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Abstract

In this paper are discussed some of the fundamental principles which are relevant to an
understanding of the influence that interfacial roughness may have on adhesion. The
surface energies of the adhesive, substrate and of the interface between them determine the
extent of wetting or spreading at equilibrium. Numerical values for surface energies may
be obtained either from contact angle measurements or from analysing force-displacement
curves obtained from the surface forces apparatus. The extent to which the relationships,
appropriate for plane surfaces, may be modified to take into account interfacial roughness
are discussed. For modest extents of roughness, the application of a simple roughness
factor may be satisfactory, but this is unrealistic for many of the practical surfaces of
relevance to adhesive technology which are very rough, and is ultimately meaningless, if
the surface is fractal in nature. Some examples are discussed of published work involving
polymer-metal and polymer-polymer adhesion, where the roughness of the interface exerts
a significant influence on the adhesion obtained. Roughness over a range of scales from
microns to nanometres may strengthen an interface, increasing fracture energy by allowing
bulk energy dissipating processes to be activated when the bond is stressed.

Keywords: B. Surface roughness/morphology; C. Contact angles; D. Adhesion by
mechanical interlocking; Fractal surfaces; Surface forces apparatus

This paper is concerned to review some fundamental considerations which
influence the effect of surface topography on the strength of an adhesive joint. The contact
of a liquid adhesive with a rough solid surface is of obvious relevance to this subject. It is
therefore necessary first to discuss basic concepts of surface energy and to develop the idea
of surface roughness.

1. SURFACE ENERGY
1.1 Surface energy and adhesion

The basic concept of surface energy is that it is the excess energy associated with
the presence of a surface. It is expressed per unit area. In formal treatments it is necessary
to recognise that they may be defined in terms either of Gibbs G or Helmholtz F free
energies. Distinction is also drawn between the 'surface energy’ G° and the surface tension
v [1,2]. In adhesion science and technology the interest is usually in complex solid surfaces
for which very precise measurements of surface energy are not generally possible. It is
therefore common, even universal, in this context to gloss over the formal distinctions
between these terms and to take y and G> as being the same referring to both as ‘surface
energy'.

Considerations of surface energetics are usually regarded as fundamental to an
understanding of adhesion. Surface energies are associated with formation of the adhesive



bond. A prerequisite for adhesion is contact between the phases 1 and 2 forming the bond.
Commonly the adhesive is applied as a liquid, and its angle of contact 6 with the solid is
related to the surface energies by Young's equation [3]

Yiv = Y12 *+ Y2y COS O 1)
where v refers to the vapour in equilibrium with the solid(1) and liquid(2).

The energy change (per unit area) when liquid 2 spreads over the surface of solid 1
is called the spreading coefficient or spreading energy, S, [3] and is also related to the
surface energies:

S=vy1 -yav- 112 2)
If S is positive, the liquid at equilibrium will be spread completely over the solid.

Surface energies are also associated with failure of an adhesive bond. Failure
involves forming new surfaces and the appropriate surface energies have to be provided.
The surface energy term may be the work of adhesion, W, or the work of cohesion, Wc,
depending on whether the failure is adhesive or cohesive. These are defined as follows [3] :

Wa=7v1+7y2-712 (3)
Wc = Zyl (4)

The practical adhesion, for example fracture energy G, will comprise a surface

energy term G, (W3 or W) to which must be added a term  representing other energy

absorbing processes - for example plastic deformation - which occur during fracture:
G=G,+vy (5)
Usually v is very much larger than G.. This is why practical fracture energies for adhesive

joints are almost always orders of magnitude greater than works of adhesion or cohesion.
However a modest increase in G, may result in a large increase in adhesion as y and W are

usually coupled. For some mechanically simple systems where v is largely associated with

viscoelastic loss, a multiplicative relation has been found:
G=G,{1+ac,T)}~Gyxd(cT) (6)

where ¢(c,T) is a temperature and rate dependent viscoelastic term [4, 5]. In simple terms,

stronger bonds (increased G) may lead to much larger increases in fracture energy because

they allow much more bulk energy dissipation (increased ) during fracture.

1.2 Surface energy measurement

Contact angles Before equations such as 3 and 4 can be used, values for the surface
energies have to be obtained. While surface energies of liquids may be measured relatively
easily by methods such as the du Nouy ring and Wilhelmy plate[6], those of solids present
more problems. Many of the most widely used methods are based on measuring the contact
angles of a series of test liquids on the solid surface, and evaluating the surface energies via
Young's equation, equation 1 above.

