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Abstract

Biomass gasification is regarded as a sustainable energy technology used for waste management and
producing renewable fuel. Using the techniques of life cycle assessment (LCA) and net energy
analysis this study quantifies the energy, resource, and emission flows. The purpose of the research
is to assess the net energy produced and potential environmental effects of biomass gasification
using wood waste. This paper outlines a case study that uses waste wood from a factory for use in
an entrained flow gasification CHP plant. Results show that environmental impacts may arise from
toxicity, particulates, and resource depletion. Toxicity is a potential issue through the disposal of ash.
Particulate matter arises from the combustion of syngas therefore effective gas cleaning and
emission control is required. Assessment of resource depletion shows natural gas, electricity, fossil
fuels, metals, and water are all crucial components of the system. The energy gain ratio is
4.71MJgelivered/ MJorimary When only electricity is considered, this increases to 13.94MJgelivered/ MJprimary
when 100% of the available heat is utilised. Greenhouse gas emissions are very low (7-15gCO,-
e/kWhe) although this would increase if the biomass feedstock was not a waste and needed to be
cultivated and transported. Overall small-scale biomass gasification is an attractive technology if the
high capital costs and operational difficulties can be overcome, and a consistent feedstock source is
available.

Highlights

e Life Cycle Assessment performed to assess environmental effects of biomass gasification
¢ Environmental impacts can include toxicity, particulates, and resource depletion

* Net energy analysis shows very positive energy gains and short energy payback period

* Low greenhouse gas emissions compared to fossil fuels and other bioenergy systems

e Efficient waste management technology producing renewable heat and electricity

Keywords: Life cycle assessment, LCA, bioenergy, gasification, CHP, industry, greenhouse gas, waste
management

1. Introduction

Industry is a major contributor to world energy demand and carbon dioxide (CO;) emissions. In 2005
the industrial sector accounted for almost one-third of world primary energy use and approximately
25% of world energy and process-related CO; emissions [1]. The relationship between the GDP of a
country and its energy consumption, known as the energy intensity of industry (or energy use per
unit of economic output) demonstrates that a certain level of energy is required to provide the
continued desire for economic growth and development. Nonetheless it is evident that most current
methods of energy production entail adverse environmental impacts on a local, regional and global



scale and often involve considerable resource uncertainties [3]. Solutions are therefore required
which provide the energy required with minimal environmental impacts.

1.1. Potential value of bioenergy and biomass gasification

Renewable energy is of growing importance in addressing environmental and security concerns over
fossil fuel use. Biomass can be used as a substitute for fossil fuels and may reduce the dependence
on imports and/or the greenhouse gas emissions. Other benefits of bioenergy could include
enhancing the rural economy, allowing industry to reduce waste and improve efficiency, and
providing a more sustainable energy source to industry alongside more localised energy production.
Consequently, the use of bioenergy in industry across Europe is expected to increase significantly
over the next decade and beyond [4]. Nonetheless consideration also needs to potential negative
effects of bioenergy including land use change, food versus fuel debate, resources required for
bioenergy, imports of unsustainable biomass, and other complex issues [5, 6].

Wood and other forms of biomass including energy crops and industrial, agricultural and forestry
wastes are some of the main renewable energy resources available [7]. Biomass gasification adds
value to low or negative value feedstock by converting them to marketable fuels and products. A
good example of this is the gasification of waste to produce heat and power, where the alternative
could be landfill, incurring landfill tax, a gate-fee, transportation costs, and potentially increasing
greenhouse gas emissions from fugitive landfill emissions (CH4 having a much higher global warming
potential (GWP) than CO,).

Gasification is considered one of the more promising technologies in biomass applications [8].
Advantages can include higher efficiencies compared to combustion, perspectives in fuel synthesis,
and application to a wide range of biomass feedstocks. There are some successful gasification
facilities which operate in Europe and globally including the Gussing plant (Austria), the Viking
gasifier (Denmark), and the Berkes gasifier technology (Uruguay) [9]. However, current utilisation of
biomass gasification is low and so far has not achieved commercial status in the UK [10]. It has
therefore been identified that there is a need to increase the knowledge of biomass gasification,
particularly in regard to the energy and environmental aspects to industrial applications.

1.2. Aims and Objectives of the study

All forms of energy production give rise to environmental penalties or ‘side-effects’, regardless of
whether it is carbon-emission related or not. The environmental impacts of the construction and
operation of a biomass gasification plant are not well published. In order to assess small-scale
biomass gasification for industrial applications, this study uses two well established methodologies
from the environmental assessment ‘tool-box’: life cycle assessment (LCA) and net energy analysis
[11]. The overall aim of the present study is to evaluate the potential environmental effects of a
small-scale biomass gasification combined heat and power (CHP) plant, and assess the renewable
energy potential for industry.

Objectives of the research using the case study presented can be summarised as:

® Provide a definition of the gasification system;

e Develop a life cycle inventory (LCI) of energy, material and resource inputs and outputs
including waste and emission sources;

e Perform a ‘whole-system’ analysis of the gasification system using on-site wood waste;

e Complete a life cycle impact assessment (LCIA) to assess potential environmental impacts;



e Evaluate LCIA results using sensitivity analysis to assess key data assumptions;

® Assess implications of using different methods for the allocation of impacts between heat
and power;

® Use the LCl data to assess the net energy gains and complete a net energy analysis.

The methodology is outlined in section 2 with the goal and scope further defined in section 4.

