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Abstract—The Energy Hub has become an important concept
for formally optimizing multi-carrier energy infrastructure to
increase system flexibility and efficiency. The existence of energy
storage within energy hubs enables the dynamic coordination of
energy supply and demand against varying energy tariffs and local
renewable generation to save energy cost. The battery lifetime cost
may be included in the optimization objective function to better
utilize battery for long term use. However, the operational
optimization of an interconnected energy hub system with battery
lifetime considered presents a highly constrained, multi-period,
non-convex problem. This paper proposes Particle Swarm
Optimization (PSO) hybridised with a numerical method, referred
to collectively as the decomposed approach. It decouples the
complicated optimization problem into sub-problems, namely the
scheduling of storage and other elements in the energy hub system,
and separately solves these by PSO and the numerical method
‘interior-point’. This approach thus overcomes the disadvantages
of numerical methods and artificial intelligence algorithms that
suffer from convergence only to a local minimum or prohibitive
computation times, respectively. The new approach is applied to
an example two-hub system and a three-hub system over a time
horizon of 24 hours. It is also applied to a large eleven-hub system
to test the performance of the approach and discuss the potential
applications. The results demonstrate that the method is capable
of achieving very near the global minimum, verified by an
analytical approach, and is fast enough to allow an online, receding
time horizon implementation.

Index Terms—Energy hub, energy sharing, energy storage,
multi-period optimization, particle swarm optimization.

I. INTRODUCTION

Energy hub modelling relates to the utilization of co-
generation or tri-generation, which increases system flexibility
by means of exploiting every available energy carrier, such as
electricity, gas, and heat [1, 2]. A typical energy hub contains
multiple energy carriers, which achieves the function of
importing, exporting, converting, and storing energy [3, 4]. The
energy hub approach takes advantage of existing infrastructures
as much as possible and can be applied to various sizes of the
energy system. Domestic buildings are modelled in this paper,
which consume approximately 40% of society’s total energy [5]
but an individual domestic load profile is fairly stochastic such
that it cannot always be met with onsite generation.
Interconnecting heterogeneous energy infrastructure at local

level can best leverage renewable generation and pooled
storage without suffering large distance transmission losses and
enable self-sufficient energy communities.

The optimal operation of an energy hub system enables the
effective utilization of the elements within the system to
minimise energy use, monetary cost or emissions, or some
weighted combination of these objectives. Different algorithms
have been applied to the multi-hub optimization problem.
Reference [6] presents a decomposed solution of a multi-agent
genetic algorithm to optimize the power and gas flow between
energy hubs. Papers [7] and [8] employ model predictive
control (MPC) to optimally control the operation of three
interconnected energy hubs, although numerical methods are
applied within the MPC scheme, so a global minimum cannot
be guaranteed in the solution. In [9] and [10], a grid of 10 hubs
is modelled, where the energy transfer between hubs is
formulated as a non-cooperative game. The existence of the
unique Nash equilibrium is proved. References [11, 12] propose
an integrated demand response program and simulate the
scheme on a smart grid of six energy hubs. The integrated
demand response problem is formulated as an ordinal potential
game and the Nash equilibrium is proven to be unique.
Reference [13] investigates the performance of an energy
management system under different energy pricing schemes for
agroup of 10 hubs. Reference [14] introduces the “smart energy
hub” system which uses a cloud computing platform to enable
customers with must run loads to participate in a demand side
management program. Reference [15] investigates the
optimization performance between deterministic and stochastic
approaches applied to multi-period optimization for a 3-hub
system over a mixed industrial and residential area. Reference
[16] generates a novel mathematical model for storage, general
appliances, and other renewable components in residential
houses. Mixed integer linear programming (MILP) is applied to
optimize the control for residential energy hubs considering
end-user preferences.

References [9] to [15] propose the optimization for multi-
hubs. However, storage is not considered when the problem is
formulated as a non-convex problem in [9] to [12]. In reference
[13], the storage is modelled in the energy hub optimization, but
the problem is formulated as a convex problem. The optimal
operation of multiple hubs with energy storage and
interconnection available between hubs has hitherto been
formulated as a highly constrained, non-linear multi-period
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optimization. However, the lifetime of the battery system
suffers as its utilization increases, an aspect which has not been
addressed in previous energy hub literature. In this paper, the
battery lifetime cost is calculated and included in the objective
function based on the method proposed by [17]. Therefore, the
optimization problem is formulated as a non-convex, multi-
period problem.

Numerical algorithms such as MILP provide fast
computation times, but perform poorly when solving non-
convex problems, because the solver can easily fall into local
minima. Alternatively, particle swarm optimization (PSO) and
related optimization approaches have been applied to optimize
the operation of power systems due to their straightforward
implementation and high efficiency [18]. For example, multi-
pass iteration PSO was applied to the optimal scheduling of a
battery coupled with wind turbine generators [19]. Co-
evolutionary PSO was applied to smart home operation
strategies [20]. A hybrid algorithm combining PSO and a
bacterial foraging algorithm was proposed and applied to the
optimal scheduling of an active distribution network [21].

