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Abstract 

Polymers of intrinsic microporosity (PIMs) as molecularly rigid polymers have emerged as a 

new class of gas permeable glassy materials. They offer excellent processability and a range 

of potential applications also in electrochemical processes. Particularly interesting is the 

ability of some PIM films to remain gas-permeable/binding even in the presence of (aqueous) 

liquid electrolyte to give triphasic interfacial reactivity. Gaseous reagents or products (such as 

hydrogen or oxygen) are bound probably into hydrophobic regions in the wet PIM film to 

avoid macroscopic bubble formation and to enhance both the surface reactivity and the 

apparent activity of the gas solute close to the electrode/catalyst surface. The photo-

electrochemical formation of hydrogen gas close to a platinum electrode is enhanced by PIM-

1, which is presented as an example of energy harvesting via molecular H2 “energy carrier” 

transport. 

Graphical Abstract:  

 

ToC: As a novel class of processeable glassy porous polymer materials, PIMs offer diversity 

in terms of molecular structure and porosity, as well as opportunities in terms of multi-phase 

interactions in the vicinity of electrode/catalyst surfaces. Exploratory research reviewed here 

shows that the presence of a thin film of porous polymer can significantly affect 

electrochemical and membrane processes. The molecular rigidity of the polymer allows the 

environment of electrodes/catalysts to be modified in particular for gas evolving and 

consuming reactions. 

 

Keywords: Electrochemistry; electrocatalysis; modified electrodes; triphasic catalysis; ion 

conductivity; ionic diodes; gas diffusion electrodes 
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1. Introduction to Triphasic Electrocatalysis 

Electrochemical reactions often are associated with phase formation, multi-phase systems, or 

phase boundaries: gas evolution,[1] gas consumption,[2] liquid-liquid based interfaces and/or 

droplets with a triple phase boundary reaction zone,[3,4] nucleation of bubbles or solid 

particles,[5,6] or collisions of solid particles with the electrode surface.[7] The interaction and 

reactivity of particles, droplets, or bubbles changes with distance from the electrode surface 

and with interface design. The case for gas bubble to surface interaction is illustrated 

schematically in Figure 1. The concentration of the gaseous species in solution is denoted 

csolution. 

 

Figure 1. Gas evolution: schematic illustration of gas|liquid|solid interactions for (A) 

dissolved gas and transport based on a diffusion boundary layer, (B) a bubble approaching 

the surface to give a kinetic boundary layer, and (C) a bubble interacting with the surface 

resulting in a triple phase boundary.  
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The flux of a gaseous solute from the bubble surface to the solid electrode surface (or in 

opposite direction) is dependent on the concentration csolution and the distance across which 

the transport occurs (assuming Nernstian transport with flux = D dc/dx). If this distance is 

outside of that for the diffusion layer (Figure 1A), then the process becomes distance 

independent and limited by csolution. However, for a distance within the diffusion layer (Figure 

1B), the rate of transport is enhanced and the “apparent solution concentration” appears 

increased (up to the transport/kinetic limit as the distance decreases). Therefore, bringing gas 

bubbles closer to the reactive surface should enhance reaction rates. In particular, very small 

bubbles with high internal pressure should be beneficial for enhanced reaction rates. 

However, for a gas bubble firmly attached to the solid surface, a substantial part of the 

reactive surface is blocked/passivated and only the triple phase boundary zone (Figure 1C) 

remains active for electrochemical reactions. Based on this reasoning, processes would 

generally benefit from gaseous reactants in very small nanobubbles being present very close 

to the surface without any direct attachment to the surface or blocking. However, managing 

multi-phase systems close to an electrode surface can be complex, in particular when 

considering the inter-dependency of mass transport and phase separation. 

 

The design of liquid | solid | gas interfaces can be employed to improve reactivity. Recently, 

Cui and coworkers developed a highly efficient electrocatalytic CO2 reduction process based 

on an extended three-phase boundary interface engineered into an assembly of a gold 

electrode and a polymeric film of commercial nano-poly-ethylene.[8] The process was 

compared to the natural phenomenon of enhanced gas exchange in lungs, where effective 

exchange of oxygen and CO2 are linked to the presence of alveoli creating an extended triple 

phase boundary region. Therefore, interfacial design for triphasic systems offers real benefits 

in reactivity. A very similar concept of a “breathing catalyst” with high triple phase boundary 

region was realised by Cui et al. also for the oxygen reduction and evolution reactions.[9] 

Other types of related gas diffusion electrodes for CO2 reduction have been developed for 

example by Wessling and coworkers.[10] 

