
        

Citation for published version:
Ramallo Gonzalez, AP, Blight, TS & Coley, DA 2015, 'New optimisation methodology to uncover robust low
energy designs that accounts for occupant behaviour or other unknowns', Journal of Building Engineering, vol. 2,
pp. 59 - 68. https://doi.org/10.1016/j.jobe.2015.05.001

DOI:
10.1016/j.jobe.2015.05.001

Publication date:
2015

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND
The published version is available via: http://dx.doi.org/10.1016/j.jobe.2015.05.001

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Mar. 2023

https://doi.org/10.1016/j.jobe.2015.05.001
https://doi.org/10.1016/j.jobe.2015.05.001
https://researchportal.bath.ac.uk/en/publications/4a0dec10-98e5-49cf-8dac-d8e26e916fba


Optimisation methodology to uncover robust low energy 
designs that accounts for occupant behaviour or other unknowns 

A.P. Ramallo-González a,*, T. S. Blight b, D. A. Coley b 

 

aCollege of Enginnering, Mathematics and Physical Sciences, University of Exeter, UK 

bDepartment of Architecture and Civil Engineering, University of Bath, UK 

 

Abstract 

The use of software to aid in the design of buildings or to show compliance is now commonplace. This has led 

several authors to investigate the potential for using such software to automatically optimise a design, or to generate a 

variety of near-optimal designs. One area where this approach has been found useful is in minimising annual energy 

demand. It is known that any estimate of demand will depend not only on the architecture and constructions used, but 

on the preferences and behaviours of the occupants. This suggests which design is truly optimal will also depend on 

occupant behaviour. In this paper optimisation is carried out for an array of different occupant behaviours based on 

real records. It is found that the resultant designs are more robust in terms of predicted heating energy use and 

overheating than when only a single behaviour is considered. It is recommended that in future all such optimisations 

are made using a realistic spectrum of behaviours, and that the approach is expanded to include other elements of 

design that might show variance during construction, for example, U-values and air tightness. This, it is hoped, will 

reduce some of the risks of designing and asking people to occupy very low energy buildings. Importantly, it is found 

that the near-optimal building designs found under variable occupancy present different characteristics than when 

only a single statement of occupancy is used. Being cognisant of this reduces the potential for inappropriate designs 

to be created that rely on a serendipitous arrangement of design and occupancy parameters that might not be met on 

site or by the occupants. 
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1 Introduction 

Improvements in building standards and codes have contributed to the creation of new design 

philosophies that require, at least in theory, much reduced levels of heating and cooling to maintain a 

comfortable internal environment. However, as can be expected, the final, monitored, thermal 

environment and energy consumption will to a large extent depend upon the behaviour of the occupants. 

There has been little use of the limited data concerning actual energy habits and routines observed in the 

home; therefore, it is rare that modelling or optimisation is completed under a range of occupant 

behavioural scenarios.  

Several of the most popular approaches to low-energy design, including Passivhaus, gain much of their 

space heating requirement from incidental gains, require very low levels of uncontrolled infiltration, and 

have low capacity heating/cooling systems. This suggests that such designs might be more sensitive than 

older buildings to the behaviour of the occupant, and leads to concern over their applicability to a wider 

audience, including their use in social housing. 

It is known from the CEPHEUS study [1], among others, that the in-use energy demand of low-energy 

housing is indeed sensitive to occupant behaviour, with demand differing by more than a factor of three 

(see Figure 1), yet even in these buildings it is unusual for designers to model with more than one set of 

occupant behaviours. At least within academia this mono-behavioural paradigm would appear to be 

changing, with some suggesting a move to a more human-centric view of modelling with a large number 
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of simulations being run so as to explore the sensitivities of a design to the demands, desires and vagaries 

of occupants [2]. As Figure 2 shows, such simulations have proved surprisingly accurate at matching the 

distribution of energy use found in collections of real low-energy buildings. 

