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Abstract: This paper addresses the voltage control problem in medium-voltage distribution networks.
The objective is to cost-efficiently maintain the voltage profile within a safe range, in presence
of uncertainties in both the future working conditions, as well as the physical parameters of the
system. Indeed, the voltage profile depends not only on the fluctuating renewable-based power
generation and load demand, but also on the physical parameters of the system components. In reality,
the characteristics of loads, lines and transformers are subject to complex and dynamic dependencies,
which are difficult to model. In such a context, the quality of the control strategy depends on the
accuracy of the power flow representation, which requires to capture the non-linear behavior of the
power network. Relying on the detailed analytical models (which are still subject to uncertainties)
introduces a high computational power that does not comply with the real-time constraint of the
voltage control task. To address this issue, while avoiding arbitrary modeling approximations,
we leverage a deep reinforcement learning model to ensure an autonomous grid operational control.
Outcomes show that the proposed model-free approach offers a promising alternative to find a
compromise between calculation time, conservativeness and economic performance.

Keywords: voltage control; deep deterministic policy gradient; deep reinforcement learning;
model uncertainties

1. Introduction

The massive integration of Distributed Generation (DG) units in electric distribution networks
poses significant challenges for system operators [1–5]. Indeed, distribution networks were historically
sized (with a radial structure) to meet maximum load demands while avoiding under-voltages at the
end of the lines. However, in presence of local generation, the opposite over-voltage problem may
appear. In case of severe voltage violation, inverters of DG units are temporarily cut off. This induces
not only a loss of renewable-based energy, but also a deterioration of the delivered power quality
(due to resulting voltage and current transients) that accelerates the equipment degradation [6]. In this
context, the objective of modern Distribution System Operators (DSOs) is to adopt a reliable and
cost-efficient strategy that is able to maintain a safe voltage profile in both normal and contingency
conditions, with the goal of enhancing the ability of the system to accommodate new renewable-based
resources. To that end, researchers have developed a wide range of techniques, with the aim of avoiding
costly investment plans that simply upgrade/reinforce the network. Also, static (experience-based)
strategies based on past observations have shown limitations, as they are often sub-optimal and unable
to react in a very short time frame (to prevent cascading faults just after a disturbance) [7].
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Theoretically, different methods can be applied for voltage management of Medium-Voltage
(MV) distribution systems, but the most common methods are based on using on-load tap changer
mechanism of the transformer, reactive power compensation and curtailment of DG active powers [8,9].
It is generally known that each of the above voltage control methods has its own advantages and
drawbacks, and there is no single perfect voltage regulation method [10]. Recently, there has been
a growing literature focusing purely on local strategies in which resources rely only on localized
measurements of the voltages’ magnitude, and do not exchange information with other agents [11,12].
Such local algorithms are easy to implement in practice, but the lack of a global vision may prevent
to cost-efficiently solve the voltage control problem. As an alternative, distributed strategies,
which require communication capabilities between neighbouring agents, are also considered. Such
approaches enable resources (that are physically close) to share information in order to cooperatively
achieve the desired target levels, while considering other objectives such as losses minimization [13–15].
However, to further improve the optimality of the control solution, centralized voltage control
algorithms, which are mainly based on an Optimal Power Flow (OPF) formulation, have also been
proposed [16–18].

In general, although the latter centralized model-based techniques have shown promising
performance, they are plagued with two main issues.

Firstly, they require to solve challenging optimization problems, which are non-linear and
non-convex (from the AC power flow equations used to comply with the physical constraints of
the electrical distribution system), and subject to uncertainties (from the stochastic load and generation
changes, and the unexpected contingencies). The OPF-based methods thereby face scalability issues,
which makes them of little relevance for real-time operation. This is partly addressed by using efficient
nonlinear programming techniques [19], or through convex approximations of power flow constraints,
which mainly resort on second order cone programs [20] or linear reformulations using the sensitivity
analysis [21–23]. However, modeling errors inevitably arise and may lead to unsafe and sub-optimal
solutions. Moreover, the recent trend of operating the modern distribution networks in closed loop
mode makes traditional approximations even less accurate [24].

Secondly, the common feature of model-based techniques is that they assume that the physical
parameters of the distribution networks are perfectly known, which is impractical due to the high
complexity of these systems. In that regard, the real-time characteristics of the network components
are not static, and are governed by complex dynamic dependencies [25]. For instance, deviations of
parameters can arise from the atmospheric conditions and aging. Important effects are thereby often
neglected, i.e., load power factors are not available precisely, there is a complex dependence structure
between load and voltage levels, line impedances vary with the conductor temperatures, and the
shunt admittances of lines as well as the internal resistance of transformers are also affecting network
conditions [26].

The first issue (related to the high computational costs of model-based control algorithms) has led
to the implementation of reinforcement learning (RL). These data-driven methods have the advantage
to directly learn their operating strategy from historical data in a model-free fashion (without any
assumptions on the functional form of the model). Consequently, they can show good robustness under
very complex environments with measurement noise [27,28]. A novel deep reinforcement learning
(DRL)-based voltage control scheme (named Grid Mind) is developed in [29]. In particular, two
different techniques have been compared, i.e., deep Q-network (DQN) and deep deterministic policy
gradient (DDPG), and both have shown promising outcomes. In [30], voltage regulation is improved
using a RL-based policy that determines the optimal tap setting of transformers. Then, a new voltage
control solution combining actions on two different time scales is implemented in [31], where DQN
is applied for the (slow) operation of capacitor banks. Finally, multi-agent frameworks have been
developed in [32,33] to enable decentralized executions of the control procedure that do not require a
central controller.
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However, all these methods are disregarding the endogenous uncertainties on network
parameters, which may mislead the DSO into believing that the control strategy satisfies technical
constraints, while it may actually result into unsafe conditions. In this context, the main contribution
of this paper is to propose a self-learning voltage control tool based on deep reinforcement learning
(DRL), which accounts for the limited knowledge on both the network parameters and the future
(very-short-term) working conditions. The proposed tool can support DSOs in making autonomous
and quick control actions to maintain nodal voltages within their safe range, in a cost-optimal manner
(through the optimal use of ancillary services in a market environment). In this work, it is assumed
that for voltage control purpose, we can act on the active and reactive powers of DG units as well as
on the transformer tap position. The resulting problem is formulated as a single-agent centralized
control model.

The main advantage of the proposed method lies in its ability to learn from scratch (in an off-line
fashion) and gradually master the system operation. Hence, the computational burden is transferred
in pre-processing (when the model is calibrated/learned through many simulations), such that the
real-time control process (in actual field operation when the agent is trained) is insignificant (�1 s).
Also, the model-free tool allows to immunize the voltage control procedure against uncertainties in
both exogenous (load conditions) and endogenous (network parameters) variables, while accounting
for approximations in the power flow models describing the system operation. Results from a case
study on a 77-bus, 11 kV radial distribution system reveal that the proposed tool allows determining
an optimal policy that lead to safe grid operation at low costs.

The remainder of this paper is organized as follows. Section 2 introduces the theoretical
background in reinforcement learning, with a particular interest on the deep deterministic policy
gradient (DDPG) algorithm, which allows to handle high-dimensional (and continuous) action
spaces. Section 3 describes the simulation environment, including the different sources of uncertainty.
The developed method is tested (using new representative network conditions) in Section 4 on a
realistic 77-bus system, where we validate its robustness through the numerical simulations. Finally,
conclusions and perspectives for future research are given in Section 5.

2. Reinforcement Learning Background

In this section, we introduce the basics of reinforcement learning (RL), while making the practical
connections with the voltage control problem.

2.1. Markov Decision Process

Firstly, the problem has to be formulated as a Markov Decision Process (MDP). The general
principle consists of an agent interacting with an environment E over a number of discrete time steps
until the agent reaches a terminal state. In particular, at each step t, the agent observes a state st from
the state space S , and selects an action at ∈ A according to its policy π(at|st). As a result, the agent
ends up in the next state st+1 ∼ P(st+1|st, at) while receiving an immediate scalar reward rt based on
the distribution R(rt|st, at) in accordance with the natural laws of the environment. The next state
st+1 depends only on the action at on state st (and not on the prior history), which is a characteristic
referred to as the Markov property.

In this work, the agent is the central controller which regulates the voltage level within its control
area, and the environment is the electrical distribution network (including the realization of the
different sources of uncertainty affecting its operation). The state-transition model P(st+1|st, at) and
the reward function R(rt|st, at) are inherently stochastic, and the problem can thus be formulated
using reinforcement learning.

2.1.1. State Space

The state space of the RL agent (i.e., central controller) is defined by the information that
can be measured in real-time by SCADA (Supervisory Control and Data Acquisition) or PMU
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(Phasor Measurement Unit). In that regard, the state space st at time t contains the voltage levels
Vn,t for each node n ∈ N of the distribution system. Then, this information is complemented by the
(predicted) maximum power level Pg,t+1 of each distributed generators g ∈ G at the next time interval
t + 1. This information (reflecting, e.g., the maximum energy contained in the wind) allows the agent
to know the upper limit of these control variables when taking its actions. Practically, this is achieved
using a (deterministic) single-step ahead forecaster, which is based on an advanced architecture of
recurrent neural networks, as presented in [34]. The latter is tailored to predict the power level in the
upcoming future by leveraging the past dynamics of the generator output. Finally, the current tap
position Tapt of the transformer (which defines the turn ratio between primary and secondary voltage
levels) is also included in the state space st.

st = (V1,t, ..., VN,t, P1,t+1, ..., PG,t+1, Tapt) (1)

2.1.2. Action Space

The action space at to fix voltage issues in the studied network consists in changing the active
and reactive powers of DG units, i.e., ΔPg,t and ΔQg,t ∀g ∈ G, as well as adjusting the transformer tap
ratio ΔTapt.

at = (ΔP1,t, ..., ΔPG,t, ΔQ1,t, ..., ΔQG,t, ΔTapt) (2)

The actual changes in active ΔPg,t and reactive ΔQg,t power levels initiated at time t (which will
define the power output at time t + 1) are limited by the available power at time t + 1:

0 ≤ Pg,t + ΔPg,t ≤ Pg,t+1 ∀g ∈ G (3)

ΔQg,t+1 ≤ ΔQg,t ≤ ΔQg,t+1 ∀g ∈ G (4)

where Pg,t denotes the power level of (dispatchable) generator g at time t, while ΔQg,t+1 and ΔQg,t+1

determine the safe range of variation of reactive power of unit g around the operation point. Likewise,
the variation ΔTapt around the operation point Tapt of the transformer tap change is given by:

ΔTap ≤ Tapt + ΔTapt ≤ ΔTap (5)

where ΔTap and ΔTap are the physical limits of the on-load tap changer.
It should be noted that other types of control actions, such as changing the terminal voltage

set-points of (medium-sized) conventional generators or switching shunt devices, could also be
considered if such resources are available in the system.

