
        

Citation for published version:
Vats, G, Vaish, R & Bowen, CR 2015, 'Selection of ferroelectric ceramics for transducers and electrical energy
storage devices', International Journal of Applied Ceramic Technology, vol. 12, no. S1, pp. E1-E7.
https://doi.org/10.1111/ijac.12168

DOI:
10.1111/ijac.12168

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication

This is the pre-peer reviewed version of the following article: Vats, G, Vaish, R & Bowen, CR 2013, 'Selection of
ferroelectric ceramics for transducers and electrical energy storage devices' International Journal of Applied
Ceramic Technology, which has been published in final form at http://dx.doi.org/10.1111/ijac.12168

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Mar. 2023

https://doi.org/10.1111/ijac.12168
https://doi.org/10.1111/ijac.12168
https://researchportal.bath.ac.uk/en/publications/d6013d16-29cf-47ad-b01b-711c29a67aa0


1 

 

 Selection of ferroelectric ceramics for transducers and electrical 

energy storage devices  

 

 

Gaurav Vats
a
, Rahul Vaish

a
* and Chris R Bowen

b
 

a
School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh 175 001, India 

b
Materials Research Centre, Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, 

United Kingdom 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Email: rahul@iitmandi.ac.in, Phone: +91-1905-237921, Fax: +91-1905-237945 

mailto:vaish.rahul@gmail.com


2 

 

Abstract:   

The selection of an optimal ferroelectric material according to the user requirements is a crucial 

as well as onerous task; examples of such requirements include high efficiency, sensitivity, wide 

operating temperature and frequency range, compact size, low cost and low loss etc. In this paper 

quality function deployment (QFD) in combination with multiple attribute decision making 

(MADM) is employed for material selection. Pb(1-x)Lax)(ZryTi(1-y))O3 [PLZT (7/60/40)] (lead-

based) and (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3 (KNN-LT-LS) (lead-free) are  found to be the 

top ranked piezoelectric ceramics for transducer applications. PLZT (7/60/40) (lead-based) and 

0.7Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3-0.1(Bi0.5Li0.5)TiO3 (lead-free) are found to be best materials 

for energy storage applications.  
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1. Introduction 

Materials science and materials development is one among the most rapidly growing fields today 

with particular interest related to innovations in “functional electronic materials”. Ferroelectric 

materials belong to most renowned families of the functional materials. These are being widely 

used in sensors, actuators, energy harvesting devices and many other applications. Due to their 

exceptionally suitable piezoelectric, pyroelectric and non-linear optical properties they have 

attracted the attention of researchers and technologists around the globe. A significant number of 

materials have been reported in this area [1-3] and these are further sub divided into two 

categories of lead-based and lead-free piezoelectric ceramics, primarily due to recent EU 

legislation restricting the use of lead [4]. The most popular systems are the lead zirconate titanate 

(PZT) family in the lead-based systems [1] and (K,Na)NbO3 (KNN), (Bi0.5Na0.5)TiO3 (BNT) and 

(Bi0.5K0.5)TiO3 (BKT) among the lead-free piezoelectric ceramics. These systems are popular 

due to their exceptionally good piezoelectric properties as compared to other reported materials 

to date [5-7]. It is to be noted that PZT-based ceramics make severe negative impacts on 

environment [8]. KNN ceramic has some critical issues such as volatility of alkali-oxides, 

compositional inhomogeneity, poor densification and phase stability [9]. On the other hand, the 

properties of pure BNT and BKT ceramics are as good as PZT or KNN materials but their solid 

solutions are sufficiently good for the technological applications [9]. However, it is to be noted 

that all suitable or required physical properties from application point of view are rarely observed 

in any single material. As a result researchers are left with no other option rather than enhancing 

the key parameters/properties by playing with fabrication/processing variables or with 

compositional modifications. Here the important question is “Which composition to be 

improved?” and the most obvious answer is “The material which is best at present.” The next 
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point is how to judge the best composition and what parameters must be improved which can be 

answered by the user community. Therefore, there is a need for a user oriented approach which 

raises the voice of customer. One approach that is applicable for this role is quality function 

deployment (QFD). The concept originated in 1960s and is globally recognized after successful 

implementation in “Kobe shipyard of Mitsubishi Heavy Industry, Japan” [10]. Later in 1980s 

many companies such as General Motors, Chrysler, Digital Equipment, Hewlett-Packard, 

AT&T, Procter and Gamble, and Baxter Healthcare [11, 12] realized its importance and adapted 

this approach. This has been widely applied to various fields for numerous applications [13, 14]. 

It is the most famous and promising industrial engineering tools for product development and 

designing. 