2. Methodology
2.1. Environmental Life Cycle Assessment

Life Cycle Assessment (LCA) studies the potential environmental impacts throughout a product’s or
system’s life (i.e. from cradle to grave), from raw material acquisition through production, use and
disposal [12, 13]. LCA is commonly applied as a tool which assesses the life cycle impacts of physical
products. However, the same methodological framework can be applied to the analysis of services
such as energy systems (e.g. [14]) and waste management (e.g. [15]). This paper performs an
attributional LCA of the case study described above. However as renewable energy (both heat and
power) are the services provided, a net energy analysis is also undertaken (see section 6.4).

The general purpose of LCA is to provide a holistic view of the emissions and resource requirements
of a product system. When applied to biomass gasification, this means that the impacts of all
activities involved in the extraction, refining, transport and use of the materials and fuels are
considered. The comprehensive view provided by LCA allows environmental impacts to be assessed
based on a whole system basis.

There are four main stages in the LCA process: goal and scope, inventory, impact and improvement
assessment, and interpretation [12] and [13]. The LCA was performed using SimaPro 7.3 software
[16] and the database ecoinvent 2.0 [17] for background data. This software enables the
manipulation and examination of inventory data in accordance with the LCA ISO Standards. Other
data has been collected from a variety of sources as described in the inventory (see section 5) [10].

2.2. Life Cycle Impact Assessment

In the life cycle impact assessment (LCIA) stage, an assessment is made of the potential human,
ecological, and depletion effects of energy, water, and material usage; and the environmental
releases identified in the inventory. The impact assessment is where the potential effects on the
chosen environmental issues are assessed. This stage is further subdivided into three elements:
classification, characterisation, and normalisation [13]. The LCIA attempts to establish a linkage
between the product or process and its potential environmental impacts. Having built up the LCl an
assessment is made of the potential impacts of the biomass gasification plant operation. In this
study, results are characterised and normalised using ReCiPe impact assessment methodology [18].

The primary objective of the ReCiPe method is to transform the LCl into indicator scores which
express the relative severity on an environmental impact category. In ReCiPe indicators are
determined at two levels with 18 midpoint indicators and 3 endpoint indicators. ReCiPe uses
environmental mechanisms as the basis for the modelling [18]. The data have been normalised with
respect to average European emissions [16, 18], which allows a comparison of the importance of
each category to be made without undertaking the more subjective valuation. This can be achieved



using the notation of ‘people emission equivalents’, which can be defined for the present purposes
as follows [10]:

European emissions per capita = Total European output in each emission category

Population of Europe

-~ People emission equivalents = Emissions from the process studied

European emissions per capita

The approach used in this paper is to assess the normalised results at the endpoint to identify
potential damages and key issues. Results are further analysed using the midpoint categories, as
these indicators are chosen closer to the inventory result and hence have a lower uncertainty.
Midpoint results are also easier to interpret from an engineering and scientific perspective, and
provide additional use for comparison to other LCA and energy system assessments. A total of 18
impact categories were assessed using ReCiPe [18], however some categories have been omitted
from the displayed results as they were found to have very negligible effects.

A sensitivity analysis was conducted to identify the parameters which had the largest effects on the
results of the study. For both the plant construction and operation, various parameters were
changed independently so the magnitude of its effect on the base case could be assessed [10].
Changing one variable at a time is useful to analyse the relative effects on the LCIA results. Each
sensitivity case was assessed using ReCiPe (midpoint) to quantify the effect on emissions and
resource consumption relative to the base case for plant operation.

2.3. Net Energy Analysis

Net energy analysis is a methodology whereby the energy required to manufacture a good, or create
a service may be computed. It takes into account both direct and indirect energy use. To determine
the primary energy inputs needed to produce a given amount of product or service, it is necessary to
trace the flow of energy through the relevant industrial system. This idea is based on the First Law of
Thermodynamics — that is, the principle of conservation of energy or the notion of an energy balance
applied to the system [3, 19]. It leads to the technique of First Law or ‘energy’ analysis, sometimes
termed “fossil fuel accounting’, which was developed in the 1970s in the aftermath of the oil crisis
[20, 21]. Analysis is performed over the entire life cycle of the product or activity, ‘from cradle to
grave’. It yields the whole-life or ‘gross’ energy requirement (GER) of the product or service.

The system boundary for this net energy analysis is the same as used in the LCA. Data obtained in
the LCl is therefore adequate to perform the net energy analysis. To calculate the GER for the plant
construction and lifetime operation, the life cycle impact assessment method (LCIAM) Cumulative
Energy Demand (CED) [22] was applied to the LCI. This LCIAM expresses results in terms MJ, valued
as primary energy during the complete life cycle of the gasification plant.

Energy gain ratio (EGR) and energy payback period (EPP) are metrics that can be used to assess
energy generation technologies [10]. The EGR is defined as the delivered energy output from a
generator over its lifetime divided by the life cycle primary energy input. A positive (>1) value is
possible for renewable energy sources, whereas non-renewable energy sources have a value (<1)
which is a measure of resource depletion. The EPP is analogous to a financial payback period (often



termed ‘break-even point’), and represents the number of years that a system must operate until its
delivered energy output equals the life cycle primary energy input.

3. Definition of the System

The conversion of biomass to energy includes a wide range of different types and sources of
biomass, conversion options, end-use applications and infrastructure requirements [23]. The
method of conversion will depend on the type and form of the feedstock utilised and what end fuel
is required [24]. Biomass can be derived from a variety of sources including dedicated energy crops,
agricultural residues and industrial wastes [25]. This paper outlines a case study that uses waste
wood from a factory for use in an entrained flow gasification CHP plant. The basic system is
described by Gallagher in a report for the UK Department of Trade and Industry [26], but with the
actual plant receiving 200kg of wood waste an hour generating 230kW of net electricity and 500kW
of heat per hour. A summary of the full biomass gasification system is presented here [10] and
additional technical information on the gasification of biomass provided elsewhere [27-31].