2.1.3. Reward

As the goal of the algorithm is to eliminate voltage issues at a minimal cost, the reward includes
both the costs inherent to control actions (changing set-points of control variables, which may reflect
the costs of relying on ancillary services [35]), and the costs of violating network constraints (which may
damage the equipment). In this way, the immediate reward rt at time step t is defined as follows:

rt = − ∑
g∈G

(
CQ|ΔQg,t|+ CP|ΔPg,t|

)− CTR|ΔTapt|+

⎧⎪⎪⎨
⎪⎪⎩
+Rpos, ∀Vn,t ∈ [V, V]

−Rneg(V − Vn,t), ∀Vn,t < V

−Rneg(Vn,t − V), ∀Vn,t > V

(6)

where V and V are respectively the lower and upper bounds delimiting the safe voltage levels.
Then, coefficients CP and CQ represent the costs of modifying the active and reactive powers of DG
units, while CTR stands for the (high) cost of changing the transformer tap position. Typically, we have
CQ < CP < CTR. Indeed, modifying the reactive power of generators can be done at almost no
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cost (using the power electronics converters), while the curtailment of active power infers a loss of
generated energy that ultimately results into a financial loss [36]. Then, high costs are associated with
a tap change of the transformer due to the aging effects on the tap changer contacts. The terms Rpos

and Rneg respectively reflect the positive reward for the nodes having voltages within the safe range,
and the negative reward (i.e., penalty) for nodes outside the permitted zone. In general, all these costs
need to be properly weighted (see Section 4). Indeed, if the costs of actions CQ, CP and CTR are too high
with respect to Rpos and Rneg, the agent may choose to suffer the negative rewards related to voltage
violations (rather than correcting the voltage problem). Conversely, if the costs of actions are too low,
unnecessary actions may be taken (to ensure the positive rewards related to safe voltage levels).

2.2. Reinforcement Learning Algorithm

Like most machine learning techniques, it is important to differentiate training and test stages.
During the training, the goal of the agent is to learn the best policy π∗, i.e., to select actions that

maximize the cumulative future reward Gt = ∑T
j=t γj−trj with a discount factor γ ∈ [0, 1]. This can

be achieved by approximating the optimal action-value function Q∗(s, a) = E
π∗
(Gt|s, a), which is

the expected discounted return of taking action a in state s, then continuing by choosing actions
optimally. Indeed, once Q∗-values are obtained, the optimal policy can be easily constructed by taking
the action given by a∗t = argmaxa∈AQ∗(st, a). Using Bellman’s principle of optimality, Q∗(st, at) can
be expressed as

Q∗(st, at) = Est+1∼E
[

rt + γ max
at+1

Q∗(st+1, at+1)

]
(7)

where the next state st+1 is sampled from the environment’s transition rules P(st+1|st, at). In general,
an agent starts from an initial (poor) policy that is progressively improved through many experiences
(during which the agent learns how to maximize its rewards).

When the training is completed, i.e., during the test (in practical field operations), the trained
agent selects the greedy action a∗t according to its learned policy.

This general principle is the source of many different RL algorithms, each with different
characteristics that suits different needs. In this context, the choice of the most suited technique
for the voltage control task is mainly driven by the fact that both state and action spaces are continuous.
Hence, well-known algorithms, such as (deep) Q-learning, will not be considered as they only deal
with a discrete action space. In this work, we will thereby focus on the deep deterministic policy
gradient (DDPG) technique.

2.3. Deep Deterministic Policy Gradient (Ddpg) Algorithm

The deep deterministic policy gradient (DDPG) relies on a complicated architecture, referred to as
actor-critic [37], which is depicted in Figure 1. The goal of the actor is to learn a deterministic policy
μφ(s) which selects the action a based on the state s. The quality of the action is estimated by the critic,
by computing the corresponding Qθ(s, a). To achieve good generalization capabilities of both actor
and critic functions, they are estimated using deep neural networks, which are universal non-linear
approximators that are very robust when the state and action spaces become large.

Figure 1. Working principle of the DDPG agent, which relies on an actor-critic architecture.
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Overall, starting from an initial state s, the actor neural network (characterized by weight
parameters φ) determines the action at = μφ(st). This action is then applied to the environment,
which yields the reward rt and the next state st+1. The experience tuple (st, at, rt, st+1) is then stored
in the replay memory. Once the replay memory includes enough experiences, a random mini-batch
of D experiences is sampled. For each sample in the mini-batch, the state st and the action at are fed
into the critic neural network (characterized by weight parameters θ) that yields the Q-value. Both
networks are then jointly updated, and the procedure is iterated until convergence.

Practically, the critic network is trained by adjusting its parameters θi (at regular intervals i ∈ I
during the learning phase) so as to minimize the mean-squared Bellman error (MSBE) (9). In contrast
to supervised learning, the actual (i.e., optimal) target value rt + γmaxat+1 Q∗(st+1, at+1) is unknown,
and is thus substituted with an approximate target value yt (using the estimation Qθi ):

yt = rt + γmaxat+1 Qθi (st+1, at+1) (8)

where at+1 is given by the critic network, i.e., at+1 = μφi (st+1).
Contrary to supervised learning where the output of the neural network and the target value

(i.e., ground truth) are completely independent, we see that the target value y in (8) depends on the
parameters θi and φi that we are optimizing in the training. This link between the critic’s output
Qθi (st, at) and its target rt + γmaxat+1 Qθi (st+1, at+1) may infer divergence in the learning procedure.
A solution to this problem is to use separate target networks (for both the critic and the actor), which are
responsible for calculating the target values. Practically, these target networks are time-delayed
copies of the original networks with parameters θi,targ and φi,targ that slowly track the (reference)
learned networks. As explained in [37], these target networks are not trained, and enable to break
the dependency between the values computed by the networks and their targeted value, thereby
improving stability in learning.

As a result, the critic network is trained (i.e., updated) by minimizing the following MSBE loss
function L(θi) with stochastic gradient descent:

L(θi) = ∑
D

⎛
⎜⎜⎝Qθi (st, at)︸ ︷︷ ︸

(i)

−
(

rt + γQθi,targ(st+1, μφi,targ(st+1))
)

︸ ︷︷ ︸
(ii)

⎞
⎟⎟⎠

2

(9)

Starting from random values θi=0, the parameters θi are thus progressively updated towards the
optimal action-value function Q∗ by minimizing the difference between (i) the output of the critic
and (ii) the target (computed with target networks), which provides an estimate of the Q-function
using both the outcome rt of the simulation model and the action at+1 from the target actor network.
The update is performed on a mini-batch D of different experiences (st, at, rt, st+1) ∼ U(D), drawn
uniformly at random from the pool of historical samples. This (replay buffer) procedure breaks the
similarity between consecutive training samples, thus avoiding that the model is updated towards a
local minimum.

In parallel, the actor network is trained (on the same mini-batch D) with the goal of adapting its
parameters φi, so as to provide actions at that maximize Qθi . This amounts to maximize the following
function L(φi), which is achieved with a gradient ascent algorithm:

L(φi) = ∑
D

Qθi

(
st, μφi (st)

)
(10)

To ensure that the DDPG algorithm properly explores its environment during the training phase,
noise εt is added to the action space, i.e., at = μφ(st) + εt. In particular, we use an exponential decaying
noise so as to favor exploration at the start of the training, which is then progressively decreased to
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stimulate exploitation as the agent converges towards the optimal policy. Naturally, when the model is
trained (and used during test time), no noise is added to the optimal action a∗.

3. Simulation Environment

To train the DRL agent, it is necessary to build a simulation environment E that mimics the actual
system. This environment is composed of three modules: (i) to generate realistic deviations of the
expected nodal load and distributed generation powers for the next time step (to reflect prediction
errors), (ii) to provide realistic values of the uncertain network parameters, and (iii) to simulate the
physical flows in the distribution network.

As depicted in Figure 2, the RL agent is trained off-line through interactions with the simulation
environment, which allows calibrating the RL model using experience and rewards. As previously
explained, the starting point is an observation of the state st of the environment (e.g., nodal voltage
levels of the distribution system). Based on this information, the (target) actor network is used to take
an action at = μφ(st) + εt (where the additional noise εt is used during training to boost exploration).
It should be noted that, if no voltage problem is observed, the optimal action is to do nothing. Then,
the simulator (thoroughly described in the rest of this Section) is used to determine the impact of
the action on the environment, which consists in computing the reward rt, but also the next state
st+1. Then, the (target) critic is used to evaluate the quality of the decisions, and both actor and critic
networks are updated using respectively (10) and (9) to improve the policy of the DRL-based agent.

When the learning is performed, the agent can be deployed for practical power system operation
(for which only the actor network is useful). Interestingly, the agent can still continue its learning
(and thus adapt to potential misrepresentations of the simulation environment) by adjusting its
parameters through on-line feedback. This may also serve for calibrating the model to the time-varying
conditions of the system.

Figure 2. Training of the DRL agent for autonomous voltage control in distribution systems.

3.1. Exogenous Uncertainties on the Network Operating Point

The first category of uncertainties belongs to the network working point (regarding both the
nodal consumptions and generations). Indeed, the output power of renewable-based generators is
intermittent upon the nature of their primal sources (mainly wind and solar), such that the generated
power can quickly vary within a short interval. Moreover, the nodal consumption and generation levels
are not always measurable. Consequently, in practice, the future operating state of the distribution
system is not known with certainty, and this stochasticity is here represented with scenarios of
representative prediction errors. Practically, for the renewable generation, a database is constructed
based on the historical prediction errors of the employed forecaster (described in Section 2.1.1), and a
sample is randomly drawn from this database to generate the desired scenario. For the nodal loads,
the same sampling strategy is used to simulate the (uncertain) changes in the consumption level.
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3.2. Endogenous Uncertainties on the Network Component Models and Parameters

The second category of uncertainties is related to partial knowledge of network component
models and parameters. In general, network analyses and simulations are carried out relying on the
simplified models of network components, which do not correctly represent the physical relations and
dependencies within the real network. This includes uncertainties associated with the line, load and
transformer models [26].

In particular, we model the thermal dependency phenomenon whereby the line resistance
fluctuates with respect to the conductor temperature variation. Then, the uncertainty associated
with the load power factor is considered to better reflect the different natures, types and amplitudes of
the various load demands. Moreover, as shown in [38], the internal resistance of the transformer can
have a significant effect on the node voltages, and is thereby also incorporated in the network model.
Finally, in contrast to typical network models, the shunt admittances of power lines are taken into
account using the PI line model. Overall, all these (uncertain) parameters are modelled as random
variables changing within representative predefined bounds.

3.3. Distribution Network Model

The electrical network operation is modeled through load-flow calculations, which are solved
using the Newton-Raphson approach.

4. Case Study

To solve the voltage control problem, the DDPG algorithm is implemented in Python using
PyTorch and Gym libraries. The solution is tested on the 11 kV radial distribution system with
N = 77 buses shown in Figure 3 [39]. The bus 1 is the high-voltage (HV) connection point, which is
considered as the slack node. The substation (between nodes 1 and 2) supplies 8 different feeders, for a
total of 75 loads. The maximum (peak) active and reactive consumption powers equal to 24.27 MW
and 4.85 Mvar, respectively. The system is also hosting 22 (identical) distributed generators, with an
installed power equal to 4 MW.

The objective of the DRL-based agent is to maintain the voltage magnitudes of the 77 buses within
the desired range. In order to illustrate the effectiveness of the proposed control scheme, these allowed
voltage limits are defined by a very conservative range of [0.99, 1.01] p.u., and the initial reactive
powers of DGs are set to zero. The reward function (6) is characterized by a compromise between the
costs of voltage violations and those of corrective actions. We give more weight in maintaining safe
voltage levels by defining Rpos = 0.1 and Rneg = 15, while CTR, CP and CQ are respectively set to 1, 0.1
and 0.04.

A total of 12,000 initial operating states (that need to be processed by the DRL-based agent) are
generated with the simulation model, among which 10,000 are used to train the agent, while the
remaining 2000 scenarios are kept (as a test set) to evaluate the performance of the resulting model.
It should be noted that, in this work, the agent has a single step to process each of the generated
scenarios (it cannot rely on several interactions with the environment to solve a voltage problem).
The value of the discount factor γ is thereby fixed to 1.