 

The level of multi-phase complexity in both gas evolution and gas consumption reactions can 

be even higher when bubble nucleation and transport are involved. For example, when a gas 

bubble adheres to a catalyst surface, this causes blocking. As a result, the catalytic reaction 
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would cease or diminish in rate and effects would be observed as apparently lower rate 

constants and/or higher overpotentials. A possible method to avoid catalyst blocking can be 

based on nano-structured catalysts, for example based on highly microporous frameworks 

and/or hierarchical architectures that prevent gas bubbles from directly interacting with the 

internal catalyst surface (see Figure 2B). There are many recent examples for gas evolving 

electrodes with hierachical nano-structures[11] to make processes highly effective. Studies at 

individual nano-electrodes (by White and coworkers[12]) have provided better insight into the 

conditions during nano-bubble nucleation with critical bubble sizes for example for hydrogen 

on platinum of below 10 nm. The energy required for the formation/nucleation of such small 

nano-bubbles within the nano-structure can be very high (for hydrophilic surfaces), which 

may lead to supersaturation and bubble nucleation only on the outside to maintain a high 

catalyst reactivity (Figure 2B).  

 

 

Figure 2. Enhanced gas reactivity at nano-strutured interfaces: (A) at a featureless interface, 

(B) at a nano-structured catalysts/electrode surface, and (C) with a nano-structured “gas 

managmenet layer” applied to avoid bubble blocking. 

 

An alternative approach to avoiding interfacial bubble formation could be based on applying 

a nano- or microporous structure on the outside of the catalyst in the form of a “gas 

management layer” (Figure 2C). The conditions for a material to be beneficial as gas 

management layer are (i) good processability to readily deposit/cast films from a solution, (ii) 

a non-blocking interaction with the catalyst surface, (iii) good uniformity and minimal 

porosity aging, (iv) ability to allow both gaseous and liquid phase to permeate simultaneously 

under triphasic conditions, (v) binding of the gaseous species, and (vi) good chemical 
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robustness. Many of these points can be addressed with a new class of molecularly rigid 

materials: polymers of intrinsic microporosity or “PIMs”.[13] 

 

Figure 2 summarises the cases of (A) a gas bubble blocking the reactive surface, (B) a nano-

structured reactive surface to bypass the interfacial bubble, and (C) the case of a “gas 

management layer” that allows transport and increased activity of the gaseous species. The 

nucleation of bubbles within microporous structures or at the surface can be understood (at 

least in first approximation) based on classical Young-Laplace theory,[14] which suggests that 

bubble nucleation is energetically difficult at the nanoscale (for hydrophilic surfaces) leading 

to supersaturation. Note also distinct effects of the nature of the gas solute on nucleation of 

bubbles due to changes in interfacial tension.[15] Hydrophobic regions (e.g. within some of the 

PIM materials) could provide regions for binding and transport of gaseous solutes at the 

nanoscale. This will be further discussed below. 

 

2. Introduction to Polymers of Intrinsic Microporosity 

A wide range of novel mesoporous and microporous materials have emerged such as 

zeolites,[16,17] metal organic frameworks,[18,19] and covalent organic frameworks[20] with the an 

open network of micropores (ranging typically from 0.5 nm to 5 nm or higher). Many 

polymers are known to be microporous and gas permeable and particularly glassy polymers 

with high excess free volume are of interest[21] for example in gas separation.[22] These can be 

cross-linked materials[23] (which are difficult to process), but also moleculary rigid 

processable materials such as polymers of intrinsic microporosity or PIMs.[24,25] Figure 3 

shows a selection of structural motifs in PIMs. These materials are formed via condensation 

reactions and generally require sufficiently high molecular weights (e.g. 50 to 100 kDa 

depending on the molecular structure) to avoid brittleness. The highly rigid molecular 

backbone imparts the unusual materials properties by limiting inter-molecular interactions, 

improving solubility, and forcing the polymer into a glassy state with high excess free pore 

volume.[ 26] 
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Figure 3. Typical molecular structures for polymers of intrinsic microporosity that have been 

employed in gas permeation studies (reprinted with permission[21]). 

