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PREFACE
l

lt is my personal conviction that if we knew more about the

nucleus, we should find it much simpler than we suppose. I

am always a believer in simplicity, being a simple fellow

myself.'

LORD RUTHERFORD (Gottingen Lecture Dec. 14, 1931)

DURING the decade that has passed since the appearance ofthe second

edition of this book nuclear physics has grown to such a size that it is

quite impossible to write a comprehensive treatise on the subject

except in the form of a multi-volume handbook. The difficulties of

collecting all available material in a single volume have been aug-

mented by the discovery of practical methods for the large-scale

liberation of nuclear energy which led to a deluge of mostly semi-

technical studies, many of which are, however, quite important also

from the purely scientific point of view. Under these circumstances

it has become again necessary to rewrite the book practically anew,

as well as to increase its volume. Taking into consideration the

limits of human endurance, this could be done only by doubling the

authorship; thus G. Gamow of the first two editions becomes G.

Gamow and C. Critchneld of the present one.

Despite the enormous increase of the factual knowledge concerning

the properties of atomic nuclei, comparatively little progress has been

made in actually understanding the basic properties of nuclear struc-

ture; in fact, it seems that during these ten years we have even un-

learned a little about the most fundamental question of the nature

of nuclear forces. Thus, there arose the question of whether it wquld

not be better to delay the book until the fundamental principles of

nuclear physics are finally settled. The authors have decided, how-

ever, to go ahead with the book on the .basis of the superstition that

whenever a new edition of this book nears publication a new major

discovery is made in nuclear physics (discovery of neutrons after the

first edition; theory of the 'compound nucleus' after the second

edition), making the book out of date. If this happens again, the

contribution to the progress of science will certainly justify the short

'up-to-date-ness
9

of the edition.

As to the actual composition ofthe book, the following remarks can

be made. It was attempted to write the book in an inductive way,

starting from the properties of elementary particles from which the



THE INTERNATIONAL SERIES OF
MONOGRAPHS ON PHYSICS

GENERAL EDITORS
THE LATE SIB RALPH FOWLER P. KAPITZA

N. F. MOTT E. C. BULLARD
Professor of Physics in the Professor of Physics,

University of Bristol. University of Toronto.

Already Published

THE THEORY OF ELECTRIC AND MAGNETIC SUSCEPTIBILITIES. By
j. H. VAN VI/ECK. 1932. Royal 8vo, pp. 390.

THE THEORY OF ATOMIC COLLISIONS. By N. F. MOTT and n. s. w. MASSEY.
New edition in preparation.

RELATIVITY, THERMODYNAMICS, AND COSMOLOGY. By R. c. TOLMAN.
1934. Royal 8vo, pp. 518.

CHEMICAL KINETICS AND CHAIN REACTIONS. By N. SEMENOFP. 1935.
Royal 8vo, pp. 492.

RELATIVITY, GRAVITATION, AND WORLD-STRUCTURE. By E. A. MII.NE.
1935. Royal 8vo, pp. 378.

THEORY OF PROBABILITY. By H. JF.FFBEYS. Second Edition, 1948. Royal 8vo,
pp. 420.

THE QUANTUM THEORY OF RADIATION. By w. HEITMSB. Second Edition.
1944. Royal 8vo, pp. 264.

THEORETICAL ASTROPHYSICS: ATOMIC THEORY AND THE ANALYSIS
OF STELLAR ATMOSPHERES AND ENVELOPES. By s. BOSSELAND. 1936.
Royal 8vo, pp. 376.

THE THEORY OF THE PROPERTIES OF METALS AND ALLOYS. By N. F.
MOTT and H. JONES. 1936. Royal 8vo, pp. 340.

ECLIPSES OF THE SUN AND MOON. By sm FBANK DYSON and B. v. d. B.
WOOIXEY. 1937. Royal 8vo, pp. 168.

THE PRINCIPLES OF STATISTICAL MECHANICS. By B. c. TOLMAN. 1938.
Royal 8vo, pp. 682.

ELECTRONIC PROCESSES IN IONIC CRYSTALS. By N. p. MOTT and B. w.
QTTBNEY. Second edition, 1948. Royal 8vo, pp. 288.

GEOMAGNETISM. By s. CHAPMAN and J. BABTEI.S. 1940. Royal 8vo, 2 vols.,
pp. 1076.

THE SEPARATION OF GASES. By M. BTJHEMANN. New edition in preparation.
KINETIC THEORY OF LIQUIDS. By j. FBKNKEZ,. 1946. Royal 8vo, pp. 50O.
THE PRINCIPLES OF QUANTUM MECHANICS. By r. A. M. DIRAC. Third

Edition. 1947. Royal 8vo, pp. 324.

COSMIC RAYS. By L. JANOSSY. 1948. Royal 8vo, pp. 438.

KINEMATIC RELATIVITY. By E. A. MII.NE. 1948. Royal 8vo, pp. 246.

THE PULSATION THEORY OF VARIABLE STARS. By s. BOSSELAND. 1949.
Royal 8vo, pp. 160.









vi PREFACE

nuclei are made and working up to more and more complex nuclear

properties. A considerable space has been devoted to thermonuclear

reactions and their application to cosmological problems (Chapter X),

since, at the present time there is no book on astrophysics in which this

class of problem receives an adequate treatment. On the other

hand, comparatively little is said about the large-scale energy libera-

tion of nuclear energy by means of chain reactions in fissionable sub-

stances, since it is felt that this class of problem belongs more to

what can be called 'nuclear technology' rather than to pure science.

Consequently Chapter XI, which treats the problem of nuclear chain

reactions, is limited to purely schematic descriptions of the processes

involved. Newimportant findings, which appeared during the printing

of this book, are included hi the appendixes at the end of the

volume.

It may be added in conclusion that the authors certainly hope that

the fourth edition of the book will represent the final version of the

theory of the atomic nucleus.

G. G.

C. L. C.

September 1947

LOS ALAMOS.

NEW MEXICO.
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I

GENERAL PROPERTIES OF THE ATOMIC NUCLEUS

1. Atoms, nuclei, nucleons

IN its incessant effort to become adjusted to the immense complexity
of the phenomena of nature, the human mind strives to analyse these

phenomena and to reduce them to the smallest possible number of

elementary notions and laws from which the entire picture of the

physical world can be derived by the method of purely logical deduc-

tion. This desire to reduce the observed complexity of nature to the

logical simplicity of basic postulates represents the main driving force

in the development of science, and the degree of simplification thus

achieved (as characterized by the number of elementary notions and

laws necessary for complete deduction) can be used as a measure of

the progress of science towards its final goal.

It goes without saying that this search for basic elementary postu-

lates results sometimes in over-simplification of the theoretical picture

thus obtained, and that the notions that at a certain epoch of scientific

development were considered as being elementary often turned out to

be quite complex when some previously neglected or later discovered

empirical facts were taken into consideration. However, studying the

history of science for the few thousand years of its existence, one can

hardly escape the conviction that, in spite of all these ups and downs,

the reduction of the complexity of nature to a comparatively small

number of basic postulates represents a converging process.

At the dawn of the scientific study of matter, the desire for basic

simplicity underlying the apparent complexity of different forms of

matter led the philosophers of ancient Greece to the recognition of

four basic elements from which the world was supposed to be made
;

these are stone, water, air, and fire. According to the ideas first

formulated by Democritus, these four elementary substances were

made up of a large number of essentially indivisible particles, the

atoms which, being mixed in different proportions, were deemed

responsible for the formation of all the variety of known substances.

Thus the soil was considered as being a mixture of stone- and water-

atoms, wood as a mixture of the atoms of stone, water, and fire,

whereas various metals were looked upon as stone- and fire-atoms

mixed in different proportions (more fire in gold, less in iron).
3595.61 B
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Further development of science extended and amplified these

ancient views without, however, changing essentially the funda-

mental idea. The three 'material' elements, stone, water, and air,

were replaced by ninety-two chemical elements, whereas the atoms
of fire evolved into the notion of radiant energy, and later into the

modern idea of light quanta. This transition from only a few atomic

species, as proposed by the ancient philosophers, to a much larger
number ofdistinct elements which are required to establish the science

of chemistry represents a typical
*

forced retreat
' on our way towards

the reduction of the complexity of nature.

However, this largely increased number of distinct elements from
which matter was supposed to be built led immediately to attempts
at a new reduction

;
and early in the nineteenth century the French

chemist Prout formulated an hypothesis according to which the

different chemical elements represent just different degrees of 'con-

densation
9

of a single basic element, viz. hydrogen. Prout based his

views on contemporary estimates of atomic weights which seemed to

indicate that the weights of different atomic species relative to

hydrogen were always represented by integers. This far-seeing

hypothesis was 'disproved', however, and thrown into oblivion by
more precise chemical measurements which showed that 'Prout's

integer rule' held only in first approximation, and that in some
cases (as in chlorine with chemical atomic weight 35*5) it did not

hold at all.

The difficulties standing in the way of Prout 's original hypothesis
were removed almost a full century later by the discovery of isotopes,

and by recognition of the fact that the so-called chemical atomic

weights represent, in general, only the weighted means ofthe weights
of various isotopes of the element. Furthermore, it became clear that

the small deviations from Prout
J

s integer rule (mass-defects) which
are observed even in the cases of single isotopes must be interpreted on
the basis of the relativistic mass-energy relation as due to the internal

energy that binds the atoms of hydrogen into the more complex
atoms of various heavier elements. Thus the very same objections
that caused the early downfall of Prout's original hypothesis of con-

densation became instrumental in the ultimate interpretation of the

structure of the atom.

Already at an early stage in atomic studies it had become clear that

atoms must be considered as some kind of complex mechanical
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systems built of positively and negatively charged parts ; and the

discovery of the electron by J. J. Thomson led him to propose an
atomic model in which the positively charged material, representing
the major part of the atomic mass, was assumed to be distributed
more or less uniformly throughout the body of the atom, whereas the

light, negative electrons were scattered through this material as the
seeds in a water-melon. According to this picture, the condensation
of several hydrogen atoms into more complex atomic species would
be visualized as the fusion of the spherical positive charges of the

original atoms into a single, larger, spherical charge and followed by
a redistribution of the electrons within the new domain.

This Thomson atomic model, which for a while dominated the

theory of atomic structure, was, however, disproved in 1911 by the
classic experiments of E. Rutherford, who studied the scattering of
beams of a-particles passing through thin foils of different materials.
It was found, in fact, that the large deflexions suffered by individual

a-particles in their collisions with the atoms of the scattering material
could not possibly be explained under the assumption of a uniform
distribution of the positive charge (and its mass) through the entire

body of the atom
; and that in order to obtain electric forces that are

strong enough to account for the observed deflexions one must
assume that the positive charge of the atom, as well as most of its

mass, is concentrated within a very small region around the atomic
centre. This heavy, positively charged part of the atom was given the
name of atomic, nucleus, and the old Thomson model gave way to

the new Rutherford model of the atom in which, instead of moving
inside a spherical positive charge, atomic electrons move around
the positively charged centre under the influence of the inverse square
Coulomb attraction. Rutherford's experiments on a-scattcring in

different materials also permitted a direct estimate of the electric

charge on the corresponding nuclei or, what is the same thing, the

number of electrons composing the outer atomic envelopes, and led

to the important result that the number of atomic electrons coincides

with the ordinal number (atomic number) of the element in question
in the natural sequence of elements arranged in order of increasing
atomic weights.

In the light of Rutherford's atomic model one would be inclined

to reformulate Prout's original hypothesis by applying it directly to

the nuclei of different atomic species, and by saying that the atomic
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nuclei of various elements are formed by the 'condensation' of

hydrogen-nuclei, or protons as they were called because of their

fundamental importance in the problems of the structure of matter.

Such a formulation would be, however, only partially true since, as

it is easy to see, building a composite atom from a number of hydrogen-

atoms requires a redistribution of the electric charge between the

nucleus and the outer envelope. Thus, for example, considering the

atom of the principal isotope of oxygen (with atomic weight 16) as

constructed from sixteen hydrogen-atoms by direct fusion of their

nuclei, with all outer electrons retained on the outside, we should

arrive at an element with atomic number 16 instead of 8. Thus, in

order to retain the principal feature of Trout's elementary hypothesis,

we must assume that in the 'condensation' process leading to the

formation of an oxygen atom from sixteen hydrogens, only eight of

the original electrons remain on the outside. The other eight are,

so to speak,
'

assimilated
'

by the nucleus, the positive charge on which

is reduced accordingly.

We could imagine the electrons that are assimilated by the nucleus

either as retaining their individuality as components of the nuclear

structure or as being 'swallowed' by the corresponding number of

nuclear protons which thus lose their positive charge and turn into

neutral particles. The serious theoretical difficulties which arose in

early attempts to consider individual electrons as permanent mem-

bers of the nuclear structure, as well as the empirical fact that neutral

protons, known as neutrons, are ejected from nuclei with the same, or

often greater, ease as are ordinary protons in experiments on atomic

bombardment, force us to accept the second possibility. Assuming

the neutron-proton hypothesis for the constitution of nuclei, we find

that the number of protons in a given nucleus is given directly by its

atomic number Z, whereas the number ofneutrons must be computed

as the difference between the total number of constituent particles

(nudeons) and the number of protons. It will be noticed at this point

that the number of nucleons forming a given nucleus and known as

its mass-number A must not be expected to coincide necessarily with

the integer nearest the exact atomic weight, since the value of the

mass-defect of a composite nucleus may exceed the mass of one

nucleon. In fact, following the values of mass-defects we find that

they become larger than one m.u. for all elements heavier than Sn.

Thus, expressing relative atomic weights on the basis of hydrogen as
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exactly unity (instead of oxygen exactly 16),f we should not get a

clear-cut 'integer-rule' and the correct values of the mass-number A
could be obtained only by studying the continuity of the variation of

atomic masses throughout the whole system of the elements. How-

ever, referring atomic weights to oxygen we avoid this unnecessary

complication since in this case the deviations from integers happen
never to exceed one-half. Nearly integer atomic weights would be

obtained as well ifwe used O12 as the standard with the value exactly

12, or if we used He4 as exactly 4. As we shall see later, this result

is due to the fact that the major part of the nuclear binding energy
is contained in the so-called a-shells (a combination oftwo constituent

protons and two constituent neutrons), and that the nuclei, He4
, C12

,

O18
, etc., represent saturated systems of such shells.

It must be emphasized also from the very beginning that, in con-

sidering the nuclei of different elements as built of protons and

neutrons, we do not consider neutrons as some composite systems
formed by two 'really' elementary particles, e.g. a proton and an

electron, or, conversely, consider protons as composite systems of

elementary neutrons and positive electrons. It is, in fact, much more

rational to assume in this matter a symmetrical point of view first

formulated by W. Heisenberg and to consider the proton and the

neutron as two possible electrical states of a single heavy elementary

particle which was given the name of nucleon.% The transition of a

iiucleon from one of its states into another is accompanied by the

emission of the corresponding charge-difference in the form of a free

electron (positive or negative). The reverse of this process corre-

sponds to the change of the electric state of the nucleon caused by the

absorption of an electron from the outside. Processes of the type just

described are usually known as ^-transformations and represent the

means by which nuclei, in which either the number of neutrons or

the number of protons is relatively too large, adjust their electric

charge to the value corresponding to the most stable state (least total

mass for the given number of nucleons).

t Tn this rase, for example, the atomic weight of the heavier U-isotopo would bo

''38*07
-= 235-97, giving A = 236 instead of 238.

J It may be pointed out here that it is consistent with this view of the heavy
elementary particle that there exist other states of the nucleon, such as the state with

a negative electrical charge (the hypothetical negative proton) or states with multiple

charges of either sign. However, such particles have not been detected hitherto.
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The detailed study ofenergy-liberation in the various /?-transforma-
tions revealed an unexpected and alarming discrepancy in the total

energy-balance connected with these processes : it seemed that a part
of the energy (as calculated from the difference in masses of the

isotopes, cf. 5) is always mysteriously lost whenever an electron is

emitted from a nucleus. In order to explain this discrepancy it was
necessary to assume that, in each process of this kind, a hitherto
unknown energy-carrier, escaping all known means of observation, is

emitted from the nucleus simultaneously with the electron. This new
hypothetical particle, which had to be considered as carrying no
electric charge and as possessing a much smaller mass (if any) than
the electron mass, was given the somewhat romantic name neutrino'\

(denoted by v). It was found necessary to ascribe to this particle the

ability to carry mechanical momentum, and spin, so that it became
a full-fledged member in the society of elementary particles of

physics. Taking into account the existence of neutrinos, we can write

various possible transformations of the nucleons in the forms :

n -

p

p+er ->n+v

Some of these transformations, as for example the first one, are exo-

thermic and can take place spontaneously, whereas the others require
a supply of external energy in excess of a certain threshold

value. We shall return to the problem of neutrinos in the chapters

discussing the nature of nuclear forces (Chap. Ill) and the process
of ^-transformations (Chap. V).

We cannot finish this introductory survey of the elementary

particles without mentioning the newly discovered brand known as

mesons.J These new particles, which were first introduced byYukawa
for the purpose of explaining nuclear forces, are supposed to possess

t As originally introduced in 1030 by W. Pauli, it was known by tho name of
'neutron'. When two years later J. Chadwick used the same name for the chargeless
protons ejected from beryllium by a-particles, the controversy of names was settled

by E. Fermi; who said that Pauli's particle 'is not a neutron but a neutrino '

(neutrino
and neutretto being the corresponding diminutives in the Italian language).

J Also sometimes called 'mesotrons' in violation of Greek syntax.
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a mass (or masses) intermediate between that of the proton and that
of the electron, and can carry either a positive or a negative charge,
or be neutral. Whereas the role of these particles in the theory of
nuclear force is surrounded at the present moment by a rather dense

fog (cf. Chap. Ill), there is no doubt that they (at least the charged
ones) do exist in nature in the free state. The study of cosmic rays
indicates that the positive and negative mesons are being produced
(by a process which is probably similar to the ordinary electron-pair
production) in the upper layers of the terrestrial atmosphere by the
fast primary particles (protons ?) which come from interstellar space.
In fact, about 75 per cent, of the total ionization produced by cosmic

rays at sea-level is due to the action of these charged mesons. The
mass of these particles was found to be about 200 electron masses,
and we also have convincing evidence that they are intrinsically

unstable, breaking up into an electron (positive or negative) and a
neutrino with a mean lifetime of about 2 microseconds. Very little

evidence as yet has been found for the existence of neutral mesons.
If such existed it could be considered as an energy-rich system
of positive and negative electron.-)- (Compare Appendix I.)

Although electrons, neutrinos, and various types of mesons un-

doubtedly play important roles in both the transformations and the

attractive forces that occur between nucleons, thus securing the

stability and even the existence of the composite atomic nuclei, they
should not be considered as full-fledged constituent parts of the

nuclear structure, and to a certain extent fall outside the scope of

nuclear physics proper. The situation is somewhat similar to that

which existed in the kinetic theory of gases where various properties
of the gas as a whole could be obtained by considering the mole-

cules as rigid spheres of a certain diameter and interacting with each
other according to certain empirically established laws. In fact, it

is possible to develop the theory of the fundamental nuclear proper-
ties and the various nuclear reactions essentially on the basis of

empirically determined interaction-laws between the nucleons from
which the composite nuclei are built. Here lies a convenient, even

though not very sharply defined, boundary between nuclear physics

t Since the neutrino, like electron and positron, is supposed to have spin , the
mesons just described would have integral spin-values, i.e. either or unity. The
spin of the cosmic-ray meson has not been determined experimentally. If it should
turn out to be , the decaying meson would produce a light quantum simultaneously
with the electron, and there would be no connexion with jS-decay.
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proper, and the next, as yet rather unexplored, division of the science

of matter which can be called tentatively the physics of elementary

jxirticles.

2. Nuclear radii

We shall start our study of atomic nuclei by describing first their

external characteristics, i.e. the properties that can be investigated

without disturbing the internal nuclear structure. This includes the

study of nuclear radii, their moments of momenta, their magnetic

dipole, electrical quadrupole moments, and finally such information

about the internal energy of nuclei that can be obtained from their

measured masses.

The first information concerning the geometrical dimensions of

atomic nuclei was supplied by the very same experiments on the

scattering of a-particles that were responsible for the origin of the

idea of the atomic nucleus itself. It was, in fact, noticed by Ruther-

ford that in the case of large-angle scattering of particularly fast

a-particles by light elements the observed angular distribution of the

scattered particles deviates from the classical scattering formula :

1(6)

where 6 is the scattering angle in the coordinate system bound to the

common centre of gravity, Z the atomic number of the scattering

nucleus, and v and M the velocity and the reduced mass of the

incident a-particle.f Since the above formula was derived under the

assumption that the nucleus and the incident a-particle interact as

two electrically charged points, and since the above stated conditions

under which the
' anomalous '

scattering was observed correspond to

a close approach of the incident a-particle to the nucleus, it was

natural to assume that the observed deviations are caused by some

new kind of force acting on the particle when it comes close to the

outer boundary of the nucleus. Even the earliest theoretical treat-

ment of the
' anomalous '

scattering of a-particles, based on the laws

of classical mechanics, J led to the result that, in order to explain the

f This formula, originally derived by Rutherford on the basis ofclassical mechanics,
is about the only classical formula that remains unaltered by wave-mechanics, a fact

which used to be to Rutherford a source of great pride and satisfaction.

J E. S. Bieler, Proc. Camb. Phil. Soc. 21 (1923), 686 ; P. Debye and W. Hardmoior,

Phijs. Zeits. 27 (1926), 196.
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observed deviations, one must assume the existence of some short-

range attractive forces acting on the particle as it approaches the

nucleus. The distance at which these attractive forces become larger

than the forces of electrostatic repulsion can be assumed tentatively
to characterize the actual dimensions of the nucleus, an assumption

which, of course, holds better for heavier nuclei where the radius of

the actual distribution of nuclear substance becomes large as com-

pared with the range of nuclear forces. Whereas in the classical

U

FIG. 1.

theory of 'anomalous' scattering the potential energy of the -

particle in the neighbourhood of the nucleus was represented usually

in the form 97 * R
:L__

(
n > i)

r rn
v "

the wave-rnechanical treatment, which is influenced not so much by
the details of the force-anomalies on the outer slope of the potential

barrier as by the penetration of the wave through the barrier, usually

employs the simplified potential distribution shown in Fig. 1. Such

a potential distribution is characterized by two numbers: the critical

distance d (which for large heavy nuclei approaches the nuclear

radius r
)
and the depth of the potential well U .

Using this model for the interpretation of the observed
' anomalous

'

scattering of a-particles in hydrogen,f Taylorf came to the conclusion

that the interaction between the proton and the a-particle can be

t J. Chadwick, Proc. Roy. floe. A 128 (1930), 114.

$ 11. M. Taylor, ibid. A 134 (1931), 103; A 136 (1932), 605. Tho modern

interpretation of tho proton a-particlo interaction involves the theory of resonance

scattering (cf. Chap. VIII).
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described by a potential well with d == 0-45 x 10~12 cm. and
r/ = 6 M.e.v. The method of 'anomalous' scattering of ex-

particles fails to give any information concerning nuclear radii of the
heavier elements since, in this case, the electric repulsive forces

become too large to permit the penetration of the incident particles
into the region of nuclear forces. Thus, for example, Rutherford's

experiments! on scattering of a-particles in uranium, in which no
deviations from predictions on an inverse square law of force were

observed, could only lead to the conclusion that the radius of the

uranium-nucleus must be smaller than 3xlO-12
cm., which repre-

sents the distance at which the Coulomb energy of the a-particle-
nuclear system becomes equal to the kinetic energy of bombardment
(classical distance of closest approach).
The first indications concerning nuclear radii of the heavier

elements were supplied by the quantum theory of a-decay which
considers this process as the wave-mechanical penetration of nuclear

a-particles through the potential barrier formed by the short-range
attractive forces on the inner side and the Coulomb repulsion on the

outside. Assuming the simplified potential distribution, where in the
case of heavy nuclei we can put dQ

= r with sufficient accuracy, one
obtains for the theoretical value ofthe decay constant A the expressionJ

loglo A = 21-67-l-19.10^=l?+ 4-08.lOV{(^-2)r }, (2)

where v is the reduced velocity of the emitted a-particle. Using the

measured values of A and v for various radioactive elements, one can
calculate the values of the nuclear radii r . One finds thus the values

ranging from 0-7xlO~12 for polonium (lightest a-emitter) to

0-9 X 10~12 cm. for uranium 238 (heaviest natural a-emitter).
The most general method of measuring nuclear radii is to measure

the reduction in the intensity of a beam of fast neutrons caused by
passing through several centimetres of the material being studied.

Each nucleus in the material presents its geometrical cross-section

(or rather 7rd%) as an obstacle in the path of a very fast neutron. If

the neutron hits such an obstacle its energy is degraded, or converted,
so that it is effectively absorbed from the beam. Even if the neutron

is not absorbed, however, it may be deflected from its original trajec-

t E. Rutherford, Phil. Mag. Ser. 7, 4 (1928), 580.

J Compare Chapter VI.
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tory by diffraction caused by the obstacle. Each of these processes

presents a cross-section 7rd% so that the total cross-section for removal

from the beam is 2ird^ per nucleus,f
In Fig. 2 we give the results of such measurements carried out by

Grahame and SeaborgJ with neutrons of 13-7 M.e.v. (empty circles)

and by Sherr with neutrons of 25-4 M.e.v. (filled circles). In the

same graph we give the values of nuclear radii of the radioactive

elements as calculated from the known decay constants (asterisk).

The values of d are plotted against \]A

(A = atomic weight) and they fall on a

straight line described by the equation.

I 2 345
FIG. 2.

678

doxlOcn?.

9-

l cm. (3)

The constant term, ]-7xlO~13 cm., in

the above equation can be interpreted

as the range of nuclear forces, whereas

the second term, which depends upon
the atomic weight, must represent the
'

actual' radius of the nucleus. The fact

that the nuclear radius is proportional
to the cube root of the nuclear mass

indicates that the mean nuclear density remains constant throughout the

whole periodic system of elements. This result suggests that, in contrast

to the situation existing in the atomic model, the material forming
atomic nuclei must be considered as rather similar to ordinary liquids

where the individual particles are packed closely together maintaining
a constant density independent of the size of the sample. We may
thus speak of the universal nuclear fluid which forms small droplets

of various sizes and mostly spherical in shape. Using the observed

nuclear radii, we find for the density of the nuclear fluid the value

2-2xl014
gm./cm.

3

3. Nuclear spin and magnetic moments

The suggestion that certain atomic nuclei must be regarded as

possessing mechanical angular momentum (spin) as well as a mag-

f Compare Chapter V11I. Since tho diffraction is mostly in the forward direction

not all of the diffracted (scattered) neutrons are removed in an actual experimental

sot-up and a correction must be applied.

t D. C. Grahame and G. T. Seaborg, Phys. Eev. 53 (1938), 795.

K. Sherr, ibid. 68 (1945), 240.
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netic dipole moment was first introduced by Pauli in connexion with

the explanation of the so-called hyperfine structure of spectral lines.

The simplest way of estimating the nuclear spin lies in the study of

the relative intensities in the band-spectra of the element in question.

For a homonuclear diatomic molecule the wave-function describing

a given quantum state may be either symmetrical or antisymmetrical

with respect to the spins of the two nuclei. Since the nuclei are

indistinguishable (e.g. the same isotope, if there are several) they must

obey either Einstein -Bose or Fermi-Dirac statistics. Tims the sym-
metrical spin states are allowed only if the rotational quantum
number is even for Einstein-Bose statistics or odd for Fermi-Dirac

statistics, and the antisymmetrical spin states are allowed in the

alternate possibilities for the orbital quantum number. Given two

nuclei of spin i in units of li the number of states that are symmetrical
in the spins is larger than the number that is antisymmetrical, and

simple considerations show that the ratio of these numbers is

"sm fr+1 /A\

Thus, in a gaseous state in which many rotational levels are excited

the number of molecules with symmetrical spin-states and even (odd)

rotational quantum numbers, divided by the number of molecules

with antisymmetrical spin -states and hence odd (even) rotational

quantum numbers, will be this same ratio. Consequently, since

transitions involving a change of molecular symmetry type do not

occur in any appreciable amount, the corresponding electronic emis-

sion lines in the spectra of such molecules must show this ratio of

intensities. Since the lines in a band-spectrum belong to consecutive

values of the rotational quantum number, this means that the intensi-

ties of the lines should alternate, the ratio of neighbouring lines being

given by the relation (4). Thus the study of intensity ratios in the

band-spectrum of hydrogen leads to the important result that the

proton has the spin i ^. Since, however, this measurement cannot

be carried out with very high accuracy, the method can be applied

satisfactorily only when the nuclear spin is small. Also, in the case

of heavy elements the separation of individual lines becomes so small

that the structure of the band fuses into a continuum making any
such measurements impossible.

A more satisfactory method of measuring nuclear spins as well as
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magnetic moments is to study the hyperfine structure of spectral lines

for which these notions were originally introduced. This structure

is due to a splitting ofthe atomic energy-levels causedby the magnetic
interaction between the nuclear moment and the field created by the

orb'ital electrons. The very small separation of the levels found

experimentally in the normal hyperfine-structure pattern must be

ascribed to the smallness of the nuclear magnetic moment, as com-

pared with Bohr's electron-magneton: fic
=

efi,/2mc. Nuclear mag-
netic moments are usually expressed in terms of the nuclear magneton

/znuc efi,/2Mc (M being the proton mass) which is 1,840 times

smaller than the electron-magneton. (However, as we shall see later,

Mnuo ig no^ equal to the magnetic moment of a proton which is about

2-8 times larger.)

The value of the nuclear spin can be derived directly from the

number of hyperfine components of the spectral term provided the

angular momentum in the electron system is large enough and is

known. Let j be the total angular momentum of the atomic electron

configuration (resultant of orbital momentum and electron spin) and i

the angular momentum of the nucleus. Then the resultant momen-

tum/will have different possible values corresponding to the various

relative orientations of the vectors j and i. Applying the rules of

addition of quantum vectors we see that / may take the values:

/o =,?+*' /i=J+*- 1
> /=.?'-* (JS>0> .

/o
=

*+,/, A = i+J l
> -> fsj

-= * i C^J)*
so that, on account of the nuclear spin, each electronic energy level

will split into 2*-f-l or 2J+1 sub-levels according to whether i ^.j
or I ^j. The relative separation of these sub-levels may be calcu-

lated also if it be assumed that the additional energy duo to the

magnetic interaction of nuclear and electronic moments is propor-

tional to the scalar product of the two momenta, i.e. proportional

to cos(i,j):

.

2

Inserting the possible values of/ as given in eq. (5) we find that the

relative energy-differences between neighbouring hyperfine levels are

given by the ratios:

/o:/i:/i :/-i (J > *)>
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fr being defined by the equations (5). This is the so-called interval

rule, first proposed by Lande.

As an example of the application of this method we give here an

analysis of the hyperfine structure in the Pr spectrum, for which the

energy-level
5K7 , corresponding to j = 7, is known to be split into

six components with relative energy differences, 10-0, 167, 14-4,

12-7, 10-4. As the number of sub-levels is less than 2j+l (== 15) we
conclude that in this case i <j, and the relation 2i-fl 6 gives
i 5/2 directly. For these values of i and j the relative separations

predicted by (6) become 19:17:15:13:11 in good agreement with

the observed values. Historically, the first determinations of the

hyperfine splitting of atomic levels were made as deductions from the

optical, interferometric spectra. Recent advances in the high radio-

frequency techniques, however, make it possible to induce and detect

transitions from one member of a hyperfine multiplet to another

member of the same multiplet, thereby determining the radio-

frequency spectrum of the lowest states of the atom directly (the wave-

lengths of the radiation range from 2-5 cm. to 200 cm.). The method

of detection used in this workf is closely related to the molecular

beam magnetic resonance method of measuring magnetic moments
which is described below and relies on the transitions being made in

an external magnetic field. In this way the Zeeman effect and

Paschen-Back effect are observed for the radio-frequency spectrum.
The method is one of extremely high accuracy and resolution.

The value of the magnetic moment of the nucleus can be estimated

from the absolute values of the hyperfine structure separation. For

this, however, one must know the electron current density near the

nucleus and this is difficult to evaluate. Hence the values so obtained

are inaccurate and this method has been superseded by more direct

measurements of the magnetic moments.

A direct measurement of the magnetic moment of the proton was

first effected by Stern and his associatesJ by deflecting a beam ofmole-

cular hydrogen with an inhomogeneous magnetic field. The accuracy

obtainable with the molecular beam method has been greatly enhanced

by the resonance technique developed by Rabi and his co-workers.

t P. Kusch, S. Millman, 1. 1. Rabi, Phys. Rev. 57 (1940), 765.

j O. Stern and R. Frisch, Zs.f. Phya. 85 (1933), 4; O. Stern and I. Esterman, ibid.

86 (1933), 132.

1. 1. Rabi, J. Kellogg, J. Zacharias, Phys. Rev. 46 (1934), 157; 1. 1. Rabi, S. Mill-

man, P. Kusch, J. R. Zacharias, ibid. 55 (1939), 52C.
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The method is to pass a beam of neutral molecules having no elec-

tronic magnetic moment through three magnetic fields. The first

is a long, inhomogeneous field that accelerates the molecules in a
direction perpendicular to the beam by reason of the nuclear

magnetic moments. This causes the beam to fan out a little because
various molecules have their nuclear spins and nuclear rotations

lined up differently relative to the field (see Fig. 3). The third field

is of the same type and accelerates the molecules in the direction

opposite to that in the first field so that the third field refocuses the

FIG. 3.

beam if all molecules retain the orientation they had in the first

acceleration. Between these magnets is placed the second, homo-

geneous field, in this second field each molecular spin simply pro-
cesses with the Larmor frequency characteristic of the g(i) of the

molecular system, where

... magnetic moment

angular momentum
'

and of the strength of the homogeneous magnetic field H, viz.

By inserting a .small loop of wire into the second field and sending
an oscillating current through so as to generate a high-frequency

magnetic field at right angles to the homogeneous field the molecules

can be made to change from one orientation to another. Since the

amount of energy received from the high frequency is very small in

one cycle of the Larmor precession, the effect is not noticeable unless

the high frequency is in almost exact resonance with the Larmor
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frequency. In resonance, however, many molecules pick up enough
energy from the perturbing field to change their orientation. These
molecules are then removed from the path on which they would have
been focused by the third field and are, consequently, lost to the

detector. By correlating dips in the intensity of the beam with the

radio-frequency or, more practically, with the strength of the homo-

geneous field, the ratio of magnetic to mechanical moments can be

determined. Relative comparisons between nuclear moments are

limited in accuracy only by the time spent in the homogeneous field

and are highly precise. Absolute measurements are limited by abso-

lute measurements of the strength of the field. It is an adaptation
of this method that was applied to the measurement of the radio-

frequency spectrum of atoms, alluded to above.

Quite recently an entirely new method for measuring nuclear

magnetic moments has been worked out by Bloch, Hansen, and
Packardf and is based on the phenomenon that they call nuclear

magnetic induction. When a sample of some material is placed in a

strong magnetic field, and is subjected in addition to a weaker radio-

frequency field directed at right angles to the strong field, the total

magnetic polarization will be subject to a forced precession about the

direction of the constant field, thus giving rise to a measurable

polarization in the direction perpendicular to both fields. The ampli-
tude of this component is expected to show the phenomenon of

resonance when the Larmor frequency of the nuclear magnet coin-

cides with the applied radio-frequency. This opens a simple way for

determining nuclear magnetic moments. This new method has the

advantage of permitting the determination of nuclear magnetic
moments in the ordinary (solid or liquid) state of matter. In Table I

we give the values of nuclear spins and magnetic moments obtained

by the various methods.

The table does not contain nuclei for which both Z and A are

even numbers (even number of |)rotons and even number of

neutrons). Although most of the nuclei in the universe are of this

type, arid the spins have been determined in many cases, the spins

are always found to be zero. They can have no moments of any
kind, therefore. Nuclei having spin 1/2 cannot have a quadrupole

(or higher) moment and this fact is indicated by the dashes in the

t F. Bloch, Phys. Bev. 70 (1946), 460; F. Bloch, W. W. Hansen, and M. Packard,
ibid. 70 (1946), 474.
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TABLE I

Nuclear spins and moments

table. It will be noted also that very few of the measured spins

are integer. The nuclei having integer spins have an odd number

of protons and an odd number of neutrons, and, in general, such
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systems are not stable. These points are discussed more fully in

Chapter IV.

4. Nuclear shape and quadrupole moments

Further study of the hyperfine structure of spectral lines, as pur-

sued principally by Schiller and his collaborators, has produced two

new types of information regarding nuclei in addition to information

about spins and magnetic moments. The first of these is the so-

called isotope displacement of spectral lines which was first observed

in the spectrum of thalliumf and has since been shown to be a pheno-
menon of fairly frequent occurrence among the heavier elements. It

consists in a rather small displacement separating the lines due to the

different isotopes of the element under investigation. Obviously the

various components of this isotopic hyperfine structure have intensi-

ties proportional to the relative abundances of the corresponding

nuclear species in the mixed element. They may or may not exhibit

magnetic hyperfine structure also, and when, as is often the case,

different components show different degrees of structure, a very

complicated pattern may result.