The potential for using optimisation within the modelling environment has a long history in building 

science; as early as 1956 Speyer investigated the optimal use and storage of solar energy [3]. Jurovics 

presented a method of optimising energy-efficient buildings in [4]. More specific works are found in the 

literature, concentrating on energy systems or constructions, such as the work of Bloomfield and Fisk on 

optimising the heating plant of a building [5], Michelson’s multivariate optimisation of solar water 

heating using direct methods [6], and Marks’ multi-objective optimisation of the building envelope [7].  A 

more holistic approach is found in more recent publications, such as the work of Coley and Schukart [8], 

Peippo et. al. [9] or Magnier and Haghighat [10]; these take into account many parameters involved in 

building design including architectural characteristics and those related to energy systems. 

 

 

Figure 1 - Measured final energy consumption (candlesticks) of selected low-energy buildings (bars as sample size). 

The values contain all non-renewable energy supplies to the buildings, including household electricity and ancillary 

energy consumption. All data from the CEPHEUS data set [1] except the Elmswell data which is taken from Gill et. 

al. [11]. 

This work attempts to meld human-centric modelling with optimisation to create designs that are not 

only low-energy and comfortable given a single representation of behaviour, but low-energy and 

comfortable when presented with a range of typical behaviours found within a society. 

The predicted energy use and levels of comfort found from this multi-run, human-centric, modelling is 

used as the objective function within an optimisation algorithm to locate within the space of possible 

designs buildings that are simultaneously low-energy and comfortable for a wide range of occupant 

behaviours. This has required the creation of a new evolutionary algorithm capable of producing results in 

a reasonable time on a desk-top computer of a form that might be used by a practising engineer or 

architect. 

This paper starts with a background section in which the methods used are explained, including: robust 

optimisation, evolutionary algorithms, the changing environments evolutionary algorithm, and the 

creation of realistic behavioural patterns using Markov chains. Following this, the chosen optimisation 

problem is described. The paper finishes with the presentation and discussion of results and conclusions.  

An appendix describing the evolutionary algorithm in detail is also included. 

2 Background 

2.1 Robust optimisation 

Numeric optimisation is used to find the best combination of parameters that solve a given problem. 

Optimisation is often applied to find the minimum or maximum of a function termed the objective, or cost 

function. This function represents a model of the real system and will therefore be subject to uncertainties 

and inaccuracies. Robust optimisation implies finding the optimum of a given function subjected to such 

uncertainties. 

The uncertainties present in an optimisation problem were classified by Beyer and Sendhoff [12] as: 

 



A) Changing environmental and operating conditions. The objective value is not dependent on 

the decision variables included in the model solely; it also depends on a set of parameters 

that are not decision variables and cannot be determined, but have a substantial influence on 

the results. For example, if the objective function is the deflection of a telephone steel post 

to be minimised, and the decision variables represent the geometry of the section of the 

pole, variations in the mechanical properties of the steel may affect the deflection of the pole 

for a given wind load, even if the geometry is the same. 

  

B) Production tolerances and actuator imprecisions. The decision variables chosen in the 

optimisation cannot always be achieved with enough accuracy in reality due to 

workmanship or other issues. In the example of the pole, one of the dimensions of the 

section of the pole might not be accurately achieved due to irregularities in the 

manufacturing process.  

 

C) Uncertainties in the system output. The objective function can have mistaken outputs due to 

inaccuracy in the mathematical models or the measuring devices involved. For the previous 

example, misleading results from the software used to calculate the wind loads affecting the 

pole will generate mistaken deflection estimates for a given wind speed. 

 

D) Feasibility uncertainties. These uncertainties are applied to the constraints and not the 

objective function, resulting in an altered decision space. These uncertainties represent the 

variation of the boundaries that define the range of feasible solutions. In our example, there 

are only standard diameters available for the pole. 

 

All four of these uncertainties are present in most real-world optimisations to some extent and many 

authors have considered them when applying optimisation (see Beyer’s and Sendhoff’s review). 

 

 

Figure 2 - Uncertainties in an optimisation problem (adapted from Beyer and Sendhoff (2007) [12]). 