Despite high robustness and accuracy compared with other
algorithms [19], PSO has never been applied to solve energy
hub optimization problems. However, conventional PSO is not
suitable for solving highly-constrained non-linear problems
with a large number of variables where the feasible region is
narrow in hundreds of dimensions, meaning the time spent on
finding feasible particles is considerable. Thus, improvement to
conventional PSO is required in order to fully harness its
potential for multi-hub optimization. This paper proposes a
decomposed solution by applying a novel hybrid PSO and
numerical optimization by combining conventional PSO with
the ‘interior point” method. Each particle in the PSO routine
represents the storage operations over the whole optimization
time horizon (24 hours in this paper). Based on the storage
operation, the ‘interior-point” algorithm is applied to optimize
the operations of other elements in the system of energy hubs
over 24 hours. The resulting energy cost over the full 24 hour
time horizon is formulated as the fitness score. All particles then
are updated based on the conventional PSO routine until the
optimization completes. The decomposed approach is
demonstrated to be capable of optimizing multi-energy hubs
efficiently, and the storage operation obtained from the
decomposed approach is benchmarked to be very close to the
theoretical optimal strategy of storage. Additionally, the
decomposed PSO vyields better optimization results with less
computation compared with the conventional PSO. The
approach is applied to two energy hub systems to illustrate its
effectiveness. The main contributions of this paper are
illustrated as follows:

i) A decomposed approach of applying particle swarm
optimization is proposed in this paper, and it is capable of
solving the non-convex multi-period optimization problem.
The decomposed approach is validated by a simple two-hub
system for which the theoretical minimum can be derived
empirically.

ii) A group of residential houses is simulated as an
interconnected energy hub system, an optimization problem is
expressed to minimize the total cost of the energy hub system

over 24 hours. With the battery lifetime cost considered in the
optimization, the problem is formulated as a non-convex
problem. The decomposed PSO approach is applied to
optimally solve the problem. The optimization results indicate
that the battery SOC varies between 60% and 90% to avoid
unnecessary degradation of the battery lifetime for three
residential hubs.

iii) The performance of the decomposed PSO approach is
compared with the conventional PSO being applied to solve a
same three-hub problem. The decomposed approach achieves a
58% greater energy saving for three-hub optimization with 98%
saving of computation time comparing with the conventional
PSO.

This paper is organized in six sections. Section Il illustrates
the general optimization problems for multi-energy hubs which
the energy interconnection is enabled between hubs. An explicit
description of the decomposed approach applying PSO is
presented in section I11. Section IV presents the case studies and
related results. Section V concludes the paper.

Il. ENERGY HUB OPTIMIZATION

A. Energy hub modelling

A typical energy hub model that enables energy sharing
between hubs is shown in Fig. 1. It consumes various input
resources including electricity from grid (P,;.), solar energy
(Pso), and gas (Py4s) to meet the electricity load (L., ) and
thermal load (L,;). The energy flow between hubs is denoted
by E,, and H,, , which indicate the power and heat exchange
with other hubs. The mathematical formulation between hub
inputs and outputs under steady state operation is shown in (1).
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The first matrix on the right hand side is the coupling matrix
C, which defines the relationship between inputs P and outputs
L. The parameter t within the brackets indicates that these
variables are time dependent. Since the problem is considered
in a discretized time domain, they are fixed in each time step.
The coefficient v is the dispatch factor between 1 and 0 which
generally denotes the portion of the energy injected to a certain
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Fig. 1. An example of energy hub model
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Fig. 2. Two-hub system with energy sharing available between hubs.
converter. For the example energy hub model, v, is the portion
of electricity injected to heat pump over total electricity input.
v, indicates the percentage of gas input to CHP over total gas
input. Parameters 7y, and n,, express the efficiency of the
Solar PV and boiler respectively. n, and n,; represents the
electric efficiency and thermal efficiency of CHP respectively.
Eg, and E, indicate the charging and discharging energy.

The assumptions for modelling the energy hub system are as
follows:

Assumption 1: The energy hub system modelled enables

electricity and heat sharing between hubs. The electrical

interconnection between hubs is the electricity exchange

with the grid. For example, in Fig. 2 electricity transfer from

hub 1 to hub 2 is achieved by injecting electricity to grid from

hub 1, and extracting the same amount of electricity from

grid to hub 2. For heat transfer, a district heat network must

be installed between the hubs.

B. Converter modelling

The most common residential heating in the UK, a gas boiler,
is modelled within the energy hub. The efficiency of a gas boiler
can be formulated as a nonlinear expression in terms of the
input energy Py (t).

Assumption 2: the efficiency of the boiler simulated in this

paper is non-constant, and the characteristics of the cyclic

fuel utilization efficiency with respect to cyclic input energy
normalized by steady-state input energy is derived based on

Reference [22]. The data points and approximated curve are

shown in Fig. 3.

The boiler efficiency varying with the input energy can,
therefore, be represented by the approximated curve. The
expression of boiler efficiency 1y, is shown in (2):

770 (t) = 0.8218646—0.01686 + P, (t) 2
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Fig. 3. Boiler efficiency against cyclic input energy normalized by steady-
state input energy

Where P,,5"(¢) is the value of instant gas input at time step ¢
normalized by steady-state input.

