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 

Abstract—The Energy Hub has become an important concept 

for formally optimizing multi-carrier energy infrastructure to 

increase system flexibility and efficiency. The existence of energy 

storage within energy hubs enables the dynamic coordination of 

energy supply and demand against varying energy tariffs and local 

renewable generation to save energy cost. The battery lifetime cost 

may be included in the optimization objective function to better 

utilize battery for long term use. However, the operational 

optimization of an interconnected energy hub system with battery 

lifetime considered presents a highly constrained, multi-period, 

non-convex problem. This paper proposes Particle Swarm 

Optimization (PSO) hybridised with a numerical method, referred 

to collectively as the decomposed approach. It decouples the 

complicated optimization problem into sub-problems, namely the 

scheduling of storage and other elements in the energy hub system, 

and separately solves these by PSO and the numerical method 

‘interior-point’. This approach thus overcomes the disadvantages 

of numerical methods and artificial intelligence algorithms that 

suffer from convergence only to a local minimum or prohibitive 

computation times, respectively. The new approach is applied to 

an example two-hub system and a three-hub system over a time 

horizon of 24 hours. It is also applied to a large eleven-hub system 

to test the performance of the approach and discuss the potential 

applications. The results demonstrate that the method is capable 

of achieving very near the global minimum, verified by an 

analytical approach, and is fast enough to allow an online, receding 

time horizon implementation. 

 

Index Terms—Energy hub, energy sharing, energy storage, 

multi-period optimization, particle swarm optimization. 

I. INTRODUCTION 

Energy hub modelling relates to the utilization of co-

generation or tri-generation, which increases system flexibility 

by means of exploiting every available energy carrier, such as 

electricity, gas, and heat [1, 2]. A typical energy hub contains 

multiple energy carriers, which achieves the function of 

importing, exporting, converting, and storing energy [3, 4]. The 

energy hub approach takes advantage of existing infrastructures 

as much as possible and can be applied to various sizes of the 

energy system. Domestic buildings are modelled in this paper, 

which consume approximately 40% of society’s total energy [5] 

but an individual domestic load profile is fairly stochastic such 

that it cannot always be met with onsite generation. 

Interconnecting heterogeneous energy infrastructure at local 

 
 

level can best leverage renewable generation and pooled 

storage without suffering large distance transmission losses and 

enable self-sufficient energy communities.  

The optimal operation of an energy hub system enables the 

effective utilization of the elements within the system to 

minimise energy use, monetary cost or emissions, or some 

weighted combination of these objectives.  Different algorithms 

have been applied to the multi-hub optimization problem. 

Reference [6] presents a decomposed solution of a multi-agent 

genetic algorithm to optimize the power and gas flow between 

energy hubs. Papers [7] and [8] employ model predictive 

control (MPC) to optimally control the operation of three 

interconnected energy hubs, although numerical methods are 

applied within the MPC scheme, so a global minimum cannot 

be guaranteed in the solution. In [9] and [10], a grid of 10 hubs 

is modelled, where the energy transfer between hubs is 

formulated as a non-cooperative game. The existence of the 

unique Nash equilibrium is proved. References [11, 12] propose 

an integrated demand response program and simulate the 

scheme on a smart grid of six energy hubs. The integrated 

demand response problem is formulated as an ordinal potential 

game and the Nash equilibrium is proven to be unique. 

Reference [13] investigates the performance of an energy 

management system under different energy pricing schemes for 

a group of 10 hubs. Reference [14] introduces the “smart energy 

hub” system which uses a cloud computing platform to enable 

customers with must run loads to participate in a demand side 

management program. Reference [15] investigates the 

optimization performance between deterministic and stochastic 

approaches applied to multi-period optimization for a 3-hub 

system over a mixed industrial and residential area. Reference 

[16] generates a novel mathematical model for storage, general 

appliances, and other renewable components in residential 

houses. Mixed integer linear programming (MILP) is applied to 

optimize the control for residential energy hubs considering 

end-user preferences.  

References [9] to [15] propose the optimization for multi-

hubs. However, storage is not considered when the problem is 

formulated as a non-convex problem in [9] to [12]. In reference 

[13], the storage is modelled in the energy hub optimization, but 

the problem is formulated as a convex problem. The optimal 

operation of multiple hubs with energy storage and 

interconnection available between hubs has hitherto been 

formulated as a highly constrained, non-linear multi-period 
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optimization. However, the lifetime of the battery system 

suffers as its utilization increases, an aspect which has not been 

addressed in previous energy hub literature. In this paper, the 

battery lifetime cost is calculated and included in the objective 

function based on the method proposed by [17]. Therefore, the 

optimization problem is formulated as a non-convex, multi-

period problem.  

Numerical algorithms such as MILP provide fast 

computation times, but perform poorly when solving non-

convex problems, because the solver can easily fall into local 

minima. Alternatively, particle swarm optimization (PSO) and 

related optimization approaches have been applied to optimize 

the operation of power systems due to their straightforward 

implementation and high efficiency [18]. For example, multi-

pass iteration PSO was applied to the optimal scheduling of a 

battery coupled with wind turbine generators [19]. Co-

evolutionary PSO was applied to smart home operation 

strategies [20]. A hybrid algorithm combining PSO and a 

bacterial foraging algorithm was proposed and applied to the 

optimal scheduling of an active distribution network [21]. 