The surface energy of the solid ys can be obtained from equilibrium contact angle
measurements of a series of test liquids on the solid surface, providing the relationship
between vy and the solid ys (in vacuo) and liquid vy, surface energies is known. The exact
relationship is given by the Good and Girifalco equation[7, 8]:

Ysi = Yst Vv '2¢\/(Ys ) (7
Ys -Ysv = Tle (8)
where ¢ is the Good -Girifalco interaction parameter and =, is called the spreading
pressure. The spreading pressure is difficult to measure, and it is common to neglect it.
This may be justifiable for a low energy, non-polar solid (e.g. an alkane), but is difficult to
justify where a high surface energy solid is involved. In principle the solid surface energy
is calculated by eliminating v between equations 1 and 7 giving:

2.



yiv (1 + €0s6) = 2¢(ys yi) 9
The difficulty with equation (9) is that ¢ is not generally known. Over past decades
enormous intellectual effort has been put into devising ways of circumventing the problem
of not knowing ¢, and much controversy has been generated in the process. Three of the
resulting relationships are

yiv (L +€080) = 2V(ys" ) + 2V(x 1) (10)
proposed by Owens and Wendt [9], Kaelble and Uy[10],
v (1 + cos0) = 4(st Ylvd)/ (st + Ylvd) + 4(Ysp Ylvp)/ (Ysp + Ylvp) (11)
proposed by Wu[11] and
v (1 + cos0) = Z\I(YSLW YIVLW) + 2\/(Ys+ Tv) + 2\/(}’3— Ylv+) (12)

due to Good [12]. All imply that the spreading pressure may be neglected.

These equations result from assuming that the total surface energy can be split into
the sum of components associated with different types of bonding, for example dispersion
v* plus polar y* (equations 10 and 11), or Lifshitz-van der Waals y-" plus acid-base y*®
(equation 12). The y" and y” terms are respectively the Lewis acid and Lewis base
component of surface interaction: these are related to the acid-base component y* by

Ve =2V0"y) (13)

Surface forces apparatus An alternative approach to measuring surface energies is
provided by the surface forces apparatus [13]. The apparatus uses crossed cylinders of
molecularly smooth cleaved mica between which forces may be measured with a
sensitivity of 10° N (10 gf ). (The crossed cylinder configuration is locally equivalent to a
sphere near a flat surface or to two close spheres [13]).The basic experiment by which
surface forces apparatus is used to deduce surface energy values involves bringing the two
surfaces concerned into contact and observing either the load necessary to cause them to
separate, or the relationship between the radius of the contact zone and the applied load.

The results are most commonly analysed by the Johnson, Kendall and Roberts
(JKR) equation [14]. For two elastic spheres, of radii R; and Ry, in contact this takes the
form:

a® = [F + 3tRWy, + V{67R W4, F + (3nR W12)?}R/K (14)

where

a is the radius of the area of contact,

R=R; Rz/( Ri+ Rz),

F is the normal load,

K is an elastic constant.
The term W4, is a surface energy term which is obtained via equation 14 from a plot of a°
vs. load F. If we may assume that the spreading pressure is zero (equation 8), the surface
energy term Wy, will be the work of adhesion (equation 3) where surfaces 1 and 2 are
different, and work of cohesion (equation 4) where they are the same.

An issue, at present unresolved, is that Derjaguin, Muller and Toporov [15, 16]
have put forward a different analysis of the contact mechanics from JKR. Maugis has
described a theory which comprehends both the theories as special cases [17].

2. SURFACE TOPOGRAPHY
2.1 Roughness factor

We have seen both how the concept of surface energy in principle relates to
adhesion, and have examined some methods by which it may be measured. The surface
energy terms discussed (e.g. equations 1 to 6) are all energies per unit area.



If the interface between phases 1 and 2 is ‘perfectly’ flat, there is no problem in
defining the interfacial area, A. However most of the surfaces we work with are to a degree
rough. If the roughness is not very great it might be adequately expressed by a simple
Wenzel roughness factor[18],

r=AIA, (15)
where A is the ‘true’ surface area, A, the nominal area. For simple ideal surfaces, r can be
calculated from elementary geometric formule. Thus a surface consisting of equal
hemispheres would have a roughness factor of 2, one consisting of square pyramids with
all sides of equal length, a roughness factor of V3. For simple real surfaces the roughness
factor can be calculated from straight forward measurements, such as profilometry. In
such cases we could substitute a corrected area into the definition of surface energy and
thence via equation 3 evaluate work of adhesion. This approach assumes that there are no
differences between the chemical nature and environment of surface molecules on the
rough surface and on the smooth one.