As a characteristic example of this phenomenon we may consider

the structure of the mercury green line, A5,461 A.U. which is due to

the transition 63Pa
-> 73S1.J This structure is shown in Fig. 4 with

intensities of the various components indicated by the lengths of the

lines. According to the analysis of Schiiler, the components /, g, Tc,

and Z must be ascribed to the isotopes of even mass-number, 80Hg198
,

80Hg200
, 80Hg202

,
and 80Hg204

,
which presumably possess no spin (i

= 0)

since they give rise to single lines, whilst go^g
199

*s responsible for the

three components c, k, and p and go^g
201 f r ^ne eight components

a, 6, d, e,f, m, n, and o. The nuclear spins of these species with odd

mass-number have been shown to be given by i = 1/2 and i 3/2

respectively. Fig. 4 shows the components due to the even-numbered

isotopes together with the 'centres of gravity' of those due to the

odd-numbered species. The total intensities in the corresponding

hyperfine structure patterns are represented in this figure. We see

that the relative intensities due to the different components arrived

at in this way, 12 : 1 1 : 27 : 10 : 32 : 8 (per cent, of the total intensity),

t H. Schiiler and J. Keyston, Za.f. Phya. 70 (1931), 1.

J H. Schiiler, J. Keyston, and E. Jones, ibid. 72 (1931), 423; 74 (1932),
631.
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are in good agreement with the relative abundances of the isotopes

as determined by Aston, namely,

soHg198
: soHg

199
: 80Hg* : 80Hg*oi : 80Hg*>2 : 8oHg204

= 9-89 : 16-45 : 23-77 : 13-67 : 29-27 : 6-85.

Fig. 4 also shows that the isotope displacement is a monotonic

function of the mass-number concerned, though the components
due to the odd-numbered isotopes do not fall quite symmetrically

k

--2

<i)
cm:<

""'oifo >

i

FIG. 4.

between those due to the isotopes of even mass-number. The average

wave-number separation for successive even-numbered isotopic com-

ponents (AJf = 2), in this particular case, is 28x 10~3 cm.-1

Turning now to the theoretical aspect of the problem it soon

becomes evident that we must look for an explanation of isotope

displacement in terms of deviations from the simple Coulomb law of

force in the immediate neighbourhood of the nucleus. An explana-
tion in terms of nuclear motion alone (compare the original calcula-

tions concerning the spectra of hydrogen and singly ionized helium)

was shown to be quite inadequate to cover either the magnitude of

the effect or the rather particular conditions in which it is observed.

A complete discussion of the phenomenon, however, is rather compli-

cated and entails a certain amount of arbitrariness concerning the

nature of the modification produced by reason of the finite size of the
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nucleus on the forces acting on the orbital electrons. The first

calculations in this direction are due to Bartlett,f but by reason of

the very rough approximations employed neglect of relativity cor-

rections and the screening effects of other atomic electrons they
could not be expected to lead to an accurate result. Somewhat more

detailed calculations have since been made by Racahf on the basis

of Dirac's equation for the motion of the electron and taking count

of screening ; independently, calculations of a similar nature have

been carried out by Breit and Rosenthal. The method is to assume

a reasonable form for the modification of the Coulomb field inside

Fia. 5.

the nucleus, estimate the consequent effect on the wave-functions of

the atomic electrons, and compute, from the perturbation of the wave-

functions, the effect on the electronic energy-levels. Although the

accuracy of the results of such calculations is not very great, it is

adequate for comparison of the effects of nuclear size among isotopes

of the same element and, in fact, Breit finds that the interpretation

of the isotope shift in this way is in good agreement with the hypo-
thesis of constant nuclear density.

The second result of further study of the hyperfine structure of

spectral lines is the discovery, by Schuler and Schmidt, ||
that the

shape of the nucleus is not spherical in certain isotopes. This shows

up in the observations on the term system of the atom's hyperfine

levels as deviations from the interval rule of Land6 (p. 14). Fig. 5

represents the structure of the line A6,865 (a
8S7/2

z10P9/2 )
of europium

as measured by these authors. The distribution to be expected from

the interval rule (6) is plotted in the lower part of the diagram and

we can see clearly that there are systematic deviations between the

two sets of components. Schuler found from measurements on this

t J. H. Bartlett, Nature, 128 (1931), 408.

J G. Racah, ibid., 129 (1932), 723.

G. Breit and J. Rosenthal, Phys. Rev. 41 (1932), 459.

H H. Schuler and T. Schmidt, Zs. f. Phys. 94 (1935), 457; 95 (1935), 265; H.

Schuler, J. Roig, and H. Korsching, ibid. Ill (1938), 166.
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and other spectral lines that the deviations in evidence are rather

closely proportional to the square of the cosine of the angle between

i and j, so that the complete interaction between the atomic elec-

trons and the nucleus includes a contribution to the energy of the

f rm

where a is a constant depending upon the magnetic effect in the

electron orbit considered and is a new constant inserted to account

for the departures from the interval rule for the first term. These

constants have different values for different atoms and for different

electron waves in the same atom.

The accepted interpretation of the cos2
(i,j) term, i.e. in terms of

a departure of the nucleus from spherical shape, may be illustrated

as follows. Suppose a certain nucleus has a spin (in excess of \h) and

that the surface of the nucleus forms a prolate spheroid with the

major axis along the direction of the spin-vector. Since the protons

in the nucleus are probably fairly uniformly distributed throughout

the nuclear fluid, and since the latter is assumed to be uniform in

density, the electric field arising from our prolate nucleus will be

slightly stronger in the direction of the spin-axis than in the plane of

its equator. Consequently, the binding energy of an orbital electron

will vary as the angle between its 'orbital plane' and the axis of

nuclear spin is varied, first by reason of the magnetic interaction

which has been discussed in the preceding section and which leads

to the cosine term, and secondly by reason of the dependence of the

nuclear electric field on angle. From the symmetry of the latter it is

readily seen that its contribution will vary with cos2
,

in first

approximation. Quantitatively, the angular dependence of the

electric field is expressed by means of the well-known expansion of

the field due to a finite, non-spherical charge in terms of the fields of

various electric multipoles. The field arising from a non-spherical

nucleus is then adequately approximated by adding a quadrupole

potential to the monopole potential :

T7 Ze
,
3cos20-l

VCoUi
= +-s- qe,

where 9 is the polar angle relative to the axis of spin, and q is called

the quadrupole moment of the nucleus. In the example chosen above,

of a prolate nucleus, q is positive, for an oblate nucleus it is negative.
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As thus defined, q has the dimensions of length squared and is

usually expressed in units of 10~24 cm. 2 Its value for a given nucleus

is then determinable from the observed hyperfine separations through
the expression for J oul and |0|

2 for the electron states involved.

A number of such determinations have been made and the results

appear in Table I.

One of the most striking and most important facts concerning

quadrupole moments is the result that even the deuteron has one.

It was discovered by Rabi and co-workers! in the course of their

work on the molecular beam magnetic resonance method of deter-

mining magnetic moments, as described in the previous section.

The magnetic moments of the proton and the deuteron, as well as

certain molecular constants, can be obtained from work on the H2

and HD molecules. From these, one can predict the resonance peaks
for the D2 molecule in the rotational state, J = 1 (para-deuterium).

The resonance peaks actually measured for D2 , however, appeared
at markedly different values of the homogeneous (second) field than

those predicted. The deviations were found to be proportional to

the square of the cosine of the angle between the nuclear moment
and the molecular axis. Such deviations can be accounted for if the

deuteron has an electrical quadrupole moment which interacts with

the non-uniform electric field at each nucleus in the molecule. By
computing the strength of the electric field, and using the experi-

mental results, Nordsieck found the value of q for the deuteron to

be 0-00273 x 10~24 cm. 2 This highly significant discovery has a direct

bearing on the nature of nuclear forces and will be discussed at greater

length in the following chapter.

The geometrical interpretation of q can be derived,at once by going

back to potential theory and its expression in the form of VG(tni. It is

then seen that q is just the mean value of J#(32
2 r2

), averaged over

the charge density in the nucleus.

5. Nuclear binding energy

A valuable collection of information concerning nuclear structure

is presented by the high-precision determinations of many of the

nuclear masses. As has been stated already in the beginning of this

chapter, one should not expect that the mass of an atom, formed by

t J. M. B. Kellogg, 1. 1. Rabi, N. F. Ramsey, Jr., and J. R. Zacliarias, Phys. liev.

55 (1939), 318; 57 (1940), 677.
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the 'condensation' ofN hydrogen atoms, must be exactly equal to N
times the mass ofthe hydrogen atom. In fact, the formation of a stable

configuration of this type must be accompanied necessarily by the

liberation of a certain amount of energy (binding energy) which makes

the mass of the composite system somewhat smaller than the com-

bined masses of its components. This difference in mass is usually

called the mass-defect, Am, and is connected with the binding energy,

BE (which is essentially negative) by the relativistic relation :

-Am = . (7)
C

where c is the velocity of light in vacuum.

The notion of a mass-defect is, of course, quite general and can

be applied also in the case of composite chemical molecules as built

from individual atoms. But, whereas in this case the defect of mass

(equal to the total dissociation-energy of the molecule divided by c2 )

is negligibly small as compared with the total mass of the molecule,

atomic mass-defects represent a measurable fraction of the atomic

mass, thus affording a valuable method for the direct experimental

determination of the binding energies of the various atomic species.

Strictly speaking, mass-defects determined by the measurement of

the relative masses of different atoms are composed of two parts,

corresponding to the internal binding energy of the nucleus and the

binding energies of electrons in the atomic envelope; since, however,

the binding energy of the atomic electrons is negligibly small com-

pared with the nuclear binding, the experimental results may be

interpreted in terms of nuclear energy alone. In speaking of the mass-

defect of a composite system it is necessary to have clearly understood

with respect to which structural units the mass-defect is to be calcu-

lated. Thus, for example, if we defined the mass-defect of helium as

the mass-difference between the helium atom and four hydrogen

atoms, we should get the binding energy of the helium nucleus as

formed from four protons and two electrons. Since, as we have seen

above, it -is more rational to consider this nucleus as built of two

protons and two neutrons, we should speak rather of the part of the

energy responsible for the binding together of these particular struc-

tural units. This can be done arithmetically either by subtracting

from the quantity defined in the preceding sentence the (negative)

mass-defects of two neutrons (relative to their proton-electron
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constitution), or more directly by calculating this mass-defect as
the difference between the mass of the helium atom on one side and
two hydrogen and two neutron masses on the other. In general, the
nucleus of an isotope with atomic number Z and mass-number A
consists of Z protons andAZ neutrons, so that the conventional
mass-defect of the atom of this isotope is found by subtracting the
mass of the atom from the sum of (AZ) neutron masses, mn , and
Z hydrogen masses, mH :

Aw = Zmif+(A-Z)mn-m2fA , (8)

where mz>A is the atomic mass in question.
The accepted convention in nuclear physics is to express relative

atomic masses on an arbitrary scale in which the neutral atom of the
O16

-isotope has the atomic weight exactly 16-0000. f The unit of this

system is called the mass-unit (m.u.) and is equivalent to 1-483 x 10~3

erg or 932 M.e.v.

Relative masses of naturally occurring isotopes with atomic weights
less than 50 can be obtained with great precision by comparing atomic
and molecular ions of almost equal masses in a linear-scale mass-

spectrograph. An important example ofthe operation of this
'

doublet'
method in mass-spectroscopy is given by the work of Bainbridge and
JordanJ in determining the masses ofH1

,
D2

, and C12 relative to O16
.

This was done by comparing the deflexions in their spectrograph of
the almost equally heavy ions:

CH+ with ()+

H2
' with D+

D3
[

-

with C++.

The results of this comparison, and of many others of the same type,
are included in Table II. With such direct measurements as a basis

it is then possible to compute the masses of the light, radioactive

species by simply adding the mass-equivalents of the energy released
in the transmutation. These results are given also in Table II (the
content of which is taken mostly from the article by Fliigge and
Mattauch, 'Isotopenberichte 1942', Phys. Zeits. (1943) 181). Among
the masses deduced from radioactive energies are those for the

f This differs slightly from the conventional chemical system of atomic weights
where the atomic weight 16-00000 is ascribed to the natural mixture of oxygen
isotopes.

J K. T. Bainbridgo arid E. B. Jordan, Phys. Rev. 51 (1937), 384.
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TABLE II

Atomic Masses and Binding Energies

26
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heaviest elements, the naturallyradioactive species. Although the rela-

tive masses of the heavy elements are quite accurate for comparison
of one heavy isotope with another, there is still some uncertainty in

the comparison of these masses with that of O16
. In other words, the

absolute values of the masses and binding energies given for the heavy
atoms are not as accurate as those given for the light atoms.

Considerable progress has been made in recent years in determining
the masses of isotopes 'heavier than A = 50, principally by Aston,

Mattauch, and Dempster. Except for the noble gases, however, the

precision of measurement does not compare with that obtained on

the lighter elements. A typical determination in this region is the

comparison of La139 with Ti.f The threefold ionized La atom falls

| A. J. Dempster, Pliya. Rev. 53 (1938), 869; also ibid., p. 74.
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between the singly ionized Ti46 and Ti47 . By using the separation of

the latter as a standard scale the deviation of the La mass from its

integral value of 1 39 is determined from the known deviations of the

Ti isotopes. It is readily seen that this method measures most

directly the fraction /in the equation:

Hence the experimental results are customarily tabulated in terms
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v?f, known as the packing fraction, in the form of H)4/. The binding

energy of a nucleus may then be computed by taking the mass-

excess of neutron and proton into account, viz.

BE - A (f -0-00853)-00004 (A 2Z) (9)

in mass-units. Hence, except for the relatively small and uniformly

increasing term in A 2Z, the packing fraction plotted as a function

of A gives the variation of the average binding energy per nucleon.

A graph of 104/ as a function of A is shown in Fig. 6 for elements

heavier than O16
. The curve is drawn through the lowest value of/

for those isotopes for which several values have been determined.

Besides the prominent irregularities in the curve, which are partly

due to experimental errors and partly significant, there are several

features of the dependence of/on A that are of fundamental impor-

tance to the theory of nuclear structure. From the connexion between
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/ and the binding energy per particle, eq. (9), we see at once that the

average binding energy per nucleon is practically the same in all

nuclei heavier than O16
. Starting at O16

,
with an average binding of

8-53 M.m.u., the binding energy decreases to a minimum of about

9-6 M.m.u. at Cr52 (or thereabouts) and then rises with increasing A
to about 8-1 M.m.u. at U238

. The binding of nucleons in a large

nucleus is then quite similar to the binding of molecules in a con-

densed phase, such as a crystal or a liquid, i.e. the total energy of

binding is proportional to the number of units, in first approxima-
tion. This fact, plus the constant value of nuclear density discussed

in section 2, forms the foundation of the liquid droplet model of

the nucleus. Despite these, and other, points in analogy between

nuclei and liquids it must always be borne in mind that nuclei are

composed of relatively few particles, so that most of the component

particles are on the 'surface' of the droplet. Moreover, the nucleons

condense to such a high density that they form a degenerate gas,

whereas degeneracy is of no importance to liquids excepting liquid

helium
;
and finally, some of the nucleons carry a permanent electric

charge.

The characteristics just mentioned are reflected in the packing-

fraction curve, Fig. 6. The decrease of /as A increases from 16 to 52

is evidently due to the fact that a nucleon is more often surrounded

by others in the heavier nuclei, i.e. the positive surface energy pes

nucleon diminishes with increasing A. In ordinary liquids, / would

decrease uniformly and approach asymptotically the value for an

infinite volume. In the universal nuclear fluid, however, the binding

energy per particle is weakened by the electrostatic energy of the

protons. Since the Coulomb energy of a nucleus is proportional to

Z(Z 1 )I%JA and the cohesive energy (neglecting the surface effect)

varies only as A, the electrostatic effect becomes of major impor-

tance in the known heavy nuclei. This accounts for the rise of/ with

A as A increases above 60. There is, consequently, a most stable

finite size of droplet for the nuclear fluid (perhaps Cr
52

). Furthermore,

the elements heavier than U238 are so unstable relative to subdivi-

sion into smaller nuclei, i.e. fission, that they do not occur in nature.

Considering energy alone, practically all the heavy nuclei are unstable

against fission (and light nuclei unstable against fusion), but the

reaction rates for these processes are so low as to be effectively zero.

The exceptional cases of neutron induced fission in uranium and of
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thermally induced fusion of hydrogen at the centre of stars are dis-

cussed in detail in Chapters IX and X.

The gross aspect ofthe binding energy ofa nucleus may be expressed

formally as the sum of three terms :

1. The negative volume energy which is due to the cohesive forces

between nucleons and is partially balanced by the zero-point

kinetic energy; both effects are directly proportional to the

volume, or weight, of the nucleus.

2. The positive surface energy which represents a deficit in the

volume energy due to the fact that the particles located on the

surface do not have a complete set of neighbours ;
this energy

must be proportional to the free surface of the nucleus, or

(because of the constant density) to the f power of its weight.
3. The positive electrostatic energy discussed previously.

The rough formula then becomes :

BE =-- -aA+bA*+c
Z (Z~ l

\ (10)

where a, b, c are positive factors, the same for all A. With properly
chosen values of the constants the initial drop and subsequent rise

of BE as a function of A and Z can be matched reasonably well. It

is evident, however, that eq. (10) is not completely satisfactory as it

'predicts that for a nucleus of given A the lowest energy is obtained

with Z = 0. This contradiction to observation is removed by taking
the Pauli exclusion principle into account in the considerations of the

volume energy and is taken up more fully in Chapter IV.

It is evident also that a formula of the simple type of eq. (10) can-

not account for the marked fluctuations and kinks in the packing-

fraction, or mass-defect, curve. Two kinds of such fluctuations can

be distinguished. The first kind shows up as a regular, periodic

variation of binding energy having a period of four mass units in the

light elements and a period of two in the heavy elements. This is

related to the especial stability of a-particle 'shells' mentioned in 1

and can be predicted when the exclusion principle is taken into

account. The second kind of kink is represented by an occasional

sharp bend in the general trend of the mass-defect curve. Except for

the one that occurs at O16 the masses are not well enough known near

these kinks to evaluate their true meaning.

Particularly good information about relative atomic masses is
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available for the naturally radioactive elements where the energy-
differences between the members of the same radioactive family are

calculable directly by the energy-liberation in the corresponding
a- and ^-transformations. Thus, plotting the energies of ex-particles

emitted by various radioactive substances against the correspond-

ing values of atomic number and against the neutron-protons ratio,

(Plate la), one obtains an energy surface (Plate la) which

Stato
o
a-decay/ny

p-decay/nj

240

shows a sharp peak near Z = 84, and also a suggestion that a similar

peak exists in the region of the transuranium elements, somewhere

near Z 100. These facts prove beyond any doubt that in the case

of nuclear structure we encounter the formation of saturated

nucleonic shells, similar to the familiar electronic shells which are

responsible for the periodic properties of atoms. Owing to the absence

of exact data concerning the binding energy of intermediate nuclei,

it has been necessary to try to establish possible proton and neutron

numbers for which closed shells are formed on the basis of other data,

mostly connected with the relative numbers of neutrons and protons
in the nuclei of stable isotopes.

If the values of neutron-proton ratios N/Z{ (AZ)/Z} for all

known stable isotopes are plotted against the corresponding mass-

t W. Heisenberg, Rapport du VIImt Congrka Solvay, 1934.
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numbers A (Mgs. 7 and 8, which are constructed for even and odd

atomic weights, respectively) one notices a well-expressed undulation

indicating that at least six or seven shells are being completed between

the light and heavy nuclei,f The phenomenon can be represented in a

still more striking way by plotting the relative (per cent.) abundances

of the isotopes of the even elements as the height of a mountain range.

A plot of this kind is shown in Plate I b, where the range is mapped in

0-8
40 80 120 160

FIQ. 8.

?4Q

the [N-} NZ] plane running from N = 30 to N = 128, and from

NZ = to N Z = 44. The peculiar nature of the neutron

numbers 50 and 82 is quite evident from the plot. It is probably also

significant that the fragments of the fission of heavy elements

cluster about these neutron numbers rather than about the midpoint

for the division. In the case of protons, the numbers 50 and 82 also

play a prominent role which is emphasized by the extraordinary

isotopic variety of Sn (Z = 50) and the location of the Heisenberg in

the energy-plot of Plate 1 a. Many authors have proposed that

nucleonic shells are closed at these numbers, as well as other less

marked numbers. On the other hand, there is at present no adequate

theory of the nuclear shell-structure. We shall return to these ques-

tions briefly in Chapter IV.

t G. Gamow, Zs.f. Phys. 89 (1934), 592.



II

THE FORCES BETWEEN NUCLEONS

1. The forces between protons

As we have seen in the preceding chapter, studies of the general

properties ofatomic nuclei indicate that they existas stable mechanical

systems due to attractive forces acting between individual nucloons.

A more detailed knowledge of the laws of these forces, which is

important for the understanding of their intrinsic nature as well

as for the development of the complete theory of composite nuclei,

can be obtained best from the experimental study of the colli-

sions between individual iiucleons. Thus the scattering of a beam
of protons by hydrogen gas, which is measured as the scattered

intensity as function of angle of scattering, will deviate from pre-
dictions made on the basis of electrostatic forces alone. An analysis
of the deviation then gives information concerning the nuclear

forces exerted between two protons. The forces between neutron

and proton can be evaluated directly from the observed scattering
of neutrons by hydrogen and by analysis of the stable state of

the deuteron. Unfortunately, direct experiments on neutron-

neutron collisions lie far outside the limits of possibility, because

of the negligibly small collision-probability in the intersection of

two neutron beams, as now obtainable. Thus, the only way of

evaluating the neutron-neutron force lies in the study of nuclear

binding energies; for example, the fact that the binding energies

of H3 and He3 differ only by 0-74 M.e.v. (see Table II), which is

a reasonable estimate of the additional Coulomb energy in the He3

nucleus, indicates that the n-n forces are essentially equal to the p-p
forces.

The existence of strong, short-range forces between two protons
was first demonstrated by the scattering experiments of Hafstad,

Heydenburg, and Tuve,| who showed that there were significant

deviations from the scattering as expected for a pure Coulomb field.

In Fig. 9 we give the ratios of the observed scattering to that expected
from the Coulomb interaction alone (classical Rutherford's formula

f L. Hafstad, N. Heydeuburg, M. Tuvo, Pkys. Kev. 49 (1936), 402 ; 50 (1936), 806 ;

51 (1937), 1023; 53 (1938), 239 ; 55 (1939), 603. The energy of collision, was extended

by the work of R. (J. Herb, D. W. Kerst, D. B. Parkinson, and G. J. Plain, Phys. Rev.

55 (1939), 603, 998.



PLATE I

(a)

The 'Heisonberg'. A |)lot of the energies of a-decay in the [#, NjZ\ |)iune, showing
a maxiimim near =- 84, and indicating the

possibility of another maximum soino-

whero beyond # ^ 96.

N-Z

A plot of the percentage abundance of isotypes in [N, N Z\ plane showing tho distinct

maxima at N ~ 50 and N = 82, and the rise towards the maximum at N = 126.
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modified by Mottf to take into account the quantum mechanical

symmetry of the wave-function for the two protons making a colli-

sion) for different scattering angles, and for different energies of

incident protons.}
It is evident from Fig. 9 that the observed differential cross-

sections at low energies (~ 700 k.e.v.) and small angles of deflexion

(~ 20) are smaller than expected from electric forces alone. This

indicates that when the nuclear forces between protons first come into

PandP

25 35
FIG. 9.

play they are attractive and partly annul the repulsive electric forces.

At larger angles of deflexion and at higher energies of collision the

effect of the nuclear forces predominates and gives rise to differential

cross-sections much larger than those due to the Coulomb force

alone. Furthermore, ifwe consider this excess scattering from a frame

of reference in which the centre of gravity of the colliding protons is

at rest, we find the scattering is nearly isotropic, as compared with

the distinctly forward (axial) scattering in a Coulomb field. Thus we
conclude from the results shown in Fig. 9, not only that the nuclear

f Tho formula, oq. (1) of Chapter I, is the correct expression for the differential

cross-section for scattering in the Coulomb field alone, if the colliding particles are

not indistinguishable. In considering proton-proton scattering, however, the quan-
tum mechanical effect of symmetry must be taken into account, as mentioned above.

% In studying nuclear collisions, the distribution of intensity as a function of the

angle of scattering is a most valuable source of information concerning the scattering

process. This intensity distribution is customarily expressed in terms ofthe differential

cross-section, which is denned as the number of particles scattered per unit solid angle,
in the direction of scattering being considered, when the incident beam contains one

particle per cm. a The total cross-section is then the integral of the differential cross-

section over all solid angles. In the case of the Coulomb field this integral diverges,
because the field represents forces of infinite range, and one must use the differential

cross-section in application to nuclear problems.
3595.61 D
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forces are attractive between protons, but also that they are 'short-

range* forces, since apparently only head-on collisions, i.e. $-waves,

are affected by the nuclear forces. The inference is that proton colli-

sions in which the orbital angular momentum is more than zero are

too distant for the nuclear forces to be operative, hence the spherical

symmetry of the nuclear part of the scattered intensity. This inter-

pretation is borne out by the fact that for very high energy of bom-

bardment, especially for the neutron-proton collisions, the spherical*

symmetry gives way to a decided backward scattering of the beam,

indicating that the higher angular momenta are in evidence in the

operation of the nuclear forces.

Since the effect of the nuclear forces between protons evidently

depends upon the absolute value of their relative angular momentum,
it is no longer possible to interpret the scattering results on classical

theory alone. As an introduction we present a brief sketch of the

quantum treatment of scattering due to electric forces between

particles of charge +e, mass M, and relative velocity v when the

particles are infinitely distant. If we define the quantities

k^^ 1 = , (1)
2# fiv

the Schrodinger equation in the relative coordinates of the two

particles (considering electric forces only) takes the form:

i" - 0. (2)

Let the coordinate z be the axis of the bombarding beam. We are

interested in the solution of eq. (2) that behaves for large z as elka .

Now it is readily seen, by direct substitution, that eq. (2) has a solu-

tionoftheform

where C is a constant, r is the radial separation of the particles of

which z is the component along the axis of bombardment, and V(q)

is a function that obeys the differential equation:

qF(q)
ff

+F(q)'-ikqF(q)
f

-k^F(q) - 0, (4)

q
= rz,

where primes indicate differentiation in the usual way. This eq. (4)
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may be solved immediately by going over to the 'momentum' space
for the variable g, i.e. let

GO

= ip,
<l^i^,

F(q)r--
J

f(p)e
!

dp, (5)

'JO

and replace q and derivatives with respect to q in cq. (4) accordingly,

giving: ,

which can be integrated at once to give

00

F(q)=- j (k pyip-i-W* dp. (6)
00

The functional form of the desired wave-function is then obtained

by finding (6) as an explicit function of q = r z = r(l cos0). A
rigorous treatment of these solutions is beyond the scope of this

book,t but the asymptotic behaviour of F(q) is readily determined

by the residues at p = and p = k which may be evaluated by ex-

panding the integrand in integral powers of p, or (p~k), respectively.
This may be done by using the appropriate form of the Laurent

series for (jiltq

,>,_-

where is, in general, a complex number so chosen as to obtain

integral powers about the branch-point being considered. Then by
applying Cauchy's theorem in the usual way, F(q) is found as the

sum of two (descending) power series in AY/, one for each branch -point.

For very large r (more exactly, k(r z) ;> 1) we need only the leading
terms in these expansions, and one easily obtains the result by the

method just outlined:

For convenience in normalization we choose

V = =*I< 1-V)ei
7T

t Soo N. F. Mott and H. S. W. Maasoy, Atomic Colli#ion# t Oxford, 1933, for moro

thorough discussion and further references.
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and obtain, for the asymptotic form of the desired solution, equa-
tion (3):

T_ e*i, m^)_
1

The first term is to be regarded as the incident beam of charged
particles, normalized to one particle per unit volume; the second
term is the scattered wave at large distances from the scattering
centre, i.e. from the centre of gravity of two protons.
The wave-mechanical solution, as developed thus far, applies

directly to the Coulomb interaction of non-identical particles (if \Jf ,

in eq. (1) for k, is interpreted more generally as the reduced mass of
the colliding particles) and hence, must be equivalent to Rutherford's
classical derivation, eq. (1) of Chapter I. From the asymptotic
expression, eq. (7), we find the intensity of the scattered part of the

beam, at large r and in the direction 9 = cos-1
(z/r),

=
scat

The differential cross-section is numerically equal to the intensity

per unit solid angle (i.e. r2/scat) when the incident beam is normalized

per unit volume; hence

in agreement with the classical result. The equivalence ot the classical

and quantum theoretical results for the scattering is made possible

by the fact that the Coulomb field alone does not introduce a charac-

teristic length, since the forces are of infinite range.
Before considering how the Coulomb cross-section is affected by

symmetrizing the proton waves, we now introduce a short-range

potential in addition to the electric potential and see how it influences

the unsymmetrized, asymptotic form of solution, eq. (7). The cus-

tomary procedure in such a study is to follow the method of Faxen
and Holtsmarkf and express the wave-function as a superposition of

eigenfunctions of orbital angular momentum. The effects of the

short-range forces in the states of different angular momentum are

then considered independently. In fact, for the experimental work

being discussed in this section, it is sufficient to evaluate the effect

of the nuclear forces only for the /Sf-wave part of the wave-function.

f H. Faxen and J. Holtsmark, Zeits.f. Phyaik, 45 (1927), 307.
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The $-wave component of T in eq. (3) can be obtained by averaging
this expression (with F substituted from eq. (6)) over all 9. The

resulting integral can then bo evaluated by the method used in

deriving eq. (7) and leads to the asymptotic expression for the

^--component,
*

:

xpo _+
!L 8in(AT-T?ln 2Ar+j8), (8)
KT

where /?
is defined by the relation

The expression, eq. (8), for XF at large distances is to be considered

as the sum of an incoming spherical wave and an outgoing one of

equal intensities. The incoming part, (kr)~
l
exp{ i(krrj In 2kr)} 9

remains unaffected, of course, by the short-range forces. As the

particles approach to within the range of the nuclear forces, however,

both incoming and outgoing parts of the wave will be refracted

differently than by the Coulomb field alone. The net result on the

asymptotic form of the outgoing part will appear as a certain constant

addition to the phase of that wave at large r which we represent by
the factor eziK*. The angle KQ is called the phase-shift for $-waves

and its magnitude is a function of the energy of collision. The

.modified form of XF is, therefore,

in^T-^ In 2tr+j8+* ). (9)

The effect of the nuclear forces on the asymptotic expression for the

complete wave-function may then be taken into account by adding

the difference between eq. (9) and eq. (8) to the form in eq. (7). The

result may be written:

r cos 0+t] In A-r(l-cos 0)}_

\
,(fcr_7? lp 2frr+2g)

.

/

V '

Tf the colliding particles are distinguishable, the differential cross-

section is r2 times the absolute square of the expression in curly

brackets. In classical theory, the cross-section for indistinguish-

able particles is the sum of cross-sections, <r(0)+cr(7r-|-0)> due to

the inability to tell particles that are scattered from those that

are knocked on. But in quantum theory there is an additional
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consideration to be made. If one proton is at ra and the other at rb the

properly symmetrized wave-functions for the two protons are

iii the singlet spin state, and

in the triplet. Since r
(l (6)

= rb (ir-{-6) for particles of equal mass, and

since the scattering at TT 9 is the same as at 7r-|-0, the scattered

wave at TT 9 interferes constructively with that at 9 in singlet

collisions, i.e. J of the time, and interferes destructively in triplet

collisions, i.e. J of the total number of collisions. Tf we denote by/(0)

f(0) =---

jfacowc*
l+hfllOe

iK*HmK
},

A/

the differential cross-section then becomes:

*() = mO)+f("-0)\ 2+m9)-J("~0)\ 2
. (11)

This interference effect was first predicted by Mottj and proved

experimentally by ChadwickJ for the case of the scattering of

a-particles in helium (in this case all waves are symmetrical in the

two alphas since their spin is zero). The differential cross-section for

scattering of protons by the angle in the centre of gravity system
of coordinates is then :

a (0)
= cosec4 10+see4 see8 40 cosec2

|0 COS(T? In tan2
i0)J

cos(r?ln sin2

The first term in the above expression, eq. (12), is the pure Coulomb

scattering, the third term the purely nuclear scattering, and the

second term the interference between them. To get the cross-section

for the scattering between and 0+d0, in the centre of gravity

system we have to multiply the expression for a(9) by the solid angle

2?r sin d9. The corresponding expressions for the laboratory co-

ordinates (in which one of the protons is initially at rest) are obtained

by replacing every by 20. The largest effect of the short-range

f N. F. Mott, Proc. Roy. Soc. 126 (1030), 259.

J J. Chadwick, ibid. 128 (1930), 114.
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forces comes at 90 in the centre of gravity system (45 in the

laboratory), and at this angle:

(13)

Usually when discussing the scattering of indistinguishable particles
the differential cross-section is expressed as a ratio of the observed

scattering to that predicted for Coulomb forces alone (denoted by
AW^Mott in Fig. 9) and is commonly referred to as 'the ratio to

Mott Scattering*, EM(6). Thus, RM(fa) expressed in terms of an
#-wavo phase-shift for protons wave is given by the quantity in the

curly brackets in eq. (13). At one million electron volts, in the

laboratory frame of reference, the value of
77

is about 1/6 and it

becomes smaller as the energy increases. The effect of the phase-
shift due to nuclear forces is therefore greatly amplified at these

energies. Further, due to the interference, the sign ofK is determined.

The application of the formula, eq. (12), to the experimental curves

for p-p scattering shown in Fig. 9 has been carried out principally

by Breit and his associates.! The procedure is to determine the value

of KQ that must be used in cq. (12) to account for the experimental
results at each energy of collision and each scattering angle that has

been observed. It was found that the experimental results at various

angles of scattering, but for a given energy of bombardment all corre-

spond to one and the same value of KQ ; this result substantiates the

assumption that, for the energies used in the above experiments, the

nuclear, short-range forces influence only the $-waveJ (since only
this wave was modified in derivation of the formula).

From one point of view, the nuclear forces in $-waves are adequately

specified by giving K as a function of the energy of collision. This

viewpoint has been elaborated, in recent years, in the theory of the

scattering matrix. For the present it is useful and instructive to inter-

pret the observed values of A" on the basis of a particular model for

the short-range forces. Following the work of Breit (loc. cit.) we

adopt the simplest form of model, viz. the rectangular well potential

t F. Yost, J. Wheeler, and G. Breit, Phys. Rev. 49 (1936), 174; G. Breit, E. O.

Condon, and R. D. Present, ibid. 50 (1936), 825; G. Breit, H. M. Thaxton, and L.

Eisenbud, ibid. 55 (1939), 603, 1018.

J It may be noticed that for higher proton-energies modification of the F-waves,
as well as of the interference between 8- and D-waves will play an essential part. The

analysis for the general case is presented in Chapter VI11.
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illustrated in Fig. 1, p. 9. The complete specification of the potential

acting between two protons is then given by

U = - Upp for r < ,

f>
z (14)

17 = 1 for r > a,
( *

T

where a is the 'range' of the nuclear forces. The positive constant,

U
flp9

measures the depth of the proton-proton interaction at small

distances. Inside, r ~ a, therefore, the Schrodinger equation becomes

vr+g[E+umjr
= o. (is)

The iV-wave solutions of cq. (15) that are bounded at the origin are

well known to be

rjn
=

The amplitude, A, is determined from the continuity of this solution

with the solution for r > a. For r > a the Schrftdinger equation is

given by eq. (2) as before, if we identify k2 with ME/fi? of eq. (16).

The complete solution is then available, in principle, from eqs. (3)

and (6) above. Instead of the asymptotic forms at large argument,

however, we now need the forms near r = 0. If we evaluate the

spherical part of the bounded solution, eq. (3), without approxima-
tion we get a certain function which we shall denote by F /kr. This

function goes over into (sin kr)/kr as
77
-> 0, and is the proper $-wave

solution if the Coulomb field extends unchanged to the origin. Since,

however, we are interrupting the Coulomb field at r = a the solution

outside must fit smoothly on to the solution inside, oq. (16), and

this means, in general, that the solution outside will be a linear

combination of FQjkr and the companion, improper solution, GfQ/kr,

corresponding to (cos kr)/kr in the absence of a Coulomb field. Hence

we may write the solution for r > a in the form

_
*out \

l *
)

where X has the same meaning as before. The logarithmic deriva-

tives of the functions (16) and (17) must be equal at r = a and this

determines tanjfif as a function of E, Upt) ,
and a:

Pig. _ n+QJtanJM .

' ( '
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where primes mean differentiation with respect to r. Taking into

account the general relation between F ,
GQ ,

and their first deriva-

tives: n ,

we can write eq. (18) in the form :

*

1t
*>

(r
=

a). (19)

Except for very high energy of bombardment, E, the correct func-

tions, F09 GQ ,
and F'Q differ very appreciably from their field-free

FIQ. 10.

counterparts, sinfrr, etc., and they have been computed in the papers
cited by Breit et al. for various values of k and r. From these tabu-

lated functions, and the experimental values of K
,
the right-hand

side of eq. (19) can be computed for the energies at which each K
was observed and for an arbitrary choice of the range of forces, a.

The corresponding values of Upp can then be determined by solving

the left-hand side of this equation.