 

Although applications in gas separation, storage, and permeation have been intensely 

studied,[27] only some of the structures shown in Figure 3 have so far been studied in contact 

to the liquid phase and in electrochemical applications.[9] The range of structural motifs in 

PIMs is rapidly expanding[28] and (post-)functionalisation strategies have been 

developed[29,30] to further tune the properties of these materials. New computational methods 

are developed to make structure-property relationships more predictable.[31] 

 

3. Electrochemical Methods Based on PIM-Modified Electrodes and Membranes 

Electrode modification by PIMs is facilitated and readily achieved by using drop-casting or 

spin-coating of the selectively organic-soluble polymers (e.g. chloroform for PIM-1 or PIM-

EA-TB). In initial experiments,[32] it was shown that free-standing films of PIM-EA-TB are 

readily protonated with the accompanying uptake of (for eample) PdCl4
2- anions into the 

microporous strucutre. Also, anionic aromatic species such as indigo carmine were 

immobilised into the rigid PIM host film without protonation but instead aided by a co-

solvent. Both the immobilised PdCl4
2- and indigo carmine were shown to be 

electrochemically active and the PIM-EA-TB electrode coating on the electrode permeable to 

electrolyte. 
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Permeability and exceptional selectivity towards solution species has been important in the 

development of novel separator membranes in redox flow batteries based on PIM-1. These 

have been shown to provide proton permeability whilst stopping vanadium cross-over.[33] In 

poly-sulfide redox flow systems PIMs have been shown to inhibit poly-sulfide cross-

over.[34,35,36,37,38] Selective permeability to small ionic species was shown in many cases to 

provide excellent separator performance based on PIMs. Initial exploratory studies have 

addressed applications of PIMs also as self-healing films and in corrosion science.[39,40] 

 

In addition to providing permeability towards certain smaller species, PIMs can be employed 

for the immobilisation of larger molecular species. PIM materials can also be employed to 

immobilise a water-immiscible organic phase to form an immobilised organo-gel. Liquid-

liquid voltammetry was shown to be possible based on PIM-EA-TB acting as organogel and 

immobilising a film of organic water-immiscible phase.[41] In this study the redox active 

metal complex tetraphenylporphyrinato-Mn(III)Cl or MnTPP was immobilised together with 

the water immiscible 4-(3-phenyl-propyl)pyridine or PPP. The redox active metal complex 

undergoes a Mn(II) to Mn(III) redox reaction. The resulting overall redox process can be 

described as a combined electron transfer (electrode | organogel) and anion transfer 

(electrolyte | organogel) as expressed in equation 1.[42,43] 

 

MnTPP(L)2(org)   +    X-(aq)       MnTPP(L)2
+(org)   +   X-(org)   +   e-            (1) 

 

Figure 4A shows a schematic description of the process involving Mn(II/III) oxidation 

coupled to the transfer of an anion from the aqueous phase into the organic gel phase. Data in 

Figure 4B show cyclic voltammetry responses for the Mn(II/III) oxidation accompanied by 

sulfate transfer. Also shown are data recorded with added NaClO4. A shift of the signal to 

lower potentials is indicative for preferred transfer of the more hydrophobic perchlorate. 

Figure 4C shows spectro-electrochemical data with the Soret band shifting to longer wave 

length upon oxidation. The role of the PIM-EA-TB in these experiments is that of a scaffold 

to define the organic gel phase and the interaction with the substrate electrode. Note the 
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mechanistic complexity due to coupled electron and ion transport in the rigid PIM 

environment. 

 

 

Figure 4. (A) Molecular structures of PIM-EA-TB and the metal complexes MnTPP and 

MnPc. (B) Cyclic voltammograms (scan rate 10 mV s-1) for a deposit of MnTPP-PIM-EA-TB 

in 4-(3-phenyl)-propylpyridine organogel on a 3 mm diameter glassy carbon electrode 

immersed into aqueous 0.1 M Na2SO4 with 0.0, 0.01, 0.1, or 1.0 M NaClO4. (C) 

Spectroelectrochemical data for MnTPP-PIM-EA-TB-PPP organogel immobilized onto 

porous ITO and immersed into aqueous 0.1 M NaClO4 with applied potential indicated 

(reprinted with permission[41]). 

 

In order to dissect ion transport from other aspects of the mechanism, PIM-EA-TB has been 

studied as free-standing membrane when immobilised onto a poly-ethylene-terephthalate film 

with a microhole.[44] Figure 5B and 5C show the electrochemical cell configuration and the 

microhole substrate. When immersed in aqueous 10 mM NaCl on both sides, pH-dependent 

conductivity is observed with impedance spectroscopy (see Figure 5D) consistent with a pKA 

of the tertiary amine of approximately 4. Ionic conductivity in neutral solution is associated 

with both cation and anion transport. However, at more acidic pH < 4 anion transport 

dominates and semi-permeable behaviour is observed. This is manifest in ionic rectifier or 

diode behaviour,[45] but also shown to lead to additional ionic diode switching in the presence 

of a multi-basic acid such as phytic acid (Figure 5E,F). The ionic diode phenomenon has 

been suggested to be applicable in an AC-driven desalination system.[46] 
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Figure 5. Schematic drawing of (A) the molecular structure of PIM-EA-TB and (B) the 

electrochemical cell with left and right half cells filled with electrolyte. (C) Scanning electron 

micrograph of the PET membrane (6 m thickness) with a single hole (ca. 4 m diameter) 

laser machined into the centre. (D) Equivalent circuit employed for impedance data analysis 

