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Rigorous Continuum Limit for the Discrete Network Formation Problem

Jan Haskoved] Lisa Maria Kreusseifl Peter Markowichf]

Abstract. Motivated by recent physics papers describing the formation of biological transport
networks we study a discrete model proposed by Hu and Cai consisting of an energy consumption
function constrained by a linear system on a graph. For the spatially two-dimensional rectangular
setting we prove the rigorous continuum limit of the constrained energy functional as the number of
nodes of the underlying graph tends to infinity and the edge lengths shrink to zero uniformly. The
proof is based on reformulating the discrete energy functional as a sequence of integral functionals
and proving their I'-convergence towards the respective continuum energy functional.
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TABLE 1. Notation. (*) denotes variables that are given as data.

Variable Meaning Related to

Sj (%) intensity of source/sink vertex j € V
P; pressure vertex j € V
Lij (x) length of an edge edge (i,7) € E
Qij flow from j € Vtoi eV edge (i,j) € E
Cij conductivity edge (i,j) € E

1. INTRODUCTION

In this paper we derive the rigorous continuum limit of the discrete network formation model of
Hu and Cai [I3]. The model is posed on an a priori given graph G = (V,E), consisting of the set
of vertices (nodes) V and the set of unoriented edges (vessels) E. Any pair of vertices i, j € V is
connected by at most one edge (i,7) € E, such that the corresponding graph (V,E) is connected.
The lengths L;; > 0 of the vessels (i,j) € E are given a priori and fixed. The adjacency matrix of
the graph (V,E) is denoted by A, i.e., A;; = 1if (z,5) € E, otherwise A;; = 0.

Let us emphasize that by fixing (V,E), the set of possible flow directions in the network is also
fixed. For each node j € V we prescribe the strength of source/sink S; € R and we adopt the
convention that S; > 0 denotes sources, while S; < 0 sinks. We also allow for S; = 0, i.e., no
external in- or outgoing flux in this node. We impose the global mass conservation

(1.1) Y si=0.

JjEV
We denote Cj; and, resp., Q;; the conductivity and, resp., the flow through the vessel (,j) € E.
Note that the flow is oriented and we adopt the convention that @;; > 0 means net flow from
node j € V to node ¢ € V. An overview of the notation is provided in Table [II We assume low
Reynolds number of the flow through the network, so that the flow rate through a vessel (i,j) € E
is proportional to its conductivity and the pressure drop between its two ends, i.e.,

P; — P
(1.2) Qij = C’U T
ij
Local conservation of mass is expressed in terms of the Kirchhoff law,
(1.3) ZAijCij J s = Sj for allj evVv.

icv Lij
Note that for any given vector of conductivities C' := (Cj;)(; j)er, (L.3) represents a linear system
of equations for the vector of pressures (P;);jey. The system has a solution, unique up to an additive
constant, if and only if the graph with edge weights given by C' is connected [7], where only edges
with positive conductivities are taken into account (i.e., edges with zero conductivity are discarded).
Assuming that the material cost for an edge (7, j) € E of the network is proportional to a power
C’]j of its conductivity, Hu and Cai [13] consider the energy consumption function of the form

(1.4) ZZ ( LA cV) AijLij,

zGV JjEV

where v > 0 is the metabolic coefficient and @);; is given by ., Where the pressure drop P' is
determined by (|1.3 . The first part of the energy consumption (|1.4)) represents the kinetic energy
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(pumping power) of the material flow through the vessels, and we shall call it pumping term in
the sequel. The second part represents the metabolic cost of maintaining the network and shall
be called metabolic term. For instance, the metabolic cost for a blood vessel is proportional to
its cross-section area [I4]. Modeling blood flow by Hagen-Poiseuille’s law, the conductivity of the
vessel is proportional to the square of its cross-section area. This implies v = 1/2 for blood vessel
systems. For leaf venations, the material cost is proportional to the number of small tubes, which is
proportional to Cj;, and the metabolic cost is due to the effective loss of the photosynthetic power

at the area of the venation cells, which is proportional to C’ilj/ 2, Consequently, the effective value
of ~ typically used in models of leaf venation lies between 1/2 and 1, [I3]. Hu and Cai showed
that the optimal networks corresponding to minimizers of — exhibit a phase transition at
v =1, with a “uniform sheet” (the network is tiled with loops) for v > 1 and a “loopless tree” for
v < 1, see also [II]. Moreover, they consider the gradient flow of the energy constrained by
the Kirchhoff law , which leads to the ODE system for the conductivities C;;,

40 2 B
dt” = (CQj —vCy, 1) Ly  for (i,j) €E,
coupled to the Kirchhoff law through . This system represents an adaptation model which
dynamically responds to local information and can naturally incorporate fluctuations in the flow.

This paper focuses on deriving the rigorous continuum limit of the energy functional — as
the number of nodes of the underlying graph tends to infinity and the edge lengths L;; tend uniformly
to zero. In a general setting with a sequence of unstructured graphs this is a mathematically very
challenging task. In particular, one has to expect that the object obtained in the limit will depend
on the structural and statistical properties of the graph sequence (connectivity, edge directions and
density etc.). Therefore, we consider the particular setting where the graphs correspond to regular
equidistant meshes in 1D and 2D. As we explain in Section [3| the energy minimization problem for
— in the one-dimensional case is in fact trivial, and the form of the limiting functional is
obvious. However, we use this setting as a toy example and carry out the rigorous limit passage
anyway. The reason is that in the 1D setting we avoid most of the technical peculiarities of the
two-dimensional case and we can focus on the essential idea of the method. Equipped with this
insight, we shall turn to the two-dimensional case (Section , where the graph is an equidistant
rectangular mesh on a square-shaped domain €.

In both the 1D and 2D cases, it is necessary to adopt the additional assumption that the con-
ductivities are a priori bounded away from zero. In particular, we introduce a modification of the
system — where the conductivities are of the form r + Cj;, where r» > 0 is a fixed global
constant. The reason is that we need to guarantee the solvability of the Poisson equation
below, which will be obtained in the continuum limit. Moreover, in the 2D case, the additive terms
in the energy functional have to be scaled by the square of the edge length L;;. This is due to
the fact that we are embedding the inherently one-dimensional edges of the graph into two spatial
dimensions; see [8, Section 3.2] for details. Thus, we shall work with the energy functional

13) 0= T3 (20 + Y )t
i€V jev
where d = 1, 2 is the space dimension, coupled to the (properly rescaled) Kirchhoff law
PP

(1.6) ZA@'(T + Cij) T = L;S; forall j € V
Y *
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through

(1.7) Qij = (r+ Cl‘j)%,
ij

where L; are (abstract) weights that scale linearly with the mean edge length; see [8, Section 3.1]

for details about the scaling in ((1.6)). The main benefit of this paper is the rigorous derivation of

the limiting energy functional, which for the two-dimensional case is of the form

(18) £l = /Q Vald - (11 + Vpiel + £ (i +eal" + I+ o)

with x = (z,y) € R? and where p[c] € H(Q) is a weak solution of the Poisson equation
(1.9) V.- ((rI+¢)Vp) =S8

subject to no-flux boundary conditions on 0f), where I is the unit matrix and c is the diagonal
2 X 2-tensor

(1.10) c= (Col 602)

Here, S € L*() denotes the source/sink term and in analogy to (L.I)) we require [, Sdx = 0. The
derivation is based on three steps:

(1) Establish a connection between the discrete solutions of the Kirchhoff law (1.6) and weak
solutions of the Poisson equation ; see Section in 1D and Sections in 2D.

