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1 Abstract

2 The idea that increasing physical activity directly adds to total energy expenditure
3 in humans (additive model) has been challenged by the energy constrained

4 hypothesis (constrained model). This model proposes that increased physical

5 activity decreases other components of metabolism to constrain total energy

6 expenditure. There is a logical evolutionary argument for trade-offs in metabolism
7 but, to date, evidence supporting constraint is subject to several limitations

8 including cross-sectional and correlational studies with potential methodological

9 issues from extreme differences in body size/composition and lifestyle, potential
10 statistical issues such as regression dilution and spurious correlations, and

11 conclusions drawn from deductive inference rather than direct observation of

12 compensation. Addressing these limitations in future studies, ideally randomized
13 controlled trials, should improve the accuracy of models of human energy

14 expenditure. The available evidence indicates that in many scenarios, the effect
15 of increasing physical activity on total energy expenditure will be mostly additive
16 — although some energy appears to ‘go missing’ and is currently unaccounted

17 for. The degree of energy balance could moderate this effect even further.

18

19 Keywords

20  Energy expenditure, Metabolism, Energy balance, Physical Activity

21

22 Statement of Significance
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Current evidence for the constrained energy hypothesis is subject to limitations
including methodological, statistical and deductive inference. Suitably powered
randomized controlled trials with measures of energy balance components are

needed to better elucidate whether physical activity is additive or constrained.
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MAIN TEXT

1. INTRODUCTION

The constrained energy expenditure hypothesis challenges the notion that
increases in activity energy expenditure add to total energy expenditure. This
hypothesis was first proposed by Herman Pontzer (1), and the overarching premise is

conceptualized with the following statement from his recent book:

“The bottom line is that your daily [physical] activity level has almost no bearing on the

number of calories that you burn each day” (p103) (2).

The potential controversy of this topic has been briefly highlighted (3). If this
hypothesis is true, it has profound ramifications for scientific understanding of energy
balance and for prevention and management of obesity. The potential to manipulate
energy expenditure with physical activity and/or calculate energy requirements for the
population would also be severely challenged. The aim of this review is to provide an
independent appraisal of the current evidence used to support the constrained energy

expenditure hypothesis, and to highlight future directions for research.

1.1. Human energy expenditure is comprised of multiple components

Human Total Energy Expenditure (TEE) is the energy cost of all metabolic
processes and is comprised of several components (Figure 1). The primarily non-

behavioral components include:

1) sleeping metabolic rate (SMR);
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2) arousal (when awake)(4);

and 3) cold- and heat-induced energy expenditure [which increase TEE by 3-7%

with typical changes in ambient temperature (5)].

Behavioral components include diet-induced thermogenesis [DIT; a.k.a., the
thermic effect of feeding (TEF), or specific dynamic action of food], representing
increased metabolic rate due to digestion, absorption, and metabolism of ingested
energy (6). Whilst this does have a non-behavioral component, most of the variance in
diet-induced thermogenesis is explained by the amount and type of energy consumed
and thus arises as a consequence of eating behaviors (6). Finally, activity energy
expenditure (AEE) is the increase in energy expenditure with skeletal muscle force
production (7). Exercise energy expenditure (EXEE) is a subcomponent of AEE that is
planned or structured, and thus is defined by the person’s intention, with non-exercise
activity thermogenesis (NEAT) comprising the remaining fraction of AEE. Again, whilst
some variance in AEE is from non-behavioral factors such as efficiency of movement,
most variance is explained by behavioral factors, such as the magnitude and nature of
activity (8). Since the absolute energy cost of movement varies according to body size,
the level of physical activity is often expressed as TEE divided by RMR, known as the

physical activity level (PAL) (9).

1.2. What is the constrained energy expenditure hypothesis?

The constrained energy expenditure model proposes that:
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“The human body adapts dynamically to maintain total energy expenditure (TEE) within
a narrow physiological range. Rather than increasing with physical activity in a dose-
dependent manner, experimental and ecological evidence suggests the hypothesis that

TEE is a relatively constrained product of our evolved physiology.” (10)

In other words, in contrast to the notion of physical activity directly adding to total
energy expenditure (Figure 2A), the energy constrained hypothesis proposes a
compensatory decrease in other components of energy expenditure, such that total

energy expenditure remains relatively constant (Figure 2B).

Initial support for the constrained energy expenditure hypothesis came from a
cross-sectional study using Doubly Labelled Water (DLW) to estimate total energy
expenditure in 30 Hadza (a population of hunter-gatherers) and compared these data to
measurements in ‘Western’ and ‘Farming’ populations (1). PAL was derived using TEE
minus BMR, which for the Hadza, was predicted from equations. In contrast to the
authors’ expectations, after adjusting for fat-free mass and age, TEE was not
significantly different between Hadza versus Western comparators (1). PAL was ~6%
(women) and 25% (men) higher in the Hadza versus Western population, and it was
deduced that the Hadza must therefore spend a smaller proportion of TEE on BMR —
with the inference that BMR is adjusted downwards when physical activity is high to
constrain TEE. This initial report was followed up by a larger study across 332 men and
women from five diverse locations and populations (11). This study used DLW over 7
days, measured RMR, and assessed physical activity using a hip mounted tri-axial
accelerometer (Actical, Phillips Ltd) over 6 days (at least 62% of a day, and at least 4

days of data were used) (11). Across the whole sample, a positive linear relationship
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was reported between accelerometer counts and TEE up to a proposed threshold of
~230 counts per minute per day (CPM/d) but, above this level, additional accelerometer
counts did not predict TEE (Figure 3). Unlike findings from the earlier study that
predicted RMR (1), there was no evidence for any effect of measured RMR on TEE
when measured under more controlled conditions (11). However, AEE from DLW-
derived estimates (TEE minus RMR) were reported to plateau at higher energy
expenditures and - based on a proposed piece-wise regression model (two regression
slopes with a threshold of 230 CPM/d) - it was concluded that AEE not captured by the
accelerometer must have been reduced to negate the impact of AEE captured by the
accelerometer. Given the magnitude of the missing AEE (~600 kcal/d), it was proposed
that this could not be due to muscular activity overlooked by the accelerometer alone
but must represent a reduction in some other form of energy expenditure (e.g.,
reproductive activity). Presumably, this effect must only be manifested in the AEE

component, since RMR was not related to TEE.

One study from hunter-gatherer children in (Shuar) is also used to directly
support the constrained energy expenditure hypothesis (12). Data for hunter-gatherer
children were compared to reference data from the UK and North America. DLW was
used to derive TEE (11 d) and fasting morning RMR was measured (12). Physical
activity was determined using hip-mounted accelerometry. RMR was higher in rural
Shuar, and this was attributed to the energy cost of ongoing infections and immune
burden based on the positive relationship between RMR and circulating Immunoglobulin
G concentrations (12). Shuar children displayed little-to-no difference in TEE but lower

DLW-derived AEE than industrial comparators, despite ~25% greater accelerometry



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

counts (12). This was interpreted as evidence for trade-offs in childhood to constrain
TEE, with the lower AEE in Shuar children possibly explained by differences in mass,

efficiency, thermoregulation, or the amplitude of variation in RMR.

Other data used to support the constrained energy expenditure hypothesis
comes from a study that investigated energy expenditure in six adults during the
transcontinental race across the USA, a ~5000 km event involving running 6 days/week
for 20 weeks (13). This study incorporated measures of TEE using DLW (5 d), with
running energy cost estimated using global positioning systems (13). RMR was
measured in three participants and estimated using predictive equations in the
remaining three. Data from the first week of the race showed strong agreement between
predicted and observed energy expenditure, which increased to ~6000 kcal/d. However,
at follow-up (14 or 20 weeks into the race), there was a discrepancy such that observed
TEE (from DLW) was less than predicted (13). The predicted energy expenditure used
RMR and other (non-running) AEE from before the race (AEE = TEE minus RMR, TEF
and running energy expenditure). These calculations indicated that it was this ‘other’
AEE component which was less than predicted (Figure 4). There was little-to-no
change in measured RMR. Thus, it was concluded that humans partially reduce

components of TEE (manifested in the AEE component) (13).

A final piece of recent cross-sectional evidence for the constrained hypothesis
comes from an analysis of a large DLW database which included paired RMR measures
from indirect calorimetry in adults (n = 1754) (14). AEE was calculated by subtracting
RMR from (0.9 x TEE). The primary observations used to support the constrained

energy hypothesis were that the least squares regression slope for the BEE-TEE
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relationship was <1 (Figure 5A), and that the correlation between measured RMR and
calculated AEE was negative (Figure 5B). The authors inferred that these relationships
provide evidence of energy compensation, since a lack of compensation (i.e., an
additive model) should provide a perfect positive relationship between TEE and RMR,
and zero relationship between AEE and RMR (14). To understand if compensation
occurs within-individuals, the authors explored within-individual relationships between
residuals of RMR and of TEE for older individuals with two measures each, and for
residuals of AEE and RMR. Based on the same reasoning applied to the whole sample
(relationship between RMR and TEE <1 and between AEE and RMR, negative) the
authors suggested that compensation occurred within, not between individuals (14). The
potential components that have been suggested to be responsible for the constraint

across these studies, with supporting statements are provided in Table 1.