2.2 Further conceptual development

Can the simple roughness factor approach (equation 15) be applied if the surface is
very much rougher? Many of the surfaces encountered in adhesion technology are very
rough indeed. Figure 1(a) shows a phosphated steel surface prepared for rubber bonding
[19], figure 1(b) surface treated P.T.F.E [20]. As the scale of roughness becomes finer, the
application of a simple roughness factor becomes increasingly unrealistic and
unconvincing. It becomes unconvincing not just because of increasing practical difficulty
in measuring the ‘true’ area of such surfaces, it becomes conceptually unconvincing. The
roughness itself is an essential characteristic of the surfaces. As we approach molecular
scale roughness, indeed long before we get there, the energy of the surface molecules is a
consequence of the topological configurations they take up. It is unjustifiable to regard
these surfaces as essentially the same as smooth surfaces which happen to be rough!

Figure 1

Examples of rough pretreated substrate surfaces.
(a) Phosphated steel prepared for rubber bonding [cf. 19]
(b) P.T.F.E. irradiated by argon ions [20].

(b} . l N "\

Further, roughness at an interface may actually develop as a result of bringing the
two phases together. They will take up these configurations as a consequence of the
molecular interactions at the interface: they are an essential feature of bringing together the
two phases 1 and 2. Such roughening can be seen as an increasing of the low surface
entropy implied by a smooth surface [15, 21-23].



Fractal surfaces It has long been recognised from work on gas adsorption on porous solids
that the surface area measured depends on the size of the probe molecule [24], and is
therefore in a sense arbitrary, not absolute. More recently the development of the
mathematics of fractals has brought into clear focus the dependence of the area of a rough
surface on the size of the 'tile' used to measure it, the actual relationship depending on the
fractal dimension of the surface. The area of such a surface tends to infinity as the tile size
tends to zero. (An introduction to the concept of fractals may be found in reference 25.)

2.3Roughness factor for a fractal surface

Consider the adsorption of probe molecules of various sizes (cross-sectional area
o) on a fractal surface [25, 26]. Let n be the number of molecules required to form a
monolayer. If log n(c) is plotted against log o, a straight line with negative slope is
obtained which can be represented as

log n(c) = (-D/2).logc + C (16)

where D is the fractal dimension of the surface (C and C', k, B, B' and B" below are
constants).

- n(o) =p.c P (17)
The area A=n(o).c (18)
- A(c) =B.c PP (19)
This can be expressed in terms of a *linear dimension A.
Now o = k A2 (20)
. logn(h) = (-D/2). log k A% + C (21)
=-DlogA +C (22)
son()=p AP (23)
and  A(o) = n(L).c = n(L).k A2 (24)
=kA?pa® (25)
-~ Alo) =p" AP (26)
Consider the roughness factor, r, for such a fractal surface
r=AIA, (15)

where A is the ‘true’ surface area, A, the nominal area, i.e. the area of a plane surface. For
a plane surface D = 2, so

r=A/A, = B"A%P/p" = A %P (27)
for a fractal surface D>2, and usually D<3. In simple terms the larger D, the rougher the
surface. The intuitive concept of surface area has no meaning when applied to a fractal
surface. An "area’ can be computed, but its value depends on both the fractal dimension and
the size of the probe used to measure it. The area of such a surface tends to infinity, as the
probe size tends to zero.

Obviously the roughness factor is similarly arbitrary, but it is of interest to use
equation 27 to compute its value for some trial values of D and A. This is done in Table 1.
In order to map the surface features even crudely, the probe needs to be small. It can be
seen that high apparent roughness factors are readily obtained once the fractal dimension
exceeds two, its value for an ideal plane.

Note. Both o and A must be in dimensionless form, as a ratio to some large, fixed area or length such as
sample area or length.



Table 1 'Roughness factor' calculated for a fractal surface,
according to the fractal dimension D and probe length A.

D Roughness factor for values of A as indicated:
A =107 10" 10° 10”
2 1 1 1 1
2.1 1.6 2.5 4 7.9
2.5 10 100 1000 32000
2.8 40 1600 63000 16000000

While not wishing to question the value of the roughness factor concept for taking
into account modest departures from the flatness of a surface, | would suggest that it is not
meaningful to talk of the area a rough surface as if it had in principle an unique value. It
seems inescapable, then, that when we refer to the surface area A in the context of surface
energy and work of adhesion (equations 1 to 6) we must use the ideal, formal area, i.e.
macroscopic area of the interface. This has important implications for the effect of surface
roughness on adhesive joint strength.