Despite high robustness and accuracy compared with other 

algorithms [19], PSO has never been applied to solve energy 

hub optimization problems. However, conventional PSO is not 

suitable for solving highly-constrained non-linear problems 

with a large number of variables where the feasible region is 

narrow in hundreds of dimensions, meaning the time spent on 

finding feasible particles is considerable. Thus, improvement to 

conventional PSO is required in order to fully harness its 

potential for multi-hub optimization. This paper proposes a 

decomposed solution by applying a novel hybrid PSO and 

numerical optimization by combining conventional PSO with 

the ‘interior point’ method. Each particle in the PSO routine 

represents the storage operations over the whole optimization 

time horizon (24 hours in this paper). Based on the storage 

operation, the ‘interior-point’ algorithm is applied to optimize 

the operations of other elements in the system of energy hubs 

over 24 hours. The resulting energy cost over the full 24 hour 

time horizon is formulated as the fitness score. All particles then 

are updated based on the conventional PSO routine until the 

optimization completes. The decomposed approach is 

demonstrated to be capable of optimizing multi-energy hubs 

efficiently, and the storage operation obtained from the 

decomposed approach is benchmarked to be very close to the 

theoretical optimal strategy of storage. Additionally, the 

decomposed PSO yields better optimization results with less 

computation compared with the conventional PSO. The 

approach is applied to two energy hub systems to illustrate its 

effectiveness. The main contributions of this paper are 

illustrated as follows: 

i) A decomposed approach of applying particle swarm 

optimization is proposed in this paper, and it is capable of 

solving the non-convex multi-period optimization problem. 

The decomposed approach is validated by a simple two-hub 

system for which the theoretical minimum can be derived 

empirically. 

ii) A group of residential houses is simulated as an 

interconnected energy hub system, an optimization problem is 

expressed to minimize the total cost of the energy hub system 

over 24 hours. With the battery lifetime cost considered in the 

optimization, the problem is formulated as a non-convex 

problem. The decomposed PSO approach is applied to 

optimally solve the problem. The optimization results indicate 

that the battery SOC varies between 60% and 90% to avoid 

unnecessary degradation of the battery lifetime for three 

residential hubs. 

iii) The performance of the decomposed PSO approach is 

compared with the conventional PSO being applied to solve a 

same three-hub problem. The decomposed approach achieves a 

58% greater energy saving for three-hub optimization with 98% 

saving of computation time comparing with the conventional 

PSO. 

This paper is organized in six sections. Section II illustrates 

the general optimization problems for multi-energy hubs which 

the energy interconnection is enabled between hubs. An explicit 

description of the decomposed approach applying PSO is 

presented in section III. Section IV presents the case studies and 

related results. Section V concludes the paper.  

II. ENERGY HUB OPTIMIZATION 

A. Energy hub modelling 

A typical energy hub model that enables energy sharing 

between hubs is shown in Fig. 1.  It consumes various input 

resources including electricity from grid (𝑃𝑒𝑙𝑒 ), solar energy 

(𝑃𝑠𝑜 ), and gas (𝑃𝑔𝑎𝑠 ) to meet the electricity load (𝐿𝑒𝑙𝑒 ) and 

thermal load (𝐿𝑡ℎ). The energy flow between hubs is denoted 

by 𝐸𝑟ℎ and 𝐻𝑟ℎ , which indicate the power and heat exchange 

with other hubs. The mathematical formulation between hub 

inputs and outputs under steady state operation is shown in (1). 
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(1) 

The first matrix on the right hand side is the coupling matrix 

C, which defines the relationship between inputs P and outputs 

L. The parameter 𝑡  within the brackets indicates that these 

variables are time dependent. Since the problem is considered 

in a discretized time domain, they are fixed in each time step. 

The coefficient 𝜈 is the dispatch factor between 1 and 0 which 

generally denotes the portion of the energy injected to a certain 
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Fig. 1.  An example of energy hub model 
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converter. For the example energy hub model, 𝜐1 is the portion 

of electricity injected to heat pump over total electricity input. 

𝜐2 indicates the percentage of gas input to CHP over total gas 

input. Parameters 𝜂𝑠𝑜  and 𝜂𝑏𝑜  express the efficiency of the 

Solar PV and boiler respectively. 𝜂𝑒 and 𝜂𝑡ℎ represents the 

electric efficiency and thermal efficiency of CHP respectively. 

𝐸𝑠ℎ and 𝐸ℎ𝑠 indicate the charging and discharging energy. 

 The assumptions for modelling the energy hub system are as 

follows: 

Assumption 1: The energy hub system modelled enables 

electricity and heat sharing between hubs. The electrical 

interconnection between hubs is the electricity exchange 

with the grid. For example, in Fig. 2 electricity transfer from 

hub 1 to hub 2 is achieved by injecting electricity to grid from 

hub 1, and extracting the same amount of electricity from 

grid to hub 2. For heat transfer, a district heat network must 

be installed between the hubs.  

B. Converter modelling 

The most common residential heating in the UK, a gas boiler, 

is modelled within the energy hub. The efficiency of a gas boiler 

can be formulated as a nonlinear expression in terms of the 

input energy 𝑃𝑔𝑎𝑠(𝑡).  

Assumption 2: the efficiency of the boiler simulated in this 

paper is non-constant, and the characteristics of the cyclic 

fuel utilization efficiency with respect to cyclic input energy 

normalized by steady-state input energy is derived based on 

Reference [22]. The data points and approximated curve are 

shown in Fig. 3. 

The boiler efficiency varying with the input energy can, 

therefore, be represented by the approximated curve. The 

expression of boiler efficiency 𝜂𝑏𝑜 is shown in (2): 

)(01686.08218646.0)( tPt gasbo

                    (2) 

Where 𝑃𝑔𝑎𝑠
∗(𝑡) is the value of instant gas input at time step 𝑡 

normalized by steady-state input. 

In addition, the ground source heat pump (GSHP) is selected 

in this paper due to its high efficiency and potential to 

decarbonise heat, and its increasing uptake in some European 

countries, America and Japan [23]. The efficiency of the heat 

pump is described as the Coefficient of Performance (𝐶𝑜𝑃) and 

is expressed in (3): 

)(PCoP=outputHeat hp t                                               (3) 

Where 𝑃𝐻𝑃  is the power input to the GSHP. 

Assumption 3: the CoP of GSHP is set to be constant over 

the whole time horizon. 

Micro-combined heat and power (micro-CHP) reduces 

electricity utilization from the grid and increases energy 

efficiency by simultaneously generating power and heat [24]. 