2. Critique of current evidence on constrained energy expenditure

At the simplest level, evidence from studies on energy balance components and
body mass change can be used to critique the constrained hypothesis. If TEE is
constant when AEE increases, then a stable body mass would require stable energy
intake. Classical data from the 1950s collected from 213 Mill workers in Bengal
indicated that energy intake increases by almost 1000 kcal/d in individuals performing
very heavy work compared to those undertaking light work, yet body mass was reported
as stable (15). This is also supported by more recent studies in athletes (16) and non-
athletes (17). A limitation with this critique, however, is the potential inaccuracy of

measuring energy intake. A more comprehensive critique requires consideration of
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methods of assessing energy expenditure, study design and statistical analyses to
establish appropriate inferences regarding the relationships between physical activity

and other components of energy expenditure.

2.1. Considerations for measurement of energy expenditure components
2.1.1. Total energy expenditure (TEE)

Doubly labelled water (DLW) is considered the gold-standard method of
determining TEE during free-living conditions (18). The primary principle is that labelled
hydrogen disappears only from water losses, whereas the labelled oxygen disappears
from both water losses and exhaled CO2. Accordingly, the difference in disappearance
rates of labelled oxygen and hydrogen in the body pool provides exhaled CO-2 over the
timeframe of measurement, typically 1-3 weeks (19). TEE is obtained by estimating O>
consumption from the measured CO2 production by adjusting for the respiratory
exchange ratio (RER), which is measured, assumed, or estimated. One way to estimate
RER is to estimate the food quotient (FQ). When in energy balance, FQ will typically
equal RER, and thus RER can be estimated from accurate food diaries. This is relevant,
since the diet of specific populations such as hunter gathers can vary substantially with
regards to carbohydrate and fat content, varying both between populations, but also
seasonally (20). Since dietary intake is notoriously difficult to measure (21, 22),
accuracy of estimating FQ can be challenging, ultimately impacting on the accuracy of
DLW-estimates of TEE. Moreover, some extreme scenarios will mean that RER cannot
be predicted from FQ, for example, when ketone bodies are being produced or oxidized

(23). It has been estimated that properly accounting for RER can alter the interpretation
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of DLW data drastically, cutting the effect size of an intervention on energy expenditure
by half, from 209 £ 58 kcal/d to 104 £ 59 kcal/d (24). Therefore, the measurement of
total energy expenditure under free-living conditions is challenging and the extra
information required to accurately estimate energy expenditure is quite often likely to be

missing or inaccurate from studying extreme populations.

The limitations in assessing TEE with DLW have implications for the currently
available evidence on the constrained energy expenditure hypothesis. The nature of
these studies often involves measures in people with vastly different body sizes,
lifestyles, and diets (1), or in the same people but in very different situations, such as
the phases of an ultra-marathon (13). These extreme differences could undermine or
violate some assumptions of DLW for estimating TEE. Furthermore, TEE measures are
normally taken without direct assessment of RER, which will reduce measurement
accuracy and precision. Given these measurement uncertainties, it is risky to base
interpretations on deductive reasoning and inductive reasoning using TEE
measurements alone, and direct observation of the component demonstrating constraint
is needed to provide greater certainty that deduced differences are not the product of

measurement issues and considerations.

2.1.2. Activity energy expenditure (AEE)

The measurement of AEE is also challenging and has implications for the energy
constrained hypothesis. In some studies, AEE has been estimated by subtracting RMR
(either measured or estimated), from TEE. The fact that this approach relies on two

measures (one subtracted from another) inherently increases uncertainty compared to
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direct measurement (and compared to the measure of TEE), since it relies on additional
assumptions, and amplifies variance introduced by each measure. Moreover, without
additional measurement of other components, this measure can mistakenly assign other
components of energy expenditure to physical activity, such as energy costs of

thermoregulation and variance in RMR across a day.

Some studies which report compensation and/or constraint have used hip
mounted accelerometers to characterize “physical activity” (11, 12). Accelerometry data
(CPM/d) are used as a proxy for physical activity, with the conclusion that because
higher CPM/d do not ‘add’ to TEE, that there must be compensation or constraint in
some other component of energy expenditure which erodes the impact of physical
activity on TEE [see Figure 3 reprinted from (11)]. Whilst hip accelerometry is a good
measure of ambulatory physical activity (25), it is notoriously poor for the assessment of
non-ambulatory physical activity. Hip accelerometry explains only 6-16% of the variance
in AEE derived from DLW (26-28) and ~30% of the variance in measured energy
expenditure (by indirect calorimetry) during a battery of physical tasks (29). So at least
some of the observed ‘constraint’ could be decreases in other forms of physical activity
(not detected by hip-mounted accelerometers). Hip mounted accelerometers would not
adequately capture many common forms of physical activity, such as standing, non-
ambulatory physical labor, load carrying, cycling, swimming (29). Capturing only a
proportion of total activity might be useful if patterns of physical activity behavior are
consistent across groups, but there is likely to be considerable heterogeneity in these
types of behaviors across diverse populations (11, 12). Based on regression shown in

Figure 3, a great deal of AEE (~600 kcal/d) is reported with zero accelerometry counts



232 (11). It was speculated that this could reflect other non-muscular/movement energy

233 expenditure allocated to AEE from DLW measurements (11), but it could simply reflect
234  the failure of accelerometry to adequately capture the energy cost of physical activity.
235 Thus, hip accelerometry data should not be used as a proxy for physical activity without
236  evidence showing that this method suitably captures the nature of physical activity in a
237  defined population, including variation due to the distinct types of representative

238  movements undertaken in that population.

239 Another consideration with accelerometers is the sampling framework and

240  recording period. Whereas DLW derives average TEE (and AEE) over a sustained

241  period [e.g., 5 d to 3 wk (18, 19)], accelerometry data is often accepted for a given day if
242 adevice has been worn for a given proportion of the day [e.g., 10 h or 62% (11, 12)],
243 and for a proportion of the sampling period [e.g., 4 days (11)]. Given the uncertainty in
244 the behavior that has been missed outside the recorded period, there is a risk in trying
245  to reconcile (fragmented) accelerometry records with summative average daily AEE
246  data from DLW. Technical innovation and development may overcome some of these
247  issues, for example, the integration of other physiological data to improve estimates of
248 energy expenditure from body mounted devices (30), and/or positioning of devices in
249  locations which support improved wear time and sampling (31). The accuracy of

250  physical activity measurement is crucial for making inferences about the constrained
251 energy hypothesis given that this is a common proposed explanation for constraint

252 (Table 1). This component needs to be measured and not deduced to make rational
253 inferences about the relationship between physical activity and human energy

254  expenditure.



255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

2.1.3. Thermic effect of feeding (TEF)

The thermic effect of feeding (TEF) is sometimes assumed in studies on the
basis that fat, carbohydrates, protein, and ethanol have thermic effects of 0-3%, 5-10%,
20-30% and 12-28%, respectively (6). The considerable variance in TEF between
macronutrients would require accurate diet assessment to derive accurate TEF, but
even with accurate diet data, the range within each macronutrient is still considerable,
as some variance in TEF is due to inter-individual differences in the postprandial
handling of nutrients, and others can be due to food form and/or degree of processing
(32). Therefore, measured TEF would be preferable, requiring ~4 h of postprandial
measures, ideally in response to a variety of foods, to understand the interactions
between the individual and the foods on TEF. Studies that are aimed at investigating the
constrained energy expenditure hypothesis may therefore make erroneous conclusions
if TEF is estimated rather than measured directly, or if the measurement is only
performed in response to one type of meal rather than a representative mix of foods
(differing in type, timing, and total amount). An erroneous conclusion could be made in
either direction, (i.e., it is possible that constraint in TEF could be missed, or that
constraint is deduced when direct measurement would counter this). Studies providing
evidence for the energy constrained hypothesis have often assumed TEF, which has
been recognized as a limitation (11). In the same way as AEE, TEF needs to be
measured rather than assumed to provide robust and complete data on the relationship

between physical activity and human energy expenditure.
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2.1.4. Resting metabolic rate (RMR)

The measurement of the lowest rate of energy expenditure (sleeping or BMR),
requires participants to be fasted, asleep, in thermoneutrality, and thereby is typically
assessed by room calorimetry. RMR can be assessed by either room calorimetry or
indirect calorimetry when participants are awake, thereby measuring the sum of
sleeping energy expenditure plus arousal. Room calorimetry is non-portable, and thus is
essentially never used in field studies. In these scenarios, field studies are limited to
either portable indirect calorimetry devices, or estimations of RMR based on prediction
equations (13).Limitation with portable metabolic systems for RMR include inabilities of
many devices to accurately measure ventilation rates and account for inspired gas
concentrations, which can vary substantially in different environments and across time
(33). Finally, even with a single accurate estimate of RMR, there is then the assumption
that this measurement reflects the full 24-h period and is stable day-to-day. A snapshot
measurement of RMR is unlikely to be sufficient to extrapolate across an entire day (34,
35). Based on these limitations, evidence from a single measurement should be
interpreted with caution, as they may not reflect RMR at other times of the day and/or
may display some errors compared to more rigorous methods. Accordingly,
measurement (rather than estimation) of RMR is required to confidently determine
whether RMR is responsible for any compensation in TEE with physical activity and
multiple measures of RMR across a day are likely needed to account for circadian

rhythmicity.