In addition, the ground source heat pump (GSHP) is selected
in this paper due to its high efficiency and potential to
decarbonise heat, and its increasing uptake in some European
countries, America and Japan [23]. The efficiency of the heat
pump is described as the Coefficient of Performance (CoP) and
is expressed in (3):

Heat output = CoP x P, (t) (©)

Where Py, is the power input to the GSHP.

Assumption 3: the CoP of GSHP is set to be constant over

the whole time horizon.

Micro-combined heat and power (micro-CHP) reduces
electricity utilization from the grid and increases energy
efficiency by simultaneously generating power and heat [24].
Hence it is modelled in this paper.

Assumption 4: The micro-CHP simulated in this paper is

assumed to be steady-state with constant electric efficiency

and thermal efficiency. The ramp rate constraint e, g, t0
restrict the micro-CHP power output is considered and given
by (4), e, is the power output of the micro-CHP.

—e <e,(t-)—-e,()<e (4)

ramp ramp

C. Energy storage modelling

The lead-acid battery is employed as the energy storage
within the energy hubs in this work. The battery is considered
to be a simple buffering device. Since the electrical energy
within the storage at the current time step is equal to the
electricity at last time step plus the charging energy or minus
the discharging energy, and minus the standby loss. The i
battery’s energy level E;(t) is mathematically expressed in (5).
EM)=E{—D+Ey; 1)+ En; () <700 — Egni (1) / 77055 ®)

E(t — 1) represents the energy within the storage in the
previous time step. E,; is the standby loss, Ey, and Ejg
indicate the charging and discharging energy. ncpqr and ngis
are charging efficiency and discharging efficiency respectively.
Since the battery can only charge, discharge, or on standby at
any time step, constraint (6) is considered in the optimization
problem.

Er.i () < Eqn,i ®=0 (6)

In addition, the characteristic of battery lifetime is considered
since the operation of the battery at different states of charge
(SOC) result in different losses. The lifetime drops quicker
when operating the battery during low SOCs compared to high
SOCs [25]. To maximize the benefits of battery utilisation from
the prospective of long term operation, the battery lifetime cost
penalty is calculated and added to the objective function.
Reference [17] suggests the method of calculating battery
lifetime cost Cy,;(t) and it is illustrated in Appendix.

Assumption 5: During the process of optimization, the initial

state of charge of each battery is set to be 70%, and to

consistently utilize the batteries for the next day, the state of
charge at the final time step needs to be reverted to above

70%. The SOC of the three batteries is assumed to be limited

between 0 and 100%.



D. Optimization problem description

The objective is to minimize the system cost including the
energy cost and battery lifetime cost over a time horizon of 24
hours. With the knowledge of electricity load, heat load, energy
carrier price and solar energy generation, the objective is to
control the energy hub operation at each time step to achieve a
holistic 24 hour optimization. The system operation vector
contains energy injected into each hub, the dispatch factor
within each hub, the energy exchange between hubs, and the
charging/discharging energy of energy storage at each time
step. The control vector u(t) is expressed in (7):

u(t) @)
= [Pele,i(t)rpgas,i(t)r Eij @®), Hij (), Egn (), vi(t)]' Vi, vt

For a system containing Q number of interconnected energy
hubs, the optimization problem may be formulated as equations
(8a) to (80), the variables used in problem (8) are defined
thusly:

Subscripts i and j denote the hub index. P,.(t) and
Pyqs(t) represent the electricity and gas input to energy hub at
time step t. v;(t) denotes the dispatch factor at time step t. The
electricity and heat exchange between hubs are denoted as
E;;(t) and H;;(t), which means the energy flow direction is
from hub i to hub j at time step t. The flow direction is reversed
when the value of E;;(t) and H;;(t) are negative. SOC(t) is the
battery state of charge. E;(t) represents the energy stored in the
battery at time step t, which has to be limited within the battery
capacity. Eg, (t) and E,(t) are the charging and discharging
power from the battery. I1(t) denotes the energy price. Pyp(t)
and Pg, (t) are the energy injection to heat pump and boiler
respectively. N is the number of total time steps. e,(t)
represents the electricity output of Micro-CHP, and e,.q.,, (¢) is
the Micro-CHP ramp rate at time step t.