(at 0.0 V vs. SCE) and plot of RP (fitting error below 1%; error bars estimated) at open circuit 

potential versus pH. (E) Experimental voltammograms (four consecutive cycles, scan rate 

0.02 Vs-1) in 10 mM HCl (left) – 10 mM NaOH (right) with 1 mM phytate added. Hysteresis 

and bistable switching occurs at 0.25 V vs. SCE. The molecular structure of phytic acid is 

shown. (F) Chronoamperometry for potential step switching and on/off behaviour as a 

function of time (Reprinted with permission[44]). 

 

 

A pH-switchable ionic diode response was observed with a very thin 200 nm PIM-EA-TB 

film spin coated and then lifted to transfer to the poly-ethylene-terephthalate microhole 

substrate.[47] A link of competing anion and cation transport rates to partial semi-conductivity 

and diode effects in PIM-EA-TB has been proposed.[48] Also, a “hetero-junction” diode based 

on PIM-EA-TB in contact to Nafion has been proposed to function as a sensor diode sensitive 

to perchlorate and potassium cations.[49,50] Electroluminescence phenomena were observed 

(but not fully explained) with the highly fluorescence PIM-1 deposited onto tin-doped indium 

oxide electrodes.[51] 
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4. Electrochemical Processes within PIM Membranes 

It is easily conceivable to employ the PIM film immobilised on an electrode surface as a rigid 

environment for immobilisation of molecular or nanoparticulate catalysts. The microporous 

environment created by the PIM can be employed to create a scaffold system for water-

insoluble catalysts to be dispersed, and to allow reagents and buffer from bulk solution to 

reach the immobilised catalyst in a 3-dimensional microporous structure. Furthermore, the 

PIM film can provide size selectivity and effects due to partitioning of hydrophobic reagents 

during the catalytic reaction. 

 

 

Figure 6. (A) Molecular structure of PIM-EA-TB and (B) of FeTPP. Schematic drawings of 

(C) FeTPP immobilised into the rigid microporous structure. (D) Cyclic voltammograms 

(scan rate 20 mVs-1) for the reduction of ambient oxygen (blue) and 4 mM H2O2 (red) at 

electrodes coated with (i) 1:1, (ii) 1:2, (iii) 1:5, (iv) 1:10, (v) 1:20, and (vi) 1:40 weight ratio 

FeTPP:PIM immersed in aqueous 0.1 M phosphate buffer pH 2. (E) Cyclic voltammograms 

(scan rate 20 mVs-1) for the reduction of ambient oxygen (blue) and 4 mM H2O2 (red) at 

electrodes coated with 1:5 FeTPP:PIM immersed in aqueous 0.1 M phosphate buffer at pH (i) 

2, (ii) 4, (iii) 7, (iv) 9, and (v) 12 (reprinted with permission[52]).  

 

The immobilisation of tetraphenylporphyrinato-Fe(II) (FeTPP) into a film of PIM-EA-TB 

was reported by Rong and coworkers.[52] The PIM-EA-TB polymer was mixed in chloroform 

with the FeTPP metal complex and deposited together by drop casting onto a glassy carbon 

electrode. The presence of the FeTPP resulted in catalysis for both oxygen evolution and 

H2O2 reduction (Figure 6). When investigating the weight ratio of FeTPP to PIM-EA-TB in 
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the deposition solution a significant change is observed in the voltammetric response for 

H2O2 reduction at 1:5. At a ratio 1:40 the response for H2O2 seems very low compared to the 

underlying O2 reduction. Although no full study of the mechanism was reported, it seems 

likely that charge carrier transport in the microporous catalyst structure is a crucial part and 

therefore a high density of FeTPP is more effective. When studying the effect of pH (Figure 

6E) significant catalysis is observed in acidic and in alkaline conditions. 