Gasification is the conversion of biomass to a gaseous fuel by heating in a gasification medium such
as air, oxygen or steam [9, 29]. The biomass feedstock is fed into the gasification reactor (gasifier) via
an air-tight enclosure. Conversion of the feedstock into a producer gas (also known as ‘syngas’) takes
place in the gasifier. A variety of different gasifier technologies can be used [9, 27, 29, 30]. This case
study uses entrained flow gasification with air as the gasification medium. In practice air is most
commonly used as the gasification medium for economic reasons. The processes of drying, pyrolysis,
oxidation and reduction take place in the gasification reactor [27, 32, 33]. The basic chemical
reactions which take place in the gasifier are described by McKendry [30].

Main components of the small-scale biomass gasification system include a wood feed hopper, feed
screw, gasifier, gas burner, ash/char filter, ash collector, air filters, air blower, venturi gas scrubber,
condenser, after-cooler and demister, gas engine, heat exchanger, and generator. Figure 1 provides
a simplified schematic flow sheet for the biomass gasification system.

Biomass

Hopper & Gasifier

Heat
Recovery

Air Blower

Condenser
After-cooler
& Demister

Venturi

Pre-heater Gas Scrubber

Gas Burner

Producer Gas

Air Filter

Gas Engine Generator

Ash/char
filter &
collector

Figure 1: Simplified Schematic of the Gasification Process

In addition to the gasification process there are wider inputs to and outputs from the system. These
flows of resources, products, and emissions are portrayed in Figure 2 giving an overview of the
gasification plant with its system components that provides a high level process description. It
should be noted that pre-drying is not required which is often different when purposely grown crops
are used as a feedstock which have a high moisture content (30-50%).
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Figure 2: Description of the biomass gasification CHP system with main inputs, processes, outputs
and emissions

Producer gas ('syngas’) and heat are the main outputs from the gasifier. At the exit of the gasifier,
the main desired products in the producer gas are the permanent gases (H,, CO, CH4, CO>, and N,).
The composition of the producer gas varies depending on the feedstock used, type of gasification
process and other subsequent processing. Table 1 displays the typical composition of the wood
gasified in air. Therefore a typical wood gas would have a Lower Calorific Value (LCV) of 4.6MJ/m3.
Clearly this compares unfavourably to the LCV of natural gas (37-39MJ/m?3) or diesel (36-38MJ/I),
which is generally the fuels used for non-biomass CHP systems [9, 10].

Table 1: Typical gas composition of wood gasified in air [26]

Gas %vol./vol.
H, 9.0%
0, 1.2%
N> 57.0%
CHa, 2.0%
Cco 15.0%
CO; 13.0%
Other CyHy 0.9%

Heat produced is available as a useful co-product from the CHP plant after some utilisation for
internal gasification process heat. There are also undesired by-products which can include
particulate matter, dust, soot, inorganic pollutants, alkali salts, and organic pollutants (tars and
chars) as well as ash [9, 26, 29]. Wood gas invariably contains contaminants such as tar, char and ash
particles which can cause wear, contamination and build up on moving parts and surfaces [26]; this
is outlined below and in further detail in the discussion. Gas cleaning and/or modifications to CHP
engines are therefore required to enable these systems to run on wood gas. The producer gas leaves
the reactor with a certain pollutant load and enthalpy. In the subsequent steps of the process the
heat contained in the producer gas is used for both the provision of internal process heat and for the
extraction of heat. In various cleaning and cooling components the producer gas is subjected to
cooling and wet scrubbing to satisfy the cleanliness requirements for later use in the gas engine [8,
9, 26, 29]. Alternative end-uses of the gas include a gas turbine, or micro gas turbine, and possibly a
fuel cell.



4. Goal and Scope

The goal of the study is to identify and assess the potential environmental impacts of a biomass
gasification system. The main function of the system studied is the production of renewable
electricity and heat from biomass. A secondary function of the system is waste management. To
achieve this, waste wood is put through a gasification process, the producer gas is then scrubbed
and cleaned and used in an internal combustion gas engine modified for syngas. Electricity that is
generated by the gas engine is either used for internal consumption or supplied to the electricity
grid. The heat produced by the process is used for heating industrial buildings. The functional unit of
the study is 1 MJ (or kWh) of energy produced. As both electricity and heat are produced, the
environmental impacts of the system are partitioned and assessed using different allocation
methods.

Figure 3 shows the system boundaries which include the raw materials, energy, transportation and
materials used in the plant construction (note that ‘raw materials’ are substances such as primary
metals, natural resources, etc. whereas ‘materials’ have undergone some change through
production or manufacturing, e.g. stainless steel, equipment, etc.) Recycling and landfill of wastes
and by-products is also included (see dotted line). The considered system includes: biomass
processing, plant construction, energy conversion (operating life 20 years) and plant maintenance.
Energy conversion is the operation of the biomass gasification plant from wood chipping through to
use of the gas in the gas engine (see Figures 1 & 2). As this is a relatively new technology there is
insufficient knowledge or information available about its end of life, therefore plant dismantling and
disposal has not been considered in this study.

Environmental issues considered in the study include effects on human health (e.g. toxicity,
particulates); ecosystems (e.g. acidification, eutrophication); land use; mineral, fossil, and water
depletion; energy usage; and climate change. Environmental burdens relating to the storage of
wood, dust from wood chipping, local air quality, and biodiversity impacts are not included in the
study. Most of these are not usually included in an LCA as they are more localised impacts and
difficult to quantify on a wider scale.
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Figure 3: Overview of the system boundary for the biomass gasification plant construction and
operation [10].



