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Abstract: Energy storage and demand response resources, in combination with intermittent renewable generation, are
expected to provide domestic customers with the capability of reducing their electricity consumption. This paper highlights
the role that an intelligent battery control, in combination with solar generation, could play to increase renewable uptake
while reducing customers’ electricity bills without intruding on people’s daily life. The optimal performance of a home energy
management system (HEMS) is investigated through a range of demand-response (DR) interventions, leading to different
levels of customer weariness and consumption patterns. Thus, DR is applied with efficient and specific control of domestic
appliances through load shifting and curtailment. Regarding the uncertainty associated with PV generation, a chance-
constrained (CC) optimal scheduling is considered subject to the operation constraints from each power component in the
HEMS. By applying distributionally robust optimization (DRO), the ambiguity set is accurately built for this distributionally
robust chance-constrained (DRCC) problem without the need of any probability distribution associated with uncertainty.
Based on the greatly altered consumption profiles in this paper, the proposed DRCC-HEMS is proven to be optimally effective
and computationally efficient while considering uncertainty.
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1. Introduction

Due to the current development of renewable energy
(RE), control and communication technologies, domestic
electricity consumers can increasingly benefit from a more
efficient and cost-effective energy usage. Within this context,
home energy management systems (HEMS), comprised of
small-scale power components, are suitable for applying
individual residential services and enabling significant bill
reductions through an efficient power component scheduling
[1, 2]. Atypical HEMS structure consists of an energy storage
system (ESS), RE generation of different types and scales,
and communication technologies. Other than the optimal
scheduling of power supplies through HEMS, energy cost
reductions can also be achieved through demand response
(DR), providing ways of altering the consumption profile
applied by consumers. Based on DR incentive policies, both
load curtailment and load shifting can be implemented [3].
More specifically, price-based DR is operated based on
different pricing schemes such as time of use (TOU) and real-
time pricing (RTP) tariffs [4]. Incentive-based DR also
involves a higher rate of customer participation when
reasonable penalty and rewards are provided [5]. For example,
in [6], priorities of DR on appliances are set according to
customer preferences, where simulation analysis is thus
carried out to validate its applicability. Following this line of
research, Chen et al evaluate a real-time price-based DR for
home appliances considering the price uncertainty developed
by robust optimization (RO) and stochastic optimization [7].
Moreover, in [8], a monthly bill target is optimized
considering comfort level through a price-based DR with a
multi-day time horizon.

However, the introduction of intermittent RE within
the HEMS will result in an inaccurate output forecast,
affecting the optimal scheduling and control of other system
units. Accordingly, the uncertainty caused by renewable
generation (RG) needs to be considered carefully, which is
mainly addressed by RO and chance-constrained
programming (CCP) in the wider literature.

On the one hand, RO strictly ensures there are no
constraint violations within the boundary of the uncertainty
set. In RO, the uncertainty is treated as uncertain variables
bounded within the uncertainty set, without the association
with any probability distribution. Particularly, in [9] and [10],
the uncertainty in RG, load and market price has been
investigated by the application of RO on HEMS. A more
realistic model, considering specific home appliances, is also
investigated to minimize the cost of electricity for a smart
home in [11], which is designed for residential services only.
However, restricting the analysis to the worst-case scenario
will inevitably lead to conservative results.

On the other hand, another common approach for
modelling uncertainty is CCP, which ensures a constraint is

satisfied under a predefined probability. On this research
topic, Liu et al investigated two grid-connected microgrids by
the application of CCP, while considering an output
restriction from RG within a specific confidence level. The
problem is thus formulated as a linear programming case in
[12]. Other examples of the latest use of CCP include [13],
where the optimal scheduling of a combined heat and power
(CHP) microgrid is handled by CCP and solved by particle
swarm optimization (PSQ). In [14], both PSO and two-point
estimate methods are used to solve chance-constrained (CC)
HEMS with DR. Accordingly, CCP either requires a large
number of samples to approximate the uncertainty
distribution, which is practically challenging and
computationally demanding, or assumes a specific
distribution based on historical data, which is over-optimistic.
Beta distribution has been widely used to model the output
probability from the intermittent photovoltaic (PV)
generation. However, it can be considered as a forcing
approach, and impractical to estimate accurately.

Based on all previous considerations, distributionally
robust optimization (DRO) considers no assumption of
uncertainty distribution, which only requires limited
statistical data such as moment information. Previous
research in power systems has shown that DRO outperforms
RO and CCP in terms of less conservatism and weakened
assumption on specifying uncertainty distributions [15-17].
With DRO, the ambiguity set is constructed by statistical
information to restricting possible distributions, such as
moment information [18, 19]. Based on more valuable
distribution information, further research finds that the best
estimate of the distribution can be obtained through the
statistical ~ fitting.  Accordingly, statistical distance
information can be added in the ambiguity set and thus the
size of the ambiguity set can be controlled [20, 21]. Reference
[15] proposes a DRO model for economic dispatch in a two-
stage scheme. A two-stage unit commitment considering
wind uncertainty is proposed in [16] by using DRO method.
Reference [22] proposes a distributionally robust optimal gas-
power flow in the sense of Wasserstein distance. Kullback-
Leibler divergence is utilized in [23] to measure the distance
between distributions in a unit commitment problem.