 

The immobilisation of 4-benzoyloxy-TEMPO into PIM-EA-TB has been reported by Ahn 

and coworkers.[53,54] The bulky benzoyloxy group renders the 4B-TEMPO catalyst water 

insoluble and easy to co-deposit from chloroform solution together with the host PIM-EA-

TB. Figure 7 shows a typical SEM showing carbon microparticles coated with approximately 

200 nm polymer-catalyst film. The oxidation of the 4B-TEMPO derivative was observed at 

pH 10.3 and used to drive the catalytic oxidation of aliphatic/aromatic alcohols. Figure 7C 

shows cyclic voltammetry data for the oxidation of 4B-TEMPO in the presence of (i) 4 mM 

ethanol, (ii) 4 mM glucose, (iii) 4 mM 3-pyridine-methanol, (iv) 4 mM benzyl alcohol. The 

increase in the catalytic activity in this sequence is only in part due to the intrinsic electronic 

reaction rate (which is dominated by hydrogen abstraction step). A strong contribution was 

observed from the PIM-EA-TB host material “selecting” the more hydrophobic alcohols. 

Therefore, a combination of kinetic selectivity, size selectivity, and hydrophobic partitioning 

selectivity is possible under these conditions in a PIM environment.  
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Figure 7. (A) Scheme showing the PIM-EA-TB molecular structure, 4B-TEMPO structure 

and reactivity, and a cartoon of the composite film with electrocatalyst embedded in PIM-

EA-TB coated onto carbon microspheres. (B) SEM image for the composite film made of 

0.75 g 4B-TEMPO immobilised in 7.5 g PIM-AT-TB with 180 g carbon microparticles 

giving a porous film of approximately 50 m thickness on a 3 mm diameter glassy carbon 

electrode. The thickness of the PIM-EA-TB layer around each carbon microparticle is 

estimated to be 50 nm. (C) Cyclic voltammograms (scan rate 10 mVs-1; in 0.1 M carbonate 

buffer pH 10.3) with 0.75 g 4B-TEMPO + 7.5 g PIM-EA-TB + 180 g carbon 

microparticles on a 3 mm diameter glassy carbon electrode in the presence of (i) 4 mM 

ethanol, (ii) 4 mM glucose, (iii) 4 mM 3-pyridine-methanol, (iv) 4 mM benzyl alcohol 

(reprinted with permission[53]). 

 

 

5. Electrocatalytic Processes Enhanced by PIM Membranes 

Nanoparticulate electrocatalyst are readily coated with PIM films. Initial work by He and 

coworkers with platinum nanoparticles[55] suggested that (i) the nanoparticle catalyst remains 

active without any blocking of the active catalyst surface (a result caused by the molecularly 

rigid structure of the PIM unable to block the surface), (ii) the nanoparticle catalyst is 

protected against corrosion phenomena involving disloged particles and surface blocking, and 

(iii) the nanoparticle catalyst remain active towards many types of substrates.[56] The 

platinum nanoparticles could aslo be stabilised/capped by PIM-EA-TB is acidic solution to 
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give entirely new types of composites with electrical conductivity depending on the weight 

ratio of Pt to PIM-EA-TB.[57] 

 

Rong and coworkers[58] reported electrodeposited gold nanoparticles on ITO electrode 

substrates (see Figure 8A) as a catalyst for the oxidation of glucose in pH 7 phosphate buffer. 

When coated with PIM-EA-TB, this catalyst remained active. Catalyst blocking with BSA 

protein was clearly visible in the absence of PIM-EA-TB but was suppressed in the presence 

of PIM-EA-TB. In this case, PIM-EA-TB has to be envisaged as a size selective coating that 

retains the original gold catalyst activity and suppresses access of larger molecules such as 

proteins to the catalytic sites. 

 

 

Figure 8. (A) Scanning electron microscopy images for gold nanoparticles electrodeposited 

onto ITO for 200 s. (B) Cyclic voltammograms (scan rate 5 mVs-1, start point 0.0 V vs. SCE) 

for the oxidation of (i) 2, (ii) 4, (iii) 8, (iv) 14 mM glucose at gold nanoparticle on ITO, 

coated with 500 nm thick PIM-EA-TB film and immersed in 0.1 M phosphate buffer pH 7. 