(2) Reformulate the discrete energy functional as an integral functional defined on the set
of bounded functions; see Section [3.1]in 1D and Section 4.2]in 2D.

(3) Show that the sequence of integral functionals I'-converges to the energy functional ;
see Section [3.2]in 1D and Section [4.3)in 2D. See, e.g., [6, 2] for details about I'-convergence.

The I'-convergence opens the door for constructing global minimizers of f as limits of
sequences of minimizers of the discrete problem f. However, for this we need strong con-
vergence of the minimizers in an appropriate topology. In agreement with [9, 10} 3] we introduce
diffusive terms into the discrete energy functionals, modeling random fluctuations in the medium
(Section for 1D and Section in 2D). The diffusive terms provide compactness of the min-
imizing sequences in a suitable topology and facilitate the construction of global minimizers of
ERE)

Let us note that the steepest descent minimization procedure for f is represented by the
formal L2-gradient flow. This leads to the system of partial differential equations for ¢; = ¢1(t, z,y),

Cy = CZ(tv &€, y)7
Oper = (0ap)® —v(r+c1) ),
Ohea = (Oyp)® —v(r+c2)' ™,

subject to homogeneous Dirichlet boundary data and coupled to through . The exis-
tence of weak solutions and their properties are studied in [§]. Finally, let us remark that [12]
proposed a different PDE system, derived from the discrete model [I3] by certain phenomenological
considerations (laws of porous medium flow, see [3] for details). The system consists of a para-
bolic reaction-diffusion equation for the vector-valued conductivity field, constrained by a Poisson
equation for the pressure, and was studied in the series of papers [9] 10, [1, 3]. However, a rigorous
derivation of the model is still lacking; moreover, no explicit connection to the system has
been established so far.

(1.11)



2. AN AUXILIARY LEMMA

Lemma 1. Fizr > 0, a bounded domain Q C R? withd > 1, and S € L*(Q). Let (V) yen € L®(Q)
be a sequence of nonnegative, essentially bounded functions on Q, such that ¢V — ¢ € L?(Q2) in the
norm topology of L?(). Let (p™)nen C H'(Q) be a sequence of zero-average weak solutions of the
Poisson equation

(2.1) V- ((r+MvpY) =8

subject to homogeneous Neumann boundary conditions on 0Q. Then VpY converges to Vp and
VNN converges to \/cVp strongly in L?(Q2), where p is the zero-average weak solution of

(2.2) -V -((r+¢Vp) =S8

subject to homogeneous Neumann boundary conditions on 02. In particular, we have

(2.3) lim [ (r+cM)VpN[Pdx = /(r + ¢)|Vp|? dx.
Q

N—oo Jo

Remark 1. Note that we do not assume that (¢"V)yen is uniformly bounded in L>=(Q), nor that
ce L>®().

Proof. Using p~ as a test function in (2.1)), due to the nonnegativity of N, we have
2
@) 9 < [ MNP ax / Sp dx

60}3

< HS||L2(Q) +——|Vp NHL2

where Cp is the Poincaré constant. With a suitable ch01ce of e >0 we obtaln a umform estimate
on pY in H'(Q). Consequently, there exists a subsequence of p¥ that converges weakly in H'(Q)
to some p € H'(9). Since ¢ — ¢ strongly in L?(£2), we can pass to the limit in the distributional
formulation of to obtain

(2.5) /Q(T +¢)Vp-Vodx = /Qqude for all ¢ € C5°(Q).

Noting that (2.4) also implies a uniform bound on fQ cN \VpN |2 dx, we have due to the weak lower
semicontinuity of the L?-norm,

(2.6) /(r +¢)|Vp|? dx < liminf/(r + M) VPN P dx < +oo.
Q N—oo Jo
Consequently, we can use p as a test function in (2.5)) to obtain
/(r +¢)|Vp2dx = / Sp dx.
Q Q
Therefore, using p¥ as a test function in (2.1]),
lim /(r+ MVPN P dx = lim / SpN dx = / Spdx = / (r +¢)|Vp|? dx,
N—oo Jo N—oo Jo Q Q
which gives (2.3) and, further,

limsup/ VPV |2dx < limsup/(r+CN)|VpN|2dx+limsup (—/ cN|VpN|2dx>
Q Q Q

N—oo N—o0 N—oo

= /(r+c)]Vp\2dx—liminf/cN]VpNIde.
Q N—oo Jo
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Now, using (2.6]), we have
- liminf/ HNNVpN P dx = — liminf/ IVeNVpN 2 dx < —/ 1v/eVp|? dx.
N—oo Jo N—oo Jq Q
Therefore,

limsup/ ]VpNIde</\Vp|2dx,
Q Q

N—oo

so that limy e HVpN = [ Vpll12(q), which directly implies that (a subsequence of) pY con-

HL2(Q)
verges towards p strongly in H!().

3. THE 1D EQUIDISTANT SETTING

In this section we consider the spatially one-dimensional setting of the discrete network formation
problem, where the graph (V,E) is given as a mesh on the interval [0, 1]. Moreover, for simplicity
we consider the equidistant case, where for a fixed N € N construct the sequence of meshpoints x;,

x; = ih fori =0,...,N, with h:=1/N.

We identify the meshpoints z; with the vertices of the graph, i.e., we set V := {z;; i =0,...,N}.
The segments (x;—1,x;) connecting any two neighboring nodes are identified with the edges of the
graph, ie., E := {(x;—1,2;); i = 1,...,N}. By a slight abuse of notation, we shall write i € V
instead of z; € V in the sequel, and similarly i € E instead of (z;_1,x;) € E. Moreover, we shall use
the notation C := (Ci)f\il with C; > 0 the conductivity of the edge ¢ € E, P; € R for the pressure
in node i € V and S¥ € R for the source/sink in node i € V with Zf\il SN =0 by (L-I). With this
notation we rewrite the energy functional as EN[C] : RY — R,

v
1
(3.1) Zr—l—C MU
with the fluxes
P_1— P .
(3.2) Qi = (T+Ci)lT’ fori=1,...,N.

Note that we orient the fluxes (; such that @; > 0 if the material flows from x;_1 to z;. The
Kirchhoff law ([1.6]) is then written in the form

P, — P, P, - P .
(33) (T‘i_C)Tl (T+Cl+1)T+1:hS’L]V forZ:L...,N—l,
while for the terminal nodes we have
— P Py — Py_
(r+C’) L= hsy, (r+Cy) ==L — o

h h

Obviously, in the 1D setting the fluxes Q); are explicitly calculable from the given set of sources/sinks
(S;)N, since the Kirchhoff law (3.3)) is the chain of equations

Q1 = hSéV,
Qi+ Qiy1 = hSiN fori=1,...,N—1,
QN = hSﬁ,



which has the explicit solution
i—1
(3.4) Qi=hY_ SY fori=1,..,N-L
§=0
Note that due to the assumption of the global mass balance (1.1)) the “terminal condition” for i = N
is implicitly satisfied,
N—-1
(3.5) —Qn=-h)Y_ S;=hSy.
§=0

With the fluxes given by . , it is trivial to find the global energy minimizer of 1) namely,
(r + C;)" T = Q7 /v. 1t is also easy to prove that the sequence of the functionals converges as
=1/N — 0 to the continuous functional

1 2
q(x) v
3.6 Elc] = ——~— 4+ —(r+c(x))" du,
(36) 0= [ A+ Lo+ ew)
with ¢(z fo o)do, in the sense of Riemannian sums if ¢ is a continuous, nonnegative func-

tion. Therefore the hrmt passage to continuum description in the one-dimensional case is trivial.
However, we shall use it as a “training example” which avoids most of the technical difficulties of
the two-dimensional setting to gain a clear understanding of the main ideas of the method.