5. Life Cycle Inventory

The main purpose of the Life Cycle Inventory (LCl) is to identify and quantify the energy, water and
materials usage and environmental releases (e.g. air emissions, solid waste disposal, and waste
water discharges) [14]. In the inventory stage data collection was performed using practical data
gathering, literature searches, or through the use of software. A description of the main aspects of
the LCl is presented here, further detailed description of the LCl can be found in [10] and in the
supplementary data.

The plant construction inventory was based on an equipment inventory supplied by the gasification
company. There were also over 30 different companies which supplied equipment to the plant. All of
these were contacted and most supplied the necessary data for the LCI. For a limited number of
items no primary data could be obtained. In these cases the inventory data was either calculated or
an equivalent item used from the ecoinvent database [17, 26]. As a final data quality check all items
contained in the inventory were physically inspected, measured and materials verified to confirm
completeness and accuracy of the inventory data (see supplementary data and [10]).

Wood waste is provided on site by a furniture factory, therefore for this case study no biomass
production or transportation is included. Further details of the wood waste composition and
assumed parameters are provided in the supplementary data. Rabl et al. [34] recommend that
carbon dioxide (CO-) should be counted explicitly at each stage of the life cycle. However it is
assumed that carbon would have been sequestered in a relatively short time frame and would be
released upon combustion of the producer gas, hence the net effect is zero CO; emissions from this
waste feedstock.

Wood chipping takes place on site at the gasification plant. The chipper weighs approximately 2
tonnes and has a service of 30,000 hours (or 100,000 m* of wood) [17]. Energy consumption is 27
MJ/m3 (~0.043 kWh/kg) of wood and this is modelled based on the LCI for the UK Grid [35]. Wood is
fed into the system at a rate of 200 kg per hour.

Other than biomass feedstock, the main inputs to the plant during operation are electricity, natural
gas, water, and lubricating oil. Electricity is consumed in the plant to provide power for pumps,
motors and control equipment. Natural gas is used on each start-up to raise the temperature of the
gasifier to allow gasification reactions to occur. Water is used in both the gas scrubbing system and
the heat exchanger. Finally, lubricating oil is used in several moving parts, but primarily in the gas
engine, and in the wood-chipper. Estimated annual operating hours were given as 7,000 hours by
the plant developer, which gives a capacity factor of 80%. Whilst this is reasonable for a thermal
powered CHP plant, a literature review of existing operating biomass gasification plants globally
revealed an average total of approximately 2,500 annual operating hours [10]. This was calculated as
an average from 10 different gasification plants [29]. 7,000 hours was used for the base case, but the
lower operating hours of 2,500 is assessed in the sensitivity analysis. Table 2 summarises the main
inputs to the operation of the gasification plant.



Table 2: Main biomass gasification plant operational inputs.

Input Amount Description

Waste wood 200 kg/hour Assumed carbon neutral as no biomass production or
transportation included in on-site waste product.

Wood chipping 31 MJ/hour (8.6 kWh) Consists of electricity consumed in chipper.

Electricity 90 MJ/hour (25 kWh) Approximately 10% comes from UK grid, with remainder
produced internally from CHP generator.

Natural gas 270 MJ/start-up Assumed 50 start-ups per year. Inventory includes upstream
emissions from natural gas supply on a MJ delivered basis.

Water 60 litres/hour Consumed to replace gas scrub water.

Lubricating oil 24.8ml/hour Consumed to change lubricating oil. Calculated based on wood
chipper and gas engine oil manufacturer requirements plus
calculations of other minor uses of oil in plant.

The main desired outputs produced by the system are electricity and heat. There are also a large
number of emissions and releases over the entire life cycle. This is due to the various upstream
processes and the amount of materials used, as well as downstream processes such as waste
disposal and emissions to air, water and soil. Owing to the large quantity of substances accounted
for in the study, only the direct releases from the plant operation are described here. Indirect and
upstream emissions are accounted for using ecoinvent [17] and ReCiPe [18].

No primary data could be obtained from the plant on the direct emissions from producer gas
combustion. Essentially all carbon contained in producer gas components will end up as carbon
dioxide when the producer gas is burned, provided that there is sufficient air and mixing [36].
Producer gas components contributing to CO, emissions include carbon monoxide, hydrocarbons,
and the carbon dioxide itself. Other main emissions from producer gas combustion include nitrogen
oxides (NOy) and particulate matter. Potential localised environmental impacts associated with
combustion are not accounted for in a LCA, these should instead be assessed through an
Environmental Impact Assessment (EIA) to evaluate potential local air quality implications.

Emissions from the natural gas burnt are taken as equivalent to emissions from a natural gas
atmospheric burner from the ecoinvent database [17]. It was not possible to obtain the exact total
of ash produced from this gasification system. Therefore an average across a range of gasification
plants was taken. Based on the literature survey of 22 gasification facilities performed during the
development of ecoinvent [17] and the typical composition of wood [37], the amount of ash
collected for this system is assumed to be 8.2 g/kg (see supplementary data) with ash collection
based on cyclone collection [8]. Finally, a total of 60 litres of water are disposed to sewerage per
hour from the gas cleaning and scrubbing process [26]. Table 3 summarises the main outputs and
emissions from the gasification plant, and how these have been accounted for.




Table 3: Key biomass gasification plant operational outputs and emissions

Output / emission Amount Description / Data source

Net electricity output 230kw The actual engine output is 255kWe but the parasitic load of
the plant requires an average of 25kWe per hour.

Net heat output 500kw This is the maximum available heat after some heat has

Natural gas emissions

Ash from Gasifier

Waste water emissions

Producer gas combustion

emissions

270 MJ/start-up

8.2g/kg of wood
(~1.64kg per hour)

60 litres/hour

2.9% (vol.) of each m3
of producer gas (see
Table 1)

been consumed by internal processes such as in the
gasifier, as well as heat losses.