The optimization problem is described by (8a) — (80):
Minimize

N Q
Z[Z[Pe.e,i (6) X T (€) +Pyas s (1) X T gy (8) + Cy (t)]} (82)

t=1 [ i=1

Subject to
L;(t) = C;(t) x Pi(¢),Vi, vt (8b)
0 <wv(t) <1Vi,vt (8c)
Electricity
Pete,imin(t) < Peiei(t) < Pejeimax(t), Vi, Vt (8d)
Eijmin(t) < Ejj(t) < Ejjmax(t), Vi,V (8e)
Heat
Hijmin(t) < Hij(t) < Hijmax(6), Vi, Vt (8f)
Battery
SOC; min(t) < SOC;(t) < SOC; max(b), Vi, Vt (89)
0 < Egpi(t) < Espimax(t), Vi, Vt (8h)
0 < Eps,i(t) < Ensimax(8), Vi, Vt (8i)
Espi(t) X Epg;(t) = 0,Vi,Vt (8j)
Micro-CHP
ep,imin(t) < €y (t) < €pimax(t), Vi, ¥t (8K)

eramp(t) < €p;(t) — e, (t — 1) < eyamp (1), Vi, Vt 80
Gas
Pyasimin(t) < Pgasi(t) < Pyasmax(t), Vi, Vt (8m)
GSHP
Pupimin(t) < Pupi(t) < Pupimax(t), Vi, Vt (8n)
Boiler
Pgo,imin() < Pgoi(t) < Ppoimax(t), ViVt (80)

As indicated by (8), the optimization is carried out
considering the security constraints. (8b) indicates the coupling
between hub input and output, where constraints (2) (3) and (5)
are included in (8b), and (1) is the transformation of (8b). (8d)
and (8m) refer to the minimum and maximum energy input to a
single hub. (8e) and (8f) suggest the adjustment of energy
transmission limitation between hubs. (8g) indicates the
limitation of energy level within batteries. (8h) and (8i) indicate
the limitation of charging energy and discharging energy at
each time step. (8j) avoids simultaneously charging and
discharging the battery. (8k), (8n), and (80) represent the
minimum and maximum energy injection to micro-CHP,
GSHP, and boiler respectively. (8l) limits the ramp rate for
micro-CHP electric output.

Whilst solving the energy hub optimization problem, the
control variables mentioned in (7) at each time step must satisfy
all constraints illustrated above. Therefore, the multi-hub
problem is necessarily a multi-period optimization containing a
large number of variables and constraints. For instance, the 3-
hub scenario investigated in this paper contains 504 variables
and 480 constraints. Clearly, the optimization problem becomes
more complicated as the number of hubs increases.
Additionally, it was concluded by graphing the functions
associated with the battery lifetime cost ((Al) to (A6) in the
Appendix) that these fail to satisfy the definition of a convex
problem, given in Appendix (A7)-(A9), in particular that the
resulting objective function failed to satisfy (A9). Therefore,
the optimization problem is a non-convex problem.

I1l. DECOMPOSED PSO

A. PSO

Particle swarm optimization was proposed based on the
behaviour of flocking birds or schools of fish [26]. Each particle
describes a solution to a problem that can be quantitatively
measured by its performance. At each iteration of the
optimization, the particles trend towards the global minimum
based on two factors, the best performance of any particle ever
achieved P7 and the best position P/ of particle i. The PSO
working mechanism is illustrated by means of mathematical
formulations in (9) and (10):

The position X of a particle i at iteration k + 1 is

K = Xy ©)

VF*1 indicates the new velocity for particle i at k + 1
iteration. It is derived as:

Vik+1 = wVik + Clrl(Pik - Xlk) + Czrz(Pig - Xlk) (10)

r; and r, represent two random numbers between 0 and 1. ¢;
and c, are the cognitive parameter and social parameter, the



two weighting factors that model the confidence of the current
particle in itself and in the swarm [27]. Parameter w is the
inertia weight, a coefficient applied to particle velocity, which
influences the PSO convergence behaviour by increasing the
distance the particle will travel from its previous position.

At the beginning of the optimization, the PSO algorithm
firstly generates a population of particles randomly over the
search space, where the position of each particle represents a
solution. The particles are evaluated by applying the solution to
the problem to obtain a fitness score for each particle. P and

P} can therefore be found. All particles are updated using (9)
and (10) at each iteration, with this process repeated until the
stopping criteria is met.

When conventional PSO is used on highly constrained and
non-convex optimization problems, the particles tend to fall
into infeasible regions during initialization and updating. This
problem can be solved by utilizing the sequential quadratic
programming (SQP) algorithm [28]. The SQP algorithm solves
an optimization problem by seeking the Karush-Kuhn-Tucker
first order optimally condition, which can find a local minimum
near the starting point. In other words, the position of an
infeasible particle is taken as the starting point and then by
utilizing the SQP algorithm, a feasible particle can be found
nearby that replaces the infeasible one.

B. Decomposed approach

The multi-energy hub optimization is a multi-period problem
with many variables. Since the main purposes of storage are to
time-shift renewably generated energy to meet loads and
arbitrage against varying tariffs, its operational management
must, therefore, consider the energy price, renewable
generation, and converter working status to schedule its
operational state in each time step, i.e. charging, discharging or
on standby. The operation of storage in the current time step
will influence the operation in other time steps and thus a multi-
period optimization approach is necessary. The complexity of
the problem requires significant computation time and may
compromise optimization accuracy. However, if the optimal
operation of the complex time-dependent device (such as
storage) is known in advance, other control variables in (7) can
then be obtained by applying numerical methods in each time
step.