Hence it is modelled in this paper. 

Assumption 4: The micro-CHP simulated in this paper is 

assumed to be steady-state with constant electric efficiency 

and thermal efficiency. The ramp rate constraint 𝑒𝑟𝑎𝑚𝑝  to 

restrict the micro-CHP power output is considered and given 

by (4), 𝑒𝑝 is the power output of the micro-CHP. 

rampppramp etetee  )()1(             (4) 

C. Energy storage modelling 

The lead-acid battery is employed as the energy storage 

within the energy hubs in this work. The battery is considered 

to be a simple buffering device. Since the electrical energy 

within the storage at the current time step is equal to the 

electricity at last time step plus the charging energy or minus 

the discharging energy, and minus the standby loss. The ith 

battery’s energy level 𝐸𝑖(𝑡) is mathematically expressed in (5). 

disishcharihsistbii tEtEtEtEtE  /)()()()1()( ,,,   (5) 

𝐸(𝑡 − 1)  represents the energy within the storage in the 

previous time step. 𝐸𝑠𝑡𝑏  is the standby loss, 𝐸𝑠ℎ  and 𝐸ℎ𝑠 

indicate the charging and discharging energy. 𝜂𝑐ℎ𝑎𝑟  and 𝜂𝑑𝑖𝑠 

are charging efficiency and discharging efficiency respectively. 

Since the battery can only charge, discharge, or on standby at 

any time step, constraint (6) is considered in the optimization 

problem. 

0)()( ,,  tEtE ishihs
              (6) 

In addition, the characteristic of battery lifetime is considered 

since the operation of the battery at different states of charge 

(SOC) result in different losses. The lifetime drops quicker 

when operating the battery during low SOCs compared to high 

SOCs [25]. To maximize the benefits of battery utilisation from 

the prospective of long term operation, the battery lifetime cost 

penalty is calculated and added to the objective function. 

Reference [17] suggests the method of calculating battery 

lifetime cost 𝐶𝑏𝑙(𝑡) and it is illustrated in Appendix. 

Assumption 5: During the process of optimization, the initial 

state of charge of each battery is set to be 70%, and to 

consistently utilize the batteries for the next day, the state of 

charge at the final time step needs to be reverted to above 

70%. The SOC of the three batteries is assumed to be limited 

between 0 and 100%. 
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Fig. 2.  Two-hub system with energy sharing available between hubs. 

 
Fig. 2.  Gas boiler cyclic efficiency 

 

 
Fig. 3.  Boiler efficiency against cyclic input energy normalized by steady-

state input energy 
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D. Optimization problem description 

The objective is to minimize the system cost including the 

energy cost and battery lifetime cost over a time horizon of 24 

hours. With the knowledge of electricity load, heat load, energy 

carrier price and solar energy generation, the objective is to 

control the energy hub operation at each time step to achieve a 

holistic 24 hour optimization. The system operation vector 

contains energy injected into each hub, the dispatch factor 

within each hub, the energy exchange between hubs, and the 

charging/discharging energy of energy storage at each time 

step. The control vector 𝑢(𝑡) is expressed in (7): 

𝑢(𝑡)

= [𝑃𝑒𝑙𝑒,𝑖(𝑡), 𝑃𝑔𝑎𝑠,𝑖(𝑡), 𝐸𝑖𝑗(𝑡), 𝐻𝑖𝑗(𝑡), 𝐸𝑠ℎ(𝑡), 𝑣𝑖(𝑡)], ∀𝑖, ∀𝑡  

(7) 

For a system containing Ω number of interconnected energy 

hubs, the optimization problem may be formulated as equations 

(8a) to (8o), the variables used in problem (8) are defined 

thusly: 

Subscripts 𝑖  and 𝑗  denote the hub index. 𝑃𝑒𝑙𝑒(𝑡) and 

𝑃𝑔𝑎𝑠(𝑡) represent the electricity and gas input to energy hub at 

time step t. 𝑣𝑖(𝑡) denotes the dispatch factor at time step t. The 

electricity and heat exchange between hubs are denoted as 

𝐸𝑖𝑗(𝑡) and 𝐻𝑖𝑗(𝑡), which means the energy flow direction is 

from hub i to hub j at time step t. The flow direction is reversed 

when the value of 𝐸𝑖𝑗(𝑡) and 𝐻𝑖𝑗(𝑡) are negative. 𝑆𝑂𝐶(𝑡) is the 

battery state of charge. 𝐸𝑠(𝑡) represents the energy stored in the 

battery at time step 𝑡, which has to be limited within the battery 

capacity. 𝐸𝑠ℎ(𝑡) and 𝐸ℎ𝑠(𝑡) are the charging and discharging 

power from the battery. Π(t) denotes the energy price. 𝑃𝐻𝑃(𝑡) 

and 𝑃𝐵𝑜(𝑡) are the energy injection to heat pump and boiler 

respectively.  N is the number of total time steps.  𝑒𝑝(𝑡) 

represents the electricity output of Micro-CHP, and 𝑒𝑟𝑎𝑚𝑝(𝑡) is 

the Micro-CHP ramp rate at time step t. 