The values of Upp computed from the experimental results at

different energies are plotted as Upp 2 in Fig. 10 for three different

ranges of force: a = (e
2
/rac

2
), viz - f = ' 75 I'OO, and 1-25. It is

apparent from this plot that Upp is practically independent of energy
if f 1

,
i.e. a = e

2
/mc

2
,
whereas for a ^ e2/mc

2
,
U
pl) respectively

increases or decreases with energy. Therefore, a = e2/mc
2 is the only

range of forces consistent with a velocity independent, square-well

potential. Assuming a = e2/mc
2 = 0-283 x 10~12 cm. we obtain:

Upp 10-5 M.e.v. a = e2/mc
2

(20)
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as the most acceptable representation of the short-range forces

between two protons. In the following section we shall compare this

value with similar deductions from the neutron-proton interactions.

In making the comparison, however, it must be remembered that

the results expressed in eq. (20) are derived by cutting off the

Coulomb field altogether at r = a. If we add to Upp the (volume)

average of the Coulomb repulsion inside the nuclear potential well:

e*n rdr l^dr] = 0-8 M.e.v. we get Upp 11-3 M.e.v. for the

effective depth of the nuclear potential well.

2. Forces between neutron and proton

The most direct manifestation of attractive forces between neutron

and proton is the formation of the stable deuteron. This nucleus is to

be regarded, from the point of view of quantum mechanics, as a

stationary state formed by the mutual attraction between neutron

and proton in somewhat the same way that the normal hydrogen
atom is a stationary state formed by the Coulomb forces between the

proton and the electron. The nature of nuclear forces appears to be

quite different from Coulomb forces, however, as evidenced in the

preceding analysis of proton-proton scattering data.

We shall approximate the nuclear potential by the same type of

rectangular well that we used for the interpretation of the proton-

proton forces. In fact, we shall assume the range of the forces, i.e.

the radius of the well, to be the same as for the p-p forces and use the

known binding energy to determine the depth of well in the deuteron.

Let r be the coordinate of the proton relative to the position of the

neutron, M the mass of a nucleon (assuming proton and neutron to

have the same mass), and E the energy of the system. Then the wave-

equation for the relative motion becomes:

^0) - 0,

F(r)=-r7t r<a, (21)

V(r) = r > a.

Since the potential that has been assumed has spherical symmetry
the state of lowest energy will be an $-state. In fact, due to the short

range of the potential, states of higher orbital angular momentum
would be hardly affected by the potential if their wave-lengths are
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long compared with a. It is for the same reason, of course, that the

physical results of the calculation are not particularly sensitive to the

shape of potential well assumed. Accordingly, we let

and the wave equation becomes:

?+ <*-F) - 0. (21 a)

Outside r a, V(r) = and the bounded solution for u is

u(r) ^oxpf-fc^U r > a.

Inside /* ^ a, V(r) ^ and the bounded solution is

?j(r)
-

B*m[ryl{M(K+Vi)}lh~\ r ^ a. (23)

In eqs. (22) and (23), ^4 and B are constant factors. The value

of TI is then determined as a function of K, which is known to be

E = 2-18 M.e.v., and of a e2/rac
2

,
which is assumed on the basis

of the proton-proton results, through the fact that solutions (22) and

(23) must join smoothly at r a. Equating logarithmic derivatives

ofu(r)a :

[M(E+V^n^Gia\M(K+V^ITi^ = (ME/h*)* (24)

determines the value V 4 1 me2 21 M.e.v.

The value of Vl thus obtained is about twice as great as the corre-

sponding value, Upj) ,
for the forces between protons, even though the

range has been assumed to be equal. The disparity is well known to

be connected with the fact that the protons interact in ^-collisions

only when they form the singlet spin-state (because of the Fermi-

Dirac statistics), whereas the spins of the neutron and proton forming
the deuteron must be parallel (triplet state) since the angular
momentum of the system is unity. Hence the difference between

the values of V and U
ltjt

is a manifestation of the spin-dependence

of nuclear forces. Furthermore, the wave-function of the ground
state is spherically symmetric so that no electrical quadrupole
moment can be obtained. In spite of this defect, however, the simple

rectangular well assumption will now be extended to the calculation

of the scattering of neutrons by protons in order to determine how
the forces between neutron and proton in the singlet state fit into

the picture.
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Scattering by short-range forces alone is easier to compute than

when combined with the Coulomb field and it may be deduced from

the resTilts of 1 by going to the limit of e -+ 0. Nevertheless, we
shall sketch the customary treatment of the problem for the sake

of completeness. The wave equation is eq. (21) and we are looking

for appropriate solutions with positive values of E. Consider a plane

wave e/fcr(>os0 describing neutrons falling upon protons. We need be

concerned only with the part of this wave that is spherically sym-
metric about the centre of gravity, since this part alone will be

influenced by the nuclear forces if, as we assume, the
'

wave-length',

k"1
,

is long compared with the range of forces, a. The spherical

component of the plane wave is readily found by averaging over all 6

xFo sin AT
f ~~F~-

Owing to the nuclear forces this wave will become strongly refracted

inside r = a, and the effect on the wave at large r will be a certain,

constant phase-shift, 8. Since the incoming half of TJ cannot show

the effect of the refraction, the general form of the spherical wave

as influenced by the nuclear forces is then:

y? = ett
Bin(*H- 8

). . (25)J kr

The difference between TjJ, eq. (25), and Tg is the scattered wave of

the form S(e
ikr

/kr) with
8 =

Since the incident wave is normalized per unit volume, the total

cross-section for scattering will be the number of scattered particles

per unit radius,
8* 47T

av
= 477T2 |TJ Tg|

2 =
47T^

=
-Jsin

2S. (26)
iii K

The determination of the phase-shift, 8, as a function of energy is

made as follows. Outside r a the wave-function is given by eq. (25),

inside r = a by eq. (23) as before, except that E is now positive.

Equating the logarithmic derivatives at r = a

= A-cot(A-a+8), (27)

analogous to eq. (24) in which E stands for the binding energy of the

deuteron, e. At low energies of bombardment, E, V^ is much larger
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than both E and e so that the left-hand sides of eqs. (24) and (27)

are equal, in first approximation. At low energy, also, ka may be

neglected as compared with 8. In this approximation we get, equating
the right-hand sides of eqs. (24) and (27), the rough estimates:

, ,_.
For more careful work, one solves eq. (27) for 8 using the correct

bombarding energy (in centre of gravity system, so this value is

one-half the laboratory energy of the neutrons) and substitutes in

eq. (26). Using the latter method with Vl = 21 M.e.v. and a = e2/wc
2

,

we find a total cross-section for very slow neutrons, i.e. E 0,

= 4-43 x 10-24 cm.2
(29)

This result, eq. (29), is to be compared with the observed cross-

section for the scattering of thermal neutrons by hydrogen, f viz.

(j(0)
= 20xlO~24 cm.2 By way of interpreting the discrepancy

between the observed value and that calculated from the theory of

the stable deuteron, Wigner pointed out that the calculation is based

upon what is known about the triplet state of the deuteron only,
and that it is possible to choose a value of |el for the singlet state in

such a way as to account for the experimental results. Let the

cross-section for the singlet state, and vanishing energy of collision,

be <J (0). Since there is no correlation between the spins of the

colliding particles, three out of four collisions will form the triplet

state, on the average, and one out of four the singlet. The formula

for the total cross-section is then

(7(0)
- ic^OJ+ i^O). (30)

Substituting 20 x 10~24 for er(0) and 4-4 x 10~24 for ^(0),

or (0) = 67X10-24
, (31)

which is 15 times larger than 0^(0). From the rough formula eq. (28),

putting E = 0, one would say that the 'binding energy' in the

singlet state must be one-fifteenth the binding in the stable deuteron,
or around 140 k.e.v. However, it is impossible to tell from the simple

scattering formulae whether this binding energy is negative, as in the

triplet case, or positive, in which event the singlet energy-level is

'virtual' rather than 'real'. In either case the value of c' is so small

that the depth of the singlet well can be estimated at once from

t V. W. Cohen, H. H. Goldsmith, and J. Schwinger, Phys. Rev. 55 (1939), 106.



46 THE FORCES BETWEEN NUCLEONS Chap. II, 2

eq. (24) by setting E = 0, replacing Vi by V and putting a = e2/mc
2

.

This gives

The nature of the $-wave scattering at low energy is most readily

illustrated by solving eq. (2 la) for the simple case of vanishing E.

The solution at radii larger than a is then a straight line, i.e. a wave

of infinite length, and at radii smaller than a is the sine wave,

1-0-

RADIUS

( in e
z

/mc
2 units

FIG. 11. Wave-function (times r) for n-p triplet state

and zero energy.

smr[(ij M V)/h}. In Fig. 1 1 we show the graph of such a solution for

the triplet state collisions. The straight-line pai't of the solution

intersects the r-axis at the distance a{ from the origin. The distance

ax is obviously the limiting value of wave-length divided by 2n times

phase-shift as the wave-length is increased indefinitely. Since in this

case, however, a given phase of the wave is shifted to larger r the

value of 8 in eq. (25) is negative. Hence

A . !

A->oo 2-77 ft >0 k

From eq. (2(5) we see that also in the limit of vanishing K

(^(O) 47Tf.

In Fig. 12 is shown the analogous solutions for the singlet inter-

action. Both possibilities for the sign of e' are represented. If there

should exist a bound state for the singlet state, the wave inside the

radius a would be curving downward at the range of forces and the

intercept aQ will be positive. The actual situation with the deuteron

(32)
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is the opposite, viz. the nuclear forces are not quite strong enough
to advance the phase of the inside wave past 90. No bound state

can be formed and the intercept a is on the negative axis. This

means that the phase shift, S
,
is positive. The fact that the singlet

cross-section is 15 times larger than the triplet then means:

- -3-9^. (34)

The extraordinarily large value of aQ is obviously connected with the
*

accident' that the straight-line solution has to be joined to the sine

a Por real bound state\ RADIUS^ "

>(jne/me
2
units)

a For virtual state

FIG. 12. Wave-function (times r) for n-p singlet state and zero energy.

wave so close to a maximum in the latter at 90. This is the simplest

illustration of the importance of wave-mechanical resonance pheno-
mena to nuclear physics, but by no means the most striking example.
The nearness to resonance in the singlet interaction between slow

nucleons plays some part, also, in the proton-proton scattering.

It was stated that the phase-shift in the singlet collision is known

to be opposite in sign to that in the triplet, as expressed in eq. (34).

In other terminology, the singlet state of the deuteron is
'

virtual
'

rather than 'real'. This has been very beautifully demonstrated by

scattering slow neutrons on hydrogen. Tf hydi'ogen molecules are

bombarded by neutrons that have energies characteristic of liquid air

temperatures (0-012 e.v.), the wave-length of the neutrons will be

10 times as long as the separation of the protons in the molecule.

The scattered wave will thus be the coherent superposition of ampli-

tudes from the two protons (assuming elastic scattering). In the

particular case of scattering from para-hydrogen the proton spins

form the singlet state and, if the neutron spin is parallel to the spin
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of one of the protons, thus forming the triplet, it forms half-triplet
and half-singlet with the other proton. In terms of and a,, the

cross-section for inelastic scattering from a molecule of para-hydrogen
will be proportional to

m>
~ (<K+a<>)

2
. (35)

Hence the size of this cross-section, a
pf) ,

is vastly different, depending
upon which sign a has, relative to a^f For aQ and ax of opposite

sign, as given in eq. (34), the value of cr
j}p

is only one-sixtieth as large
as if the a's had the same sign. The decisiveness of this comparison
thus results from the fact that the singlet cross-section is so much

larger than the triplet that a almost cancels 3a
lB

The experiment consists in scattering liquid air neutrons (0-012 e.v.)

from para-hydrogen which is mostly in its ground state of zero rota-

tion (J =.
0). The energy required to raise the molecule to the ortho-

state, J 1, is 0-023 e.v., hence the scattered neutrons must leave

the hydrogen in the para-state. The scattering observed under these

conditions is then compared with the scattering from normal

hydrogen (f ortho and J para). The result found is that the scatter-

ing cross-section per molecule in the usual mixture is many times

greater than that in para-hydrogen alone. This proves conclusively
that the singlet state of the deuteron is virtual.

Knowing that the singlet state is not stable the depth of the

singlet well can now be computed unambiguously. For a range of

forces, e*/mcP, the depth VQ turns out to be

V 23mc2 11-f) M.e.v.

in very good agreement with the depth of the singlet well for two

protons, after the correction for the Coulomb energy is applied. This

result suggests that nuclear forces are independent of the electric

charge of the nucleon.

An analysis of the scattering of neutrons in ortho- and para-

hydrogen has been made, by Schwinger, under the assumption that

the spin of the neutron is
3/21't, instead of \1i. The level of the deuteron

that lies near zero would then be a quintet. In this case, however, the

fortuitous cancellation of terms does not occur and all cross-sections

t This theory is due to J. Schwinger and E. Teller, Phys. Rev. 52 (1937), 286, and
the experiments have boon carried out by F. G. Brickwedde, J. K. Dunning, H. J.

Hoge, and J. H. Manly, ibid. 54 (1938), 266; W. F. Libby and E. A. Long, ibid. 55

(1939), 339, and by L. W. Alvarez and K. S. JPitzer, ibid. 58 (1940), 1003.
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of molecular hydrogen are of the same order of magnitude. Thus, the

experiments prove also that the spin of the neutron is
\Ti.

3. Non-central nuclear forces

The theory of the deuteron that has been developed in the preced-

ing section is generally satisfactory except that it docs not predict

an electrical quadrupole moment for the ground state (see Chap. 1).

This defect arises from the assumption that the potential energy of

the nuclcons depends only on the separation, r, so that the lowest

quantum state is an AS
Y

-state. On the other hand, wo have found that

even such central forces depend upon the relative spin orientation of

neutron and proton in the sense that the potential wells for the two

spin-states must be given different depths for the same range. In

Yukawa's description of the nuclear potential, as a generalization of

the electromagnetic potential (cf. Chap. Ill), this simple type of spin-

dependence would be expressed by choosing different strengths of

source, g, for singlet and triplet states.

By generalizing the electromagnetic field a much more interesting

and satisfactory possibility for introducing the spin-dependence

presents itself, viz. to assume that each nucleon carries a mexic

dipole moment parallel to its spin a,

m = la, (36)
36

in addition to its monopole strength cj.
In eq. (36) f has the same

dimensions as g but is not necessarily equal to fl numerically. The

forces between nucleons will then depend not only upon their separa-

tion but also upon the orientation of the dipoles relative to each other

and relative to the radius vector joining the positions of the nucleons.

In electromagnetic theory, the potential energy due to two dipoles,

nii and m2 separated by the radius vector /' takes the form

The formula (37) contains the well-known, fact that bringing two

parallel dipoles together along a line perpendicular to their orienta-

tion, (m1} r)
= (w2 , r)

= 0, creates the repulsive potential w^Hg/r
3

;

and bringing them together along a line coinciding with their axes

develops an attractive potential of "Im^m^r^. Under such forces

alone, therefore, dipoles with parallel moments find their state of

3595.01 51
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lowest energy by lining up on an axis containing the moments. Under

combined central forces and dipole forces there will be a tendency for

the nucleons to be lined up along the axis of their resultant spin, i.e.

the ground state of the deuteron should be somewhat 'cigar-shaped'.

This is precisely what is required to account for the electrical quadru-

pole moment of the deuteron.

Although dipole-dipole nuclear forces follow naturally in asso-

ciating nuclear forces with mesons of spin ft and assuming that

the nucleons carry mesic dipole moments, an exact application of

the results of meson theory to the deuteron is not possible because the

dipole potential diverges to minus infinite values with r~3
,
cf. eq. (37).

Given a (cigar-shaped) wave-function that falls to zero at r > a, the

average potential energy in that state will be proportional to a~3
,

whereas the average kinetic energy will be of the order ffijMa?. Thus

the total energy becomes lower the smaller a is chosen and there is

no solution for a lowest energy, at least for the Schrodinger equation.

Since the dipole potential must, therefore, be modified at small r and

since it falls off exponentially at large r, in meson theory, we shall

approximate the radial dependence of this part of the potential by
the rectangular well. Let the radial dependence be J(r) and the

dependence on the angles included between the vector r and the spins

of the nucleons be designated by ASf12 . The spin-dependent potential

is then ^ = _j(r)flia (spin) angles^

(38)

and the wave equation for the relative motion of neutron and proton

becomes:
= 0, (39)

where J (r) is the part of the potential that does not depend upon

angles, i.e. proportional to cj

2
. If the neutron and proton spins form

the singlet state, $12 can be set equal to zero (since there can be no

spin versus r correlation in a singlet state) and the equation solved

as before. In the triplet state, let us start by assuming a wave-

function with spherical symmetry in its space dependence:

where a(n) designates the state of upward spin for the neutron, and



Chap. II, 3 NON-CENTRAL NUCLEAR FORCES 51

so on. ft will bo used to designate the state of downward spin compo-
nent. Operating on this function with $12 leads to:

,j8), (40)

where 6 and $ are the usual spherical angles with the spin -axis as

pole. The result, eq. (40), can be shown easily to be a 37>
l
-wave\

The wave-equation for y(r) is coupled, therefore, with the wave

equation for the radial dependence of a /)-wave which we may
assume to have the form: w(r)P2(6, <f>, ,j8). Putting this form in the

wave-equation (39), the dependence on spin and angles in P2 is

preserved in all terms except that containing $12 which mixes it with

a spherical wave, in addition to reproducing the same function with

the coefficient 2J(r). The wave-function for the triplet state of the

deuteron must be considered as the sum of two components, an

$-wave for one and a D-wave for the other. We get the differential

equations that the radial functions y(r) and w(r), introduced above

for the $-wave and Z>-wave, must obey by substituting in eq. (39)

and factoring out the dependence on angles and spin:

d2w Gw
,
M (41)

Part of the /)-wave, cf. eq. (40), has the same spin polarization as

the $-wave, viz. oi.(n)oi(p), and these parts will interfere to give the

cigar-shape to the deuteron (provided, of course, that the sign of

interaction is such that this is the state of lowest energy). The

density distribution in the 7)-wave alone is readily computed by

squaring the independent terms in the angular distribution, and

adding, and is seen to be proportional to 5 3 cos2 which is decidedly

oblate. The amount of D-wave in the ground state of the deuteron

turns out to be so small, however, that the interference between $-

and D-waves far outweigh the effect of the D-wave alone. Rarita

and Schwingert have solved the equations (41) assuming J(r) and

f W. Rarita and J. Schwinger, Phys. Rev. 59 (1941), 436.
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J (r) to be square wells of range 0-28 X 10"12 cm. and with depths in

the ratio y = [J(r)IJQ(r)]r<a . They find that the binding energy and

the observed value of the quadrupole moment are accounted for by

choosing y = 0-775 and JQ(r) = 13-89 M.e.v. (r < a).f The intensity

of the Z)-wave in their (numerical) solution is only 4 per cent. The

amplitude is then about 1/5 as large as that of the $-wave and has

the same sign, so that the interfering terms produce a charge density

proportional to 3cos2 1 as required.

f Slightly different values of J were used for singlet and triplet interaction. If

the range of force had been taken just a little smaller (5 per cent.) the values would
have come out equal and the entire spin-dependence would bo contained in the

dipole-dipolo interaction.
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THEORIES OF NUCLEAR FORCES

1. Various hypotheses concerning nuclear forces

In the chapter just preceding this one we have dealt with the forces

between nucleons by describing such forces essentially in terms of
(

action at a distance
' and by choosing the functional dependence of

force on separation of the nucleons solely on the basis of convenience,

i.e. using 'square well' potentials. Certain characteristics of the

nuclear forces are put into evidence in the, rather empirical, methods

of that chapter, namely, the short-range and great strength of these

forcesf and also their dependence upon spin orientation, especially

the dipole-dipole nature of the interaction between neutron and pro-

ton. In this chapter we shall review the attempts to 'explain' the

nuclear forces in the sense that one explains the forces between two

electric charges by introducing the concept of an electric field. There,

instead of the charges acting directly on each other, when they are

not in contact, one charge acts as a source of electric field strength by
distorting the field at a certain point in space ; this distortion is then

transmitted by the field, which is to be considered a separate physical

system, to the position of the other charge. The interaction between

the field and the second charge then produces the observed accelera-

tion. Hence we are concerned with possible field theories of the

nuclear forces.

A field theory of nuclear forces must be able to account for the

characteristics of the interaction between two nucleons, mentioned

above, and it must also lead to the formation of complex nuclei in

which the binding energy is simply proportional to the number of

nucleons and in which the density is roughly independent of the

number of nucleons. This feature of the heavy nuclei has been pre-

sented in Chapter I and discussed in its relation to condensed phases
of ordinary matter. It is readily seen that one cannot assume attrac-

tive potentials between all pairs of nucleons, of the type used in

Chapter II, and at the same time account for the structure of the

heavy nuclei. Forces between nucleons that obtain if the same poten-

tial applies between all possible pairs ofnucleons in a complex nucleus

f Tt will be recalled that the depth of the nuclear potential between two protons
was ll'3/0-8 *. 14 times tho average potential due to their electrostatic repulsion.



64 THEORIES OF NUCLEAR FORCES Chap. Ill, 1

are called ordinary forces.^ If all nuclear forces were ordinary forces,

the average potential energy per nucleon would be proportional to

the number of other nucleons that are to be found within the little

sphere described about that nucleon with a radius equal to the range
of nuclear forces. Consequently, the greater the density, the greater
the (negative) potential energy, V ~ p. As the density increases,

however, the volume available to each nucleon becomes less, and the

average kinetic energy must increase also. Effectively, if the density
increases from p Q to pl the average wave-length of a nucleon decreases

by a factor (p //i)* an(i the average kinetic energy (non-relativistic)

increases by the factor (PI/P O)*. This is to be compared with the

decrease in energy due to nuclear forces by the factor pJpQ. Thus,
with ordinary forces, the energy of the nucleus can always be made
lower by increasing the density (the Coulomb energy increases only
as (PI/PO)*) UP to the point at which all nucleons lie within the range
of nuclear forces of each other. The radii of all nuclei would be sub-

stantially equal to the range of forces and the binding energy would
be proportional to the square of the total number of nucleons. This

is in complete contradiction to the observed properties of nuclei, the

radii of which increase with A* and the binding energy of which
increases only with the first power ofthe total number ofnucleons, A.%

It is evident from the arguments just given that the nuclear forces

must have the additional property that a given nucleon will be

attracted to only a limited number of other nucleons at one time, i.e.

the nuclear forces must show a saturation character. The saturation

of nuclear forces could he accounted for in a number of conceivable

ways, for example, by supposing that the depth of the attractive

potential decreases as the velocity of the nucleons increases (at least

as the first power), or by supposing that the attractive potential gives

way to a very strong repulsive potential as the distance between
nucleons is decreased. Neither of these possibilities is indicated by
the study of the two-body systems presented in Chapter II, but data

on $-wave scattering alone (i.e. relatively low energy) is hardly suffi-

cient to exclude them. The tendency in developing a theory of the

nuclear forces, however, has been to avoid these mechanisms as too

arbitrary and too complicated to enter into the description of so

fundamental and so simple (?) a phenomenon. This philosophy was

f Ordinary forces in nuclei are sometimes called Wigner forces.

j This argument is due originally to Heisenborg, Solvay Congress, 11)33.
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somewhat more tenable when it originated than it is now, since the

discovery that the forces between nucleons depend upon angles indi-

cates that the nucleons are not inspired particularly by simplicity.

The real foundation of the doctrine of simplicity was, of course, the

paucity of experimental results. Extension of the study of forces

between protons and between neutron and proton to higher energy
and high accuracy, now in progress, will produce the real basis for a

description of the saturation character, as well as the other properties,

of the nuclear forces. Such studies might lead to the necessity for

giving the nucleon a
'

structure', for example, that leads to a repul-

sion when two particles are too close together but to attraction when

they are at certain separation in analogy to the forces between mole-

cules that form an ordinary liquid.

The theory of the saturation character of nuclear forces that has

been pursued with greatest vigour since the discovery of the neutron

is based essentially on Heisenberg's (loc. cit.) original suggestion that

when a neutron interacts with a proton the single electric charge

jumps from one nucleon to the other so that, in the first such jump,
the original proton changes into a neutron and the neutron into a

proton. In this way, a neutron may interact with only one proton at

a time and the forces have a saturation character that is somewhat

related to ordinary chemical valence. This simple form of the idea

of exchange forces docs not give an adequate account of the equality

of proton-proton and neutron-proton forces, since the former requires

a double jump which is not only less probable but leads to a repul-

sion, but we shall use it to introduce the concepts underlying this

approach to the saturation character.

A simple, atomic example of the exchange forces is found in the

ionized molecule of hydrogen H.j . This is a stationary state of two

protons, numbered 1 and 2, and one electron, and we shall consider

in particular the state in which the molecule is not rotating. In an

attempt to get an approximate description of this stationary state

we may think of the electron being in the normal Is orbit ^(x) about

proton number one and proton number two being bare, and call this

state H(l)p("2), with the obvious meanings for H(l) and ^(2). A
second approximate state of exactly the same energy would be

p(l)H(2). Neither of these is a stationary state, so that if at a certain

time the configuration is given by H(i)p(2) the electron will subse-

quently 'jump' to the second proton, forming the state p(l)H(2),
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then jump back, etc. The stationary states in this case, as is well

known, are either of the functions:

(1)

In this approximation, the forces holding the ion together can be

computed by first finding the total energy of the electron plus the
electrostatic repulsion of the protons as averaged in each of the
states (1). This energy is then the effective potential for the ionic

forces and usually is denoted (CA)/(lS) 9
the sign being deter-

mined by choosing one of the two states. Let V = kinetic energy
of the electron-{-Coulomb attraction to each proton+ Coulomb
repulsion of protons; then for given positions of the protons, and

writing H(l) =

C -
J ^(x)F'

dx -
J a(x)F' rfx,

Wo are particularly interested in the exchange part of the potential,

A, which depends upon the symmetry of the wave-function. The
part C is an ordinary potential. If we choose the plus sign in eq. (1),

A represents the extra potential due to the fact that ^(x) and 2(x)
interfere constructively in the region between the two protons. This

enhances the electron density in the region of most attraction (and
also gives a relatively long wave-length to the electron state so that
the kinetic energy is lowered) and, in fact, accounts for the binding
of the H^ ion. If we had taken the minus sign, the electron waves
interfere destructively, reduce the negative charge density in the
most favourable region, and elevate the average kinetic energy of the

electron with the result that, in this state, a hydrogen atom and a

proton repel each other and there is no bound state of this type.

Heisenberg's proposal for nuclear forces abstracts from the elemen-

tary example given above, formally replacing hydrogen atoms H by
neutrons n in eq. (1), considering only the exchange part of the inter-

action, and (what is the same thing) simplifying the interaction

between the nucleons and the field. This proposal is of the general
typo of those that would have been made in atomic theory if a know-

ledge of molecular structure, band-spectra, etc., had been acquired
ftir in advance of the structure of the atom. Then, being ignorant
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of the intrinsic electromagnetic origin of the forces in the H^ ion, one

would account for the dependence of the potential between proton
and hydrogen atom by supposing that when the potential acts, an

electric charge jumps from atom to proton, thereby effectively

exchanging the positions of atom and proton. From further informa-

tion about the intrinsic angular momenta of H-atom and proton plus

the observation, say, that H-atoms can be transformed into protons

by irradiation which '
creates' electrons simultaneously, one would

conclude that the atom-proton forces are characterized by exchange
of a single electron. The electron in this case is the field particle, and

since we are supposing that both the H-atom and the proton are

elementary particles, i.e. we are disregarding the true structure of the

atom, we should describe the interaction by saying that the atom
'

creates
'

a free electron momentarily, and on borrowed energy, which

is subsequently annihilated by the proton. In this process the atom

changes to proton and the proton to atom and we have a simple

manifestation of an exchange force which makes no reference to

structural details except that different assumptions about the amount

of energy that has to be borrowed will lead to different effective

ranges of the force.

In applying the simple, general description of unknown forces to

neutron and proton, we start with the facts that both these particles

luive spin ffi and that neutron can change into a proton by simul-

taneous emission of an electron and a neutrino (and proton can

change into a neutron by emitting a positron and neutrino, i.e. the

j8-decay )
. Thus Heisenberg suggested that nuclear forces are exchange

forces in which electrons (positrons) and neutrinos act simultaneously
as the field particles. In this event, however, the strength of the

nuclear forces can be determined from the observed probability of

jS-decay. In Chapter V we shall see that the interaction between

nucleoiLS and the electron-neutrino field which will account for

j8-decay is characterized by the
*

Fermi constant ', g c^. 2 X 10~49 erg cm.
3

The potential energy between two nucleons will then be proportional

to the square of g, will depend upon the separation of the nucleonw, r,

and, since the electron states involved are mostly in the extreme

relativistic region, the potential will be independent of the rest-mass

of the electron. Exact calculations of this potential were first made

by Ivanenko and Tamm,| but we shall consider here only an analysis

f D. Ivammko and I. Tamin, Nature, 133 (1934), 981.
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on the basis of physical dimensions. The problem is simply to con-

struct a function of the dimension of energy out of g
z and certain

powers of r, #, and c, H and c being the universal constants other

than g that enter into the j3-decay theory. Except for a dimensionless

proportionality factor a we findf

(2)

for the potential energy that is proportional to g
2

. The exact calcula-

tions give a = 1/167T
3

. Substituting the known values of g, fi, and c

and choosing a value of r 10~13 cm. we obtain

U ~ 2 X 10-19
erg ^ 10~7 e.v.

as compared with a value of the order of 1C7 e.v. that would be

expected at this separation, according to Chapter II. Nuclear forces

that should arise from electron-neutrino exchange are then weaker

by a factor ^ 10~14 at r = 10~13
cm., than required by a square well.

On the other hand, the potential, eq. (2), is by no means a square

well but rather diverges as r~5 as r -> 0.

In Chapter II we found that if one has an attractive potential that

diverges as r~3 near the origin there is no lowest stationary state of

the interacting particles and it is necessary to
'

cut-off
'

the potential

at a finite radius. This result holds a fortiori for a r~5 attractive

potential and means that, despite our best intentions, the
'structure^

of the nucleon must affect our considerations in order to produce a

sensible result. Suppose, for example, that the potential (2) becomes

modified at r a in such a way (and by unspecified physical forces)

that U(r) becomes constant at r smaller than a. Then the average

potential energy of a neutron -proton system in an #-wave of linear

dimensions a will be roughly U(a) and the average kinetic energy
will be of the order of he/a (since a turns out to be much less than

the Coinpton wave-length ofa nucleon, so that the relativistic formula

must be used). The radius of the deuteron will be that value of a for

which -fie/a ^ \U(a)\, and this leads to

a = i^-i /Y|A
~ 1-6X 10-17 cm.-

vw
The range of force indicated by (3) is smaller by the factor 0-6 X 10~4

than the range found necessary to interpret scattering data, etc., in

t We have [0WW] = [erg]; or [Qrg.L*]*.[eTg.TJ*.[L.T-
l
]v.[L*] = [erg] which

gives x = 1, i/= 1, z = 5.
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Chapter II. Finally, the neutrino-electron hypothesis for nuclear

forces gives no forces between two protons (or two neutrons) in the

approximation proportional to g
2

,
since this approximation is charac-

terized by a single exchange of charge, and the equality of all nuclear

forces does not follow at all from the simple content of the theory.

In fact, the terms in the potential proportional to gr
4
give repulsion.

Owing to the failure of the attempt to describe nuclear forces in

terms of electron-neutrino fields, numerous alternative proposals for

the nature of the field particles have been made. These proposals fall

naturally into two categories according to whether the field particles

have half-integral spin and obey Fermi-Dirac statistics or the field

particles Jiave integral spin and obey Bose-Einstein statistics.

Tn the first category, to which the electron-neutrino theory belongs,

the field particles must be created and absorbed by the nucleons in

pairs in order to conserve spin and statistics. An alternative theory

in this category, proposed by Wentzel , f and independentlybyGamow
and Teller,J assumes that nucleons exchange electron pairs (e

+
e~),

and possibly neutrino pairs, as well as electron-neutrino pairs. If the

nuclear forces are characterized by the exchange of electron pairs

the value of gc is no longer related to the Fermi constant and may
be chosen arbitrarily in eqs. (2) and (3). We may choose this value

so as to obtain an acceptable value of r, say av at which the r~5

potential should be cut off. Such a value is at
= e2/rac

2
, and, since

nuclcon waves of this length represent kinetic energies in the non-

relativistic region, we set ?/(%) equal to ?^jMa\\ this gives

.

., _, t H ,

<Jc
~ M 3XIO-82

,

i.e. a value of the interaction constant that is 10M times the Kernri

constant. Thus, although the quantitative difficulty found for the

electron-neutrino theory may be removed in this way and one should

expect neutron-proton, neutron-neutron, and proton-proton forces

to be equal in the electron-pair theory, the cut-off trouble remains

and the original idea of introducing exchange forces, to obtain satura-

tion through the exchange of electric charge has been lost entirely.

We shall return to the pair-theories (including meson-pair theories)

briefly in a later section.

t G. Wentzel, Helv. Phys. Acta, 10 (1936), 107.

I G. (Jamow and E. Teller, Phys. Rev. 51 (1937), 289.
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The only well-established 'elementary particle
3

having integral

spin is the photon which has spin H and zero rest-mass. The photon is

the field particle forthe retarded interactionbetweenmoving charges,f
The motion of a charge e

l may be thought of as creating a photon
which travels over to, and becomes absorbed by, another charge e2 .:f

Formally, a similar description of the electrostatic interaction of two

charges can be made by inventing 'longitudinal photons', but this

description just leads back to the classical formula for the electro-

static potential <
e . For a point-source of strength e at the origin of

coordinates, the classical equation is

V2& = 0, r > 0, (4)

with the well-known solution

As pointed out in Chapter II, electrostatic forces are of infinite

range. In order to produce forces of finite range between nuclcons,

Yukawa suggested that these forces be derived from a potential

(static) that obeys the differential equation

V2
< s&$ = 0, r > (6)

instead of eq. (4). The solution of eq. (6) for a point-source of

strength g is readily seen to be||

From the relativistic extension of Yukawa's theory (cf. 3) we find

that the parameter #J is related to the rent-maw of thefield particle, m by

me = Hse. (8)

t W. HIM tier, Quantum Theory of Hwlmtiott, chapter lii (Oxford, Clarendon Press,

1936).

J The frequency of the temporary, or virtual, photon may take any value since the

energy for its creation is
' borrowed '

. The energy of the intermediate state, E$ 9 is then

higher than that of the initial and final states, Ea(= Ef ). Let IIai bo the matrix
element of the interaction energy between the charge e l and the radiation field that is

represented by one photon of energy hv^. Similarly, let Hy be the matrix element for

the charge ea interacting with the same quantum. According to perturbation theory,
the retarded potential between the two charges is then obtained by summing over all

possible intermediate states:

HaiHif

IT. Yukawa, Phys. Moth. Hoc. Japan, 17 (1935), 48.

||
The reader may recognize this form of potential as that which occurs hi other

physical problems, e.g. the Dobye-Huckel theory of electrolytic solutions.
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In other words, the range of nuclear forces, as-1
,
is just the Compton

wave-length of the field particle. Substituting e2/mc
2 for the range

of forces we obtain for the mass of the particle m ^ 137 electron

masses. Hence, Yukawa proposed the existence of an entirely new

hypothetical particle, of mass intermediate between electronic and

nucleonic rest-masses.f The subsequent discovery of such a particle

in cosmic radiation by Anderson and NeddermeyerJ stimulated a

major interest in Yukawa's theory. However, the more detailed

experimental investigations concerning the properties of cosmic-ray
mesons seem to throw again the monkey-wrench into the elegant

theory of the meson-exchange forces. In fact, if the mesons interact

with atomic nuclei strongly enough to give the rise to the observed

nuclear forces, one would expect that a beam of mesons passing

through the matter will be subject to a strong nuclear scattering ; it

turns out, however, that the observed scattering of cosmic-ray
is much smaller than would be expected on the basis of such mesons

theory.

Another still more striking piece of evidence is provided by the

experiments of Conversi, Pancini, and Piccioni, and others, ||
on the

absorption of cosmic-ray mesons by various nuclei.

When a beam of cosmic-ray mesons is slowed down in some material

we should expect that the positive mesons, being electrically repelled

by the atomic nuclei, will decay as free particles into the positive

electrons and a neutrinos. And, indeed, the observation has estab-

lished the presence of high-energy positive electrons resulting from

such a process.

In the case of negative mesons the situation is, however, expected

to be entirely different. Being attracted by the nuclear electric field,

these particles must be strongly absorbed by the nuclei leading to

violent nuclear excitation. According to the calculations of Fermi,

Teller, and Weisskopff,jf and also of Wheeler,JJ the mean life of a

slow negative meson against nuclear absorption must be of the order

t In the years just following it introduction this particle was variously dubbed

heavy electron, heavy quantum, barytroii, yukon, Japanese electron, mesotron, and
meson. As indicated in Chapter I, we use the last mentioned name.

J C. Anderson and S. Neddermeyer, Phys. Rev. 51 (1937), 884.

R. F. Christy and S. Kusaka, ibid. 59 (1941), 414.

|J
M. Convorsi, E. Pancini, and O. Piccioni, ibid. 71 (1947), 209; T. Sigurgeirsson

and A. Yamakawa, ibid. 71 (1947), 319; R. Valey, ibid, (in publication 1948).

ft E. Fermi, E. Teller, and V. Weiskopff, ibid. 71 (1947), 314.