2.2 Statistical issues in the interpretation of energy constraint
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Alongside study design and measurement-related considerations, it is also
important to consider statistical factors arising from the mainly observational studies on

the constrained energy expenditure hypothesis. These potential issues include:

1) matching the statistical model with the proposed causal pathway between the

exposure (independent) variable(s) and outcome (dependent) variable(s);

2) the influence of measurement error on least squares regression estimates of

slope and intercept;

3) the risk of correlations being spurious because of mathematical coupling

between the variables of interest;

4) the appropriate use of null hypothesis testing vs equivalence analyses for

“indistinguishable” or “no difference” type hypotheses;

5) a comprehensive and robust approach to comparing the appropriateness of

non-linear, e.g., change point associations, vs linear statistical models.

2.2.1. What are the exposure and outcome variables?

Prior to application of any statistical model, a proposed direction of a causal
pathway between the various variables of interest should be considered, preferably
aided by a directed acyclic graph (36). The causal pathway determines important
aspects of the proposed statistical model (37), e.g., estimates from least-squares
regression models can differ considerably depending upon which variable is deemed
the exposure [or independent variable (x)] and the outcome [or dependent variable (y)].

The energy constraint theory indicates that increases in physical activity cause
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reductions in other components of energy expenditure, .e.g., “Increasing levels of
activity may bring diminishing returns in energy expenditure because of compensatory
responses in non-activity energy expenditures.” (14)(p4659). In some studies, this latter
component is deemed to be in RMR. In other words, energy expended in physical
activity — often using AEE derived from DLW - is the exposure (independent) variable
that should be placed on the x axis, and BEE is the outcome (dependent) variable that
should be placed on the y axis. It can be seen in Figure 5 that Careau et al. (14)
selected the axes for these two variables in a way that is not consistent with the causal

pathway for compensation theory.

It is important to select exposure and outcome in a way that is consistent with a
causal pathway because this selection influences how much least squares regression
estimates are affected by measurement error. Researchers should consider whether an
association is “symmetric” or “asymmetric” (37). Symmetry refers to the situation where
the purpose is to estimate a slope to ultimately identify a general pattern between two
mutually co-dependent variables (37). If a research question is grounded in such
symmetry, then least squares regression may not be appropriate for estimating a slope
at all. This is because least squares regression is asymmetric, so that there are two
different lines, and two different slopes, depending upon which variable is selected for
each axis. Least squares regression is more appropriate for a definitive causal pathway
between an exposure variable and outcome variable. Along with the importance of
correctly identifying exposure and outcome variables, the important issue of regression
dilution is relevant to least squares regression. This issue is, in turn, dependent on the

relative magnitudes of error variance between the exposure and outcome variables.
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Because the energy constrained hypothesis postulates that increases in physical
activity result in constrained TEE, then it follows that physical activity should, in our
opinion, be the exposure on the x axis when examining such correlations. But this is not

the case in many studies.

2.2.2. Is evidence for constraint an artefact of regression dilution?

Regression dilution results when measurement errors in the predictor (x) variable
attenuate the least squares regression slope (37). The true regression slope can be 1,
but measurement errors in the exposure variable (AEE) lead to the least squares
regression slope being attenuated to less than 1. Importantly, neither BEE nor AEE are
immune from measurement errors and biological variability. Therefore, a slope of <1 as
the criterion used to support the compensation hypothesis needs to be considered

carefully in the context of regression dilution.

Guidelines for exploring regression dilution have been published (38), where
advice is to adopt multiple approaches to diagnose and control for the effects of
regression dilution, including: 1) exploration of relative measurement errors between x
and y variables, 2) appreciation of the causal nexus between x and y variables (see
above), 3) calculation and consideration of the correlation coefficient between x and y
variables (the lower the r, the more prone a least squares regression slope is to dilution,
and 4) undertaking sensitivity analyses where alternative regression approaches are
compared to least squares regression. It is unclear to what extent regression dilution

influenced the findings of Careau et al. (14).
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The use of the following published guidelines for exploring regression dilution
may help to advance the understanding of whether TEE is constrained, especially given
the known measurement and biological errors in components of human energy

expenditure (6, 18, 19, 39).

2.2.3. Is some evidence for constraint an artefact of spurious correlations?

Spurious correlations are those that are not explained by biological mechanisms
but occur even in the absence of any biological links between correlated variables (40).
One type of spurious correlation results when a variable (x) is correlated to another
variable (y), but variable x is also present in the calculation of variable y (or vice versa).
In many studies, AEE has not been directly measured but, rather, has been deduced by
subtracting RMR (and sometimes other estimated or measured components) from TEE

(1,13, 14).

AEE calculated by this subtraction method has then been correlated against
RMR itself, setting up mathematical coupling and risk of spurious correlation. In Figure
6A, we present the scatterplot for the BEE-AEE correlation, whereby data have been
obtained from simulation. Using the random number generator in Excel, we simulated
BEE and TEE to be completely independent, uncorrelated (r = 0.02) and normally
distributed variables (n = 100). Our simulation was based on mean and SD values
similar to those supporting the energy constrained hypothesis (14). Figure 6A illustrates
that, in this simulation, even though BEE and TEE are separate, independent variables,
a negative correlation between BEE and AEE (when AEE = TEE minus BEE) can be

obtained, simply because BEE is one of the variables in the correlation, but is also a
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negative term in the calculation of the other variable (AEE). The correlation we present
is entirely spurious and it is unclear to what extent prior reports of constraint could be

influenced by similar spurious correlations.

To reduce the likelihood of spurious correlations between AEE and RMR, such
associations should ideally be explored with direct measures of each variable. If there is
indeed a negative slope between these two measured variables, then this would
support the constrained energy expenditure hypothesis. In Figure 6B, we present the
scatterplot for the correlation between RMR and AEE using the data reported in a
previous study where each of these variables was measured directly and independently
(41). In a similar way to Careau et al. (14), we ran a multivariable-adjusted general
linear model to explore the relationship between measured BEE and measured AEE,

adjusting for covariates of sex, age and fat-free mass.

The slope on the scatterplot in Figure 6B is -0.09 (95%ClI: -0.70 to 0.52) and the
correlation coefficient is 0.04. Mathematical coupling is not present in the correlation
presented in Figure 6B, and the flat slope does not support the constrained energy
expenditure hypothesis. There also does not appear to be any evidence for a “change
point” association in the scatterplot. Incidentally, if exposure (AEE) and outcome (BEE)
are reversed and remodeled [similar to Careau et al., (14)], then the slope we obtained
is still flat (-0.01, 95%CI: -0.11 to 0.08). Furthermore, because our x-y and y-x slopes
are very similar, then this indicates no meaningful influence of regression dilution on our

least squares slope estimate (37).

Although the data we have used are from a smaller, less diverse sample, this still

raises the possibility that prior correlations of DLW-derived AEE versus BMR could be
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the result of including the same measurement in the calculation of variables in both the

x- and y-axes.

2.2.4. Accounting for body size and composition

In some studies, the differences in body size between samples being compared
are substantial, and this should be considered in order to appropriately compare
measures of energy expenditure components between such groups. For example,
mean body mass differed between Hadza and western samples by ~30 kg (~60-70%)
(1). It could be questioned whether the statistical models employed in comparative
studies have adequately adjusted for body size and composition, especially given that:
1) body mass and energy expenditure scale allometrically; and 2) adjusting for body
composition (fat-free mass; FFM) is inherently problematic due to limitations of

measurement methods.

Two common methods of assessing FFM within this field are bioelectrical
impedance and dual-energy x-ray absorptiometry. However, neither of these methods
can determine body cell mass, which is the most relevant measurement for RMR since
cell mass is the metabolically active component of fat-free mass. The gold-standard
method for assessing cellular mass is the “°K dilution method. Examples of how this is
relevant for normalizing RMR include evidence from energy deficits and ageing. The
degree of metabolic adaptation seen with severe energy deficits such as semi-
starvation (i.e., the larger than predicted decrease in RMR seen with a recent energy
deficit) can be attenuated from ~750 kcal/d when using fat-free mass, to ~200 kcal/d

when using body cell mass (Luke and Schoeller 1992). Moreover, the apparent decline
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in RMR with age when adjusted for fat-free mass is abolished when using body cell

mass (42).

Accordingly, adjusting measurements of energy expenditure across populations
with vastly different body size and/or composition is not straightforward, and even
measures such as dual-energy x-ray absorptiometry may not be optimal for appropriate
correction for body composition under extreme conditions. Including measures of body
cell mass by the potassium dilution method may enhance the ability to compare TEE
and TEE components across populations with large differences in body size and

composition, and within the same individuals before and after extreme interventions.