Therefore, we shall ignore the explicit formula for the fluxes @; and study the limit as
h =1/N — 0 of the sequence of energy functionals —, ie.,

(3.7) —hz (r+Ci) <P hPZ‘> +%(r+0m,

where the pressures P; are calculated as a solution of the Kirchhoff law . Note that since

r+C; >0 forallt eV, is solvable, uniquely up to an additive constant. In the following

we shall show that the sequence converges, as h = % — 0, to the functional with
= (r + ¢)0p|d], i.e.,

1 v
(3.8) Ele] = /0 (r + ¢)(9eplc])? + ;(r +¢)7dz,

where p[c] € H'(0,1) is a weak solution of the Poisson equation
(3.9) —0:((r+¢)0wp) =95

n (0,1), subject to no-flux boundary conditions. Here and in the sequel we fix the source/sink
term S € L?(0,1) and, in agreement with (T.1} ., we assume the global mass balance fo z)dz = 0.
Since for ¢(x) > 0 the weak solution p = p(x) of is unique up to an additive constant we shall,
without loss of generality, always choose the zero-average solution, i.e. fo x)dr = O

We shall proceed in several steps: First, we put the discrete energy functlonals into an
integral form, and find an equivalence between solutions of the Kirchhoff law and the above
Poisson equation with appropriate conductivity. Then we show the convergence of the sequence
of reformulated discrete energy functionals towards a continuum one as h = 1/N — 0. Finally,
we introduce a diffusive term into the energy functional, which will allow us to construct global
minimizers of the continuum energy functional.
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3.1. Reformulation of the discrete energy functional. In the first step we reformulate the
energy functionals (3.7) such that they are defined on the space L5°(0,1) of essentially bounded
nonnegative functions on (0,1). For this purpose, we define the sequence of operators Q(])V ‘RY —
L>(0,1) by

QY : (CHN, — ¢, with ¢(z) = C; for x € (xj—1,x;), i=1,...,N.

Le., Q) maps the sequence (C;)Y, onto the bounded function ¢ = ¢(z), constant on each interval
(zi—1,;), i =1,...,N. Then, we define the functionals £V : L(0,1) — R,

(3.10) EN] = /0 1<7~ +o) (@g [AhP]>2 + %(r + ) dz,
with
(3.11) (A" P); = %7 i=1,...,N,

and P = (P;)Y, a solution of the Kirchhoff law (3.3]) with the conductivities C = (C;)¥,,

1 [%
Ci::/ c(r)de, i=1,...,N.

h i—1
Then, noting that for each C' = (C;)Y, € RY,
[
2| OfO@de=0;  foralli=1,....N,
Ti—1

the discrete energy functional (3.7) can be written in the integral form as EV[C] = EN[QY [C]].
Moreover, we establish a connection between the solutions of the Kirchhoff law (3.3) and weak
solutions of the Poisson equation (3.9) with ¢ = Q}'[C:

Lemma 2. For any C = (C;))Y, € RY and S € L2(0 1) with fol de =0, let p = p(z) €
HY(0,1) be a weak solution of the Poisson equation wzth c=QY [ ], i.e.,

(3.12) —9, ((r +QY[C)) xp) S,

subject to no-flux boundary conditions on (0,1). Then,

(3.13) P; :=p(x;), i=0,...,N,

is a solution of the Kirchhoff law (3.3)) with the conductivities C = (C;)X., and the source/sink

terms
1

(3.14) SN .= 2/ S(x)pN (z)dz,  i=0,...,N,
0

with the hat functions ¢ = ¢N (x) defined in (3.15)) below.
Proof. Note that for any C € RJX there exists a weak solution p = p(x) € H'(0,1) of (3.12),

unique up to an additive constant. For i = 1,..., N we construct the family of piecewise linear test
functions ¢V, supported on (z;_1,z;11), with

14+ &4 for x € (z;_1, x;
(3.15) ¢iv($) — zfx ( i—1» z)a

1— &= for x € (x5, i41).

Using the hat function ¢ as a test function in (3.12)), we obtain

R e L L
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where we used the fact that, by construction, Qév [C] = C; on the interval (z;_;,z;). Note that due
to the embedding H'(0,1) < C(0,1) any weak solution p = p(z) of is a continuous function
on [0, 1], so the pointwise values p(z;) are well defined for all i = 0,..., N. Thus, defining P; as
in (3.13)) we obtain a solution of the Kirchhoff law with the conductivities C' = (C;)¥; and
source/sink terms (3.14)).

]

Note that since % fol N (z)dz =1 and S € L?(0,1), the Lebesgue differentiation theorem gives
1 1
SiN—h/ S(x)pN () dz — S(T) for a.e. T=12; as h=1/N — 0.
0

Consequently, for a fixed S € L?(0,1) and any N € N, we have the following reformulation of the
discrete problem:

Proposition 1. For any vector C = (C;)¥, € RY, we have
EN[C] = eN[Qy[C]],

where EN[C] is the discrete energy functional (3.7) coupled to the Kirchhoff law (3.3)) with sources/sinks

SN given by (3.14)), and EV is the integral form (3.10)~(3.11]) with the pressures given by P; = p(z;),
i=0,...,N, where p € H'(0,1) solves the Poisson equation (3.12)).

3.2. Convergence of the energy functionals. Due to Proposition [I| we are motivated to prove

the convergence of the sequence of functionals £V given by f towards &[] given by
with p[c] € H'(0,1) a weak solution of with conductivity ¢ = ¢(x), equipped with no-flux
boundary conditions. We choose to work in the space of essentially bounded functions on (0, 1)
equipped with the topology of L?(0,1). The choice of topology is motivated by the need for strong
convergence of piecewise constant approximations of bounded functions. Of course, this is true in
L4(0,1) with any ¢ < +o00; our particular choice of L2(0,1) is further dictated by the fact that we
shall apply Lemma [I]in the sequel.

Lemma 3. Let v > 0. For any sequence of nonnegative functions (c)yen, uniformly bounded in
L>=(0,1) and such that ¢N — ¢ in the norm topology of L?(0,1) as N — oo, we have

ENIEN] = €[] as h=1/N — 0.