J J J. A. Wheeler, ibid. 71 (1947), 320.
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of magnitude of 10~18 sec. (if the sufficiently strong interaction, neces-

sary for the explanation of nuclear forces, is assumed). Since the

mean decay-time of a free meson amounts to only a few micro-

seconds, we must expect that all slow negative mesons would be

captured by the nuclei, and no emission of the negative electrons

should be observed. The above-mentioned experiments indicate,

however, that whereas this theoretical expectation is actually fulfilled

in the case of heavy elements like iron, a comparatively small number
of captures takes place in such light element as carbon. This

seems to indicate that the probability of nuclear capture is of the

same order of magnitude as the probability of free decay, being

somewhat larger in the case of iron and somewhat smaller in the case

of carbon (such variation of the relative capture probability is to be

expected on account of the difference in nuclear electric charge) . Thus,

unless one would be able to give to this observation some other inter-

pretation,f we should be forced to admit that the interaction between

the negative (and most probably also the positive) mesons and the

nuclear particles is too small by a factor of 1012 to explain the nuclear

exchange forces.

An alternative solution (comp. Appendix I) is to admit the exis-

tence of two different kinds of charged meson (one kind for cosmic

rays and another for nuclear forces) with rather different properties,

or as a possible remaining avenue of escape ascribe nuclear forces

to the exchange of hypothetical neutral mesons, which must be sup-

posed to interact with the nucleons 1012 times stronger than the

charged ones. Such an assumption, which is in principle not very
different from the above-mentioned hypothesis of electron-pair

exchange (Gamow and Teller, loc. cit.), would, however, lead again
to the difficulties in explaining to saturation phenomenon of nuclear

forces.

Inasmuch as none of the proposed field theories are satisfactory

and an exposition of all of them would fill a book twice the volume of

this one, the main objective of this chapter is to introduce the reader

to the language and methods used in approaching such theories.

With this in mind we turn, in the section immediately following, to

the language that has been used most in those attempts. As field

f It was, for example, suggested by V. Weiskopff (Phys. Rev. 72 (1947), 155),

that the failure of carbon nuclei to capture negative mesons is due not to the small

probability of that process but rather to the unfavourable energy balance.
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theories, these attempts belong to the second category mentioned

above, i.e. the field particles have integral spin. At the same time,

however, we shall develop the more general character of exchange
forces to a degree that will be useful in Chapter IV. This general

theory emphasizes the effect of the symmetry of the wave-functions

of the nucleons on the sign of the potential and is rather independent
of the particular field theory except that the meson theory used below

provides many useful examples ofwhat might be going on physically.

2. The formalism of meson theory

In this section we shall go on the simplifying assumption that there

is just one kind of meson, i.e. a unique mass, spin, and half-life, inde-

pendently of whether the meson occurs in cosmic radiation or in

nuclei, but that the electric charge can be positive or negative (one

electronic charge) or, perhaps, even zero. It is reasonable to hope
that this assumption is also fact, but that is certainly not established

at the present time when there is not even a single determination of

the spin of a meson. Regarding the spin, we shall assume first that

the spin is zero and see to what trouble the assumption leads. This

is also the assumption originally made by Yukawa, as evidenced by
the fact that the wave-equation (6) contains only a single component
for the ^-function of the meson. With regard to electric charge, we
shall assume first that a meson carries either a positive or negative

charge of one unit. Introduction of neutral mesons will be made at

the end of this section.

The assumption of charged mesons has three theoretical advan-

tages. One is the possibility of obtaining saturation of nuclear forces,

through exchange of charge, as discussed at length in the preceding

section. In connexion with that discussion, it will be noted that the

potential (7) does not have to be 'cut-off'; unfortunately, this is not

generally true of meson theories. The second point is that, owing to

the observed instability of the meson against decay into an electron,

one automatically includes the possibility of j3-decay of a nucleon.

This comes about because the ^-function of eq. (7) represents, in a

certain sense, the presence of a free meson (cf/hc of the time) which,

if the energy balance is right, yields to its natural propensity to dis-

integrate. This phenomenon is considered quantitatively in Chapter V
with the regrettable conclusion that the agreement with observation

is not good. The third point is that if the ^-function for the meson is



64 THEORIES OF NUCLEAR FORCES Chap. Ill, 2

generalized to unit spin, and finite magnetic moment for the meson,
the 'anomalous' magnetic moments of neutron and proton might be

accounted for as contributions from the meson field.f

For the present, we concern ourselves with the exchange nature of

the forces between neutron and proton. Let the two nucleons be in

orbits a and b and let 1 denote the proton and 2 the neutron. The

potential, F, between them will then be some function of radius J(r)

times the exchange character. If the nucleons are 'symmetrically

coupled
'

:

F[o(l)6(2)+a(2)6(l)] = -J(r)|ff(2)ft(l)+a(l)6(2)], (!>)

i.e. the effective potential is J(r). On antisymmetrically coupled

particles, however,

F[a(l)6(2)-(2)6(l)] = -J(r)[a(2)6(l)-a(l)6(2)J

=
J(r)[o(l)6(2)-o(2)6(l)] (10)

and the effective potential is +J(r). Hence, a potential that is attrac-

tive in symmetric states becomes repulsive in antisymmetric states.

The exchange nature of the neutron-proton interaction is sub-

stantiated by recent experiments on the scattering of high-energy
neutrons by hydrogen. If the nuclear forces were not of the exchange

type one would expect, as the energy of bombarding neutrons is

increased, that the scattering should become predominantly forward^

owing to the persistence ofmomentum. At 17 M.e.v., however, there

is a slight back scattering of the neutrons. At this energy one must

take into account not only the $-wave collisions but also the P-wave.

If the forces are attractive in both states the scattering will be

forward. The observed backward scattering thus indicates that the

forces in the P-wave are repulsive, since the forces in the $-wave are

attractive (Oh. II). The exchange effect may be pictured as follows:

the incident, high-energy neutron beam will be expected to go mostly

forward, but if in the interaction with the hydrogen these neutrons

are changed to protons, by meson exchange, it will appear as if the

incident particles are scattered backward. In general, the potential

energy of neutron and proton colliding in a state of orbital angular

momentum, L%, will be (as far as the considerations to this point go)

Vm - -(-l)V(r). (11)

f This point was made first by Wick, Accatl. Lincei Atti, 21 (1935), 170, the elec-

tron-neutrino theory of nuclear forces.
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Forces derived from a potential of this type are called Majorana

forces, after their inventor.

The situation is actually a little more complicated. Consider the

interaction of the neutron and proton in the 3S state of the stable

deuteron. In both spin and space coordinates this state is symmetric
to the exchange of the two nucleons. On the other hand, if the

nuclear forces are accompanied by mesons jumping from one nucleon

to the other, for certain short intervals of time there will have to be

two protons present in this state (negative meson jumping) or two

neutrons (positive meson), hi violation of the exclusion principle. It

was to avoid this contradiction that Heisenberg proposed that

nucleons be given an additional coordinate which, like the spin-

coordinate, can take one of only two possible values. Because of the

formal similarity to the ordinary spin, the new coordinate is called

the isotopic spin. The required antisymmetry of the nuclear wave-

function, even during meson exchange, can then be achieved by

making all wave-functions antisymmetric when considered as func-

tions of space, spin, and isotopic spin. The triplet deuteron is then

thought of as made up of nucleon 1 and nucleon 2 in the $-wave :

8(12), and in the symmetric spin state, a(l)a(2), but in the anti-

symmetric isotopic spin state, (l/*J2)[n(l)p(2) p(2)n(I)]. This means

that we write a function of space and spin for particle 1 as the

neutron and particle 2 as the proton and subtract the same function

with particle 1 as the proton and 2 as the neutron.--. (12)

In a similar way, the wave-function for the singlet state of the

deuteron is deduced to be

l)] (13)

In the course of the exchange of a meson between them, the

nucleons 1 and 2 remain at relatively fixed positions and, since

the meson we are considering does not have a spin, the spins remain

the same. The effect of the exchange potential on the wave-functions

(12) and (13) is then simply to interchange n and p. Hence, if we

choose a potential that is attractive in the singlet $-state it will be

repulsive in the triplet S, and Yukawa's original proposal is unsuited

to account for the observations.

It is evident from the structure of the wave-functions (12) and (13)
3695.61 F
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that one can obtain negative potentials simultaneously in these states

if both charge and spin are exchanged when the meson jumps. Since

all wave-functions are antisymmetrical, the potential in this case may
be described uniquely in terms of the Majorana potential, eq. (11).

There is a convenient formulism for expressing the exchange proper-

ties of the various potentials which is based on the fact that the

scalar product of the Pauli spin-vectors for particles 1 and 2, viz.

*(<!, a2 ) has the eigenvalue 3 for the antisymmetric, singlet state

and + 1 for the symmetric, triplet state. Therefore, the expression,

i[l+ (<Ji,<J2)] is +1 for symmetric spin-states and 1 for anti-

symmetric spin-states. We define an analogous, formal expression

for the isotopic spin (of course, the three components of the isotopic

spin-' vector' do not refer to axes in ordinary space), i.e. ^[1+^, T2 )],

where T is the isotopic spin-vector. The type of potential just

described as equivalent to the Majorana potential may then be

written:

Vm = -Pu J(r) = i[l+ (i,,)][l+ (Ti,T.)F(r). (14)

The symbol P12 is customarily used to denote this particular type
of exchange, J (etc.). Potentials that involve an exchange of

charge alone, i.e. proportional to i{l+ (r1,r2 )}, are known as Heisen-

berg potentials, and those in which the spin alone is exchanged as

Bartlett potentials; both are obviously of opposite sign for symmetric
and antisymmetric spin-states (holding the orbital angular momen-
tum the same) and may be used to account for the spin-dependence
of nuclear forces. It is often useful to apply these central forces as

an approximation even though one is sure that the spin-depen-

dence arises from the non-central forces discussed in the preceding

chapter.

In order to make the meson carry angular momentum, as well as

electric charge, it is necessary either that the meson have an intrinsic

spin, or that it be emitted into a P-state. In Yukawa's theory the

latter possibility is formally forbidden by the conservation of parity,

but this difficulty is circumvented by calling the meson wave-function

an antisymmetrical tensor of rank four (relativity theory) instead

of a scalar. The theory is called the 'pseudoscalar meson theory'.

The other possibility, of giving the meson a spin of #, leads to the

'vector' theory. This theory is just the generalization of electro-

magnetic theory in which the light quantum is replaced by a particle

of finite mass, i.e. the meson. The vector meson field maybe
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described in terms of a four-vector potential Av analogous to the

electromagnetic four-potential. The time component of A,, is

governed by the static source-strength p and obeys eq. (6). This

equation may be written formally for every point, including r = 0,

by defining a singular source-density (jS(y), where S(r) is Dirac's

(three-dimensional) S-function:

In a similar way, we define a singular current density in terms of the

mesic dipole moment, viz.

j
== tcurl[a8(r)]. (16)

The equation for the space components of Av then becomes:

V2A-a?2A ==
47r-Uurl[a8(r)]. (17)

Green's functions for eqs. (15) and (17) are of the form of e-*r
/r; the

solutions are therefore,

4
~ 9 I i r\^~ ^ = ~^~ r

>

J \f r\ f

ss J rr
The potential energy of interaction between a nucleon with mesic

charges, gl5 fx and a nucleon with mesic charges g2 , f2 is then, in

analogy with electromagnetic theory:

r forr^tO. (19)

The corresponding calculation for the pseudoscalar theory leads to

for r ^ 0, (20)

where ql and q2 are the mesic charges on the nucleons.

The forms of potential, eqs. (19) and (20), give the predicted space
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and spin-dependence of the interaction of two nucleons if the field

particle is a meson of spin one, or spin zero, respectively. It will be

noted that the non-central forces discussed in Chapter II appear in

both cases. As pointed out in that section, however, the fact that the

tensor forces diverge as r~* near the origin means that there are no

stationary solutions for two nucleons in such potentials. This may
be averted by arbitrarily 'cutting off' the potentials at some small

value of r. Actual calculation shows, however, that the necessary
cut-off radius is of the order of (and generally a little larger than) I /SB.

Hence the field aspect of the theory is seriously compromised and
must be considered unsatisfactory. In order to avoid the r~3

terms,

M011er and Rosenfeld proposed that one set q equal to f and use the

sum of Vv and Vpa . Thus, the nucleon interacts simultaneously with

two kinds of meson-fields. The difficulty with this proposal is that

the entire tensor force is subtracted out in this way, and there is no
direct way of accounting for the quadrupole moment of the deuteron.

Schwinger further proposed! that the r~* alone be subtracted away
by choosing different masses for the vector and pseudoscalar meson
and assuming

-- = -L (21)mps mv

Required values of the mass ratio m
vjmps and of the coupling con-

stants can be determined from the deuteron states. Using these

values,J and taking mpa
= 177 electron masses, the quadrupole

moment can then be computed. The result is only one-third the

observed value, even when no static force is assumed, i.e. g 0,

and becomes smaller when
cj

is finite. The limiting case in which

mv -^mps as f ->oo has been investigated also, but with not much

improvement. Hence the present status of this development of the

meson theory, in which the nucleons are supposed to carry mesic

charges and dipoles, is completely unsatisfactory with regard to

quantitative results. The field-theoretic aspects of Yukawa's pro-

posal will be reviewed in 3.

It has been assumed, in the preceding discussion of the nuclear

forces in the deuteron, that the mesons are charged and that the

resulting potential is of the Majorana type. The mechanism by

t J. Schwinger, Phys. Rev. 61 (1942), 387.

j J. M. Jauch and Ning Hu, ibid. 65 (1944), 289.

L. L. Foldy, ibid. 72 (1947), 125.
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which the forces are attended by the exchange of a charged meson

fails, however, for the interaction between two protons or between

two neutrons. A purely charged meson theory gives no attraction

between like nucleons in the first approximation, i.e. according to

eq. (4), and leads to repulsion in the second approximation. The
observed equality of nuclear forces in the singlet interaction of all

possible pairs ofnucleons suggests, therefore, that there exist ordinary
forces in addition to the exchange forces. The ordinary forces may be

thought of as accompanied by the exchange of electrically neutral

mesons. Thus a proton may emit not only a positive meson but also

a neutral one
;
and the relative probability of emission of the two

kinds is open to choice. A representative mixture of this type that

is commonly considered is that due to Kemmerf in which the ordinary
forces and the Majorana forces are present in equal amounts. This

assumption is known as the symmetrical theory. Finally, BetheJ has

worked out the theory for the assumption that all mesons connected

with the nuclear forces are neutral. In this neutral theory the nuclear

forces are strictly ordinary forces, and the saturation feature is

absent. Even in the symmetrical theory the exchange nature of the

forces is not sufficient to give saturation, for, as we shall see in

Chapter IV, the ordinary forces may not be stronger than one-fourth

the strength of the Majorana forces in order to achieve saturation.

Nevertheless the three theories, neutral, charged, and symmetrical,

provide a convenient reference system for discussing the possible

mixtures of ordinary and exchange forces. The most general forms

of potential for the three cases (not relating to any particular meson

field) are summed up in Table III.

TABLE III

Forms of potential

Neutral theory
- [J (r)+ (al9 v*)J8(r) -f#iaJt(r)\

Charged theory J[l+ ( TI , r^\[Jn(r)+ (<rlf <ra )
J
8(r)+8ltJt(r)]

Symmetrical theory ^(rlt r.2)[J (r) \-(<rlt at)Ja(r)-\-Su Jt(r)\

The operator $12 is defined in eq. (38), Chapter II.

3. Field theories of elementary particles

Although the meson theory of nuclear forces is in a completely un-

satisfactory state at the present time, its development has established

t N. Kemmer, Proc. Camb. Phil. Soc. 34 (1938), 354.

t U. A. Betho, Phya. Rev. 55 (1939), 1261.
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certain general aspects of field theory of elementary particles that

are of considerable interest in themselves. In particular, electrons

and mesons connected with nuclear and cosmic-ray phenomena
usually have energies far in excess of their 'rest energies', so that a

relativistic treatment of their wave-equations is essential. This part
of the theory has been greatly developed in recent years.

An elementary particle that is subject to no forces whatever is

assumed to obey the relativistic energy relation:

E2 = C2p2+m2
c*, (22)

where m is the rest-mass of the particle. From this equation we
derive the Klein-Gordon equation

*V =
<>. (23)

by making the familiar substitutions:

= in-, p = ^,
If the free, elementary particle has a spin s there will be 2s+1
independent components to its i/r-funetions each of which obeys the

eq. (23). The question then arises whether these 2^+1 compo-
nents are completely independent, as they would be if each had only
to satisfy eq. (23), or whether there are, for example, some relations

between their first derivatives. A classical example of this question

may be posed by choosing m and considering the six equations
of type (23) for the components Ex ,

E
y ,
Ea ,
Hx ,

H
y ,
Hz of an electro-

magnetic field without sources. In addition to the second-order

equations, Maxwell has shown that these vectors obey the relations:

div E = 0, curlE+H = 0,

div/7 = 0, curl# $ = 0,

where the dot over E and H indicates differentiation with respect to

ct. These equations may be regarded as the wave-equations for the

photon, and the photon density per unit volume is

E2+H2

\hrhv
'

where v is the frequency of the radiation. In this case, as in all cases

where the 'particle' has zero rest-mass, there are only two indepen-

dent states of polarization.
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Dirac has argued that all relativistic wave-equations must be put

in the form of first-order differential equations so as to define the

first-time derivatives of the 0-functions. He met this requirement

for a particle of finite rest-mass by the well-known relativistic

equation for the electron wave which has the four components

c[(px-ipy)fa+pM - (E-mc*)

c[(px+ipy)fa-P3 fa]
= (E-mc*)

It has been shown by Diracf that the form of the equations (25) is

invariant under Lorentz transformations. Under rotations in ordinary

space the new fa and fa, representing the two directions of the spin

(i/l) are linear functions of the old fa and fa only, similar to the

situation with the polarization of light. Under such rotations, also,

the components fa and fa are functions of fa and 4 alone. Under

acceleration (i.e. transformation to a moving frame of reference)

fa and fa are linear functions of fa and
</r4 as well as of fa and fa.

In this respect the two components, fa and fa, are analogous to the

three components of the electric field vector, Ex ,
E
v ,
Ez and fa, /r4

analogous to Hx ,
H

y ,
Hs . The analogy extends in a way to reflections

of the coordinate axes. From eq. (25) it is evident that the compo-
nents fa and fa acquire a different sign than do fa, 4 under the

inversion x
r = x, y' y, z' = z. In fact, if we suppose fa to

be a spherically symmetric state ($-state), fa and /r4 are first deriva-

tives with respect to z and xiy, hence they are P-states. The space

dependence of these states is even and odd, respectively, so that

there is a difference in parity similar to that for the axial and polar

vectors, H and E. The behaviour under reflections of the spin-part

of the wave-function is not so simply interpreted.

As is well known, eq. (25) has plane-wave solutions for all values

of E ^ me2 and also for all values of E ^ me2
. In order to prevent

electrons with positive energy making radiative transitions to states

of negative kinetic energy, Dirac proposed that normally all such

states of negative energy are completely occupied by electrons.

In the perfect vacuum all negative energy-levels are filled and all

f P. A. M. Dirac, Principle of Quantum Mechanics (Oxford, Clarendon Press, 1935),

chap. xii.
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positive energy-levels in the universe are empty. Then if an electron

is added it must be put in a state of positive energy and it will be

forbidden to make a transition to a state of negative energy because

of the Pauli exclusion principle. If an electron is subtracted from the

vacuum it is removed from a state of negative energy. The f

hole
'

in

the vacuum then appears as a particle of positive energy and also of

positive electric charge. It was by such a line of reasoning that Dirac

predicted the existence of the positron.

The Dirac theory is of interest to nuclear theory for several reasons.

In the first place, the relativistic theory of electrons and positrons

is of direct importance to the interpretation of /^-activity. This is

discussed further in Chapter V. In the second place, the nucleons

have spin ffi and must ultimately be described relativistically by an

equation of the Dirac type. Finally, the spin of the meson is still

unknown, and if it turns out to be ffi the same form of equation will

be applicable to them: Some study of nuclear forces for which the

field particles are mesons of spin # has been made and will be

referred to at the end of the chapter.

Throughout the preceding section, i.e. in line with Yukawa's

theories, we have considered the meson to have an integral spin,

either s = or s = 1. In the general case of integral spin, the com-

ponents ofthe wave-functions are components ofvectors, tensors, etc.,

in four-space, which are familiar from the usual tensor calculus. In

the case of the half-integral spins one must resort to some form of

the spinor calculus.f Again, the most familiar example of integral

spin is afforded by the Maxwell equations, eq. (24), which, however,

are specialized to vanishing rest-mass. The simplest example with

finite rest-mass is that for the 'scalar' meson for which we express

eq. (23) as two first-order equations :

X = D<I> fy = l^, (26)

where repeated indices are to be summed from 1 to 4 and

i = J) = -*L
9
... etc., D4 = -D4

= .1
dx

9 4
cdt

The 'pseudoscalar' meson alluded to in the preceding section obeys

essentially the same equations, for a free particle, although formally

one should replace the scalar function < by the tensor of fourth rank

that is antisymmetric in every pair of indices (i.e. a scalar

t O. Laporte and G. Uhleiibeck, Phys. Rev. 37 (1931), 1380.
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times the dual tensor), and replace the vector ^
a
by the antisymmetric

tensor of rank three, </>*&.

For mesons of spin one, or vector mesons, the appropriate first-

order equations have been found first by Procaf and may be written

in terms of the vector <

a and the antisymmetric x
a
#. As remarked

before, these equations are the generalizations of the Maxwell

equations for finite rest-mass.

P-D*
(27)

By going over to the dual tensors one gets the 'pseudo-vector' meson

equations.

Generalizing this procedure, one can assume an antisymmetric
tensor of rank, s+l> and relate it to a tensor of rank s by taking the

divergence, and in this way construct wave-equations for any spin.

The form of such equations is extraordinarily simple when written

in the spinor notation. Although some attention has been given to

the equations for higher spin (the equations for spin 2 and vanishing
rest-mass apply to weak-field gravitational quanta), the attempts to

account for nuclear forces have centred around spins 0, J, and 1.

These attempts are characterized by various assumptions about the

nature of the interaction between the waves of the mesons and those

of the nucleons.

Before taking up the specifically nuclear interactions we should

note the effect of ordinary electric forces on the relativistic wave-

functions. Lf the four-potential of the electromagnetic field is

Aj., A y ,
Az , V, and the electric charge on the elementary particle is e,

the interaction between particle and field is inserted into the wave-

equations by the replacements:

d d ie .^~
'

d _ d
__

ie .^^
"'

~---
C dt cdt foe

t A. J. Proca, /. de Radium et Physique, 7 (1936), 347.

(28)
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Putting A = and V Ze/r, where r is measured from the

position of a heavy nucleus of charge Ze, one obtains from eq. (25)

the well-known equations for the electron in the atom. Solutions

of this equation for positive energy will be considered in more detail

in the discussion of-the j8-decay (Chap. V). Similarly, one can find

the stationary states of a meson of spin zero by inserting (28) into

eq< (26) and solving for
(/>.

If the Coulomb potential is inserted into the equations (27) for

the meson of spin one, the acceptable solutions of the equations do

not form a complete set of eigenfunctions.f This comes about,

apparently, because the meson spin interacts so strongly with the

magnetic field owing to its orbital motion that a r~3 law of attractive

potential results. As shown in 2, there is then no finite state of

lowest energy. Thus, in principle, the charged meson-proton inter-

action presents an insoluble problem in quantum mechanics. If

mesons of spin one exist, therefore, the l/r
3 attractive potential must

become modified at some radius or other. Landau and Tamm have

pointed out| that if the attraction is 'cut-off', by some means or

other, at a distance of^ (e
2
/mc

2
)
stable meson-nucleon systems will be

formed under the action of such forces. The forces between nucleons

could then be understood as electromagnetic interplay, just as in the

case of the formation of molecules from neutral atoms. On the other

hand, the physical nature of such a cut-off, and the details of the

interaction in case such states exist, are by no means clear at the

present time.

4. General theory of interaction

In the preceding section we have considered the field theories for

free particles, with a few remarks on the interaction of charged

particles with a central Coulomb field. In this section we take up the

more general question of interactions which must be interpreted

quantum-mechanically by the emission and absorption of particles.

The prototype of all such theories is the quantum theory of electro-

magnetic radiation which has been formulated successfully in terms

of the quantization of the wave-equation and of relativistic invariance.

It is beyond the scope of this book to deal extensively with these two

doctrines, but we shall give brief sketches of them in order to present

t I. Tamm, Phyn. Rev. 58 (1940), 952; H. C. Corbcn and J. Schwinger, ibid.,

p. 953; L. Landau and 1. Tamm, ibid., p. 1006 (L).
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some of the attempts that have been made to account for nuclear

interactions. It must be borne in mind, however, that there is at the

present time no satisfactory theory of nuclear forces. And in the

light of this realization 2, 3, and the present section are intended

as an introduction to current parlance, rather than as an exposition

of an established theory.

We have been describing nuclear forces, and /^-activity, in terms

of the emission and absorption of mesons, etc. The creation and

annihilation of particles is a quantum-mechanical concept having no

parallel in classical theories. As stated above, the introduction of the

purely quantum-mechanical feature was effected in the theory of the

emission of light quanta. In this theory, the combined wave-functions

of all the light quanta in the radiation field are written as a single

'functional' which, because of the Bose-EinHtein statistics, is sym-
metric to the interchange of any two quanta. The functional is

therefore uniquely specified by giving the number of quanta in each

'individual particle orbit', i/jl} 2 >---> */>a-~> etc. (there being no inter-

action between the 'particles'). The functional may then be desig-

nated:
X = x(i,n...,nfl ,...), (29)

corresponding to n quanta in the state
ifil9

n2 in $2 and so on.

The number of quanta per 'individual particle state' (considered

ag a dynamical variable) has, therefore, the same eigenvalues as does

the action variable in the theory of the harmonic oscillator, except

for a factor ft. Furthermore, the creation or annihilation of a quantum
in a given state corresponds exactly to the transition from one

quantum level of the oscillator to an immediately neighbouring level.

Accordingly, Dirac in the 'second quantization' and Jordan and

Pauli in the 'quantization of the wave equation' invented the

operators %a and %% that cause a decrease by one and an increase

by one, respectively, in the number of quanta in the normalized,

individual particle state
i/ja . The operators ,are then similar to

pima>q and p-\-ima>q of harmonic oscillator theory. The operators

a and
+ then produce

tt..rc... = Vww...,ratf -l,...),

>2v..,rca+l,...),

where the factors Vna and J(na+l) take account of the fact that the

X are normalized and thus represent a sum of n\ terms for every state
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containing n-particles. The symmetric character of the functional

is also illustrated by the commutation rules for the 's:

(si)

which follow from eq. (30) and state that the order in which particles

are added to, or subtracted from, the states
i/ta and

if/b (a ^ b) is

immaterial. This symmetry is characteristic of all particles that

obey Bose-Einstein statistics, so that this formulation may be

generalized at once to include the description of m'esons of spin zero

and spin one.

The
tt ,

introduced above, obey the same equation of motion and

the same transformation laws as the
ifja to which each belongs. |

The energy-operator for the functional x then related to the

Hamiltonian function for individual particles by

a.b

The Hab are the matrix elements of the Hamiltonian between the

states
\fj(l

and
\jjb of the individual particle description. In the general

application of the theory the Hamiltonian function for the individual

particles is usually expressed as a function of the coordinates and

their derivatives. Tn such a representation the operators refer to

a particular point in space, i.e. the /r's are S-functions. These func-

tions are written simply as 0(x) and the form of the Hamiltonian

for the functional of all particles is then

dx x = tfx . (33)

Jordan and Wigner discovered the method of quantization of the

wave-equation for particles obeying Fermi-Dirac statistics.% The

functional for these particles is antisymmetric to the exchange of any
two particles so that and 1 are the only allowed occupation numbers

for individual particle states. The characteristic values for the

number of particles in a given state are then the same as those of

\(\ az ) of quantized spin theory. The operators giving rise to

t Proof of these properties will be omitted, but the reader is referred to Dirac's

Principles of Quantum Mechanics, 2nd ed. (Oxford, 1935), chaps, xi and xiii, or to the

original papers: P. A. M. Dirac, Proc. Roy. Soc. 114 (1927), 243, 710; P. Jordan and
W. Pauli, Zs.f. Phys. 47 (1928), 151.

$ P. Jordan and E. Wigner, ibid, p. 631.
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creation (+) and annihilation (f) in a particular state are then

equivalent to \(ox-\-ia^ and ^(cr^ ivy)> respectively, and we have

(M+tifa = 1- (34)

Furthermore, the creation of a particle in state
i/ja followed by the

creation of one in
tf/b leads to a functional of opposite sign to one

formed by creating one in
iftb first and then one in

iffa (since the

particles are effectively interchanged in this way). Hence

*.&+&* = o

( 6) (35)##+#&- = v v ;

Also, it was proved that the 's in this formulism obey the same

wave-equation and transformation laws as the individual particle

functions to which they belong. The construction of a Hamiltonian

function for a system of many particles then proceeds as for the case

of Einstein-Bose particles.

In the theory of the quantization of the wave-equation it is

assumed that the individual particle states are independent of the

number of particles present. This assumption is certainly admissible

in the case of light quanta, for which the theory was developed, but

in the case of charged particles it must be considered as an approxi-

mation only. The customary procedure in considering the interaction

between meson waves <(#), say, and nucleon waves, </f(#), is to assume,

in zeroth approximation, that the Hamiltonian functions for each

particle has no interaction terms of any kind. Thus the Hamiltonian,

HN ,
for a nucleon may be deduced at once from the wave-equation

(25) for a free electron by changing the rest-mass and solving for Eif/v .

We shall write the result in the usual shorthand notation in which

the four components of $v are considered as the components of a

vector (in the algebraic sense, not the relativistic sense). The coupling

between the various components in eq. (25) is then represented by
the linear operators OLX ,

oty ,
QLS ,

the elements of which are made up of

0> 1? *> i*1 such a way that eq. (25) takes the form

or HN = c(a,p)+Mc2
.

For the methods of constructing Hamiltonian functions for par-

ticles ofintegral spin, the reader is referred to the articles ofKemmerf

t N. Kemmer, Proc. Roy. Soc. A 166 (1938), 127.
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and of Pauli.f The simplest example is the familiar one for light

quanta for the H in eq. (33) becomes (E*+H2
)/87r. In the following,

the explicit form of the unperturbed Hamiltonian functions is of no

direct interest, and we shall symbolize this part of the energy of a

system of two kinds of particles by

# =
J T(x)+/VF(x) dx+ J flx)/7m flx) dx (37)

and turn our attention to questions of relativistic invariance and the

possible forms of interaction between the fields.

From the usual interpretation of a wave-function, plus the fact

that the operators, ^(z), etc., appearing in eq. (37) have the same

space dependence and transformation properties as wave-amplitudes,
the integrands in the terms on the right-hand side of eq. (37) represent

energy densities. In relativity theory, therefore, the integrands must
have the transformation properties of the 44-component of a sym-
metric tensor, viz. the stress-energy-momentum-density tensor, Tik .

The left-hand side of eq. (37), being energy, transforms like the

4-component of a polar vector. Thus, the differential dxdydz (which
is formally the 123-component of an antisymmetrical tensor of rank

three) must be regarded as the 4-componeiit of a polar vector. Jn

general relativity, this would be accomplished by including the factor

V("~~l(7/ivl)
where

\g^v \

is the determinant of the metric coefficients

in the integrand. Moreover, it is evident from transformation theory
of special relativity that the right-hand side of eq. (77) should include

terms of the type J
Tu dydzdt+ J

T24 dxdzdt+ J TU dxdydt in order to

be properly covariant. In the case of light quanta, for example, this

would represent J (E X //) dSdt. In any case, it is just the time integral

of flux of energy out of the volume being considered. In cq. (37) all

space is included in the volume considered so that this term does not

appear, but if a finite volume were considered, any contribution to

HQ coming from this term would be properly interpreted as energy
carried by particles that have left or entered the volume.

The relativistic theory of the interaction between two kinds of

particles requires that they interact only if they occupy the same

position in space simultaneously. J Thus, for example, in the expres-

t W. Pauli, Rev. Mod. Phys. 13 (1941), 203.

J Even the static Coulomb interaction between charged particles may be formally
expressed as 'point' interactions between charges and *

longitudinal* quanta. How-
ever, the phase relations between the waves representing the scalar potential and
those representing the longitudinal part of the vector potential are predetermined
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sion for the energy of a collection of nucleons and mesons, eq. (37), we

should represent the interaction by a term that contains the product

of T(#) and (/>(x)
at each point x. The interaction energy per given

volume will then be determined uniquely by the integral over dx.

The form of the interaction term that is to be added to the energy,

such as eq. (37), is to be chosen so that the integrand is a relativistic

scalar (rather than a symmetric tensor). Interpreting dxdydz as the

4-component of a polar vector, as before, the integral will then have the

desired covariance. Sincewe shallalwaysbe concernedwith interaction

in which one of the interacting particles has spin J#, we shall start

by writing down all the covariants that can be constructed as bilinear

forms from the four components of 0+ and of which describe the

relativistic motion of such a particle. These are presented in Table IV

along with the shorthand notation in terms of the linear operators, <xx,

oi
y ,

ocz , /?,
and their matrix products, and, in order to be more general,

the forms are given for the creation of one kind of particle, Y+, say a

proton, and the annihilation ofanother kind, <D, i.e. the neutron . Inter-

actions in which the particle does not change charge are of the same

types, but with one kind ofwave,
XF+ and X

F, say, instead of T+ and <.

As pointed out at the beginning of this section, the prototype of

nuclear interactions is the electron-photon interaction. The photon

field is described by the vector-potential A and taking the scalar

product of this vector with the current four-vector for the electron

(polar vector in Table IV) wo get the familiar interaction energy

H' - e
J 0(x)+(a, A)^(x) dx. (38)

Since A occurs linearly, the number of photons is either one greater or

one smaller after operation by //', whereas the number of electrons

remains the same (the electron is absorbed and then re-emitted, so to

speak). The same type of interaction applies to nucleons interacting

with neutral mesons of spin one except that one must add the 4-compo-

nent to the field vector and also allow for the possibility that the scalar

product contains the tensor form, in Table IV, contracted on^L
. Hence

#; = 1 8 f {
x
F(x)+^T(x)^(x)} dx+

fc-i J

+ f 2 / ^(x)+T,. fc

x
F(x)x

/fc

(x) dx plus terms in <(x)+, etc. (39)

in such a way that nothing new is added in the quantum theory (see Heiller, Quantum

Theory of Radiation, Oxford, Clarendon Press, 1936), RO that the static Coulomb

interaction is usually expressed in the classical form of action at a distance.
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TABLE IV

Covariant forms for particle of spin ffi

Covariant

Scalar

Polar vector

vk

Tensor
rik

Axial vector

*k

Psoudoscalar

Matrix

~lOiyOiZ

Product

-
'03^2 fW

'< i" 4

If the meson has a positive charge, the terms in <(x) and <(x)^" have

to be treated differently, i.e.
</>
must occur only in products of the

type Y+O (

XF+ for proton, 3> for neutron), etc., in order to conserve

electric charge. The corresponding expressions in neutral scalar and

pseudoscalar theories are:

dx,

H'v*
- 2 **

J
^

(40)

As a specific, and the simplest, example of a charged meson inter-

action, there will be two kinds of scalar mesons, <f>+ for positive

charge and </>_
for negative, and the interaction will take the form

= g J fF(

x. (41)

If the meson has spin \h, rather than integral values, both the

nucleon and meson field covariants will be of the type presented in

Table IV. This means that such mesons must be emitted and

absorbed in pairs. Such meson theories have received a certain

amount of attention as suchf and the general form of the theory is

t R. E. Marshak, Phys. Rev., 57 (1940), 1101 ; C. L. Critchfield and Lamb, ibid. 58

(1940), 46; also 59 (1941), 48.
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of interest in other connexions. Thus, if instead of assuming the field

particles to be mesons we take them to be electrons and neutrinos

and such that the interaction with the nucleon gives simultaneous

creation (or absorption) of an electron and a neutrino, we get the

formulation of the theory ofj8-decay as originally presented by Fermi.

If the interaction constant is chosen so as to account for the observed

/?-decay, however, the resulting forces between nucleons are too small

by a factor 10~12 . This result, plus the fact that there are attractive

forces between like nucleons, led Gamow and Teller (loc. cit.) to

suggest that nuclear forces are accompanied by an exchange of

electron-positron pairs. In order to achieve saturation of nuclear

forces in this theory (which obviously does not give 'exchange
forces

}

) Tellerf suggested that, instead of emitting the particles in a

S-function at the position of the nucleon, the field particles are

emitted in a state of finite extension u(x). This assumption com-

promises the relativistic invariance of the form of the theory but it

presumably has the merit of approaching the whole subject of diver-

gent self-energies, etc., more directly. The state M(X), having a finite

radius, has a finite kinetic energy. It is then possible to choose the

interaction energy to be much stronger than this kinetic energy and

thus guarantee that the state u(x) is almost perpetually filled with

electron-positron (or meson) pairs. Calculation of the energy of the

interacting system may then be done by perturbation methods

treating the coupling as the main energy and the kinetic energy of

the emitted particles as the perturbing term. This procedure applies

as well in the integral spin meson theories, if one assumes a source-

function, and all such theories are referred to as strong coupling

theories. In the weak coupling theories the kinetic energieu of the

emitted particles are the large terms and the coupling energy is con-

sidered as a perturbation. This is the method used in the cuytomary
treatment of emission of light quanta, retarded interaction of electric

charges, etc.J It ignores the divergences predicted for point charges,

as they do not enter directly into the calculations. Applying this

method to the vector, pseudoscalar, or pair theory of mesons, how-

ever, one runs into divergences at once, as illustrated above, and it is

t C. L. Critchfield and E. Teller, Phys. Rev. 53 (1938), 812.