 

Many optimisation strategies are found in the literature; Evolutionary Algorithms (EA) have gained a 

substantial following and can be found in a large number of publications including those concerning the 

built environment [10, 13-20]. EAs do not require knowledge of the global form of the objective function 



as they belong to the group of direct methods: meaning that they only require the value of the objective 

function at the points it is evaluated during the search. 

EAs are natural candidates for robust optimisation, because their internal operators rely substantially 

on redundancy, which naturally averages the effect of uncertainties. For a review on the use of EAs in 

robust optimisation, see [21]. 

The problem that will be studied in this paper will take into account uncertainties of type A -under 

Beyer and Sendhoff’s classification- specifically, occupants’ behaviour, but could be adapted to cover the 

other categories, when information about the probability distribution of those uncertainties is available.  

2.2 Evolutionary Algorithms 

Evolutionary Algorithms (EAs) are optimisation techniques that mimic the principles of natural evolution 

to find the optima of a given function. EAs are direct stochastic methods that do not require knowledge 

about the function to be optimised, i.e. they can be used for black-box type problems. 

EAs are population based algorithms, which means that several solutions are evaluated in each 

iteration of the optimisation. Each population produces a new population by means of crossover and/or 

mutation, these being mathematical operators that have much in common with their organic equivalents: 

crossover creates new individuals (solutions) from two or more parents, whereas mutation creates random 

modifications of an individual.  

To allow such algorithms to move the population towards optimal solutions a selection mechanism is 

required. This operator allows strong individuals to be retained (survive) over weak ones.  

The EA used in this paper has been created after consideration of the question at hand, namely the 

impact of occupant behaviour on optimised building design, but it is a general method and could be used 

in other problems where a solution has to be able to “survive” in different environments. Its main 

differences from most EA’s are that it uses only mutation and not crossover; and that the number of 

individuals that survive each generation can vary between populations. For general information about 

EAs, see [22]. The new EA created for this work is outlined in the following section, with a more detailed 

description in the appendix. 

2.3 The Changing Environments Evolutionary Strategy 

The problem explored requires solutions that are robust over different environments thereby generating 

robust solutions for uncertainties of type A. To make this possible the EA evaluates the population under a 

different environmental condition at each generation, with all members of the population being subjected 

to the same environment. The variety of different environments used being drawn from the set of known 

possible environments. This approach has been called the Changing Environment Evolutionary Strategy 

(CEES). A detailed explanation about the CEES can be found in the appendix; however, the main 

characteristics are explained in the following. 

Within the CEES, a specific single environment (for example a set of occupant behaviours including 

occupancy density; times of occupancy; use of electrical items within the building) is selected for all 

members of the population to be evaluated against; this environment is changed between generations. 

Solutions that show a poor performance for any environment, do not survive to future generations and 

solutions that do survive are therefore tested against a large variety of scenarios. 

Some EAs use a tolerance measurement or the observation of a slowing rate in the improvement 

between generations as the termination criterion [23]; the CEES however, continues until a fixed number 

of generations (and therefore environments) have been assessed, to ensure the population is evaluated 

under a wide range of environmental conditions during the run.  

The CEES has no crossover operator in this work, but it could be implemented to accelerate 

convergence (see any text on evolutionary computation, for example [24]). However, this could lead to 

premature convergence, and therefore the creation of a solution that has not been tested for a variety of 

scenarios.   

The strength of the mutation operator in the CEES automatically declines as the run progresses. This 

constantly reduces the size of the space being searched and promotes the discovery of local optima. This 

mutation mechanism was used by Michalewicz and Janilow [25], and performs well when carrying out 

optimisations with a fixed number of generations. 

The selection operator is deterministic: any solution that is found to be outside the range of allowable 

fitness is excluded. The acceptable range is found for each generation by taking a fixed percentage of the 

range of fitness of all solutions at that specific time; only the solutions that lie within this acceptable 

interval will survive to the next population. 