To have an overview of the global network conditions in the case where no control action is
performed, we show in Figure 4 the distribution of nodal voltage levels (for the 12,000 simulated
states) using a boxplot representation. We observe that violations of voltage limits [0.99, 1.01] p.u.
occur more than 50% of the time. In particular, the distribution is asymmetrical, skewed towards more
over-voltage issues (due to the high penetration of distributed generation) which occurs in 40.1% of
the simulated samples.
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Figure 3. Schematic diagram of the 77-bus distribution system. The section between bus 1 and 2 is the
substation, which is supplying 8 different feeders.

Figure 4. Boxplot representing the (nodal) distributions of the voltage levels for the 77 buses among
the 12,000 simulated states.

4.1. Impact of Ddpg Parameters

In the proposed case study, the state space st is of size 100, i.e., 77 dimensions for the nodal
voltages Vn,t, 22 dimensions for the (predicted) maximum power of the 22 generators Pg,t+1, and 1
dimension for the position of the tap changer Tapt. Also, the action space at is of size 45, i.e., 2 × 22 = 44
dimensions corresponding to the changes in active and reactive power for the 22 generators, and 1
dimension for changing the position of the tap changer. Hence, as sketched in Figure 5, the actor
network has an input layer of size 100 (i.e., composed of 100 neurons), and an output layer of size 45.
Then, the critic network is characterized by 145-dimensional input layer, for a single output.

Based on this (fixed) information, we then performed an optimization of the hyper-parameters of
the DRL-based agent, which consists in optimizing its complexity by adding extra hidden layers in the
architecture of both actor and critic neural networks. In particular, the best performance was achieved
by connecting the input and output layers (for both the actor and the critic networks) with 5 fully
connected layers, with 20 units in all layers. The activation functions of the hidden layers are ReLU
(rectified linear units). Then, the hyperbolic tangent function is used for the output layer of the actor,
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while a linear function is employed for the critic. The batch size of the learning is set to 16 samples,
and the target networks are updated (during the training) with a delay of 10 iterations. Both actor and
critic networks are initialized with random weights in the range [−0.1, 0.1].

Figure 5. Representation of the neural network architectures for both actor and critic.

The exploration-exploitation parameter (i.e., extra noise added to the actions during the training)
is εt = N (0, 0.2) × (0.005 + 0.995e−k/ΔT ), where N (0, 0.2) is a zero-mean Gaussian noise with a
standard deviation of 0.2, which is exponentially decaying along the training iterations k. The decay
period ΔT is equal to 5000 episodes. In general, this action noise has a significant impact on the learning
abilities of the DRL-based agent. This observation is illustrated in Figure 6, where we depict two
different learning curves where all parameters of the agents are similar, except for the action noise.
In particular, the optimal calibration of N (0, 0.2) is compared to a perturbation of N (0, 0.6) (with the
same decaying intensity over the training samples).

In general, when the perturbations are too small, the training may fail to properly explore
the search space (which increases the probability to end up in a local minimum), while oversized
perturbations may negatively affect the learning (and even leading the algorithm to repeatedly perform
the same action).

Figure 6. Evolution of the total immediate rewards rt across training episodes for two different
configurations of the action noise εt.

For the best model (right part of Figure 6), we see that the DDPG control scheme quickly learns
(after around 7500 interactions with the environment) a stable and efficient policy. In particular, at the
beginning (during the 2000 first training steps), the agent randomly selects actions, which lead to
many situations where it deteriorates the electrical network conditions. However, in the course of
the learning procedure, the agent is progressively evolving, and starts solving the voltage issues with
less costly decisions. The agent eventually converges to total rewards r ≈ 5. In contrast, the other
model (left part of Figure 6) achieves convergence at a much lower performance (total rewards
of r ≈ −7.5), which roughly corresponds to the same reward as when no action is performed.
In general, the main advantage of the proposed framework lies in its generic design that makes it
broadly applicable (e.g., to any distribution system), and in its ability to adapt to the varying operating
conditions. Evidently, when the methodology is applied to another environment, the DDPG agent
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needs to be re-trained from scratch, and its hyper-parameters (e.g., training noise, as well as number of
hidden layers and number of neurons for both actor and critic networks) also need to be adapted.

4.2. Impact of Endogenous Uncertainties

The impact of endogenous uncertainties (regarding the physical parameters of the distribution
system) is evaluated through the analysis of three cases.

1. The network parameters are considered as perfectly known in both training and test stages;
2. The uncertainty on the network parameters are neglected during the training phase (to mimic

current optimization models), but are considered when evaluating the performance of the trained
DRL-based agent (to reflect reality);

3. The uncertainty on the values of network parameters is accounted for in both training and
test phases.

The simulation results regarding the three cases are summarized in Figure 7. Practically, we represent
the evolution of the negative reward (which is a measure of the voltage violations) in both training and
test phases. This negative reward rneg is equal to 0 in the perfect situation where all nodal voltages pertain
to [V, V] = [0.99, 1.01] p.u., and decreases in negative values with the severity of voltage violations, i.e.,:

rneg =

⎧⎪⎪⎨
⎪⎪⎩

0, ∀Vn ∈ [V, V]

−Rneg(V − Vn), ∀Vn < V

−Rneg(Vn − V), ∀Vn > V

(11)

Figure 7. Evolution of the reward rneg in the three studied cases in both training and test stages.

We observe that when uncertainties associated with the model parameters are neglected during the
training (cases I and II), the RL agent quickly find actions that remove voltage violations, i.e., the upper
bound of the negative reward rneg = 0 is almost reached in around 2000 episodes. This performance is
achieved in more than 4000 episodes when dealing with endogenous uncertainties due to the increased
difficulty of the task. This effect is also translated into a higher variability of the reward. Interestingly,
by comparing the evolution of rneg with the total reward r in Figure 6 during the training, we see
that even though the agent is able to mitigate the voltage issues after 4000 training episodes, the
cost-efficiency of the actions can still be improved (which is realized during the next 4000 episodes).
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To quantify the impact of neglecting the endogenous model uncertainties, the mean value of the
negative reward rneg in (11) over the last 2000 episodes of the training phase, and over the 2000 new
episodes of the test set are provided in Table 1 for the three studied cases.

Table 1. Average value of the negative reward rneg across training and test sets.

Case 1 Case 2 Case 3

Training set −0.6 −0.6 −0.69

Test set −0.53 −0.93 −0.67

As expected, the agent that is agnostic to endogenous uncertainties on the physical parameters
of the system during the training (cases 1 and 2) achieves a lower out-of-sample performance when
these effects are modeled in the test set. Specifically, the reward rneg drops from −0.53 (in case 1 when
endogenous uncertainties are also disregarded at the test stage) down to −0.93 in the realistic case 2.
In this latter situation, the agent expects a reward of around −0.6 (at the end of its learning), while it
actually results in a disappointing ex-post outcome of −0.93. This problem can be efficiently alleviated
by incorporating these endogenous uncertainties within the learning procedure. In that framework
(case 3), the training and test rewards are close to each other, i.e., rneg ≈ −0.67, which illustrates the
good performance of the proposed method.

4.3. Extreme Cases

In this part, the outcome of the DRL-based agent is illustrated for two extreme situations,
respectively corresponding to the worst-case over- and under-voltage states. These states
result from the combination of extreme consumption and generation conditions, associated with
unfavourable parameters of the distribution system (such as high line impedances arising from a
temperature increase).

In Figure 8, we select the scenario (from the 2000 test samples) which leads to the worst-case
voltage rise. In this case, the load demands are low (globally equal to around 10% of their nominal
values) while active powers of DGs are at 90% of their rated values. The initial system voltages
significantly exceed the upper limit of 1.01 p.u. (for almost all nodes), and reach a maximum value
of 1.08 p.u. at node 27 (end of feeder 1). Also, the absolute value of the reward associated with the
control actions taken by the proposed DDPG algorithm is represented in the right part of the Figure 8.

Figure 8. Initial nodal voltages as well as the corrected ones obtained by the DRL-based agent in an
extreme over-voltage situation. The corresponding (absolute value) of the reward related to each family
of actions is also displayed.

Interestingly, the DRL-based agent has completely solved the voltage problem. We see that it
did not rely on the curtailment of the active power of distributed generators. Indeed, this solution is
more expensive than consuming reactive power (which is thereby the privileged action). However,
the transformer tap ratio had also to be modified (i.e., voltage drop between nodes 1 and 2) to prevent
over-voltages at the end of the feeders.
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In Figure 9, the voltage drop condition is analyzed, which corresponds to a situation where load
demands are maximum, while active powers of DGs are equal to zero. This results into under-voltage
issues in many nodes of the distribution system.

Figure 9. Initial nodal voltages as well as the corrected ones obtained by the DRL-based agent in an
extreme under-voltage situation. The corresponding (absolute value) of the reward related to each
family of actions is also displayed.

Similarly to the over-voltage case, the privileged action is to modify the reactive power level of DG
units (here by exchanging capacitive reactive power to compensate the voltage drops). The corrected
situation brings the voltage plan within the desired limits, at the exception of some nodes at the end of
feeder 1 that are slightly violating the lower bound (of 0.99 p.u.).

In general, after the training, the agent is able to successfully make the right decisions. In particular,
during the testing under new randomly generated conditions, the proposed DRL-based algorithm
achieves robust solutions (against the various sources of uncertainty) that mitigate severe voltage
violations using cost-effective actions.

5. Conclusions and Perspectives

This paper was devoted to the voltage control problem in distribution systems, which is facing
new challenges from growing dynamics and uncertainties. In particular, current strategies are
hampered by the limited knowledge of the network parameters, which may prevent achieving the
optimal cost-efficiency. This problem is formulated as a centralized control of resources using deep
reinforcement learning, through an actor-critic architecture that enables to properly represent the
continuous environment. This framework bypasses the need to represent analytically the electrical
system, such that the impact of model accuracy is decoupled from the control performance.

The main advantage of the proposed model is to put the computational complexity on the
pre-processing (in a fully data-driven framework), such that the model provides very fast decisions
in test time. Interestingly, the developed regulation scheme is not only easy to implement,
but also cost-efficient as we observe that the agent is able to automatically adapt its behavior to
varying conditions.

The promising outcomes of the work pave the way towards more advanced strategies, such as
the extension to a decentralized approach using a multi-agent formulation (that would prevent the
single point of failure of the centralized framework). Similarly, extending the framework to partially
observable networks (where the state of the system is not fully known [40]) also offers a valuable area
of research for system operators.
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Abstract: One of the essential parameters to measure the stability and power-quality of an energy grid is
the network impedance. Including distinct resonances which may also vary over time due to changing
load or generation conditions in a network, the frequency characteristic of the impedance is an import
part to analyse. The determination and analysis of the impedance go hand in hand with a massive
amount of data output. The reduction of this high-resolution voltage and current datasets, while
maintaining the fidelity of important information, is the main focus of this paper. The presented
approach takes measured impedance datasets and a set of lossy compression procedures, to monitor
the performance success with known key metrics. Afterwards, it continually compares the results of
various lossy compression techniques. The innovative contribution is the combination of new and
existing procedures as well as metrics in one approach, to reduce the size of the impedance datasets
for the first time. The approach needs to be efficient, suitable, and exact, otherwise the decompression
results are useless.