$ If an electron is given a finite radius r , the coupling with the electric field is

essentially the self-energy e2 /r , and the average kinetic energy of the
*emitted

photons' is 7&c/r . The ratio of coupling to the kinetic energy is then e2
/#c which is

much less than unity.
3595,61 Q
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generally necessary to
'

cut-off' the forces between two nucleons.

Thus (except for the scalar theory and the 'mixtures ') even the weak

coupling approximation does not avoid the question of the structure

of the elementary particles.

It is beyond the scope of this book to continue into the field of

methods of solution for the various types of meson theory. With the

introduction that has been given, however, the interested reader is

referred to the pertinent articles in the archive journals.f By way of

comment, we can only repeat that none of the theories is satisfactory.

t 'Recent Research in Meson Theory', G. Wentzol, Rev. Mod. Phy#. 19 (1947), 1 ;

*

Strong Coupling Mesotron Theory of Nuclear Forces', R. Serber and S. M. Dancoff,

Phya. Rev. 63 (1943), 143; 'On the Interaction of Mesotrons and Nuclei', J. R.

Oppenheimer and J. Schwinger, ibid. 60 (1941), 150; 'Electron-Positron Theory
of Nuclear Forces', E. P. Wigner, C. L. Critchfield, and E. Teller, ibid. 56 (1939),

630; 'Meson Theory of Nuclear Forces (Neutral)', H. A. Bethe, ibid. 55 (1939),

1261; N. Kommer, Proc. Roy. Soc. A 166 (1938), 127; for general presentation of

integral spin, weak coupling theory.



IV

GENERAL THEORY OF NUCLEAR STRUCTURE

1. Statistical nuclear model

THE universal features of nuclear systems such as the evidence for the

saturation character of the forces of attraction, the (roughly) con-

stant nuclear density, and the absolute magnitude of the average

binding energy due to nuclear forces can be understood only on the

basis of a complete theory of the forces between nucleons. There is

no adequate theory of these forces at the present time. Neverthe-

less, on the basis of these features as empirical facts, a great deal can

be understood through further application of quantum mechanics

and statistics to nuclear systems. It is not even necessary to adopt a

particular
' model' for the nuclear structure to systematize both the

general trend of the binding energy as a function of the number of

constituent particles, A, and the short period fluctuations of the

binding-energy curves for the ground states of nuclei. This general

theory of nuclear structure is similar in its content to the general

theory of the lowest terms of atomic wave-functions.

There are three main steps, of decreasing importance to the energy
of binding, in the estimation of the lowest term for electronic wave-

functions in atoms: (I) the electrostatic interaction between electron

and the nucleus, (2) the electrostatic repulsion between electrons,

and (3), the spin-orbit interaction. The first step accounts for the

bulk of the binding energy of the electrons and is based on the well-

known theory of the motion of an electron in the field of a point

charge. The second effect decreases the magnitude of the binding but

by different amounts according to whether the space-part of the

electron waves are symmetrically or antisymmetrically goupled.
Since the total wave-function for electrons must be antisymmetric to

the interchange of any two, the states that are antisymmetric in their

space-dependence are symmetric in spin-dependence, and vice versa.

Now a wave-function that is antisymmetric in the positions of two

electrons, e.g. / / \ / / \ / / \ / / \6
<t>a(

ri)Mr*) ta(r*)Mri)>

vanishes for coinciding electrons and, in general, the average distance

between electrons in such a state is greater than in the correspond-

ing symmetric state in which the minus sign is replaced by a plus
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sign. The electrostatic repulsion between electrons is therefore less in

antisymmetric space wave-functions or, what is the same thing, in

symmetric spin states. For this reason the lowest states of atomic

wave-functions are as symmetric in electron spins as is compatible
with conditions (1) ;

hence the deepest lying state has the largest spin

quantum number that can be obtained with those conditions. This

is the familiar rule for the order of the multiplets. Finally, (3), the

magnetic interaction between the spin-state thus determined and the

orbital motion of all electrons is taken into account and the order

of terms in the fine structure determined.

In setting up an analogous series of approximations for nuclear

systems, it is first of all evident that the first step for electron func-

tions has no counterpart in nuclei. There is no central field so that

the bulk of the binding energy must arise in, (1), the interaction

between nucleons due to nuclear forces. As a first approximation it

is assumed that these forces are the same between all nucleons, i.e.

independent of spin-orientation and electric charge. Then as step (2)

for the nuclei we shall take account of: 2 (a), the electrostatic repul-

sion between protons, 2(6), the spin-dependence of the nuclear forces

and, 2(c), the neutron-proton mass-difference. For step (3) we take,

again, the spin-orbit coupling. This method of approach to the study
of nuclei has been developed principally by Wignerf and is commonly
referred to as the theory of the symmetric Hamiltonian because of

the assumed symmetry of forces in step (1).

Since the forces between nucleons give a net attraction, instead of

repulsion as in step (2) for electrons, the rule for multiplets will be

reversed and we shall expect nuclei to form as many symmetric

space-wave couplings as possible so that the average distance

between interacting nucleons is as small as possible. Thus, in adding
two neutrons to the ground state of O16 to form O18 we should predict
that the space part of their wave-functions is symmetric, hence the

spin part is antisymmetric, forming the singlet state. In fact, it

would appear reasonable that the two extra neutrons in O18 not only
have opposite spins but occupy the same orbit. Since, however, there

is no satisfactory way of specifying orbits for nucleonic wave-

functions it is not, in general, possible to label the orbits with definite

quantum numbers even in the approximation that assumes symmetry
of forces. Exceptions to this rule are provided by the nuclei of mass 4

t E. Wigner, Phya. Rev. 51 (1937), 106, 947.
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and lower, where, if the spin-forces are disregarded, the orbits are

almost certainly of the Is type. Other possible exceptions may be

provided by 'closed shells' in which all orbits of certain quantum
numbers are filled. Thus O16 is probably a closed system of Is and

2p orbits.

In this general theory of nuclear structure it is assumed that the

average effective interaction between a pair of nucleons depends

critically upon the symmetry of their orbital wave-function. If the

forces are of the ordinary type we shall designate the average poten-

tial energy between two nucleons in the nucleus A, disregarding

symmetry for the moment, by L . Since nuclear forces are short-

range and since nuclei have constant density, the value of L
decreases as A increases roughly as A~l

. To this average potential

must be added a correction depending upon whether the pairs of

particles considered are symmetrically or antisymmetrically coupled.

This correction is just the exchange part of the ordinary forces and

will be designated by L, which is defined to be a positive energy.

Then for symmetrically coupled pairs the average potential is

L Uf and for antisymmetrically coupled pairs jL +L x
. A

basic assumption of this theory is then that Z/g
x

is comparable to

(though always smaller than) L .

There is convincing evidence that ordinary forces do exist between

nucleons. On the other hand, as proved by Heisenberg, they cannot

be the only forces because they do not show saturation (assuming

that the attraction docs not give way to a shorter range repulsion,

in which event, of course, there will be no difficulty with saturation).

In addition to ordinary forces, therefore, we assume the existence of

nuclear exchange forces that are attractive for symmetrically coupled

nucleons and repulsive for antisymmetrically coupled ones. These

forces, known as Majorana forces, have been discussed in Chapter III

on the basis of an exchange of charge between neutron and proton.

Here, however, it is important to extend the principle to the inter-

action between like nucleons as well, thus retaining complete sym-

metry of the Hamiltonian. Between two neutrons, for example, the

Majorana forces cannot be expressed in terms of exchange of electric

charge but may be regarded in other ways, such as a special type

of velocity dependent interaction.f Since the overall sign of the

potential depends upon the nature of the coupling, the sum of

t J. A. Wheeler, ibid. 50 (1936), 643.
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interactions between all pairs of nucleons contains contributions of

both algebraic signs and it will be seen that, for large nuclei the

repulsive interactions predominate. The Majorana forces therefore

give saturation.

In determining the average effect of Majorana forces between a

pair of nucleons we have, again, to take account of the fact that the

average distance between nucleons will depend upon the symmetry
of their coupling, i.e. the exchange part of the Majorana forces must

be represented. Let Lm be the average (positive) magnitude of these

forces and let Z^f be the magnitude arising from the exchange

integral. For symmetrically coupled nucleons we get an average

potential of Lm L and for antisymmetrically coupled pairs

+Lm L . Combining these results with those for ordinary forces

we note that the contributions due to Lm and L^ change sign with

symmetry while those due to L and L%f are independent of sym-

metry. Hence, it is convenient to define two new parameters

L = Lm+IF,
L' = L +L%,

for the purpose of discussing the effect of symmetry on nuclear bind-

ing. The results for the average potential energy between pairs of

nucleons are summarized in Table V.

TABLE V

Average potential between pairs of nucleons

With these definitions of average interaction between pairs of

nucleons we are now prepared to write down an expression for the

total potential energy in a nucleus. The part that is independent of

the symmetry of coupling contributes L' times the number of

distinct pairs of particles, viz. \A(A 1), in a nucleus of A particles.

The part contributed by L, however, will be LE where E is the

number of symmetric couplings minus the number of antisymmetric

couplings in the nucleus. In general, the number E is to be computed
from the theory of the permutation group (cf. ref. to Wigner above).
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For most of our purposes, however, the value of E can be derived

from the physical content of the Majorana forces. For example, in

the helium and hydrogen nuclei all nucleons may be considered to be
in the same orbit, so that all couplings are symmetric and E equals
1 for H2

, 3 for He3
, and 6 for He4

. Let us designate this orbit by the

letter a and write subscripts as follows :

ax neutron with spin up,

a2 neutron with spin down,

a3 proton with spin up,

a4 proton with spin down.

The wave-function for He4 may then be symbolized by

<*! 0,0304 (He
4
).

The exclusion principle forbids putting any more nucleons in this orbit

and we shall call such orbits closed. To write a wave-function for

He6
, therefore, we choose a new orbit b and put a neutron in it with,

say, its spin up: ai<wA (He,).

Majorana forces acting between this neutron and any of the nucleons

in a are accompanied by an exchange of subscripts. However, the

operation of the exclusion principle in orbit a forbids the exchange of

the subscript 1 with those of the a's except with ax . Otherwise, after

the exchange, there would be two neutrons with spin up in orbit a.

Hence the contribution to E vanishes for the interactions between 6t
and the a's except for a^ Since the spin-states of these two neutrons

are the same, the space wave-functions must be antisymmetric, so

that this interaction contributes 1 to E. The S for He5 is 5,

consequently. Using the same arguments, the wave-function for Be8

may be written , , , , /r> fixJ
26364 (Be

8
).

There are six symmetric couplings in each of the closed orbits a and

6, and four antisymmetric couplings, one for each subscript. The S
is then 8. It is to be noted that symmetric couplings come from within
the same orbit, whereas antisymmetric couplings arise between dif-

ferent orbits. It is one of the basic assumptions of this approximation
that the magnitude of the interaction is the same, but differs in sign.

Modifications of this assumption will be considered when specific

models of nuclei are taken up in the next section.

The formula for E that applies to closed orbits can be generalized
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at once. If there are k closed orbits, there are 6k symmetric couplings
and 4 x \k(k 1) antisymmetric couplings. The Ek for k closed orbits,
i.e. for the a-particle nuclei, is therefore

Ek
= 8k~ 2k*.

Any heavy nucleus with an even number of protons and an even
number of neutrons can be considered as composed of \Z closed

orbits and %(A2Z) pairs of excess neutrons. For reasons that will

be evident presently the number of pairs of excess neutrons is called

the ^-component of the isotopic spin and designated

Every even-even nucleus can be characterized by its mass-number A
and an integral value of

T^.
The greatest potential energy for such

a nucleus, due to nuclear forces, will then be obtained if the particle
waves are grouped into k closed orbits and T^ half-filled orbits con-

taining two neutrons each. Under these conditions the number of

symmetric couplings will be Gk+T^ and the antisymmetric couplings
will be k(k 1) between protons and (/c.+T^k+T^l) between
neutrons. Substituting ^(A~2T^) for k, the value E for the greatest

potential in an even-even nucleus becomes

We can find the S00 for the lowest state of a given odd-odd nucleus

by changing one of the neutrons in a half-filled orbit into a proton
and putting the latter into another (half-filled) orbit. The value of

T then decreases by unity, the new proton contributes 2 k to S,
and the loss of the neutron contributes k+T^l. The formula for

BOO is then

By similar arguments, the ground state E for odd-even nuclei can bo

shown to be i 2

Collecting these derivations and adding the ordinary forces we may
write the total potential energy due to nuclear forces in the lowest

state of a nucleus as

PE =

(I)
where s ~ r , .

o^ = for even-even nuclei,

= 1 for odd-even nuclei,

= 2 for odd-odd nuclei.
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The assertion that the greatest nuclear binding will occur in those

states that have as many orbits occupied by four nucleons as is

possible and the remaining nucleons paired off, two to an orbit, has

been made only on intuitive grounds. It can be proved, however, by
application of the theory of the symmetric group to this problem,
that the couplings so chosen do lead to the lowest potential. Some
of the more general results of the theory may be summed up as

follows. Given a set of orbits, not necessarily filled and all coupled in

some definite way, it is usually possible, i.e. not a violation of the

exclusion principle, to change the spin directions of the nucleons

and to change neutrons into protons, or vice versa, and keep the

same symmetry in space wave-functions. In the approximation
that the energy does not depend upon charge or spin, all these states

obtained by such changes belong to the same energy. A complete
collection of the states that are consistent with a given symmetry
is called a supermultiplet in analogy to the (2$+l) states of an
atom that have the symmetry characterized by the spin quantum-
number S. In atomic theory the multiplet is characterized by the

largest value of the ^-component of the spin alone. In nuclear

theory, different members of the same multiplet may be reached by
three operations:

.
1 . Rotation of axes so as to obtain the largest consistent value of

&. This gives a quantum number 8.

2. Transformation of protons into neutrons so as to obtain the

largest consistent value of
T^.

This gives a quantum number
called T, the isotopic spin. This operation corresponds to posi-

tron /J-radiation obeying Fermi selection rules.

3. Simultaneous transformation of protons into neutrons and

change of spin direction, so as to obtain the largest consistent

value of 8a T^. This gives a quantum number Y. The operation
is positron emission obeying Gamow-Teller selection rules.

A nuclear supermultiplet is then characterized by the three numbers

(ST Y) instead of just S as a result of the fact that four particles may
occupy the same orbit in the nuclear case instead of two in the elec-

tronic case. Furthermore, spins may be exchanged for isotopic spins

without changing the symmetry. Hence, ifwe denote byP the largest

of the three numbers, S, T, Y, by P' the next largest, and by P"

the remaining one, the multiplet is characterized by the 'partition
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quantum numbers '

(P P' P"). In terms of these numbers, the general
formula for E had been shown by Wigner to be

In addition to the potential energy, PE, due to nuclear forces we
have to take into account the kinetic energy of the nucleons and also

the electrostatic repulsion of the protons. These quantities will be

designated KE and CE, respectively. Both of these energies will be

estimated on the assumption that the density of nuclei is a constant.

An estimate of KE can then be made by applying the well-known

theory of a degenerate Fermi gas to free particles at the same

density. The actual kinetic energy is probably somewhat higher. It

is convenient at this stage to adopt the 'milli-mass-unit* as the unit

of energy in which to express PE, KE, and CE.

The kinetic energy will depend upon the symmetry of the nuclear

wave-function. If, for a given wave-function, one changes as many
protons into neutrons (with and without change of spin) and as many
downward spins into upward spins as possible, one gets the composi-
tion of four independent Fermi gases with

A! neutrons with spin up,

A2 neutrons with spin down,

A 3 protons with spin up,

A4 protons with spin down.

The kinetic energy is then calculated for each number of particles

moving in the nuclear volume and the sum taken. This has been

done by Wigner and expressed as an expansion in the partition

quantum numbers :

P - K
P' - i(

P" = ^(A 1-A 2-A3+A4 ).

The result, in mil li -mass-units, is:

The Coulomb energy will also depend upon symmetry to some

extent, but the dependence will be neglected along with other minor

effects such as non-uniform distribution of protons and a possible

deviation from the 1/r law for protons. The estimate is then just the
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electrostatic energy of a uniformly charged sphere of radius

andinM.m.u.

(3)v '

Let CL
- 600--^- =- 0-65

*

The numerical coefficient ofKE is then 36-4(7f . In the stable nuclei,

we may assume P = T^ witli P' P" and find for the total

binding energy of these nuclei

BE = PE+KE+CE

+81C}3 (4)

Application of this formula to nuclei will be discussed in detail in the

next section, but there are several general features of the result for

BE that are apparent without evaluating the parameters Cl3 L, and
L r

. The main part of the nuclear binding must come from the first

term, since at constant density the L's should decrease as A~\
approximately. This means that, under the conditions existing in

nuclei: / >^
On the other hand, if the nuclear density be increased so that all

particles interact simultaneously, the Z's become independent of A
and the coefficient of A 2 must be positive in order to preserve the

saturation character. Under these collapsed conditions, however, the

forces are no longer sensitive to the average distance between

nucleons (all couplings are within the range of the nuclear forces),

so that the exchange integrals in L and L f

vanish. This means that

in order to guarantee saturation :

L < Lm
under collapsed conditions

; or, in other words, the ordinary forces are

not more than one-fourth as strong as the Majorana forces between

pairs of particles,

The second general point is that, if we consider all possible nuclei

of a given value of A (isobars), the binding energies are quadratic
functions of Z or T^ alone, except for the term |L8[ t

. For odd values

ofA this is a constant term, so thatBE as a function of Z, for given A,
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is a parabola. The nucleus with this A that has the greatest binding

energy will then have the value ofZ that lies closest to the minimum

mMu

26 27 28 29 30 31 & 33 34 35

Fe Co Ni Cu 7n Ga Ge As Se Br

(ppW600);(5IO);(4QO); (310); (200); (110) j (000) ;(IIO); (200);

FIG. 13. Energy diagram for A = 64. The exact

expressions for S, and values of Gl and L derived in.

2 wore used in computing potential and kinetic

energies. The theory predicts Zn64 and Ni6* to be

stable as observed. The zero of the mass-scale is

arbitrarily chosen.

in the parabola. The most stable nucleus of given A, on the other

hand, is determined by the minimum in the mass curve,

which is also a parabola. In principle, all other isobars can transform

by jS-emission into the one with the most stable value of Z.

For even values of A, 8^
= if Z is even and 84

= 2 if Z is odd.

Hence the binding energy-curve, or the mass-curve, must be repre-

sented by two parabolas, one displaced along the energy axis by

approximately |L compared to the other. In general, certain odd-

odd nuclei will be less stable than either of its even-even neighbours
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(see Fig. 13). Among the heavy nuclei, therefore, no odd-odd

nucleus is stable against -decay. An even-even nucleus can trans-

form into another even-even nucleus of the same A only by simul-

taneous emission of two j8-particles, and this is such an extremely

improbable event that if both are more stable than the intervening

odd-odd nucleus, both will be found in nature. There are, in fact,

fifty-three such isobaric pairs known and at least three cases of iso-

baric triples.

2. Comparison with observation

Application of the general theory of the previous section to the

observed atomic masses has been made by Barkasf and by Wigner.J
It is assumed that r

,
i.e. Cv is the same constant for all nuclei.

The constant is evaluated by comparing the binding energies of

nuclei having one more proton than neutron with those having one

more neutron than proton, but with the same total mass-number.

Pairs of these (Nordheim) nuclei are known for every odd A up to 27

(except A = 5) and, of course, one of each pair is j8-active. From the

energy of the /^-radiation one can derive the difference in binding

energy. Since A and the partition quantum numbers are the same

for members of a pair, the expression (4) for the binding energy

differs only in the Coulomb contribution and a value for C: can be

computed for each case. The best value for C obtained in this way is

O1
= 0-635,

corresponding to r = l-45x 10~13 cm. This is a little larger than

values of r indicated from scattering data, etc., as presented in

Chapter I, and might be taken as evidence for the protons having a

tendency to concentrate near the surface.

With a definite value for C the kinetic energy is calculable and

the value of L can be deduced from comparison of isobars for which

the partition quantum numbers (P P' P") are known. This has been

done for two series of nuclei among the light elements, viz. pairs of

the type C12 B12
, having quantum numbers (000) and (110), respec-

tively (and pairs of the type No?* Net*
,
with numbers (J J) and

(i i i)> respectively). Using the exact expressions for PE and KE,

t W. H. Barkas, Phytt. Rev. 55 (1939), 691.

J E. Wigner, University of Pennsylvania Bicentennial Conf. (1941), Univ. of Perm.

Press, Philadelphia.
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the difference in the former is 4JJ (which is readily seen by counting

couplings) and the difference in the latter is 65/JL Then computing
the difference hi Coulomb energies, the value ofL is determined from

the experimental mass differences in each pair. In this way, very

good agreement with experiment is obtained by setting

L ^ (M.m.u.) (A < 40).

As A becomes large, say over 100, the values of S become of the

order of 1,000 and the exact dependence P, P', and P" becomes of

minor importance. In this region, therefore, the neglected effects

such as spin-dependence and the influence of the Coulomb forces on

symmetry may cause mixing of many states belonging to different

partition numbers. Nevertheless, we may assume the general form

for BE of the last section and compute values for L at higher A from

isobaric pairs, one of the pair being radioactive. The values for AL
obtained for five nuclei (Wigner, loc. cit.) together with S and T^

for

each is given in Table VI.

TABLE VI

It will be noted that A L increases with A so that for gold it is twice

as large as for the light elements. Most of this behaviour is probably
due to a surface effect. In the light nuclei very few nucleons are

completely surrounded by other nucleons at a given time, but in the

heaviest nuclei about half of the particles are completely surrounded.

With short-range forces acting, the effective nuclear potential per

particle will then be greater for larger A . The ratio of the surface

contribution to the volume contribution will be A*/A A~* and

the results for L in Table VI are fairly well represented by the

empirical formula

Finally, we consider the absolute magnitude of the binding in the

nuclei shown in Table VI in order to estimate the magnitude of L'.
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It will be seen that it is necessary to make L' as large as reasonable

to account for the observed binding. Hence, we assume the ordinary
forces to be just one quarter as strong as the Majorana forces, the

maximum allowable by the saturation requirement. Further, we
assume as a reasonable upper limit to the ratio of the exchange part of

the forces to the average part, the value 0-6, i.e. L* = 0-GZ^ . Then

L' ^ |L. The comparison with experiment is shown in Table VII.

TABLE VII

It is evident that the general theory does not give an adequate
account of the absolute binding energies. In order to make the

theory fit the data one must assume larger values of L' than those

deduced above as reasonable upper limits. An empirical formula for

L 1

that fits the data in Table VII for A > 50 is

Thus the surface effect in L' is quantitatively different than in L. If

we substitute the empirical expressions for L and L' into eq. (4) for

BE we get one form of a '

semi-empirical
' formula for the binding

energies of heavy nuclei. Such formulae have been presented in a

variety of forms and are generally useful for studying questions of

relative stability and particularly for the interpretation of fission.

If we add to the considerations above the fact of the spin-depen-

dence of nuclear forces, the manner in which stable nuclei may be

formed by successive addition of one nucleon can be understood in a

qualitative way. In the series IP-He4 all nucleons may be considered,

in first approximation, to occupy the same s-orbit. The deuteron is

the most stable two-nucleon system, mainly because it alone can

exist in the triplet state and thus get benefit of the greater potential

energy in that state. He3 is more stable than H3
, although it has

greater Coulomb energy and hence less binding, simply because the

mass of the neutron is greater than that of the hydrogen atom. And
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He4 is probably the only stable system of four nucleons since it is

the only nucleus in which all nucleons can occupy the same orbit.

For each value of A up to 36 there is just one stable nucleus and

the binding energies show a marked period of four. This is evident

in Fig. 14, in which the minimum energy required to remove one

20

12

E(mev)

04 8 12 16 20 24 28 32 36

Fia. 14. Binding energy of 'last' neutron.

neutron from the stable nuclei is plotted as a function of A. The

neutron is most tightly bound in the a-particle nuclei and least bound

in nuclei that are just" one heavier than a-particle nuclei. This is what

one would expect from the symmetry of the couplings in these nuclei.

Although the period of four is perhaps the most prominent feature of

the binding of stable nuclei up to Ca40
,
it is instructive to divide these

nuclei into two groups. The first group includes the nuclei from He 5

to O16
. Of these, He 5 and Be8 do not exist because their potential

energy is not great enough, but counting them as the most stable

systems ofA = 5 and 8, this series of nuclei is built up by adding one

neutron and one proton alternately. Starting with He4
,
one gets a

more stable system by adding a neutron and forming He5 than by
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adding a proton (Li
6
) because the electrostatic energy of the proton

more than offsets the neutron-hydrogen mass-difference. To He5
,

however, it is more advantageous to add a proton, to form Li6 . The
reason for this is characteristic for nuclei lighter than O16 and is

based on the spin-dependence of the nuclear forces. Since the triplet

interaction between two nucleons is so much stronger than the singlet

interaction there is more binding in Li6 than in He6 in spite of the

28

24-

20-

12-

8-

4-

Ni

Cr

Ca

MS

Be

024 12 16 20 24

Fia. 15.

~28 32 36 40~

larger Coulomb energy of the former. The neutrons in He6 must be

in the singlet state. There are four examples of this phenomenon,
H2

, Li
6

,
B10

, and N14
,
and the interpretation is borne out by the fact

that each of these nuclei has spin h. It will be noted also that each

of these nuclei has an odd number of neutrons and an odd number of

protons. They are the only stable nuclei of this type and they appear
to constitute exceptions to the general rule discussed at the end of the

preceding section. That rule does not apply here as it was derived

for heavy nuclei in which the odd neutron and odd proton must occupy
different orbits in the state of lowest potential energy.

In the region between O16 and Ca40 the binding to be gained by

forming triplet, odd-odd nuclei, is evidently not great enough to offset

the Coulomb repulsion of the proton. The nuclei in this region can

be built up, therefore, by adding two neutrons in succession, then two

protons, and so forth (Fig. 15). This leads to the obvious result that

3595.61 H
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every even element in this interval has three stable isotopes and every
odd element only one. Conversely, there are three elements for even

neutron numbers. The nn, pp, nn,pp, etc. , sequence continues through
A36 and then breaks down, presumably because of the increasing

importance of the Coulomb energy. According to the rule that holds

below A36 one should expect A37 to be the next stable nucleus, but it

36 40

FIG. 16. Binding energy (negative) per particle, as the

function of A .

is preferable to break up one of the a-units and form Cl37 instead, for

which the value of S is 102 as compared with 99 for A37
. The

change-over at this point may be partly influenced by the possi-

bility that a system containing twenty neutrons is particularly stable,

i.e. a closed shell. This possibility is substantiated by the fact that

there are five adjacent elements with this neutron number (S
36

, Cl
37

,

A38
,
K39

,
and Ca40

). Furthermore, the proton number 20 appears to

be particularly stable, also, since there are six known isotopes ofCa as

compared with three, at most, for lighter elements. Among the lighter

elements, in addition to the obvious case of He4
, there is strong evi-

dence that a shell is completed at O16
. This is shown by the break

in the slope of the curve for total binding as shown in Fig. 16.
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For nuclei heavier than Ca the dominant effect in deciding the
most stable nuclei among isobars is the Coulomb repulsion. This is

apparent for several reasons. In the first place, the period of four is

abandoned, it often being energetically more favourable to add four

neutrons in succession than to follow two neutrons by two protons.
The Coulomb effect overbalances the tendency of the nuclear forces

to reach maximum symmetry. This is illustrated in Fig. 13 and, as

pointed out in 1, the effect will entail a number of cases of stable

isobaric pairs of even A. Isobaric pairs are very common above
Ca. Finally the Coulomb repulsion becomes so important that it

reduces the average binding energy so that only 5 M.e.v. is required
to remove a neutron from the very heavy elements (above lead)
as compared with 9-5 M.e.v. from elements in the neighbourhood
of calcium. It is this reduction in binding energy, of course, that

accounts for the a-radioactivity and the fissionability of the very
heavy elements.

It would be wrong to leave the impression that above Ca the

behaviour of the elements can be accounted for by the orderly
influence of the Coulomb energy. There are, for example, neutron and

protons numbers for which no stable nuclei exist (there are no nuclei

with 61 of either). Also, the phenomenon of five adjacent elements

having the same neutron number occurs for the numbers 50 and 82

as* well as for 20. Other evidence of the peculiar nature of these

neutron numbers has been presented in Chapter I. The present

theory does not account for these irregularities.

Of course, in an assembly of a rather limited number of particles
there is a finite probability that there will be accidental anomalies.

Concrete examples of such arc afforded by the existence of four or

five pairs of neighbouring isobars. These all have odd A and so far

as experiment can decide both members of the pair are stable. An
example is Sn115-In115 . According to very general arguments, such

as presented in 1, it is not possible for both of these nuclei to

be stable, since there is no intervening nucleus to block single

/?-decay. If the masses of the atoms are accidentally equal, or

nearly so, however, both will appear to be stable because of the

extremely long lifetime for the -decay at low energy. There are

also four cases of isobaric triples, A = 96, 124, 130, and 136, which
must be considered as accidental or, perhaps connected with 'shell-

structure'.
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3. The more detailed nuclear models
The model of the nucleus that has been adopted in the preceding

sections is essentially that of a degenerate Fermi gas enclosed in a

sphere. It is not expected of such a model to account for the finer

features of nuclear structure such as magnetic dipole and electric

quadrupole moments, positions of excited levels, and the shell struc-

ture. In fact, it fails to give a satisfactory quantitative result for the

absolute binding energy of heavy nuclei even with the considerable

freedom allowed in the choice of the parameters L and L'. The

quantitative deficiency regarding absolute values amounts to a
disaster if one tries to calculate L and L' from nuclear forces. Never-

theless, the underlying principles of the statistical model are valid

enough to give a general accounting of nuclear stability, or lack of it,

as in the example of fission.

The objective of a nuclear model is to be more explicit in the

definition of the individual particle orbits that have been alluded to

in discussing the theory of the symmetry of nuclear wave-functions.
There are two principal methods of approach to a more definite model
which we shall call the independent particle model and the a-particle
model. The former is the more intimately related to the theory of the

symmetric Hamiltonian as it places no restrictions on the motion of a

nucleon throughout the nucleus. It assumes that every nucleon

moves in a constant potential field created by the other nucleons and

extending to the radius of the boundary of the nucleus. The indivi-

dual particle orbits are then essentially the quantum states of a

particle moving freely in a spherical cavity with impenetrable walls.

The wave-functions for this motion are well known to be the half-

integral order Bessel functions times r~
1

-, and times the angular

dependence appropriate to a-, p- } (/-waves, etc. The energy of these

states is then the average potential, which is the same for all, plus
the kinetic energy, h'W/ZM. Here k is the

4 wave-number' for which
the Bessel function has a node at the nuclear radius, R, Ji+^(kR) ~ 0.

The three quantum numbers corresponding to the three degrees of

translational freedom of the nucleon may then be taken, in the usual

way, to be n, I, ms . If k is determined by taking the rth root of Jl+k
the principal quantum number n will be defined by n = l+r. The
kinetic energy then depends upon both n and I but not upon mz so

that there are 2Z+1 orbits of the same energy. The lowest eleven

(degenerate) orbits, together with their values of kR and the maxi-
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mum number of neutrons that can be accepted, i.e. the total neutron

number if a closed shell is completed at each orbit, is shown in

Table VIII.

TABLE VIII

Independent particle orbits

It is to be noticed that the model is successful in predicting closed

shells at N and/or Z equal to 2, 8, and 20. The possibility of shells at

50 and 82, however, is not included. Many attempts have been made
to modify the model so as to include the more obvious shells. The

least objectionable prescription, perhaps, is to exchange the places

of the pairs of orbits : 3p with 4/, 4e with 5(/, and 5/ with 6/L This

gives the shell-number sequence above 20: 26, 40, 50, 68, 82, etc.,

which has much in its favour. On the other hand, the correct

physical grounds on which to modify the independent particle model

so as to exchange the order of the levels as indicated has not been

found. Modification of the shape of the well or penetrability of its

walls, for example, has little effect.
'

The independent particle model (also called the Hartree model of

nuclei) has been extensively investigated and used in attempts to

calculate finer features ofnuclei, mainly because ofits great simplicity.

But for nuclei heavier than He5 it appears to be far from a good

approximation. Numerous attempts to compute the average inter-

action between nucleons moving in Is and 2p orbits have all led to the

result that, if the two-body forces are the same as evidenced in scatter-

ing and in the deuteron, the predicted binding energy in the nuclei

between He and O is only a small fraction of the observed binding

energies. Or, in the terms used in 1
, attempts to calculate L and L'

from the known forces between two nucleons, on the assumption
that the nucleons are moving on independent orbits, lead to values

that are much smaller than those found empirically. Higher-order

perturbation calculations help but little. The origin ofthe discrepancy

would appear to be in the possibility that the positions of the

nucleons are appreciably correlated, e.g. the two extra neutrons

in He6 are much more likely to be found on the same side of the
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a-particle core than would be computed on the basis of chance and

assuming each neutron moves in an independent p-orbit.
The a-particle model goes to the opposite extreme in the matter

of correlation of positions of the nucleons and assumes that each
closed orbit of four nucleons forms a relatively stable sub-nucleus

which occupies a certain position in the whole nucleus. The prin-

cipal part of the binding in the nucleus is then automatically con-
tained in the closed orbits. In addition, these alpha-particles are

bound to each other by relatively weak forces of the van der Waals

type, i.e. arising from a slight polarization of the saturated orbits.

The model for Be8 would then be a 'dumb-bell' with two alphas

touching at one point, for O12 an equilateral triangle with three bonds,
for O16 a tetrahedron with six bonds, and so on. Now the total

mass of four helium atoms is 4 (4-00388) ^= 16-01552, and dividing
the excess over the O16 atom by 6 we get 2-59 M.m.u. per bond. The
masses of the

'

-|mrticle
'

isotopes, the number of bonds, and the

calculated and observed excess binding due to the bonds are shown
in Table IX.

TABLE IX

In general, above O16 the addition of an a-particle adds a tetrahedron

to the structure already existing and so three bonds are allotted per
addition. Somewhere in the neighbourhood of the seventh or eighth

addition, however, a closed ring can be formed, hence the addition of

an extra bond at Si28 . It is evident from Table IX that, except for

Be8 and Ne20
,
the agreement with experimental values is extremely

good ; in fact, somewhat better than might be expected considering
that the method of counting direct bonds does not allow for the long-

range Coulomb repulsion between alphas not in direct contact. The

agreement must therefore be fortuitous for the heavier isotopes in
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Table IX, since beyond Ca the Coulomb effect is so important
that the simple a-particle nuclei are no longer stable. The main

significance of the success of the a-particle model in accounting for

the absolute values of binding is the indication that the positions

of the nucleons that are symmetrically coupled, i.e. in the same

orbit, are probably highly correlated. Consequently, the assump-
tion made in 1 for the statistical model that only the sign but

not the magnitude of average interaction depends upon the sym-

metry of coupling is not as close to the actual situation as could

be desired.

Hafstad and Tellerf have applied the a-particle model farther, by
methods analogous to the theory of molecular structure, to describe

nuclei having one more, and also to those having one less, nucleon

than the a-particle nuclei. The simplest case is He 5
,
in which the

extra r^eutron is placed in an orbit that has a plane node through the

a-particle core, just as in the independent particle model. This

neutron will be antisymmetrically coupled with the neutron ofparallel

spin in the core and will be repelled by it. In the a-particle model

the average interaction is evaluated to be b = 1-3 M.m.u. between

the extra neutron and an a-particle. When there are several a-

particles the extra neutron will interact directly with only one at a

time so that b is the same. On the other hand, the alphas polarize

each other and lead to indirect and exchange effects on the binding

of the extra neutron which is designated by R+Q per bond, in the

notation of Hafstad and Teller, if the wave-function of the neutron

has one plane node through all alphas. Hence this description applies

directly to Be9 and C13 in which a neutron wave with a plane node can

be made orthogonal to the wave-functions in the alphas. The bind-

ing in these nuclei can then be represented by E+Q = 3*4 M.m.u.

For O17 the alphas are thought of as forming a tetrahedron, so it is

impossible to pass a single node through the centres of all alphas

simultaneously. One has either to choose a neutron wave with a

single spherical node (s-wave), or one with two plane nodes (d-wave).

In any case, the kinetic energy of such a wave will be higher than one

with a single plane node and hence the smooth trend in binding

energy will be broken at O16
. Thus the a-particle model predicts a

bend in the binding-energy curve, as shown in Fig. 16, and previously

interpreted on the independent particle model as evidence of the

t L. R. Hafstad and E. Toller, Phys. Rev. 54 (1938), 681.
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closing of the 2p shell. Nuclei of the type 4w 1 are also considered

using the theory of 'holes' as applied to molecular wave-functions.
There is no satisfactory derivation of the constants 6, R, and Q of

this theory from the theory of nuclear forces. In fact, attempts to

make such derivations have been as discouraging! as the correspond-

ing results for the relation of nuclear forces to the average interaction

in the independent particle model.