3. SURFACE ROUGHNESS AND WETTING
3.1 Effect on contact angle
Young's equation 1 may be derived by considering the small displacement from
equilibrium of a sessile drop on a plane surface and making the rate of change of energy
with position zero [6]. If the same derivation is applied to the situation where the solid
surface has a roughness factor (equation 15) of r [18], it is readily seen that
COS Brough = I' COS Bsmooth (28)
This much-quoted equation immediately suggests that
if Bsmooth < T/2 then erough < Osmooth

but if Osmooth > 7/2 then erough > Osmooth
This glosses over the problem that the observed contact angle on a surface is related to an
assumed horizontal, but one might expect on a microscopic level that with a rough surface
the liquid would take up an equilibrium value (Bsmootn) With the gradient of the surface at
the edge of the drop.

The effect of Wenzel roughness on the spreading of liquid 2 on solid 1 is perhaps
better examined using the concept of the spreading coefficient. With a roughness factor of
r, equation 2 may be rewritten as

She =r.(yw - v12)/ v2 -1 (29)
This predicts that if y1, - y12 is positive (Osmeoth < 7/2), roughening will enhance the
tendency for spreading to occur, but if y1y - y12 is negative (Osmooth > 7/2), it will reduce this
tendency [27].

It is important to be clear about the assumptions on which equations 28 and 29 are
based. It is assumed that roughening has no effect on the atomic arrangement of the solid:
the limitations of this were discussed in section 2.2 above. A further assumption is that,
within the drop of liquid, the liquid is able to come into perfect contact with the solid
without entrapping air, however high the contact angle.

Cassie [28] extended Wenzel's treatment to composite surfaces, such as rough
surfaces incompletely wetted by a liquid. If an area fraction f; is wetted and f, unwetted
surface,

COS Orough = I f1 COS Osmooth- T2 (30)



where r is the roughness factor. Brough > Bsmooth UNless the roughness factor is relatively
large. The two contact angles are obviously equal where
cosO =" /(rf;-1) (31)
If the contact angle is known, it possible to calculate the extent of wetting for
idealised rough surfaces. It is necessary to consider whether these conclusions require
modification in the light of kinetic effects, such as setting of the adhesive.

3.2 Equilibrium Considerations

The extent of contact between a liquid and a rough surface depends on the details
of the topography. For example, penetration into an idealised pore, as shown in Figure 2
[29, 30], occurs until the back pressure of trapped air equals the capillary driving pressure.
De Bruyne showed that the capillary driving pressure for such a pore was given by

2 v28in(0 + ¢)/(ro - X.COt ) (32)

The symbols are defined on Figure 2. If (6 + ¢) is less than 180°, some penetration will
occur. Greater wetting of the pore is favoured by low contact angle and low ¢. For a
cylindrical pore (¢ = 90°), the distance x penetrated into a pore of length / and radius r is

X =10 (1-{Par/[2 y2c0s0 +Pg4rl}) (33)
where P is atmospheric pressure. Clearly the smaller the pore the greater the proportion of

its length filled at equilibrium. Under many circumstances adhesive-substrate contact will
be less than that predicted by the Wenzel approach, equations 28 and 29.

Figure 2
Section through an idealised pore [after 29]
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These discussions assume that equilibrium contact between liquid adhesive and
rough substrate is achieved. However adhesives set in what may be quite a short time, and
so may never reach equilibrium contact [30, 31].

Although much of the discussion above of pore penetration is in terms of empirical
or simplified relationships it does serve to give an indication of the influence of relevant
factors on the wetting of a rough surface by a polymeric adhesive. Roughness may
seriously limit the extent of contact, but this is not necessarily so. Under favourable
circumstances good penetration of the adhesive should be achieved into the topographical
features of the substrate surface.

4. SURFACE ROUGHNESS AND JOINT STRENGTH

The roughness of an interface may be on any scale ranging from the macro to the
molecular. It can affect joint strength in a number of different ways. Some examples,
illustrating them will be presented, broadly moving from large scale roughness to
roughness at a nano level.



4.1 Some effects observable on a large-scale.

Roughness factor For moderately rough surfaces, an increase in surface area may well
lead to a proportionate increase in adhesion, so long as the roughness does not reduce
contact between the surfaces [32]. Gent and Lai have convincingly demonstrated the effect
in careful experiments with rubber adhesion. In comparing adhesion to smooth and to grit
blasted steel, they observed increases in peel energy by factors of 2 to 3 times which they
ascribed to the increase in surface area.

Simple key. Some ingenuity has been used to produce surfaces with a classic 'key' A
conceptually simple example of this is the adhesion of silica to copper discussed by van der
Putten [33], who was concerned to bond copper directly to silica in the context of
integrated circuit technology.

Copper sticks poorly to silica but titanium tungstide sticks well. Using
conventional lithographic techniques islands of TiW 0.1 um thick were sputtered onto the
silica and the photoresist was removed (figure 3(a)).