2.2.5. Equivalence testing vs null hypothesis testing

Support for the compensation hypothesis often comes from the use of null
hypothesis tests to conclude that the difference between two or more sample means is,
or is not, statistically significant (p < 0.05). This approach is also often used for two or
more outcomes related to energy expenditure in a differential and dichotomous fashion.
For example, it has been reported that mean physical activity level was greater in a
sample of Hadza foragers than in a sample of Westerners, while it was also reported
that mean daily energy expenditure of traditional Hadza foragers was “no different” to

that of Westerners (1).

It is important to highlight that a non-significant p-value from a null hypothesis
test should not be used to make conclusions of the “not different” type (43). Ironically, all

a researcher would need to do to arrive at such a conclusion is recruit a small sample of
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participants and use outcomes that are measured with a substantial amount of random
measurement error. These conditions would almost guarantee a non-significant p-value
for a null hypothesis test on two sample means. For this, and other, reasons,
equivalence analyses have been developed specifically to arrive at conclusions

regarding “no relevant difference” inferences (44, 45).

For future research, various approaches are available for equivalence analyses,
a common approach involves ‘two one-sided tests’ (TOST). In this frequentist interval
approach, the null and alternative hypotheses within each set are reversed. Equivalence
is concluded only if both one-sided tests statistically reject the presence of effects equal
to or larger than a threshold value that is deemed to be clinically or practically relevant.
This approach places informed thresholds for minimal clinically important differences
(MCID) at the center of the inferential process. Without such an MCID, a statistically
significant difference may be negligible, or a non-statistically significant difference could
be important. There have been very few efforts to arrive at consensus regarding MCIDs
in exercise science, despite the recent publication of formal and informed methods (46).
Importantly, the difference in a study outcome might not be statistically significant
merely because it is associated with more measurement error than another study

outcome that has been found to be statistically significantly different.

Our primary point here is that conclusions of “no statistically significant
difference” are commonly used in components of research on energy compensation, yet
informed and robust indications of MCIDs seem absent in the field, raising the likelihood
that important differences between samples are not being detected because of the

emphasis on null hypothesis testing, alongside issues of small samples and differential
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amounts of measurement error between study outcomes. We also believe that this field
of research would benefit from careful consideration of directional (one-sided) or non-
directional (two-sided) null hypothesis tests when such testing is appropriate, e.g., for

testing whether the mean BMR of one sample is specifically larger than another sample.

2.2.7. Comparison of linear and non-linear models

Pontzer et al. (11) proposed that TEE and AEE varied in a non-linear fashion
when plotted against accelerometry counts. After various explorations with different set
values, they proposed a cut-off or “change point” threshold of 230 CPM/day and applied
piecewise (segmented) regression to suggest that a linear model was appropriate when
physical activity was below this threshold. For physical activity higher than this
threshold, it was suggested that the regression slope is zero, i.e., the association
“plateaus”. There was no formal model comparison in arriving at this claim of non-linear
(plateauing at higher physical activity) associations between physical activity and TEE
or AEE. Ideally, information would be provided to show that the selected piecewise non-
linear model provides a “better” fit than a single linear model across the whole
measurement range of physical activity. Although some model comparison procedures
were reported to be employed by Pontzer et al. (12), other more modern statistical
criteria such as Akaike’s information criterion can also be used to inform any
comparison of the relative fit of two competing statistical models (47) . The relevant
question is whether a single linear model for the data in scatterplots presented by
Pontzer et al. (11) can be ruled out in preference of a piecewise non-linear model. Using

the Digitizeit software, we extracted the adjusted AEE and TEE data from Figure 3 in
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Pontzer et al. (11). Using these data, it is debatable whether a piecewise non-linear
model is a more appropriate fit to the data than the single linear model we fitted (Figure
7). The coefficient of determination of 0.06 (6%) for this single linear model is higher
than the two piecewise models reported to fit the data by Pontzer et al. (11) and is
statistically significant (p<0.0005). Regression model selection is crucial for the
interpretation of some key data supporting the energy constrained hypothesis. It is
unclear whether linear or non-linear models best fit the currently available data. Future
studies should explore this choice objectively, alongside other relevant considerations

such as allometric scaling (48).

2.3. Biological plausibility and potential mechanisms underlying constraint

As discussed above, the evidence from empirical studies in humans often used
to support the constrained energy expenditure hypothesis is under-developed, and
more empirical data are needed with additional considerations of measurement and
statistical approaches to confirm or refute this hypothesis. However, the evolutionary
argument for energy expenditure compensation and constraint under conditions of
increased TEE is persuasive (10, 49). Furthermore, non-human animal studies indicate
constraint of TEE with increased physical activity across a variety of birds and mice in
tightly controlled experiments (10). There is also some evidence supporting some
degree of compensation from two long-term (6-10 month) randomized, controlled trials
of exercise training in specific populations of adults with DLW estimates of energy
expenditure (50, 51). These trials were not designed to determine compensation, and

while both show that prescribed exercise > 200 kcal/d will lead to an increase in TEE,



528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

the effect is less than predicted (50-66% on average), and there appears to be some
form of compensation (Figure 8). Although it should be noted that - at least in one study
- the magnitude of this difference between predicted and observed TEE was similar in
the control group compared to the exercise groups, suggesting that the observation of a
mismatch between predicted and observed TEE could be expected for several reasons
other than constraint due to increased physical activity (e.g., trial effects, seasonal
effects, measurement errors etc.). The less-than-predicted weight loss with exercise
interventions has often been attributed to dietary compensation (52, 53), but these two
randomized controlled trials (RCTs) with DLW measures of TEE indicate that at least
part of the explanation may involve less-than-predicted changes to energy expenditure
(50, 51). The biologically plausible mechanisms underlying the less-than-predicted
changes to energy expenditure with supervised exercise from these RCTs and other

relevant studies will now be discussed.

2.3.1 Resting Metabolic Rate (RMR)

The mean changes in morning RMR reported in the two long-term RCTs ranged
between -50 to +40 kcal/d (50, 51). This is consistent with the wider literature, with
meta-analysis revealing the difference in RMR with aerobic exercise training is +82
kcal/d (95%CI: -58, 221 kcal/d). Therefore, evidence from RCTs does not support a
reduction in RMR with increased exercise, even in studies which indicate some form of
compensation of TEE. Thus, gross effects on RMR are unlikely to be a major (single)
mechanism underlying compensatory reductions in energy expenditure leading to

constraint in TEE.
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If the circadian fluctuations in RMR across the day were attenuated with high
levels of physical activity, DLW-estimates of AEE would incorrectly allocate the
decrease in TEE to AEE rather than RMR, if RMR is only taken as a morning snapshot.
This is likely to only exert a modest effect, since the amplitude in circadian variation of
RMR is ~55 kcal/d (34). Nevertheless, to accurately quantify all components of TEE,
studies are needed to directly assess RMR at different times of the day, and at low and
high levels of physical activity, ideally within-individuals and at different states of energy

(im)balance.

2.3.2. Non-Exercise Activity Thermogenesis (NEAT)

NEAT is a substantial and highly malleable sub-component of TEE. Even within
the confines of a chamber respirometer, with no scheduled physical activity, NEAT is
~400 kcal/d on average in a large sample of adults and can be as high as 800 kcal/d
(54). These activities comprise miscellaneous and often incidental physical activity,
including a diverse range of movements such as fidgeting, play, standing, mastication
and self-care (55). In free-living non-exercisers with an average PAL, NEAT could easily
be ~800-1000 kcal/d due to the energy cost associated with other tasks such as
occupation, household chores, and childcare (7, 56). From an evolutionary perspective,
it might be sensible to ‘cut back’ on the non-essential components of NEAT before
making other metabolic and physiological changes. This could involve some conscious
decisions (e.g., choosing to drive rather than walk due to a perceived exercise ‘credit’).

In humans, feeding and fasting appear to influence NEAT within just a few days (57,
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58). Thus, NEAT is a large component of energy expenditure that is biologically

regulated and differences in NEAT could account for compensation in TEE.

In one of the long-term RCTs that indicates some form of compensation (51),
data from room calorimetry indicated a reduction in spontaneous physical activity
(NEAT) under chamber conditions, suggesting compensation in physical activity may
have contributed to the lower-than-predicted TEE. There was no evidence for this effect
from hip mounted accelerometry data under free-living conditions in either trial (50, 51),
but this could reflect the limited ability of this technique to capture AEE (discussed in
section 2.1.2). Other chamber measured components of energy expenditures (sleeping
metabolic rate, arousal and TEF) did not account for the less-than-expected increase in
total energy expenditure (51). In the ultramarathon Race Across the USA, the reduction
in observed TEE (‘other’ AEE) was likely explained by reductions in NEAT (Figure 4)

(13).

The idea that increases in exercise can lead to less-than-expected increases in
TEE due to compensation and substitution of other physical activity is not new (59). If
compensation of NEAT accounts for the observed constraint, then this would have very
different implications than if the constraint occurred in a non-behavioral component of
energy expenditure, since the behavioral components can be (at least theoretically)
more directly manipulated to counteract or prevent compensation and constraint. In
future studies, better measures of NEAT are required to examine whether this explains

the apparent compensation in exercise training studies.

