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Abstract 

This paper describes the manufacture of structural composites incorporating piezoelectric 

fibres which are finding interest in applications such as shape-changing applications, sensors 

to detect mechanical strain or vibration and energy harvesting.  In this paper preliminary 

results are presented for a simple cantilever structure consisting of piezoelectric fibres with 

planar electrodes that are co-cured within a carbon fibre reinforced plastic (CFRP). 

Processing methods to embed functional fibres are described along with characterization of the 

piezoelectric and mechanical properties of the resulting material. 
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1. INTRODUCTION 

The integration of piezoelectric materials into structural materials, such as reinforced 

composites, has attracted interest for applications such as sensing of vibration/impact, vibration 

control, shape-changing structures and energy harvesting [1-4]. These ‘adaptive’ or ‘smart’ 

structures are often initially fabricated using conventional composite processing routes and the 

piezoelectric device is subsequently bonded to the external surface of the structure [5-7]. The 

majority of past research has used commercially available piezoelectric modules, in particular 
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the Macro Fibre Composite (MFC) developed by NASA Langley Research Center by Wilkie et 

al. [8].  The MFC consists of interdigitated electrodes (IDEs) to align the polarization direction 

along the length of the piezoelectric fibre so that the device operates in d33 mode and exhibits a 

high strain.  Piezoceramic modules that are specifically designed for use with thermoplastic 

matrices are also being developed [1, 9].  It is advantageous to integrate the piezoelectric 

material into the body of the composite since it can protect the piezoelectric from the 

environment, provide more appropriate routes for the connection of the necessary electrical 

connections to the piezoelectric and enhance the design space for smart structures.  This paper 

therefore presents initial results of methods employed to embed and co-cure polarized 

piezoelectric fibres in CFRP for potential applications such as sensing, actuation and 

harvesting.  

 

2. EXPERIMENTAL 

The piezoelectric and ferroelectric material used in this study was lead zirconate titanate (PZT) 

in the form of 250µm diameter fibres from Smart Material Corporation [10].  Fibres based on 

both PZT-5H and PZT-5A materials are commercially available and PZT-5A was chosen for 

this work. Although the ‘softer’ PZT-5H exhibits higher piezoelectric dij coefficients (strain per 

unit field) it has a lower Curie temperature (215°C) than PZT-5A (335°C) which makes it more 

susceptible to thermal depolarisation during the high temperature cure of the CFRP (~180°C). 

Previous research [12] has shown that the dij constants for PZT-5A increased when heated to 

250°C, while PZT-5H no longer exhibited any measurable resonances above 170°C, thereby 

indicating that the PZT-5H had thermally de-polarised. 

In order to construct a polarized piezoelectric device to embed into the CFRP the individual 

PZT-5A fibres were initially trimmed to the required length and aligned unidirectionally. The 
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fibre ends were then bond together with a cyanoacrylate based adhesive to prevent movement 

during matrix impregnation to form a piezofibre-resin composite for embedding into the CFRP. 

To create the electrodes to polarise the fibres, apply electric fields for actuation and to extract 

charge for sensing/harvesting, aluminium foil was cut from the bulk sheet and placed on the 

upper and lower sides of the fibres to form planar electrodes. In this electrode configuration the 

polarization direction in through the thickness of the fibres so that the device in operating in d31 

mode (see Figures 1 and 2). Such a configuration was chosen since it has the advantages of (i) a 

simple electrode structure, (ii) as the electrode spacing is the piezo-fibre diameter (250µm) a 

high electric field can be achieved at a relatively low voltage (MFC devices have a larger 1mm 

inter-digitated electrode spacing), (iii) this simple configuration is preferable in energy 

harvesting since it has a high source capacitance compared to an IDE configuration. The high 

capacitance (C) of the device leads to a low impedance (Z=1/iωC) [12] and also requires lower 

load resistances for impedance matching (Rload=1/ωC) [13]; in addition a high capacitance can 

lead to lower, and easier to utilize, open circuit voltages (V) [14] as a result of the piezoelectric 

charge (Q), since Q=CV.  

The resin matrix for the piezofibre-epoxy device must be able to withstand the peak 

temperatures of up to 180°C that would be experienced in the autoclave during curing of the 

CFRP pre-preg. The matrix selected based on heat treating resins was a ‘Resintech RT-323’ 

high temperature epoxy resin system which is formulated to operate at temperatures up to 

200°C (Resintech Limited, Gloucestershire, UK).  The separate components of the device 

(aligned and bonded fibres, resin and electrodes) were then arranged so that the fibres were 

contained between two electrodes and the whole device was hot pressed at 100°C for 30mins 

for the resin to cure. Hot pressing was employed to ensure a good contact between the fibres 

and electrodes since the presence of a small amount of low dielectric constant epoxy between 
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the electrode and fibre reduces the piezoelectric and dielectric properties [15].  Copper wire 

was then attached to the aluminium electrodes and the PZT-fibre actuator was finally covered 

in Kapton film (a polyimide stable to 400°C) to electrically insulate it from the conductive 

CFRP host. The final dimensions of the device based on 250µm diameter fibres was a 75mm x 

10mm and poling of the fibres was achieved using a voltage 400V at 120°C.  