In the present study, we have used QFD for predicting weights of the material properties 

according to the user requirements. It has the feature to convert the verbal reasoning of customer 

needs to quantitative weights of material properties. Further, we are left with a few attributes 

(with quantitative weights) and an enormous pool of potential materials reported in literature. 

The selection of an optimal material from pool of alternative materials on the basis of two or 

more attributes/properties is a MADM problem [15]. A variety of methods are reported under 

MADM category. These methods include simple additive weighting (SAW), analytic hierarchy 

process (AHP) [16], graph theory and matrix approach (GTMA) [17], VlseKriterijumska 

Optimisacija I Kompromisno Resenje (VIKOR) [18], technique for order preference by 

similarity to ideal solution (TOPSIS) [19] and many more. These methods have some advantages 

and disadvantages over others. MADM models are used to select best alternative from the large 

number of alternatives for a set of selection criteria. Moreover these also inform the user about 

the degree of closeness in terms of rank index. These have been successfully applied to various 



5 

 

fields such as manufacturing processes, social science decisions, financial decisions and 

engineering problems. We have found that these methods are also efficient in material selection 

[20-23]. We employed “Shannon entropy with TOPSIS, MDL aided-VIKOR and Pareto 

Optimality” methods for selection of optimal piezoelectric materials. We found that 

K0.5Na0.5NbO3-LiTaO3-LiSbO3 (KNN-LT-LS) is one of the best piezoelectric materials in lead-

free piezoelectric materials, which is also in confirmation with the experimental results. Though 

results predicted by these methods are reliable but it is the fact that these techniques are entirely 

based on data, experts opinion and do not relate the engineering goals with scientific 

requirements. So In present study, we propose an effective material selection approach which 

relates the researcher requirements with material properties. Here, we employ VIKOR with QFD 

weights for selection of appropriate material for two different applications namely transducers 

and electrical storage devices with the following objectives a) identification of parameters that a 

researcher should consider while synthesizing and fabricating a device; b) relations between user 

requirements with technical specifications or engineering characteristics, c) inter-relationships 

among technical specification, d) inter-relationships among user requirement or researcher goals. 

e) prioritization of the goals and f) selection of material for a particular application. 

 

2. Materials and Methods 

As discussed above, ferroelectric materials belong to an extensively studied family of materials. 

Their various compositions with different properties are widely reported in the literature. 

However, mere presence of the piezoelectric properties does not make all of these potential 

materials viable for technological applications. Many factors simultaneously govern the 
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suitability of a piezoelectric material for different applications.  These factors can be sub-divided 

into two categories namely ‘primary’ and ‘secondary’. Primary factors include physical 

properties of the material while secondary factors deals with cost, durability, toxicity, 

availability, ease and time of fabrication, environmental conditions etc. In this case we are much 

more concerned about selection of materials with optimal primary properties. Among the 

important material properties for piezoelectric transducers and energy storage applications the 

electromechanical coupling (kp), dielectric constant (εr), dielectric loss (Tanδ), Curie temperature 

(Tc) and piezoelectric coefficients (d33) are reported to be critical parameters. Vital piezo-

ceramics along with their properties are listed in Table 1 [24-44]. 

 

2.1. Quality Function Deployment (QFD) 

QFD is evoked to step up the efficiency of product design process based on customer 

requirements. It is entirely based on the relationship between requirements of customer and 

researcher’s and engineering characteristics/material properties. In this context, a “house of 

quality” is prepared which connects the ‘voice’ of the customer with the technical requirements 

and can be considered the ‘soul’ of the QFD system.Fig.1 demonstrates a typical house of quality 

for the problem understudy. It is a matrix )( ji  which has following building blocks (sub-

matrix): 

 Whats: This includes expectations of customers/researchers, in terms of what they are 

looking for in the particular product to be studied. Examples can include cost, life, 

working temperature, frequency range, sensitivity etc. These are to be listed along rows 
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in the left hand side of the house of quality. The product/device has to be fabricated in 

order to satisfy these expectations. 

 Hows: This consists of the prime technical parameters (such as electromechanical 

coupling (kp), dielectric constant (εr), dielectric loss (Tanδ) piezoelectric coefficients 

(d33), Curie temperature (Tc)) which are responsible for satisfying the customer needs.   

 Hows-correlation (roof): This enlightens the inter-dependence of technical parameters.  

 Planning matrix: This provides information about the customer perceptions. It is used to 

priorities the customer needs to fabricate an eminent product or device. All of the 

“whats” are given priorities (Pr) on a scale of 1-5 (1-less important, 2-important, 3-much 

more important, 4-very important and 5-most important) as per the customer perception 

and opinion. 