Even for the nuclei on which all models agree H3
,
He3

, and He4

the derivation of the energies of binding from nuclear forces is not in

a satisfactory state at the present time. The reason for this state of

affairs is to be found in the dipole-dipole nature of the forces. The
existence of such forces tells us that the wave-functions of H3 and
He3 are not pure a-waves but, like H2

, will be s-waves mixed with
waves of higher orbital angular momenta. The true wave-functions
then become extremely complicated. Of course, one might replace
the effect of coupling between s- and d-waves, say, by assuming
different strengths of interaction in the triplet and singlet states of

nucleon pairs, as was done rather successfully for the deuteron, and
use only s-waves. The difficulty is that the relative strengths will be

different in the different nuclei. A very careful calculation of the

depth and range of forces that give the proper bindings in the two-

and three-body nuclei has been made by Rarita and PresentJ

assuming the space-dependence of forces between pairs of nucleons

to be of the form Ae~r lb
. The result is

A = 242 me2 and b = 1-73 X 10~13 cm.

with A' for the singlet interaction equal to 0-6^. But when these

same constants are used in a variational calculation of the binding

energy of He4
they lead to 20 per cent, too much binding. Since a

variational calculation should always lead to too little binding, this

result shows that it is not admissible to approximate the dipole-

dipole forces by an average spherical potential. In particular, the

effects of coupling might be relatively less in the saturated orbit of

He4 than in the unsatiirated nuclei, thus requiring a smaller value of

A. The complexity introduced by the dipole-dipole interaction is so

impressive that the hope of deriving the details of nuclear binding
from our knowledge of nuclear forces seems rather remote.

t H. Margenau, Phys. Rev. 59 (1941), 37.

j W. Rarita and R. D. Present, ibid. 51 (1937), 788.
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The two models discussed above have been studied most in their

relation to the light nuclei because they are tractable. Except for

quite general results, such as they are, which are mostly the same for

both models, they are evidently too over-simplified to be acceptable
nuclear models. In a notable effort to strike a compromise between

tractability and acceptability, Wheelerf has proposed a quite general
attack which he calls the method of resonating group structure. We
shall discuss this model briefly as an improvement on the ex-particle

model, although the method is much more general. In the a-particle

model the wave-function of the nucleus is, in first approximation, the

product of wave-functions for He4 each centred about a fixed point.

Thus, in the wave-function written above for Be8
( 1) a and b are

essentially the same s-waves but with centres separated by Rnh .

Wheeler's proposal is to elaborate on this function in two ways:
the first is to include the wave-function describing the motion of the

centres of the alphas, F(R), as a factor
;
the second is to allow for

the possibility that the composition of the alphas may change, i.e. the

particles may dissolve their former partnerships and form a new set

of alphas around different centres, in general. The new set may then

dissolve into a third, or go back to the first, and so on. The lowest

state of a nucleus is then described as a superposition of a number of

complexions, all of the same symmetry and mostly of the same eigen-

values of energy, among which the nucleons 'resonate'. In the

example of Be8
,
the two neutrons in a may form a new a-wave a'

with the protons in 6, and the remaining nucleons form a new state

b''. The new c\-waves will have different centres, separated by the

radius vector R
(l

.

b >, and the total wave-function would look like:

The generalization of this method to groupings of all kinds (not only

alphas), to more than two sub-groups at a time, and to cases including

spin has been presented by Wheeler. The wave-equations for the

various F(Jti)(] )
are then obtained by minimizing the total energy

(applying the variation principle) and assuming that the shapes of the

sub-groups are not sensitive to their separation. This means that the

polarization of one sub-group by another is neglected. If the nucleons

did not change places with one another the method would amount to

determining the motion of each centre in the average field of force

t J. A. Wheeler, ibid. 52 (1937), 1107.
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created by the others. With the jumping about of the nucleons that

characterizes the resonating group structure, the kinetic and poten-

tial energy of the centres will have integrals that contain the wave-

functions F that describe different groupings, since it is, after all, the

motion and forces in the nucleus that cause one grouping to change
into another. Instead of a simple differential equation for the ^'s

one gets an integro-differential equation, the integrals containing the

overlap contributions to the energy. Since the value of the integral

is sensitive to the relative velocity of the groups, the contribution to

the forces represented in it are referred to as the 'velocity dependent
forces'. This connotation is not to be confused with the possibility

that the nuclear forces between pairs of elementary nucleons may
depend upon velocity.

The main simplification assumed in the method of resonating

group structure is the neglect of polarization of the sub-groups by
the presence of others. Even so, it. is probably somewhat more

adequate than tractable. It is the natural method ofsolving problems
in which exchange of partners has important consequences, as in the

scattering of neutrons by deuterium. For more complex nuclei,

however, further simplifications must be made for detailed applica-

tion. On rather general lines, parallel to those followed in dealing

with molecular structure, Wheelerf has shown how the model may be

used to interpret excited states of light nuclei and also how it is

related to the liquid drop model for heavy nuclei.

4. Spins and moments
The influence of the spins of the nucleons on the forces between

them is reflected most sensitively in the resultant spins, magnetic

dipole, and electrical quadrupole moments of the composite nuclei.

All that can be expected from the rough nuclear models proposed
hitherto is a qualitative description of these finer features, with more

quantitative deductions concerning spin than concerning the

moments. On the other hand, current experimental techniques in

comparing magnetic moments make this property the most accu-

rately known among the unquantized properties of nuclei. It is not

known at present whether it is feasible to elaborate the nuclear

models, or make new ones that can utilize the precise information

given by these experimental results. The formidable nature of the

t J. A. Wheeler, Phys. Rev. 52 (1937), 1083.
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general problem is sufficiently illustrated by one of the simplest

examples, viz. the theory of the magnetic moment of the triton

(nucleus ofH3
).

In order to account for the rather curious result that

the magnetic moment of the triton is larger than that of the proton,

Sachsf has found it necessary to mix the 2$-wave with the 2P- }

4
P-,

and 4Z)-wave of the three-nucleon system. This is indicative of the

inherent complications that go with attempts to apply details of the

theory to the complex nuclei.

So far as the nuclear models that have been discussed in this chapter

are concerned, it is possible only to make some quite general state-

ments about spins and moments. For example, one can account for

the fact that all nuclei containing an even number of neutrons and

an even number of protons have no spin, and hence no magnetic
moment. Inasmuch as the state of maximum (negative) potential

energy in such a nucleus is one in which the nucleons are com-

pletely paired off with opposite spins, the intrinsic moment of the

nucleons certainly vanishes. This leaves the possibility that their

orbital angular momenta might contribute to the nuclear spin. It

turns out, however, that the state of lowest energy is also the state

of lowest net orbital angular momentum. If the nucleon orbits are

of the type postulated in the a-particle model, i.e. localized in space,

this result is obvious since a net orbital angular momentum would

mean that one of the alphas was circulating about and thus contribut-

ing more kinetic energy to the system than necessary. In the inde-

pendent particle model, or the description of additional particle

wave-functions in the ex-particle model as proposed by Hafstad and

Teller, where the orbits are labelled with an orbital quantum number

the result holds, but in different form. Suppose the nucleons that are

not in completely closed orbits are found in ^-orbits. For a given

number of such extra nucleons there are, in general, several ways of

constructing a wave-function with the maximum number of sym-
metric couplings. As a simple example : He6 has two extra neutrons

that may be considered to be in jo-orbits. From two ^-waves one

can construct symmetric 8- and D-waves and one antisymmetric

P-wave. In our first approximation, the >S
Y and D have the same

energy. However, by calculating the average distance between the

neutrons more exactly, it has been shown by Feenberg and PhilipsJ

t K. G. Sachs, ibid. 71 (1947), 457.

j E. Feonberg and M. Philips, ibid. 51 (1937), 597.
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that the neutrons are a little more closely correlated in positions in

the S-wave. The same authors calculated all the low terms in the

series from He4 to O16 and found that the lowest states have lowest

total orbital angular momentum. This may be inferred to be a

general rule and so account for the lack of spin in even-even nuclei on

the basis of all models.

The second broad result on measurements of nuclear magnetic
"moments refers to nuclei with odd values of A. The results differ,

however, depending upon whether it is the number of protons or the

number of neutrons that is odd. Among the stable nuclei having an

odd neutron the magnetic moments arc known for about a score.

These range from + 1 nucl. magn. to 1 nucl. magn. with an average

just about zero. About twice as many nuclei with odd proton have

moments ranging from slightly negative values to 6-4 (In
115

). The

average of these is around 2-5 nucl. magn. Furthermore, the magnetic
moment increases markedly with the value of the spin in case there

is an odd proton, but there appears to be little correlation between

total spin and magnetic moment in the case of an odd neutron. Of

course, the number of data is not sufficient to provide good statistics,

but reasoning from what data there is one would say that the net

magnetic moment averages about the value that would be obtained

if the spin of the nucleus were accounted for by the orbital motion

of the odd particle, i.e. zero for an odd neutron and plus something

(the average nuclear spin in the above data is also 2-5) for an odd

proton. On the basis that the average value of the orbital angular

momentum is the nuclear spin, Schmidtf has advanced a proposal for

accounting for these regularities. The spread about the average

value, according to this theory, is due to mixing of the individual

particle orbits with I il. However, two individual particle

orbits differing in orbital quantum number by unity differ in parity,

so that either parity is not a good quantum 'number' in nuclei, or

waves of the other nucleons are affected by the mixing. This point,

together with the experimental finding that odd isobaric pairs, such

as in Cu, Re, and In,J have nearly equal moments, are not by any
means adequately elucidated by the present form of nuclear theory.

f F. Schmidt, Z*. f. Physik, 106 (1937), 358.

j H. Schiilor and H. Korsching, ibid., 105 (1937), 168.

For further discussion of tho application of the theory of the symmetric Hamil-

tonian see H. Margenau and E. Wigner, Phys. Rev. 58 (1940), 103.
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The potential complexity of interpreting spin effects in nuclear

structure is illustrated in a convincing way by examples among the

very light nuclei. There are two typical cases in point. The first of

these concerns odd nuclei, say Li7
. According to the general argu-

ment, we should suppose that Li7 is formed by adding a neutron in a

p-wave to an $-state of Li6
. The question then arises whether the

spin of the proton will be parallel to or opposite to the direction of

its orbital angular momentum (the spins of the neutrons are pre-

sumed to form a singlet), i.e. whether the lowest state is a 2P or 2
P%.

If the splitting of these two states were due to electromagnetic forces,

we should expect the P state to lie lowest, just as in the atomic

electron case. It has been pointed out by Inglis,f however, that the

accelerations experienced by a nucleon are mostly induced by the

nuclear forces, so that the extra energy due to the Thomas precession

where a is the acceleration, v the velocity, of the nucleon, is propor-

tionately much larger than in the atomic orbits of electrons (where

it is just one-half of the electromagnetic effect). Since the Thomas
effect is of the opposite sign to the electromagnetic effect, and over-

rides it, the order of states as split by spin-orbit coupling will be

reversed for nuclei. According to this picture, therefore, the lowest

state of Li7 should have the angular momentum fA, in agreement with

the experimental value. As in the case of electronic orbits, if a shell is

more than half-filled the order of the fine-structure levels is reversed.

Thus, in the individual particle model the lowest state of C13
(nucleus)

would bo 2
JFj.

On the ex-particle model, C13 is pictured as three -

particles with the extra neutron in a P-wave that has a plane node

through all three alphas. According to Inglis's theory, therefore, the

spin of the extra neutron should be parallel to its orbital angular

momentum and the total spin of C13 should then be \h. The experi-

mental value is \K 9
thus favouring the individual particle picture.

This might be considered a conclusive indication that the individual

particle picture is better than the a-particle one if it were not for the

ubiquitous complication of the dipole-dipole forces between the

nucleons.

The strongest evidence for the importance of the dipole-dipole

t D. R. Inglis, ibid. 50 (1936), 783.
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forces is found in the stable odd-odd nuclei. Sachsf and others have

made a study of the magnetic moments of H 2
,
Li6

,
B10

, and N14
.

The magnetic moments of these nuclei might be expected to be

nearly the same. Instead, they decrease rapidly with increasing A,

indicating that the mixture of *S-waves with D-waves, and so on,

becomes of major importance even in such light nuclei as B10 and

N14
. It is estimated that in N14 there is at least a 50-50 mixture of

S- and D-waves, as compared with a 20-1 mixture in H2
. The

influence of this type of coupling among heavier nuclei is entirely

unestimated, but may be imagined to be considerable
;
and the rela-

tive importance of such couplings and effects of the Thomas preces-

sion are not clear, at present, even for light nuclei. Thus, although
calculations ofthe theoretical magnetic moments have been attempted
for both the independent particle modelj and the a-particle model,

nothing like an adequate accounting for the several spin-effects can

be inserted into the present theoretical approach.
The most striking evidence of the dipole-dipole forces is, of course,

the development of quadrupole moments on the part of the stable

nuclei. Wave-mechanically, the noii-spherieal charge distributions

are formed by interference between waves of different orbital angular

momentum, say S- and D-waves, as in the deuteron. Physically, this

is interpreted as a predilection the nucleons have for lining up on an

axis parallel to their spins. A simple description is possible in the

case of the deuteron, as given in Chapter II, but for heavier nuclei

only general statements can be made. The most general statement

is that the nuclear spin must be at least li for the nucleus to have a

quadrupole moment. This follows from elementary considerations

to the effect that a quadrupole moment has the symmetry charac-

teristics of an ellipsoid of revolution, i.e. rotation by 90 may change
its value along a fixed axis from a maximum, say, to a minimum. If

the nuclear spin is |#, there are only two quantum states and these

correspond to rotation by 180 under which the quadrupole moment
does not change. The effect of a quadrupole moment can be noticed

quantum mechanically, therefore, only if there are at least three

polarizations of the nucleus, i.e. one polarization corresponding to

quantization at 90 to the other two. Hence, the nuclear spin must

t R. a. Sachs, Phys. Rev. 72 (1947), 91 ; 312.

J M. E. Rose and H. A. Betho, ibid. 51 (1937), 205, 993.

R. G. Sachs, ibid., 55 (1939), 825; D. Inglis, ibid. 60 (1941), 837.
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be at least unity for a quadrupole moment to be evident. About
two-dozen values of quadrupole moments are known, and these have
been included in Table I of Chapter I. However, new methods are
being brought to bear on the determination of quadrupole moments,!and these results will undoubtedly play an increasing role in our
interpretation of the stable nuclei.

f W. A. Nierenbcrg, N. F. Ramsey, and S. Brody, ibid. 71 (1947), 466.



THE PROCESS OF 0-TRAN8FORMATION

1. General features of /^-transformation

THE most characteristic feature of the spontaneous /^-transformation

of a nucleus is the continuous distribution in energy of the emitted

electrons.! This is in sharp contrast to the line spectra observed for

2345
KIG. 17. jS-spectrum of In114

.

a-rays, y-rays, and the /^-particles emitted by internal conversion

of y-rays. Similar to a-radiations, however, the /^-radiations have

characteristic half-lives, and all parts of the spectrum decay with

the same period. If the disintegration leads to just one state of the

daughter nucleus the spectrum is said to be simple. The shapes of

the simple j8-spectra are essentially the same for all nuclei (with a

few possible exceptions), and in Fig. 17 is shown the experimentally

determined spectrum of In114 which is probably the best known. J
Other examples of the simple spectrum differ in the maximum energy
of the spectrum and in the half-life. The very low energy region in

Fig. 17 is shown dotted because the experimental errors due to scatter-

ing and absorption in the source are too great at low energies to give

reliable measurements (comp. Appendix II).

The large amount of experimental work on /^-disintegrations has

firmly established that one electron (or positron) is emitted in the

f First demonstrated by J. Chadwick, Verh. <1. D. Phys. Ges. 16 (1914), 383.

t Determined by J. L. Lawson and J. M. Cork, Phys. Rev. 57 (1940), 982.
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disintegration, that there is a definite upper limit to the energy of
the electron in a given spectrum,f and that the energy of the nucleus
decreases by an amount just equal, or very nearly so, to the maximum
energy of the emitted spectrum. This last property of the -transi-

tions is evidenced by the fact that y-rays emitted when a nucleus

may emit ^-spectra of two distinct maximum energies are sharp lines
which just make up the difference in maximum energy. Also, the
mass differences between parent and daughter nucleus have been
determined independently in several cases and found to agree with
the maximum energy of the 0-spectra. An interesting example of
the latter type of experiment is afforded by the capture of a slow
neutron by N14

. The resulting nucleus, N15
, emits, among other

things, a proton of O580-03 M.e.v. energyJ resulting in C14
. Allow-

ing for the difference between the mass of neutron and H atom,
0-75 M.e.v., the C14 atom lies 0-l?d= 0-03 M.e.v. above the N14 atom'.

The observed upper limit of the ^-spectrum of C14
is 0-145 M.e.v.

From this we should conclude that the disparity between the upper
limit of the ^-spectrum and the energy released by the transition

lies between zero and 0*06 M.e.v.

The evidence cited in the last paragraph points strongly toward
some form of conservation of energy in ^-processes even though,
most of the time, the jft-particle carries away only part of that energy.
For this reason, plus several others, the proposal of Bohr to dis-

regard the principle of conservation of energy in making a theory
of /?-decay has been abandoned. The earlier suggestions that the

continuous spectrum arises from secondary effects of scattering or

absorption of the jS-particles or that a light quantum is emitted

simultaneously are ruled out by the calorimetric measurements of
the energy of -radiation.|| In the experiment of Ellis and Wooster,
the total heat produced by a known amount of RaE was determined.
This element has a very weak y-radiation, so that the rate of energy-

production, divided by the number of atoms disintegrating per unit

time, gives the average energy of disintegration per nucleus. The
result was found to agree with the average energy of the RaE j8-

spectrum, whereas, if the continuous spectrum were produced by
t This was iirst shown by B. W. Sargent, Proc. Roy. Hoc. A 109 (1925), Ml.
J T. W. Bonner and W. M. Brubaker, Phys. Rev. 49 (1936), 778.

S. Ruben and M. D. Kamen, ibid. 59 (1941), 349.

||
These measurements were first carried out by C. D. Ellis and W. A. Wooster,

Proc. Roy. Soc. A 117 (1927), 109 and have been verified repeatedly.
3595.61 T
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secondary effects, the result should agree with the maximum energy.
Thus it appears that the difference between the total energy released

and that carried by the electron escapes detection in the calorimeter.

As pointed out in Chapter I, the accepted explanation of the con-

tinuous /^-spectrum is due to Pauli and postulates that the energy
released by the nucleus is the maximum energy of the /J-spectrum
but that this energy is shared between the electron and a neutrino

which are emitted simultaneously. The neutrino is defined as an

uncharged particle that is very hard to detect, i.e. it has a low ioniz-

ing power. There are many advantages to Pauli's hypothesis in addi-

tion to the conservation of energy. The neutron-proton model of

atomic nuclei requires that nuclei with an odd number of heavy

particles have a spin that is an odd multiple of \h and obey Fermi-

Dirac statistics. Since j8-decay does not change the number of heavy
particles, the emission of a single electron from a nucleus would

change the spin from an odd multiple to an even multiple of \Ti in

contradiction to the model. It would also change the statistics of the

nucleus from Fermi-Dirac to Bose-Einstein. This can be rectified by
postulating that the neutrino also has an intrinsic spin of \h (or an

odd multiple thereof), obeys Fermi-Dirac statistics, and is emitted

simultaneously with the electron. The same argument holds for

even nuclei, of course.

Certain properties of the neutrino can be bracketed experimentally.

Attempts to detect neutrinos by ionization have been made by
Nahmias, who reported that a neutrino produces less than one ion

per 5 x 1
5 km. in air. Bethe has calculated^ that this result requires

the magnetic moment of the neutrino to be less thanlO"4 that of the

electron. The mass of the neutrino must also be small compared
with that of the electron. This is evidenced in the shapes of j8-spectra
as predicted by the Fermi theory and also by the experimental

agreement between energy released by nuclei and the maximum of

the electron spectrum. The case of C14 cited above would allow

a neutrino mass of ^j an electron mass, at most. The scarcity of

neighbouring isobars in the system of isotopes also speaks for a small

mass for the neutrino. It is generally assumed that there is only one

kind of neutrino and that its rest-mass is zero.

Some evidence for the momentum of the emitted neutrino has been

obtained. Cloud chamber recoil tracks have been observed and

f H. A. Bethe, Proc. Camb. Phil. Soc. 31 (1936), 108.
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evaluated by Crane and Halpern,f who conclude that there is evidence

of the momentum of the neutrino in the recoil of the daughter
nucleus. The most recent evidence of this general type is the detec-

tion of Li7 recoils from the ^-capture in Be7
.J Since y-rays are

emitted in this transition there will be recoils due to them as well as

to neutrinos. However, the energy of the recoiling nuclei is 10 e.v.

when the 0-45 M.e.v. gamma is emitted as compared with 58 e.v.

when a 0*87 M.e.v. neutrino is emitted. By having the Li recoils

take place from a Pt surface the atoms were ionized and could be

detected in an electron multiplier tube. It was shown that the

apparent energy of the recoils lay between 40 and 50 e.v. and that

there was no appreciable coincidence between these recoils and the

emission of y-rays. Since there are no charged particles emitted by
Be7 the recoils must be due to neutrinos, and the fact that the energy
of recoil is somewhat less than expected can be attributed to the

extreme difficulty in preparing a non-absorbing source.

According to the Dirac theory of the electron, positrons and elec-

trons have identical properties except for their different sign of

electric charge. It is to be expected, therefore, that the /^-radiations

have the same characteristics, whether electron or positron is emitted,

except in so far as the electric charge of the nucleus influences the

process. The obvious effect of charge is that nuclei, especially heavy

nuclei, repel positrons whereas they attract electrons. This may be

expected to inhibit positron emission by nuclei whose potential

barrier is larger than the /J-energy. Positron emission by heavy
nuclei is further made improbable by the ability of a radioactive

nucleus to absorb one of its planetary electrons. This is the ^-cap-
ture alluded to above and is so called because, in all known cases, it

is an electron in the K-shell that is absorbed. That absorption of an

electron is equivalent to the emission of a positron is a prediction of

the Dirac theory of the electron and is emphasized by the fact that

in some nuclei the two processes compete.

There are a few nuclei, for example Cl36 and As76
,
that have an

odd number of neutrons and an odd number of protons and are

unstable against both electron and positron emission with /^-capture

t H. R. Crane and J. Halpern, Phys. ffev. 53 (1938), 789.

J J. S. Allen, ibid. 61 (1942), 692.

This process was predicted by H. Yukawa and S. Sakata, ibid. 51 (1937), 677,

and first observed by L. W. Alvarez, ibid. 52 (1937), 134.
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competing with the latter. Furthermore, in As76
,
as in easily half of

the known ^-activities, the various j8-radiations are followed by
y-radiation. The latter come about either because a transition to the

ground state of the daughter nucleus is forbidden by some selection

rule so that the transition goes more readily to an excited state, or

because several states of the daughter nucleus are equally available

in the decay period.

Altogether over 150 /^-active nuclei have been identified, their

maximum energy or energies and lifetimes determined. Of these

hardly a dozen are found among the natural radioactivities. The

others are artificially radioactive nuclei that are formed by bombard-

ment with neutrons, protons, deutcrons, alphas, and gammas, and as

products of fission. Many of the artificial nuclei are made in several

different ways as a means of positive identification. Fermi and his

collaborators^ first established the radioactivity due to neutron

irradiation. Slow neutrons are captured by nuclei to form either a

stable isotope or one that has too few protons to be stable. In the

latter event the number of protons is increased and the number of

neutrons decreased by the emission of an electron in ^-disintegration.

Fast neutrons that eject protons or a-particles from the bombarded

nucleus produce similar activities. Bombardment with deuterons

often increases the neutron number, in a d, p reaction, and leads to

subsequent negative electron emission. On the other hand, the use of

protons or a-particles as projectiles in nuclear bombardment is more

apt to produce overcharged nuclei that decay by positron emission.

This phenomenon was first observed by Curie and JoliotJ in the -

bombardment of light elements. Very fast neutrons can also pro-

duce positron emitters by knocking out two or more neutrons from

the compound nucleus.

It was first pointed out by Sargent that there is a significant

correlation between the characteristic lifetime of a /^-disintegration

and its maximum energy. This is demonstrated by plotting the

logarithmofthe decay-constant against the logarithm ofthe maximum

energy. The relation between these quantities is of the same general

type as the relation between energy and decay-constant of a-emitters ;

f E. Amaldi, O. D'Agostino, E. Fermi, 13. Pontecorvo, F. Rasetti, and E. Segre,
Proc. Roy. Soc. 146 (1934), 483; 149 (1935), 522.

% I. Curio and F. Joliot, C.R. 198 (1934), 254.

B. W. Sargent, Proc. Roy. Soc. A 139 (1933), 659.
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but the range of maximum energies found in jS-emission is much

greater than the range of energy of a-rays, whereas the range of

observed lifetimes is generally much smaller than for a-activities.
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The Sargent relation for the natural and artificial /f-emitters is

shown in Fig. 18 (a, b). In that figure there is included the correla-

tion for a few of the positron emitters that have one more proton than

neutron, i.e. N13
,
O15

,
and F17

. The reason for emphasizing this class

of nuclei to the exclusion of the bulk of the data available will be

more apparent in 4; briefly it may be said that the similarity
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between nuclear wave-functions of parent and daughter nucleus is

expected to play a part in the correlation, and for the positron

emitters represented in Fig. 1 8 (b) this factor should be particularly

favourable since the daughter nucleus is obtained from the parent by

interchanging neutrons and protons. The comparison is compli-

cated, however, by the influence of the nuclear electric field which is

much stronger for the natural emitters than for the light, positron

emitters.

It is significant that the natural activities form two groups in

Fig. IS (a). The decay rate in the lower group appears to be slower by
a factor 100 than in the higher group at the same energy. This effect

in the natural /^-activities is readily understood if it is supposed that

the transitions in the lower group entail 'forbidden' spin or parity

changes in the nuclear wave-function. Thus the j8-radiations may be

classed into various multipole radiations just as in the description of

forbidden optical spectra and for the same reason, namely, that the

wave-lengths of emitted particles are large compared with the

emitting region. The principal difference between the two cases is

that the wave-length of a photon is generally 1 ,000 times the radius

of an atom but the wave-length of /^-particles is only 10 times the

nuclear radius as a rule. With these factors, nuclear wave-functions,
Coulomb forces, and the possibility of forbidden transitions coming
into the relation between lifetime and maximum energy it will be

easily appreciated that a Sargent plot of all known /^-disintegrations

would be relatively useless.

2. Elementary theory of ^-disintegration

The neutron-proton model of nuclear structure does not include

electrons, positrons, and neutrinos as elements of the structure in the

sense that it may include ex-particles as such elements. Et is much
more natural to think of the ^-particles being created at the instant

of emission in the same way that a light quantum is created in an

atomic transition, ^-radiation then becomes analogous to electro-

magnetic radiation, but with some complications. In the first place,

instead of the radiated energy consisting of a single uncharged

quantum it is distributed in all possible proportions between the

electron and the neutrino. Consequently the radiating particle in

]3-decay changes its electric charge as well as its energy in the process.

Upon the discovery of the neutron, however, the way for a complete
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analogy between the two emission processes was open and a satis-

factory theory of /^-disintegration was developed by Fermi,f

Fundamental to Fermi's theory is the hypothesis, originally due

to Heisenberg, that neutron and proton are two states of the same

particle. This hypothesis amounts to something more than a con-

venient way of describing /^-disintegration, as we have seen in Chapter

IV, where we considered the Pauli exclusion principle in its applica-

tion to nuclear wave-functions. The Fermi theory then postulates

that neutron and proton interact with the combined fields of elec-

trons and neutrinos in such a way that an electron and a neutrino

are created and radiated when neutron changes to proton. Conversely

a positron and a neutrino are radiated when a proton changes to a

neutron. Thus Fermi's theory by-passes any possible connexion

between mesons and /^-radiation. The modern view of the process

analyses the radiation of the /^-particles in two steps: a neutron

changes into a proton, say, and emits a negatively charged meson

into a virtual state, i.e. on borrowed energy, and the meson subse-

quently disintegrates into electron and neutrino, and returns the

borrowed energy balance to the nucleon. The same picture applies

with a positive meson when proton changes into neutron. This point

of view will be elaborated in 3. The net effect is the same as if

nucleons interact directly with the electrons and neutrinos, and, in

this section, we retain this point of view. Since the total energy is

assumed to be conserved and since the wave-lengths of the emitted

particles are large compared with nuclear dimensions, the number of

jS-disintegrationn per second may be written as a generalization of

radiation formula

r/V ()

where M is the matrix element calculated from the waves of neutron

and proton. The interaction constant, g, takes the place of e in

electromagnetic theory. $e and $v are the amplitudes of electron and

neutrino waves at the nucleus, so that $?02 is equivalent in the

formulism to E2 in the electromagnetic case. pe
and pv are the

numbers of available electron and neutrino states per unit energy.

The formula for w contains three factors: a numerical factor, one

depending only on the nuclear particles, and one depending upon

the strength of the emitted waves at the nucleus. The separation of

the last two factors is an approximation that comes from assuming

t E. Kormi, Za.f. Phys. 88 (1934), 181.
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that the wave amplitudes of the emitted particles, electron and
neutrino, do not vary appreciably over the region occupied by the

heavy particles. In this section we shall consider the case in which
both electron and neutrino can be emitted without orbital angular
momentum, i.e. in $-waves, corresponding to the most favourable

decay rate. At first we shall not differentiate between the contribu-
tions of the various spin components of the relativistic form of the
electron and neutrino waves and we shall disregard the influence of
the Coulomb field of the nucleus. For light nuclei, the -waves of
electrons are not greatly affected by the Coulomb field ifthe electron
has several million volts energy and we are justified in approximating
*e(r) aS

fc(r)
- flin^r/*)/^*), (2)

where we have normalized
/>e(r) in a sphere of radius R and <pc is the

momentum of the electron.

Let the total energy liberated by the nucleus be W and let the

energy of the electron be E. Then the normalized wave-function for

the neutrino, of zero rest-mass, is

tv(r)
=

sin[( W-E)r/%c]/r<J(27rE). (3)

The numbers of ^-states of electron and neutrino per unit energy are:

Pe = R/TrHv = REIirK&pv pv
=

fi/*rc. (4)

Evaluating eq. (1) at r = we get

The dependence of w on the energy of the electron is the con-
tinuous ^-spectrum. The procedure used in comparing the form ofw
with experimental results is to divide the experimental distribution
in energy by pG E, or its equivalent in the Coulomb field for heavy
nuclei, and plot the square root of the resulting function against J57f.

Such a plot is known as a Kurie plot, after its inventor, and if the

^-spectrum is simple the plot should be a straight line the intercept
of which determines the maximum energy, W. It will be noted that
W includes the rest-energy of the electron. Many such plots have
been made, especially for light nuclei, and so far only two cases of

convincing deviations from the predicted spectrum have been
detected. The cleanest Kurie plot that has been obtained is that for

f More commonly tho distribution in electron momentum is determined directly
and the corresponding divisor is $.
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In114
, the spectrum of which is shown in Fig. 17. Thus the experi-

mental results confirm the assumed dependence of w upon the ampli-
tudes of the light particle waves and also the assumed vanishing
rest-mass of the neutrino.

Offhand it is a little surprising that practically all the observed

spectra can be explained on the assumption that the electron and

neutrino are emitted without orbital angular momentum. The wide

variations in lifetimes would lead one to suspect that in many transi-

tions the light particles are emitted in P-waves and Z)-waves which

should introduce higher powers of the electron energy into the

distribution function. Further consideration of the nature of for-

bidden transitions and of the more exact wave-functions for higher

angular momenta leads to an understanding of this result and will

be taken up in 4.

Since w is the number of processes per second per unit energy

range, the probability of disintegration per second is the integral of

w dE over E from me2 to W. This leads to

with IQ(x) = (x*-}y~(2x*--Vx
2-Z)+ %xln[x+(x

2
--l)*]. (7)

If W is large compared with me2
,
i.e. the maximum energy, including

rest energy, is 2 M.e.v. or more, a very good approximation for A is

Thus the Sargent plot should approach a straight lino of slope 5, at

least for the light elements. This law is very closely obeyed by the

positron emitters shown in Fig. 18(6).

An independent and ingenious check on the fifth-power law in the

formula for the decay constant is provided in the energy distribution

of a-partioles emitted by the /?-decay of Li8
:

Li8 -> Ho4+He4+j8+v+a
The a-particles are emitted with equal energies, but the sum of their

energies varies from zero to the maximum energy of the reaction,

Q =z 15*8 M.e.v. Let U be the energy of one of the alphas, then the

energy in the j8-radiation is Q2U. The probability of emission of

alphas with energy U will then be proportional to the product of

X(Q 2C7) and a statistical factor for the alphas which is / 5 if they
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are emitted in an $-state and U* if they are in the D-state. The

frequency distribution was measured! and found to agree closely

with the factor Ul(Q 2f/)
5

, showing conclusively that the j8-

disintegration follows the law derived from Fermi's theory and also

that the alphas are emitted in an $-state. This proof which was

suggested by Gamow and Teller was the first indication that the

original Fermi theory was correct and the modification introduced by

Uhlenbeck and Konopinski was unnecessary.

The modification of the theory that was introduced by Uhlenbeck

and Konopinski was to replace the wave-function of the neutrino, in

the expression for w, eq. (1), by the first derivative of the neutrino

wave-function. This introduces an additional factor proportional to

the square of the energy of the neutrino and gives a better fit to the

early experimental results on ^-disintegration spectra. A critical

analysisj of these early results indicates that the apparent agree-

ment was due to the circumstance that most of the measured

spectra were really composite, i.e. two activities were present with

the same period.

Coulomb forces between nucleus and the j8-particle influence the

lifetime of the disintegration appreciably. Their effect on the spec-

trum itself is generally slight except in the region well below 1 M.e.v.

where the measurements arc also difficult to make. In the very heavy

elements and in all forbidden spectra the Coulomb effect is charac-

teristic of the relativistic motion of the electron, but in the allowed

spectra of light elements the effect issimplyto increase the amplitude of

electron waves at the nucleus and to decrease the amplitude ofpositron

waves. Negative electron emission is, therefore, more probable and

positron emission less probable than given by the formulas above for

w and A. A very satisfactory method of correcting the expressions,

eq. (5) and eq. (6), for elements in the lower half of the periodic system

is to insert the factor

in eq. (5), where Z is the charge of the daughter nucleus in the case

of electron emission and minus that charge for positron emission.

t L. H. Rumbaugh, R. B. Roberts, and L. R. Hafstad, Phys. Rev. 54 (1938), 657.

% H. A. Bethe, F. Hoylo, and R. Peierls, Nature, 143 (1939), 200.

This result may be derived from the solutions of the wavo-equation for the

motion in a Coulomb field as given in Chapter II, eq. (6), etc., by computing the ratio

of amplitudes at largo r and at r = 0.
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In eq. (6) this factor should be included in the integrand, but it is

such an insensitive function of E, except when pe is small, that it

may usually be considered a constant factor and taken out of the

integral. The correction to eq. (6) then becomes the factor (9) with

rj
= oiZ, where a is the fine structure constant.

The probability of 7f-capture admits of a similar elementary
discussion. Here the electron is absorbed from a state of definite

energy, namely the 7-shell of the atom, so that the neutrino is

emitted with a definite energy equal to the change in nuclear energy

plus the rest-energy of one electron. The spectroscopic term is

negligible. The same theory of transition probability then applies,

but with the electron density of the K-shell in place of $5 pe in eq. (1).

The electron density at the nucleus, as calculated from the theory of

the hydrogen atom, is

i/r

2 .= Z3
/7rag, a IP/me

2
. (10)

The Z in this formula is the 'effective' charge of the parent nucleus.

Substituting in the transition probability we get, for jK"-capture:

2
)

2
. (11)

So far, our discussion of the Fermi theory has been primarily con-

cerned with the dependence of spectral distributions and decay
constants on the energy of the emitted particles. The evidence is

fairly conclusive that the theory fits the experimental results and
thus substantiates the form of eq. (1). The third factor in eq. (5)

appears to be verified. Of the other two factors, the first is simply
a number that should be the same for all spectra and which deter-

mines the value of the fundamental constant, g, which we shall

interpret further in terms of meson theory in the following section.

The second factor is the absolute square of the matrix element of the

emitting system and, in general, may be expected to be different for

different disintegrations.

According to the perturbation theory, on which eq. (1) is based,

the matrix element, M, depends upon the initial state of the nucleus
X
F;, the final state X

F},
and the perturbation operator H'

,
as

M =
J T/tf'Y, dx, (12)

where the integral extends over all configuration space. This amounts

to integrating the coordinates of every heavy particle in the nucleus
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over the volume of the nucleus. The states H^ and *

f
are normalized

to the integer, A, the total number of nuclear particles. In the case

of emission of electromagnetic waves, the operator H '

is essentially

the electric dipole, ex. Although eq. (1) is a generalization of the

electromagnetic case, it turns out that for the theory of jS-decay the

dipole operator is of importance only to forbidden transitions and

allowed transitions involve the zero moment of position, i.e. they are

monopole, radiations. This circumstance is a result of the more general

nature of the fields that describe j3-radiation. On the other hand, the

operator H' does contain operators, Qk ,
for every nuclear particle

such that Qk changes the fcth proton into a neutron in positron

emission or changes the kth neutron into a proton for electron

emission. If H' induces no other change in the wave-function we
haV6

H' = Q1+Qt+...+QA s Q(l), (13)

where Q(l) is introduced for the sake of brevity.