The optimization problem is described by (8a) – (8o): 

Minimize 
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Subject to 

𝐿𝑖(𝑡) = 𝐶𝑖(𝑡) × 𝑃𝑖(𝑡), ∀𝑖, ∀𝑡  (8b) 

0 ≤ 𝑣𝑖(𝑡) ≤ 1 ∀𝑖, ∀𝑡  (8c) 

Electricity  

𝑃𝑒𝑙𝑒,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑒𝑙𝑒,𝑖(𝑡) ≤ 𝑃𝑒𝑙𝑒,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (8d) 

𝐸𝑖𝑗,𝑚𝑖𝑛(𝑡) ≤ 𝐸𝑖𝑗(𝑡) ≤ 𝐸𝑖𝑗,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (8e) 

Heat 

𝐻𝑖𝑗,𝑚𝑖𝑛(𝑡) ≤ 𝐻𝑖𝑗(𝑡) ≤ 𝐻𝑖𝑗,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (8f) 

Battery 

𝑆𝑂𝐶𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑆𝑂𝐶𝑖(𝑡) ≤ 𝑆𝑂𝐶𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (8g) 

0 ≤ 𝐸𝑠ℎ,𝑖(𝑡) ≤ 𝐸𝑠ℎ,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡 

0 ≤ 𝐸ℎ𝑠,𝑖(𝑡) ≤ 𝐸ℎ𝑠,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡 

𝐸𝑠ℎ,𝑖(𝑡) × 𝐸ℎ𝑠,𝑖(𝑡) = 0, ∀𝑖, ∀𝑡 

 (8h) 

 (8i) 

 (8j) 

Micro-CHP 

𝑒𝑝,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑒𝑝,𝑖(𝑡) ≤ 𝑒𝑝,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (8k) 

𝑒𝑟𝑎𝑚𝑝(𝑡) ≤ 𝑒𝑝,𝑖(𝑡) − 𝑒𝑝,𝑖(𝑡 − 1) ≤ 𝑒𝑟𝑎𝑚𝑝(𝑡), ∀𝑖, ∀𝑡  (8l) 

Gas 

𝑃𝑔𝑎𝑠,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑔𝑎𝑠,𝑖(𝑡) ≤ 𝑃𝑔𝑎𝑠,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (8m) 

GSHP 

𝑃𝐻𝑃,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝐻𝑃,𝑖(𝑡) ≤ 𝑃𝐻𝑃,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (8n) 

Boiler 

𝑃𝐵𝑜,𝑖,𝑚𝑖𝑛(𝑡) ≤ 𝑃𝐵𝑜,𝑖(𝑡) ≤ 𝑃𝐵𝑜,𝑖,𝑚𝑎𝑥(𝑡), ∀𝑖, ∀𝑡  (8o) 

As indicated by (8), the optimization is carried out 

considering the security constraints. (8b) indicates the coupling 

between hub input and output, where constraints (2) (3) and (5) 

are included in (8b), and (1) is the transformation of (8b). (8d) 

and (8m) refer to the minimum and maximum energy input to a 

single hub. (8e) and (8f) suggest the adjustment of energy 

transmission limitation between hubs. (8g) indicates the 

limitation of energy level within batteries. (8h) and (8i) indicate 

the limitation of charging energy and discharging energy at 

each time step. (8j) avoids simultaneously charging and 

discharging the battery. (8k), (8n), and (8o) represent the 

minimum and maximum energy injection to micro-CHP, 

GSHP, and boiler respectively. (8l) limits the ramp rate for 

micro-CHP electric output. 

Whilst solving the energy hub optimization problem, the 

control variables mentioned in (7) at each time step must satisfy 

all constraints illustrated above. Therefore, the multi-hub 

problem is necessarily a multi-period optimization containing a 

large number of variables and constraints. For instance, the 3-

hub scenario investigated in this paper contains 504 variables 

and 480 constraints. Clearly, the optimization problem becomes 

more complicated as the number of hubs increases. 

Additionally, it was concluded by graphing the functions 

associated with the battery lifetime cost ((A1) to (A6) in the 

Appendix) that these fail to satisfy the definition of a convex 

problem, given in Appendix (A7)-(A9), in particular that the 

resulting objective function failed to satisfy (A9).  Therefore, 

the optimization problem is a non-convex problem. 

III. DECOMPOSED PSO 

A. PSO 

Particle swarm optimization was proposed based on the 

behaviour of flocking birds or schools of fish [26]. Each particle 

describes a solution to a problem that can be quantitatively 

measured by its performance. At each iteration of the 

optimization, the particles trend towards the global minimum 

based on two factors, the best performance of any particle ever 

achieved 𝑃𝑖
𝑔

 and the best position  𝑃𝑖
𝑘  of particle i. The PSO 

working mechanism is illustrated by means of mathematical 

formulations in (9) and (10): 

The position 𝑋 of a particle 𝑖 at iteration 𝑘 + 1 is  

 𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 (9) 

𝑉𝑖
𝑘+1  indicates the new velocity for particle 𝑖  at 𝑘 + 1 

iteration. It is derived as: 

 𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝑐1𝑟1(𝑃𝑖
𝑘 − 𝑋𝑖

𝑘) + 𝑐2𝑟2(𝑃𝑖
𝑔

− 𝑋𝑖
𝑘) (10) 

𝑟1 and 𝑟2 represent two random numbers between 0 and 1. 𝑐1 

and 𝑐2  are the cognitive parameter and social parameter, the 
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two weighting factors that model the confidence of the current 

particle in itself and in the swarm [27]. Parameter 𝜔  is the 

inertia weight, a coefficient applied to particle velocity, which 

influences the PSO convergence behaviour by increasing the 

distance the particle will travel from its previous position.   

At the beginning of the optimization, the PSO algorithm 

firstly generates a population of particles randomly over the 

search space, where the position of each particle represents a 

solution. The particles are evaluated by applying the solution to 

the problem to obtain a fitness score for each particle. 𝑃𝑖
𝑔

 and 

 𝑃𝑖
𝑘  can therefore be found. All particles are updated using (9) 

and (10) at each iteration, with this process repeated until the 

stopping criteria is met.  

When conventional PSO is used on highly constrained and 

non-convex optimization problems, the particles tend to fall 

into infeasible regions during initialization and updating. This 

problem can be solved by utilizing the sequential quadratic 

programming (SQP) algorithm [28]. The SQP algorithm solves 

an optimization problem by seeking the Karush-Kuhn-Tucker 

first order optimally condition, which can find a local minimum 

near the starting point. In other words, the position of an 

infeasible particle is taken as the starting point and then by 

utilizing the SQP algorithm, a feasible particle can be found 

nearby that replaces the infeasible one. 