Proof. By assumption, ¢ — ¢ in the norm topology of L?(0,1). Consequently, there is a sub-

sequence converging almost everywhere on (0,1) to ¢, and thus (r+cV (ac))7 converges almost
everywhere to (r + c(z))7. Since, by assumption, the sequence (r + ¢ (z))” is uniformly bounded
in L*>°(0,1), we have by the dominated convergence theorem

1 1
/ (r+cN(x))? d:c—>/ (r+ec(x))’dz  ash=1/N —0.
0 0
We recall that the pumping part of the discrete energy EV[cV] (8.10) is of the form
1 2
(3.16) | e (ayat)” da.
0

with
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where p”¥ € H'(0,1) is a solution of the Poisson equation (3.9)) with conductivity ¢V, subject to the
no-flux boundary condition. Let us show that (a subsequence of) QY [A"p™] converges to d.p[c]
strongly in L?(0,1). We proceed in three steps:

e Weak convergence. By Jensen inequality we have

(3.17) @b ar N}) - hi (pN(sz’) _hpN(fEi—l)>2

£2(0,1)
1
= ( / aacp > §/0 (apr)2d$'

Due to the nonnegativity of the functions ¢, the right-hand side is uniformly bounded.
Consequently, there exists a weakly converging subsequence of Q) [ApY] in L2(0, 1).

e Identification of the limit. For a smooth, compactly supported test function vy €
C5°(0,1) we write

1 i .
[ @@ - 3F V) =1 o e

1
1 N— LTi4+1
= & Z (x5) / Y(x)dr — / Y(x)dz | + “boundary terms”,

where “boundary terms” are the two terms with ¢ = 0 and ¢ = N, which we however can
neglect for large enough N since ¢ has a compact support. Then, Taylor expansion for ¥
gives

ZT; Ti41 Z; 2 Xy
[ v [ e =h [ ow@dar s [T okl

with &(x) € (x;—1,2;). Due to the estimate
hj / " H2
2 Ti—1

/:1 Y(z)dx — /g:““ W(z)de = —h/::1 By (x) dz + O(h3),

h
= 9 Haﬂ%IwHLC’O(O,l)

we have

so that
1 1_
/ QY (AP (@)b(a)de = — / PN Ou(z) dz + O(h),
0 0

where pV is the piecewise constant function

pN(z) = pN(x;) forz € (zi1,x),i=1,...,N.
It is easy to check that, due to the strong convergence of ¢ towards c¢ in L2(0,1), pV
converges to plc] weakly in H'(0,1). Due to the compact embedding H'(0,1) < C(0,1),
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(a subsequence of) p" converges uniformly to p[c] on (0,1), and, therefore pN converges
strongly to p[c]. Therefore,

1 1
/0 QAW (@)p(a) dr - — / p(x)0y(x)dz ash=1/N 0,

0
1
- /0 () 2up(z) do.

We conclude that weak limit of (the subsequence of) Q) [A"pN] is d.pld.
e Strong convergence. Finally, due to (3.17)), we have

ot - ol = Jedanil,,,

NiAh, N 2
o = 200 1" Buple]) o) + 1950l 20

2
< HarpNHLQ(OJ) - 2<Qév [AhpN]7 8xp[c]>L2(0,l) + Haxp[C]H%Q(O,l) ’

which vanishes in the limit A = 1/N — 0 due to the weak convergence of Q) [Ap™] and
strong convergence of d,p" in L?(0, 1) due to Lemma|ll Thus, Q) [Ap"] converges strongly
to O.plc] in L?(0,1).
We conclude that due to the weak-* convergence of (r +cV) towards (r+c¢) in L>(0,1), and strong
convergence of (Qf [AhpN])2 towards (9,p[c])? in L(0,1), we can pass to the limit as h = 1/N — 0

in (3.16)) to obtain
1
/ (r + ¢) (Dupld])? da.
0

3.3. Introduction of diffusion and construction of continuum energy minimizers. In
Lemma [3| we proved the convergence of the sequence of energy functionals £V towards &, i.e.,
for any ¢V — ¢ in the norm topology of L?(0,1), we have EV[c"N] — &[c] as N — oo. In order
to construct energy minimizers of £ as limits of sequences of minimizers of the functionals £V,
we need to introduce a term into £V that shall guarantee compactness of the sequence of discrete
minimizers. This is done, in agreement with [9, 10, B], by introducing a diffusive term into the
discrete energy functional , modeling random fluctuations in the medium. Thus, we construct
the sequence Eé\ifff : Rf — R,

o AN
(3.18) EYs(C]:=D?h )" (“h> + EN[C),
=1

with EV[C] defined in (3.7)), coupled to the Kirchhoff law with sources/sinks S¥ given by
, and D? > 0 the diffusion constant. Note that the new term is a discrete Laplacian acting
on the conductivities C.

We now need to reformulate the discrete energy functionals in terms of integrals. For this
sake, we construct the sequence of operators Q{V : RV — C(0,1), where Q]lv [C] is a continuous
function on [0, 1], linear on each interval (z; — h/2,z; + h/2), with

QN[C)(z; —h/2)=C; fori=1,...,N,
and

QN[Cl(z)=Cy for z €[0,h/2), QY[C|(x)=Cyn forze (1-h/21].
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Then we write the finite difference term in (3.18)) as

2 1
D2hz< il ) :D2/ (8xQ{V[C])2 de,
0
and we have

Proposition 2. For any vector C = (C;)¥, € RY,
1
2
Phalc1 = 0 [ (0:01C)* do -+ ¥ 1050

where EY defined in (3.18) and EN is given by (3.10) ~(3.11]) with the pressures given by P; = p(z;),
i=0,...,N, where p € H'(0,1) solves the Poisson equation (3.12)).

We are now ready to prove the main result of this section:

Theorem 1. Let v > 0, S € L?(0,1) with fo x)dz and SN given by (3.14] - Let (CN)yen be
a sequence of global minimizers of the discrete energy functionals Edlﬁ« given by - Then the
sequence QY [CN] converges weakly in H'(0,1) to c € H'(0,1), a global minimizer of the functional
gdiﬂ‘ : H}L(O, 1) — R,

1
Eaige|c] := D? /0 (8z0)* dz + E|d],

where Ec] is given by (3.8).
Proof. Let us observe that

N ﬁ ﬁ 2
i Lg— v
ElOY) < Eel0] = 0y <h1> LV
=1

v

where (é)f\;l is a solution of the Kirchhoff law (3.3)) with zero conductivities and sources/sinks
given by (3.14]). Thus, P; = p(x;) for i =1,..., N, where p = p(z) is a weak solution of —rAp = S
subject to no-flux boundary conditions. Then we have by the Jensen inequality

N BB\ ANV ’
Dzhz<lhl—1> - DQhZ(h/ 8xﬁd:r>
=1 i=1 Ti—1
1
< DQ/ (0,p)? dz.
0

Consequently, the sequence Edlff [CN] is uniformly bounded.
Since the sequence

1 2
D? /0 (2.QY ™) dx—DQhZ ( - ) < Efig[C™)

is uniformly bounded, there exists a subsequence of QY [C¥] converging to some ¢ € H'(0, 1) weakly
in H'(0,1), and strongly in L?(0,1); moreover, the sequence is uniformly bounded in L°°(0,1). It
is easy to check that also Q)Y [C™] converges to ¢ strongly in L?(0,1), and is uniformly bounded
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in L>°(0,1). Therefore, by Lemma [3| we have EN[CN] = EN[QY[CN]] — £[c] as h = 1/N — 0.
Moreover, due to the weak lower semicontinuity of the L?-norm, we have

1 1 )
/ (8p¢)? dz < lim inf/ (0,QY[CN])” dx.
0 0

N—o0

Consequently,
(3.19) Eaie[c] < liminf ENg[C™].
N—o00

We claim that c¢ is a global minimizer of Egig in H}F(O, 1). For contradiction, assume that there
exists ¢ € H1(0,1) such that

Eaiee[c] < Eaisc]-
We define the sequence (6N) NeN by
55\[ = 1/%’ ¢(x)dx, i=1,...,N.
i1
Then, by assumption, we have for all N € N,
(3.20) Ee [€N1 > EelC].