Emissions are calculated based on combustion of natural
gas emission factors from a typical atmospheric industrial
natural gas burner [17].

Average composition of ash taken from ECN [37]. Transport
to landfill assumed to be 20km, only 1 trip required per
annum as total ash ~11.5 tonnes/year.

Arises from gas scrub water. Composition of waste water is
modelled using data from Lunds Universitet [38].

For the modelling of producer gas combustion, it is
assumed that CO is converted completely to CO>, and that
CO2 does not react in the combustion process and is hence
emitted as such. CHs and CxHy altogether are considered as
‘natural gas’ and modelled according to the emissions of
the process ‘natural gas burned in industrial furnace >
100kW (emissions only)’. H2 is converted to water.

6. Results

6.1. Life Cycle Impact Assessment

During operation of the plant, direct environmental releases include wood ash, wastewater effluent,
emissions from burning natural gas, and flue gas emissions from producer gas combustion. Indirect
emissions arise primarily from the use of UK grid electricity and upstream processes such as natural
gas production, metal extraction, and water supply. Results were normalised using ReCiPe
(endpoint) to identify the impact categories with the highest people emission equivalent (PEE)
values (see Figure 4). Endpoint results identified five key issues for the gasification plant operation:
fossil fuel depletion, climate change, particulate matter formation, human toxicity, and terrestrial
ecotoxicity. Metal depletion was found to be an issue due to plant construction. Water depletion
may also be an issue but there is currently no damage model available in ReCiPe [18]. Normalisation
showed several impact categories (e.g. ozone depletion, acidification, eutrophication, radiation,
water ecotoxicity, land occupation and transformation) have very small PEE values (< 0.06) and are
therefore not further considered here as the cut-off selected was PEE values of > 0.1.
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Figure 4: Normalised data for annual biomass gasification plant operation (ReCiPe endpoint [H] v1.01)

Characterised midpoint data for one year of operation (assuming 7,000 hours) shows that each
impact category is affected by different aspects of the plant operation (see Figure 5). It can be seen
that UK grid electricity used in the plant and wood chipping contribute most to climate change,
particulate matter formation (PMF), and fossil fuel depletion. Natural gas combusted on start-up
also contributes 15-20% to climate change and fossil depletion impact categories. Wood gas
(‘syngas’) combustion made up approximately 12% of the PMF category, although primary data was
not obtained so this result is uncertain and assessed further in the sensitivity analysis. ReCiPe
(midpoint hierarchical [H]) results are summarised in Table 4 with further results provided in the
supplementary data.

Ash was found to contribute almost 100% to the terrestrial ecotoxicity impact category primarily due
to Phosphorus content with its high characterisation factor. Ash was also the major component of
the human toxicity impact, with upstream emissions from the UK electricity grid also contributing.
Direct use of mains water supplied to the gas cleaning system contributes just over half of the water
depletion impact category with water use from upstream electricity supply comprising most of the
remainder. Waste water was not found to have much of an impact to any of the impact categories.

Metal depletion is mainly caused by the construction of the plant, with most of the remaining
contribution coming from the construction of the wood-chipper used to process the waste wood
chips. Plant construction was not found to make a notable contribution to any of the other
categories due to the relative impact being amortised over 20 years. Lubricating oil was found to
make a small contribution (<5%) to fossil fuel depletion and climate change.
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Figure 5: Characterised data for annual biomass gasification plant operation (ReCiPe midpoint [H] v1.01)

Table 4: Characterised results for annual biomass gasification plant operation (ReCiPe midpoint [H] v1.01)

Impact category Per MJ (electricity only) Annual Total Unit

climate change 0.00599 34,722 kg CO2 eq.
human toxicity 0.00133 7,713 kg 1,4-DB eq.
particulate matter formation 0.00001 52 kg PM10 eq.
terrestrial ecotoxicity 0.00266 15,446 kg 1,4-DB eq.
water depletion 0.00016 928 m?3

metal depletion 0.00165 11,919 kg Fe eq.
fossil depletion 0.00203 11,734 kg oil eq.

6.2. Sensitivity Analysis

Several sensitivity analyses were undertaken for this study to analyse the assumptions made in the
LCI [10]. The rationale for selecting sensitivity cases is based on assessing the relative importance of
the main operational parameters as described in the LCI (see section 5). The most significant findings
are summarised in Table 5 with additional description provided here and results provided in the
supplementary data. In case A it was found that reducing annual operating hours to 2,500
substantially reduces the annual environmental load as expected. The main effect of lower operating
hours is the capacity factor reduces to 29% from 80% and therefore the relative impact of plant
construction (i.e. metal depletion) increases.

In case B switching to diesel powered wood chipping was found to reduce primary energy use and
GHG emissions, but increased particulate emissions. Case C primarily affects the amount of natural
gas consumed as each start-up requires the gas burner to be operated. 100 start ups in the year
doubles the contribution of natural gas to fossil depletion and climate change. Case D was difficult to



model due to inconclusive data being available on alternative ash compositions. Therefore the
individual elements were assessed which showed that phosphate followed by various metals made
the largest contribution to eutrophication and the toxicity impact categories. The potential effect of
ash disposal is further analysed in the discussion.

Case E assessed the data uncertainties associated with producer gas combustion emissions. UK
emission limits for CO (150mg/m?3), Nitrous Oxide (350mg/m?3), Particulate Matter (20mg/m3),
Hydrocarbons (20mg/m?3) were modelled, being the worst case scenario [39]. PMF was found to
increase significantly due to higher releases of NOy and particulates. There was also an increased
impact on terrestrial acidification and marine eutrophication under this sensitivity. However these
results are inconclusive due to insufficient primary data being available from the plant. It is clear that
an EIA will be required at the plant to ensure emission limits are adhered to for biomass gasification
to meet local air quality requirements; this was outside the scope of the LCA.