The stochastic nature of PSO is capable of solving non-
convex problems with non-continuous search spaces, whilst the
numerical function ‘interior-point’ can handle non-linear
constrained problems with acceptable performance and
computation time, so the decomposed approach here harnesses
advantages of both methods. In general, during the generating
and updating of all particles, only the control information of
every battery is included in each particle (i.e. charging and
discharging energy). For the optimization of a three-hub system
containing three batteries over 24 time steps, there are totally
144 variables included in each particle. Whilst the operations of
remaining elements in the energy hub system are derived using
the interior point method based on the information in each
particle, and the fitness score of each particle can therefore be
calculated. The procedure is shown in Fig. 4 and can be

described thusly:

1) Randomly initialize a population of particles, where the
position of each particle denotes the solution of two
variables over 24 hours: charging energy and discharging
energy. The variables should be generated within the
boundary set by the optimization, including the maximum
charging/discharging energy, minimum and maximum
battery capacity or SOC as indicated in (8h), (8i) and (8g).
The magnitude of charging power at each step multiplied
by discharging power should be equal to zero, meaning the
battery can only either be charging, discharging, or on
standby. This is achieved by applying SQP algorithm to
find a feasible point satisfying above conditions near the
initial point.

2) For each time step, the charging and discharging energy
can be regarded as the extra output and input for energy
hub system without a battery. Therefore, the operations of
the battery between each time step can be decoupled from
each other.

3) The ‘interior-point’ method is then applied to optimize the
operation over the whole time period based on electricity
load, heat load, renewable energy generation, extra input,
and extra output. The optimized total system cost over 24
time steps is then derived. Meanwhile, the battery lifetime
cost related to the battery working status over 24 time steps
is calculated. The fitness score of each particle is thus the
total operational cost from both battery operation and
optimized overall hub management.

Randomly initialize a
population of particles for
battery related variables over
24 time steps

Satisfying battery
constraints?

Apply SQI* to force the
particles into feasible region

‘ Yes

For each particle, use ‘interior-point’
to optimize other hub elements
operation over 24 hours based on the
state of the battery.

I

The total cost of the energy hub

system is therefore derived and

regarded as the fitness score for
each particle.

l

Find P.y and Pf based on the
fitness score for each particle.

]

Yes Meeting stopping
eriteria?

No

Update velocity and
position for each particle

Fig. 4. The working flow of the decomposed approach



4) Find P? and PF, see if the best particle satisfies the
stopping criteria. If the stopping criteria is met, then the
solution of the best particle is the final solution to the
optimization. If not, update the velocities and positions for
particles based on (9) and (10).

5) Repeat steps 2 to 4 until the stopping criteria is met.

The decomposed approach decouples the optimization for
batteries and other hub elements. The optimal operations of
batteries are derived based on the PSO, the optimization for
other hub elements is obtained by applying the interior-point
method. The efficiency of the algorithm is increased, and the
computation time is therefore reduced.

The decomposed-PSO algorithm is achieved based on
modification of the open source PSO MATLAB routine
developed by ETH Zurich [28]. The decomposed method is
illustrated in terms of the optimization for the two-hub system
in next section.

I\VV. DEMONSTRATION

This section applies the novel PSO algorithm to two multi
energy-hub systems across two use scenarios. The first part
introduces a two-hub system, which is simple enough such that
a theoretical minimum may be analytically calculated for
benchmarking the performance of the PSO algorithm. The
second part investigates a three-hub system with converters and
batteries illustrated in section 1. The potential application of the
decomposed approach is discussed based on the computation
speed and operation results in the third part.

A. Two-hub System

To demonstrate the effectiveness of the decomposed-
optimization in finding the global minimum, a 2-hub system
optimization problem is proposed and investigated. The battery
lifetime cost is excluded in the problem, hence the theoretical
minimum can be derived analytically, and the performance of
the decomposed approach can be evaluated. The 2-hub system
with energy sharing is shown in Fig. 2.

Each of the two hubs represents a residential house. The load
and generation profile is assumed to be a winter day in the UK
based on [29] and [30]. A battery is equipped in hub 1, with
charging efficiency and discharging efficiency assumed to be
95%, and standby losses assumed to be negligible (justified
because the self-discharge rate on diurnal timescales is very
small). The battery minimum and maximum capacities are 4
kwh and 17.376 kWh. To verify that the redundant energy
within each hub is adequately utilized by the energy sharing
between hubs, the different performance of converters is
assumed in each hub. A ground source heat pump with CoP of

TABLE |
THE OPTIMAL OPERATIONS FOR BATTERY

Electricity price(£)

0 5 10 15 20 25
Time(hour)
Fig. 5. The time-of-use tariffs against 24 hours.

3.0 and another heat pump with CoP of 4.2 are included in hub
1 and hub 2 respectively. Time-of-use electricity tariffs (derived
from [31]) are assumed, in this case shown in Fig. 5. The
optimization problem statements refer to (8).
1) Validation

The benchmark approach to calculate the global minimum of
the two-hub system over 24 hours is shown in this section. The

total energy cost, TC, for the two hubs is given in (11).
24

TC = Z[Pele,l(t) + Pele,z (t) + Esh(t)] X Hele(t)

t=1

P, 1(t) and P, ,(t) indicate the electricity consumption
for hub 1 and hub 2 respectively. Ey,(t) represents the
electricity exchange between hubs and energy storage. The
optimization strategy is as follows: the consumed electricity is
utilized to support the ground source heat pump to generate heat,
and meet the electricity load. According to equation (3), the
electricity requirement for heat can be reduced by exploiting the
high CoP of heat pumps. Since heat between hubs is
transferable, the heat pump in hub 2 (CoP of 4.2) is applied to
support the heat load for two hubs at each time step.