The number of generations needed to achieve convergency was tested on a trial run. Once the the 

maximum number of iterations was known, the number of scenarios was chosen, applying the rule: 

 

scenarios = Max. generations  / 4.                                                                                                              (1) 

 

The factor to calculate the number of scenarios (4 in this case) is the way of determining the robustness 

of the solutions; the higher that value, the more likely it is that the final individuals had gone through a 

given scenario in the last runs.  

This means that the uncertainty – in this case occupants’ profile- that can take an infinite number of 

configurations, was  sampled to a finite set of profile ensuring that the distribution was properly 

represented (having more average than extreme profiles as indicated by the probability distribution, see 

Fig. 1). 

The CEES has allowed the authors to compare the differences between building designs that are 

intended to perform well under a range of different occupants’ behaviours, and designs optimised solely 

for a single, specific, occupant behaviour.  

2.4 Occupant behaviour as environmental parameters for building simulation 

As previously discussed, the results obtained from single runs of typical building models potentially 

contain unexamined uncertainties due to only considering one representation of occupant behaviour. Here 

we optimise allowing for multiple representations of occupants including changes to occupancy and 

incidental gains from electrical items.  These incidental gains are substantial when compared to the 

annual space conditioning gains required by low energy building and therefore need to be accurately 

accounted for. 

Occupancy and appliance-use profiles were generated for this work by a third-party tool [26], which 

uses a first-order Markov-Chain technique, and details of occupancy and energy use at a ten-minute 

resolution [27]. The Markov-Chain technique is an established stochastic method for generating data [28]. 

A first-order Markov-chain means that the state of the system during the next period is dependent only on 

the current state, not on any preceding states. For example, the probability of whether an occupant is in 

the building is correlated only with whether they were present during the last ten minutes, not whether 

they were present during the ten minutes before that. 

The representation of occupancy in the model provides the primary method for creating synthetic 

occupancy and electricity demand data with appropriate aggregate daily profiles. As an example, from 

Table 1 we see that if a two-person household is unoccupied (the number of active occupants = 0) at 

21:00 then there is an 89.2% chance the house will still be unoccupied at 21:10.   

 
Table 1 

Example transition probability matrix for a two-person household on weekdays, including activity probability. Data 

from Richardson et al. (2009) [11]. 

  Next state (at 21:10) 

  Number of active occupants 

Current 

state  

(at 21:00) 

Number of active occupants 0 1 2 

0 0.892 0.082 0.025 

1 0.038 0.878 0.084 

2 0.003 0.043 0.954 

 

To create the high-resolution appliance-use profiles Richardson et al. use the household journal data to 

define ‘activity profiles’, where a particular listed activity has associated appliances with a certain chance 

of a switch-on event occurring. Combined with details of the mean power use and cycle lengths for each 

appliance (from various sources, see [29]), load profiles are thereby stochastically generated. An example 

electric load and occupancy profile can be seen in Figure 3; these profiles are useful since they have been 

shown [26] to display similar statistical characteristics to the measured UK appliance-use and occupancy 

patterns used to create them, and hence they can be used to represent a large range of likely UK 

behaviours. 

 



 

Figure 3 - Example electricity (watts) and occupancy (number of people) gain profiles as generated by third-party 

software [29].  

3 Methodology 

Optimisation of a building model can be used to calculate the best architectural/constructional parameters 

that optimise a given general objective function (e.g. heating, emissions, comfort levels, etc.).  

Optimisation can also be used for more specific problems when the design is in a more developed stage 

and the variables are more specific (for example studying only window shape and size to optimise 

lighting quality as in [18]). 

As previously mentioned, occupants’ behaviour can have substantial impact on building’s 

performance. If a building design is optimised with the aim of targeting low-energy consumption under 

single specific conditions of use, the solution could be misleading, as different occupants may render the 

solutions sub-optimal, or non-acceptable. One example being a dwelling with a specific, targeted, thermal 

mass that relies on the thermal capacity of partitions to store precisely the heat that is generated from 

electric appliances during the day. 