 Inter-relationship matrix: This explains the relationship between “Hows” and “Whats” 

in terms of a correlation index. The correlation index is an appropriate set of numbers for 

assigning importance. These are filled as per the dependence of the customer 

requirements on technical characteristics (material properties) as 1-very weak, 3- weak, 

5-modrate, 7-stong, 9- strongest. It also takes account of correlation among material 

properties, i.e. hows.  

 Weights (Wj): This gives the overall quantitative weightage of material properties with 

respect to the features described by customer/researchers. It is calculated as  





n

i

ij IDW
1

indexn correlatioPr                                                                            (1) 

Where, ID is improvement driver which shows benefit (+1) and loss (-1) criteria for customer 

requirements. 
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2.2. VIKOR method 

The VIKOR method is a compromise approach MADM model [18]. The analysis of VIKOR is 

highly accurate [45] and provide close to a real solution. It makes the use of utility weight, thus 

enabling different users to apply expert opinion. The normalization norms used in VIKOR are 

linear. The calculation of the VIKOR index involves the following steps; 

Step 1: Determination of ideal and negative ideal solution; 

The ideal solution f
*
 and the negative ideal solution f are determined as: 

)},(min),{(max '* JjforJjff ijij                                                                             (2) 

 )},(max),{(min 'JjforJjff ijij 
                                                                         (3) 

where fij is the j
th

 property of i
th

 material and J corresponds to benefit criteria and J
’ 
corresponds 

to cost criteria. 

Step 2: Calculation of utility measure and regret measure; 












n

j jj

ijj

ji i
ff

ff
WS

1
*

*

;
)(

)(
                                                                                                     (4) 

i
ff

ff
WMaxR

jj

ijj

jji 


















;

)(

)(
*

*

                                                                                             (5) 
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where Si and Ri represent the utility measure and regret measure respectively and Wj is the 

relative weight assigned to the j
th

 property. 

Step 3: Determination of VIKOR index; 

i
RR

RR

SS

SS
Q ii

i 



























;)1(

*

*

*

*

                                                                                (6)  

where,  Qi represents the i
th

 material VIKOR value,  is the group utility weight, it is generally 

considered  as 0.5 (unsupervised) and ; 

);(*

ii SMinS                                                                                                                         (7) 

);( ii SMaxS                                                                                                                        (8)   

);(*

ii RMinR                                                                                                                        (9) 

);( ii RMaxR                                                                                                                      (10) 

The material with the least (lowest?) value of VIKOR index Qi is preferred. 

 

3. Results and Discussions 

Materials science and engineering covers a broad range of multidisciplinary areas starting from 

physics, chemistry and leading up to decision-making, designing, economics and marketing (in 

short, Industrial Engineering). A lack of communication and limited understanding of 

requirements and interrelationships between different fields is one of the biggest hurdles in 
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development of such materials and devices. There is therefore a need of an approach which can 

relate all concerned disciplines and answer all questions pointed above. In this context, QFD 

plays a vital role and successfully implemented in the present study.  

The present study focuses on selection of piezoelectric materials with optimal properties for 

transducer and electrical energy storage applications. All properties such as kp, εr, Tc, Tanδ and 

d33 have their own importance for various piezoelectric applications and have different priorities. 

Piezoelectric constant shows an ability of material to produce a high electrical field on 

application of mechanical strain or vice-versa, which is often a key parameter in deciding 

material for actuator and sensor applications. On the other hand, for energy storage applications, 

it is nothing more than the piezoelectric noise (unnecessary vibrations), which reduces the 

efficiency of the system. Similarly the dielectric constant is the essence of the ability of a 

material to store electrical energy and Tanδ shows inherent dissipation of stored electrical 

energy. These are highly significant figures of merit in case of energy storage as compared to 

transducer applications. kp is the conversion efficiency of the material; which is an important 

feature of transducer materials but unfortunately of almost negligible importance in case of 

energy storage devices. Last but not the least Tc defines the temperature domain for which a 

device can be safely and efficiently operated. 

In order to assign relative weights to above mentioned properties, we have shortlisted the user 

requirements (whats) and house of quality are formed for both the applications under study. 