B. Decomposed approach 

The multi-energy hub optimization is a multi-period problem 

with many variables. Since the main purposes of storage are to 

time-shift renewably generated energy to meet loads and 

arbitrage against varying tariffs, its operational management 

must, therefore, consider the energy price, renewable 

generation, and converter working status to schedule its 

operational state in each time step, i.e. charging, discharging or 

on standby. The operation of storage in the current time step 

will influence the operation in other time steps and thus a multi-

period optimization approach is necessary. The complexity of 

the problem requires significant computation time and may 

compromise optimization accuracy. However, if the optimal 

operation of the complex time-dependent device (such as 

storage) is known in advance, other control variables in (7) can 

then be obtained by applying numerical methods in each time 

step.  

The stochastic nature of PSO is capable of solving non-

convex problems with non-continuous search spaces, whilst the 

numerical function ‘interior-point’ can handle non-linear 

constrained problems with acceptable performance and 

computation time, so the decomposed approach here harnesses 

advantages of both methods. In general, during the generating 

and updating of all particles, only the control information of 

every battery is included in each particle (i.e. charging and 

discharging energy). For the optimization of a three-hub system 

containing three batteries over 24 time steps, there are totally 

144 variables included in each particle. Whilst the operations of 

remaining elements in the energy hub system are derived using 

the interior point method based on the information in each 

particle, and the fitness score of each particle can therefore be 

calculated. The procedure is shown in Fig. 4 and can be 

described thusly: 

1) Randomly initialize a population of particles, where the 

position of each particle denotes the solution of two 

variables over 24 hours: charging energy and discharging 

energy. The variables should be generated within the 

boundary set by the optimization, including the maximum 

charging/discharging energy, minimum and maximum 

battery capacity or SOC as indicated in (8h), (8i) and (8g). 

The magnitude of charging power at each step multiplied 

by discharging power should be equal to zero, meaning the 

battery can only either be charging, discharging, or on 

standby. This is achieved by applying SQP algorithm to 

find a feasible point satisfying above conditions near the 

initial point. 

2) For each time step, the charging and discharging energy 

can be regarded as the extra output and input for energy 

hub system without a battery. Therefore, the operations of 

the battery between each time step can be decoupled from 

each other. 

3) The ‘interior-point’ method is then applied to optimize the 

operation over the whole time period based on electricity 

load, heat load, renewable energy generation, extra input, 

and extra output. The optimized total system cost over 24 

time steps is then derived. Meanwhile, the battery lifetime 

cost related to the battery working status over 24 time steps 

is calculated. The fitness score of each particle is thus the 

total operational cost from both battery operation and 

optimized overall hub management. 

Yes 

No 

No 

Yes 

 

Fig. 4. The working flow of the decomposed approach 
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4) Find 𝑃𝑖
𝑔

 and  𝑃𝑖
𝑘 , see if the best particle satisfies the 

stopping criteria. If the stopping criteria is met, then the 

solution of the best particle is the final solution to the 

optimization. If not, update the velocities and positions for 

particles based on (9) and (10). 

5) Repeat steps 2 to 4 until the stopping criteria is met. 

The decomposed approach decouples the optimization for 

batteries and other hub elements. The optimal operations of 

batteries are derived based on the PSO, the optimization for 

other hub elements is obtained by applying the interior-point 

method. The efficiency of the algorithm is increased, and the 

computation time is therefore reduced. 

The decomposed-PSO algorithm is achieved based on 

modification of the open source PSO MATLAB routine 

developed by ETH Zurich [28]. The decomposed method is 

illustrated in terms of the optimization for the two-hub system 

in next section.  

IV. DEMONSTRATION 

This section applies the novel PSO algorithm to two multi 

energy-hub systems across two use scenarios. The first part 

introduces a two-hub system, which is simple enough such that 

a theoretical minimum may be analytically calculated for 

benchmarking the performance of the PSO algorithm. The 

second part investigates a three-hub system with converters and 

batteries illustrated in section II. The potential application of the 

decomposed approach is discussed based on the computation 

speed and operation results in the third part. 

A. Two-hub System 

To demonstrate the effectiveness of the decomposed-

optimization in finding the global minimum, a 2-hub system 

optimization problem is proposed and investigated. The battery 

lifetime cost is excluded in the problem, hence the theoretical 

minimum can be derived analytically, and the performance of 

the decomposed approach can be evaluated. The 2-hub system 

with energy sharing is shown in Fig. 2. 

Each of the two hubs represents a residential house. The load 

and generation profile is assumed to be a winter day in the UK 

based on [29] and [30]. A battery is equipped in hub 1, with 

charging efficiency and discharging efficiency assumed to be 

95%, and standby losses assumed to be negligible (justified 

because the self-discharge rate on diurnal timescales is very 

small). The battery minimum and maximum capacities are 4 

kWh and 17.376 kWh. To verify that the redundant energy 

within each hub is adequately utilized by the energy sharing 

between hubs, the different performance of converters is 

assumed in each hub. A ground source heat pump with CoP of 

3.0 and another heat pump with CoP of 4.2 are included in hub 

1 and hub 2 respectively. Time-of-use electricity tariffs (derived 

from [31]) are assumed, in this case shown in Fig. 5. The 

optimization problem statements refer to (8). 

1) Validation 

The benchmark approach to calculate the global minimum of 

the two-hub system over 24 hours is shown in this section. The 

total energy cost, TC, for the two hubs is given in (11). 

𝑇𝐶 = ∑[𝑃𝑒𝑙𝑒,1(𝑡) + 𝑃𝑒𝑙𝑒,2(𝑡) + 𝐸𝑠ℎ(𝑡)]

24

𝑡=1

× Π𝑒𝑙𝑒(𝑡) 
 

(11) 

𝑃𝑒𝑙𝑒,1(𝑡)  and 𝑃𝑒𝑙𝑒,2(𝑡)  indicate the electricity consumption 

for hub 1 and hub 2 respectively. 𝐸𝑠ℎ(𝑡)  represents the 

electricity exchange between hubs and energy storage. The 

optimization strategy is as follows: the consumed electricity is 

utilized to support the ground source heat pump to generate heat, 

and meet the electricity load. According to equation (3), the 

electricity requirement for heat can be reduced by exploiting the 

high CoP of heat pumps. Since heat between hubs is 

transferable, the heat pump in hub 2 (CoP of 4.2) is applied to 

support the heat load for two hubs at each time step. 