Palladium acts as a nucleating agent for the electroless deposition of copper. By
treating the surface with palladium [I1] chloride in hydrochloric acid a monolayer or so of
palladium is deposited on the TiW surface. The palladium chloride solution also contains
1% of hydrofluoric acid which attacks the silica, undercutting the TiW islands (figure
3(b)). Electroless copper is now deposited, nucleating on the palladium covered TiW and
growing from it. Finally copper is electrodeposited and is thus mechanically anchored to
the silicon surface (figure 3(c) and (d)).

Here the stress is directed away from the low Wjy interface (silica/copper) towards

the stronger silica / palladium interface by the topography produced. The surface
topography protects weak regions from a high stress field.

Figure 3

Adhesion of silica to copper using a mechanical key [after 33]
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In some literature reports adhesion between sheets of semi-crystalline polymers,
such as polypropylene and polyethylene, where a laminate has been formed by cooling
from the melt, the lower-melting polymer has been shown to flow into the structure of the
higher-melting material as its volume contracts on crystallisation [34-37]. These influxes,
which may be hundreds of microns in size, lead to a mechanically-reinforced interface. On
peeling the laminates the influxes lead to enhanced plastic deformation in the interfacial
regions and so to enhanced adhesion (cf. equation 5).

Elastic and plastic losses.

Gent and Lin have shown that large amounts of energy can also be involved in
peeling an elastic material from a rough surface[38]. The energy is essentially used for the
elastic deformation of embedded filaments: this energy is lost because when the filaments
become free, they immediately relax.



Gent and Lin experimented with rubber bonded to aluminium plates with regular
arrays of cylindrical holes. The peel energy was low for the plates in the absence of holes.
An energy balance analysis gives the ratio of fracture energy for peeling from the material
with cylindrical pores G;' to that from a smooth substrate G, as

Gi/Gy=1+4¢l/a (34)
where | is the pore length, a its radius and ¢ the ratio of pore area to total area of the
plate[38]. Their experimental results demonstrated the essential validity of this
relationship. Where pull-out alone occurred the work of detachment for their system
increased by up to 20 times.

They further considered the situation where fracture of strands occurred. The extra
work is proportional to depth of pores and for their system could be several hundred times
the work of detachment from a smooth surface. This energy term dominates for deep pores.

Most polymers used as adhesives or coatings will not act as perfect elastic bodies
uniformly stressed up to fracture. Uneven stress distributions and plastic yielding would be
expected to increase the energy dissipation observed beyond that calculated for the ideal
elastic model.

While calculations like those discussed involve serious simplifications and
idealisations, they do serve to show that surface roughness per se is capable of increasing
the fracture energy of an adhesive joint by a large amount. Gent and Lin's model clearly
represents many practical adhesive systems where adhesion to microfibrous or
microporous substrates, such as anodised aluminium are involved [39].

It will be very interesting to see whether auxetic materials (materials with a
negative Poisson's ratio) can be developed to an extent that they can be used as coatings for
such porous substrates. Considerable increases in fracture energy can be anticipated.

4.2 Cognate chemical change.

It is certainly very difficult, if not impossible, to change the topography of a surface
without altering its chemical nature in some way. There are many reports both of
mechanical effects supplementing chemical ones and opposing their influence. Two
illustrative papers are discussed.

Zhuang and Wightman [40] studied both the surface topography and the surface
chemistry of carbon fibres modified by treatment with an oxygen plasma prior to
incorporating into an epoxy matrix. Two types of fibres, differing in surface roughness,
were studied. An increase in surface oxygen content was observed on treatment, mirrored
by increase in polar component of surface energy and in interfacial shear strength, IFSS.
Here the rougher fibres had somewhat lower IFSS. The lower adhesion was associated
with incomplete filling by the resin of valleys on the fibre surface striations. However there
is evidence that the rougher surface imparts better durability in a humid environment.

P.T.F.E. is a notoriously difficult substrate to bond. Koh et al. [20] have used argon
ion irradiation as a pretreatment both in the presence and absence of oxygen. The treatment
produced increasing roughness, eventually giving a fibrous forest-like texture, (figure
1(b)). Adhesion to the treated surfaces was studied in several different ways, and generally
considerable enhancement was found, which appeared to peak at a treatment level of 10*°
ions /cm?. (figure 4).

High-resolution XPS spectra showed the chemical changes occurring. In the
absence of oxygen, a 285 eV (C-C and C-H) peak developed with maximum intensity at a
dose of 10% jons /cm?. In the presence of oxygen a strong O1s signal developed which was
attributed to the reaction of oxygen atoms with the free radicals created by argon ion
bombardment. The authors attribute the enhanced adhesion to a combination of improved
wettability and chemical reactivity of the surface, combined with mechanical keying to the

9.



increasingly rough surfaces. There is no convincing explanation of the fall in adhesion at
the highest treatment time. It would be interesting to know at what level the difference
between adhesion at 10'® and 10*" ions /cm? was statistically significant.