Keywords: impedance determination; lossy compression algorithms; singular value decomposition;
wavelet transformation

1. Introduction

The energy system transformation and smart grid applications require knowledge about detailed
power and load profiles with sophisticated datasets on the one hand. On the other, an increasing
number of power electronic converters (PECs) from renewable energies and smart loads are integrated
into the electrical supply system to measure and analyse the power-quality, stability, and control design
considerations. Since the first generation of grid-connected converters, the grid impedance has been an
important part of the analysis of the stability of the whole energy system or detection of islanding grids [1,2].
The so-called PECs are usually self-controlled pulse width modulation (PWM) power converters that
connect generators or loads to the 50 Hz power supply system. For the power- quality analysis or a filter
design of the converters detailed knowledge is required of the frequency characteristics of the network
impedance at a specific grid-connection point [3]. Along with the increasing number of PECs especially in
low and medium voltage grids, the generated, and transferred amount of data rises massively. This opens
up multiple situations for system optimization. The current operational conditions of the municipal utilities,
grid owner, or system operator—low bandwidth and low computational power—and the development of
impedance shaping intensifies problems in many cases [4,5]. To improve memory consumption, collection,
and transmission efficiency, the reduction of high-resolution impedance datasets while maintaining the
fidelity of relevant information presents one opportunity for system optimization.
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The overwhelming majority of the studies that try to tackle this larger issue focus on how to
generate, analyse, and shape the network impedance so as to make it usable with the grid [6–8].
As regards the topic of compression, some approaches have been investigated in the field of medical
data science [9].

This paper addresses the question of how to compress voltage and current datasets of an impedance
measurement device by using lossy compression approaches without any detrimental effect on the
impedance results of the measurement. Since raw voltage and current datasets contain further information
e.g., about voltage harmonics, the aim is to compress the raw data instead of the calculated impedance
data. Therefore, the scope of the paper is the grid impedance and the compression compatibility. It is
not important to compress the data set one-to-one or to create a method with the highest efficiency,
depending on processing duration or error level. The idea is to generate an easy to handle, efficient,
sufficiently selective, accurate, and usable approach that output a compressed impedance dataset without
irrelevancies. Two other highly important questions are, one, how to transfer and store large amounts of
data using small amounts of resources and costs and, two, how to extract necessary information from
the dataset. Due to limited computational i.e., bandwidth and storage space, and human resources
lossy compression algorithms are promising. The new procedure and model technique, which combines
measured impedance datasets, lossy compression techniques, and key metrics addresses exactly this
specific gap in knowledge.

Section 2 describes the background of the impedance measurement to show the used test case
and the simulation approach, which produced the dataset. The remainder of this paper is organized
as follows. Section 3 presents typical lossy compression approaches, which can be used to reduce
the amount of data. After those techniques have been explained, the approach taken in this paper,
and the key metrics are introduced in Section 4. The obtained performance results are presented in
Section 5 to show if they meet the required criteria. Finally, conclusion and outlook are presented in
Section 6.

2. Mid Voltage Impedance Measurement System

In the literature, the methods to measure the network impedance may be categorized into active
and passive methods used for power systems during operation. Active methods use excitation signals
at the point of common coupling (PCC) to identify the impedance. The signal generator can be a
current or voltage source or a current sink.

2.1. Impedance Identification

The used signal generation is a sink: A load resistor is switched on and off in a random pattern.
Hence, the load current is a random pulse pattern. Figure 1 shows the principle connection scheme
of the network impedance measurement (NIM) device and its corresponding complex equivalent
circuit. The voltage in off and on state (v1(t) and v2(t)) as well as the current in the on state i2(t) (off
state current i1(t) is zero) are measured. The frequency-dependent complex values V1(ω), V2(ω) and
I2(ω), derived from the fast Fourier transform, are used to calculate the complex frequency-dependent
impedance ZN(ω) (1).

ZN(ω) =
V2(ω)− V1(ω)

I2(ω)
(1)

2.2. Impedance Identification of Three Phase Systems

In this section, the measurement system for the determination of the frequency dependency of
the grid impedance is presented. The device includes highly accurate sensors for the measurement of
voltage and current wave forms. Figure 2 shows a simplified scheme of the measurement setup to
evaluate the impedance of the three-phase mid voltage PCC [10,11]. A resistive load is switched by an
insulated gate bipolar transistor (IGBT), while the measurement loop (e.g., L1–L2) is selected by a B6
thyristor bridge. A 3D model of the measurement device and its main components are depicted in
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Figure 3. The measurement device is portable and may be connected to connection points in medium
voltage grids via its own medium voltage switch gear (SF6 circuit breaker). To determine the line
impedances of a three-phase system four measurements are required:

• At first, the open circuit is measured to obtain the reference V1(ω). Hence, the load is not pulsed
and I1(ω) is zero,

• Then, a pulse pattern is applied to the three loops of phase a to b, phase b to c, and phase c to a.

PCC NIM

Figure 1. Principle of the network impedance measurement/identification.
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Figure 2. Impedance identification circuit for 20 kV medium voltage level.

For each measurement the following parameters are recorded over at least one period of 50 Hz:

• ia(t)/ib(t)/ic(t): current phase a/b/c
• ua(t)/ub(t)/uc(t): voltage phase a/b/c to earth

The loop impedances Zab(ω), Zbc(ω), Zca(ω) are derived from the recorded parameters with (1).
These loop impedances can be rearranged into the line impedances Za(ω), Zb(ω), and Zc(ω) [10]:

Za(ω) =
1
2
· [Zab(ω)− Zbc(ω) + Zca(ω)] (2)

Zb(ω) =
1
2
· [Zab(ω) + Zbc(ω)− Zca(ω)] (3)

Zc(ω) =
1
2
· [−Zab(ω) + Zbc(ω) + Zca(ω)] (4)
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Figure 3. Impedance identification measurement device for 20 kV medium voltage level.

Typically, the impedances are average values over ten 50 Hz periods measured every five minutes
over a month or more to identify impedance changes over daytime. Figure 4 shows a sample measurement.
The compression approach, explained in Section 4, is applied to the voltage and current data, which is
recorded during grid excitation and which is used for the calculation of the grid impedance. The authors
want to determine the effect of data compression on the grid impedance calculation with this compressed
raw dataset.

This setting yields 288 measurements per day or 8928 per month for each recorded voltage and
current parameter. The sample rate is 500 kHz. Overall, the authors use a dataset with d = 206,744 data
points (sample size d) for each recorded parameter, voltage and current. For an easy representation
of the following figures and the compression dataset, the number of measuring points d was used
(instead of the time vector t). Theoretically, the respective t-vector would have to be multiplied by the
reciprocal of the sampling rate (500 kHz).

As the measurement device is remotely controlled and the data is transferred via the cellular
network a compression is beneficial to optimize the data transfer speed and costs. Especially when the
measurement device’s installation site is in areas with low network coverage exhibiting low transfer
rates. The transients in the recorded voltage and current parameters are the essential part of the data,
as they determine the frequency dependency of the impedance values.
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Figure 4. Measurement results with UDS (a) and IDS (b).

3. Lossy Compression Techniques

Various meta-analyses, types and overviews of data compression approaches can be found
in [12–16]. The compression techniques are divided into lossy and lossless methods. Lossy ones generate
better results by losing (preferably irrelevant) information. This can be explained by the fact that the
result of the decompression is not identical to the starting dataset. In contrast, lossless methods produce
an identical decompressed dataset [13].

The combination of impedance measurements and data compression can hitherto be found only
in other fields of research. As an example serves the medical area where an extensive comparison of
compression methods adapted to the impedance of cardiomyocytes is presented. The approach uses
the wavelet transformation technique to analyse the effect of compression on sensitive data coming
from cardiomyocytes and generating compression ratio of round about 5:1 [9].

Hereinafter follows a short description of the lossy compression methods that are compared in
this paper. All of these approaches are frequently used for other types of data (SVD, WT) and appear
interesting for the paper approach (TFA) [17–22]. The two well-known, widely used approaches WT
and SVD are only briefly described. For further explanation, please consult the references that are listed
in the Sections 3.1 and 3.2. TFA is explained in more detail but can be found in [17,22] if necessary.

3.1. SVD—Singular Value Decomposition

The so-called Singular Value Decomposition (SVD) splits a m × n set of data (voltage/current ×
time stamp) DS into three different matrices (5). The diagonal matrix Σ contains the singular values
(SVs), see also Figure 5.

DSm×n = Um×mΣm×nVT
n×n (5)

The data compression takes advantage of the fact that a close approximation of DS can be
achieved by keeping the significant SVs of matrix Σ. The compression success depends on the amount
of reduction of singular values in Σ.
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Figure 5. SVD of data matrix DS.

3.2. WT—Wavelet Transformation

A wavelet transform (WT) orthogonally decomposes a time series into wavelet and scaling
coefficients. The main difference to the Fourier transform, which splits a signal into cosine and sine, is
the use of (real and Fourier space) functions by the WT. The deletion of irrelevant data points increase
the compression ratio and reduce the mean percentage error (MPE) and mean absolute error (MAE).
That is why, it is important to find the best thresholds, levels of decomposition (LoD), and Daubechies’
wavelets (DW). For further explanation, see [19–21].

3.3. TFA—Triangular Function Algorithm

The Triangular Function Algorithm (TFA) encloses the steps (I)-(VI) and is an enhanced version of
the approach developed in [17]. (I) Read the dataset and choose your preferred percentiles (e.g., Q5–Q95).
(II) Generate percentiles of the original dataset and save the data points yi Q, xi Q. Perform a moving
average FIR filter to smooth the (remainder of the) dataset. (III) Read a0 data points, which is the step
width. (IV) Choose number of polynomials of least square fit. Perform Λ in (6), to obtain the slope b1

and intercept b0 (6). Determine the mean square error and unbiased standard deviation (σ).

Λ =
a

∑
i=1

[yi − (b1xi + b0)]
2 (6)

In our case, quadratic or higher polynomial functions should be avoided because of the lower
compression-error-ratio depending on the higher number of compressed and saved datapoints (e.g., b2,
b1, b0). (V) Read and check the following data point (yi, xi). If its value is within (±mσ, with factor m)
the predicted values, jump to (III). Otherwise start a new line segment and go to step (IV). (VI) After
compressing the whole dataset, insert percentiles (yiQ, xiQ) to finish the algorithm. For further
explanation, please see [17].

4. Proposed Approach and Key Metrics

4.1. Novel Approach

The first step to compress and decompress the impedance data is the generation of the dataset
obtained from impedance measurements (Section 2). In a second step, the dataset is smoothed to
generate a periodic pulse signal with spikes. For this step, either the moving average filter (FIR filter)
method or the Δ sin-signal method is chosen. The latter method uses the basic function of the voltage
output (depending on the measured dataset (7)) to extract the noise of the input function of UDS.
The basic function (7) is determined by the impedance evaluation program and approximated by using
fitting algorithm toolboxes.

Ubase =
√

2 · 11.56 kV · sin (2π · 48 Hz · t) (7)

The result of delta (Ubase − UDS) or the FIR-filter output from delta (UFIR − UDS) extracts the
difference, the so-called spikes Unoise, Inoise, shown in Figure 6. These spikes are challenging to compress
and the main reason for the complexity of the developed approach. Typically, existing programs
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(e.g., smooth from Matlab) smooth out these minimal data swings or spikes directly, thus eliminating
the possibility to determine the grid impedance (depending on UDS).

Figure 6. Overview of UDS and generated UBase (a) and UNoise (b).

Regarding the current, this procedure can only be carried out with the FIR filter because the I
function cannot be readjusted similarly.