It is easy to check that the sequence (@N [ ] converges strongly in H'(0, 1) towards ¢, therefore

/(6@1 N dx—>/ (8,¢) as h=1/N — 0.
0

Moreover, the sequence Q5 [CN] converges to ¢ strongly in L?(0, 1), therefore, by Lemma ENQY [éN]] —
E[e] as h =1/N — 0. Consequently,
—N
li EjglC Eaie[€] < Eai
. 2 C] = Eanle] < Eairr[c],

a contradiction to (3.19)-(3.20).

4. THE 2D RECTANGULAR EQUIDISTANT SETTING

In this section we consider the spatially two-dimensional setting of the discrete network formation
problem, where the graph (V,E) is embedded in the rectangle Q := [0, 1]2. We introduce the notation
x := (z,y) € Q. For N € N we construct the sequence of equidistant rectangular meshes in Q with
mesh size h := 1/N and mesh nodes X; = (X;,Y;),

X;=(imod N+1)h, Y;=(idiv N+1)h, fori=0,...,(N+1)*—1, with h:=1/N,

where (i div N + 1) denotes the integer part of i/(N + 1) and (¢ mod N + 1) the remainder. We
identify the mesh nodes X; = (X;,Y;) with the vertices of the graph, i.e., we set V := {X;; ¢ =
0,...,(N 4+ 1)2 — 1}. By a slight abuse of notation, we shall write i € V instead of X; € V in
the sequel. For each node X;, we denote by X; g, X; w, X; v, X; s its direct neighbors to the
East, West, North and South, respectively (if they exist); see Fig. Then, the set E of edges of
the graph is composed of the horizontal and vertical segments connecting the neighboring nodes,

e., (X;,X;,) for x € {E,W,N,S} and i € V. We shall denote C} the conductivity of the edge
(X, Xi«), and P;, resp., P; ., denote the pressure in the vertex X;, resp., X; ,. Similarly, S’ih denotes
the source/sink in vertex i € V.
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Xis

5

FIGURE 1. Interior node X; with its four neighboring nodes X; g, X; w, X; v, X; g
and six adjacent triangles, TiNE, TiN, TiNW, TiSW, TZ-S, TiSE.

With this notation, the discrete energy functional ([1.5)) takes the particular form

h? Pi—P,\* v
h - Y B z *\Y
(4.1) EMC) 22 > (r+cz)< - ) +7(r+q),
1€V xe{E,W,N,S}
and the Kirchhoff law (1.6)) is written as
(4.2) Yo 0

«€{E,W,N,S}

)%:h&h. fori eV,

For reasons explained later, we shall restrict to the case v > 1 in the sequel.

Our strategy is to perform a program analogous to the 1D case of Section [3} first, to put the
discrete energy functionals into an integral form and find an equivalence between solutions of
the Kirchhoff law and the above Poisson equation with appropriate conductivity. However, in
the 2D case the situation is more complicated and we need to introduce a finite element discretization
of the Poisson equation. We then establish a connection between the FE-discretization and the
Kirchhoff law . In the next step we show the convergence of the sequence of reformulated
discrete energy functionals towards a continuum one as h = 1/N — 0, using standard results of the
theory of finite elements. Finally, we introduce a diffusive term into the energy functional, which
will allow us to construct global minimizers of the continuum energy functional.

4.1. Finite element discretization of the Poisson equation. We construct a regular trian-
gulation on the domain ) such that each interior node X; has six adjacent triangles, TZ-N B TiN ,
TZ-N W TiS W Tis , TiS B see Fig. Boundary nodes have three, two or only one adjacent triangles,
depending on their location. The union of the triangles adjacent to each X; is denoted by U;. The
collection of all triangles constructed in € is denoted by 77.



15

We fix S € L?(Q) with [, Sdx = 0 and consider a discretization of the Poisson equation
(4.3) V- ((rl+¢)Vp) =5

on  subject to the no-flux boundary conditions, using the first-order (piecewise linear) H'! finite
element method on the triangulation 7". Therefore, on each N E-triangle TV¥ we construct the
linear basis functions ¢f¥1E, ¢f\72E , ¢£V3E with

mC(X) =1, ¢ (Xip) =0, ¢ (Xin) =0,
(X)) =0, o (Xip)=1, oM (Xin)=0,
N (X)) =0, ¢ (Xip)=0, o (Xin) =1,
and analogously for the other triangles in U;, see Section of the Appendix for explicit formulae.

Denoting W" c H 1(Q) the space of continuous, piecewise linear functions on the triangulation T",
the finite element discretization of (4.3)) reads

(4.4) / Vpl - (rI + ¢) V' dx = / Syhdx  for all " € Wh.
Q Q

Using standard arguments (coercivity and continuity of the corresponding bilinear form) we con-
struct a solution p" € W of , unique up to an additive constant; without loss of generality
we fix [ p(x)dx = 0. The solution is represented by its vertex values P/ := p"(X;), i € V. In
particular, on each N E-triangle Tl-N E we have

p(x) = Pih¢¥1E(X) + chEd)iVQE(X) + PZ}N¢%E(X)7 x € TN",
and the gradient of p" on TVF is the constant vector
1
(4.5) Vp'(x) = E(Pi},LE - Pih7pi},lN — P, x e TNP.

Analogous formulae hold for all other triangles in U;, as explicitly listed in Section of the
Appendix.

We now establish a connection between the discretized Poisson equation and the Kirch-
hoff law . For this purpose, we define the sequence of operators Qg mapping the vector of
conductivities (C;);cg onto piecewise constant 2 x 2 diagonal tensors,

cg 0
(4.6) Qf : (C)ier — ( N @) .
The functions ¢; = ¢1(x), ¢z = c2(x), defined on €2, are constant on each triangle 7' € 7" and
c1 takes the value of the conductivity of the horizontal edge of T and co takes the value of the
conductivity of the vertical edge of T'. In particular, we have

CcF on TNE, CcN on TNE,
(4.7) C’ZE on Tl-SE, Cis on TZ-S,
. C1 ‘= Cy =
C’iW on TiSW7 Cf on TZ-SW,

C’Z-W on TiNW, cN on TiN.