Customers and researchers highlighted the requirement of a compact transducer device with high 

fatigue life, sensitivity, efficiency, working temperature and frequency range at low cost. Parallel 

investigations for energy storage devices highlighted the need for a compact design with high 
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energy density working temperature and frequency range and efficiency at low cost and 

piezoelectric noise. Based on user/researcher’s needs all “whats” are prioritized and an 

interrelationship matrix is obtained. Once the matrix is formed the weights are calculated using 

eq.1. Tables 3 and 4 summarize the calculation for weights (house of quality) for all the 

properties under study. Fig. 2 illustrates the variation of weights (percentage) of all properties for 

both applications understudy. It clearly shows that there can be huge variation in weightage of 

material properties for two different devices. Priority order for transducer is d33>Tc> kp>Tanδ>εr 

and for energy storage application εr>Tanδ>d33>Tc> kp respectively.  

The weights (calculated using QFD) are multiplied with material properties and rank indices are 

obtained using VIKOR for the materials understudy. The rank index and corresponding ranks 

calculated for piezoelectric transducer and energy storage applications are shown in Table 1 and 

Table 2 respectively. PLZT (7/60/40) is found to be at top for both the application. Though it has 

limitation of working temperature range due to low Curie temperature as compared to the highest 

ranked lead-free members in the lists, it is able to attain the highest ranking position because of 

the exceptionally values of all other properties for these devices. It is to be noted (Table 1) that 

KNN-LT-LS is top lead-free material for piezoelectric transducer applications. It has been 

experimentally investigated and rated very high among top candidates for this application [46]. 

Based on our results also, it is advisable to explore KNN-based families more for piezoelectric 

transducer applications as most of the members of this family are among the top ranked among 

the lead-free piezoelectric. For energy storage applications the situation is a little different. 

0.7BNT-0.2BKT-0.1(Bi0.5Li0.5)TiO3 and 0.92BNT-0.08BT+0.3 wt % MnO (Table 4) has secured 

top positions among the lead-free families. NBT-KBT-LBT and BaTiO3 has achieved the third 

and fourth rank in the same group. These four are studied intensively for the storage applications 
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in both bulk as well as thin films form [37, 39, 40, 43]. K0.5Na0.5NbO3 is found at the bottom in 

the material pool under study. We suggest the aforesaid families should be explored or modified 

in order to have promising material properties and highly efficient devices as per the standards of 

user. The present study is one of the first attempts to focus on unforeseen importance of 

industrial engineering in material science.  

4. Conclusions 

QFD incorporation with VIKOR is employed for selection of ferroelectric ceramics for 

transducer and energy storage applications. PLZT (7/60/40) is found to be best material for both 

applications. Among the lead-free ferroelectrics, KNN-LT-LS and 0.7BNT-0.2BKT-

0.1(Bi0.5Li0.5)TiO3 are found to be best alternatives for transducer and energy storage 

applications. K0.5Na0.5NbO3 is found at the bottom in the material pool under study. Physical 

properties for these material are weighted as d33>Tc>kp>Tanδ>εr for transducer and 

εr>Tanδ>d33>Tc> kp for energy storage applications respectively.  
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 Figures Captions: 

Figure 1: The house of quality. 

Figure 2: Properties weights for transducers and electrical energy storage applications 
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Table 1: Ferroelectric materials, physical properties and their corresponding rank for transducer 

applications 

Rank 

Index 

Rank Material εr Tanδ kp d33 

(pC/N) 

Tc 

(°C) 

0 1 PLZT(7/60/40)[23] 2590 0.019 0.72 710 140 

0.097515 2 PLZT(8/65/35) [23] 3400 0.03 0.65 682 105 

0.255479 3 KNN-LT-LS [43] 1650 0.024 0.48 340 266 

0.323984 4 KNN-LiSbO3 (5%)[35] 1288 0.019 0.5 283 392 

0.437712 5 KNN-Li (7%)[33] 950 0.084 0.45 240 460 

0.460671 6 KNN-LiNbO3 (6%)[29] 500 0.04 0.42 235 460 

0.526581 7 0.7BNT-0.2BKT-

0.1(Bi0.5Li0.5)TiO3 [39, 34] 

1900 0.044 0.368 231 290 

0.528129 8 NBT-KBT-LBT [38] 1550 0.034 0.401 216 350 

0.574197 9 KNN-LiTaO3 (5%) [30] 570 0.04 0.36 200 430 

0.61381 10 KNN-Li3%; Ta20% [40] 920 0.024 0.46 190 310 

0.679242 11 NBT-KBT-BT [24] 770 0.034 0.367 183 290 

0.71042 12 NBT-KBT-BT (MPB) [24] 730 0.02 0.33 173 290 

0.717186 13 BaTiO3 [34] 1700 0.01 0.36 190 115 

0.724562 14 0.92BNT-0.08BT+0.3 wt 

% MnO [42] 

1596 0.008 0.364 153 260 

0.77785 15 (K0.5Na0.5)NbO3 (HP) [25, 

26] 