Table 5: Summary of main sensitivity analyses performed

Case Sensitivity case Base case (original LCI data) Sensitivity (changed LCI
letter data)
A Low annual operating 7000 hours 2500 hours
hours (Capacity Factor is 80%) (Capacity Factor is 29%)
B Wood chipping with Electrical wood-chipper Diesel powered wood-
diesel chipper
C No of plant start ups 50 start-ups per annum 100 start-ups per annum
D Ash composition Average composition of ash [37] Individual compositions
E Producer gas CH4 and CiHy modelled as natural gas UK emission limits [39]
combustion emissions  burned in an industrial furnace

6.3. Allocation of impacts between electricity and heat in CHP production

CHP offers a rise in fuel efficiency leading to a decrease of environmental burdens per unit of useful
energy. Different options exist for the attribution of environmental impacts to either electricity or
heat [40]. In this paper allocation based on thermodynamic (energy and exergy) and economic
parameters are assessed to portray the impact on the final results.

Energy allocation is based on the energy content of the annual electricity and heat production. Total
energy production is 5,110MWh (32% electricity and 68% heat) which means both electricity and
heat have the same emissions on a per MWh (or MJ) basis.

Exergy allocation is based on the exergy content of the annual electricity and heat production. The
exergy content of electricity and heat is characterised by the Carnot-factors (nC) with nC =1 for
electricity and nC = 0.2 for heat [40]. The annual exergy production is 2,310MWh (70% electricity
and 30% heat).

Economic allocation uses final product prices. Data on industrial user prices were obtained from
DECC as 9.17p/kWh (electricity) and 2.35p/kWh (gas) at 2012 prices [41]. Electricity assumes UK grid
prices and gas has been used as the most common fuel for heating in the UK. This gives a total
annual energy cost of £229,887 (64% from electricity and 36% from heat).




The three allocation methods produce different results which are summarised in table 6 using
climate change (34,722kg CO»-e) for example data. This shows that using exergy or economic
allocation results in higher emissions being allocated to electricity, due to the higher value of
electricity.

Table 6: Comparison of energy, exergy and economic allocation using CO,-e emissions for electricity and heat

Allocation method Electricity (g CO2-e/kWh) Heat (g CO2-e/kWh)
Energy (32:68) 6.8 6.8
Exergy (70:30) 15.0 3.0
Economic (64:36) 13.9 3.5

6.4. Net Energy Analysis

Conventions in energy analysis require the output from a system to be measured on a ‘delivered’
basis. This means in a CHP unit it is the actual electricity and heat delivered to the end-user that is
accounted for, and not necessarily the total amount produced. Distribution and transmission losses
for the electricity and heat losses through heat transfer are assumed to be zero. In the system
studied it is assumed that all electricity produced is consumed either locally or fed back into the grid.
Conversely the demand for heat cannot be considered to be constant if it is used for industrial space
heating. For example, there is a high demand for heat in the colder winter months, but minimal
demand in the hotter summer months. Therefore, results presented in Table 7 are for 3 different
cases: no heat is consumed (0% heat); half of the heat is consumed (50% heat); all of the heat is
consumed (100%).

Table 7: Net energy analysis results: EPP and EGR of 3 delivered heat case studies

Scenario Gross Energy Output EPP EGR
(years) (MJgelivered / MJprimary)
0% heat 1 MJ electricity 0.39 4.71
50% heat 1 MJ electricity & 0.98 MJ heat 0.17 9.32
100% heat 1 MJ electricity & 1.96 MJ heat 0.11 13.94

The plant has an energy payback of 0.39 years (less than 5 months) even when the heat is not
utilised. The energy payback improves as more of the heat is consumed. However, it needs to be
considered that biomass production and transportation are not included in this study. Using waste
on site will therefore produce much more favourable net energy results than cultivating biomass off-
site. As a comparison, the EPP was found to be more favourable than several renewable micro-
generation technologies [42]. Cumulative Energy Demand (CED) results are presented in the
supplementary data.

The EGRs of the 3 heat case studies were all found to be positive and comparable to other biomass
technologies [43]. As the proportion of heat utilised increases, so does the EGR, with analogous
results for the EPP. In comparison to UK grid electricity (EGR ~ 0.33), or a natural gas power plant
(EGR ~ 0.43), the EGR is significantly higher [10, 42].




7. Discussion
7.1. Life cycle impact assessment findings

Results from this study show that small-scale biomass gasification shows good potential for use in
industry. Environmental impacts are relatively low overall when compared to fossil fuel based CHP
systems. For instance, using climate change impact category as a benchmark, diesel generators have
GHG emissions around 310-360g CO,-e/kWh. with natural gas being around 240-270g CO,-e/kWh,
[17, 18, 43] Compared to 7-15g CO,-e/kWhe in this study and 5-163g CO,-e/kWh, [43] or 25-237g
CO,-e/kWh [44] for other bio-electricity systems. Climate change mitigation is a key driver for the
development of bioenergy and this study demonstrates the GHG advantages of using a wood waste
product for energy generation. Nonetheless these results should be set in context as wood waste is
not always available and the alternative could be cultivation and transportation of woody biomass
with much higher GHG emissions. In the present study the growth of biomass, harvesting,
transportation, pre-processing, and drying (which can all have notable GHG emissions [10, 43, 44])
are outside the scope. The GHG benefits of bioenergy systems are widely debated in the literature
[45] with some studies demonstrating higher GHG emissions than fossil fuel alternatives [46].