Then, for a given vector of conductivities C' = (C});cg we consider the discretized Poisson equation
([@4) with the conductivity tensor ¢ := QR[C]. For each i € V we construct the test function 1! as

h._ NE , ,SE , .S SW |, NW |, N
U = ¢p +Oi T O O T din + i
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with the basis functions on the right-hand side defined in Section[5.1]of the Appendix. Consequently,
each d)lh is supported on Uj;, linear on each triangle belonging to U;, and continuous on 2. Then,
obviously, 1/1{” € W' and using it as a test function in ([£.4]), we calculate, for the triangle TiN E

CcE CN
Vi (r+ Q4IC)) Vil dx = T (P - Ply) + T (P - phy),
TNE 2 ’ 2 )
where we used ( ., the identity Vil = —7(1 1) n TNE and orthogonality relations between
gradients of the basis functions (for instance, V(b VolE '3 = 0). Performing analogous calculations

for the remaining triangles constituting U;, namely, Tls B TZS TZ-S W TiN W and TiN , see Section
of the Appendix for explicit details, we obtain

(4.8) [ (T Qhic)) vetax = 3 (e~ PL).
Q «€{E,W,N,S}
Consequently, gives the identity

ph— ph 1
r+C; ZZ’*:/S%‘dx
>, rHOh———=5

*€{E,W,N,S}
for all ¢ € V. Thus, defining

(4.9) Shim 2

=g swdx

we have the following result:

Lemma 4. For any vector of nonnegative conductivities C' = (C;)icg and S € L*(Q) with [, S dx =
0, let p € W" be a solution of the finite element discretization (&.4) with ¢ := QR[C]. Then,
Pl = ph(X;), i €V, is a solution of the rescaled Kirchhoff law (4.2)) with the source/sink terms St

given by (4.9 m

Note that since h2 Jo Yl (x) dx = 1, and, by assumption, S € L?(), the Lebesgue differentiation
theorem gives

1
SZ-hZhQ/Sl/J?dX—)S(x) for a.e. x=X;as h=1/N — 0.
Q
Consequently, (Sz-h)h>0 is an approximating sequence for the datum S = S(x).

4.2. Reformulation of the discrete energy functional. We reformulate the energy functionals
(@1)-(E2) such that they are defined on the space LL(2)%2 of essentially bounded diagonal

diag
nonnegative tensors on 2. We define the functional &" : L‘f(Q)?thé —+ R,
(4.10) / Vo' - (r] + ¢)Vp[c] + %(|T+cl\7+|r+02|w) dx

where p"[c] € W" is a solution of the finite element problem (4.4).

Proposition 3. Let S € L?(Q) with [, Sdx =0 and St be given by ([9). Then for any vector of
nonnegative conductivities C = (C;);cpn, we have

E"[C] = EMQg(el],
with E" defined in (&1)) and E" given by ([@.10)).
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Proof. We have shown in Section that if p” = p"(x) denotes a solution of the finite element
problem ([4.4)) with ¢ = Q}[C], then the vertex values P! := p"(X;) satisfy the Kirchhoff law (4.2).

Moreover, using (4.5) and the definition ({.6)—(4.7) of QA4[C], we calculate
ph.— Ph\’ ph — ph\?
/ VP I+ Qen V" dx = Y | (r 4 CF) (Eh) +(r+ ) (fvh
Ti

for each 7 € V, and analogously for all other triangles. Noting that |TZN F| = h?/2 and summing
over all triangles, we obtain the formula (&.1)) for the discrete energy E"[C].
[

4.3. Convergence of the energy functional. With Proposition [3] our task is now to prove the
convergence of the sequence of functionals " given by (4.10) towards

(4.11) Elc] = /QVp[c] - (rl 4+ ¢)Vplc] + % (Ir+c|” + |r 4+ c2]”) dx

where plc] € HY(Q) is a weak solution of the Poisson equation (4.3)) subject to no-flux boundary

conditions, and ¢y, co are the diagonal entries of ¢ = (COI . > . Similarly as in Section we choose
2

to work in the space Lf(Q)g;@ of diagonal nonnegative tensors on {2 with essentially bounded
entries, equipped with the norm topology of L?(f2). Note that for ¢ € LSFO(Q)E:;E the Poisson

equation (4.3) has a solution p[c] € H'(£2), unique up to an additive constant, and &[c] < +oc.

2x2

Lemma 5. For any sequence of nonnegative diagonal tensors (c)yen C L‘f(Q)diag with entries

2x2

uniformly bounded in L7(Q2) and converging entrywise to ¢ € Ll(Q)diag in the norm topology of

L2(Q) as h=1/N — 0, we have,

(4.12) Elc] < liminf &N,
h=1/N—0

with E" given by (@.10) and £ defined in ([A.11)).

Proof. Due to the strong convergence of the entries of ¢V in L?(Q) there exist a subsequence
converging almost everywhere in 2 to ¢. Then, we have by the Fatou Lemma,

(4.13) /|r+cl\'ydx< lim inf /]r—i—c |7 dx,
Q h=1/N—0

which is finite due to the uniform boundedness of ¢ in L7(Q). Similarly for cJ'.

For the sequel let us denote p := plc] € H'(Q) is a solution of the Poisson equation (4.3)
with conductivity ¢, pV = p[cN | a solution of the Poisson equation with conductivity ¢
and p* := p"[cN] € W" a solution of the finite element discretization (4.4) with h = 1/N and
conductivity ¢V. Then, by an obvious modification of the auxiliary Lem for diagonal tensor-
valued conductivities we have by @,

(4.14) Vp (rl +¢)Vpdx = hm vl - (rI + N)Vp dx.
Q
Let us define the bilinear forms BY : H1(Q) x H(Q) — R,

BY (u,v) = / Vu - (rl +cV)Vode.
Q
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Note that BN (u,v) < +oo for u, v € H'(Q) since ¢V € L‘f(Q)fhxaé Moreover, since rI 4 ¢V is

symmetric and positive definite, BY induces a seminorm on H L),

lulgn =1/ BN (u,u) for u € HY(Q).
With this notation we have

2

/vaN (rl + CN)VpN dx = ‘pN‘BN .
We now proceed along the lines of standard theory of the finite element method (proof of Céas
Lemma in the energy norm, see, e.g., [5]). Due to the Galerkin orthogonality
(4.15) BNpN —pth ) =0 forally e Wh,
we have, noting that p" € Wh,

N2 _ | N n|? n|?
[P v = ’p R ‘BN + ‘p ’BN'

Then, again by ([&.15) and by the Cauchy-Schwartz inequality, we have for all ¢ € W",

2
N _ . h _ pN(N _ h N N _ . h N
‘p —p ‘BN—B (" —p",p" =) < ’p —p ‘BN " — | gn -
Therefore, with the triangle inequality,

N _ph ' N N .
_ < f . < B ¢ B ‘
P =0 < 1Y = 6l < Y = bl I vl

Due to the strong convergence of ¢V — ¢ in L?(2) and the standard result of approximation theory,
see, e.g., [5], we have

li f < 1l inf (rl —)d
h= 11/IJIV1—>0 ¢lertlfvh P MBN o 1—r>r(l)¢lertl4/h/v rI+a)Vip—v)dx
A}gnoo/ Vp-( ¢)Vpdx

Due to (4.14) and the weak convergence of pN —pin HY(Q),

4.1 lim |p" — = 0.
(4.16) Jim [t = pfpy =0
Thus, collecting the above results from (4.14) up to (4.16), we conclude that
9 2
(1 ax = Jim [p¥[5y =l [Pt = P (el + N)Vptd
/QVP (rl +e)Vpdx Nohso [ h=i/N—0 " 1By = hei/N—0 QVP (rf 4 c7)Vptdx,

which together with (4.13)) gives (4.12)).