DRO can also be used to approximate CCP and
therefore  distributionally ~ robust  chance-constrained
programming (DRCCP) is formed, requiring no exact
uncertainty distribution. As of the same feature than CCP,
DRCCP allows a permittable violation of certain constraints
under a specific confidence interval, and the reformulation is
always tractable. Compared with RO, DRCCP considers the
worst distribution rather than the worst-case scenario, thus to
address the conservativeness [18]. Compared to CCP, only
specific and limited information is needed in DRCCP, which
only requires statistical data such as moment information,
with no need for an exact uncertainty distribution. For
example, in [24], an energy management CC problem for an
islanded microgrid is presented by considering uncertain RG
and variable demand. In that case, the demand analysis is
reformulated by DRO as a second order conic programming
(SOCP) problem with mean and variance moment
information, where the unique box-type ambiguity set is used
to specify a box region for moment information with bounds.
Also, in [25], an optimal power flow analysis is approximated
in terms of a two-sided chance constrained set, but still a
SOCP reformulation is made. Finally, both semi-definite
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programming (SDP) and SOCP reformulations are yielded in
[26], where two innovative DRCCP approaches are compared
with two traditional CCP approaches.

In this paper, the DRCCP method is directly applied to
the HEMS with respect to solar energy uncertainty, which
also incorporates DR participation by customers. To describe
the relative inconvenience and tiredness caused by DR to
electricity consumers, instead of using the frequent term
‘dissatisfaction” which is commonly used by power utilities,
the term ‘weariness’ is defined in this paper [27]. The
frequently used ‘inconvenience’ or ‘dissatisfaction’ is not
appropriate to describe the volunteering DR in this paper,
because these two terms are normally used to evaluate the
impact associated with utilities [27, 28]. However, the scope
of this paper is not on utility side, but only considers the over
participation in DR, which will result in ‘weariness’ on DR.
Accordingly, the proposed distributionally robust chance-
constraint home energy management system (DRCC-HEMYS)
approach will benefit electricity users by realistically
considering the RG within home energy systems. This
approach further improves deterministic optimization
techniques, as these do not consider the uncertainty arising
from RG, and thus optimistically consider the generation
output to be certain without any variation. The ambiguity set
of DRCCP is given by mean values and the covariance matrix
of uncertain variables, and thus the DRCC-HEMS is
reformulated in this paper as a SOCP problem using
Chebyshev’s inequality method. The main contributions of
this paper are:

i.  Compared to work [2, 8, 14] which develops HEMS
without considering DR, this paper proposes a new
optimization framework considering DR benefit
function, which can reflect the impact on end
customers regarding customer’s comfort and
weariness due to participation;

ii. It for the first time proposes a novel DRCC-HEMS.
Compared to CC-HEMS that requires a large amount
of PV usage information [12-14], DRCC-HEMS has
the advantages of: 1) being less data dependent
through using moment information, which avoids
violating the extensive PV usage privacy of
customers; and 2) being higher computational
efficiency with less data required.

iii. Compared to traditional robust HEMS which usess
deterministic uncertainty sets [9-11] that would
produce very conservative decisions, DRCC-HEMS
is capable of capturing distributional information to
mitigate the conservativity and thus is more cost
effective for end customers.

iv.  The novel DRCC-HEMS can help customers to use
electricity wisely and economically through an
optimal appliance load scheduling, an optimal ESS
dispatch, and energy purchase scheme.

The rest of the paper is structured as follows: Section
2 proposes the mathematical modelling of the HEMS
appliances, PV generation and ESS. Section 3 proposes the
expression of DR and operation strategies. DRCCP and its
associated reformulation is proposed in section 4. In section
5, the performance of DRCC-HEMS is evaluated on demand
changing, daily expected operation cost and computation
time, plus a comparison is made by CC-HEMS.

DC Bus AC Bus

I - PP(t)

ESS Bi-directional
converter

EESS(£) T

PV system Smart grid

w*(t)
Appliances | P.(t)

HEMS
controller

Fig. 1. Schematic diagram of HEMS

2. HEMS Modelling

The HEMS proposed in this paper contains ESS, PV
and different types of loads categorized for DR. Through
controlling each power component at every single time slot,
the comprehensive objective incorporating both operation
cost and weariness can be achieved. Time is discretized into
1, 2, ..., 48 as 7 for every half hour. Accordingly, the
appliance demand is grouped as set 4.