(C) Plot of the peak current for glucose oxidation versus glucose concentration (reprinted 

with permission[58]).  
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Silver microparticles were immobilised onto glassy carbon and coated with PIM-EA-TB[59] to 

give more complex reactivity dominated by vibration sensitive nucleation phenomena at the 

silver | electrode interface. It is interesting to contrast the reactivity in PIM-encapsulated 

nanoparticle catalysts with that of carbonised PIM-encapsulated materials. For PIM-1 

carbonisation resulted in a high surface area carbon material suitable for supercapacitor 

applications.[60] It was shown that the careful carbonisation of PIM-EA-TB produces a 

heterocarbon without loss of morphology or of cumulative pore volume.[61,62] The black 

product clearly exhibited Raman signatures for graphitic carbon, but the molecularly rigid 

backbone of the PIM (which is known to lead to high temperature tolerance or cross-linking 

for PIMs[63]) must have remained intact with also nitrogen being retained (at least at lower 

carbonization temperatures). Also PIM-1 was reported to carbonise to novel microporous 

water filtration membranes.[64] Based on these results, it seemed possible to first load PIM-

EA-TB with a catalytic metal, e.g. with PtCl6
2- [65] or with PdCl4

2-,[66] and then produce 

composite nano-catalysts in a single carbonisation process (under vacuum). Figure 9A and 

9B show palladium nanoparticles (TEM and diffraction pattern) produced under these 

conditions embedded in carbonised PIM-EA-TB. 
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Figure 9. (A) TEM image for Pd@cPIM flakes. (B) TEM diffraction pattern for embedded 

nano-palladium. (C) Raman data for cPIM and Pd@cPIM showing characteristic TPA 

shoulder and D- and G-bands for carbon. (D,F) Cyclic voltammograms (scan rate 1 mV s-1) 

for a bare Pd and a Pd@cPIM-modified glassy carbon in 1.0 M HCOOH under argon or 

oxygen saturated conditions. (E,G) Cyclic voltammograms (scan rate 1 mV s-1) for a pure Pd 

and a Pd@cPIM-modified GC in oxygen-saturated HCOOH of varying concentrations at (i) 

0.1 M, (ii) 0.5 M, (iii), 1.0 M and (iv) 5.0 M (reprinted with permission[66]).  

 

Palladium is known to spontaneously produce hydrogen gas upon contact to formic acid[67] 

and this is reflected in cyclic voltammetry data. Figure 9D shows reactivity in the 

presence/absence of ambient oxygen with a typical hydrogen production peak (anodic) in the 

negative potential range. The effect of formic acid concentration is shown in Figure 9E. 

Perhaps surprisingly, for Pd@cPIM catalyst the spontaneous hydrogen production is not 

observed (Figure 9F) and instead the oxygen reduction response dominates. This is consistent 

with formic acid not being able to penetrate into the microporous heterocarbon. Some 

remaining reactivity can be seen as anodic currents in the presence of 5 M formic acid 



17 
 

(Figure 9G). This type of electrode in combination with bare palladium was shown to 

spontaneously produce energy in a single compartment cuel cell configuration. 

 

This selectivity effect of the micropores was further utilised for a Pt@cPIM catalyst prepared 

from a PIM-EA-TB-H2 precursor polymer.[68] It was demonstrated that a mixture of oxygen 

gas and hydrogen gas allows direct synthesis of hydrogen peroxide. The smaller hydrogen 

molecules were proposed to enter the composite catalyst micropores to give electrons (in the 

carbon structure) and protons. Oxygen is then reduced at the outer carbon shell to give 

hydrogen peroxide. 

 

The selectivity for small gaseous species was observed not only for carbonised PIM 

materials, but also for some materials such as PIM-1.[69] PIM-1 immobilised (in 

nanoparticulate form) onto a platinum disk electrode and immersed into 10 mM phosphate 

buffer at pH 7 (see Figure 10A) caused the reduction peak for hydrogen formation to be 

suppressed, but new anodic peaks for hydrogen oxidation to emerge. These new peaks were 

explained in terms of molecular hydrogen being bound and stored in PIM-1 directly at the 

electrode surface. Similar results were also obtained with a film of PIM-1 (which is more 

sensitive towards delamination during hydrogen evolution). With initial evidence for 

hydrogen storage at the electrode surface, other types of electrodes and gaseous species were 

investigated. Most striking are the results for the reduction of oxygen at a glassy carbon 

electrode. The cathodic peak in voltammograms for oxygen reduction is shifted positive by 

approximately 150 mV indicative of a higher activity of oxygen in the presence of PIM-1 

nanoparticles. Figure 10D shows data for rotating ring disc voltammetry data (for a carbon 

disk with variable potential to show oxygen reduction and a platinum ring with fixed 

potential to verify production of hydrogen peroxide). 
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Figure 10. (A) Cyclic voltammograms (scan rate 50 mVs-1) for a 3 mm diameter Pt disk 

electrode immersed in 0.01 M phosphate buffer pH 7.7 for (i) the bare electrode and (ii) a 20 

g PIM-1 nanoparticle deposit. (B) As before but for five consecutive potential cycles. (C) 

