 1.012 0.993

Cost (p.u.)
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4.4. Discussion on Numerical Results 

 

           The classical scenario approximation is used to solve 

CC-HEMS in comparison with DRCCP, which is fully 

described in terms of computation time and daily operation 

cost from the HEMS. The resulting difference among the 

three scenarios shows that the DRCC-HEMS alters energy 

consumption patterns in a great extent through load 

curtailment and demand shifting. Thus, by implementing the 

DRCC-HEMS approach, with full consideration of solar 

energy uncertainty, a significant reduction in customer 

electricity bills can be achieved, as well as a faster system 

response due to the reduced complexity in the computation of 

results. The analysis shows that the advantage of DRCC-

HEMS can be listed: 

1. Protecting information privacy: In practice, acquiring 

the full knowledge of uncertainty is not always 

possible. Gathering the PV usage data from HEMS 

customers is even not practical. A large data set 

requires the participation of customers by sharing 

their PV usage information, which inevitably violates 

the privacy of customers. DRCC-HEMS does not 

require the use of large uncertainty samples, but only 

moment information obtained from limited data, thus 

protecting customer privacy. 

2. Computationally efficient: Conventional CC-HEMS 

requires large data sets by using detailed distribution 

modelling and then transforms them into 

deterministic models to solve by sophisticated 

mathematical techniques.  By contrast, DRCC-

HEMS is more computational efficient which only 

needs moment information. 

3. Accurate costs: In CC-HEMS, when the dataset is not 

sufficiently large, assigning a specific probability 

distribution to uncertain renewable generation will 

cause big errors. By contrast, DRCC-HEMS provides 

customers a more accurate scheduling plan by 

reliable moment information.  

4.  Considering uncertainties: Compared to the 

deterministic HEMS, although it produces lower 

results, the PV uncertainty is ignored, which in reality 

is not practical to be considered as deterministic 

datasets. However, these uncertainties can be easily 

included in the developed DRCC-HEMS. By 

implementing the DRCC-HEMS approach, with the 

full consideration of solar energy uncertainty, a 

significant reduction in customer electricity bills can 

be achieved, as well as a faster system because of the 

reduced complexity in modelling.  

 

5. Conclusion 

           In this paper, the optimal performance of a hybrid PV-

storage HEMS is investigated with precise control on ESS, 

electricity purchase from the grid, specific domestic 

appliances for DR, as well as considering the uncertainty 

from PV generation. In order to solve the HEMS problem, 

different DR interventions are studied for energy cost 

reduction by altering customer consumption patterns. The 

uncertainty arising from solar energy (i.e. the ambiguity set) 

is fully incorporated into the HEMS by applying DRCCP, 

which no longer require the use of inaccurate probability 

distributions associated with uncertainty.         

           Overall, it is concluded that the DRCCP presented in 

this paper, in combination with all the parameters considered 

for an optimal HEMS performance, provides the best solution 

for the analysis and application of DR at residential customer 

level, which at the same time fully acknowledges the 

uncertainty arising from any type of RE generation, as proven 

for a hybrid PV-storage HEMS.   
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