2.1. Domestic Home Appliances

If an efficient DR is to be implemented, a general load
representation cannot be directly used to represent all types
of domestic appliances. This is mainly due to: (i) not all the
appliances are suitable for DR, (ii) the unique electric
characteristic of each appliance is different, (iii) users have
different preferences for each appliance. Thus, the aggregated
general load should be decomposed into different load
categories based on their electrical characteristics. The DR
implementation incorporates load shifting and reduction
which will inevitably create a ‘weariness’ of customers to
some extent by DR actions. For the analysis in this paper, the
typical consumption from the domestic load sector in the UK
[29] is divided into 9 different categories (top up heating and
storage heating are combined into storage heating which have
similar characteristics): (a) consumer electronics, (b) cooking,
(c) wet loads, (d) cold loads, (e) storage domestic hot water
(DHW), (f) direct DHW, (g) direct heating, (h) storage
heating and (i) lighting.

2.1.1 Critical and Cold Loads: The domestic load
considered ‘critical’ in this paper consists of consumer
electronics, cooking and lighting. In total, the critical load
consumes around 40% of the daily electricity demand [8],
[29], which means an effective DR application could result in
a considerable cost reduction. However, critical loads tend to
be used in fixed periods based on consumer preferences. In
this paper, only a small portion of critical loads are considered
to participate in DR. Similarly, even though cold loads (e.g.
appliances such as fridges and freezers) consume about 16%
of the daily demand [29], consumers would still prefer to
make free use of these over the entire day and not to commit
to any predefined usage pattern.

2.1.2 Wet Load: Wet loads (e.g. dishwashers and washing
machines) are normally classified as non-interruptible loads
[30] in this type of studies since the directly-connected motor
cannot complete a cycle instantly, and thus cannot participate
in rapid-response DR schemes. However, since most of the
current wet loads are equipped with a timer, users can set any
starting time at off-peak time periods.



2.1.3 Heating and Hot Water: The direct heating load
proposed in this analysis refers to the instant use of any
heating appliance on demand, while in the storage heating
scenario the boiler is switched on previously when the
electricity tariff is low, and thus more appropriate for DR.
Similarly, the use of DHW includes direct DHW and storage
DHW. Within this context, the application of DHW on
demand, i.e. direct DHW, is not considered suitable for DR
as instantly changing the timing of hot water consumption
would result in a high user weariness. As for the storage
DHW, the water can be pre-heated at off-peak time periods
and therefore it can be stored and used most effectively later.

2.1.4 Overload Fuse Capacity: In terms of protection to
the HEMS, a maximum load limit needs to be set in case the
sum power of all the appliances at time t is too large and may
cause a trip in the system. The sum of P, (t) should be smaller
than or equal to the fuse capacity F.

;Pa(t) <F

Vte T, Va€E A 1)

2.1.5 Energy Storage System: The ESS in this study
considers a power unit that is capable to store any excessive
energy flow within the HEMS and discharge any required
energy when mostly needed. Charging and discharging power
PESS:C(t) and PESS4(t) at each time slot are restricted by the
maximum and minimum values as follow:

UESS€ (¢)PESSc < PESSc(¢) < uEss,C(t)ﬁEss'c’ @
VteET

UESSA(£)PESS.A < PESSA(f) < uEss,d(t)ﬁEss'd’ 3)
VteET

Binary variables are used to control the status of ESS.
uBSSe(t) + ufSS4(t) < 1,vte T 4)

Regarding the state of charge (SOC) of the system,
this is maintained within a specific range at all times over the
day in (5), to provide the battery with a longer lifetime. In
addition, as the analysis in this paper runs through a complete
day period, the initial and final SOC states of the ESS are set
to equal values in (6).

SOC < S0C(t) < SOC,Vte T (%)
SOC(t = 1) = SOC(t = 48),Vte T (6)

Where the SOC of ESS can be described as in (7) and
(8). Either the charging or discharging power at time slot t can
represent the energy at that specific time period. It should be
noted that the charging efficiency is higher than the
discharging efficiency for the analysis in this paper.

EESS(t) — EESS(t _ 1) + r]ESS‘CPESS‘C(t) _
nESS,dPESS,d (t), VtET (7)

S0C(t) = EESS(t)/EESStotal yie 1 (8)

Accordingly, the operation cost of ESS is yielded by
the frequent charging and discharging over the entire daily

time periods, which can be described as:
T

CESS,total — Z [CESS,unitnESS,cPESS,C (t)
=t + CESS,unitnESS,dPESS,d (t)]
VieT 9)

Where CESS¥nit can be represented by the ESS capital
cost CESScap | jts life cycle LESS and ESS capacity.

CESSunit — CESS,cap/(Z LESSEESS,total) (10)
Ve T

2.1.6 Grid Energy Arbitrage: The HEMS is connected to
the grid and the customer can purchase electricity at any time.
Hence, determining the optimal electricity purchase time
moment is important for saving operation cost. The following
constraint defines the upper and lower limits for P2 (t).

PP <Pb(¢t) < PP, VteT (11)

The equation below can represent the cost of buying
energy, where C?(t) is the time-varying tariff.