In addition to selecting high performance heating converters,
storage can also be utilized to reduce energy cost. Based on
achieving the objective of reducing the energy cost for the
whole system, the operation of the battery should follow the
broad strategy of charging during low tariffs and discharging
during high tariffs. The battery needs to be fully charged during
periods 1-7 since the electricity prices at these times are lowest.
For periods 17-19, the prices are the highest, hence the storage
needs to discharge within the maximum discharging power. The
price from 15-16 is the lowest, hence some energy could be
charged during 8-14 and recharge during 15-16 only if the
remaining power at the end of 16 is capable of meeting the
demand during 17-19. After considering the maximum

(11)

TABLE Il

. Chargin Dischargin Battery state of

Period energy?kvsh) energy (k%/\/r?) charge(kWh) OPTIMIZATION RESULTS FOR 2-HUB SYSTEM

1-7 14.08 0 17.376 Particle population ~ Optimization results(§  Computation time(s)
8-14 0 6 11.376

15-16 6 0 17.076 10 6.783 106

17 0 2.646 14.429 20 6.776 250

18-19 0 5.78 8.649 30 6.737 271
20-21 0 4.6494 4 40 6.733 260
22-24 0 0 4 50 6.752 419
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Fig. 6. The battery operations against 24 hours.
discharging/charging power (3kW), the battery operation at
each time step can be derived and indicated in table 1. Based on
the operation of storage and heat pump, the total energy cost,
TC, can be calculated as £.73 from (11).
2) First scenario

The 2-hub system optimization problem is solved by the
decomposed PSO method running on a 3.40 GHz Intel i5 quad
core desktop with 8 GB of RAM. The procedures of
implementing decomposed PSO is illustrated as follows:

1) A group of particles is generated, each particle contains
each battery’s charging and discharging energy over 24
time steps, which is randomly generated within the
boundary set by optimization. Hence there are totally 48
variables contained in one particle. The charging and
discharging energy in first three steps in the first particle
is shown for example: 2.65 and 0.21, 1.24 and 0.11, 2.15,
0.02.

2) The SQP method is then applied to find a feasible point
near the randomly generated point based on the battery
constraints, in this case a feasible point indicates that the
battery has to be either charging, discharging, or
standby. The 6 variables in procedure 1 turns to be: 2.71
and 0, 1.21 and 0, 2.10 and 0.

3) The battery scheduling is then abstracted from the
individual time step optimization, in that the charging
and discharging power of the battery at each time step
are regarded as extra energy exported/imported from/to
the hub. Given the battery information and the
constraints within the energy hub system, the ‘interior-
point’ method is applied to optimally decide the
variables over 24 time steps, such as the value of energy
carrier injection to the hub, dispatch factor, etc. The total
energy cost over whole time horizon can therefore be
calculated, and regarded as the fitness score of the
related particle.

4) The speed of each particle is generated based on
equation (10), the PSO keeps updating particles’
positions and speeds until the stopping criteria is met.

The optimization results of total energy cost over 24 hours

are shown in table Il over a range of different particle
population sizes.

As shown from table I, the performance of the algorithm

improves when the particle population increases. However, the
optimization results do not consistently increase with increasing
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Fig. 7. Three-hub system with energy sharing available between hubs.
particle population due to the stochastic nature of PSO. The best
result is £65.73, which demonstrates that the algorithm is capable
of reaching very close to the global minimum for a highly-
constrained, non-linear problem.

For comparison, when the storage is not present and energy
sharing is unavailable between hubs, the energy demand for
each hub can only be met with its own converters, and the total
minimum energy cost is calculated as £7.84. When storage is
not equipped with the system and energy sharing is available
between hubs, the optimization problem is transformed to an
optimal flow problem at each time step. The optimization can
be solved by applying the ‘interior-point’ method, and the
theoretical minimum energy cost is derived as £7.32. Compared
with the 2-hub system without energy sharing and storage, the
optimization achieves an energy saving of 14.14%.

To demonstrate the accuracy of decomposed-PSO, the
optimal operation of the battery at each time step derived from
a 30 particle optimization is compared with the battery
operation derived from the benchmark approach, and is shown
in Fig. 6. It can be observed that the optimized battery
operations derived from the decomposed approach closely
approximate to the operations obtained from the benchmark
theoretical minimum.