Figure 4

Surface treatment of P.T.F.E. by argon ion irradiation:
variation of adhesion with ion dose [20].
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4.3 Fractal results

Grit-blasting is a well-established and widely-used stage in the pretreatment of metal
surfaces. Despite sporadically investigation over many decades, no general view has
emerged of how the characteristics of the surface influence the adhesion [41, 42]. In a
recent investigation, Amada et al. [43, 44] grit blast a steel substrate, varying the angle
between the gun and the specimen surface, and measured the adhesion of a plasma-sprayed
alumina coating. They examined profiles of the grit-blasted surfaces and argued that their
form was that of a self-affine fractal, the dimension of which depended on the blasting
angle. The highest fractal dimension (1.07) is reported to correspond with the blasting
angle which gave maximum adhesion. The fractal dimension correlated better with
adhesion than did surface roughness measurements.

The deposition of metal coatings on polymers provided some well-characterised
examples where mechanical effects were significant in adhesion, and played a réle in the
re-establishment of the mechanical theory of adhesion in the early seventies [30, 45]. In
these examples, a polymer, such as A.B.S. was etched to remove one phase from the
surface regions, leaving micron-scale pits which acted as a key for the deposited metal.
More recently Mazur et al. [46] electrodeposited silver within a polyimide film under
conditions where the silver(l) solution was able to diffuse into the polymer film where it
was reduced to the metal. The adhesion was excellent: the only way that Mazur could
remove the silver was by abrasion.

Examination of a section through the interface by transmission electron microscopy
shows an extremely rough interfacial region on sub-micron scale. Wool et al. [47] analysed
the profile and showed the interface to be fractal with a dimension of around 1.6.

4.5 Polymer-polymer adhesion

Microscale Janarthanan et al. [48] have employed roughness on a micron scale to enhance
the adhesion between two immiscible polymers, polycarbonate and styrene-acrylonitrile
copolymer, SAN. Grooves of depths between 5 and 35 um were scribed in the

10.



polycarbonate surface before laminating the two polymers by hot pressing. The fracture
toughness of the laminate, which was determined using a double cantilever beam test
specimen, increased from 8 J/m? for the ungrooved specimen to 170 J/m? for the specimen
with 35 um grooves. The crack propagated by a stick-slip mechanism, slowing
considerably at each groove. The increased toughness was associated with extensive
deformation of both polymers in the vicinity of the grooves.

Adhesion of thermodynamically incompatible polymers is of current interest
because of its implications for developing new multiphase polymer materials and for
recycling of mixed plastic wastes. Many elegant experiments have been reported in which
the interfacial structure has been investigated, often in the present of various types of
copolymer added at the interface as putative compatibilisers.

Hashimoto et al. [21] annealed the interface between polystyrene and a styrene-
isoprene diblock polymer at 150 °C and showed extensive roughening of the interface by
mutual interdiffusion.

Delevopment roughness on a nano-scale Creton et al. [23] studied the adhesion of a
somewhat similar system using a surface forces-type apparatus. Contact was made between
a crosslinked polyisoprene hemisphere and a thin polystyrene sheet. The fracture energy
was comparable in magnitude (although not numerically close) to the work of adhesion
0.065 J/m?. When the polystyrene surface was covered with a layer of a styrene-isoprene
diblock polymer considerably higher adhesion was observed which increased with crack
speed. Gy, the limiting value at zero crack speed increased with both surface density (X)
and degree of polymerisation (Np;) of the polyisoprene chains (Figure 5). While the
blurring of the interface is on a much more limited scale that shown by Hashimoto, Creton
et al. argue that the isoprene end of the diblock copolymer molecules diffuses into the
crosslinked polyisoprene, and that the additional fracture energy is associated with the
frictional drag as these chains are pulled out under influence of the applied load.

Figure 5
Increase in threshold fracture energy, Go,
with length (Np) and surface density (Z)of isoprene chains [23].
Degree of polymerisation: (i) 558, (ii) 882 (iii) 2205

'_\I
=

With suitable copolymers, roughening of the interface between two incompatible
polymers by interdiffusion can lead to a range of values for fracture toughness G. For
diblock copolymers both surface density (X) and degree of polymerisation (N) of the
blocks are important. If the blocks are shorter than the entanglement length N, of the
corresponding homopolymer, failure occurs, as with the isoprene above, by chain pull-out
and G is low. If N > N, chain scission will occur at low surface density (%), but as X is

11.



increased the fracture energy G rises steeply and plastic deformation, for example crazing,
occurs in the polymer followed by chain scission or pullout.