Other impact categories results, such as particulate matter formation (PMF) and ash disposal,
produced more uncertain findings. PMF for biomass gasification is primarily determined by the
composition of the biomass feedstock and the gas cleaning equipment used. In comparison diesel
and natural gas CHP systems do not require the disposal of ash by-products although PMF can be an
issue. The results generated for PMF in this study use an average composition and general
assumptions on emissions therefore this is an area for further work to assess local air quality.

These LCIA findings demonstrate the importance of assessing the local receiving environment
through EIA. For example, as the results displayed here are based on the European region it could be
misleading to imply that wood ash sent to landfill poses a risk to human health or ecosystems.
Indeed application of wood ash to agricultural and forest soils is an efficient way of removal and in
forestry it is particularly interesting to recycle the exported nutrients [47]. Application of wood ash in
agriculture does not present any major risk for the environment, provided that no excessive
amounts are applied and only ashes from burning of pure wood residues are used [47].

7.2. Net energy analysis

Using the Energy Gain Ratio (EGR) as a metric provides a sound reason for installing CHP systems due
to the additional amount of useful energy produced. It is acknowledged by the authors that both 0%

and 100% heat utilisation is unrealistic in practice due to heat losses and thermodynamics. However

these scenarios allow the reader to use the results and apply different heat utilisation percentages.

Similarly to the climate change impact category the EGR for this system would reduce where
additional life cycle stages were required. Energy intensive areas in a supply which used purposely
grown crops can include fertiliser production, diesel used in farm machinery, drying, and other pre-
processing. Clearly the EGR results would reduce as alternative biomass supply chains and
processing steps were considered [43, 44].

Energy payback period (EPP) for the present study demonstrates that the energy consumed in
constructing the facility is paid back during the first year of operation. This is only possible with
renewable sources of energy such as biomass due to the small amount of non-renewable fuels



required in the supply chain. The detailed inventory developed for plant construction showed that
embodied energy in the facility materials should be taken into account. Nonetheless over the life
time of the facility the energy produced means that plant construction has a relatively low impact.
Assuming 7,000 hours of operation per year means that plant construction accounts for fewer than
15% of the non-renewable energy consumed in the supply chain. When the EGR is taken into
account this means plant construction embodied energy corresponds to approximately 1% to 3% of
the total energy produced.

7.3. Allocation of environmental impacts between heat and electricity

As CHP offers a rise in fuel efficiency which leads to a decrease in environmental burdens emitted
per unit of useful energy, it is important to select the most appropriate allocation method. A CHP
plant is operated to primarily satisfy a predefined demand of electricity or heat, therefore the
additional production of heat or electricity can be considered as a side-effect [40]. Energy allocation
would appear to make the most sense and is perhaps the most simple of the three approaches
presented in this paper. However energy allocation only takes account of the quantity of energy and
not the quality. Exergy allocation is therefore more appropriate when the value of energy is
considered, although Carnot-factors are not straightforward to obtain. Interestingly using economic
allocation produces similar results to exergy allocation which is perhaps also a reflection of taking
the value into account.

Different methodologies exist for calculating greenhouse gas emissions for bioenergy each of which
has a different approach to allocation. For instance the EU Renewable Energy Directive (RED)
allocates co-products by energy content, whereas the PAS2050 method recommends that co-
product allocation should be avoided by applying system expansion, but if this is not practicable,
allocation should be done by market value [48]. The RED recommends allocation by energy content
as this method is “easy to apply, is predictable over time, and minimises counterproductive
incentives”. Out of all the allocation methods, allocation by price may be more widely applicable,
though the results may vary over time and location. The allocation method selected should depend
on the goal and scope of the LCA study. As demonstrated in this paper different allocation methods
produce different results which make comparisons to other fuel cycles more difficult and complex.
Regardless of the allocation method applied it is apparent that reductions of emissions are obtained
by replacing fossil fuelled energy systems with biomass systems [40].

7.4. Key issues for the development of biomass gasification

Key issues for industry regarding the development of biomass gasification include the availability and
quality of feedstock, dependency on fossil fuels in the supply chain, gas clean-up, capital costs,
economic cost of emission abatement technologies, and operational problems associated with
technology [8, 9, 10, 29, 42, 43]. Each of these issues is discussed in further detail below.

7.4.1. Feedstock availability and quality

Feedstock availability is an important issue as purposely grown energy crops will add to the cost of a
biomass gasification system. Wastes and residues are a limited resource hence for bioenergy to
develop energy crops are likely to be required. This is likely to significantly increase the
environmental burden primarily through land use and the application of inorganic fertilisers [10]. In



comparison, biomass wastes are assumed to not have the environmental impacts from their original
production attributed, and therefore have a zero GHG burden [49] as recognised by the EU RED [48].

In attributional LCA methodology if a product is a genuine waste then no upstream impacts are
allocated at the point it becomes a waste. In practice waste and residue systems are often credited
with high levels of GHG savings based on assumptions about the counterfactual, i.e. what would
have happened to the material if it had not been used for bioenergy. Natural decay or disposal of
biomass and wastes may result in releases of greenhouse gases such as methane or nitrous oxide,
which have a much higher global warming potential (GWP) than CO; so there is potentially a very
substantial benefit in using the material for bioenergy. However, there is a need to carefully consider
the appropriate counterfactual in order to accurately assess the GHG balance. Consequential LCA is
an area of substantial research for bioenergy systems and is an essential tool for policy-makers [45,
46, 50], however it is outside the scope of this study.