B. Three-hub System

A three-hub system is presented and shown in Fig. 7. The
three hubs respectively contain a battery with sizes of 5.3 kWh,
10.5 kWh and 21 kWh, the related battery parameters can be
found in [25]. Different heating converters including GSHP,
micro-CHP, and gas boiler are equipped in the three hubs. The
CoP of GSHP is selected as 4, the constraint parameters of
micro-CHP are adopted from [24, 32]. The efficiency of the gas
boiler is non-linear against the gas input, and is illustrated in
section Il. The electricity load L, (t) and heat load L, (t) for
each hub are satisfied by optimally scheduling the utilization of
all heating converters and batteries.

The gas price is assumed to be constant at £.03 per kWh
over all 24 time steps. The electricity price is varied every hour
in this case to reflect the time-of-use electricity tariffs all
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Fig. 8. The variant tariffs of electricity against 24 hours.
retailers will likely adopt in the near future. The variant
electricity price against 24 hours is derived from [31] and
shown in Fig. 8, with average half hourly tariffs used to produce
an hourly pricing granularity. (These energy costs are typical in
the UK at time of writing, but future prices will clearly yield
different overall costs than the results shown in this paper.) The
same method of modelling electricity demand and heat demand
used in [31] is employed here. Additionally, the solar PV
generations Pg, (t) are simulated with the software [33]. To
demonstrate the superiority of the decomposed approach, the
conventional PSO is applied to solve this optimization problem.
The comparison between the decomposed approach and
conventional PSO is illustrated by convergence behaviour and
computation time.
1) Second scenario

In this scenario, the performance between the conventional
PSO and the decomposed approach in solving the optimization
problem above is compared.

Since the time spent on conventional PSO increases
massively with rising particle population size, a modest
population of 10 particles was applied to both conventional
PSO and decomposed approach to observe the convergence
behaviour, and the comparison is shown in Fig. 9. The blue
circles and the orange crosses represent the performance of
applying conventional PSO and the decomposed approach
respectively.

As indicated in Fig. 9, the objective function value by
applying decomposed PSO plateaus from between 15 and 20
iterations onwards, for conventional PSO, the objective
function value trends to flat around 35 iterations. Under the
conservative stall generations (50) and stall tolerance settings
(£.000001), the conventional PSO optimization converges at
the 162" iteration after 8970 s, and the optimization result is
£22.61. The decomposed approach converges at 143" iteration
after 121 s, and achieves a much improved optimization result
of £.30.

The optimized battery operations for hub 2, derived from two
optimization methods, are shown in Fig. 10 in terms of battery
SOC. The pink circles and orange crosses represent the battery
SOC at each time step optimized by conventional PSO and
decomposed PSO, and the blue dotted line indicates the
electricity price variation over 24 time steps. From the
perspective of optimally exploiting the storage to save energy
cost, both of the two methods achieve the optimization by
charging storage during the low tariff period and recharging
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Fig. 9. Convergence behaviours of conventional PSO and decomposed
approach.

during the high tariff period. It could be concluded from Fig. 10
that the electricity tariff experiences two peak values over 24
time steps. The two peak values appear at step 11 and step 18.
Both of the optimization methods indicate that the storage is
discharging since the first peak electricity price from step 9 to
10. Nevertheless, the storage operation derived from the
decomposed approach discharges around the first peak
electricity price from step 10 to 11, and then rapidly charges
from step 11 to 18 to prepare for the second peak electricity
price. With conventional PSO, the storage barely discharges at
the first peak electricity price. Thus comparing with the
conventional PSO, the decomposed approach can better
optimize the storage operation and further reach the optimum.
However, it could be derived from Fig. 10 that the battery
scheduling operations derived from both optimization methods
fail to fully discharge around the peak tariff period, which may
lead to further cost saving. This is due to the low number of
particles that degrades the performance of the optimization.
2) Impact of battery lifetime cost

To investigate the influence of battery lifetime cost in the
objective function on battery scheduling, the optimization is run
when considering battery lifetime and compared to when the
battery lifetime consideration is omitted. 30 to 50 particles used
in decomposed PSO reach a result very close to the global
minimum for the 3-hub optimization based on extensive
experimentation. Hence 50 particles are applied in the
optimization. The SOC of three batteries over 24 time steps
when considering battery lifetime and compared with excluding
the battery lifetime in the objective function are shown in Fig.
11 and Fig. 12 respectively. The green, blue, and red lines
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Fig. 10. The optimized battery operations by applying conventional PSO and
decomposed approach.
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Fig. 12. Battery state of charge over 24 time steps derived from the
optimization without considering the battery lifetime cost

represent the variation of SOC of battery in hub 1, 2, and 3 over
24 hours respectively.

The total energy costs for these two optimizations are
$9.0268 and £.0070, the battery lifetime costs are £.0331 and
£).0728. Clearly when omitting the battery lifetime cost the
batteries are exploited to yield more energy saving. However,
the battery lifetime cost is higher, and thus the system total cost
is higher (sum of energy cost and battery lifetime cost) at
£9.0798, compared to £9.0599 when battery lifetime is
considered. When the battery lifetime is not optimized, the
variation of SOC is broader, for example, the battery in hub 1
even varies between 50% and 100%. When the battery lifetime
is considered in the objective function, the SOC of three
batteries all varies from approximately 60% to 90%. It may be
concluded from the calculation of battery lifetime cost that the
cost increases when the battery is operated during lower SOCs.
Hence the battery is better operated at high SOCs to avoid
unnecessary degradation of battery lifetime.