The carbon fibre reinforced composite material was a Hexcel M21/T800 pre-preg and a simple 

cantilever structure of 60 by 300mm was fabricated as a test structure.  The cantilever structure 

was made by hand lay-up in a [0/90]T configuration and the piezoelectric device was embedded 

near the root of the CFRP cantilever during the lay-up procedure. This particular layup is 

bistable as it is able to ‘snap’ from one state to the other due to internal thermal stresses [5]; but 

data for a single state are reported in this paper. The whole structure was then cured in an 

autoclave at 180°C at a pressure of 85 psi (586 kPa). 

 

3. RESULTS 

Figure 3 shows the frequency dependent capacitance and phase angle of the piezoelectric fibre 

actuator embedded into the CFRP after the autoclave treatment.  The capacitance gradually 

decreases with an increase in frequency, which is typical for PZT type materials [16].  The 

phase angle between voltage and current remains close the 90° indicating that the device is 

behaving as a capacitor and no electrical short-circuit or leakage is present although the device 

in embedded into a conductive CFRP.  At 1kHz the device capacitance (C) is 5.5nF (Figure 3) 

and based on the area (A) of 75mm by 10mm and an electrode thickness (t) of 250µm (the 

piezofibre diameter) the medium between the electrodes has an effective relative permittivity 

(εr = C.t/A.ε0) of approximately 200, where ε0 is the permittivity of free space. The relative 

permittivity at constant strain (εs
33) of monolithic (dense) PZT-5A is 830, and the difference is 
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associated with the presence of the resin matrix of lower permittivity (εr ~5) between the fibres 

(Figure 2) and small discontinuities or resin at the electrode-fibre interface [15].  To examine if 

the piezoelectric fibres retained their polarisation after being subjected to a high temperature 

autoclave cycle the cantilever was subjected to vibration using an electrodynamic shaker (LDS 

V455) with a signal generator via a power amplifier (Europower EP1500).  On removal of the 

vibration, the gradual decay of the cantilever oscillation could be observed as a decrease in the 

voltage generated by direct piezoelectric effect of the embedded device (Figure 4).  Potential 

applications of embedded piezoelectric devices could be sensing of vibration or impact, as 

examined by Sodano et al. [6] who used patches externally attached to host structures; vibration 

damping and energy harvesting [17] has also been considered.  To examine the potential for 

energy harvesting applications the cantilever was subject to a small vibration level of 0.6g at a 

range of frequencies and the current generated dissipated across of load resistance of 70.1kΩ. 

Figure 5a shows the power generated as a function of frequency for the cantilever with a peak 

power of approximately 1µW at a frequency of 17Hz.  Maximum power corresponds to the 

resonant frequency of the structure, as highlighted by the maximum vibration amplitude of the 

structure at that frequency (Figure 5b).  The application of an electric field across the electrodes 

to induce strain by the converse piezoelectric effect resulted in actuation of the cantilever 

structure as shown in Figure 6. There is hysteresis in the deflection behaviour during voltage 

controlled operation, as observed in piezoelectric modules by Hufenbach et al. [1], which is 

associated with the extrinsic contribution of domains to the displacement.  A tensile test of the 

CFRP material and CFRP with the embedded device is shown in Figure 7 where the tensile 

strength decreases from 1070MPa to 910MPa due to the presence of the piezoelectric.  Failure 

was observed to initiate at the position of the piezo-fibre device and is likely to be due to the 

lower failure strain of the piezeoelctric fibres (~0.05%) compared to the carbon fibres (0.5%) 
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that it is embedded in [18].  In summary, this paper has demonstrated the feasibility of 

embedding PZT fibres within structural composites. By using high temperature resin matrix 

and PZT materials with a sufficiently high Curie temperature (in this case PZT-5A) it is 

possible to fabricate and polarise a high capacitance piezoelectric composite device with simple 

planar electrodes that can be embedded and co-cured into CFRP pre-preg for potential sensing 

(Figure 4), harvesting applications (Figure 5) and actuation (Figure 6). 
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Figure 1. Electrode configuration for piezoelectric actuator. 

 

Figure 2. Optical micrographs of PZT fibres embedded into CFRP  

composite. 

 

Figure 3.  Capacitance and phase angle of piezoelectric device with frequency 
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Figure 4. Sensing due to piezoelectric effect after vibration 

 

 

 

(a)                                                                    (b) 

Figure 5. (a) Power and (b) amplitude during vibration. Load resistance is 70.1kΩΩΩΩ. 
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Figure 6. Displacement of CFRP due to actuation of piezoelectric fibres. 

 

 

Figure 7.  Mechanical properties of CFRP and CFRP with embedded PZT fibres. Strain 

includes machine characterstic. 