T
chTotal — Z Cb(t)Pb (t)
t=1
vte (12)

2.1.7 HEMS Power Balance: A power balance constraint
is used to ensure all the power supply sourced from the ESS,
PV and energy purchase at time slot t is equal to the total
power demand.

PESS’d(t) _ PESS,C(t) + ws(t) + Pb(t) = Z 1A

a=1

ViteE T,Va€e A (13)

2.1.8 PV Generation: Based on historical data from PV
generation, PV output forecast is required for the optimal
application of HEMS [31, 32]. For that purpose, K-means
clustering is applied in this paper by dividing a one year PV
generation into sunny, cloudy and rainy days [33]. Then,
based on the unique characteristic of each weather condition,
artificial neural network (ANN) approach is used with known
irradiance, ambient temperature and wind speed with back-
propagation learning algorithm [34]. The forecast result is
shown in Fig. 2, which shows the forecast and historical data
approximately form a y=x regression line. Based on the
forecast PV generation, the CCP expression is formulated.
Equation (14) represents that the scheduled PV output
exceeds a certain level at least chance of 1 — e across the
entire time horizon. The predefined upper level consists of the
PV output forecast and uncertainty. It is considered to set the
output higher the predefined value with a large probability



1 — €, but lower than the predefined value with a large
probability €.

Pr(w’(t) = o/ (t) + £(t)) >1—€,VtET  (14)

2.2. Demand Response Implementation

TOU pricing scheme, as is presented in Fig. 4 [35], is
applied containing peak, off-peak and super off-peak time
periods, which encourages users to alter their consumption
pattern voluntarily. Based on DR encouragement, load
demand at each specific time slot could be reduced or shifted
to other time slots. (15) describes the benefit of the user that
participates in DR. The first term represents the reward
because of certain load reduction AP;¢(t). The second term
represents the reward due to demand shifting APS"(t). (16)
and (17) limit the load reduction and shifting respectively.

T,A

GPR = Z [RT (£)APTe(£) + RSH(D)APSH ()]

t=1,a=1

Vte T,Vva€ 4 (15)

APIe(t) < APIe(t) < APre(t),vte 7,vae a  (16)
APSh(t) < APSM(t) < APsM(t), vte Tvaea (17)

The reward encouragement will result in cost
reduction and load reduction that will benefit both customers
and utilities. However, it will also bring weariness on DR
when the accustomed behaviours of users will be altered due
to DR schemes. The weariness function WPR is therefore
defined to evaluate the user weariness as presented in (18).
WPR is calculated by adding up the multiplication of
weariness level (WL) and power deviation at each time slot
of all appliances. Where the load reduction and load shifting
of each appliance at each time slot AP,(t) has its
corresponding WL @Z¢(t) and ¢3"(t), indicating that the
WL varies depending on factor of time and appliance. In
terms of time factor, WL values of all appliances are higher
in peak time periods. As for appliance factor, the order of
value for the WL factor of appliances is ‘critical load” >
‘heating’ = ‘DHW’ > ‘wet’. DR of cold load is not involved
in this analysis.

T,A

WOR = > gle(0) ARF(E) + 93 (©) AR ()
t=1,a=1
Vite T,Va€ 4 (18)

2.3. HEMS Objective function

When DR is not applied in HEMS, the only objective
is to determine the most economic result, while DR is being
applied, both economic and weariness objectives will be
considered because the impact of DR on user weariness
cannot be ignored.

M = Cb,Total + CESS,total _ GDR (19)
Obj = min[A°RM + (1 — APR)WPR] (20)

Therefore, to jointly optimize the objectives from
both cost of HEMS and user weariness, the weighting factor
of DR (denoted as A°R) is required to effectively represent the
weight of weariness in the overall objective. The objective
function is denoted as Obj, which includes both economic sub
objective M and weariness sub objective WPR . The
economic sub objective M includes cost of energy purchase
and ESS degradation, minus any benefit arising from DR
actions. While weariness sub objective WPR considers the
implicit DR weariness from demand reduction or shifting.

3. Methodology

The optimization problem defined in this paper for
application in HEMS must be solved by considering the
uncertain solar generation and complex chance constrained
formulation. Accordingly, common methods to handle the
solar generation uncertainty on HEMS are either RO or CCP
[14], [36]. In RO, the uncertainty set is easier to estimate only
based on forecast data, but the drawback is the over-
conservativeness when the worst case lies on bounds with low
probability. On the other hand, CCP coping with a large
number of uncertainty samples is computationally demanding.
And analytical reformulation is normally over-optimistic
when fitting the historical data to a specific uncertainty
distribution.

3.1. Distributionally Robust Reformulation for CCP

As opposed to the previous methods, with DRO,
neither making assumptions on uncertainty distributions nor
a large number of uncertainty samples are required, but it only
requires limited statistical information such as moment
information. Compared with CCP, DRO provides an
ambiguity set that considers all the possible distributions
rather than making assumptions on a certain distribution of
CCP. Compared with RO, DRO considers the worst
distribution to reduce conservatism rather than the worst case
on its own [18, 19]. The ambiguity set is defined by
incorporating moment information such as mean and
covariance, which considers all the possible distributions.