In addition to selecting high performance heating converters, 

storage can also be utilized to reduce energy cost. Based on 

achieving the objective of reducing the energy cost for the 

whole system, the operation of the battery should follow the 

broad strategy of charging during low tariffs and discharging 

during high tariffs. The battery needs to be fully charged during 

periods 1-7 since the electricity prices at these times are lowest. 

For periods 17-19, the prices are the highest, hence the storage 

needs to discharge within the maximum discharging power. The 

price from 15-16 is the lowest, hence some energy could be 

charged during 8-14 and recharge during 15-16 only if the 

remaining power at the end of 16 is capable of meeting the 

demand during 17-19. After considering the maximum 

 
Fig. 5.  The time-of-use tariffs against 24 hours. 

TABLE I 
THE OPTIMAL OPERATIONS FOR BATTERY 

Period 
Charging 

energy(kWh) 
Discharging 
energy(kWh) 

Battery state of 
charge(kWh) 

1-7 14.08 0 17.376 

8-14 0 6 11.376 
15-16 6 0 17.076 

17 0 2.646 14.429 

18-19 0 5.78 8.649 
20-21 0 4.6494 4 

22-24 0 0 4 

 

 

TABLE II 

OPTIMIZATION RESULTS FOR 2-HUB SYSTEM 

Particle population Optimization results(£) Computation time(s) 

10 6.783 106 
20 6.776 250 

30 6.737 271 

40 6.733 260 
50 6.752 419 
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discharging/charging power (3kW), the battery operation at 

each time step can be derived and indicated in table I. Based on 

the operation of storage and heat pump, the total energy cost, 

TC, can be calculated as £6.73 from (11).  

2) First scenario  

The 2-hub system optimization problem is solved by the 

decomposed PSO method running on a 3.40 GHz Intel i5 quad 

core desktop with 8 GB of RAM. The procedures of 

implementing decomposed PSO is illustrated as follows: 

1) A group of particles is generated, each particle contains 

each battery’s charging and discharging energy over 24 

time steps, which is randomly generated within the 

boundary set by optimization. Hence there are totally 48 

variables contained in one particle. The charging and 

discharging energy in first three steps in the first particle 

is shown for example: 2.65 and 0.21, 1.24 and 0.11, 2.15, 

0.02. 

2) The SQP method is then applied to find a feasible point 

near the randomly generated point based on the battery 

constraints, in this case a feasible point indicates that the 

battery has to be either charging, discharging, or 

standby. The 6 variables in procedure 1 turns to be: 2.71 

and 0, 1.21 and 0, 2.10 and 0. 

3) The battery scheduling is then abstracted from the 

individual time step optimization, in that the charging 

and discharging power of the battery at each time step 

are regarded as extra energy exported/imported from/to 

the hub. Given the battery information and the 

constraints within the energy hub system, the ‘interior-

point’ method is applied to optimally decide the 

variables over 24 time steps, such as the value of energy 

carrier injection to the hub, dispatch factor, etc. The total 

energy cost over whole time horizon can therefore be 

calculated, and regarded as the fitness score of the 

related particle. 

4) The speed of each particle is generated based on 

equation (10), the PSO keeps updating particles’ 

positions and speeds until the stopping criteria is met. 

The optimization results of total energy cost over 24 hours 

are shown in table II over a range of different particle 

population sizes. 

As shown from table II, the performance of the algorithm 

improves when the particle population increases. However, the 

optimization results do not consistently increase with increasing 

particle population due to the stochastic nature of PSO. The best 

result is £6.73, which demonstrates that the algorithm is capable 

of reaching very close to the global minimum for a highly-

constrained, non-linear problem.  

For comparison, when the storage is not present and energy 

sharing is unavailable between hubs, the energy demand for 

each hub can only be met with its own converters, and the total 

minimum energy cost is calculated as £7.84. When storage is 

not equipped with the system and energy sharing is available 

between hubs, the optimization problem is transformed to an 

optimal flow problem at each time step. The optimization can 

be solved by applying the ‘interior-point’ method, and the 

theoretical minimum energy cost is derived as £7.32. Compared 

with the 2-hub system without energy sharing and storage, the 

optimization achieves an energy saving of 14.14%. 

To demonstrate the accuracy of decomposed-PSO, the 

optimal operation of the battery at each time step derived from 

a 30 particle optimization is compared with the battery 

operation derived from the benchmark approach, and is shown 

in Fig. 6. It can be observed that the optimized battery 

operations derived from the decomposed approach closely 

approximate to the operations obtained from the benchmark 

theoretical minimum. 

B. Three-hub System 

A three-hub system is presented and shown in Fig. 7. The 

three hubs respectively contain a battery with sizes of 5.3 kWh, 

10.5 kWh and 21 kWh, the related battery parameters can be 

found in [25]. Different heating converters including GSHP, 

micro-CHP, and gas boiler are equipped in the three hubs. The 

CoP of GSHP is selected as 4, the constraint parameters of 

micro-CHP are adopted from [24, 32]. The efficiency of the gas 

boiler is non-linear against the gas input, and is illustrated in 

section II. The electricity load 𝐿𝑒𝑙𝑒(𝑡) and heat load 𝐿𝑡ℎ(𝑡) for 

each hub are satisfied by optimally scheduling the utilization of 

all heating converters and batteries. 

The gas price is assumed to be constant at £0.03 per kWh 

over all 24 time steps. The electricity price is varied every hour 

in this case to reflect the time-of-use electricity tariffs all 
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Fig. 7.  Three-hub system with energy sharing available between hubs. 