2.3.3. Physical Activity Efficiency
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The degree of coupling between internal to external work is often termed
exercise efficiency. Changes in efficiency would not be detected by accelerometry and
would appear as reductions in AEE if AEE is estimated by RMR minus TEE using DLW.
The mechanisms that underpin efficiency include biomechanical, biochemical, and
physiological components, and could be altered by physical activity status, providing a

potential mechanism for apparent constraint.

Differences in gait can have a profound impact on exercise efficiency (60). Since
gait and other movement patterns could be altered by repeatedly performing specific
movement patterns, it is possible that humans find the most efficient movement pattern
with repeated practice, resulting in a lower energy cost for that activity. Biochemical
aspects are primarily related to the fuels oxidized during physical activity, since the
oxidation of fat requires more oxygen for the equivalent energy expended than does the
oxidation of carbohydrate (23), people on a high carbohydrate diet display a gross
efficiency during cycling of ~20.4% compared to 19.6% on a lower carbohydrate diet
(61). Finally, there are physiological aspects such as muscle mitochondrial efficiency
that also contribute to exercise efficiency (62). Importantly, human muscle mitochondrial
efficiency has been demonstrated to increase following high-intensity interval training
(63), suggesting a possible mechanism by which prolonged increases in physical

activity may decrease the energy cost of movement.

It is plausible that with long-term increases in physical activity, adaptations
relating to increased efficiency occur which uncouple measured energy expenditure
from the expected increase in energy expenditure, supporting a constrained model.

Without measuring efficiency of movement under differing levels of physical activity and



619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

across a wide range of tasks representative of daily physical activity, differences in
efficiency could cloud inferences regarding the nature of any compensation or

constraint.

2.3.4. Altered thermic effect of feeding?

Changes in TEF could underlie apparent energy constraint in several ways. First,
even if diet is similar, TEF could decrease with high physical activity levels. Cross-
sectional evidence supporting this includes lower TEF in endurance-trained athletes
compared to controls in response to a meal providing 10 kcal/kg FFM (~56 kcal/180 min
versus 79 kcal/180 min) (64). However, even if TEF is reduced by high physical activity,
it is questionable whether the magnitude is meaningful for TEE, as extrapolation of this
difference to 4 meals across a day equates to a difference of <100 kcal/d. It is possible,
however, that constraint in TEE exists as the sum of very small decreases in energy
expenditure within multiple components, with the cumulative total being meaningful.
Second, in response to increases in physical activity, people may change the amount
and composition of their diet, which in turn, would alter TEF directly (as discussed in

section 2.1.3) and/or potentially via changes in the gut microbiome (65).

2.3.5. Is energy balance rather than energy expenditure the signal?

Energy expenditure should not be considered in isolation since there are
important interactions between components of energy intake and energy balance which

consequently affect energy expenditure. When in energy deficit, RMR can decrease
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greater than would be predicted by the loss of fat-free mass (66). This phenomenon is
called metabolic adaptation (or adaptive thermogenesis). This phenomenon is relatively
short lived, and responds in the reverse direction, where RMR increases with energy
surplus (67). When people increase physical activity to very high levels, it is possible
that energy intake does not match expenditure and thus an energy deficit is created,
thereby (transiently) reducing RMR and producing apparent constraint. For the energy
constrained model to substantially change understanding, it would need to refer to
physical activity-induced changes in metabolism that occur independent from energy
imbalance, since energy deficit-induced adaptive thermogenesis is already a relatively
well-established phenomenon. Whilst the two RCTs discussed in Section 3 (50, 51)
demonstrated no meaningful or statistically significant effects on RMR, this does not
rule out the possibility that participants could have been in a brief period of energy
balance prior to the post-intervention RMR measurement, and if the RMR measures
had been taken at another time, perhaps when participants were in an energy deficit,
RMR might have been lower. Accordingly, whilst recognizing the difficulty in this level of
control in humans, the state of energy (im)balance should be considered at each

measurement point in future studies of both cross-sectional and interventional nature.

Further support for the idea of energy deficit driving reductions in TEE comes
from evidence that metabolic signals such as 3,5,3’-triiodothyronine and testosterone
decrease with energy deficit, but not with energy surplus, even in the face of sustained
high energy expenditure equating to 4000-4250 kcal/d (68). Indeed, recent data provide
further support for this, demonstrating that people in energy balance or energy surplus

display TEE-activity responses consistent with the additive model, whereas individuals



664 in an energy deficit display TEE-activity responses consistent with the constrained

665 model (28).

666 This energy deficit hypothesis fits well with evolutionary and physiological

667  viewpoints. Increased physical activity threatens energy balance and energy deficits
668  threaten survival in resource-limited environments. Therefore, from an evolutionary
669  perspective, it is likely that energy deficit is the causal link rather than physical activity
670  per se. Physiologically, hormonal changes with energy deficits such as reductions in
671  leptin concentrations can cause conservation of energy-consuming physiological

672  processes such as menstruation. Correction of hypoleptinemia with recombinant leptin
673 can improve reproductive function in women low body weight or high physical activity
674  and hypothalamic amenorrhea (69). Furthermore, decreases in leptin correlate with
675  metabolic adaptation (70) and leptin replacement can prevent the decline in RMR

676  following an energy deficit (71). Therefore, energy deficit and consequent changes in

677 hormonal concentrations could result in constrained TEE via reductions in RMR.

678 Energy (im)balance has also been shown to influence NEAT (55), whereby

679  NEAT decreases during energy deficit by as much as ~300 kcal/d, and increases during
680  energy surplus by a mean of ~300 kcal/d (72, 73). Substantial inter-individual variability
681 in this response is also observed, whereby increases in NEAT with a surplus of 1000

682  kcal/d ranged from negligible to >700 kcal/d. This variation is clearly meaningful for

683  energy balance, since it explained the majority of variance (r = 0.77) in fat gain during a
684 1000 kcal/d surplus (73). This highlights the importance of direct measurement of NEAT
685  to capture the full potential for compensation and constraint in energy expenditure under

686  differing degrees of energy (im)balance.
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It could be expected that the largest effect of adaptive thermogenesis would be in
the most extreme energy deficits over the longest periods of time. As an indication of
the degree of energy deficit to which the constrained model is plausible, the Minnesota
starvation experiment restricted energy intake to ~50% of baseline intake for 6 months.
The reduction in RMR adjusted for fat-free mass was ~400 kcal/d (74). Therefore, it is
conceivable that this reduction might represent the maximum effect of adaptive
thermogenesis and it would take extreme reductions in RMR (greater than those with 6

months of semi-starvation) to offset increases in AEE of more than 400 kcal/d.

3. SOLUTIONS AND FUTURE DIRECTIONS

Based on current evidence, there is insufficient evidence to fully support either
the additive or the constrained model of human energy expenditure. Most data to date
are from cross-sectional observations and statistical models comparing populations with
extreme differences in a variety of characteristics, which may negatively impact on
measurements. Some are based on deductive inferences rather than direct
measurement, or studies lacking a suitable control group. In addition, the only
randomized controlled trials of exercise training with DLW measures of TEE were not
directly designed to measure compensation, and many outcomes are still deduced
rather than measured, or measured as snapshots and under specific conditions,
potentially missing variation across a day or within different conditions. Compensatory
reduction has not yet been directly demonstrated and thus is derived from deductive
inference. There is, therefore, a need for adequately powered, long-term, randomized

controlled trials with gold-standard methods that directly quantify the major components
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of energy expenditure to assess if human energy expenditure is constrained or additive,

and to identify the source and nature of the compensation and constraint.
There is little evidence to support the extreme constrained model, proposed as:

“The bottom line is that your daily [physical] activity level has almost no bearing on the

number of calories that you burn each day” (p103) (2).

An upper limit of TEE probably exists (75), but this is likely irrelevant for most
people, and large changes in physical activity will alter TEE. Indeed, ultramarathon
studies such as the Race Across the USA study supports the additive model more than
the constrained model, as there was a huge increase in TEE (+2500 kcal/d) even after
20 weeks (13). Therefore, even if some constraint exists, it is unlikely to fully offset
physical activity, such that further increases in physical activity will result in a net

increase in energy expenditure, just not in a linear manner.

Measurements of energy expenditure components are imperfect, and variation
can never be eliminated, which means that deduction cannot be used to establish
where constraint may exist in energy expenditure. To overcome these limitations,
triangulation of methods could be employed, with measurements repeated at multiple
timepoints and under varying dietary and environmental conditions to capture the full
circadian, energy balance and lifestyle conditions that could modulate any

compensation and constraint.

These controlled trials could be combined with statistical models to account
properly for changes in body size and composition. The appropriate statistical approach

might include a non-inferiority analysis with a justifiable margin of non-inferiority
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between expected (based on the increase in activity energy expenditure) and observed
TEE defined a priori. Direct measurement of the component that is expected to
demonstrate constraint is required. This is important for several reasons, including the
simple notion that we may not fully appreciate all components of energy expenditure
that could demonstrate constraint, although it could be that constraint manifests in small
changes in each component, summing across multiple components to produce a

meaningful reduction in the expected TEE.