Regarding the RE power output within HEMS (i.e.
from PV), a time varying lower bound w” (t) + £(t) is set to
ensure PV generation at each time slot is above a certain level.

A;(€)x = bi(&) = {05 (1) = 0/ () + E(D)} (21)

A; is used to represent the ith row of the random matrix
A and deterministic b; is used to represent the ith element of
vector b. The chance constraint i is satisfied with probability
1-¢;. In other words, it also means under chance of €;, the
constraint cannot be satisfied.

Pr4:(E0x = bi(§)) 21— ¢ (22)
&; is the random variable that affects constraint i. 4;
can be represented by A;(¢&;) that is defined as the affine
function including deterministic part 4;, and uncertain part

Ay, & [37, 38], where K is the dimension of ¢&;.
K

Ai(&) = Ay + Z Ay §irc (23)
k=1



K
Bi(§) = b + ) b S 24)

k=1

Then two vectors are formulated and will be used in
the later reformulation content, A} = (b;; — Ay x, by, —
Appx, .. by — Aigx) and b¥ = A;ox — byy. The ambiguity set
D with the first and second moment information can be
described as:

P{f(©)}=1
El=u+v,
E{E - -C—-w")=y,r (25)

D =11

In this paper, the mean vector and covariance matrix
are considered as the moment information and DRO is used
to reformulate CCP to a tractable SOCP problem. Robustness
is reflected on parameters y, and y, that can be altered and
therefore be used to decide the size of the ambiguity set.
Larger values of y; and y, result in more robust results [18].
Accordingly, y,= 0 and y,= 1 that are commonly used in
research are used in this paper, also considering D'cD. Hence,
the ambiguity set for each chance constraint i is provided by
equation (26).

P{f(H}=1
E{¢} = uo 26
E{(§ —1o) - §— ﬂo)T} =1 20)

D" =1f()

The uncertainty is reflected on the random & matrix,
which consists of elements in J rows and K columns. Thus,

Eij'kis an element at jth row and kth column. To construct the
ambiguity set, the mean and covariance matrices are required.
The covariance value for £/* can be calculated as:

% = B8] - E[g/ D@k - E[gkD) @7

Hence, the distributionally robust constraint i in (21)
can be rewritten as:

inf P(ANTE-DbF=20)=1—¢ (28)
F(E)ED,E~(1o,Ip)

Which can be further reformulated to the following
constraint:
sup P((AN)T¢ — bF = 0) < ¢ (29)
f(®)eD.$~(ro.lo)

According to the tight multivariate single sided
Chebyshev bound [39] and the SOCP reformulation by [40],
a random variable y, with known mean y and variance o, can
be expressed as:

Py=z(A+mu) = (30)

o + u?>m?

Where m is a constant between 0 and 1. In (30), m is
given by: _
bt 1 (31)
m=-—= -
(AN Tuo

Table 1 Parameters of HEMS

System parameters
ESS PESSe=pESSd=Q) P

ESS,c —ESS,d

P =4.8kW
S0C=30%, SOC=90%, n=SS<=nEssd=( 88
CESSunit=0,0042 p.u./kW, EESStotal=4 gk\wh

Electricity PP=0, Pb=4kW
purchase T
PV Capacity=1kW

Then, equation (29) is equivalent to:

—.T —
_ AY I AT
sup  P{ETAY > by = —— 1

F(®)EDE~(Ho.To) AF Ty AF + po™m?
(32)
B A < |2 (BF - o TAY 33
i0i—1_€_(z_llo i) (33)

L

Therefore, when the DRCCP approach is applied to
the PV power output within HEMS, it makes sure that at each
particular time slot, at least chance 1 — ¢; the output can be
larger than the predefined lower bound. Overall, it also
ensures the total PV output is larger than the predefined total
output value for the entire operation time horizon. Thus, the
equation (34) below can be applied in both DRCCP and CCP
for performance comparison.

Pr(w’(t) = w/(t) + &) =21 —€,VteT (34)
3.2. Overall DRCC-HEMS Approach

Based on all previous assumptions, the step-by-step
methodology applied on DRCC-HEMS is described as
follows:

i.  Acquire data: decomposed residential load, solar
generation, ESS specifications and TOU pricing
scheme.

ii.  Cluster solar generation into three categories in terms
of weather conditions and apply forecast.

iii. Formulate constraints and objective for HEMS and
set a chance constraint for solar generation.

iv.  Construct ambiguity set and apply distributionally
robust formulation for CCP through (21)-(33).

v.  Solve the DRCC-HEMS by an efficient commercial
solver.