Step 3 includes the compression of the dataset. Using different types of lossy compression algorithms,
the spikes Unoise(C) and the current IDS(C) are converted into a compressed dataset that is stored or saved
in online or local data storage systems by their owner (e.g., distribution grid owner, utilities, etc.).
After decompression, the recombination of the basic signal and the decompressed spikes is realised
(only for the voltage). A validation of the output signal and an automatic performance check, including
a comparison between the different compression approaches, ensues. As a result, the generated grid
impedance can be compared to the input dataset (and the determined grid impedance) to determine
the differences and whether or not the procedure has to be repeated. A flowchart and overview of
these steps are shown in Figure 7.
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results
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Figure 7. Flowchart of the novel paper approach.
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4.2. Key Metrics

Between different compression algorithms, the compared key factors are the processing duration
and the errors in combination with compression ratios to achieve an accurate reconstruction result.
To ensure a valid comparison of the different types of compression algorithms, different key metrics
are used. The compression ratio CR is defined in (8).

CR =
size of the input dataset (measured, uncompressed)

size of the output dataset (compressed)
(8)

Following this definition, values greater than 1 indicate compression and values less than 1 imply
expansion. The loss of information will be measured by comparing the reconstructed data matrix XR

(with their rows and columns nrow · ncol) with the original data matrix X. The so-called MAE—mean
absolute error is defined in (9).

MAE =
1

nrow · ncol

nrow

∑
i=1

ncol

∑
j=1

|X(i, j)− XR(i, j)| (9)

5. Results

To generate comparable results, all compression approaches are set on a CR round about 4:1.
This CR is like a trade-off between the advantages of compression and sufficiently high data fidelity,
but randomly chosen for this test case. Although higher CRs are technically possible, this is not the
objective of this paper. A comparison of all results for the compression of UNoise and IDS is displayed
in Table 1.

Table 1. Compression factor, MAE and processing time of different compression approaches for Unoise

and IDS.

Type CR (U) MAE (U) t (U) CR (I) MAE (I) t (I)

SVD 4.1:1 0.36 120 s 4.2:1 0.001 113 s
WT 4.0:1 0.39 8 s 4.0:1 0.002 31 s
TFA 4.2:1 0.29 101 s 4.7:1 0.17 261 s

The proposed approaches have been implemented using MATLAB and performed on a PC
Intel core i5-3210M processor, 2.50 GHz, with 4 GB of RAM. To illustrate the difference between the
approaches, Figures 8 and 9 show the resulting decompression graphs for UNoise and IDS. In particular,
the TFA algorithm does not possess good compression properties, especially when looking at Figure 9.
The original curve is simply linearized because of a sluggish (high) threshold (±mσ), even if the
resulting MAE is as good as in the other compression methods.

Only the WT and SVD algorithms yield accurate values for the impedance after the recombination
of Ubase and the decompressed Unoise(DC) including the decompressed current IDS(DC). WT shows a
particularly good fit of its decompressed impedance values Z to the original values Z1 (Figure 10).
Based on (10), Figure 10 shows the absolute impedance |Z| (a), the impedance angle ∠(Z) = ϕZ (b),
and the absolute deviation Δ |Z1 − Z| (c) over the frequency f .

Z = |Z| ϕZ (10)
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Figure 8. Comparison of UDS and the resulting compression outputs ∑(Ubase , Unoise(DC)) of the different
lossy approaches.

Figure 9. Comparison of IDS and the resulting compression output of the different lossy approaches IDS(DC).

Only for frequencies ≥ 25 kHz do the discrepancies in the WT results increase slightly (≥1%),
see Figure 10 (bottom). In comparison see Figure 11, the results obtained by the SVD algorithm deviate
from the original dataset by almost 2% for f ≥ 25 kHz. Depending on IDS, the TFA algorithm produces
a large deviation of the MAE that leads to the significantly worse results.

Additionally, both the SVD and the TFA algorithms show high processing times t(I), t(U)

(Table 1). An evaluation of the best fitting technique based on the processing time is only possible to a
limited extent. Compression using SVD and WT should be investigated for each data set separately.
Conclusively, the TFA algorithm is deemed inadequate to handle the task discussed in this paper or
similar tasks.
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Figure 10. Impedance measurement results of the original (ori = original dataset and their impedance Z1)
and decompression results using WT (WT = WT decompressed dataset and their impedance Z).
The absolute impedance |Z| (a), the impedance angle ∠(Z) = ϕZ (b), and the absolute deviation Δ |Z1 − Z|
(c) over the frequency f are shown.

Figure 11. Impedance measurement results of the SVD, for explanation see Figure 10.

6. Conclusions

A more detailed understanding of the effects of different voltage and current profiles on the grid
impedance requires large amounts of data, especially in the future.

Thus, a very important question is whether or not it is possible to compress data sets from
impedance measurements of energy systems by using lossy compression algorithms while maintaining
data fidelity. In this paper, the authors show that especially the WT (Wavelet transform) show promising
results by reducing the size of the dataset in an efficient way without losing relevant information.
The SVD (Singular Value Decomposition) generates almost comparable results, but need much
more processing time, referring to the used programming language and computational environment.
The presented approach allows of easy and effective data compression with only limited computational
resources and, as a result, an increase in the number of measurements that can be stored. It is also
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conceivable that the presented approach can be applied for efficient online or on-site external server
data backup.

While high compression levels are useful in order to reduce the data amount for e.g., utilities,
the needed level of data fidelity in the output dataset depends on the targeted application. That is why
it is not the objective of this paper to create the best technique and perform on a given dataset. Lossy
compression works better when the nature of the compressed data is taken into account (e.g., such as
human ear characteristics in MP3). To be able to determine the limits of usability of lossy compression
methods, further analyses need to be done. It must be analysed which lossy method generates the best
possible outcome i.e., the maximum level of accuracy with the highest suitable compression ratio.

A comparison with lossless compression methods is also interesting. And the authors want to
assess if the proposed method is suitable for on-line impedance measurement [4,5].
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The following abbreviations are used in this manuscript:

CR Compression Ratio
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NIM Network Impedance Measurement
PCC Point of Common Coupling
PEC Power Electronic Components
PWM Pulse Width Modulation
RFA Rectangular Function Algorithm
SVD Singular Value Decomposition
TFA Triangular Function Algorithm
WT Wavelet Transform
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Abstract: Short-circuit faults in a receiving-end power system can lead to blocking events of the
feed-in high-voltage direct-current (HVDC) systems, which may further result in system instability.
However, security assessment methods based on the transient stability (TS) simulation can hardly
catch the fault propagation phenomena between AC and DC subsystems. Moreover, effective
emergency control strategies are needed to prevent such undesired cascading events. This paper
focuses on power systems with multi-infeed HVDCs. An on-line security assessment method based
on the electromagnetic transient (EMT)-TS hybrid simulation is proposed. DC and AC subsystems
are modeled in EMTDC/PSCAD and PSS/E, respectively. In this way, interactions between AC and
DC subsystems can be well reflected. Meanwhile, high computational efficiency is maintained for
the on-line application. In addition, an emergency control strategy is developed, which coordinates
multiple control resources, including HVDCs, pumped storages, and interruptible loads, to maintain
the security and stability of the receiving-end system. The effectiveness of the proposed methods
is verified by numerical simulations on two actual power systems in China. The simulation results
indicate that the EMT-TS hybrid simulation can accurately reflect the fault propagation phenomena
between AC and DC subsystems, and the coordinated emergency control strategy can work effectively
to maintain the security and stability of systems.

Keywords: receiving-end system; multi-infeed HVDCs; security assessment; emergency control
strategy; electromagnetic transient (EMT)-transient stability (TS) hybrid simulation

1. Introduction

With the growing penetration of line-commutated converter-based high-voltage direct-current
(LCC-HVDC) lines, power systems with multi-infeed HVDCs, where several HVDC lines feed into
nearby AC systems, are becoming more common [1,2]. Due to the complicated interactions among
HVDCs and AC systems, such systems are facing challenges in secure and stable operation, especially
when the short-circuit capacity of the receiving-end AC system is low relative to the rated power of
the HVDCs [3–5]. An AC system fault that occurs at the receiving-end system can cause not only
commutation failure of the directly-connected HVDC but also concurrent commutation failures or
even blockings of adjacent HVDCs, giving rise to risks of instability and large-scale blackouts [6–8].
Therefore, it is critical to conduct on-line pre-decisions before such credible contingencies occur so that
effective emergency controls can be implemented in time to prevent such cascading failures.

There are two steps involved in the on-line pre-decision-making [9–11]. One is the security
assessment, which estimates the system security and stability under anticipated contingencies at the
current operation point. The other is emergency control strategy decision-making, which generates
emergency control strategies based on the security assessment result. Therefore, a control strategy
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table composed of emergency control strategies and corresponding contingencies will be generated in
the pre-decision-making. Once a contingency occurs, emergency controls can be implemented in time
by searching the control strategy table. In the on-line pre-decision-making, the control strategy table is
updated within a fixed period to adapt to the changing operating conditions.

Up to now, many security assessment methods have been proposed for AC/DC systems.
The time-domain simulation method is widely used for its good model extensibility and can be
classified into two categories: One is based on mature transient stability (TS) simulators with the
built-in models and solvers, like Power System Simulator/Engineering (PSS/E) [12], Bonneville Power
Administration (BPA) [13], and Transient Security Assessment Tool (TSAT) [14], and the other is based
on customized models and solving algorithms, like the voltage source equivalent-based method [15],
multi-decomposition method [16], and optimal subinterval selection method [17]. However, in these
methods, HVDC converters are expressed by steady-state models, and the fault propagation phenomena
between AC and DC subsystems, such as commutation failures and blocking events caused by AC
system faults, may not be reflected accurately. Similarly, in transient energy-based methods [18,19]
and their derived methods, which combine them with time-domain simulation methods [20,21],
the transient energy function cannot incorporate HVDC converter-involved dynamics, and there
is a probability that the commutation failures or blocking event-related issues cannot be identified.
However, considering the credible impact of interactions between AC and DC subsystems on the
secure and stable operation, accurately detecting the fault propagation phenomena is crucial in the
above methods [22,23]. Recently, data-driven artificial intelligence (AI) methods have been proposed
as fast tools, e.g., the generative adversarial network (GAN) [24], convolutional neural network
(CNN) [25], and deep belief network (DBN) [26]. Most of these methods are at their early stages and
their practicality needs to be improved [26]. Therefore, improving the accuracy of the time-domain
simulation method or transient energy-based methods is necessary. In fact, to describe the detailed
dynamics of HVDCs accurately, electromagnetic transient (EMT) simulation is a suitable tool, but it
cannot be used directly in the on-line security assessment due to its low computational efficiency [27].
Therefore, a method that can take advantage of the modeling accuracy of EMT and the computational
efficiency of existing security assessment methods should be explored. EMT-TS hybrid simulation,
in which the HVDC-related subsystems are modeled in EMT and the rest in TS, provides an idea for
solving the problem.

In emergency control, load shedding (LS) is a common measure and its optimization method is
continuously improved to achieve cost-effective control for issues like frequency instability [28] and
voltage collapse [29]. Subsequently, considering that large disturbances can affect the power angle,
voltage, and frequency simultaneously, the authors of [30] constructed an LS optimization model
considering multiple security constraints, including transient voltage deviation security, transient
frequency deviation security, and transient angle stability, which can remedy the limitation of single
security constraint-based methods. In addition to LS, other control resources, such as HVDCs [31,32]
and pumped storages [33], can also be used for emergency control. However, their control amount is
usually determined separately [31–33]. The authors of [34,35] comprehensively coordinate HVDCs,
pumped storages, and interruptible loads in the emergency control strategy to handle frequency
stability issues in the East China power grid. Nevertheless, similar to [28], only frequency instability
is considered in the proposed scheme. The authors of [36] developed a multi-resource coordinated
control strategy for an actual power grid to cope with the impact the DC blockings have on weak AC
channels, but it was obtained based on the characteristics of the grid without mathematical analysis,
which may be not suitable for other grids.