The quality of the biomass source is a crucial consideration as the feedstock composition will
determine the efficiency and subsequent emissions from the gasification process [29]. Biomass
feedstock is very versatile in its morphology and physical characteristics which have led to many
different designs of gasifier being developed [27, 29, 30]. Although in theory it may be possible to
gasify all types of feedstocks, in practice the type of gasification system employed will depend on the
type and form of the feedstock. The exact design and specification will depend on a variety of factors
including: feedstock; size of plant; gasification medium; end-use of producer gas; and other
engineering factors [9, 42]. Drying of feedstock is usually required where energy crops are used for
gasification. Drying was not required in this system due to the low moisture content (7%) of the
wood waste feedstock. Where drying and additional biomass processing steps are required it is
apparent that the environmental burdens will increase [44]. The main increased impacts of drying
are additional use of energy and higher GHG emissions, which in turn can make the net energy
analysis results less favourable.

7.4.2. Dependency on fossil fuels in the supply chain

Fossil fuels are used in different aspects of plant construction and operation. Natural gas is burnt
when the plant is started-up and UK grid electricity is consumed for wood chipping and general plant
operation. This reliance on natural gas for heat and grid electricity reduces the sustainability of
biomass gasification, since natural gas and much of the electricity generation is from non-renewable
sources. Conversely the main function of the biomass gasification plant is to produce renewable
CHP. The net energy analysis demonstrates that positive energy gains are made displacing demand
for non-renewable fuel, but it is likely the system will always have some dependence on fossil fuels.

7.4.3. Gas clean-up

Raw syngas contains containments that must be mitigated to meet process requirements and
pollution control regulations. When syngas is applied to heat and power applications each
contaminant can create specific downstream hazards. Various technologies exist to purify the raw
synthesis gas which is produced by gasification [8, 9, 51]. Some methods are capable of removing
several contaminants in a single process such as wet scrubbing employed in this case study, whilst
others will focus on the removal of only one contaminant. For successful gasification of biomass gas



cleaning is a crucial stage of the process. Further discussion on its importance and detailed
information on different gas cleaning technologies are available in the literature [8, 9, 51].

7.4.4. Capital costs and the economics of emission abatement technologies

With small-scale CHP systems the capital cost relative to the energy generated is high compared to
larger scale dedicated electricity-only or heat-only systems [52]. This means investing is this
technology may be risky due to the returns on investment being less favourable as the capital and
maintenance costs are spread over low energy generation. Emission abatement technologies for
gasification, such as gas scrubbing and secondary treatment of exhaust gas, are an additional cost
which is incurred to comply with the relevant engine requirements and emission limits [51]. The
economics of small-scale gasification are therefore uncertain and require efficient operation in order
to justify the relatively high capital costs.

7.4.5. Operational problems associated with technology

Some problems exist with gasification which has restricted the commercial development of the
technology. Potential issues can include high moisture content, high ash content, volatile
compounds, large particle size, tar build up, dust, amongst other issues [9, 27, 29, 30, 32, 33, 50].
This can restrict the development and implementation of biomass gasification due to problems
demonstrating technical and commercial feasibility. Perhaps the main technical constraints arise
from the variability of biomass feedstocks which makes it difficult to optimise the gasification
process for consistent physical characteristics. Other barriers include the lack of experience in
operating gasifiers, access to finance due to concerns about technology viability, perceived
technology risk due to securing long term waste feedstock contracts, legislative issues and uncertain
market conditions for investment [53, 54]. Several of the technical problems can be addressed
through appropriate use of technology and improved technical knowledge of plant operators [8, 9,
51]. Obtaining a securing a feedstock with consistent properties will assist developers in designing
and operating gasification facilities efficiently and effectively. Appropriate Government support and
commitment from investors can address several of the potential legal and financial constraints.

8. Concluding Remarks

The study analysed the potential environmental impacts and renewable energy generation of
biomass gasification through the techniques of attributional LCA and net energy analysis. It has been
shown that the energy gains are positive and the environmental burdens are reduced when
compared to the fossil fuel alternatives for CHP. These findings are consistent with related studies in
the literature which performed consequential LCA of biomass CHP [55, 56]. Eriksson et al. found that
biomass and waste CHP offer low net energy and GHG emissions [55]. Kimming et al. also suggest
considerably reduced energy use and GHG emissions compared to scenarios based on fossil fuel, but
have higher acidifying emissions [56]. However despite the energetic advantages of the thermo-
chemical conversion of biomass into producer gas (e.g. CHP) [56], in comparison to combustion
systems there are additional by-products which are produced during the more complex operation.
The wastes and emissions from gas cleaning, ash disposal, and producer gas combustion can be
hazardous to human life and/or the environment. To avoid damages to human health and
ecosystems, emission limits from several directives and laws with regard to solid, liquid and gaseous
emissions have to be fulfilled (e.g. ‘IPCC Directive’ and related legislation) [9, 51].



Biomass is widely regarded as a renewable resource and whilst much research has focused on the
net energy and carbon balances [10, 43, 44], full attention is not always provided to resource
depletion in different bioenergy systems. This paper has identified that fossil fuels, water, minerals
and other resources are all consumed in direct and upstream processes required for operation of the
CHP plant. Resource depletion issues should be taken into account when assessing energy systems.

If operational problems of biomass gasification along with the potentially prohibitive capital costs
can be overcome, then the energetic and environmental benefits of small-scale biomass gasification
CHP use in industry are clear. Reliable and consistent biomass feedstocks are required to ensure
efficient operation of the plant and provide reliable returns on investment. Biomass gasification
utilisation in industry has the potential to meet several policy objectives including improved energy
security, reduced greenhouse gas emissions, improved waste management, and reduced fossil fuel
use [57, 58, 59]. Nonetheless it is recognised that there is still some dependency on fossil fuels in the
supply chain, the technology is resource constrained, and emissions need to be appropriately
managed.

The main barriers to further development of biomass gasification include access to finance for the
capital expenditure, planning and legislative issues, and the availability of consistent biomass
feedstock [53].
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