The occupants’ behaviours are considered as the uncertainties of this work, being them considered as 

environmental parameters i.e. uncertainties of type A. This work allowed the evaluation of the differences 

between two optimal buildings obtained in two different manners: 

 

1) Fixed environmental variables: the optimisation is done for a single given statement of 

occupant behaviour. 

2) Variable environmental variables to generate robust solutions: the algorithm will only 

consider solutions that are near-optimal under a range of occupant behaviours. 

 

The CEES was applied to a building design problem to obtain robust solutions (case 2) and a generic 

EA to obtain optimal solutions for one behavioural pattern (case 1). As the aim of this work is to compare 

the impact of considering only one occupant behaviour on the optimisation, a general building 

optimisation problem was used. The methodology could be used for more specific problems in which the 

building is at a later stage of design. 

The building that was optimised is constrained to maintain floor area and height (but not aspect ratio); 

apart from those restrictions, all variables may change via the decision space described in Table 2.  

The optimisation generates solutions that provide general architectural rules to designing low-energy 

buildings that are robust against changes to occupant behaviour. The approach can therefore be seen as an 

attempt to reduce risk. As cast, it is aimed at optimising an early-stage design where few decisions have 

been made, and flexibility still exists. 

The conductivity and capacity of the internal partitions of the building have been included in the 

problem as these parameters are understood to have an important role in low-energy buildings [30]. The 

real variables can take any value in the interval defined by the lower bound and the upper bound. The 

wall construction can only be A, B, C or D from Table 3. The insulation used has a thermal conductivity 

of 0.05 W/(mK). 

 



Table 2 

Variables that form the search space. IP: Internal partitions.  

Variable Type Lower bound Upper bound Unit 

Infiltration Real 0.03 0.6 ach 
Aspect Ratio Real 0.3 3 m/m 

Fenestration, North Real 0.05 0.8 𝑚2/𝑚2 
Fenestration, South Real 0.05 0.8 𝑚2/𝑚2 
Fenestration, East Real 0.05 0.8 𝑚2/𝑚2 
Fenestration, West Real 0.05 0.8 𝑚2/𝑚2 
Wall Type Symbolic Construction A Construction D  

Insulation Real 100 500 (U-Value~0.1) mm 

Conductivity of IP Real 0.2 2.3 𝑊/(𝑚𝐾) 
Capacity of IP Real 200 3000 𝐽/(𝑘𝑔𝐾) 
Max. Heating  Pow. Real 200 20000 W 
 

Table 3 

Construction types. 

Construction  Outside Layer Intermediate Inside Layer 

A 200mm concrete Insulation (25-200mm) 25mm stucco 
B 200mm      ’’            ’’       (25-200mm) 200mm concrete 

C 25mm stucco      ’’       (25-200mm) 200mm       ’’       

D 25mm     ’’           ’’       (25-200mm) 25mm stucco 

 

EnergyPlus was used to evaluate the different solutions. The base model is two storeys dwelling 

located in London that has been modelled as a single zone. An ideal heating system with a set-point of 

23˚C was used. Ventilation occurred when the house reached a temperature in excess of 27˚C and the 

occupants were present, thus simulating the opening of windows by the tenants (this, like the set point, is 

itself a behaviour and could have been included within the changing environment, however there was 

limited data on this behaviour so it was fixed). To simulate ventilation, the equations from section 16 of 

[31] were used; these equations take into account the air flow driven by wind and by thermal forces due to 

the stack effect. The effective opening area was related to the size of the windows selected in each 

solution. 

Ventilation motivated to improve air quality (such opening windows in the morning) has not been 

separately modelled. This ventilation is hard to model as it is highly dependent on the habits of tenants, 

and little data exist. More complete modelling of this kind of ventilation is suggested for further work as 

one of the environmental parameters (see [32] or [33] for an elaborated model of windows opening). 

The number of non-comfortable hours that a building design will have during its operation is a crucial 

factor for the success of low-energy buildings. Buildings that overheat, or operate at a range of 

temperatures that the occupants find unpleasant will be considered a failure in design; and will worsen the 

image of the designer and low-energy design architecture. Designers have to make sure that a building 

design will perform well in any scenario. 