According to the above analysis, for power systems with multi-infeed HVDCs: (1) A security
assessment method that can well reflect the fault propagation phenomena between AC and DC
subsystems, and generate reliable results within an acceptable time should be studied; and (2) the
emergency control strategy that can comprehensively coordinate multiple control resources while
satisfying multiple critical security constraints is needed.
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In this paper, an on-line pre-decision-making scheme, including security assessment and emergency
control strategy decision-making, is proposed for power systems with multi-infeed HVDCs. The contributions
are as follows:

(1) A security assessment method based on EMT-TS hybrid simulation is achieved. DC and AC
subsystems are modeled in EMTDC/PSCAD and PSS/E, respectively. The security assessment
method can accurately identify the security and stability issues related to interactions between
AC and DC subsystems while maintaining the high computational efficiency;

(2) An emergency control strategy decision-making method that can coordinate HVDCs, pumped
storages, and interruptible loads is developed subject to multiple security constraints. The decision-
making method can minimize the control costs while maintaining the security and stability of the
receiving-end system.

This paper is structured as follows: Section 2 introduces the procedure of the on-line pre-decision-
making scheme. Section 3 describes the implementation of the security assessment based on EMT-TS
hybrid simulation. Section 4 presents the optimization model and solution method of the emergency
control decision-making problem. Two actual provincial systems in China are used to verify the
proposed method in Section 5. Section 6 concludes the paper.

2. Procedure of the On-Line Pre-Decision-Making Scheme

In the on-line decision-making scheme, the control strategy table is updated at fixed intervals.
During each interval, the operating condition of the system is assumed as being unchanged [11], and the
anticipated contingencies include merely the fault and protection action information. According to the
severity and probability, the contingencies can be divided into three levels [37]: (1) Single component
fault; (2) single severe fault; and (3) multiple severe faults. Especially, in the third level, operation
failure of the protection and reclosing failure caused by a permanent fault may induce HVDC blocking
events and result in instability of the receiving-end system [38], which should be paid more attention to.

When updating the control strategy table, security assessment is conducted for the anticipated
contingency set based on the current operating condition, and the emergency control strategy will be
developed if system security and stability issues arise. Therefore, the procedure can be divided into
three stages, as shown in Figure 1.

(1) Off-line preparation. Construct the EMT-TS hybrid model based on the information of the network
topology, electrical parameters, control parameters, etc. Then, generate an off-line control strategy
table under the anticipated contingency set and pre-determined typical operating conditions
(different from the on-line control strategy table, various typical operating conditions need to be
considered in the off-line control strategy table [39]), which will provide the initial solution of the
decision-making model for the emergency control strategy;

(2) On-line security assessment based on EMT-TS hybrid simulation. Update the real-time operating
state data, including the operation mode of the system and the power flow of the main transmission
section; choose one contingency from the anticipated contingency set and run the hybrid simulation.
Then, identify possible security and stability issues according to the security indices. Finally,
generate the assessment result for contingencies that cause security and stability issues, including
the current operating condition, contingency, and power shortage in the receiving-end system; and

(3) Emergency control strategy decision-making. Initialize the decision-making model with the
operating condition and the control strategy. The operating condition is obtained from the
assessment result. The control strategy, which is used as the initial solution, is determined based
on the power shortage and the control strategy obtained through an approximate search of
the off-line control strategy table. Then, solve the decision-making model based on the beetle
antennae search (BAS) algorithm [40], a meta-heuristic algorithm developed by the inspiration of
the beetle forging principle, until the termination criteria are met.
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Figure 1. Procedure of the on-line pre-decision-making scheme.

3. Security Assessment Based on EMT-TS Hybrid Simulation

Security assessment refers to the analysis required to determine whether a power system
can meet specified security criteria in both transient and steady-state time frames under credible
contingencies [41]. Therefore, assessment methods and security indices are two of the parts involved
in the security assessment. Considering that commutation failures and blocking events caused by AC
system faults are typical fault propagation phenomena between AC and DC subsystems, the analysis
of commutation failures and blocking events simulation is firstly analyzed in the following subsections.
Then, the principle of EMT-TS hybrid simulation modeling and the security assessment index system
are introduced.

3.1. Analysis of Commutation Failures and Blocking Events Simulation

The essence of the commutation failure is that the thyristor cannot establish a forward voltage
blocking capability due to the insufficient negative voltage time, which can be represented by the
extinction angle [42]. Therefore, a commutation failure can be considered to occur when the extinction
angle is less than the inherent limit of the thyristor. As stated in [38], a commutation failure, which occurs
again after an interval of 200 ms, is called a continuous commutation failure in engineering and may
cause an HVDC blocking event. Therefore, in the study, a continuous commutation failure with an
interval of 200 ms is taken as the condition of HVDC blocking.

However, in the simulation analysis, different criteria are developed to determine the occurrence
of commutation failures and blocking events due to different modeling methods of HVDC converters.
Table 1 compares the typical criteria of commutation failures and blocking events in the pure TS
simulation and EMT-TS hybrid simulation. In the pure TS simulation, the models of the HVDC
converter, such as the CDC4 model in PSS/E, are represented by steady-state equations. That is,
the HVDC converter is modeled without thyristor valves, so commutation failures and blocking events
can only be identified according to the AC voltages at commutation buses [43]. The AC voltage criteria
are usually obtained under the assumption of an infinite AC system and the effect of voltage waveform
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distortion on commutation failures is ignored, so the accuracy is poor [42]. In the EMT-TS hybrid
simulation, HVDC converters are modeled by thyristor valves, which are consistent with the actual
condition, so commutation failures and blocking events can be identified accurately through detection
of the extinction angle and the interval between two commutation failures.

Table 1. Typical criteria of commutation failures and blocking events in two simulation methods.

Simulation Methods Commutation Failures Blocking Events

Pure TS simulation AC voltage at the inverter side
(e.g., 0.785 p.u.)

AC voltage at the
rectifier side (e.g., 0.6 p.u.)

EMT-TS simulation Extinction angle (7.2◦ [44]) Interval between two
commutation failures (200 ms [38])

Therefore, the EMT-TS hybrid simulation can achieve more accurate results in the commutation
failures and blocking events simulation. It is more suitable for the security assessment of receiving-end
systems to identify HVDC-related security and stability issues, which is validated in Section 5.

3.2. Principle of EMT-TS Hybrid Simulation Modeling

To build the hybrid simulation platform, two mature business software, PSS/E [45] and EMTDC/
PSCAD [46], are integrated based on the interface software E-Tran Plus [47]. To construct the hybrid
simulation model, several issues should be addressed:

(1) Interface location. As shown in Figure 2, the power system will be divided into two parts:
The internal network and the external network. The internal network is comprised of HVDCs
and the nearby AC buses, and it is modeled in the EMT simulator EMTDC/PSCAD. The rest of
the system is the external network and is represented in the TS simulator PSS/E. To guarantee the
accuracy and efficiency of the hybrid simulation, a proper interface location should be identified.

(2) Equivalent models of the external and internal networks. For the model in EMTDC/PSCAD,
in addition to the detailed model of the internal network, an equivalent model of the external
network needs to be constructed to ensure the integrity of the system. Similarly, an equivalent
model of the internal network in PSS/E is also indispensable.

(3) Interaction protocol and data. During the hybrid simulation, the two simulators will exchange
data through a certain interaction protocol to update the states of the equivalent models in time.

Figure 2. Topology of the power system.

3.2.1. Identify the Interface Location

When HVDC was first simulated in an EMT-TS hybrid simulation, the interface was located at
the terminal buses of converters [48,49]. Subsequently, considering that TS simulation based on the
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fundamental frequency positive-sequence phasor model cannot effectively represent the waveform
distortion or phase imbalance at converter terminals, an extension of the internal network into the
AC system was suggested [50]. However, the specific methods for identifying the interface location
were not mentioned. In PSS/E, phase imbalance caused by asymmetrical faults can be described
by appending negative-sequence and zero-sequence parameters to the positive-sequence system,
so the interface location mainly depends on the description of harmonic distortion, which is related to
the frequency [51].

Based on the above analysis, a frequency-domain characteristics analysis method is used here to
identify the location of the interface. The range of the internal network is expanded continuously and
the impedance-frequency characteristics at the buses of interest are analyzed in the hybrid simulation,
until the differences among the impedance-frequency characteristics under different locations reduce
to a certain range. That is, expanding the scope of the internal network has almost no effect on the
impedance-frequency characteristics anymore. Then, the interface location is finally identified based
on the smaller internal network of the last two-scope internal networks.

In the security assessment of power systems with multi-infeed HVDCs, HVDC dynamics are
essential and should be described accurately. Therefore, the commutation buses at the rectifier side
and inverter side can be taken as the buses of interest.

3.2.2. Equivalent Models of the External and Internal Networks

In the study, the construction of equivalent models is implemented in E-Tran Plus. In order to
consider the asymmetrical faults, a multi-port three-phase equivalent circuit with voltage sources,
PI sections and transformers, is constructed in EMTDC/PSCAD to represent the external network.
PI sections represent the impedance between buses of the same voltage level, whereas transformers
represent the impedance between buses of different voltage levels. As for the equivalent model of the
internal network, the generator model is used in PSS/E. When performing the power flow calculation
to get the updated data, which will be transferred to EMTDC/PSCAD, the generator model will act as a
current injection and a change in the system admittance matrix in PSS/E. The equivalent models of
both networks can be found in the implementation of the hybrid simulation shown in Figure 3.
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Figure 3. Implementation of the hybrid simulation.
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3.2.3. Interaction Protocol and Data

A parallel interaction protocol is adopted to exchange the updated data, indicating both simulators
run simultaneously during the simulation process. Before the simulation, initialization will be executed,
in which the equivalent voltage sources in EMTDC/PSCAD and the equivalent generators (or current
sources and admittance matrix) in PSS/E are initialized based on the power flow results of the pure
TS simulation in PSS/E. During the simulation, the voltage magnitude, phase angle, and frequency
information from PSS/E will be sent to EMTDC/PSCAD to update the equivalent voltage sources. At the
same time, a discrete Fourier transform (DFT) will be used to extract PQ values from EMTDC/PSCAD
to update the equivalent generators. All the data are exchanged at the time step of the TS simulation.

3.3. Security Assessment Index System

During the security assessment, the EMT-TS hybrid simulation model is updated with the
real-time operating data obtained by the intelligent measurement system and run under the pre-defined
contingency. Then, the results are evaluated based on a security assessment index system to identify
the security and stability issues. Once any security index in the simulation results exceeds the preset
range, the current operating condition, contingency, and power shortage in the receiving-end system
will be sent to the decision-making model to obtain the optimal emergency control strategies.

The security assessment index system is composed of static security indices and dynamic security
indices. The steady-state frequency deviation, voltage deviation, and power flow of the lines belong to
static indices while the maximum/minimum value of the transient voltage and frequency, as well as
the maximum transient relative power angle, belong to dynamic indices. Referring to [52], the preset
ranges of the security assessment index system are shown in Table 2. In static indices, the threshold
values of the steady-state frequency deviation Δf and steady-state voltage deviation ΔV are 0.05 Hz
and 0.1 p.u., respectively; and the power flow of lines should be less than the transmission power limit
pmax, which is 1 p.u. in the study. As for dynamic indices, the security threshold of equipment, as well
as coordination among different controls, needs to be considered. To ensure the safety of power system
equipment, the maximum value of the transient voltage should be less than 1.3 p.u.; to avoid triggering
low-voltage LS, high-frequency generator tripping, and low-frequency LS, the minimum value of the
transient voltage should be higher than 0.85 p.u. and the threshold values of the maximum/minimum
transient frequency are 51.5 and 49.25 Hz, respectively. At the same time, the power angle difference
Δδ of any two units should be less than 360◦ to avoid the out-of-step of the first and second pendulums.