4. SUMMARY AND CONCLUSIONS

Whilst there is a key need to collect more data to establish which model of
energy expenditure is closer to truth, currently available data indicate that neither the
simple additive nor the extreme constrained models (i.e., where physical activity adds
nothing to TEE) are likely to be correct, and the true response likely resides somewhere
in between. In energy balance, large increases in physical activity will add to and
increase total energy expenditure, but the effect appears to be less than predicted. The
less-than-expected increase in total energy expenditure when energy balance is
maintained could be due to increased mitochondrial efficiency, increased efficiency of
force transfer across the muscle-tendon unit, more efficient movement patterns, or other
factors such as compensatory behaviors and reductions in non-exercise activity
thermogenesis. Randomized controlled trials are needed to address these questions,
with multiple designs to test the different contexts such as energy balance and energy

deficit.



755

756

757

758

759

760

761

762

763

Acknowledgments

Author contributions:
Conceptualization: JTG, DT, GA, AB; Visualization: JTG, DT, GA; Writing—
original draft: JTG, DT, GA; Writing—review & editing: JTG, DT, GA, AB; All

authors read and approved the final version.

Data and materials availability:

All data are previously published or available in the main text.



764

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

REFERENCES

1.

wn

5.

6.

Pontzer H, Raichlen DA, Wood BM, Mabulla AZ, Racette SB, Marlowe FW.
Hunter-gatherer energetics and human obesity. PLoS One 2012;7(7):e40503.
doi: 10.1371/journal.pone.0040503.

Pontzer H. Burn: Allen Lane, 2021.

Gibbons A. The calorie counter. Science 2022;375(6582):710-3. doi:
10.1126/science.ada1185.

Bitz C, Toubro S, Larsen TM, Harder H, Rennie KL, Jebb SA, Astrup A.
Increased 24-h energy expenditure in type 2 diabetes. Diabetes Care
2004;27(10):2416-21. doi: 10.2337/diacare.27.10.2416.

Brychta RJ, Chen KY. Cold-induced thermogenesis in humans. Eur J Clin Nutr
2017;71(3):345-52. doi: 10.1038/ejcn.2016.223.

Westerterp KR. Diet induced thermogenesis. Nutrition & Metabolism (Lond)
2004;1(1):5. doi: 1743-7075-1-5 [pii]

10.1186/1743-7075-1-5.

7.

10.

11.

12.

13.

14.

15.

16.

Thompson D, Karpe F, Lafontan M, Frayn K. Physical activity and exercise in the
regulation of human adipose tissue physiology. Physiol Rev 2012;92(1):157-91.
doi: 10.1152/physrev.00012.2011.

Malatesta D, Favre J, Ulrich B, Hans D, Suter M, Favre L, Fernandez Menendez
A. Effect of very large body mass loss on energetics, mechanics and efficiency of
walking in adults with obesity: mass-driven versus behavioural adaptations. J
Physiol 2022;600(4):979-96. doi: 10.1113/JP281710.

FAO/WHO/UNU. Human energy requirements: Principles and definitions. Report
of a Joint FAO/WHO/UNU Expert Consultation, 2004.

Pontzer H. Constrained Total Energy Expenditure and the Evolutionary Biology
of Energy Balance. Exerc Sport Sci Rev 2015;43(3):110-6. doi:
10.1249/JES.0000000000000048.

Pontzer H, Durazo-Arvizu R, Dugas LR, Plange-Rhule J, Bovet P, Forrester TE,
Lambert EV, Cooper RS, Schoeller DA, Luke A. Constrained Total Energy
Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans. Curr
Biol 2016;26(3):410-7. doi: 10.1016/j.cub.2015.12.046.

Urlacher SS, Snodgrass JJ, Dugas LR, Sugiyama LS, Liebert MA, Joyce CJ,
Pontzer H. Constraint and trade-offs regulate energy expenditure during
childhood. Sci Adv 2019;5(12):eaax1065. doi: 10.1126/sciadv.aax1065.

Thurber C, Dugas LR, Ocobock C, Carlson B, Speakman JR, Pontzer H.
Extreme events reveal an alimentary limit on sustained maximal human energy
expenditure. Sci Adv 2019;5(6):eaaw0341. doi: 10.1126/sciadv.aaw0341.
Careau V, Halsey LG, Pontzer H, Ainslie PN, Andersen LF, Anderson LJ, Arab L,
Baddou I, Bedu-Addo K, Blaak EE, et al. Energy compensation and adiposity in
humans. Curr Biol 2021;31(20):4659-66.e2. doi: 10.1016/j.cub.2021.08.016.
Mayer J, Roy P, Mitra KP. Relation between caloric intake, body weight, and
physical work: studies in an industrial male population in West Bengal. Am J Clin
Nutr 1956;4(2):169-75. doi: 10.1093/ajcn/4.2.169.

Saris WH, van Erp-Baart MA, Brouns F, Westerterp KR, ten Hoor F. Study on
food intake and energy expenditure during extreme sustained exercise: the Tour



809
810
811
812
813
814
815
g16
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

de France. Int J Sports Med 1989;10 Suppl 1:526-31. doi: 10.1055/s-2007-
1024951.

Martin CK, Johnson WD, Myers CA, Apolzan JW, Earnest CP, Thomas DM,
Rood JC, Johannsen NM, Tudor-Locke C, Harris M, et al. Effect of different
doses of supervised exercise on food intake, metabolism, and non-exercise
physical activity: The E-MECHANIC randomized controlled trial. Am J Clin Nutr
2019;110(3):583-92. doi: 10.1093/ajcn/nqz054.

Speakman JR, Hambly C. Using doubly-labelled water to measure free-living
energy expenditure: Some old things to remember and some new things to
consider. Comp Biochem Physiol A Mol Integr Physiol 2016;202:3-9. doi:
10.1016/j.cbpa.2016.03.017.

Westerterp KR. Doubly labelled water assessment of energy expenditure:
principle, practice, and promise. Eur J Appl Physiol 2017;117(7):1277-85. doi:
10.1007/s00421-017-3641-x.

Pontzer H, Wood BM. Effects of Evolution, Ecology, and Economy on Human
Diet: Insights from Hunter-Gatherers and Other Small-Scale Societies. Annu Rev
Nutr 2021;41:363-85. doi: 10.1146/annurev-nutr-111120-105520.

Dhurandhar NV, Schoeller D, Brown AW, Heymsfield SB, Thomas D, Sgrensen
Tl, Speakman JR, Jeansonne M, Allison DB, Group EBMW. Energy balance
measurement: when something is not better than nothing. Int J Obes (Lond)
2015;39(7):1109-13. doi: 10.1038/ijo.2014.199.

Stubbs RJ, Harbron CG, Prentice AM. Covert manipulation of the dietary fat to
carbohydrate ratio of isoenergetically dense diets: effect on food intake in feeding
men ad libitum. Int J Obes Relat Metab Disord 1996;20(7):651-60.

Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous
exchange. Journal of applied physiology: respiratory, environmental and exercise
physiology 1983;55(2):628-34.

Guyenet SJ, Hall KD. Overestimated Impact of Lower-Carbohydrate Diets on
Total Energy Expenditure. J Nutr 2021;151(8):2496-7. doi: 10.1093/jn/nxab213.
Melanson EL, Jr., Freedson PS. Validity of the Computer Science and
Applications, Inc. (CSA) activity monitor. Medicine and science in sports and
exercise 1995;27(6):934-40.

Horner F, Bilzon JL, Rayson M, Blacker S, Richmond V, Carter J, Wright A, Nevill
A. Development of an accelerometer-based multivariate model to predict free-
living energy expenditure in a large military cohort. J Sports Sci 2013;31(4):354-
60. doi: 10.1080/02640414.2012.734632.

Chomistek AK, Yuan C, Matthews CE, Troiano RP, Bowles HR, Rood J, Barnett
JB, Willett WC, Rimm EB, Bassett DR, Jr. Physical Activity Assessment with the
ActiGraph GT3X and Doubly Labeled Water. Medicine and science in sports and
exercise 2017;49(9):1935-44. doi: 10.1249/MSS.0000000000001299.

Willis EA, Creasy SA, Saint-Maurice PF, Keadle SK, Pontzer H, Schoeller D,
Troiano RP, Matthews CE. Physical Activity and Total Daily Energy Expenditure
in Older US Adults: Constrained versus Additive Models. Medicine and science in
sports and exercise 2022;54(1):98-105. doi: 10.1249/MSS.0000000000002759.
Swartz AM, Strath SJ, Bassett DR, Jr., O'Brien WL, King GA, Ainsworth BE.
Estimation of energy expenditure using CSA accelerometers at hip and wrist



855
856
857
858
859
860
861
862
863
364
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

sites. Medicine and science in sports and exercise 2000;32(9 Suppl):S450-6. doi:
10.1097/00005768-200009001-00003.

Brage S, Brage N, Franks PW, Ekelund U, Wong MY, Andersen LB, Froberg K,
Wareham NJ. Branched equation modeling of simultaneous accelerometry and
heart rate monitoring improves estimate of directly measured physical activity
energy expenditure. J Appl Physiol (1985) 2004;96(1):343-51. doi:
10.1152/japplphysiol.00703.2003.