500 0.2 0.46 127 420 

0.820247 16 BBT-KBT90 [1] 837 0.05 0.23 140 297 

0.820363 17 NBT-KBT-BT [24] 820 0.03 0.162 145 302 

0.840154 18 BaTiO3-CaTiO3-Co [37] 1420 0.005 0.31 150 105 
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0.907845 19 SBT-KBT85 [1] 1000 0.05 0.16 120 250 

0.910125 20 SBT-KBT90 [1] 870 0.04 0.15 110 296 

0.957714 21 BBT-KBT80 [1] 630 0.04 0.15 95 290 

1 22 (K0.5Na0.5)NbO3 [32] 290 0.4 0.35 80 420 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

 

Table 2: Ferroelectric materials, physical properties and their corresponding rank for energy 

storage applications.  

Rank 

Index 

Rank Material εr Tanδ kp d33 

(pC/N) 

Tc 

(°C) 

0.000 1 PLZT(7/60/40) [23] 2590 0.019 0.72 710 140 

0.006 2 0.7BNT-0.2BKT-

0.1(Bi0.5Li0.5)TiO3 [39, 34] 

1900 0.044 0.368 231 290 

0.097 3 0.92BNT-0.08BT+0.3 wt % 

MnO [42] 

1596 0.008 0.364 153 260 

0.136 4 NBT-KBT-LBT [38] 1550 0.034 0.401 216 350 

0.163 5 BaTiO3 [34] 1700 0.01 0.36 190 115 

0.232 6 KNN-LT-LS [43] 1650 0.024 0.48 340 266 

0.263 7 BaTiO3-CaTiO3-Co [37] 1420 0.005 0.31 150 105 

0.270 8 PLZT(8/65/35) [23] 3400 0.03 0.65 682 105 

0.300 9 KNN-LiSbO3 (5%) [35] 1288 0.019 0.5 283 392 

0.346 10 SBT-KBT85 [1] 1000 0.05 0.16 120 250 

0.360 11 SBT-KBT90 [1] 870 0.04 0.15 110 296 

0.395 12 NBT-KBT-BT [24] 820 0.03 0.162 145 302 

0.435 13 BBT-KBT90 [1] 837 0.05 0.23 140 297 

0.447 14 KNN-Li (7%) [33] 950 0.084 0.45 240 460 

0.478 15 KNN-Li3%; Ta20% [40] 920 0.024 0.46 190 310 

0.477 16 BBT-KBT80 [1] 630 0.04 0.15 95 290 

0.521 17 NBT-KBT-BT (MPB) [24] 730 0.02 0.33 173 290 

0.536 18 NBT-KBT-BT [24] 770 0.034 0.367 183 290 
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0.555 19 KNN-LiTaO3 (5%) [30] 570 0.04 0.36 200 430 

0.613 20 KNN-LiNbO3 (6%) [29] 500 0.04 0.42 235 460 

0.760 21 (K0.5Na0.5)NbO3 (HP) [25,26] 500 0.2 0.46 127 420 

1.000 22 (K0.5Na0.5)NbO3 [32] 290 0.4 0.35 80 420 
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Table 3: House of quality matrix for transducer applications, d33 in pC/N, Tc in °C. 

    Technical Requirements 

(Attributes) 

  Improvement 

Driver 

Priority εr Tanδ kp d33 Tc 

 

 

 

Customer 

Requirements 

1. Fatigue life 1 4 1 1 1 9 7 

2. Sensitivity 1 4 1 3 9 9 5 

3. Working 

temperature 

1 5 7 7 5 7 9 

4. Efficiency 1 4 1 1 9 7 1 

5. Working 

frequency 

1 3 7 9 3 5 7 

6. Size -1 5 1 3 5 1 5 

7. Cost -1 1 7 3 5 1 3 

   Weight 56 64 80 144 90 

 

Table 4: House of quality matrix for energy storage applications, d33 in pC/N, Tc in °C. 
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    Technical Requirements (Attributes) 

  Improvement 

Driver 

Priority εr Tanδ kp d33 Tc 

 

 

 

 

Customer 

Requirements 

1.  Energy 

 density 

1 5 9 7 1 3 5 

2.  

Working    

 frequency 

1 3 5 9 1 5 7 

3. Piezoelectric  

    noise 

-1 4 1 7 1 1 3 

4.  

Efficiency 

1 4 9 9 7 7 5 

5.  

Working  

 temperature 

1 3 7 7 5 5 9 

6. Size -1 4 1 3 1 1 5 

7. Cost -1 2 1 3 1 1 9 

   Weight 107 73 41 63 43 