4. Performance Evaluation

This section presents the resulting analysis from the
HEMS performance. Firstly, a HEMS configuration is
proposed, followed by the PV forecast which provides the
raw information required to construct the ambiguity set. The
DRCC-HEMS is then solved considering DR and
comparisons on appliance scheduling and operation curves
are discussed. DRCCP is also compared with CCP method.
As a result, the overall HEMS objective is optimized, and the
sub-objectives incorporating operation cost and weariness
function are separately analysed and discussed. It must be
noted that all outcome results regarding the daily operation
cost of HEMS is expected overall cost. All numerical
simulations are solved by CPLEX 12.8 with Intel i7-7700
CPU, 3.6 GHz and 16 GB RAM.
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Fig. 2. PV output forecast for application with HEMS

4.1. HEMS Setup

As presented in Fig. 1, the HEMS structure proposed
in this paper was originally designed and deployed for SoLa
BRISTOL Project [41] in the city of Bristol (UK), and is
currently tested in the Smart Grid Laboratory at the
University of Bath. A PV generator with a DC/DC converter
and a battery set are connected to a common DC bus,
supplying the daily energy demand to a domestic load
emulator through an AC/DC inverter. The technical
parameters are shown in Table 1 [35, 41, 42], and the base
case confidence interval of CC is set as 1- € =95%. Regarding
the onsite RE generation, the PV output data is recorded
annually at the University premises. The forecast error was
originally normal distributed approximately, which is then
fitted to be perfectly normal distributed. As described in
section 2, rather than using historical data directly, the
forecast PV output is used as the source of information for
building the ambiguity set in the HEMS optimization. The
ANN forecast result which corresponds to this analysis is
shown in Fig. 2.

4.2. Numerical Results

Firstly, five DR scenarios, with different DR factors
representing diverse customer preferences on cost saving and
weariness function are applied for the optimal performance of
HEMS. The DR scheme with weighting factor APR=0.5 is
considered as the base case, and both cost and weariness are
therefore set as 1 p.u. As compared to the base case, three
typical DR scenarios, with APR =0, 0.5 and 1 are denoted as
scenario 1, 2 and 3 respectively. Secondly, the optimal home
appliance scheduling after the application of both DR and
DRCCP for scenarios 1, 2 and 3 are directly compared and
presented. Finally, this section presents the optimal electricity
purchase and SOC curves.

Based on the previous assumptions, Table 2 presents
five different scenarios, which are distinguished by five
different sets of APR and therefore define the diversity in
customer preferences on cost saving and weariness function.
As expected, and as shown in Table 2, the resulting HEMS
operation cost is reduced as soon as any DR participation is
considered for the HEMS users (i.e. APR > 0). On the contrary,
the user weariness increases accordingly with the rise of PR,
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The two extremes occur when AR is equal to 0, i.e. when DR
is not applied at all, and 1, when DR is fully implemented.

Fig. 3(a) presents the original power consumption of
all home appliances in a typical household without any DR
intervention (i.e. APR = 0). Unlike the average after-diversity
demand (ADD) concept, which reflects the overall energy
consumption of many domestic users, the consumption
pattern considered for analysis in Fig. 3 represents a single
individual household with a typical ‘working-pattern’
behaviour (i.e. electricity users get off home at 9:00 in the
morning and return home at 18:00 in the evening). A short-
period peak demand takes place during the morning when
there is high on-demand consumption of DHW appliances.
Another long-period peak demand occurs from 18:00, when
critical and DHW loads are mostly consumed, followed by
the highest peak demand when wet and heating loads are
added into the overall consumption.

After the application of DR on HEMS (i.e. APR> 0),
the load consumption is presented for scenario 2 in Fig. 3(b)
with APR = 0.5, which means the DR strategy considers
equally important the daily operation cost of HEMS and the
user weariness. The initial DHW and heating loads are
divided into: i) storage DHW and heating when hot water and
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Table 2 Cost and Weariness effect from different APR

APR Cost (p.u.)  Weariness (p.u.)
0 1.30 0.00

0.25 1.14 0.43

0.5 1.00 1.00

0.75 0.91 1.85
1 0.83 297

heat can be stored during off-peak periods and used later, and
ii) direct DHW and heating when users tend to consume
DHW and heating immediately. As shown in Fig. 3(b) for
scenario 2, the highest peak demand in the evening (i.e. from
19:30 to 20:30) is reduced by 14% and shifted into the night
between 2:00 and 4:00. This creates a new peak of 92%
increase when storage DHW and heating are used for storing
water and heat for later use. In addition, the consumption
from the 19:30-20:30 peak is decreased due to the 54% shift
of storage DHW. Apart from the great impact on peak
demand because of DR, the overall load consumption is
reduced by 7% through reducing a small amount of demand
at every time slot.

Finally, if the DR intervention simply considers saving
energy cost as the objective function, thus ignoring weariness
(i.e. APR = 1), the resulting load curve after HEMS
optimisation is shown for scenario 3 in Fig. 3(c). The biggest
difference from scenario 2 is the wet load shift from 19:30-
20:30 to 4:30-5:30. Additionally, heating and DHW loads are
further shifted and aggregated to the time period 2:00-4:00 in
order to switch them off at other time slots and save standby
energy consumption. Also, since APRis at its highest value,
consumption of all the appliance types is further reduced at
every time period. Overall, compared with scenario 1 and 2,
24% and 17% of the total electricity demand is reduced
respectively.