Scanning electron microscopy (SEM) images for PIM-1 nanoparticles deposited onto a 

carbon surface. (D) Cyclic voltammograms (scan rate 50 mVs-1; rotating ring-disk electrode 

with a 5.5 mm diameter glassy carbon disc and a 2 mm wide platinum ring; 1500 rpm; ring 

potential +0.3 V vs. SCE) for the reduction of oxygen (1 bar oxygen purged solution) in 0.01 

M phosphate buffer solution at pH 7 for PIM-1 nanoparticle modified glassy carbon. (E) 

Schematic drawing of reaction pathway A (gas molecules diffuse from solution to the 

electrode surface) and reaction pathway B (gas molecules accumulate in the intrinsically 

microporous polymer host and react at the electrode surface with apparently higher activity) 

(reprinted with permission[69]). 

 

 

The reduction of oxygen on the carbon disk is shifted positive in the presence of PIM-1 

nanoparticles and visible as a peak during forward and backward potential scans. The peaks 

are visible in the ring current and therefore associated with the formation of the same product, 

hydrogen peroxide. Two types of polymers, PIM-1 and PIM-PY, were shown to give similar 

results. The proposed mechanism is based on oxygen binding into the PIM-1 to form a 

triphasic system with an apparently higher activity of oxygen at the electrode surface. 
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Figure 11. Polymeric structures of PIM-7. (B) Photographic image of glassy carbon, 

palladium on glassy carbon, and PIM-7 coated palladium on glassy carbon. (C) Cyclic 

voltammograms (in argon-purged solution; scan rate 20 mVs-1) for a palladium-coated glassy 

carbon electrode (black) and for a palladium and PIM-7 coated glassy carbon electrode (red) 

immersed in aqueous 1 M H2SO4 solution over a potential window 0.7 to –0.7 V vs. 

Hg/Hg2SO4. (D) Electron diffraction data (for the central region in image B) showing the 

characteristic diffraction lines for palladium. (E) Cyclic voltammograms (scan rate of 100 

mVs-1) for a palladium-coated glassy carbon electrode (black) and for a palladium and PIM-7 

coated glassy carbon electrode (red) immersed in aqueous 0.2 M formic acid solution. (F) 

Plot of peak currents versus concentration of formic acid (reprinted with permission[70]).  

 

Further evidence for the effects of tripahisc conditions on electrodechemical processes in the 

presence of a PIM were repoted by Mahajan et al.[70] PIM-7 (see molecular structure in 

Figure 11) was applied to electro-deposited palladium nanoparticles on glassy carbon. Only 

electrode processes involving hydrogen gas were substantially affected. Figure 11C shows 
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data for cyclic voltammetry in 1 M H2SO4 with clear hydrogen intercalation peaks before 

hydrogen evolution at more negative applied potentials. The reversibility for the hydrogen 

intercalation and deintercalation (separation of voltammetric peaks) was enhanced in the 

presence of PIM-7. Even more dramatic was the change in the voltammetric responses for the 

oxidation of formic acid (Figure 11E and 11F). In particular for higher formic acid 

concentrations the PIM-7 film substantially increases currents and improves reversibility. In 

part, this can be attributed to a catalyst surface free of bubbles, but the ability of PIM-7 to 

capture and bind hydrogen in hydrophobic pockets may also contribute to the improved 

triphasic reaction conditions. 

 

6. Photo-Electrocatalytic Processes Enhanced by PIM Membranes 

Among the very important photo-electrochemical processes in the development of sustainable 

energy technology[71] is the production of hydrogen gas driven by sunlight, for example at 

semiconductors.[72] This is commonly achieved with a photo-active semiconductor material 

able to absorb the light and to generate (an exciton followed by) short-lived species termed 

holes (in the valence band) and electrons (in the conduction band). These “charge carriers” 

need to be separated and transferred to an external electrode surface. The associated need for 

electrical conductivity is often linked to high temperature processing of electrodes to 

overcome resistance in grain boundaries. Here, the alternative strategy of an “energy carrier” 

based on hydrogen gas transported in a PIM film is discussed as an alternative to charge 

carrier transport.[73]  
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Figure 12. (A) Schematic illustration of Pt@g-C3N4 photocatalyst at a platinum electrode 

surface generating hydrogen. A PIM-1 coating is applied to provide mechanical stability, to 

capture hydrogen, and to provide triphasic reaction conditions. (B,C) Characterisation of 