C. Applications

The optimization problem uses a fixed time step of one hour.
To allow an online, receding time horizon implementation, the
optimization for scheduling the system of energy hubs must be
completed within the time step. Therefore, the size of the
system of energy hubs that the decomposed approach is capable
of optimizing within one hour is investigated. With the same
modelling method applied, a 5-hub system and an 11-hub

48

47.5

47

Optimization result(£)

46.5
10 20 30 40 50 60 70 80

Particles population
Fig. 13. Optimization results against different amount of particles
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Fig. 14. Computation time against different amount of particles
system are simulated with the same level of complexity to the
3-hub system investigated in section V. The decomposed
approach is applied with 30 particles to 3, 5, and 11 hub
systems. The computation time for solving these three cases are
270, 779 s, and 1011 s respectively.

The decomposed approach was tested with different numbers
of particles, for the 11-hub system, and the optimization results
and computation time are shown in Fig. 13 and Fig. 14
respectively. In Fig. 14 ‘y=3600 s’ was drawn as a reference
which indicates the time budget for a receding time horizon
implementation with a time step of 1 hour.

It could be observed from Fig. 13 that the optimization results
generally plateau at approximately £46.89 when the population
of particles applied in PSO is 40. Increasing population size
beyond this does not increase system benefit. In contrast, the
computation time increases approximately linearly as the
number of particles increases. The computation time of
implementing PSO with 60 particles on this problem is 3421 s
representing the best trade-off between computation time and
performance for this particular system.

With a receding time horizon implementation, operations are
calculated up to a certain time horizon, for which all load data
is predicted in advance, but only the optimized operation for the
next time step is implemented. In the next time step the time
horizon is increased by one and the process is repeated. This
makes the best use of load prediction data on the basis that the
predicated data closer to the current time step is likely to be
more accurate. On the other hand, a fixed time horizon approach
may be used for larger multi-hub systems that are more
computationally intensive to solve.



V. CONCLUSION

This paper presents a decomposed method that hybridises
particle swarm optimization and the ‘interior point” method to
solve the optimal scheduling problem for a multi-energy hub
system with the consideration of battery lifetime. For a 3
residential energy hub system, the utilization of battery varies
from 60% to 90% to avoid unnecessary degradation of the
battery lifetime, and the system thus benefits long term through
increased battery lifetimes. Compared with the conventional
PSO, the decomposed method can achieve a 58% greater
energy saving for three-hub optimization with 98% saving of
computation time. The optimization demonstrably achieves
very near the global minimum. This method can be applied in a
receding time horizon approach for solving a practical system
of size around 10 hubs, always leveraging the most up to date
load prediction. For a larger system with more storage
technologies, a fixed time horizon approach can be used, or the
time step may be increased or the time horizon reduced. From
the view of energy management, the storage operation is more
accurate when the predicted horizon is longer and generally
speaking, the time step smaller, necessitating a trade-off
between optimization performance and computation time.
Alternatively, the computation time could be shortened using
high performance hardware or cloud computing.

APPENDIX

A. Calculation of battery lifetime cost

The life loss of a battery L;,¢,(t) over a certain time period t
can be expressed as:

Lloss (t) = AC(t)

Atotal

(A1)

Where A.(t) is the effective cumulative Ah throughput
during the use of battery and A, is the total cumulative Ah
throughput in the life cycle. The value of A, is Selected as
390Q effective Ah over its lifetime [25], which Q Ah is the
capacity of a battery. A (t) is formulated in (A2).

Ac(8) = AsocAc(t) (A2)

Asoc 15 the effective weighting factor. The relation between
Asoc @nd battery state of charge (SOC) is estimated as a linear
formulation based on [25] and expressed in (A3).

o= —-1.5-5S0C +2.05 if SOC =50%
soc = { 1.3 if SOC < 50%

A (t) indicates the actual Ah throughput. Assuming the SOC
of the battery varies from a to b in a certain time period, A..(t)
and A.(t) can be expressed in terms of a and b shown in (A4)
and (Ab) respectively.

(A3)

Ac(t) = (a—b)xQ (A4)
a
A(t) = fb Agocdsoc X Az (t) ifa=bh (A5)
0 ifa<b
The life loss cost Cp, (t) is calculated with (A6).
Cpi(t) = Lioss(O) Cinit-pat (A6)
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Ciit—pat TEPresents the initial investment cost of battery, and
it is assumed to be 0.534 HAh [34] multiply by the battery
capacity. The life loss cost can thus be calculated with (Al) to
(A6).

B. Definition of convex problem
A convex optimization problem is defined by (A7) — (A9).
Minimize f;(x) (A7)
Subjectto f;(x) < b;, (A8)

Where functions £,..., f, : R — R are convex, i.e., satisfy

filax; + (1 — a)x,) < afi(x) + (1 — a)fi(xz) (A9)
forall x;, x, e R"*andall @ € R,a = 0.

i=1,...,m
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