Remark 2. Note that if v > 1 and with the assumption that the sequence (c™)nen converges
(entrywise) in the norm topology of L7 (S2), the statement of Lemma@ can be strengthened to

Elej=lim &N
h=1/N—0

This follows directly from the fact that in this case we have for the metabolic term

/\r+cW+|r+c2de: lim /|r—|—c 7+ |+ |7 dx.
Q h=1/N—0 Jq
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Lemma |5 and Remark [2 trivially imply the I'-convergence of the sequence of energy functionals £
in the norm topology of L7(Q) for v > 1:
Theorem 2. Lety > 1, S € L?(2) with JoSdx =0 and St be given by ([&.9). Then the sequence

EM given by [@.10) T-converges to £ defined in ([A.11)) with respect to the norm topology of L () on
the set L°(Q)555- In particular:
2x2

e For any sequence (™) yen C L3 (Q)giag converging entrywise to c € L1 (Q)
topology of L7(2) as h =1/N — 0, we have

Elc] < liminf MM
h=1/N—0

diag”
2x2

diag M the norm

e For any c € Lf(Q)ilxaz there exists a sequence (c¢N)yen C Lf(Q)?ﬁé converging entrywise

toce Ll(Q)2X2 in the norm topology of L7(2) as h =1/N — 0, such that

diag
Elc] > limsup EMcN].
h=1/N—0
Proof. The lim inf-statement follows directly from Lemma [5] For the lim sup-statement it is suffi-
cient to set ¢ := ¢ for all N € N and use Remark [2] which in fact leads to the stronger statement
El= lim &N
h=1/N—0
]

4.4. Introduction of diffusion and construction of continuum energy minimizers (v > 1).
As in the one-dimensional case, we introduce a diffusive term into the discrete energy functionals,
which shall provide compactness of the sequence of energy minimizers. We again construct a
piecewise linear approximation of the discrete conductivities C', which, however, turns out to be
technically quite involved in the two-dimensional situation.

We shall describe the process for the conductivities of the horizontal edges, and by a slight abuse
of notation, we denote C; 15 ; the conductivity of the horizontal edge connecting the node (ih, jh)
o ((i +1)h, jh) for i =0,...,N —1,j =0,..., N where h = 1/N. Moreover, we denote M, /3 ;
the midpoint of this edge, i.e., M 1/ ; = ((i +1/2)h,jh). For a given vector of conductivities C,
we construct the continuous function Q?[C] on Q, such that

Q?[C](Mi-i-l/l,j) = Ci-l—l/?,j’ for 1 = 0,...,N* 1, j = 0, ,N,

and Q?[C] is linear on each triangle spanned by the nodes M;_1/2,5, Mit1/25, Mi_1/241 and on
each triangle spanned by the nodes M; /2, Mi11/2 11, Mi_1/2j41, fori =1,..., N =1, j =
0,...,N — 1. Let us denote the union of such two triangles, i.e., the square spanned by the nodes
M, _1/2,5 Mit1/2,5, Mi_1/2,j41 and M9 41, by Wij. Then, a simple calculation reveals that

1
(4.17) /W“ IVQI[C]Pdx = B [(Ci—1y2,5 = Cit12.5)* + (Cizj2j — Ci12,541)°

+(Cit12,441 — Cic1y2541)° + (Ciz1 2441 — Cic1y2,4)?] -
On the “boundary stripe” (0,h/2) x (0,1) and (1 — h/2,1) x (0,1) the function is defined to be
constant in the z-direction, such that it is globally continuous on {2, i.e.,

Chiroirr—C o s
QHCN0) 1= =2 @y — jh) + Crppye for x = (a1,w2) € (0,h/2) x (jh, (G + D),

Cn_1/2.i41 — CN_1/2.4
QUCN0) 1= =222 (g — ) 4+ Cyrpngy for x = (w1,22) € (1= h/2,1) X (jh, (j + D))
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for j =0,...,N —1. Summing up (4.17) over all squares W;; and the boundary stripe, we arrive at

(1.18) [ IveticiP ax =)
Q
with
N—1N-1 N—1N-—
Dm[C] Z +1/2,5 — Z+1/2,]+1 2 Z Z i—1/2,5 — z+1/2,])2
i=0 j=0 i=1 j=1
N-—1

1
3 Z i-1/20 = Cir1/20)” + (Cimyjon — Ciyrjan)?] -
=1
Performing the same procedure for the vertical edges, we obtain
(4.19) | V@I ax = fc)
Q
with obvious definitions of Q%[C] and D, [C].
Consequently, we define the sequence of discrete energy functionals Egiﬁ,
(4.20) Eg|C] = D* (D;[C] + D, [C]) + E*[C],

with D? > 0 diffusion constant and E"[C] defined in (&.1]), coupled to the Kirchhoff law (£.2) with
sources/sinks SI* given by (4.9). We then have:

Proposition 4. For any vector C = (C;);er of nonnegative entries, we have
FlialC] = D* | [VQIICIF + VRO dx + £" @ [C]

with E G defined in and EM given by (@.10) with the pressures p" being a solution of the
FEM-discretized Pozsson equation @A) with ¢ = QY [C].

We are now in shape to prove the main result of this section:

Theorem 3. Let vy > 1, S € L?(Q) with [, Sdx =0 and S be given by [.9). Let (CV)yew C RY
be a sequence of global minimizers of the discrete energy functionals Egiﬁ given by (4.20) with
h =1/N. Then the sequence of diagonal 2 X 2 matrices

N (QEN 0
' 0 QCN]
converges weakly in H'(2)2*? to c € HY(Q)2*? as h = 1/N — 0, with ¢ a global minimizer of the

functional Egig : HY (Q)ﬁlxaz — R,

Expldl = 02/ Vel + [Veo|2 dx + £]d],
Q

where E[c| is given by (4.11)).
Proof. Let us observe that

N
P-P
Elig[CN] < Elig[0] Z Z r <h*> + 4,

i€V xe{E,W,N,S}

where (B);ev is a solution of the Kirchhoff law with conductivities C' = 0 and sources/sinks
given by (4.9 . As shown in Section the pressures P correspond to pointwise values Ph =

(2
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(X ), i € V, of the solution p" of the discretized Poisson equation (4.4)) with conductivity tensor
= 0. Moreover, due to formula (4.5) we have

N
h? P - P _
DD I <h ) - r/Q V52 dx,
i€V xe{E,W,N,S}
and the uniform boundedness of V5" in L?(2) implies a uniform bound on E%[C™].
Since the sequence
DQ/ IVQICM]]? + [VQECY]]* dx = D? (Do [CN] + Dy [CN]) < Eig[C™]
Q
is uniformly bounded, there exist subsequences of Q?[C™] and Q4[C™] converging to some c1,
co € HY(Q) weakly in H(Q), and strongly in L?(Q). It is easy to check that then also Q}[C™]
converges to ¢ 1= (col CO) strongly in L2(0,1)2*2. Clearly, we also have QA[CV] € Lf(Q)ifaz with
2
entries uniformly bounded in L7(€2). Consequently, by Lemma [5, we have

Elc] < liminf &N
h=1/N—0

Moreover, due to the weak lower semicontinuity of the L%-norm, we have
/ IVer|? + | Veo|? dx < liminf / IVQICON? + |[VQE[C™N]* dx.
Q h=1/N—0 Jo

Consequently,

(4.21) Eaitrlc] < hh?}z{go Egig[CM].

We claim that ¢ is a global minimizer of Egg in HL (Q)2X2 For contradiction, assume that there

diag*
exists ¢ € H}F(Q)ilxaz such that

Eair [6] < Eai [C] .