Apart from the best-fitted appliance consumption, in
Fig. 5, the operation of HEMS also results in an optimal
power scheduling curve for the SOC of ESS and energy
purchase, including DR scenarios 1,2 and 3 for three different
weather conditions (sunny, cloudy and rainy). As previously
discussed, the TOU tariff is presented in Fig. 4, which is an
essential factor for the optimal power scheduling with HEMS.
Alternatively, the SOC of ESS and energy purchase from the
grid largely depend on weather conditions, which is reflected
in Fig. 5 by the similar power scheduling curves resulting for
each weather condition. As a general comparison, in cloudy
days, the ESS is required to produce about 7% and 21% more
energy than in sunny and rainy days. On the other hand, the
amount of buying electricity on sunny days is 22% and 53%
less than in cloudy and rainy days respectively. In scenario 1,
with no DR intervention at all (i.e. A°% = 0), an increase of 9%
and 25% in electricity purchase occurs due to higher energy
consumption, as compared with scenarios 2 and 3
respectively.

For example, in scenario 2 (A°R = 0.5), since a large
amount of appliance consumption is shifted to the period
2:00-4:00, an intensive electricity purchase is required
without discharging the battery. Then, due to the demand
increase between 7:30 and 8:30 in the morning, ESS is
slightly discharged until when PV starts to harness power
again at 8:00. The battery is assumed to be charging at all
times when the PV is generating and there is no demand from
HEMS. Because of the high energy consumption during the

1 H On-peak
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Fig. 4. Daily TOU tariff for HEMS application
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Table 3 Comparison of expected cost and CPU time for
three DR scenarios (1- € = 95%)

DRCCP ccp Deterministic
DR _ Cost (p.u.) 1.30 1.24 1.22
A =

CPU time (s) 0.03 8.80 0.03

or Cost (p.u.) 1.00 0.97 0.94
A7 =05

CPU time (s) 0.03 6.84 0.03

R -1 Cost (p.u.) 0.83 0.78 0.76

B CPU time (5) 0.02 475 0.02

evening peak time, ESS is accordingly discharged all the way
from the highest SOC of 90% to the lowest SOC value of 30%.
Therefore, the energy purchased individually supplies the
HEMS demand from 21:30 to 00:00. A similar power
scheduling is yielded in cloudy days, however with a larger
electricity purchase due to a lower availability from the PV
generation. With the increased demand shift to morning times,
more buying electricity is needed on rainy days, with a rapid
charging required from the battery. In that case, due to the
lack of sufficient PV output during the day, the battery is
barely used (neither to charge nor to discharge) and SOC is
kept around 90% for 14 hours during the day time.

In order to find out the optimal objective that fulfils
both daily operation cost and weariness. Instead of
considering as a fixed coefficient for sub objectives, APR is
considered as a decision variable to determine the overall
optimal objective. Calculation is made and the optimal result
is yielded when APR = 0.07. Accordingly, the SOC and
electricity purchase curves are shown in Fig. 5(c). According
to the resulting AP, it can be found that the optimum exists
when slight concentration is on operation cost while large
concentration is on weariness. The weighting factor can be
adjusted by the HEMS operators depending on the customer’s
preference on cost saving or weariness.

4.3. Performance Comparison with CCP

In this section, the performance of DRO (i.e. the
proposed DRCCP technique) and the benchmark approach
(scenario approach) to solve the CC-HEMS problem is
analysed by comparing the resulting daily operation cost and
computation time to solve HEMS optimization. Moreover, as
an additional comparison, a deterministic optimization
approach is investigated without considering any uncertainty
from the PV generation. In particular, the benchmark
approach CCP uses a scenario approximation, with a large set
of scenarios, where e of scenarios violates the constraint (31)
but the rest adheres. The dimensionality of the analysis is
addressed by scenario reduction by comparing moment
information that includes expectation, variance, skewness
and kurtosis. In Table 3, the resulting costs (in per unit values)
and computation time are compared when DRCCP, CCP and
deterministic optimization are all applied in sunny conditions,
with a confidence level of 1- € =95%. When APR=0.5, the cost
of DRCCP is considered as base case and set as 1 p.u.

As compared in Table 3, both DRCCP and
deterministic optimization analyses require less CPU time as
compared with CCP, which needs to consider a wide range of
scenarios. Regarding the cost, as no uncertainty from PV

Table 4 Expected cost for DRCCP and CCP with different
confidence levels

Cost (p.u.)