White T, Westgate K, Hollidge S, Venables M, Olivier P, Wareham N, Brage S.
Estimating energy expenditure from wrist and thigh accelerometry in free-living
adults: a doubly labelled water study. Int J Obes (Lond) 2019;43(11):2333-42.
doi: 10.1038/s41366-019-0352-x.

Barr SB, Wright JC. Postprandial energy expenditure in whole-food and
processed-food meals: implications for daily energy expenditure. Food Nutr Res
2010;54. doi: 10.3402/fnr.v54i0.5144.

Betts JA, Thompson D. Thinking outside the bag (not necessarily outside the
lab). Medicine and science in sports and exercise 2012;44(10):2040; author reply
1. doi: 10.1249/MSS.0b013e318264526f.

Zitting KM, Vujovic N, Yuan RK, Isherwood CM, Medina JE, Wang W, Buxton
OM, Williams JS, Czeisler CA, Duffy JF. Human Resting Energy Expenditure
Varies with Circadian Phase. Curr Biol 2018;28(22):3685-90.e3. doi:
10.1016/j.cub.2018.10.005.

Ruddick-Collins LC, Flanagan A, Johnston JD, Morgan PJ, Johnstone AM.
Circadian Rhythms in Resting Metabolic Rate Account for Apparent Daily
Rhythms in the Thermic Effect of Food. J Clin Endocrinol Metab
2022;107(2):e708-e15. doi: 10.1210/clinem/dgab654.

Shrier |, Platt RW. Reducing bias through directed acyclic graphs. BMC Med Res
Methodol 2008;8:70. doi: 10.1186/1471-2288-8-70.

Smith RJ. Use and misuse of the reduced major axis for line-fitting. Am J Phys
Anthropol 2009;140(3):476-86. doi: 10.1002/ajpa.21090.

Halsey LG, Perna A. Regression dilution in energy management patterns. J Exp
Biol 2019;222(Pt 6). doi: 10.1242/jeb.197434.

Compher C, Frankenfield D, Keim N, Roth-Yousey L, Evidence Analysis Working
G. Best practice methods to apply to measurement of resting metabolic rate in
adults: a systematic review. J Am Diet Assoc 2006;106(6):881-903. doi:
10.1016/j.jada.2006.02.009.

Altman DG. Practical Statistics for Medical Research. Boca Raton London New
York Washington, D.C.: Chapman & Hall/CRC, 1991.

Chrzanowski-Smith OJ, Edinburgh RM, M.P. T, Hengist A, Williams S, Betts JA,
Gonzalez JT. Determinants of peak fat oxidation rates during cycling in healthy
men and women. Int J Sport Nutr Exerc Metab 2021;0nline ahead-of-print.
Roubenoff R, Hughes VA, Dallal GE, Nelson ME, Morganti C, Kehayias JJ, Singh
MA, Roberts S. The effect of gender and body composition method on the
apparent decline in lean mass-adjusted resting metabolic rate with age. J
Gerontol A Biol Sci Med Sci 2000;55(12):M757-60. doi:
10.1093/gerona/55.12.m757.



900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Altman DG, Bland JM. Absence of evidence is not evidence of absence. BMJ
1995;311(7003):485. doi: 10.1136/bm;.311.7003.485.

Batterham AM. Is the intervention as good as (or not substantially worse than) a
comparator? Exp Physiol 2022;107(3):199-200. doi: 10.1113/EP090321.
Mazzolari R, Porcelli S, Bishop DJ, Lakens D. Myths and methodologies: The
use of equivalence and non-inferiority tests for interventional studies in exercise
physiology and sport science. Exp Physiol 2022;107(3):201-12. doi:
10.1113/EP090171.

Cook JA, Julious SA, Sones W, Hampson LV, Hewitt C, Berlin JA, Ashby D,
Emsley R, Fergusson DA, Walters SJ, et al. DELTA(2) guidance on choosing the
target difference and undertaking and reporting the sample size calculation for a
randomised controlled trial. BMJ 2018;363:k3750. doi: 10.1136/bmj.k3750.
Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel
inference in behavioral ecology: some background, observations, and
comparisons. Behavioral ecology and sociobiology 2011;65(1):23-35.

White CR, Seymour RS. Allometric scaling of mammalian metabolism. J Exp Biol
2005;208(Pt 9):1611-9. doi: 10.1242/jeb.01501.

Pontzer H. Energy Constraint as a Novel Mechanism Linking Exercise and
Health. Physiology (Bethesda) 2018;33(6):384-93. doi:
10.1152/physiol.00027.2018.

Willis EA, Herrmann SD, Honas JJ, Lee J, Donnelly JE, Washburn RA.
Nonexercise energy expenditure and physical activity in the Midwest Exercise
Trial 2. Medicine and science in sports and exercise 2014;46(12):2286-94. doi:
10.1249/MSS.0000000000000354.

Broskey NT, Martin CK, Burton JH, Church TS, Ravussin E, Redman LM. Effect
of Aerobic Exercise-induced Weight Loss on the Components of Daily Energy
Expenditure. Medicine and science in sports and exercise 2021;53(10):2164-72.
doi: 10.1249/MSS.0000000000002689.

Turner JE, Markovitch D, Betts JA, Thompson D. Nonprescribed physical activity
energy expenditure is maintained with structured exercise and implicates a
compensatory increase in energy intake. Am J Clin Nutr 2010;92(5):1009-16. doi:
10.3945/ajcn.2010.29471.

King NA, Horner K, Hills AP, Byrne NM, Wood RE, Bryant E, Caudwell P,
Finlayson G, Gibbons C, Hopkins M, et al. Exercise, appetite and weight
management: understanding the compensatory responses in eating behaviour
and how they contribute to variability in exercise-induced weight loss. Br J Sports
Med 2012;46(5):315-22. doi: 10.1136/bjsm.2010.082495.

Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C. Determinants of 24-
hour energy expenditure in man. Methods and results using a respiratory
chamber. J Clin Invest 1986;78(6):1568-78. doi: 10.1172/JCI112749.

Levine JA. Nonexercise activity thermogenesis (NEAT): environment and
biology. Am J Physiol Endocrinol Metab 2004;286(5):E675-85. doi:
10.1152/ajpendo.00562.2003.

Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and
sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular
disease. Diabetes 2007;56(11):2655-67. doi: 10.2337/db07-0882.



946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

S7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Betts JA, Richardson JD, Chowdhury EA, Holman GD, Tsintzas K, Thompson D.
The causal role of breakfast in energy balance and health: a randomized
controlled trial in lean adults. American Journal of Clinical Nutrition
2014;100(2):539-47. doi: 10.3945/ajcn.114.083402.

Templeman |, Smith HA, Chowdhury E, Chen YC, Carroll H, Johnson-Bonson D,
Hengist A, Smith R, Creighton J, Clayton D, et al. A randomized controlled trial to
isolate the effects of fasting and energy restriction on weight loss and metabolic
health in lean adults. Sci Transl Med 2021;13(598). doi:
10.1126/scitransimed.abd8034.

Thompson D, Peacock OJ, Betts JA. Substitution and compensation Erode the
energy deficit from exercise interventions. Medicine and science in sports and
exercise 2014;46(2):423. doi: 10.1249/MSS.0000000000000164.

Lieberman DE, Warrener AG, Wang J, Castillo ER. Effects of stride frequency
and foot position at landing on braking force, hip torque, impact peak force and
the metabolic cost of running in humans. J Exp Biol 2015;218(Pt 21):3406-14.
doi: 10.1242/jeb.125500.

Cole M, Coleman D, Hopker J, Wiles J. Improved gross efficiency during long
duration submaximal cycling following a short-term high carbohydrate diet. Int J
Sports Med 2014;35(3):265-9. doi: 10.1055/s-0033-1348254.

Ghiarone T, Andrade-Souza VA, Learsi SK, Tomazini F, Ataide-Silva T,
Sansonio A, Fernandes MP, Saraiva KL, Figueiredo RCBQ, Tourneur Y, et al.
Twice-a-day training improves mitochondrial efficiency, but not mitochondrial
biogenesis, compared with once-daily training. J Appl Physiol (1985)
2019;127(3):713-25. doi: 10.1152/japplphysiol.00060.2019.

Fiorenza M, Lemminger AK, Marker M, Eibye K, laia FM, Bangsbo J, Hostrup M.
High-intensity exercise training enhances mitochondrial oxidative
phosphorylation efficiency in a temperature-dependent manner in human skeletal
muscle: implications for exercise performance. FASEB J 2019;33(8):8976-89.
doi: 10.1096/].201900106RRR.

Poehlman ET, Melby CL, Badylak SF. Resting metabolic rate and postprandial
thermogenesis in highly trained and untrained males. Am J Clin Nutr
1988;47(5):793-8. doi: 10.1093/ajcn/47.5.793.

Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA. The type and
quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain
fatty acid excretion in a metabolic syndrome 'at-risk' population. Int J Obes
(Lond) 2013;37(2):216-23. doi: 10.1038/ij0.2012.33.