These effects have been found by Creton et al. [49] who laminated sheets of
incompatible polymers, P.M.M.A. and P.P.O., and studied the adhesion using a double
cantilever beam test to evaluate fracture toughness G, . For the original laminate G, was
only 2 J/m?, but when interface was reinforced with increasing amounts of a symmetrical
P.M.M.A. - P.S. diblock copolymer of high degree of polymerisation (N > Ne), the fracture
toughness increased to around 170 J/m?, and then fell to a steady value of 70 J/m?. (Figure
6). In some experiments the P.M.M.A. block was deuterated, in others the P.S. block. This
enabled dynamic S.1.M.S. to be used to study the failure mode and elucidate the
mechanism of adhesion. The *H and 2H signals were normalised with respect to the *2C
signal.

At low surface coverage fracture occurs close to the junction point of the diblock,
with each fragment remaining on the “correct” side of the interface. At higher values of =
the surface saturates, crazing occurs during fracture and G, reaches a maximum. With
further increase in surface density of the copolymer a weak layer forms at the interface and
the fracture toughness falls to a limiting value. Here S.1.M.S. suggests that some failure is
still occurring at the diblock junction points, but increasingly in between multiple lamellae
of the copolymer organised at the interface.

Figure 6
Adhesion of P.M.M.A. to P.P.O. Effect on fracture toughness, G,
of interfacial density, Z, of a reinforcing diblock copolymer [49].

200

0.2 0.6

Interfacial density, I, of copolymer (chains Inmij

Results from the surface forces apparatus Results obtained with the surface forces
apparatus throws some interesting light on the nature and roughness of surface layers in
contact. If the contact between two similar layers is studied, equation 14 enables the
surface energy to be evaluated. This can be calculated from results obtained both when the
surfaces are advancing into closer contact, ya, and when they are receding further apart, yr.
These two values would be expected to be the same, as indeed they some times are. In
many cases however there is hysteresis with yg > ya. Israelachvili and his colleagues have
studied this phenomenon in some detail [15, 50-52].

In a typical experiment, Israelachvili [15] deposited monolayers of surfactants onto
cleaved mica sheets, and evaluated the surface energies using the JKR equation 14. Figure
7 contrasts results for mica coated with monolayers of (a) L-a-
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dipalmitoylphosphatidylethanolamine (DMPE) where ya = yr = 27mJ/m? and (b)
hexadecyltrimethylammonium bromide (CTAB) where ya = 20 mJ/m? and yg = 50 mJ/m?.

Figure 7
Use of the JKR equation (14) relating applied force, F, to radius of contact, a, to
analyse results from the surface forces apparatus.
Surface energy, v, of su rfactant layers (DMPE) cf. (CTAB) [15]

B
DMPE (4347) Eran eak?) |
o H Hl 2
. - DMPE (43471 - o CTAB (50A?) .
E E 4
2 - 2
B y B
= L =
™ - 2F
a {u]
— [ ]
1=
0 1 ] ol 1
-5 10 15 =20 =10 0 LT B 1] a0
(al hi F {mN)
Figure 8

Schematic representation of solid-like (crystalline), amorphous solid, and liquid-like
surface layers [50].
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Israelachvili argues that the hysteresis is a result of reorganisation of the surface
after they are brought into contact. This may occur at a macroscopic, microscopic or
molecular level. Here he argues that interdigitation or interpenetration occurs, roughening
the interface at the molecular level. He has classified his surface layers as crystalline (solid-
like), amorphous solid and liquid-like (figure 8). The first tend not to reorganise, so
hysteresis is low. The liquid-like surfaces reorganise very quickly both on loading and
unloading, so again hysteresis tends to be low. It is the solid amorphous surfaces, where
reorganisation may take place over a significant time scale, that hysteresis is generally
greatest. On a simplistic level, the analogy with viscoelastic loss is obvious, and it is not
surprising to find that adhesional hysteresis is considered to have a temperature / rate
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dependence, figure 9. Under the experimental conditions employed DMPE forms a
crystalline ordered layer, but the CTAB layer is amorphous.

Figure 9
Effect of temperature on adhesion hysteresis [52]
Adhesion
hysiercsis Amorphous
solid
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Thus this adhesion hysteresis is a result of a time dependent-roughening of the
interface resulting from the intrinsic properties of the surface molecules. Israelachvili even
interprets it in terms of a roughness factor effect (cf. equation 15), arguing that if yr =~ 2ya
then the true contact area has become about twice the nominal area of contact. It would
seem more realistic to argue that the energy loss, associated with the hysteresis is related to
the frictional forces involved in disentangling the rough, interdigitated surfaces.