 
Fig. 6.  The battery operations against 24 hours. 
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retailers will likely adopt in the near future. The variant 

electricity price against 24 hours is derived from [31] and 

shown in Fig. 8, with average half hourly tariffs used to produce 

an hourly pricing granularity. (These energy costs are typical in 

the UK at time of writing, but future prices will clearly yield 

different overall costs than the results shown in this paper.) The 

same method of modelling electricity demand and heat demand 

used in [31] is employed here. Additionally, the solar PV 

generations 𝑃𝑆𝑂(𝑡)  are simulated with the software [33]. To 

demonstrate the superiority of the decomposed approach, the 

conventional PSO is applied to solve this optimization problem.  

The comparison between the decomposed approach and 

conventional PSO is illustrated by convergence behaviour and 

computation time. 

1) Second scenario 

 In this scenario, the performance between the conventional 

PSO and the decomposed approach in solving the optimization 

problem above is compared. 

Since the time spent on conventional PSO increases 

massively with rising particle population size, a modest 

population of 10 particles was applied to both conventional 

PSO and decomposed approach to observe the convergence 

behaviour, and the comparison is shown in Fig. 9. The blue 

circles and the orange crosses represent the performance of 

applying conventional PSO and the decomposed approach 

respectively. 

As indicated in Fig. 9, the objective function value by 

applying decomposed PSO plateaus from between 15 and 20 

iterations onwards, for conventional PSO, the objective 

function value trends to flat around 35 iterations. Under the 

conservative stall generations (50) and stall tolerance settings 

(£0.000001), the conventional PSO optimization converges at 

the 162nd iteration after 8970 s, and the optimization result is 

£22.61. The decomposed approach converges at 143rd iteration 

after 121 s, and achieves a much improved optimization result 

of £9.30.  

 The optimized battery operations for hub 2, derived from two 

optimization methods, are shown in Fig. 10 in terms of battery 

SOC. The pink circles and orange crosses represent the battery 

SOC at each time step optimized by conventional PSO and 

decomposed PSO, and the blue dotted line indicates the 

electricity price variation over 24 time steps. From the 

perspective of optimally exploiting the storage to save energy 

cost, both of the two methods achieve the optimization by 

charging storage during the low tariff period and recharging 

during the high tariff period. It could be concluded from Fig. 10 

that the electricity tariff experiences two peak values over 24 

time steps. The two peak values appear at step 11 and step 18. 

Both of the optimization methods indicate that the storage is 

discharging since the first peak electricity price from step 9 to 

10. Nevertheless, the storage operation derived from the 

decomposed approach discharges around the first peak 

electricity price from step 10 to 11, and then rapidly charges 

from step 11 to 18 to prepare for the second peak electricity 

price. With conventional PSO, the storage barely discharges at 

the first peak electricity price. Thus comparing with the 

conventional PSO, the decomposed approach can better 

optimize the storage operation and further reach the optimum. 

However, it could be derived from Fig. 10 that the battery 

scheduling operations derived from both optimization methods 

fail to fully discharge around the peak tariff period, which may 

lead to further cost saving. This is due to the low number of 

particles that degrades the performance of the optimization.   

2) Impact of battery lifetime cost 

To investigate the influence of battery lifetime cost in the 

objective function on battery scheduling, the optimization is run 

when considering battery lifetime and compared to when the 

battery lifetime consideration is omitted. 30 to 50 particles used 

in decomposed PSO reach a result very close to the global 

minimum for the 3-hub optimization based on extensive 

experimentation. Hence 50 particles are applied in the 

optimization. The SOC of three batteries over 24 time steps 

when considering battery lifetime and compared with excluding 

the battery lifetime in the objective function are shown in Fig. 

11 and Fig. 12 respectively. The green, blue, and red lines 

 
Fig. 8.  The variant tariffs of electricity against 24 hours. 

 
Fig. 10. The optimized battery operations by applying conventional PSO and 

decomposed approach. 

 
Fig. 9. Convergence behaviours of conventional PSO and decomposed 

approach. 
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represent the variation of SOC of battery in hub 1, 2, and 3 over 

24 hours respectively. 

The total energy costs for these two optimizations are 

£9.0268 and £9.0070, the battery lifetime costs are £0.0331 and 

£0.0728. Clearly when omitting the battery lifetime cost the 

batteries are exploited to yield more energy saving. However, 

the battery lifetime cost is higher, and thus the system total cost 

is higher (sum of energy cost and battery lifetime cost) at 

£9.0798, compared to £9.0599 when battery lifetime is 

considered. When the battery lifetime is not optimized, the 

variation of SOC is broader, for example, the battery in hub 1 

even varies between 50% and 100%. When the battery lifetime 

is considered in the objective function, the SOC of three 

batteries all varies from approximately 60% to 90%. It may be 

concluded from the calculation of battery lifetime cost that the 

cost increases when the battery is operated during lower SOCs. 

Hence the battery is better operated at high SOCs to avoid 

unnecessary degradation of battery lifetime.  

C. Applications 

The optimization problem uses a fixed time step of one hour. 

To allow an online, receding time horizon implementation, the 

optimization for scheduling the system of energy hubs must be 

completed within the time step. Therefore, the size of the 

system of energy hubs that the decomposed approach is capable 

of optimizing within one hour is investigated. With the same 

modelling method applied, a 5-hub system and an 11-hub 

system are simulated with the same level of complexity to the 

3-hub system investigated in section V. The decomposed 

approach is applied with 30 particles to 3, 5, and 11 hub 

systems. The computation time for solving these three cases are 

270 s, 779 s, and 1011 s respectively.  

The decomposed approach was tested with different numbers 

of particles, for the 11-hub system, and the optimization results 

and computation time are shown in Fig. 13 and Fig. 14 

respectively. In Fig. 14 ‘y=3600 s’ was drawn as a reference 

which indicates the time budget for a receding time horizon 

implementation with a time step of 1 hour. 