We define the sequence (6N) NeN by setting the conductivity 6]\[ of each horizontal edge i € E to
the average of ¢; over the two trlangles Tia, Tip € T" that contain the edge i, i.e.,

/’L 1UT2 ;2

Similarly, we use the averages of ¢y to define the conductivities of the vertical edges. Then, by
assumption, we have for all h = 1/N, N € N,

—N
(4.22) Edg[C] = EdiglC™].
It is easy to check that the sequence Qh[iN] converges strongly in H!(f2) towards ¢;, therefore

/|VQ1 |2dxﬁ/|Vcl|2dX ash=1/N -0,

and analogously for Q4[C ] and . Moreover, the sequence QB [C’N] converges to ¢ strongly in
7N .
LV(Q)iiXaz, therefore, by Remark EMQYICT]] — €J¢) as h = 1/N — 0. Consequently,
—N
li El¢[C ] = Eairld] < Eairt[c],
i 4e[C] = Eainld] < Eanld]

a contradiction to (4.21))-(4.22).
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Remark 3. We can easily generalize to the situation when the two-dimensional grid is not rectan-
gular, but consists of parallelograms with sides of equal length in linearly independent directions 01,
Oy € S, where S' is the unit circle in R%. Then the coordinate transform

(1,0) — 91, (0, 1) — 92
in (4.11) leads to the transformed continuum energy functional
Ele] = / Vplc] - P[] Vp|e] + % (Ir+c|” 4+ |r+co|”) dx
Q
coupled to the Poisson equation
-V - (P[c]Vp) =S
with the permeability tensor

P[C] =7l +c101 Q 01+ c269 ® 0.

The eigenvalues of Plc| (principal permeabilities) are

1
)\1’2 = 5 (Cl +co £ \/(Cl — 62)2 — 46162(01 . 92)2>

and the corresponding eigenvectors (principal directions)

Cy — C1 + \/(Cl — 62)2 — 46162((91 . 02)2
201(91 : 92

uro =01 +

0a.

5. APPENDIX

Here we provide more technical details for the constructions and calculations performed in Sec-

tion [ 11

5.1. Linear basis functions. We list the explicit definitions for the piecewise linear basis functions
on the triangulation 7", constructed in Section Any interior node ¢ € V has six adjacent
triangles, denoted clockwise by T,L»N E. TZ-SE , TZ-S , TiSW, TZ»N W TZ»N , see Fig. For each triangle we
construct three basis functions, supported on the respective triangle and linear on their support.
Obviously, the basis functions are uniquely determined by their values on the triangle vertices. For
later reference we list their gradients, which are constant vectors on the respective triangles.

e On the N FE-triangle TZ-N E we construct the linear basis functions d)ZNIE , fVQE ) gzﬁ%E defined

by
(X)) =1, o (Xip)=0, oN(Xin)=0,
PN (X)) =0, oM (Xip)=1, o (Xin)=0,
oM (X)) =0, oM (Xip) =0, oh (Xin)=1,
so that
1 1 1
Vol = —5 (1. 1), Vory = +(1,0), Vorg = 2(0,1),  on TNE,



23

On the S FE-triangle TSE we construct the linear basis functions qbz s qzbZ 2, gb defined by

o (X)) =1, ¢ir(Xip) =0, o1 (Xise) =0,
rF(Xi) =0, 655 (Xig) =1, ¢ (Xise) =0,
(X)) =0, ¢i5(Xip) =0, ¢354 (Xise)=1,
so that
Vf{fz—ﬁ(l 0), wgfz%(u), v¢§§z—%(o,1), on TP

On the S-triangle TS we construct the linear basis functions (bl 13 ¢227 ¢§3 defined by

oo (Xi) =1, ¢ (Xisp) =0, ¢71(Xis)=0,
$59(Xi) =0, ¢i(Xisp) =1, ¢a(Xis) =0,
D73(Xi) =0, ¢3(Xise) =0, ¢75(Xis) =1,

so that
1
Vi, +(0,1), Véi, = —(1,0),  V¢is= —E(l 1), onT?’.

On the SW-triangle T; SW we construct the linear basis functions qﬁz He qﬁz 3 s qﬁfgv defined
by

= =

o (X)) =1, ¢ (Xig)=0, ¢ Xiw) =0,
(X)) =0, ¢ (Xis) =1, ¢y (Xiw) =0,
ooy (Xi) =0, ¢ (Xis)=0, ¢ (Xiw)=1,

so that

1 1
Vcbﬂ/v =

1
E(L 1)7 v¢5¥V = _E(O7 1)7 V(bf'}:v = _E(la 0)7 on ESW'
On the NW-triangle T; NW we construct the linear basis functions gbz v, gbz 5, gbf\gw defined
by

X)) =1, o Xiw) =0, ol (Xinw) =0,

m (X)) =0, ¢f (Xow) =1, " (Xinw) =0,

O (Xi) =0, ofy (Xiw) =0, 615" (Xivw) =1,
so that

1
VQSZ]YIW = (170)7 Vd)i?gw = _7(1’ 1)’ V(l)%’w =

h
On the N-triangle TZ-N we construct the linear basis functions qbfyl, gbfYQ, zN,3 defined by

S
| =

0,1,  on TNV,

oh(Xi) =1, ofi(Xinw) =0, ¢1(Xin)=0,
OR(Xi) =0, oHXivw) =1, ¢fH(Xin) =0,
H(X) =0, oNXinw) =0, o5(Xin) =1,
so that
N 1 N _ 1 N _ 1 N
v(bi;l E(O 1) V¢i;2 = _5(170)7 v¢i;3 = E(lu 1)7 on 117,
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5.2. Gradients of p". Here we provide the gradient of the solution p* € W" of ,
constructed in Section Since p” is continuous on  and linear on each triangle in 7",
it is represented by its vertex values P/ := p/(X;), i € V. Then, for any interior node i € V
we readily have

( ( ph h ph h NE
Pi,E_P"Pi,N_Pz’) on T,
h h ph h SE

Big — P P = Fisp) on T;7%,
h h ph h S

P‘,SE*Pi’Pi *Pi,s) on 17,

(
(
I
(P} — Pi},LW7Pih - Pi},LS) on Tz'SWv
(
(

ho_
Vp—h l

h h  ph h NW
B = Py Piinw = B') on T;" ™,

7

Pl — -Pi’}NWVF)i,}N - ch) on TiN'

(2

5.3. Explicit calculation for (4.8). Finally, we provide the detailed calculation for the
identity (£.8). Noting that ¥ is supported on U; = TNE U TSP U TS U TSV U TNV UTY,
and taking into account the results listed in Sections and we have

[T (i) Vet = TS (p )+ TECE ().
Vot (r1+ QL)) Vet ax = TECS (b phy).
Ti
[ v (v abic)) voltax - PO (R ply).
Ti
/ VP (T4 @Qhle]) Velax = +20ZW (P! = Ply) + HQCS (P Pls),
Ti
[ 9 (1 v @il vetax = TEOT (B ph),
Ti
N v (TI + QS[C]) Vyldx = = +2q.N P — P[}N) :
Ti

Summing up, we arrive at

|1+ QhiopTutax = (r+ CF) (Ph = Ply) + -+ C) (Ph - Ply)
+ (O (Pl = Ply ) + (r+ CF) (Pl = Pls) .

which is (4.8).
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