The form of H' in eq. (13) is actually the form that applies in

allowed transitions if Fermi's original theory is used. The fact that

H' is invariant to rotations and inversions of the space coordinates

is consistent with our assumption that the electron and neutrino

are emitted in $-waves. Thus this form requires that the angular

momentum of the nuclear states *

t
and ^ be identical so that the

spin of the emitting particle is unaffected by the disintegration and

the electron and neutrino must be emitted in the singlet state.

In this theory, therefore, the value of M is just a sum over k of

integrals of Y* XF* in which the superscript k indicates that the

identity of the kth particles has been changed by the operator Q.

Thus, if the Pauli exclusion principle did not apply to nuclear

particles, and all neutrons and protons were in the same state, the

value ofM would be Z for positron emission and A Z for electron

emission. Since the exclusion principle does apply, however, changing

the identity of a particle in X
I^ usually leads to a state of very high

energy that is not very similar to the ground state, T; , of the daughter

nucleus or is completely forbidden by the exclusion principle if the

particle is in a closed shell. Hence the contributions to the j8-disinte-

gration of heavy particles that are in closed shells, or nearly so, are

negligible, and it is generally sufficient to consider only such heavy

particles that may be in unsaturated orbits. In particular, the

positron disintegration of nuclei having just one more proton than
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neutron must be mostly contributed by the extra proton. f These

nuclei have small charges, Z < 21, so that the wave-function of the

extra neutron in *j should be very much the same as that of the

extra proton in 4^. The value of M will then be practically unity.
In the language of spectroscopy, the form of //' in eq. (13) leads

to the selection rule A* = for allowed transitions, where i is the

spin of the nucleus. This rule appears to be violated, however, for

several of the nuclei discussed above, having one more proton than

neutron, have composite spectra. In the particular case of Be7
,
for

example, the capture of the 7-electron leads to the ground state of

the Li7-nucleus most of the time but to the 0-45 M.c.v. excited state

part of the time. The most likely explanation of these two levels

of the Li-nucleus is that they represent the spin-orbit splitting of the

extra neutron, the spin f belonging to the ground state and J to the

excited state. The ground state of Be7 should have one or the other

of these spins (probably f), and the fact that transitions to both

states of Li7
compete in an allowed ^T-capture violates the selection

rule A* 0. The need for a change of spin in allowed j8-disintegra-

tions was first presented by Gamow and TellerJ following a study of

the branches of the ThC radioactivity. Another very convincing

argument for change of nuclear spin in ^-disintegration is found in

the electron emission of He6
. This is an allowed transition and since

He6 has two neutrons more than He4 its spin is almost certainly O,
but it decays to the ground state of Li6 which has unit spin. A similar

analysis probably applies to the activity of F18
. In all these cases

the change of spin can be carried away by emitting the electron and
neutrino in the triplet $-state.

In order to permit the change of spin in allowed transitions,

Gamow and Teller (loc. cit.) proposed that the Fermi interaction be

modified to include the spin-operator a. Thus the perturbation, H',

is replaced by the vector, H"
',
where

H" - Qial+Qi<ti+...+ QA aA = Q(a) (14)

and ak is the vector spin-operator of the &th particle. The Gainow-
Teller selection rules are then Ai = 1 or (0-^0 not permitted). This

revised selection rule is the most important consequence of the

interaction H". In general, it is impossible to apply these operators

| Those considerations wore first put forward by L. W. Nordheim and F. L. Yost,
Phys. Rev. 51 (1937), 942.

J G. Gamow and E. Teller, ibid. 49 (1936), 895.



126 THE PROCESS OF ^-TRANSFORMATION Chap. V, 2

to nuclear wave-functions and obtain a numerical value for |M|
2

because the nuclear wave-functions are not known. For the very

light nuclei, however, approximations are possible, and perhaps the

most useful of these is Wigner's theory of the symmetric Harnil-

tonian discussed in Chapter IV. Tn this theory the forces between

nuclear particles are assumed to be independent of ordinary spin and

isotopic spin. It is then possible to classify the nuclear wave-func-

tions into definite
fc

supermultiplets
'

the members of which have the

same space-dependence and differ only in spin and character coor-

dinates. In this approximation, therefore, ^-transitions take place

only between members of a given supermultiplet and the integral

over coordinates in M is unity. The calculation of |M|
2

is then a

matter of summing over spin and isotopic spin-coordinates alone.

These sums have been computed by Wigrierf for certain simple cases

and applied to nuclei for which one can be reasonably certain about

the orbital angular momenta of the particles. Four of these values for

|M|
2 are shown in Table X.

TABLE X

The values |M|
2 for both the Fermi selection rules, |J/(1)|

2
, and the

Gamow-Teller rules, \M(a) |

2
, are given; and the last column, labelled

ft''

ft'-\M(<,)\*.ro(W/mc*)Ti, (15)

where TJ is the observed half-life of the disintegration and 7 is the

function defined in eq. (7). The value offt' should be the same for all

transitions if H" is the correct operator and if the theory of the

symmetric Hamiltonian were exact. Variations in ft' are probably

representative of the crudeness of the approximations made. J The

t K. Wigiier, Phy*. Rev. 56 (1039), 519.

J It has been recently pointed out by E. ,1. Konopinski (ibid. 72 (1947), 518)
that a possible difference between the theoretically predicted and the observed

value of the /2-docay constant of H3 can be interpreted in terms of the finite mass of

the neutrino. Tn fact, assuming that the rest-mass of neutrino is zero, and taking
for the matrix element of the transition in question the theoretical plausible value

|M|
a

3, one calculates the moan life of H3 to be about 200 years as compared with
the observed value of only about 30 years. Konopinski points out that, because of the

very small total energy of this j3-docay (K 15 kv. -= 0-021 me2
), a comparatively

small mass of the neutrino would change quite considerably the energy partition
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variation can obviously be reduced in Table X if a combination of

H' and H" were used in place of H" alone, and there is no a priori

reason for not doing so, but the uncertainties do not justify the

attempt. It is possible that with more accurate data and a better

understanding of the wave-functions of light nuclei a quantitative

analysis of this kind can be made and a decision reached as to whether

the selection rules are purely dramow-Teller or whether there is an

admixture of the original Fermi interaction.

An analysis of the form of the true interaction would also be pos-

sible with accurate information on the complex spectra, such as F20

and Be7
,
where the nucleus decays to states of two different spins.

The information required is the relative strength of the two spectra,

their maximum energies, and a knowledge of the nuclear wave-

functions. An analysis of this type has been made with existing

data by Gronblom,*)* the principal result of which is substantial

evidence for including the operator H".

The values of ft' occurring in Table X determine four values of the

interaction constant g, according to the formula,

2 = 2wW In 2
g ~~

Just what the natural units should be for g is not known, but the

four numerical values obtained in this way from the data in Table X
are: 1-72, 1-34, 1-03, and 1-51 all times lO"49

. About the nearest

nuclear quantity of the correct dimensions is the square of the

nuclear magneton times the fine structure constant a^ 1-8 x 10"49
,

but there is no theory to connect this quantity with g.

The difference between the elementary theory presented in this

section and the more complete theory of the following section is

merely that we have not used the correct relativistic forms for the

waves of the electron and the neutrino. 80 far as allowed spectra are

concerned the results are essentially the same for the light nuclei.

between the two omitted particles, thus leading to a different value of total A for the

?amo upper limit of jS-spoctrum. With the finite mass
/u,

of the neutrino the integral

standing in the expression for the decay constant takes the form :

[n order to bring the theoretical value of the lifetime of H3 to the observed value by
ising this formula, it -is necessary to asmttne the rest-mass of the neutrino to be about -fa

if the electron mass. A more definite answer can bo given, however, only by the direct

measurement of the energy distribution in the /J-spectrum of H3
, cf. Appendix 111.

f B. Oronblom, Phys. Rev. 56 (1939), 508.
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There are important differences, however, in the effect of the

Coulomb field on allowed transitions in the heavy elements and in

almost all forbidden transitions.

3. Field theories of -decay

Fermi'sf original theory of /?-decay employs the major doctrines

of the theory of interactions between fields, viz. the requirements of

relativistic invariance and the quantization of the wave-equations
for the electron and neutrino. The fundamentals of this theory are

sketched in Chapter ITT, so that we can review the Fermi theory

briefly in the language of that chapter. The interaction giving rise

to /?-decay takes place between the nucleon on the one hand and

the combined electron neutrino field on the other. All the particles

involved have spin JA, so that the various covariant quantities that

can be formed are the same as those presented in Table II of Chapter
III. Fermi assumed that the interaction takes the form of the scalar

product between the polar vector formed by neutron and proton
waves with the polar vector formed by electron-neutrino waves. Ifwe
let *F be the wave-function of the proton, <P that of the neutron, and

and
</)
those of electron and neutrino, as in the preceding section, the

relativistic form of Fermi's proposed interaction may be written :

Zx. (16)

This particular form was chosen in direct analogy to the form of

interaction between an electron and the potential four-vector of an

electromagnetic field, (A,^4 ), as given by Dirac's theory:

H' = e

As is well known, the emission of light quanta is effected only by
the term in A. In this respect, the /?-decay interaction is more

general since, in the latter, the time components in the product of

vectors also gives rise to particle emission.

We may interpret H r

in eq. (
1 6) in terms of the quantized wave-

equation. The first set of terms corresponds to the simultaneous

creation of a proton and an electron, through the appearance of the

operators
l
F(x)

+ and 0(x)+, and at the same time that a neutron and

a neutrino are annihilated, as expressed by the operators O(x) and

f E. Fermi, loc. cit.
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c(x). All these events take place at the same point in space, x.

Hence these terms give negative electron j8-radiation. The latter

half of the integrand in eq. (16) causes the disappearance of a proton
and an electron at the same time and place that a neutron and a
neutrino appear. The electron may disappear from the #-shell of
the atom (7-capture) or from a negative energy state (positron

emission). The 'hole theory' of negative energy states is extended
to neutrinos also. If we had insisted that both electron and neutrino
be created in the negative jS-emission, both would be absorbed in

positron radiation, and the components of the four-vector operator,

(<xx> ocy , ocz , 1), as applied to the light particle waves, would be multi-

plied by the factor i/?ay . The components would then be ( /fo^, ip,

pcrx , ifioLy)
in the same order.

It will be noted that, by quantizing the nucleon waves as well as

the light particle waves, one has automatically expressed the opera-
tor Q which changes neutron into proton and vice versa.

Fermi's theory can now be generalized to include scalar products
of any of the five covariant functions of two nucleon waves with the

corresponding contravariant functions of electron-neutrino waves, as

outlined in Chapter III. In principle, therefore, the theory admits
of five independent values of g, one for each invariant form. Generally

speaking, the components of the invariants can be divided into large
and small components. The large components are independent of the

velocity of the nucleons, whereas the small components contain a in

an odd power. The small components can be neglected, consequently,

except when the large components do not contribute because of
a 'forbidden' change in spin or parity. Among the five covariants,
the pseudoscalar has no large component. The forms of the five

possibilities and their large components are presented in Table XI.
In that table we make use of the spin-vector operator :

a= (Ji)axa. (18)

TABLE XI

Relativistically covariant operators

3595.61



130 THE PROCESS OF ^-TRANSFORMATION Chap. V, 3

It is evident that from the point of view of allowed transitions there

are only two distinct types of matrix elements, 1 and a, which are

the forms discussed in 2 as leading to Fermi and to Gamow-Teller

selection rules, respectively.

We now turn to the interpretation of the /^-process in terms of the

meson theory. This will lead to two results in addition to those

above: (1) a decomposition of the factor g into other interaction

constants, and (2) a specialization of the forms of interaction, so that

only certain covariants in Table XI are required. In addition one

would like to be able to connect this interpretation with the observed

mean life of the cosmic-ray meson (2-15 microseconds), thus fixing

the ability of the meson to disintegrate into electron and neutrino by
an independent measurement. We shall see that this leads to a

contradiction, at least with the weak-coupling meson theories.

For simplicity, we consider first the case of the negatively charged
scalar meson (spin 0), with the wave-function U. The invariant form

of interaction between meson and electron-neutrino will then contain

the product of the scalar U with the scalar function ^
+
j8<:

H' = g' j t/(xMx)+jfy(x) dx+g' j P(x)+flx)+Jty(x) dx. (19)

The first term in H' gives the disappearance ofthe negative meson and

the neutrino, coincident with the appearance of an electron. The

second term gives the reverse process. The wave-function represent-

ing one free meson per unit volume (Chap. Ill) is, for wave-number k :

U(x) = (~\^e^' r
-^oi\ k* = &+&*, = I55. (20)

\ * o /
"

Hence, for a meson at rest (/; 0), the factor U in eq. (19) is simply

equivalent to (4arh
2
/m)*. The transition probability due to (19) is then

W =
^|#'IV, (21)

where pev is now the density, per unit energy, of final states represent-

ing an electron and a neutrino flying apart in opposite directions and

with total momentum zero. The momentum of each is, therefore,

Jtnc, and pfv becomes (we consider here all plane waves, rather than

expand in states of angular momentum as before):

w ='- <22)
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The plane-wave solutions of Dirac's equation, belonging to the

energies E are four in number, comprising both signs of the

energies and both orientations of the spin. The four components of

the four solutions form the elements of the matrix

-
(23)

If we let ue be these components for the electron wave and uv for

the neutrino, each belonging to the positive energy \ W and a definite

spin-component, the expression for H r becomes (taking the integral

over unit volume)

and the expression for w becomes

277 ,o47T#
2 1 m2C2

where 2 means summation over the two spin orientations of the
8

electron (or neutrino which must have the same orientation). In the

high relativistic energy region for the electron its rest-mass is

negligible, so that its wave-function, (23), is essentially the same as

that of a neutrino, but for the reverse sign of p. But, according to

(23), one can obtain the wave-functions of positive energy and

reversed momentum by simply multiplying u by j. Therefore,

u+fluv u+ue
1

,
and the sum over spins is just 2. The final value

of w is then 2 V2
' =

fc-
<
24

>

Substituting 200 electron masses for m and 2-15 /xsec. for w~ l
t
we

find a value of g' in units of the electronic charge e

g'
= 2xlO-8

e. (25)

In order to apply this theory to the ^-disintegration of nucleons

we use the wave-function U(x) that is attached to the nucleon rather

than the plane-wave (20). As seen in Chapter III, this wave-function

is determined by the nucleon-density through

/ f -ie\r'-r\= a
!_-

f
(

J \

r ~" r
l

(26)
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Substituting for U(x) in the first member of eq. (19) we get

f -&\r'-r\/ f -&\r'

H< = &
J Y

Mr, (27)

where we have assumed that there is a negligible error in evaluating

the light particle waves at r' instead of at r. This is a valid assump-
tion for light particle waves that are long compared to l/se, i.e. light

particle energies small compared with 100 M.e.v. Now eq. (27) is

precisely the same form of interaction as in Fermi's theory, if the

scalar form of the theory is assumed and if we write for Fermi's

constant g: *

g = 5</'9- (28)
CO

The values of g and g' are determined from the results on /?-decay

and the spontaneous disintegration of the meson, respectively, and

thus serve to determine a value for g, the mesic source strength of a

nucleon. Substituting l-8x 10-49 for g and 2x 10~8e for g' we find g

to be = 80*. (29)

The value of g as determined from the ^-activity is thus over 1 times

larger than that required to account for the nuclear forces. In other

words, to fit with the meson theory of forces and the observed mean

life of the meson at rest, the ordinary /3-decay would have to be 1 00

times less probable for a given energy than now observed. This

represents a fundamental inconsistency in the meson theory of

nuclear forces and j8-decay, at least as originally proposed by Yukawa.

The same type of calculations as those just made have been

carried through for the vector meson instead of the scalar, f This

means that in place of the scalar wave-function U(x) one introduces

the polar vector <

a and the antisymmetric tensor x^ which describe

the meson of spin unity. In this case, two independent forms of

interaction may be chosen, one of which is formed by contracting <^
a

on the polar vector of Table XI, the other by contracting x^ on ^ne

tensor of that table. Through the latter interaction this theory will

t H. A. Bethe and L. W. Nordheim, Phys. Rev. 57 (1940), 998.
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lead to the Gamow-Teller selection rules. Except for a factor of the

order of unity, the numerical results for the vector meson theory
are the same as for the scalar meson theory and the discrepancy in

the two ways of estimating Q persists.

4. Theory of the forbidden ^-spectra

A general, relativistically invariant formula for the probability of

/^-radiation may now be obtained by considering the wave-functions
of proton, neutron, electron, and neutrino as having four components
each, as required by Dirac's theory and then selecting a particular

set of covariants from Table XI. If we select a particular, bilinear

covariant form with components Mk and designate the correspond-

ing contrava-riant components by M'k < the perturbation theory leads

to the transition probability:

w(E) == |V]> \j
( W-E),

(30)

where pe(E) and pv(W E) have the same meaning as in 2. It is

to be kept in mind, however, that the integral appearing in eq. (30)

originates as an operator in the theory of the quantization of the

wave-equation and thus really symbolizes a sum over all possible

light particle states. Application of the formula is greatly simplified,

therefore, when the wave-lengths of the electron and neutrino are

long as compared with the radius of the nucleus. In this case, the

infinitely many possibilities for the product t/j(x)
+M'k <f>(x), which

appears in the integrand, may be classified according to whether

there are 0, 1, 2,..., etc., nodes at r = 0. In general, a product with

w-nodes passing through the origin will have the angular dependence
of a Legendre polynomial of order n and will approach the origin

roughly as rn . Ifwe let R be the radius of the nucleus, the magnitude
of a product with %-nodes will be of the order (WK/fic)

n ~
(Rjft)

n
.

Since we have postulated R <^ A, this means that the higher the

value of n the less probable is the transition.

We may now obtain an approximate formula for the transition

probability by, (1) computing w(E) only for the lowest value of n that

gives a non-vanishing contribution, and (2) neglecting the variation

of ^r(x)+Jffc<(x) with radius. Let L^ be the tth possible product of

the light particle waves (with M'k) having the angular dependence
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characteristic of an associated Legendre function, P<(0,<). Our

approximate expression may then be written:

x||T(x)*J4^0(x)^x
2

, (31)

where one sums over the (relatively few) possible combinations of the

given n. iff(R) means the radial part of 0(x) evaluated at R.

Formula (31) is now of the same form as eq. (1), but generalized

to the use of relativistic wave-functions and with a more explicit

formulation of the 'matrix element'. Tf n the matrix element is

of the same type as considered in 2 and will be designated by MQ .

This matrix element will not vanish (in general) if the orbital angular
momentum of the nucleon does not change in the /2-radiation, and

if the spin does not change. In case theMk are the tensor components
or the axial vector components, the spin of the nucleon may change
also. Under these conditions, we may use the approximate forms

(large components) in Table XI; and substituting the normalized

Dirac wave-functions for the electron in the field of a nucleus of

charge Z in eq. (31) we obtain the formula for WQ that was presented

originally by Fermi:

(32)

as expressed in the 'rational system' of units such that

n = c = m = I

and with
T?
- <xZ(E/pe ), ^ = V(l-a

2Z2
).

If we neglect a2Z2
compared with unity, in eq. (32), we get a working

formula for the lighter nuclei:

w (E) = ^\M^peE(W-Ef^^ (33)

in agreement with the result of the elementary theory of 2. These

formulae are derived on the assumption of zero rest-mass for the

neutrino. In 2 the formula was derived on the further assumption
that electron and neutrino are emitted in $-waves, and this is

essentially the significance of setting n 0. Even in this case,

however, the relativistic formula is a little more involved than the
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non-relativistic one. Let us consider the relativistic form of the

electron wave for which the 'large' components are $-waves, ujr.

According to general considerations, Chapter III, the small compo-
nents must then be P-waves with the radial function ub/r, say.

Except for a common, normalizing factor, the functions ua and ub

belonging to the energy E may be written as the series:

(34)

Let us denote the electron wave-function just described, for which

the functions ua and ub in eq. (34) give the radial dependence of the

large and small components, respectively, by the symbol ($; P)e .

When Z = the functions ua and ub become simple S- and P-wave

radial functions. In fact, if we replace Ej-1 by W Ep, 9 where p
is the ratio of the rest-mass of the neutrino to the rest-mass of the

electron, and set a = 0, we get the ($; P) v for the neutrino. In addition

to these waves, however, the related waves, (P\ S)e and (P\ S)v ,
in

which the large and small components have been exchanged, contri-

bute to wQ(E). Hence, the sum over i in the general formula, eq. (31),

extends over the two terms:

\(S;P)eM'k(S;P)\*B+\(P;S)eM'k(P;S)\*B

^ \(S; 0)eM'k(S; 0) + 1(0; 8)eM'k(0; S)[*R

Ifwe set the mass of the neutrino equal to zero, p = 0, the result (35)

is exactly the same as in the elementary theory for $?$?, except for

numerical factors. It will be noted also ujr (cf. eq. (34)) cannot be

evaluated at r = 0, as in the elementary theory, because this function

diverges as r81
'1 at the origin. Hence, even the /S-waves have to be

evaluated at the nuclear radius, E.

In the computations of eq. (35) it has been assumed that M'k
represents products of the 'large components' of the electron waves

with the 'large components' of the neutrino waves, so that, in terms
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of the approximate forms in Table XI, M'k may be either 1 or a.

Consequently Mk may be either 1 or o and, since the Lj are unity,
the 'matrix element' in eq. (31) is the same as that discussed in 2.

For this matrix element not to vanish, therefore, the orbital angular
momenta must be the same for the neutron state and the proton state,

and, in the caseMk = 1, the spins of neutron and proton must also be

the same, giving the Fermi selection rules. IfMk
= a the spin of the

nucleon may turn over during the transition and we get the Gamow-
Teller selection rules.

If the orbital quantum number of the transforming nucleon must

change during the j8-radiation, i.e. if there is no quantum state of the

daughter nucleus at lower energy and with the same orbital waves,
the matrix element MQ vanishes identically and the transition is said

to be
*

forbidden'. If the orbital quantum number changes by unity,
the transition is said to befirstforbidden. Consider the particular case

that the initial neutron is in an $-state, i.e. the large components are

$-waves and the small components are P-waves, which may be

designated, ($; P)N ,
and the proton into which it transforms is in the

Prstate, (P; S)P . Then the matrix element, M8p , vanishes

M
8P
=

j (P; 8)PMk Ln (8i P)N dx (36)

if we set Ln = LQ
= 1 and Mk = 1 (or o), since then we get an

integral over all directions ofthe product ofan /S-wave with a P-wave.
There are two possibilities for obtaining a non-vanishing integralM8p .

One way is to retain Ln = L = 1 and select a matrix element Mk

that forms products between large and small components. Such
matrix elements appear in Table II in the space-components of the

polar vector, the space-time components of the tensor, the time

component of the axial vector, and the pseudoscalar. Since, however,
the amplitudes of the small components of the nucleonic waves are

smaller by the factor v/c than the large components, where v is the

average velocity of a nucleon in a nucleus, the transition probabilities
of such transitions will be smaller than of allowed transitions by the

factor )8
2 = v2/c

2
. Of course, the large components of the electron

waves will be multiplied by small components of the neutrino wave:

\(P;S)eM'k(S;P)\*,

etc., but at the usual j8-energies, large and small components are of

the same order of magnitude, and we get essentially the same product
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of $-waves (Ltl
= L ). Hence, if the invariant form of interaction

between nucleons and the electron-neutrino field contains compo-
nents Mk , that are odd powers of the a-operators, there will be first

forbidden transitions due to the finite velocity of the nucleons. The

energy distribution of the electrons will be given by eq. (32), as before,

only multiplied by a factor of the order )3
2
(provided also that the

rest-mass of the neutrino vanishes). Presumably the factor jS
2 is

relatively insensitive to the energy of the j8-radiation. Referring to

Table XI, it will be seen that the spin-selection rules for these transi-

tions will be the Fermi rules, A* = 0, for pseudoscalar and axial

vector, Gamow-Teller rules, A* = 1 or -> excluded, and com-

pletely forbidden for the scalar interaction.

The second possibility of obtaining a non-vanishing matrix element

(36) is to go back to those Mk that do not mix large and small com-

ponents but to choose Ln
= L Pf*. For these the effective wave

of one of the emitted particles is a P-state, the other an $-state.

This introduces the first surface harmonic into the calculation of the

nuclear matrix element. The matrix element so obtained is, there-

fore, of the same type as those calculated in the emission of light

quanta, and the radiation may be called dipole radiation. Let us

represent the surface harmonic by the unit vector xx :

\M!\* ^ I f x
F(x)*JfA;

x1O(x) dx
2

.

The approximate forms ofMk in Table XI may be applied, so that

when Mk
= 1 the matrix element is of the simple dipole type and

the Gamow-Teller spin-selection rules are obeyed. When Mk
= a,

however, the symmetric tensor may be formed from o andxx (as well

as the vector and scalar) and a total spin change of 2h is possible.

The emission of one of the particles in a P-wave also changes the

dependence of w on the electron energy, at least in principle. The

square of the neutrino wave is proportional to (W E)*E
2 if it is in

the P-state, and the square of the electron wave is a more compli-

cated function. From eq. (34) we see that, owing to terms in Z, the

P-wave component, ub , approaches the origin in the same power of r

as the $-wave. At the nuclear radius, R, the ratio of the first term

to the second, in the series for ub , is 3aZ/2(# l)R, and, in rational

units, 2E == aA*. Hence this ratio becomes of the order of unity

for quite light nuclei, and much greater than unity for heavy
nuclei. Wo therefore evaluate both terms in computing wv In the



138 THE PROCESS OF /^-TRANSFORMATION Chap. V, 4

approximation a?Z2
<^ 1, we may write the shape of the spectrum

in dipole radiations in the general form:

(37)

with pi = E*-l and pi r= (W~E)2
. The a', b

f

,
and c' are small

integers, the values of which depend upon the form of invariant

used.f Suffice it to remark that c' = 1, except when A* = 2 and

then c' = b' = 0. Since for most /J-emitters the term 2Z2
/4Jf2

2 is

much the largest term in Cl9 the value of C\ is a very insensitive

function of the electron energy and the shapes of the dipole spectra

will be essentially the same as for the allowed spectra. This is a

consequence of the peculiar nature of the relativistic wave-function

of the electron in a Coulomb field. The exceptions to this rule occur

for Ai 2, when the spectrum becomes modified by the factor

(Pe~\~Pv)y an<l f r nuclei of small Z and rather high j8-energies so that

all terms in C are comparable in magnitude.
We may summarize the results on allowed and forbidden spectra

as follows. In an allowed transition, the main light particle waves

have no node at the origin, n == 0, and the nuclear matrix element

contains the zero surface harmonic (1). Such transitions might then

be called monopole transitions. The spectral distribution is of the

normal type, eq. (32), and for certain nuclei, as discussed in 2, the

nuclear matrix element is of the order unity. These are the transi-

tions between two nuclear states belonging to the same supermulti-

plet. Henceforth we shall refer to these transitions alone as allowed.

More generally, the nuclear states for heavy nuclei will be mixtures

of states belonging to many different supermultiplets. The proba-

bility of a transition (which must take place between states in the

same supermultiplet since the ^-interaction is symmetric in neutron

and proton) is then reduced by a factor c which represents the proba-

bility that a given supermultiplet is represented in the daughter
nucleus. Thus, even though these are monopole transitions that are

independent of the velocities of the nucleons we shall refer to them

as symmetry forbidden. The term e

first forbidden' introduced above

f Tho values of those integers and similar ones for second forbidden transition are

given by C. L. Critchfield, Phys. Rev. 61 (1942), 249.
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(for historical connexion) then becomes inappropriate and we shall

change this name to parity forbidden. Parity-forbidden transitions

are also symmetry forbidden and, as we have just seen, may be
divided into two classes: monopole and dipole. The parity-forbidden

monopole transitions are then less probable than allowed transitions

by the factor e/?
2 and the dipole transitions by the factor c(WE)z or

Jea
2Z2

, whichever is larger. Generally, the shapes of all these

spectra are expected to be of the Fermi type and, within a given class,

the total transition probability will increase with W5
.

The case in which parent and daughter nucleus have the same

parity but differ considerably in spin requires at least what is known

historically as a 'second forbidden
'

transition. Since such transitions

are forbidden by symmetry also, the name is, again, not too good and
we shall simply call them spin forbidden. One way of accomplishing
such a transition is by choosing n = 1 and mixing large with small

components of the nuclear waves. The radiations are then of a dipole

character, but without change of parity, and are therefore closely

analogous to the magnetic dipole radiations in forbidden optical

spectra. The general properties of these radiations are very similar

to the ordinary dipole parity-forbidden emissions, but with a further

factor j8
2 in the square of the matrix element. The spectral shape is

expected to be normal except when A* = 2, or in very light nuclei.f
The other type of 'second forbidden' transition is by emission of

2ft orbital angular momentum into the field, i.e. with n = 2 and using
the large components of the Mk . This is analogous to the electric

quadrupole radiation of spectroscopy.J
The half-lives of the various multipole radiations are obtained by

integrating the correct expressions for the corresponding wn over all

electron energies from 1 to JF. For changes of spin less than 2 these

integrals lead to a W&
dependence of the decay constant, i.e. to the

Sargent law, even for the parity-forbidden transitions. This comes

t On the other hand, transitions of this type with A& = -h I are of interest only if

Fermi selection rules apply to allowed spectra, since with Gamow-Teller rules
At Jtl can bo obtained with n 0. In the latter case, the dipolo radiations
without change of parity play a role only in -> transitions or if A?' = 2.

J The shapes of the forbidden j3-spectra have been presented first by K. ,T. Kono-
pinski and G. E. Uhlenbeck, Phys. Rev. 60 (1941), 308. An explicit treatment in

spherical coordinates is given by C. L. Critchfield, ibid. 63 (1943), 417.

Expressions for these integrals are to be found in ibid, 61 (1942) in independent
articles by C. L. Critchfield, p. 249 (light nuclei only), R. E. Marshak, p. 431, and
E. Grouling, p. 568.
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about because of the curious effect of the Coulomb field on the P-

waves for the electron, mentioned above. The half-lives for K-

capture are subject to the same classification into forbidden spectra

and are of special interest because the ratio ofprobability of ^-capture
to positron emission is independent of the value of the nuclear

matrix element. The complete form for allowed ^C-capture, corre-

sponding to eq. (32), is

)
. (38)

5. Comparison of experimental results with theory

The lifetime of a /^-active nucleus depends upon so many factors

that it is impossible at the present stage of the investigation to give

anything like a complete analysis of about 200 known ^-activities.

The formulas derived in 4 give the dependence of the decay con-

stant on maximum energy and nuclear charge only for a simple /?-

emission. Many, if not most, of the known spectra are complex, as

is evidenced by the emission of y-rays by the daughter nuclei. The

lifetime of such radiations is determined by the co-operation of all

the /3-spectra that can be emitted. In addition to this, except for the

very simple positron emitters presented in 2, the nuclear matrix

element, i.e. the integral over the nuclear wave-functions, is uncer-

tain in its value. Furthermore, the exact form of the ^-interaction is

unknown, so that, even in those cases for which the matrix element

can be estimated with reasonable accuracy, the magnitudes of the

interaction constants applying to the five independent invariants are

not determined. The fluctuations in lifetime from nucleus to nucleus

arising from these unknowns may be expected to amount to some-

thing less than a factor 100, however, so that the influence of parity

and spin-changes should be evident in the main.

By far the best method of analysing the lifetime of a ^-dis-

integration is to compare the observed decay constant with the

decay constant that would be predicted for an allowed transition

with the same maximum energy. The customary procedure is to

multiply the observed half-life by the function I (W, Z), the form of

which is essentially obtained from eq. (33) by integration
w

I (W, Z) =
J
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the approximate form holding only for the lighter nuclei. We shall

denote this product by ft. The principal shortcoming of this method

lies in the great sensitivity of ft to errors in the determination of W
(since / varies as W5

). This variation introduces further uncertainties

into the analysis. The product/ is then equal to

30

20

3-0 4-0 5-0 6-0 7-0 8-0 9-0

FIG. 19. Frequency distribution of all known values of log ft.

The quantity y represents the number of activities per 0-5 in log ft.

Obviously, the lai'ger the value offt the more forbidden the radiation.

A plot of the frequency distribution of all known radiations as a

function of logft from logft = 3 to logft 9 is shown in Fig. 19.f

There are distinct maxima in the distribution at logft 3*6, 5-0, and

6'6; and a less convincing maximum at logft 7-8. The first maximum
contains all the nuclei that are suspected of having matrix elements

near unity, the really allowed transitions discussed above.

The highest maximum in the distribution appears for lives that are

longer by a factor 25 than those ofthe really allowed transitions. Inas-

much as this peak is, by far, the largest and represents an average
lifetime that is a little too short for parity-forbidden transitions it is

natural to suppose that most of the transitions falling in this region

of log ft are neither parity- nor spin-forbidden but simply symmetry-
forbidden. This would demand an average value of = 0-04, which

is a reasonable guess as to the amount of similarity that might be

f The values of these products are given in Konopinski's very good report on

j3-decay, E. J. Konopinski, Rev. Mod. Phys. 15 (1943), 209.
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expected in complicated nuclei. The hypothesis that these are simply

inter-multiplet transitions, without parity or forbidden spin-change,

is substantiated by the fact that every known /J-active nucleus having

one more neutron than proton (except H3
), and also three more

neutrons than protons, is under this hump. For the most part these

nuclei would not be expected to be forced to make either parity or

forbidden spin-changes, but they are expected to belong to different

3upermultiplets. The 'allowed' natural radioactivities are also in

this hump.

Assuming that the nuclear matrix elements for all transitions,

except the really allowed one under the first peak, are characterized

by the average value of e under the main peak of Fig. 19, the third

peak should contain, for the most part, the transitions that are for-

bidden both by symmetry and by parity. The average lifetime in this

peak is 40 times longer than for the simply symmetry-forbidden

transitions. If the parity-forbidden transition is due to the small

components of the nuclear waves, /?
2 = 1/40, and the indicated value

of v/c is 0-15, in good agreement with expectation. If the transition

is of the dipole type, the ratio depends, in general, upon the form of

the interaction. For all but a very few nuclei, however, the term in

AN /A that depends upon Z2
predominates and, as we saw in the pre-

ceding section, the ratio should be J(aZ)
2
, except when &i = 2. The

indicated average value of Z is therefore about 40, again in agree-

ment with what is expected, especially when one considers that the

hump embraces a factor 4 in ft, either way. It seems justifiable to

conclude that this third maximum contains mostly those transitions

that are forbidden by both symmetry and parity. The 'first for-

bidden' natural ^-emissions fall at the high ft edge of this hump.
The fourth peak on the frequency diagram is so small that a quanti-

tative analysis of its position is of doubtful value. The average life-

time in this hump is about 20 times longer than in the third maximum.

This suggests that the fourth maximum may contain the dipole

transitions without change of parity, and the factor 20 for J(aZ)
2

,

instead of 40, may be due to the higher average Z for nuclei under

this hump. The transitions in this region would then be forbidden

by both symmetry and spin. RaE is the only natural activity definitely

under this maximum.
The general conclusion to be drawn from this statistical analysis

of the half-lives is that most radiations are not forbidden by either
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parity or spin-changes but are slower than really allowed transitions

because of other lack of similarity in the nuclear wave-functions.

This result is easily understood when it is considered that /^-energies

are generally larger than the average spacing between energy-levels

of the lower excitations of most nuclei, so that there is a good chance

of there being an available level in the daughter nucleus of a desirable

parity and spin. The large number of y-radiations following /?-

transitions further supports this view, as also does the experimental
fact that the highly forbidden radiations usually have very low energy.
The spectra of the /^-radiations falling under the first and second

maxima should thus be the normal Fermi type. There is also an

appreciable number of transitions that are apparently forbidden by
both symmetry and parity. Because of the dominance of the Z* term

in the spectral modification factor, C of eq. (37), these radiations

should also exhibit a normal spectrum. Two types of exceptions may
arise to this general rule. If the energy of emission is sufficiently high

(or the charge of the daughter nucleus sufficiently low) the p2E2

terms will dominate. This also happens when A* = 2 for which Ct

has no terms in Z or Z2
. In either case the nature of the deviation

from a normal spectrum should be the same. The electron, if it

carries the full energy of the transition, will have a shorter wave-

length than a neutrino of maximum energy, because the rest-energy

ofthe electron is subtracted from the latter. The factor in the squares

ofthe momenta thus enhances the high-energy region ofthe spectrum,

relative to the low-energy region, and the Kurie plot should be con-

cave to the axes at its high-energy end.

Two of the more carefully determined /J-spectra are those of P32

and RaE which fall under the fourth maximum. There are significant

deviations of these spectra from the normal one, but in each case

the high-energy end of the Kurie plot appears quite straight. If the

transitions were of the quadrupole type, or dipole with spin change of

2, there should be deviations, and Konopinski and Uhlenbeck (loc.

cit.) have analysed these spectra on that basis. They find that a

judicious mixture of the two types of multipole can fit the spectra

over a considerable range. The mixture of types is necessary because

the relative weights of electron and neutrino momenta are different

for the two, and a fit can be found by taking a linear combination of

them. It is possible, in view of the straightness of the high-energy
ends of the Kurie plots, that both these spectra are normal and the
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deviations are instrumental. A transition falling under the fourth

maximum in Fig. 19 can have a normal spectrum if it is a transition

between nuclei of zero spin, for example, and such might be the case

for RaE. It is also possible that P32 is a parity-forbidden transition

that really belongs to the third maximum.
There are a few well-established ^-activities of much longer lives

than those included in the statistical analysis. Notable among these

are the naturally occurring K40 and Rb87 and the artificially produced
Be10 and C14

. A table of these four activities containing the spins

of the parent and daughter nuclei is given in Table XII. The spin

TABLE XII

changes in K and Rb are known in so far as there is no detectable

y-radiation. Their values of 4 and 3, respectively, indicate rather

highly forbidden transitions. A careful study of these transitions has

been made by Marshak (loc. cit.) and by Greuling (loc. cit.), who con-

clude that both are 'third-forbidden', i.e. they are forbidden by sym-

metry, parity, and spin. The light nuclei, Be10 and C14
,
are probably

in the spin-forbidden class, the extraordinarily large value of log ft

being due to the small charge and the low energy. But efforts to

account for their forbidden character have been completely fruitless.