It could be observed from Fig. 13 that the optimization results 

generally plateau at approximately £46.89 when the population 

of particles applied in PSO is 40. Increasing population size 

beyond this does not increase system benefit. In contrast, the 

computation time increases approximately linearly as the 

number of particles increases. The computation time of 

implementing PSO with 60 particles on this problem is 3421 s 

representing the best trade-off between computation time and 

performance for this particular system.  

With a receding time horizon implementation, operations are 

calculated up to a certain time horizon, for which all load data 

is predicted in advance, but only the optimized operation for the 

next time step is implemented. In the next time step the time 

horizon is increased by one and the process is repeated. This 

makes the best use of load prediction data on the basis that the 

predicated data closer to the current time step is likely to be 

more accurate. On the other hand, a fixed time horizon approach 

may be used for larger multi-hub systems that are more 

computationally intensive to solve. 

 
Fig. 11. Battery state of charge over 24 time steps derived from the 

optimization with the battery lifetime cost considered 

 
Fig. 12. Battery state of charge over 24 time steps derived from the 

optimization without considering the battery lifetime cost 

 
Fig. 13. Optimization results against different amount of particles 

 

 
Fig. 14. Computation time against different amount of particles 
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V. CONCLUSION 

This paper presents a decomposed method that hybridises 

particle swarm optimization and the ‘interior point’ method to 

solve the optimal scheduling problem for a multi-energy hub 

system with the consideration of battery lifetime. For a 3 

residential energy hub system, the utilization of battery varies 

from 60% to 90% to avoid unnecessary degradation of the 

battery lifetime, and the system thus benefits long term through 

increased battery lifetimes. Compared with the conventional 

PSO, the decomposed method can achieve a 58% greater 

energy saving for three-hub optimization with 98% saving of 

computation time. The optimization demonstrably achieves 

very near the global minimum. This method can be applied in a 

receding time horizon approach for solving a practical system 

of size around 10 hubs, always leveraging the most up to date 

load prediction. For a larger system with more storage 

technologies, a fixed time horizon approach can be used, or the 

time step may be increased or the time horizon reduced. From 

the view of energy management, the storage operation is more 

accurate when the predicted horizon is longer and generally 

speaking, the time step smaller, necessitating a trade-off 

between optimization performance and computation time. 

Alternatively, the computation time could be shortened using 

high performance hardware or cloud computing. 

APPENDIX 

A. Calculation of battery lifetime cost 

The life loss of a battery 𝐿𝑙𝑜𝑠𝑠(𝑡) over a certain time period t 

can be expressed as: 

𝐿𝑙𝑜𝑠𝑠(𝑡) =
𝐴𝑐(𝑡)

𝐴𝑡𝑜𝑡𝑎𝑙

 (A1) 

Where 𝐴𝑐(𝑡)  is the effective cumulative Ah throughput 

during the use of battery and 𝐴𝑡𝑜𝑡𝑎𝑙 is the total cumulative Ah 

throughput in the life cycle. The value of 𝐴𝑡𝑜𝑡𝑎𝑙 is selected as 

390Q effective Ah over its lifetime [25], which Q Ah is the 

capacity of a battery. 𝐴𝑐(𝑡) is formulated in (A2). 

𝐴𝑐(𝑡) = 𝜆𝑠𝑜𝑐𝐴𝑐
′ (𝑡) (A2) 

𝜆𝑠𝑜𝑐 is the effective weighting factor. The relation between 

𝜆𝑠𝑜𝑐  and battery state of charge (SOC) is estimated as a linear 

formulation based on [25] and expressed in (A3). 

𝜆𝑠𝑜𝑐 = {
−1.5 ∙ 𝑆𝑂𝐶 + 2.05        𝑖𝑓 𝑆𝑂𝐶 ≥ 50%
1.3                                   𝑖𝑓 𝑆𝑂𝐶 < 50%

 (A3) 

𝐴𝑐
′ (𝑡) indicates the actual Ah throughput. Assuming the SOC 

of the battery varies from a to b in a certain time period, 𝐴𝑐
′ (𝑡) 

and 𝐴𝑐(𝑡) can be expressed in terms of a and b shown in (A4) 

and (A5) respectively. 

𝐴𝑐
′ (𝑡) = (𝑎 − 𝑏) × 𝑄 (A4) 

𝐴𝑐(𝑡) = {
∫ 𝜆𝑠𝑜𝑐𝑑𝑠𝑜𝑐

𝑎

𝑏

× 𝐴𝑐
′ (𝑡)            𝑖𝑓 𝑎 ≥ 𝑏

0                                              𝑖𝑓 𝑎 < 𝑏

 (A5) 

The life loss cost 𝐶𝑏𝑙(𝑡) is calculated with (A6). 

𝐶𝑏𝑙(𝑡) = 𝐿𝑙𝑜𝑠𝑠(𝑡)𝐶𝑖𝑛𝑖𝑡−𝑏𝑎𝑡 (A6) 

 𝐶𝑖𝑛𝑖𝑡−𝑏𝑎𝑡 represents the initial investment cost of battery, and 

it is assumed to be 0.534 £/Ah [34] multiply by the battery 

capacity. The life loss cost can thus be calculated with (A1) to 

(A6). 

B. Definition of convex problem 

A convex optimization problem is defined by (A7) – (A9). 

Minimize   𝑓0(𝑥) 

Subject to  𝑓𝑖(𝑥) ≤ 𝑏𝑖 ,     𝑖 = 1, … , 𝑚 

(A7) 

(A8) 

Where functions 𝑓
0
,…, 𝑓

𝑚
: 𝑅𝑛 → 𝑅 are convex, i.e., satisfy 

𝑓𝑖(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤ 𝛼𝑓𝑖(𝑥1) + (1 − 𝛼)𝑓𝑖(𝑥2)   (A9) 

for all 𝑥1, 𝑥2 ∈ 𝑅𝑛 and all 𝛼 ∈ 𝑅, 𝛼 ≥ 0. 
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