Table 2. Preset ranges of the security assessment index system.

Static Security Indices Preset Range Dynamic Security Indices Preset Range

steady-state
frequency deviation (Hz) |Δf | < 0.05 maximum/minimum

transient frequency (Hz) 49.5 < f < 50.5

steady-state
voltage deviation (p.u.) |ΔV| < 0.1 maximum/minimum

transient voltage (p.u.) 0.85 < V < 1.1

steady-state
power flow of lines (p.u.) p < pmax

maximum transient relative
power angle (◦) Δδ < 360◦

4. Emergency Control Strategy Decision-Making Based on BAS

When a security or stability issue is identified by security assessment, the emergency control
strategy will be generated by solving the decision-making model with BAS. In the following subsections,
the mathematical decision-making model and the decision-making procedure of the emergency control
strategy are described.

4.1. Mathematical Decision-Making Model

The emergency control strategy decision-making problem can be formulated as a constrained
optimization problem. The objective includes minimizing control costs and deviations of the frequency
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and voltage, and adjustment amount constraints, steady-state constraints, and transient-state constraints
are considered.

4.1.1. Objective Function

The primary objective is minimizing the total control costs of multiple resources, and the secondary
objective is minimizing the total weighted deviations of the frequency and voltage. The two objectives
are normalized and combined through a weighted coefficient to formulate the objective function f,
as shown in the following equations:

min f = f1 +ω0 f2, (1)

min f1 = (

ND∑
i=1

ΔpDC
i +

NS∑
j=1

Δppump
j · xj +

NL∑
k=1

Δpload
k )/Sbase, (2)

min f2 = ε f

∑
g

Δ fg(p)

σg f base
+εv

∑
m

ΔVm(p)
Vbase

KV, (3)

Δ fg(p) = Δ f s(p) + Δ f d
g (p), (4)

ΔVm(p) = ΔVs
m(p) + ΔVd

m(p), (5)

where f1 is the primary objective; f2 is the secondary objective; ω0 is the weighted coefficient; ND,
NS, and NL are the numbers of HVDCs, pumped storages, and interruptible loads in emergency
resources; ΔpDC

i is the power adjustment of HVDC i; Δppump
j is the consumed power of the tripped

pumped storage j; xj is a 0–1 variable, 1 represents tripping the pumped storage j while 0 represents
keeping the original state; Δpload

k is the power adjustment of load k; Sbase is the base value of the power
system capacity; ε f and εv are the weighted coefficients of the frequency and voltage; Δ fg and σg

are the frequency deviation and coefficient of the primary frequency adjustment at the generator g,
respectively; f base is the reference frequency; ΔVm is the voltage deviation of bus m; KV is the voltage
regulation factor; Vbase is the reference voltage; Δ f s is the steady-state frequency deviation of the
system; Δ f d

g is the transient-state frequency deviation of bus g; and ΔVs
m and ΔVd

m are the steady-state
and transient-state voltage deviations of bus m.

Equation (1) is the objective function, in which the weighted coefficient ω0 is defined by users.
Equation (2) is the primary objective, with ΔpDC

i , xj, and Δpload
k as decision variables. Equation (3)

describes the secondary objective. Considering that the power imbalance of the receiving-end
system due to the HVDC blocking event will seriously affect the system frequency, assume ε f > εv.
Equations (4) and (5) represents the frequency deviation and voltage deviation, respectively.

It should be noted that the priority of three kinds of control resources is different, which is reflected
by the control action time in the control strategy. Taking the control speed and control cost into account,
the action sequence adopted here is HVDCs, pumped storages, and interruptible loads. Considering
the communication delay and control device response time, the control action time of HVDCs is
100 ms after the security or stability issue occurs, and the pumped storages and interruptible loads are
followed, which are 300 and 500 ms, respectively [53]. Therefore, the control action time for control
resources is fixed and not taken as the decision variable in the decision-making.

4.1.2. Adjustment Amount Constraints

The adjustment amount of each equipment should not exceed its maximum power capacity, such as
the maximum active power of HVDC can be increased up to being 1.1 times the rated capacity [54].
Therefore, the emergency control strategies should meet the following constraints:

pDC,min
i − pDC

i ≤ ΔpDC
i ≤ pDC,max

i − pDC
i (i = 1, · · ·, ND), (6)
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pload,min
k − pload

k ≤ Δpload
k ≤ pload,max

k − pload
k (k = 1, · · ·, NL), (7)

where pDC
i is the transmission power of HVDC i; pDC,max

i and pDC,min
i are the transmission power limits

of HVDC i; pload
k is the power of load k; and pload,max

k and pload,min
k are the LS amount limits of load k.

Equation (6) is the power adjustment amount limits of HVDC and Equation (7) is the LS limits.

4.1.3. Steady-State Constraints

Based on the indices discussed in Section 3.3, the steady-state constraints are as follows:

Δ f s,min < Δ f s(p) < Δ f s,max , (8)

ΔVs,min
m < ΔVs

m(p) < ΔVs,max
m (m = 1, · · ·, NB), (9)

Ss
q(p) < Ss,max

q (q = 1, · · ·, NT), (10)

where Δ f s,max and Δ f s,min are the steady-state frequency deviation limits of the system; NB is the total
number of the buses; ΔVs,max

m and ΔVs,min
m are the upper and lower limits of the steady-state voltage

deviation at bus m; NT is the total number of lines; Ss
q is the transmission power of line q; and Ss,max

q is
the transmission power limit of line q.

Equations (8) and (9) are the steady-state deviation limits of the frequency and voltage. Equation (10)
is the transmission power limit of lines.

4.1.4. Transient-State Constraints

The transient variables, such as the transient frequency deviation, transient voltage deviation,
and relative power angle, of the generators should meet:

Δ f d,min
g < Δ f d

g (p) < Δ f d,max
g (g = 1, · · ·, NG), (11)

ΔVd,min
m < ΔVd

m(p) < ΔVd,max
m (m = 1, · · ·, NB), (12)

Δδs,r(p) < Δδmax (s, r = 1, · · ·, NG), (13)

where NG is the total number of the generators; Δ f d,max
g and Δ f d,min

g are the upper and lower limits of

the transient frequency deviation at generator g; ΔVd,max
m and ΔVd,min

m are the upper and lower limits of
the transient voltage deviation at bus m; Δδs,r is the power angle difference between generators s and r;
and Δδmax is the maximum power angle difference between any two units during the transient process.

Equations (11) and (12) are the transient deviation limits of the frequency and voltage. Equation (13)
is the transient limit of the power angle difference.

4.2. Decision-Making Procedure of the Emergency Control Strategy

As described in Section 4.1.1, the priority and the control action time of the emergency resources
are different. In the decision-making process, the resources are optimized in order of priority, which is
HVDCs, pumped storages, and interruptible loads. Only when the adjustable amount of the resource
with high priority is insufficient to maintain the security and stability will the resource with low priority
be adjusted. Therefore, the types of control resources that need to be adjusted should be determined
firstly according to the power shortage and the control strategy obtained from the off-line table. Then,
those with high priority are adjusted to the maximum adjustment amount, and those with low priority
are optimized by solving the decision-making model.

As for the solution method, there are two kinds that can be used to solve the non-linear
decision-making problems: One is to transform the non-linear function to a linear function, such as
the trajectory sensitivity-based method in [30], and the other is to handle the problems with AI
algorithms. In the study, the latter one is adopted, in which the BAS algorithm [40] and TS simulation
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are combined to obtain the optimal control strategy. Considering that the BAS algorithm may take
several iterations during the decision-making process and the influence of the control strategies brought
by the steady-state model in TS simulation is relatively small, TS simulation is used to improve the
overall efficiency. At the same time, it should be noted that the decision variable corresponding to
the pumped storages is an integer variable. In the optimization, it is treated as a continuous variable,
and finally rounded to the nearest integer to obtain the decision-making result.

The specific decision-making procedure is as follows and the flowchart is shown in Figure 4.

Figure 4. Flowchart of the decision-making procedure.

Step 1: Initialization of the decision-making model.
Determine the types of control resources that need to be adjusted through comparing the adjustable

amount of the resources and the power shortage. Obtain the control strategy corresponding to the
pre-determined contingency and the current operating condition through an approximate search of the
off-line control strategy table. If the control resource types in the control strategy are the same as those
determined based on the power shortage, then the control strategy is used as the initial population
x; otherwise, if the control resource types in the control strategy differ from those determined based
on the power shortage, the control resource types are consistent with those determined based on
the power shortage, and the resource with the lowest priority in the control resource types will be
optimized, with the initial adjustment amount as 0. Then, initialize the decision-making model with
the current operating state data, initial population x, and other solution parameters. The solution
parameters include the variable step-size parameter E, the step-size sp, the distance between left and
right populations d0, and the number of iterations n.

Step 2: Fitness value calculation of the current population.
Update the TS simulation model with the current control strategy, i.e., the current population x.

Then, extract the deviations of the frequency and voltage described in Section 3.3 through traversing
the simulation results. Finally, calculate the fitness value of the current population based on the fitness
value function shown in Equations (1)–(5).

Step 3: Update of the population.

74



Energies 2020, 13, 3174

Assume that the beetle forages randomly in any direction, then the direction vector from its right
antenna to the left antenna should also be random. Therefore, the optimization problems in kdim

dimensional space can be represented and normalized by a random vector:

D =
rands(kdim, 1)∣∣∣rands(kdim, 1)

∣∣∣ , (14)

where kdim is the spatial dimension and rands() is a random function.
To imitate the activities of the beetle’s left and right antennae, populations xl and xr are defined to

represent a population in the left-side and right-side searching areas, respectively:

xl − xr = d0 ·D, (15)

xl = x + d0 ·D/2, (16)

xr = x− d0 ·D/2. (17)

Then, the fitness values of populations xl and xr are calculated based on TS simulation results and
Equations (1)–(5), and expressed as f left and f right, respectively.

Finally, the position where the beetle will go next, i.e., the next population, can be determined by
comparing the fitness values f left and f right based on Equation (18):

x =

{
x + E · sp ·D ( f left < f right)

x− E · sp ·D ( f left > f right)
. (18)

The variable step-size parameter E is between 0 and 1, and 0.95 is an acceptable value here.
Step 4: Termination criteria
If the difference between the fitness values of two adjacent populations is less than the threshold

value ε or the number of iterations n has reached the maximum value, as shown in Equation (19),
then the decision-making is terminated and the new population is considered as the optimal emergency
control strategy; otherwise, take the previous population as the input and perform step 2 and step 3
again until Equation (19) is met:

fn − fn−1 ≤ ε or n ≥ nmax, (19)

where fn and fn−1 are the fitness values of the nth iteration and (n− 1)th iteration, respectively; and nmax

is the maximum number of iterations.

5. Case Studies

In this section, two actual power systems in China are used as the test systems to verify the
proposed scheme.

5.1. Test System 1

The topology of test system 1 is shown in Figure 5. There are 64 equivalent loads, 39 equivalent
generators, 101,000 kV buses, 80,500 kV buses, and 3 HVDC lines: ±660 HVDC 1, ±800 HVDC 2,
and ±800 HVDC 3. The total capacity of equivalent loads is 59.6 GW, and the transmission power of
the HVDC lines are 4, 8, and 8 GW, respectively. That is, the capacity proportion of HVDCs is 33.56%
of the equivalent loads.
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Figure 5. Topology of test system 1.