Israelachvili has shown [15] that the kind of factors that lead to adhesion hysteresis
can also lead to contact angle hysteresis. Reorganisation of the surface in contact with the
test liquid may cause the receding angle to be grater than the advancing one.

5. DISCUSSION
Why does surface roughness affect adhesion? More particularly, why does
increasing interfacial roughness often increase adhesion? In a simple way, we can
rationalise this in terms of equation 5. Let us examine each term in turn, considering how it
might contribute to the hypothetical fracture energy G of the adhesive joint.
G=G,+vy (5)
The surface energy term G is of the form "surface excess energy” per unit area of

surface, so may be expressed as

G,=AG/A (35)
It is readily appreciated that surface treatments may increase AG by introducing more
chemically active groups into the substrate surface. This is a central idea in the adsorption
theory of adhesion. AG may also be increased as a result of roughening the surface. An
atom near an asperity peak or fine fractal feature will clearly have a much greater ‘atomic’
surface energy, than a chemically similar atom in a plane crystal surface.

Turning attention to the area A in equation 35, it is important to remember that A
refers to the formal area, the macroscopic area of the interface. For a rough surface the
‘true’ area will be greater. As we move from macroroughness towards roughness on a nano-
and molecular scale, we move from the historic realm of the mechanical theory into the
realm of the diffusion theory, at the same time the effective increase in A becomes
enormous. Consequently G may be raised to very high value. Indeed, as many engineering

surfaces are fractal in nature [53], we can only retain the concept of ‘area’ at all, if we
accept that it can be considered as indefinitely large. The practical adhesion does not
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become infinite because the joint will fail (cohesively) in some other region where G, is

smaller.

Returning to equation 5, consider the other energy absorbing processes w which
occur during fracture. As we have seen these may include energy involved in chain pull-out
or scission, and more generally plastic and elastic losses. Asperities and surface pits may
alter the stress distribution at the interface so as to involve a larger volume of material in
plastic deformation during fracture [54]. A consequence of roughening a surface will often
be to increase these losses considerably, because they are coupled to the surface energy
term G,, (cf. equation 6).

Rough fracture surfaces It is significant that the fracture surfaces produced when strong
adhesive bonds are broken are often extremely rough. (This, of course, holds for strong
bonds irrespective of the roughness of the substrate surface.) Consider equation 5 which
gives the fracture energy in terms of the terms which contribute to it. For the sake of being
specific, suppose the failure mode is cohesive. Should the surface energy term be W¢,
given by equation 4? This would not take into account the very rough surfaces produced in
the fracture. The surface energy term needs to be increased by two factors, the first, r,
taking into account the larger surface area, the second, s, allowing for the increased
‘atomic' surface energy on the rough surface:

W*.=2rsy =W, + (2rs - 2)y (36)
If the roughness of the fracture surface is large this becomes
*c=2rsy =W+ 2rsy (37)
and equation 5 is now
G=G,+2rsy +y (38)

The term r might be the roughness factor, but as argued above, it should often be a factor
involving the fractal dimension of the fracture surfaces, which, as Table 1 shows, may be
extremely large.

G=G,+2sy A% P +y (39)
Mecholsky [55] has proposed an equation of this sort to represent the brittle fracture of
ceramics.

6. CONCLUSIONS

The mechanical theory of adhesion is associated with adhesion to rough and porous
surfaces. It is valuable in so far as it concentrates attention on surface roughness and the
influence this may have on adhesion. Surface roughness of interest may range in scale from
hundreds of microns to nanometres. Adhesion to rough surfaces may be effective because
of the intrinsically high surface energy of atoms on an asperity surface. The increase in
surface area, possibly by a very high factor, also raises the surface energy when expressed
per unit nominal area.

Rough surfaces, when stressed, may be able to redistribute the stress so as to
increase energy dissipation during failure of the joint. The strengthening of an interface
resulting from increasing roughness may change the mechanism of fracture from a less to a
more energetic mode. With increasing interfacial roughness between two incompatible
polymers the mechanism may change from chain pull-out to crazing or other forms of
plastic deformation.

It has been common for many years to rationalise adhesion phenomena in terms of
a number of different theories of adhesion. While accepting that reductionism has been an
extremely fruitful methodology in science, especially physical science, we should not
forget that it is a methodological device and beware of accepting its categories too lightly
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as having objective reality. In surveying the effect of roughness on adhesion, we can see
how the concepts of adsorption diffusion and mechanical theories merge seamlessly in
providing a model of the empirical observations.
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