To evaluate comfort, the ASHRAE Standard 55 [31] was used. With the building simulator reporting 

the number of non-comfortable hours that have been experienced in each solution when the building was 

occupied. Standard 55 could be considered too strict for domestic dwellings, so a solution is allowed to 

have up to ten per cent of hours (i.e. 876) reaching non-comfortable conditions before it is considered 

non-viable (to see the definition of comfortable hours under Standard 55 see [31]). 

The objective function to be minimised is the heating demand over a year in kWh/m2 (no cooling has 

been considered). When a solution presents more than 876 non-comfortable hours the solution is 

considered non-comfortable and therefore not acceptable. To discard solutions that are considered non-

comfortable, the heating demand is multiplied by a penalty factor of a hundred. That way, the objective 

function of a non-comfortable low-heating solution will always be worse than an average comfortable 

solution. A penalty factor of a hundred is sufficient to make the objective value of a non-valid solution 

larger than any other valid solution in the search space. If the heating demand turns to be zero for one 

solution, and this solution is non-comfortable, the solution will be assign an objective value of 100. With 

such a penalty factor, the solutions that violate the condition of non-comfortable hours are unlikely to be 

preserved in the next generation.  



4 Results and Discussion 

The optimisation took 24 hours to run when using a population of 100 individuals and 200 generations 

(the machine was a desktop Intel core 2 duo at 2.93 GHz, single threaded code). This should be compared 

to 12 hours if only single occupant behaviour was considered. The differences on time is because with the 

CEES, the solutions that survive from one generation to the next still need to be evaluated in opposition 

with the “static” algorithm. 

The algorithms were run for 200 generations and each converged to a single solution: The two final 

solutions obtained can be seen in Table 4. 

 

Table 4.  

Final solutions obtained with single occupant behaviour and with CEES. IP: Internal partitions. 

Variable Type Single occupancy CEES Unit 

Infiltration Real 0.030 0.030 ach 
Aspect Ratio Real 0.67 0.47 m/m 

Fenestration, North Real 0.0500 0.0500 𝑚2/𝑚2 
Fenestration, South Real 0.0582 0.0575 𝑚2/𝑚2 
Fenestration, East Real 0.0500 0.0500 𝑚2/𝑚2 
Fenestration, West Real 0.0500 0.0500 𝑚2/𝑚2 
Wall Type Symbolic Construction A Construction C  

Insulation Real 499.6 482.6 mm 
Conductivity of IP Real 0.20 1.04 𝑊/(𝑚𝐾) 
Capacity of IP Real 2649 2047 𝐽/(𝑘𝑔𝐾) 
Max. Heating  Pow. Real 200.0 1497 W 

 

The two solutions were tested (simulated) using forty four different profiles that constituted the 

environmental parameter spectrum (see formula 1 in section 2.3). Each solution was simulated to obtain 

the heating demand and the number of non-comfortable hours per year. To understand the risk of carrying 

out a building design optimisation with a single occupancy, we have shown the heating demand and non-

comfortable hours, for the occupancy profiles that can be found in a 2σ interval of the normal distribution 

(this interval represents 68% of the possible occupancy profiles i.e. 30 profiles). The motivation for this is 

that extreme profiles outside this range are less likely to happen, and robust designs that will perform well 

are difficult to find with any method. These results are shown in Figure 4. It can be seen that even only 

considering the profiles within the 2σ range, the design of the building obtained with “traditional” 

optimisation can become non-comfortable for one third of the behavioural patterns. This represents a 

great risk for the design team. 

Solutions (buildings) with very low heating demand were obtained with both algorithms (see Figure 4 

top), the best approaching the energy performance of Passivhaus. This means, accounting for occupancy 

changes does not automatically imply the implementation of poor-efficiency houses.  

There are several points that can be extracted from Table 4: In both cases too large windows are 

undesirable; although they provide “free heating” through solar gains, much of this does not occur when 

needed; instead, it is likely that the solar gains arise when other gains (e.g. electrical gains) are also 

contributing to a potentially uncomfortable temperature. To release the excess of heat from the 

coincidental gains, solar gains will eventually trigger ventilation, and the free heat is lost through 

openings.  