5.1.1. Construction of the Hybrid Simulation

As discussed in Section 3.2.1, the accuracy of the hybrid simulation is related to the interface
buses, so the frequency-domain characteristics analysis is conducted to determine the interface buses.

For the convenience of description, the number of branches in the shortest path between two
buses is defined as the electrical distance. For example, the electrical distance between bus 38 and
bus 66 is 3. Since the commutation buses are modeled as the internal nodes of the HVDC model in
PSS/E, the buses with an electrical distance of 2, 3, 4, and 5 from the commutation buses are taken
as the interfaces to construct the hybrid simulation models, respectively. According to Section 3.2.1,
the impedance-frequency characteristics at the commutation buses of HVDCs are obtained based on
the frequency-domain characteristics analysis. Take HVDC 2 as an example, the positive-sequence
impedance-frequency characteristics of the rectifier-side bus 301 and inverter-side bus 55 are shown in
Figure 6.

(a) (b) 

Figure 6. (a) Impedance-frequency characteristic of the rectifier-side bus 301; (b) Impedance-frequency
characteristic of the inverter-side bus 55.

As can be seen in the figures, the differences of the impedance-frequency characteristics at bus
301 under different interface locations are negligible, which may result from the direct connection

76



Energies 2020, 13, 3174

with generator 302. Additionally, the four waveforms at bus 55 match well when the frequency is
lower than 110 Hz and higher than 400 Hz. Although some differences exist under other frequencies,
the characteristics under 2 buses away and 3 buses away are very close. Buses with an electrical
distance of 2 from the commutation buses are taken as the interface location.

5.1.2. Implementation of Security Assessment and Emergency Control Strategy Decision-Making

As discussed in Section 2, operation failure of protection and reclosing failure caused by a
permanent fault are two issues of interest to researchers in recent years. Therefore, they are studied as
two scenarios in the study. To verify the accuracy of the proposed EMT-TS hybrid simulation, the PSS/
E simulator is adopted as the pure TS simulation tool for comparison.

In the EMT-TS simulation, the limit of the extinction angle for commutation failures determination
is 7.2◦. In PSS/E, the actual AC voltage criteria of commutation failures for HVDC 1, HVDC 2,
and HVDC 3 are 528, 628, and 628 kV while the criteria of blocking events are 0.6 p.u.

• Scenario 1: Operation Failure of Protection

a. Implementation of Security Assessment.

In this case, a three-phase short-circuit fault occurs at line from bus 29 to bus 46 at 1.1 s, and the
opening of the circuit breaker fails due to its malfunction. Therefore, the faulted line is finally isolated
by tripping circuit breakers of adjacent lines at 1.4 s, which is called failure protection.

Figure 7 shows the corresponding responses of typical interface buses and HVDC 2 in the hybrid
simulation and PSS/E. As can be seen from Figure 7a, the waveforms of interface buses match well
before the fault occurs. Although there is a slight deviation in the transient process before the fault
removal, a similar trend is obtained, which can verify the correctness of the hybrid simulation results.
Meanwhile, continuous commutation failures of HVDC 2 are observed in both PSS/E and hybrid
simulations during the fault. It should be noted that due to the different modeling methods of HVDC
converters, the extinction angle under commutation failures is different in PSS/E and the hybrid
simulation. In PSS/E, the extinction angle is set to 90◦ [45], while in the hybrid simulation, the extinction
angle is lower than 7.2◦ [46]. Therefore, it can be seen from the waveforms of the extinction angle in
Figure 7b, in both PSS/E and the hybrid simulation, the intervals between two commutation failures
(extinction angle is lower than 7.2◦ in the hybrid simulation while equals to 90◦ in PSS/E) are longer than
200 ms, which indicates the occurrence of continuous commutation failures. Nevertheless, HVDC 2
is blocked at 1.4 s in the hybrid simulation while not in PSS/E, which can be seen from the slow
restoration of the inverter-side active power in PSS/E. Therefore, it validates that the ETM-TS hybrid
simulation proposed in this paper can detect the blocking event while there is a limitation in using
pure TS simulation to detect blocking events.

Through traversing the simulation results of scenario 1, it can be found that the steady-state
frequency deviation |Δf | is 0.24956, which exceeds the threshold of 0.05, and the minimum transient
frequency is 49.169, which is lower than the threshold of 49.25 Hz. Therefore, the emergency control
strategy should be developed to maintain the security and stability of the receiving-end system.

b. Implementation of Emergency Control Strategy Decision-Making.

Since there is no pumped storage in the provincial power system, only HVDCs and interruptible
loads are taken as the control resources. By applying the decision-making method proposed in
Section 4.2, the emergency control strategy for the bipolar blocking event of HVDC 2 is to increase
the transmission power of the rest HVDC systems by 1.2 GW at 1.5 s and shear a load of 6.16 GW at
1.7 s. The static security indices and dynamic security indices before and after adopting the emergency
control strategy are shown in Figure 8. The steady-state and transient frequency indices will exceed
the preset range without control, while all static and dynamic indices are within preset ranges with the
control strategy obtained by the proposed method.
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(a) 

(b) 

Figure 7. (a) Voltage of typical interface buses; (b) Active power, dc voltage, and extinction angle at the
inverter side of HVDC 2.

(a) (b) (c) 

Figure 8. (a) Static indices; (b) Dynamic indices corresponding to the minimum transient frequency
and voltage; (c) Dynamic indices corresponding to the maximum transient frequency and voltage.

In order to further verify the control effect of the emergency control strategy, the trajectory
sensitivity-based LS scheme proposed in [55] is compared with the proposed scheme in the paper,
and the results are shown in Figure 9. The LS ranges of the sensitivity-based scheme are set as (0, 10%)
and (0, 14%), respectively. As can be seen from the results, the LS amount under the two ranges are
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concentrated at the upper or lower limit, and there is significant non-uniformity. The control costs
are 6.4763 and 6.4712 GW, respectively. In comparison, the LS amount obtained from the proposed
scheme has higher consistency among the entire network, and the local LS is not uniform. Furthermore,
the control cost of LS is reduced to 6.1646 GW.

Figure 9. Load shedding amount under different schemes.

• Scenario 2: Reclosing at a Permanent Fault

a. Implementation of Security Assessment.

In this scenario, a three-phase short-circuit fault occurs at the line between bus 65 and 66 at 1.1 s,
and the circuit breaker is opened at 1.2 s. In addition, the reclosing of the circuit breaker at 2.2 s fails
due to a permanent fault. Therefore, the circuit breaker is reopened at 2.3 s.

The results of typical interface buses, HVDC 2 and HVDC 3, are shown in Figure 10. It can be
seen in Figure 10a that the voltage waveforms of interface buses in hybrid simulation and PSS/E before
reclosing are close. However, the HVDC systems show different characteristics during the transient
process. As can be seen in Figure 10b,c, in the hybrid simulation, continuous commutation failures are
observed in HVDC 2 and HVDC 3 due to the unsuccessful reclosing of the breaker, so they are blocked
at 2.3 s; while in PSS/E, the active power of the HVDC systems restores slowly after the reopening of
the breaker. Obviously, reclosing to a permanent fault does not cause the second commutation failure
in PSS/E, which shows the limitation of adopting the AC voltage at the inverter side as the criterion for
detecting the commutation failure.

Different from Scenario 1, in addition to the steady-state frequency deviation and the minimum
transient frequency, the maximum transient frequency exceeds the threshold. Therefore, the emergency
control strategy should be developed.

b. Implementation of Emergency Control Strategy Decision-Making.

As discussed in the above, the permanent fault will cause bipolar blocking events of HVDC 2 and
HVDC 3, leading to a power loss of 16 GW. Through applying the decision-making method proposed
in Section 4.2, the emergency control strategy is to increase the transmission power of the rest HVDC
systems by 0.4 GW at 2.4 s and shear a load of 15.3 GW at 2.6 s. The static and dynamic indices
before and after adopting the emergency control strategy are shown in Figure 11. The steady-state and
transient frequency indices will exceed the preset ranges without control, while all static and dynamic
indices are within preset ranges with the control strategy obtained by the proposed method.
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(a) 

(b) 

(c) 

Figure 10. (a) Voltage of interface buses; (b) Active power, dc voltage and extinction angle at the
inverter side of HVDC 2; (c) Active power, dc voltage, and extinction angle at the inverter side of
HVDC 3.
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(a) (b) (c) 

Figure 11. (a) Static indices; (b) Dynamic indices corresponding to the minimum transient frequency
and voltage; (c) Dynamic indices corresponding to the maximum transient frequency and voltage.

5.2. Test System 2

Test system 2 is divided into three regional grids by 8 HVDC lines, as shown in Figure 12. There are
271 buses and 296 AC transmission lines. The total capacity of the generators and loads are 27,550 and
26,878 MW, respectively. For the HVDCs, the rated voltage is ±800 kV and the transmission power is
800 MW, respectively. The specific information of regions is shown in Table 3.

 

Figure 12. Topology of test system 2.

Table 3. Specific information of regions.

Regions
Capacity of

Generators (MW)
Capacity of
Loads (MW)

Sending HVDC
(MW)

Feeding HVDC
(MW)

Region A 8100 6363 3200 800
Region B 10,000 5653 4000 0
Region C 9450 14,862 0 5600

Due to the space limitations, only the results of the emergency control strategy are presented.
Assume that HVDC 3 is blocked at 1.4 s under the scenario of operation failure of protection.
The steady- state frequency and the transient frequency of region A and C exceed the threshold.
Therefore, the emergency control strategy is developed based on the decision-making method proposed
in Section 4.2.

The emergency control strategy for the bipolar blocking event of HVDC 3 is to increase the
transmission power of the rest HVDC systems between region A and C by 160 MW (HVDC 2 and
HVDC 6), HVDC systems between region B and C by 320 MW (HVDC 4, HVDC 5, HVDC 7, and HVDC
8), and decrease the transmission power of HVDC 1 by 320 MW at 1.5 s. Then, a generator of 600 MW
in region A is sheared at 1.6 s and a load of 500 MW in region C at 1.7 s. The static and dynamic security
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indices of the three regions before and after adopting the emergency control strategy are shown in
Figures 13–15, respectively. The steady-state and transient frequency indices of region A and C finally
meet the preset ranges with the control strategy obtained by the proposed method.

(a) (b) 

Figure 13. Static and dynamic security indices of region A. (a) Static indices; (b) Dynamic indices
corresponding to the maximum transient frequency and voltage.

(a) (b) 

Figure 14. Static and dynamic security indices of region B. (a) Static indices; (b) Dynamic indices
corresponding to the maximum transient frequency and voltage.

(a) (b) 

Figure 15. Static and dynamic security indices of region C. (a) Static indices; (b) Dynamic indices
corresponding to the minimum transient frequency and voltage.

6. Conclusions

This paper proposes an on-line pre-decision-making scheme, including security assessment
and an emergency control strategy decision-making, for power systems with multi-infeed HVDCs.
The security assessment method is based on the EMT-TS hybrid simulation, and can generate accurate
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assessment results while maintaining the high computational efficiency. The emergency control
strategy decision-making method can make full use of HVDCs, pumped storages, and interruptible
loads to maintain the security and stability of receiving-end systems. The case studies showed that
the proposed scheme is reliable. In addition, the results also indicate that it is essential to describe
interactions between AC and DC subsystems in security assessment to identify HVDC-related security
and stability issues.

In future work, the dynamic average-value modeling method can be used in HVDC modeling to
further improve the computational efficiency. In addition, more attention will be paid to the detailed
design of the emergency control strategy, such as the coordination of HVDC controllers and the
classification of interruptible loads.
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