€ DRCCP ccp
1% 0.994 0.970
2% 0.996 0.973
3% 0.999 0.975
4% 1.000 0.976
5% 1.000 0.977
6% 1.000 0.978
% 1.007 0.984
8% 1.011 0.989
9% 1.012 0.991
10% 1.012 0.993

generation is concerned, deterministic optimization with a
fixed PV output yields more optimistic results than CCP and
DRCCP, which also include the probabilities of PV
generation varying under a fixed maximum value. In spite of
the improvement in CPU time, the comparison in Table 3 also
demonstrates that DRCCP results in a more conservative
solution than CCP (which requires a high computation
burden), reflecting on a more conservative PV generation and
a higher operation cost. With the increase of the DR
weighting factor (i.e. AP? > 0), more DR involved results in a
lower cost and less CPU time due to a more efficient and
economical electricity consumption pattern and a reduced
load demand. Overall, DRCC-HEMS saves computation time
as compared with CCP and incorporates the implicit
uncertainty from PV generation as compared with
deterministic optimization. The scenario-based CC-HEMS
yields a reliable result considering uncertainty but requires
much more computation complexity. While the deterministic
HEMS results in a more optimistic result solely considering
the fixed higher values of PV generation but ignoring lower
generation in probability e.

Finally, in Table 4, a cost comparison is provided
when DRCCP and CCP techniques are applied to solve the
HEMS problem with different values of confidence level e.
As rthe eference, when e is 5%, the cost of DRCCP is
considered as the base case and set as 1 p.u. Although € =5%
is mostly studied in the proposed CC problem in this paper,
the impact on the daily HEMS operation cost by changing the
confidence level € from 1% to 10% is also investigated. As
shown in Table 4, When e grows, the confidence interval 1 —
€ decreases, which means it is less probable that the
scheduled PV power is larger than the predefined level.
Accordingly, the event of output exceeding violation is less
frequent. Thus, with the increase of €, the overall scheduled
PV output is becoming smaller. Accordingly, CCP results in
an average 2% reduced operation cost for HEMS. The cost
difference generally reduces when e increases, which is a
direct effect from a less strict control on minimum PV
generation. In general, DRCCP yields more conservative
results than the CCP. It offers large savings in the
computation burden, similar to those obtained with the use of
deterministic optimization.



4.4. Discussion on Numerical Results

The classical scenario approximation is used to solve
CC-HEMS in comparison with DRCCP, which is fully
described in terms of computation time and daily operation
cost from the HEMS. The resulting difference among the
three scenarios shows that the DRCC-HEMS alters energy
consumption patterns in a great extent through load
curtailment and demand shifting. Thus, by implementing the
DRCC-HEMS approach, with full consideration of solar
energy uncertainty, a significant reduction in customer
electricity bills can be achieved, as well as a faster system
response due to the reduced complexity in the computation of
results. The analysis shows that the advantage of DRCC-
HEMS can be listed:

1. Protecting information privacy: In practice, acquiring
the full knowledge of uncertainty is not always
possible. Gathering the PV usage data from HEMS
customers is even not practical. A large data set
requires the participation of customers by sharing
their PV usage information, which inevitably violates
the privacy of customers. DRCC-HEMS does not
require the use of large uncertainty samples, but only
moment information obtained from limited data, thus
protecting customer privacy.

2. Computationally efficient: Conventional CC-HEMS
requires large data sets by using detailed distribution
modelling and then transforms them into
deterministic models to solve by sophisticated
mathematical techniques. By contrast, DRCC-
HEMS is more computational efficient which only
needs moment information.

3. Accurate costs: In CC-HEMS, when the dataset is not
sufficiently large, assigning a specific probability
distribution to uncertain renewable generation will
cause big errors. By contrast, DRCC-HEMS provides
customers a more accurate scheduling plan by
reliable moment information.

4. Considering uncertainties: Compared to the
deterministic HEMS, although it produces lower
results, the PV uncertainty is ignored, which in reality
is not practical to be considered as deterministic
datasets. However, these uncertainties can be easily
included in the developed DRCC-HEMS. By
implementing the DRCC-HEMS approach, with the
full consideration of solar energy uncertainty, a
significant reduction in customer electricity bills can
be achieved, as well as a faster system because of the
reduced complexity in modelling.

5. Conclusion

In this paper, the optimal performance of a hybrid PV-
storage HEMS is investigated with precise control on ESS,
electricity purchase from the grid, specific domestic
appliances for DR, as well as considering the uncertainty
from PV generation. In order to solve the HEMS problem,
different DR interventions are studied for energy cost
reduction by altering customer consumption patterns. The
uncertainty arising from solar energy (i.e. the ambiguity set)
is fully incorporated into the HEMS by applying DRCCP,

which no longer require the use of inaccurate probability
distributions associated with uncertainty.

Overall, it is concluded that the DRCCP presented in
this paper, in combination with all the parameters considered
for an optimal HEMS performance, provides the best solution
for the analysis and application of DR at residential customer
level, which at the same time fully acknowledges the
uncertainty arising from any type of RE generation, as proven
for a hybrid PV-storage HEMS.
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