The CEES was able to adjust the conductivity and the thermal capacity of the partitions to make the 

best use of free gains. Although the  CEES’s final solution has less insulation than the solution obtained  

with a single statement of occupancy the greater thermal mass in conjunction with the higher thermal 

conductivity of partitions makes up for this and provides with a design with low heating demand. 

Although the solution obtained with the CEES makes a better use of the gains, designers that want to 

produce designs robust to different occupants will need to consider that they come at the expense of 

increasing the heating demand by around a 25% over that possible design for a single occupants’ profile; 

however, in gross terms, this increment is small due to the low demands achieved by the designs. 

 



 

Figure 4 - Heating demand (top) and non-comfortable hours (bottom) of the solutions obtained with the two 

optimisation methods, when simulated with 30 profiles that belong to the 2σ interval of the distribution of profiles. 

(Occupant profiles have been ordered by accumulated electricity use).  

The improvement given by the CEES is clear when the number of non-comfortable hours is examined 

(Figure 4 bottom). The building obtained with the CEES is found to always outperform the one produced 

with only a single pattern of occupancy, and only violates the condition of comfort, very slightly, for 

three profiles (profiles 26, 27 and 28; 873, 873 and 908 hours respectively). 

5 Conclusions 

We consider that the methodology presented here is a first step to more elaborate optimisation 

mechanisms that will provide building designers with solutions robust against the many parameters which 

are in truth unknown or ill-defined during the design stage, may vary during value engineering or 

construction, or dependent on the behaviour of occupants over the many decades a building may last, 

without the need to simulate each possible combination of parameters.  

As this optimisation technique requires only an acceptable increase in computational time, and 

produces more robust solutions than those obtained using ordinary optimisation methods, its use may be 

of interest not just to building scientists, but to practising engineers. It is recommended that in future all 

such optimisation runs are made using a realistic spectrum of behaviours (including set-points), and that 

the approach is expanded to include other elements of design that might show variance during 

construction, for example, U-values and air tightness. This it is hoped will reduce some of the risks 

associated with designing and asking people to occupy very low energy buildings.  
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Appendix: The Changing Environment Evolutionary Strategy 

1 The Changing Environment Evolutionary Strategy: CEES 

The optimisation procedure that was investigated in this paper is aimed at dealing with environmental 

uncertainties. As it is slightly different than the canonical form of ES, the algorithm will be described in 

this appendix. 

The impact of environmental parameter in uncertain optimisation is usually unknown; however, it is 

possible to know the range of values that it may take, and its probability distribution. That information 

allows the implementation of a check of robustness for all generations in the CEES. 

The CEES shares with the canonical form of ESs the real-encoded variables, the random mutation at a 

phenotypic level and the elitism. Elitism is the characteristic of the algorithm that makes solutions that 

perform well stay over generations (for more details about the canonical form of ESs see [22]).  

To produce robust solutions, the populations are evaluated at each generation with a different  

environmental parameter. This continuous evaluation of the solutions in different environmental 

conditions makes those individuals that survive more resistant to environmental changes. 

The CEES can be written in the pseudo-code shown in Eq. (A.1). 

 

 
where  𝒙𝑖(𝑡) represents solution i at generation t,  𝑒 is the environmental parameter, T is the 
maximum number of generations, µ  is the population size,  𝑃(𝑡) is the set of solutions (population) 
at generation t  and 𝑓 is the fitness function. 

It can be seen in Eq. (A.1) that, in the CEES, the worst individuals are eliminated leaving empty slots 

in the population that are filled with mutations of the best individuals of the population. This mechanism 

maintains good individuals for a large number of generations; that way, they can be eliminated for only 

two reasons: because better individuals have appeared; or, because a specific environmental parameter 

makes them poor individuals. 

1.1 Selection operator in the CEES 

The selection operator in the CEES is deterministic as in any Evolutionary Strategies (ES) (see [22]). 