Luke A, Schoeller DA. Basal metabolic rate, fat-free mass, and body cell mass
during energy restriction. Metabolism 1992;41(4):450-6. doi: 10.1016/0026-
0495(92)90083-m.

Hollstein T, Basolo A, Ando T, Krakoff J, Piaggi P. Reduced adaptive
thermogenesis during acute protein-imbalanced overfeeding is a metabolic
hallmark of the human thrifty phenotype. Am J Clin Nutr 2021;114(4):1396-407.
doi: 10.1093/ajcn/nqab209.

Friedl KE, Moore RJ, Hoyt RW, Marchitelli LJ, Martinez-Lopez LE, Askew EW.
Endocrine markers of semistarvation in healthy lean men in a multistressor



991 environment. J Appl Physiol (1985) 2000;88(5):1820-30. doi:

992 10.1152/jappl.2000.88.5.1820.

993  69. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, Karalis A,

994 Mantzoros CS. Recombinant human leptin in women with hypothalamic

995 amenorrhea. N Engl J Med 2004;351(10):987-97. doi: 10.1056/NEJM0a040388.

996  70. Camps SG, Verhoef SP, Westerterp KR. Leptin and energy restriction induced

997 adaptation in energy expenditure. Metabolism 2015;64(10):1284-90. doi:

998 10.1016/j.metabol.2015.06.016.

999  71.  Galgani JE, Greenway FL, Caglayan S, Wong ML, Licinio J, Ravussin E. Leptin
1000 replacement prevents weight loss-induced metabolic adaptation in congenital
1001 leptin-deficient patients. J Clin Endocrinol Metab 2010;95(2):851-5. doi:

1002 10.1210/jc.2009-1739.

1003 72. Levine JA. Non-exercise activity thermogenesis (NEAT). Best Pract Res Clin
1004 Endocrinol Metab 2002;16(4):679-702. doi: 10.1053/beem.2002.0227.

1005 73. Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity

1006 thermogenesis in resistance to fat gain in humans. Science 1999;283(5399):212-
1007 4. doi: 10.1126/science.283.5399.212.

1008 74. Dulloo AG. Physiology of weight regain: Lessons from the classic Minnesota

1009 Starvation Experiment on human body composition regulation. Obes Rev

1010 2021;22 Suppl 2:13189. doi: 10.1111/0br.13189.

1011 75.  Westerterp KR. Limits to sustainable human metabolic rate. J Exp Biol

1012 2001;204(Pt 18):3183-7. doi: 10.1242/jeb.204.18.3183.

1013  76. Pontzer H, Wood BM, Raichlen DA. Hunter-gatherers as models in public health.
1014 Obes Rev 2018;19 Suppl 1:24-35. doi: 10.1111/0br.12785.

1015 77. Pontzer H, McGrosky A. Balancing growth, reproduction, maintenance, and

1016 activity in evolved energy economies. Curr Biol 2022;32(12):R709-R19. doi:

1017 10.1016/j.cub.2022.05.018.

1018  78.  Weir JP, Vincent WJ. Statistics in Kinesiology. Champaign, IL: Human Kinetics,
1019 2021.

1020

1021

1022

1023

1024

1025

1026

1027

1028



1029

1030

1031

1032

1033

Tables

Table 1. Summary of studies used to generate the energy constrained hypothesis,

with the proposed components demonstrating constraint and supporting

evidence.
Type Study Constrained Supporting evidence/reasoning
component

Pontzeret BMR TEEapy was similar between Hadza vs
al. other populations despite a higher PAL
(2012) (1)
Pontzer et AEE RMRapy not different across a wide
al. range of physical activity, assessed by
(2016) accelerometry, but TEEapy plateaued at

Original (11) higher accelerometry counts.

data Urlacher et AEE Shuar children displayed little-to-no
al. difference in TEE, but lower AEE vs
(2019) industrial counterparts, despite higher
(12) accelerometry counts.

Thurber et AEE

al.

Little-to-no difference in BMR, TEF or
ExEE between week 1 and weeks 14/20

of an ultramarathon, but lower TEE.




Careauet BMR
al.
(2021)

(14)

Relationship between BMR and TEE <1
and relationship between BMR and AEE

negative.

Review

Pontzer Non-AEE

Cross-sectional evidence in humans and

(2015) metabolic activity  experimental data from non-human

(10) (BMR/TEF/Other) animals

Pontzer Immune function, Reduced markers of inflammation (e.g.,

(2018) reproduction and  C-reactive protein) with chronic

(49) stress response exercise, lower concentrations of sex
(BMR/TEF/Other) hormones in endurance athletes, lower

cortisol, and norepinephrine responses

in people with high physical fitness

Pontzer et Non-AEE
al. (2018) (BMR/TEF/Other)

(76)

Higher accelerometry counts but little-to-
no differences in TEE, AEE or PAL with
Hadza and Tsimane populations
compared to seven industrialized

populations.

Pontzer BMR
and

McGrosky

(2022)

(77)

Measures of TEE at multiple timepoints
indicate increase AEE is negatively

associated with BMR in humans.
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BMR, basal metabolic rate; TEF, thermic effect of feeding; AEE, activity energy
expenditure; EXEE, exercise energy expenditure; ADJ, adjusted for body

composition and/or age; PAL, physical activity level.
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Figure 1. Components of energy expenditure in 75 healthy adults.
Components in pink are primarily behavioral. Components in black are primarily
non-behavioral. AEE, activity energy expenditure; DIT, diet-induced
thermogenesis; SEE, sleeping energy expenditure. Data adapted from
Chrzanowski-Smith et al. (41). Physical activity level (PAL) is calculated by
dividing resting metabolic rate (the sum of SEE and Arousal) by total energy

expenditure.
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1051 Figure 2. Additive and constrained energy expenditure models as proposed
1052 by Pontzer. Adapted from (11). RMR, resting metabolic rate; DIT, diet-induced

1053 thermogenesis; PAEE, physical activity energy expenditure.
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Figure 3. Adjusted total energy expenditure (from doubly labelled water),
resting metabolic rate, and activity energy expenditure in relation to
increasing physical activity levels estimated by accelerometry. Reprinted

from (11).
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Figure 4. Predicted and observed components of total energy expenditure
of athletes competing in the Race Across USA (RAUSA). Reprinted from
(13). BMR, basal metabolic rate; TEF, thermic effect of feeding; RUN, running
expenditure. Whereas at week 1, the predicted and observed components of
energy expenditure appear broadly in agreement, there is a larger difference in
the predicted versus the observed components at week 6, primarily due to a

reduction in other physical activity.
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Figure 5. The two primary analyses proposed to be indicative of energy
compensation. Reprinted from Careau et al. (14). It was proposed by the
authors of the paper that a least squares regression slope between measured
BEE and TEE (A) of <1 is indicative of compensation, and that a negative slope
between measured BEE and calculated AEE (B) is also indicative of

compensation.
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Figure 6. Spurious correlation between AEE and BEE (RMR), when AEE is
deduced by subtracting BEE from TEE (A) and lack of correlation between
measured AEE and measured BEE adjusting for covariates of sex, age, and
fat-free mass (B). Because BEE (RMR) is one variable, and a negative term in
the calculation of AEE, the correlation shown above is entirely spurious, caused
by mathematical coupling and could be present in data used to support the
energy constrained hypothesis. The lack of correlation between directly
measured AEE and BEE raises the possibility that prior reports of correlations
between these measures could be due to artefacts of including the same
measurement in the calculation of the variables on both the x- and y-axes. Data
for panel B are from Chrzanowski-Smith et al. (41). Fat mass was not included as
a covariate in this model for two reasons: 1) in this dataset, fat-free mass strongly
correlated with BEE (Pearson r = 0.84) but fat mass shows little-to-no correlation
with BEE (Pearson r = -0.06); 2) since the calculation of fat-free mass and fat
mass by DEXA are interlinked (one is calculated by subtracting the other from
total mass), the inclusion of both within a statistical model introduces the
potential for multicollinearity (78). BEE, basal energy expenditure; AEE, activity

energy expenditure.
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Figure 7. Data extracted from Figure 3A in Pontzer et al. (11). In this report, a
fitted two piecewise regression slopes to these data (below and above 230
CPM/day). In the present figure, linear regression slopes were fitted and
demonstrate a good fit with TEEaqj and AEEaq. TEEaq, adjusted total energy

expenditure; AEE.q;, adjusted activity energy expenditure.



250 - B Predicied
500 mm Measured

Change in TEE (kcalid)
Fa
e &
[ [
L

"Tsu L] I | I | ||
Control Low- High- Control Low- High-
I dose doiel I dose doiel

6 months 10 months

1099



1100

1101

1102

1103

1104

1105

1106

1107

Figure 8. Predicted and measured changes in total energy expenditure
(TEE) from two randomized controlled trials of increasing exercise on total
energy expenditure (50, 51). Each demonstrate some evidence for
compensation since the measured increases in TEE are less than the predicted
increases. Delta values represent the difference between predicted and

measures TEE. TEE, total energy expenditure. Data are means + SD.



	Title: Perspective: Is the response of human energy expenditure to increased physical activity additive or constrained?
	Short title:  Constrained human energy expenditure.