Pt@g-C3N4 with TEM. (D) Histogram of the platinum nanoparticle size distribution with 

maximum at diameter 2.5 nm. (E) Photographic image of PIM-1 solution in chloroform and 

(F) of the Pt@g-C3N4 suspension in isopropanol. (G-I) Cyclic voltammograms (scan rate 20 

mVs-1; black = no illumination; red = 2 s on and 1 s off, 385 nm LED) at a 3 mm diameter 

platinum disk electrode coated with Pt@g-C3N4 and immersed in 0.3 M disodium oxalate; 

(G) under argon with 75 g Pt@g-C3N4; (H) as before with 10 g PIM-1; (I) as before with 

20 g PIM-1 (reprinted with permission[73]).  

 

Figure 12A shows schematically the concept of the photo-catalyst Pt@g-C3N4 immobilised at 

the surface of a platinum electrode. Light pulses in the presence of a sacrificial hole quencher 

lead to the production of hydrogen close to the electrode surface. A film of PIM-1 coated 

over the assembly not only provides additional mechanical robustness, but also helps 

capturing the evolving hydrogen. In Figure 12G-I, the effect of the PIM-1 on the photocurrent 

is demonstrated. The increase in the photo-current response with the thicker PIM-1 deposit is 

associated with a shift of the photocurrent onset to more positive potentials. This is linked to 

the build up of proton concentration close to the electrode surface under the PIM-1 coating. 

The overall mechanism can be written as excitation (2), charge separation (3), hole quenching 
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(4), hydrogen evolution (5), and transport of molecular hydrogen to the electrode for 

discharge (6). 

 

Pt@g-C3N4   +   hv               Pt@g-C3N4*                                               (2) 

Pt@g-C3N4*                Pt-@g-C3N4
+                                                        (3) 

Pt-@g-C3N4
+     +     ½ oxalate2-        Pt-@g-C3N4     +     CO2                (4) 

Pt-@g-C3N4     +     H+             ½ H2                                                        (5) 

H2                   2 H+    +    2 e-(platinum)                                                  (6) 

 

The oxalate is employed here as a sacrificial hole quencher and other types of quenchers have 

been demonstrated including glucose (as a model for biomass).[67] Components used in this 

assembly are fully room temperature printable (without the need for high temperature 

processing that is required for semiconductor components with charge carrier transport). In 

the future, with further improvements in the molecular structure of the PIM and the device 

architecture, the photo-current and energy harvesting efficiency can be further increased.  

 

7. Conclusion and Outlook 

The effects of polymers of intrinsic microporosity (PIMs) on some electrochemical processes 

has been assessed. Important progress is reported in particular for PIMs as selective 

membranes, but also in the observation of multi-phase processes that are enhanced by PIMs 

coated as a film or nanoparticulate film directly over the electrode surface. Nanoparticulate 

and molecular catalysts were immobilised into the rigid molecular environment in the vicinity 

of the electrode. Also, water immiscible liquid phase immobilisation has been demonstrated 

to lead to electrochemically driven liquid-liquid ion exchange. There is considerable 

complexity in terms of mechanism and in terms of coupled ion/electron transport in many of 

these systems and experimental work so far is mostly exploratory in nature. 

 

The effects of PIM coatings on gas evolving and gas consuming electrochemical reactions 

was noted for materials such as PIM-1, PIM-7, and PIM-PY (but not observed for PIM-EA-
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TB) and there are probably other types of microporous polymers with similar or improved 

behaviour. For hydrogen evolving processes, a gas capture effect was noted as well as an 

enhanced reactivity of the catalytic surface, which has been assigned to avoided bubble 

nucleation/blocking and increase solute activity or supersaturation close to the electrode 

surface. More work will be required to better resolve both the chemical and the physical 

reasons and for implications/applications of these effects, for example in the field of gas 

diffusion electrodes. There are considerable technical and theory challenges in order to 

provide a better fundamental in depth understanding of multi-phase processes in microporous 

environments. Some of these may be addressed only by a combination of modern in 

operando spectro- or diffracto-electrochemical tools in conjunction with computer 

simulation. 

 

It is obvious that there are many potential types of PIMs with many diverse types of 

molecular structures. Work at this stage is mainly exploratory in nature and further insight 

into processes and mechanisms at molecular level will be desirable. In particular 

computational tools could be important in future to further develop molecular level 

understanding and to predict new improved molecular structures for PIMs to enhance 

reactivity in triphasic (electro-)catalysis.   
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