However, instead of selecting the 𝜆 best individuals, a range of fitness is calculated between the best and 

the worst individual of the population, and the individuals belonging to a given percentage of that range 

are selected. This threshold was fixed at 3% as the penalty function makes the range rather large and a 

low number needs to be chosen to make sure there is enough selection pressure. 

 𝑡 ≔ 0; 
 𝑒 ∶=  𝑠𝑎𝑚𝑝𝑙𝑒 𝜶 
 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑃(0) ≔ {𝒙1(0), … , 𝒙𝜇(0)} ; 

 𝒘𝒉𝒊𝒍𝒆 (𝑡 ≤ 𝑇)  𝒅𝒐 
o 𝑒 ∶=  𝑠𝑎𝑚𝑝𝑙𝑒 𝜶 
o 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒  𝑃(𝑡) ∶ {𝑓(𝒙1(𝑡), 𝑒), … , 𝑓(𝒙𝜇(𝑡), 𝑒)} 
o 𝑟𝑎𝑛𝑘          𝑃(𝑡)  
o 𝑠𝑒𝑙𝑒𝑐𝑡        𝑃′(𝑡)  𝑎𝑚𝑜𝑛𝑔 𝑃(𝑡) 
o 𝑖 ≔ 1 
o k  := 1 
o 𝜆 ∶=  𝑠𝑖𝑧𝑒 𝑜𝑓 𝑃′(𝑡) 
o 𝒘𝒉𝒊𝒍𝒆 (𝑘 < 𝜇 − 𝜆 )  𝒅𝒐 

 𝒙𝜆+𝑘(𝑡) = 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝒙𝑖(𝑡) 
 𝑖 ≔ 𝑖 + 1 
 𝑘 ≔ 𝑘 + 1 
 if (i== 𝜆) 

         i = 1 

fi 
o 𝒐𝒅 
o 𝑡 ∶=  𝑡 + 1 

 𝒐𝒅 

(A.1) 



This way of defining the selection operator ensures that individuals located away from the area of high 

fitness are eliminated rapidly, i.e. individuals that have a poor fitness when the environment changes are 

removed. An illustration of the operator compared to a rank-based selection operator can be found in 

Figure A.1. For more information about selection operators see [34]. 

 

 

Figure A.1. Selection operator based on Range (Right) and Rank (Centre), from an original population shown in the 

left. Range selection: individuals that belong within 75% of the fitness range are selected. Ranking selection: the 75% 

best individuals are retained. It can be seen that the individual excluded in the centre by the ranking selection is 

almost as good as the selected ones; this does not happened with the range selection. 

1.2 Mutation operator in the CEES 

The CEES uses the mutation operator as the only exploratory operator. The mutation operator used in 

this work is the one introduced by Michalewicz in his work [25]. It consists in modifying the selected 

individual by adding or subtracting to the decision variable a scaled random number. The scope of the 

modification of the decision variables decrease with the generation number, making the search coarser at 

the beginning than at the end of the optimisation. 

The mathematical formulation of this operator is as follows: for a given parent x, the decision variable  

𝑥𝑘 is mutated with one of the equations (depending on the value of the random number r, see below): 

 

𝑥′
𝑘 = 𝑥𝑘 +  Δ(𝑡, 𝑥𝑘

𝑈 −  𝑥𝑘) 

𝑥′
𝑘 = 𝑥𝑘 +  Δ(𝑡, 𝑥𝑘 +  𝑥𝑘

𝐿) 
 (A.2) 

 

where Δ(𝑡, 𝑥) is a function that returns a value in the range from [0, y] such that y approaches zero as t 

increases. t is the generation number, and the function Δ(𝑡, 𝑥) is defined as follows: 

 

The function Δ(𝑡, 𝑥) is used as the step size of the mutation, r is a  random number from the interval 

[0, 1], T the maximum generation, and b a parameter determining the degree of non-uniformity [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Δ(𝑡, 𝑥) = 𝑦r (1 −
𝑡

𝑇
)

𝑏

 
 (A.3) 
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