The case of Be10 is very difficult to understand when one considers

O10 which decays, by positron emission, to the same nucleus as Be10

does and which differs from Be10
only by interchange of neutrons and

protons. The C10
activity is in the really allowed class. Evidently

C10 can go to an excited state of B10 that is inaccessible to B10
. It is

improbable that the Coulomb field of such a small nucleus could

cause a great difference in the states of Be10 and C10
.t

In addition to the known, long-lived activities there are several

pairs of neighbouring isobars among the apparently stable elements.

t Oppenheimer has suggested that the disparity in the predicted lifetimes of Be10

and C10 could be understood if the neutrino that is emitted when there is a change of

spin has a finite rest-mass, so that the energy available to the electron in the low-

energy spectra is much smaller than in the normal Fermi theory.
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The pairs of this type are Sb123 Te123
, In113 Cd113

,
Sn In115

,

and Os187 Re187
. If the energy-difference between ground states of

neighbouring isobars is too small to permit electron emission it

should be possible for the nucleus of higher charge to absorb an

orbital electron. In principle, therefore, neighbouring isobars are not

both stable. Actually, the energy-difference may be so small that the

half-life of the unstable nucleus is too long to be detected, especially

if the transition is forbidden by spin or parity. Even for allowed

transitions, the activity is probably undetectable if the maximum

energy of the jS-particle is 0-1 M.e.v. (plus rest energy) ;
and since the

usual energy-difference is 2 or 3 M.e.v., it is not surprising that 5 out

of over 200 nuclei have neighbouring isobars.



VI

SPONTANEOUS DISINTEGRATION OF ATOMIC
NUCLEI

1. Energy considerations

WE shall now consider the processes in which an atomic nucleus splits

spontaneously into two or more distinct fragments.
The possibility of such a spontaneous division of a nucleus is

determined by the difference between the binding energy of that

nucleus and the sum of the binding energies of the fragments into

which it divides. A rough analysis of the energies of binding can be

based on eq. (4) of Chapter IV which expresses the binding energy
in terms of the mass-number A and atomic number Z (using also the

isotopic spin T^
= \(A 2Z)). In order to make use of that equation

one should substitute the empirical expressions for L and L' that

have been found in Chapter IV. This leads to a cumbersome formula

for BE which we shall simplify, in the usual way, by retaining only
those terms that are essentially proportional to A in higher than the

zero power and by approximating L as it occurs in ^LT^T^+ty by
its value for the heaviest elements. Moreover, for the present dis-

cussion, it is convenient to convert BE to units of M.e.v., and we
obtain finally:

BE = -14-6^+ 14-6^*+0-60^+ 77-?i, (1)

which is a simple generalization of eq. (10) of Chapter I.

Let us consider, as an example, the case in which the nucleus A
splits into two parts with mass-numbers ocA and (1 OL)A and assume

that the electric charge is distributed on the fragments in proportion
to their masses. Then, the first and last terms of eq. (1) are simply
additive and the difference in binding energy may be expressed :

^2
&BE = l4-6^[l-(x-(l-a)*]+0-60^[l-^-(l-

a)]. (2)

If ABE > a spontaneous division is possible, if ABE < it is not.

Thus for each set of values ofA and Z expression (2) determines the

range of fragment sizes for which the process is possible. The results

of such calculations are given in Fig. 20, from which we see that for

the elements of the first half of the periodic system a spontaneous
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break-up is impossible for any ratio of masses. For Z > 42 a divi-

sion into two fragments becomes possible, first for a = 0-5 (where the

expression for \BE has a maximum) and as Z increases for a wider

range of fragment ratios. Thus for tin (Z 50) the smaller fragment
may contain as little as 15 per cent, of the original nuclear mass

(atomic weight > 18) ;
for Yb (Z = 70) this limit falls to only 6 per

cent, (atomic weight > LO), whereas for the last few elements of the

10 20 30 40 50 60

FIG. 20.

80 90

system the emission of fragments with the mass 4 (a-disintegration)
becomes energetically possible,f

In a similar way we may investigate spontaneous nuclear splitting

into three or more fragments, or the cases in which the electric

charge is not distributed among the fragments in proportion to their

masses. One finds, for example, that the heavy nuclei, like that of

uranium, can split exoergically into as many as fourteen fragments
of about equal size, and that the lower limit of Z necessary for such

multiple splitting increases rapidly as the number of fragments
increases.

There are two important cases of the spontaneous disintegra-

tion of atomic nuclei occurring in nature, viz. natural a-radiation and
the spontaneous fission of U238 first observed by Petrzhak and
Flerov. J The reason for these phenomena being the important ones

is, of course, that their rates of reaction happen to be observable.

t The limit for the spontaneous emission of lighter nuclei (He
3
, H3

, and H 2
) lies

at considerably higher atomic numbers because of unfavourable energy-balance
resulting from abnormally low binding energies of these nuclei.

J J. S. Petrzhak and G. N. Flerov, J. Phya. U.S.SM. 3 (1940), 275.
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More details of the physics of the processes of fission and of ex-

emission will be discussed in the ensuing sections. For the present

we shall illustrate some of the limitations of our rough energy-

considerations by studying further some of the properties of the

fission of the uranium nucleus.

According to the formula (2) the greatest amount of energy is

released if the two fragments are of equal size, a = |. Substituting

this value into eq. (2) we get
72

22., (3)

which for U238
yields 156 M.e.v. This energy-release is mostly con-

tained in the kinetic energy of the fragments as they fly apart, but

some is retained as vibrational or other excitation of the fragment
nuclei (since eq. (1) is for the lowest state of a nucleus). Generally

speaking reaction rates increase with the energy release, so that one

should expect, on the basis of our rough analysis, that the most

favourable mode of division of the uranium nucleus would be into

two fragments of equal mass and that the statistical distribution of

fragment sizes would have a maximum at A = % 238 = 119. The

observed distribution of the masses of fragments from U236 is shown

in Fig. 21.f It will be noted that the most favoured mode of division

is not into two fragments of mass 118 but rather into fragments of

masses 96 and 140. The proportionate proton numbers are 38 and

54 and neutron numbers 58 and 86. According to eq. (2) such a ratio

ofmasses would release only 143 M.e.v. From the nature ofthe neutron

and proton numbers involved in the asymmetric fission it would

appear that the 'shell-structure
5

in nuclei, particularly those shells

characterized by the numbers 50 and 82, so distorts the dependence of

binding energy on the number of particles that more energy is released

by dividing asymmetrically. Such effects are not included in eqs. (1)

and (2).

That possible neutron (and/or proton) shells influence the mass-

ratio in fission, as suggested above, is mere conjecture at the present

time. There is an interesting corroboration of the existence ofneutron

shells at 50 and 82 in the fission process, however, which illustrates

| From Rev. Mod. Phya. 18 (1946), 513. The curve given here corresponds to the

fission of the excited compound nucleus formed by the absorption of incident neutron.

However, one would expect that the distribution of fragments originating in spon-
taneous fission would be about the same.
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also another type of spontaneous disintegration of a nucleus. Con-

sidering the above example of the most favoured division of U236

we found the proton numbers belonging to Sr and Xe. The corre-

sponding neutron numbers, however, are 8 too many for the

heaviest Sr isotope and 4 too many for the heaviest Xe isotope. In

-2-

-3-

IqgN
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60 70 80 90 100 110 120 130 140 150 160 170

MASS-NUMBER
>-

Km. 21. Relative number of various frag-
ments produced in the fission of U 23*

(= U 235+n) nucleus.

general, the fission fragments will have too many neutrons, propor-

tionately, to be stable, so that they will undergo several ^-disintegra-
tions in series so as to attain neutron and proton numbers that are

stable for the given atomic weight. In a few of these j8-decay series,

however, the mass-number does not remain fixed but decreases by
unity somewhere along the line. That is, a single neutron is emitted

by one of the daughter nuclei and this represents a third type of

spontaneous disintegration in which a single nucleon separates from

the main body of nucleons. If one uses eq. (1) to estimate the

neutron excess necessary to make it energetically possible to emit a
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single neutron one finds values much larger than those common in

fission fragments. It would appear, therefore, that neutron emission

by fission fragments (the delayed neutrons that are so important to

controlled chain-reactions, Chap. X) is made possible by the circum-

stance that certain neutrons are much more weakly bound to their

nuclei than eq. (1) predicts. Two of the isotopes that emit delayed
neutrons have been identified and these are:

53I
137 -

54X6^7 -> 54X6^+71,

indicating that the 51st and 83rd neutrons are particularly weakly
bound (or not at all). It should be pointed out, however, that

disintegration of a nucleus A into one neutron and a nucleus A I is

in a different class from a-emission or spontaneous fission since the

neutron emission should take place almost instantaneously, whereas

disintegrations involving charged fragments take many years. The
finite half-lives of the delayed neutrons are due to the ^-radiations in

the series.

2. Nuclear potential barriers

In considering the relative probabilities of various modes of spon-
taneous nuclear disintegration it is important to remember that these

probabilities depend not only on the energy liberated in the process
but also on the masses and charges of the fragments formed. Thus
the most probable way of splitting will not coincide, in general, with
the most exoergic way and, in fact, we shall see that the splitting
of the uranium nucleus into the two heavy fragments formed in spon-
taneous fission is a million times less probable than the splitting into

an alpha-particle and the nucleus ofUX I (natural a-decay) in spite
of the fact that the former process liberates 50 times greater energy
than the latter.

We shall discuss separately two extreme cases of nuclear break-

up characterizing the two important categories cited in 1 : the case

when one fragment is much smaller than the other, and the case in

which there are two fragments of approximately equal size. In the
former case one can assume to a good degree of approximation that
the separation of the small fragment from the large one is not accom-

panied with any appreciable deformation of the original nucleus, so
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that the problem can be treated in terms of the motion of a relatively

light mass point in the field of the undisturbed residual nucleus. The

potential energy of the system in this case will be represented by a

curve of the type shown in Fig. 22, where r is the radius of the

resulting product-nucleus (= l-22xlO-18
.4*cm.) plus the radius of

emitted particle. Since in the ordinary a-emitters the height of

the potential barrier thus formed is several times the energy of the

a-particle, the principal part of the barrier, in its effect on the

oc-particle, is determined by the Coulomb interaction and the exact

O Q
FIG. 22. FIG. 23.

shape of the rise of potential at the surface of the nucleus is rather

immaterial. For such a barrier we may assume:

U = UQ = const, for r < r ,

Z f

(ZZ')e*U = for r > r
,

where #' Z) is the charge of the smaller fragment.

In the other extreme case of nuclear splitting into two almost

equal fragments, i.e. the fission process proper, the situation is

entirely different since, in this case, the splitting is preceded by a

severe deformation of the original nucleus. This process of deforma-

tion has been studied in great detail by Bohr and Wheeler in their

fundamental article on the theory of nuclear fission.f In Fig. 23

we give schematic pictures of various characteristic stages leading to

the fission of a liquid droplet. For the lighter elements, in which the

electric forces are small compared with the forces due to surface

tension, the final separation into fragments would not occur until

the deformation reaches the stage (d) in which the two parts are

t N. Bohr and J. A. Wheeler, Phys. Rev. 56 (1939), 426.
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connected by a very narrow neck of liquid. Hence, in this case, the

critical energy necessary for separation (i.e. the height of the potential

barrier) can be calculated as the difference between the energy of the

original nucleus and that of the two fragments just tangent to each

other. One finds, writing the surface energy as 47rrJ !

which can be written in the form :

(5)

where x = L

y 94

Thus we see that for the lighter nuclei the

critical energy of deformation is a linear

function of the parameter Z2
/A.

In the opposite case of very heavy elements, in which electric

forces play a predominant role, the complete separation of the
nuclear droplet is expected to take place already at an early stage
of the deformation since the repulsion between the charges carried

by the two halves of a slightly elongated droplet will be strong

enough to increase the elongation against the opposing tendency of

the surface tension. To study this process in greater detail we shall

represent an arbitrary deformation of the nucleus in terms of surface

harmonics of various orders. If we write r(0) for the distance from
the centre of the nucleus to a point on its surface at the colatitude 0,

an arbitrary deformation of the body, having axial symmetry, can
be expressed in the form :

r(0) = r {l+a + aa P2(coB^)+rt8 P8(c(iB^)+a4 P4(cos^)...}, (8)

where P
i
are the Legcndre polynomials of the order t.f For any set

of vibration amplitudes, a2 , a3 ,
a4 , etc., we have to choose a in such

a way as to keep the volume of the nucleus the same. As can be seen

from Fig. 24 representing the various modes of vibration correspond-

ing to the various terms in (8), nuclear splitting into i fragments
involves the action of the iih harmonic. Since we shall be interested

f The term corresponding to P1(cos0) is missing from the expression because it

represents a simple translation of the nucleus as a whole and is of no interest to the

process.
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here in the most important case of nuclear splitting into two frag-

ments, we shall consider primarily the effect of the P2
-vibration.

Straightforward calculations on this model show that the change in

the combined surface- and electric-energies effected by the deforma-

tion (8) is given by the expression :

.]. (9)
M)0 -^

This expression includes also the terms in a4 which are necessary
because of the strong coupling that sets in between the second and

fourth modes of vibration for appreciable amplitudes. By minimiz-

ing (9) with respect to a4 we find a4
=

fjfaf which permits us to

express the minimum energy of deformation in terms of aa alone.

The negative sign in the relation between a4 and a2 emphasizes the

fact that in the later stages of its elongation the nucleus must

develop a cavity around its equatorial belt (cf. Fig. 23) in preparation
for the separation.

Inspecting the coefficient of the main term in eq. (9), i.e. that

proportional to o|, we find that it becomes negative for sufficiently

high values of Z
;
when this is the case the nucleus is intrinsically

unstable since an infinitesimal deformation will lead directly to

fission. Thus the condition for stability, ensuring the existence itself

of a given nucleus, can be written in the form :>-
Z* 40^11 ZA

Substituting numerical values, we find (Z*/A)Um = 47-8, as com-

pared with the value of only 922
/238 = 35-6 characterizing U238

.

Assuming that for transuranic elements A is approximately propor-

tional to Z, we find that the limit of nuclear stability will be reached

in the neighbourhood ofZ=^ 120. It must be remembered, however,

that the irregularities caused by nuclear shell-structure might shift

this estimate quite considerably towards smaller Z's and better

agreement with observation (cf. also App. IV).

In a system close to the limit of nuclear stability, so that a com-

paratively small deformation brings the nucleus 'to the upper rim'
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of the potential barrier, formula (9) may be used for the calculation

of the critical deformation. By direct calculation one finds that the

maximum value of &E is attained for a certain value of aa :

a2 a2Crit> (^)
and that at this point:

-x)'...], (12)

(13)where x =

has the same meaning as in formulas (6) and (7). Thus, for example,

U

I 2 3xlOH2cm.

Separation between Fragment centres

Fiu . 25 . Schematic presentation ofnon-oquilibrium
transition taking place during the fission process.

we obtain for the U238
-nucleus, &ECTii c 6 M.e.v. The shape of the

potential barrier corresponding to the general case of heavy nuclear

fission is shown schematicallyin Fig. 25. Making a reasonable interpola-
tion between the expression (6) which gives the critical deformation-

energy for light nuclei, and the expression (12) which is applicable to

the heavy ones, one can construct the curve, Fig. 26, representing the

general dependence of AA7

crit on the parameter: x = (Z*IA)/(Z
2
/A) lila .

The calculations above of the energy of a deformed nucleus are
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based entirely on the classical picture of liquid droplet deformation,
and it is important to see whether such an approach is valid, as an

approximation, from the point of view of quantum mechanics. The

possibility of using the classical picture depends essentially upon
the smallness of the ratio between the zero-point amplitudes for the

0-3

0-2

0-1

0-72 073 074 075 0-76 0-77

x-

.(-?),.
0-2 0-4 0-6 0-8 1-0 1-2

(w-l)(/t+2)(aw+l)-20(w-l).rJ-i. (14)

FIG. 26. Dependence of critical deformation energy on the parameter:
Z2

fA, as calculated by Bohr and Wheeler. The region of radioactive
elements represented separately in the upper right corner.

oscillations discussed above and the nuclear radius. A simple calcula-

tion gives for the square of the ratio in question the values :

/~\2 __ A-l\
\

(

*/i /zero-point **
To"

Since

this ratio is indeed a small quantity, and it follows that deformations

of magnitudes comparable with nuclear dimensions can be described

approximately classically by suitable wave-packets constructed from

the various quantum-mechanical solutions. In particular, it can be

shown that the critical deformations leading to fission of heavy
nuclei like uranium or thorium are large compared with the amplitude
of the zero-:point vibrations, so that the entire fission process of these

nuclei may be treated in the classical manner as done above.

We may mention in conclusion that, from the practical point of
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view, the fission process of atomic nuclei is a nearly irreversible pro-
cess, and if we imagine the two fragments resulting from a fission

to be reflected without loss of energy and to run directly towards
each other, the electric repulsion between their charges would

ordinarily prevent them from coming into contact. In fact, the
difference in energy between two spherical fragments coming into

contact, and the fused single nucleus, is given for all atomic weights
by eq. (9), and we see from Fig. 25, in which this energy-difference
is shown by the broken line, that it always lies considerably higher
than the critical energy needed for fission. Thus the energy made
available in the spontaneous fission of a heavy nucleus is considerably
smaller than the energy that would be necessary to bring the two

fragments back into contact as spherical droplets (cf. Fig. 25). This

apparent paradox can be understood easily if we remember that the
fission process actually takes place in a configuration in which the
sum of surface- and electric-energies has a much smaller value than
that corresponding to two rigid spheres in contact, or even to two

globes distorted by the Coulomb forces. When the original nucleus
breaks up, the two fragments ordinarily will possess shapes very
different from spheres and must be considered, consequently, as in a

very high state of internal excitation. Thus, if we wish to reverse

the process of fission, we must take care that the fragments come
together again sufficiently distorted, and indeed with the distortion

so oriented that contact can be made between the bulges of the two
surfaces. The probability that two atomic nuclei in any actual

encounter will be suitably excited and possess the proper phase-
relations so that fusion into a single system is possible will be extremely
small. Hence the fusion of two fragments can be expected only if

they collide with an energy much higher than that corresponding
to the reverse, fission process.

3. Transparency of nuclear barriers

The phenomenon of spontaneous nuclear decay, in which the
metastable nucleus breaks up into two (or more) parts without any
external influence, is one of the most representative illustrations of

the validity of the wave-mechanics. The wave-mechanical theory
of processes of this type developed historically from an experiment
by Rutherford f on the scattering of ^-particles in uranium that led

f E. Buthorford, Phil. May. Ser. 7, 4 (1927), 580.
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to an apparently paradoxical result. He found, in fact, that

although the spontaneous decay of uranium produces a-particles
with an energy of only 4 M.e.v., no deviation from the inverse

square law of scattering was observed when a uranium target was
bombarded by the a-particles of ThC' which have an energy of

8-8 M.e.v. and which, because of this high energy, can approach the

nucleus within a distance of 3xlO-12 cm. from its centre. The
absence of any deviation from the inverse-square scattering law
indicates with certainty that the outer slope of the potential barrier

surrounding the U-nucleus is formed by the pure Coulomb potential
down to the radius 3x 10~12 cm. where it reaches the height of 8-8

M.e.v. (14 x l()-8 erg). How is it possible that, in spite of such a high

barrier, the nucleus of uranium emits a-particles with an energy of

only 4 M.e.v. ? This fact, which is completely incomprehensible from
the point of view of classical mechanics, can be understood easily
on the basis of the wave-mechanical theory as shown independently

by Gamowj- and by Gurney and Condon.J In fact, the apparently

paradoxical behaviour of the nuclear particle in this case has a full

analogy in certain phenomena attending the reflection of light. It is

well known that if a beam of light falls on the boundary between two
media at an angle of incidence greater than the critical angle, then,

according to geometrical optics, the phenomenon of total reflection

will occur; all the light will be reflected at the surface and 110 distur-

bance will enter the second medium. According to the wave-theory
of light, however, the process of total reflection is much more compli-
cated. On this theory the disturbance in the second medium is not

everywhere zero, but within the space of a few wave-lengths decreases

exponentially to become entirely negligible at greater distances. This

'forbidden' penetration of the disturbance cannot be described in

terms of rays of light at all, the lines representing the directions of

energy-flow being curved and returning to the surface again. If, now,
the second medium be confined to a thin sheet, of thickness less than

the range of penetration of the disturbance already considered, and

if it is backed on the far side by a further portion of the first medium,
a small fraction of the disturbance which has penetrated the sheet

will emerge from the far side. This transmission ofenergy is obviously

t G. Gampw, Zs.f. Phys. 51 (1928), 204; G. Gainow and F. Houtermans, ibid. 52

(1928), 496.

J R. W. Guriioy and E. U. Condon, Nature, 122 (1928), 439, and Phys. Rev. 33

(1929), 127.
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in contradiction to the predictions of purely geometrical optics: it

is, however, established by experiment. The change from classical

mechanics to the wave-mechanics introduces an exactly similar pos-

sibility for the transmission of a particle through a potential barrier

which would otherwise be insurmountable. We describe the motion of

the nuclear particle in the present case by a quasi-stationary de Broglie

wave which gradually decreases in amplitude inside the nucleus on

account of the leakage transmission through the finite potential

FIG. 27.

barrier. Obviously, this description predicts the possibility of observ-

ing the particle, eventually, outside the nucleus; the small trans-

parencyofpotential barriers in general provides theformal explanation
of the extremely long lifetimes exhibited by some a-ray bodies.

We proceed now to develop general formulae for the coefficient of

transparency of potential barriers, considering, first of all, the one-

dimensional case. Let a particle of total energy E fall (from the right)

on a potential barrier represented by an arbitrary potential energy

function U(x), as shown in Fig. 27. We suppose that in a certain

region (xl < x < x2 )
the value of the function U(x) is greater than E>

and that for large distances from this region, on either side, constant

values, U_m and 74a) , respectively, are reached. We write the

Schrodinger wave-equation in the form

where m is the mass of the particle and fi
( h/Sir) is the quantum

constant. Since the potential energy U(x) is assumed to be inde-

pendent of the time, the solution may be written in the form

(16)
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in which T satisfies the equation

=0. (17)

Writing () = *X*>, (18)

eq. (5) reduces to

This equation can be solved by the method of successive approxima-
tions, so long as the first term is small compared with the second.

As we shall see later, this condition, namely

d I I \\ . ,

(2Q)
(ds/dx)

f
< dx

usually holds good for the potential barriers which occur in the theory
of radioactive disintegration. We proceed, therefore, by the method
of approximations, and obtain the first approximation from

*-"<>]- <)

Integrating, we have
X

Sl
= &1

j [V(x)-E\i dx+0,. (22)

X

For the second approximation we substitute from (22) in the first

term of (19), writing s for s. We have

= rv(x)-m*- (24)dx ti,

L ( ' J
2 [U(x)-S\*

'
( '

Integrating this expression, we obtain

,2
-

^|-> J [U(x)-K]i d.r-l}oglU(x)-E]*+C2 . (25)

ir

We may proceed in exactly the same way to the third approximation,
but already it is of no great importance. Thus we have, finally, with

sufficient accuracy

}E^dx}. (26)

XQ

x\.

'



160 SPONTANEOUS DISINTEGRATION OF ATOMIC NUCLEI Chap. VI, 3

This solution is valid only in those regions for which the condition

(20) is satisfied. Using the first approximation for s, we write this con-

dition in the form
* d I 1 \l / i mn\

(27)

An estimate of the order of magnitude of the quantity occurring in

(27) may be made in terms of its approximate equivalent,

* 1
(28)

2
" v '

Remembering that, in nuclear potential barriers, we have to do with

energies of the order of 10~5
erg, and with changes of potential energy

of roughly this amount over distances of the order of 10~12
cm., we

substitute in (28) E ~ U(x) ~ &U(x) ~ 10~5
erg, A# ~ 10~12

cm.,

and obtain (for m ~ 6x 10~24 gm.) the value ~ ^. Near the points

xv #2 (Fig. 27) the left-hand side of (27) becomes infinite, but other-

wise our numerical calculation shows that in practical cases the con-

dition (20) is usually satisfied. In order to carry out the integration

in the regions around xl9 x2 we need to know the analytical form of

U(x), and, having substituted this in (19), to obtain the exact solu-

tion of the wave equation. If, however, these regions (in which

[U(x)E]-* varies too rapidly with x) are small enough, we can make

the solutions for the neighbouring regions on the two sides satisfy

the boundary conditions of continuity and thus deduce the complete

solution by exclusively approximate methods.

Let us return, for the moment, to the more physical aspect of the

problem in hand. We have postulated a beam of particles moving
from right to left and falling on the right-hand side of the potential

barrier of Fig. 27. Our mathematical solution must represent these

particles as well as those reflected, and so moving from left to right,

to the right of the barrier, and those transmitted (moving from right

to left, to the left of the barrier). In particular, at large distances to

the left of the barrier (where U ^= U_^) the solution must represent

an harmonic wave travelling from right to left. Thus in the general

solution (26) we put U = U_m and choose the negative sign of the

exponent to secure the correct direction of motion (compare with

(16)). We obtain in this way

(29)
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representing a wave travelling from right to left, in a region where
Jf --^ TT 4-& *> {-'-WT

In the region x < x < x2 the difference [U(x) E] becomes posi-

tive and both solutions, apart from the arbitrary constants, are real,

one ofthem increasing and the other decreasing rapidly as x increases.

To make the solutions continuous at x xl we must take inside

the barrier the general form with complex coefficients:

X

f[U(x)-E]*<
Xl

(30)
/ J(2m) f \\

+6_exp| ^~
I \U(x) J&]

J
6?a;jl

\
*

I n
It is easy to see that the boundary conditions at x x: (continuity

of *F and d*F/dx) require

b+ = --
b_ =

\

J [E-U(x)]i dx\

X,
'

J [B-U(x)]l

X,

At tlie other end of the barrier, where x = x2 , the second term in

(30) is very small compared with the first. In that case the solution

reduces to

dx X
J [E-V(x)* dx\

a-

'

(32)

To join this function with the solution for x > x2 we must again take

a linear combination of the solutions representing oppositely directed

waves,

a*

-U(x)]-*Lexpld
(^ J

[E-V(xW

J [E-U(xft dx\\, (33)

t x in (29) is a point at a great distance to the left of the barrier, i.e. x < x^
3595.61 M
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and the boundary conditions give

, V *?

U(x)-E]*dx

a. =

\

J [U(x)-N$ dx\.
'

If, now, XQ is some value of x lying at a great distance to the right
of the barrier, the above solution may be written

...
with

-V^)*(x-x\t), (35)

-i
J [E-U(x)y dx+
^0

a*a 0*0

J [t7(ar)-^]l dx+i J [- 17(*)]* di

(36)

dx+

+ J [/()- A'Ji (fe- J [#- I7(a!)]

a-i o;2

These two waves represent the incident and reflected beams of par-
ticles; they appear to have equal amplitude because we have neglected
certain small-order terms (the second term in (30)). In actual fact

a wave of small intensity has been transmitted by the barrier, and

carrying out the calculations to the next order of approximation an

expression representing the conservation of particles is obtained.

The coefficient of transparency of the barrier is given by the square
of the ratio of the amplitudes of transmitted and incident waves,

respectively. We have

= Y(-) 2

A{
E-G

This is the formula which we shall employ in future calculations of the

transparency of nuclear potential barriers. When this transparency
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is small (2<J(2m) J [U(x) E]* dx > ), it is possible to show that

(20), (27), the conditions of validity of the formula, are fulfilled.

We may remark, at this stage, that in certain special cases the solu-

tion ofthe wave-equation may be found directly in an analytical form.

For the Coulomb potential barrier, for example, the solution may be

expressed in the form of confluent hypergeometric functions. Thistype
of barrier is ofgreat importance in the theory of nuclear disintegration,

but here the analytical form of solution does not lead to any greater

accuracy in calculation and we shall not further be concerned with it.

U(r)

FIG. 28.

We are now in a position to develop the general theory of the escape

of a particle from a region surrounded by a potential barrier which

is just the process involved in the emission of an a-particle by an

atomic nucleus. We shall assume spherical symmetry for the dis-

tribution of potential energy around the centre of the nucleus and

imagine that the appropriate function U(r), starting from a certain

finite value at the centre, increases to a large positive value at a

relatively small distance and vanishes for very large distances, as

indicated in the figure. The total energy of the particle considered is

supposed to be smaller than the energy corresponding to the peak
of the potential barrier, but larger than that corresponding to the

bottom of the potential 'hole' in Fig. 28. The wave equation for the

particle may be written in spherical polar coordinates as follows:

, jt
2m TT .. ., .

+---r r7(r)</r==0 - (38)
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If E is the energy of the particle, the solution of this equation will

have the form / \

where T satisfies the equation

1 0/o<m }_L
dr/~

l>2 sin0 00

1 #2XF 2w
^L+ [E-U(x)]W = 0. (40)
o<p n

In so far as the potential energy of the a-particle in the neighbour-

hood ofthe nucleus is independent of the angular coordinates 6 and <,

T may be expressed in the form

T

where Pj is a spherical harmonic of order j (j 0, 1, 2,...) and Xj(
r)

satisfies the equation

dr*

Here j represents the azimuthal quantum number and the last term

within the brackets is to be interpreted as an additional potential

energy corresponding to the centrifugal force. Tn order that *F shall

remain finite at the centre of the nucleus, ^(0) must be zero, as may
be seen by inspection of (41).

We may thus obtain a general solution to (38), but it should be

noted that not every particular case of such a solution represents the

process of spontaneous ejection of an a-particle from the nucleus

which process we wish to describe. Tn order that any solution shall

do this it is necessary first to satisfy certain boundary conditions

appropriate to the physical interpretation in question. We may
specify these conditions, formally, as follows. Let us proceed to

construct solutions of (42) for some arbitrary value of E, inserting,

as above indicated, #(0) 0. For large values of r we obtain in

this way

(43)

where C+ and CL are the complex conjugate functions of 'E and j.

Substituted in (39) and (41), the first and second terms of (43)

represent, respectively, divergent and convergent waves passing
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through the origin. Now the process of spontaneous disintegration
must be described in terms of a diverging wave, only, thus

C+KJ ^ 0; C_Efj
= 0. (44)

At first sight it might seem that the conditions (44) were mutually

contradictory, since C+ and (7_, being complex conjugate functions,

might be thought always to vanish simultaneously. However, it can

easily be shown that this need not be so, if we allow complex values

for E\ complex conjugate functions of the same complex argument in

general give quite different amplitudes. Postponing for a time the

physical interpretation of this procedure, we write, therefore

E - EQ-iE', (45)t

We find now that the conditions (44) define, for each value of the

azimuthal quantum number j, a discrete set of complex E values

which we shall distinguish by different indices n (n = 0,1, 2,...). We
may refer to these as the principal quantum numbers for this set

of states. Here, as in the ordinary problem of electron motion in

the outer atom, we come upon a set of discrete proper values of the

energy, the only difference being that the values are now complex

quantities which on interpretation correspond to positive, rather

than to negative, total energy.

Proceeding now to the interpretation which is necessary to com-

plete the investigation, we must turn our attention to the time-

dependence of
i/j. Substituting from (45) in (39), we obtain as the

time-factor in the wave-function

i(#
-in<)

=
exp(-i^)exp(-:J<).

(46)

Then the probability, ifi$,
that the a-particle will be found in any

particular region of space, inside the nucleus or outside, becomes

aperiodically dependent upon the time:

= exp- = exp(-fc). (47)

hi this expression the quantity A
( 2E'/h) may be recognized as

the disintegration constant which should appear as a result of our

f It may be shown that a divergent wave requires a negative sign in (45), a con-

vergent wave a positive sign*
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calculations. The complex values of the proper energies thus lead

to exponentially decreasing probabilities of finding a particle, of

given energy, in a finite region of space: they are characteristic of

the solution of any problem which deals with decay processes, the

imaginary part of the energy being immediately connected with the

rate of decay. We may also regard the imaginary part of the energy
from a slightly different point of view. The 0-wave diverging from

the nucleus will not be strictly harmonic, the aperiodic factor result-

ing in a damping of the wave. In optics such a damped disturbance

would produce a broadened line in a spectrograph ;
with moving

particles we employ a mass spectrograph, or its equivalent, and here

the broadening of the line will be interpreted as due to an uncertainty
in the energy of the particles. Developing the damped wave-function

by Fourier expansion it may be shown that the uncertainty in the

energy (half-breadth of the line) has the value

&E~hX~E f

. (48) f

From this point of view the average energy of the emitted particles

is given by the real part of the proper energy, whilst the probable
deviation from the average is given by the imaginary part.

Having carried the interpretation so far, it is necessary now to

mention that the complexity of E introduces an exponential term

involving the space-coordinate also. For large distances from the

nucleus, where U(r) -> 0, we evidently have (E' <^ E )

<49)

This implies that the amplitude of the divergent wave increases with

increasing distance and tends to an infinite value at infinity; the

same general result is obtained in all solutions of decay problems,
for example in the classical solution for the radiation from a damped
oscillator. It need occasion no surprise, since it merely expresses the

fact that the disturbance at a great distance from the origin, at any
moment, was emitted from the origin at a correspondingly distant

past time, when the rate of radiation was greater. In the radioactive

f Remembering that the mean time, T, for an a-particle to remain in the nucleus
is given by T 1 /A, (48) may bo written T&E ~ h t which is precisely Hoisenberg's

uncertainty relation, expressed in terms of time and energy.
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decay problem the flux of particles at a large distance r, at a given

instant, must obviously correspond to the strength of the source at

a time r/v earlier. At that time the strength of the source was greater

by the factor
expjA-j expl Xr I

),
which is precisely the factor

to be explained in (49), when it is remembered that (49) gives the

amplitude of the wave and the square of this amplitude enters

into the calculation of the flux. In order to appreciate the relative

magnitudes of the various quantities involved, we may take the case

of radium C', for which E'/EQ is larger than for any other element

concerning which full data are available. Here E = 1-2 x 10~5
erg,

A = 104 sec.-1
,
thus E = EQ i\\fi

= 1-2 x 1Q-5 5-2 X 10-24
i. The

uncertainty in the energy-value is only 4-3 x 10~17 per cent, of the

average energy, and, according to (49), the amplitude of the wave

is not doubled until a distance of 2-8 km. from the nucleus is reached.

Although the method of complex E values, proposed by Gamow,

gives perhaps the most satisfactory representation of disintegration

processes, the necessary calculations are impossible except in respect

of very simple nuclear models, such as that represented by the

rectangular potential barrier discussed in detail by Kudar.| On the

other hand, real nuclei must be treated on the basis of a potential-

energy function for a-particles which at large distances is given by
the Coulomb inverse-distance law and at small distances is modified

by some unknown, rapidly varying, potential function which makes

the resultant potential- energy negative inside the nucleus. In this

case it is possible to obtain a relation between the real and imaginary

parts of the proper energy-values that is between disintegration

energy and decay-constant without in the process determining

the values of En (energies of disintegration) to which the more

complicated model leads. These values are very sensitive to the form

of the potential barrier inside the nucleus, but the EQ X relation

may be obtained without exact knowledge of this form, as we shall

presently discover. This relation may then very usefully be com-

pared with the empirical relation which has already been discussed.

Suppose that we start with the expression, in terms of the wave-

function 0, for the conservation of particles; it is

<5o>

f J. Kudar, Za.f. Phys. 53 (1929), 95, 134.
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the integral on the left being taken throughout a certain region of

space and that on the right over its boundary surface. In the expres-

sion on the right, moreover, n is measured along the outward normal

to the surface element da. In (50) p (= iftf) is the probability density

relative to the particle in question and In I = -
: ^-~- ^-^~ I

the
\ Zmii on on\j

normal component ofthe flux of probability across the surface. In the

case of spherical symmetry,whenwe choose for the region to which (50)

applies a sphere of radius E centred in the nucleus, we can, by using

(39), (41), and (47), transform the conservation equation and obtain

A^X^-xSH XX dr. (52)

We have thus obtained a formula for the disintegration constant

which may be interpreted simply as showing that this constant is

just the ratio of the flux of particles across any large sphere to the

number of particles remaining within the sphere at the instant in

question. A completely analogous relation is often employed for

calculating the damping coefficient for any radiating oscillator in

classical electrodynamics. In using (52) in the radioactive case it

is quite unimportant what value of R we take, provided that it is

large in comparison with r1? the inner radius of the potential barrier.

In fact we have seen that the rate of flow, as determined by

fr
A
arJ

is fairly constant, increasing by a factor 2, only, over a distance which

is almost always greater than 1 km. As concerns the denominator of

(52), to a sufficient approximation we may take the integral here

from r to r = rlt since x decreases so rapidly in the range

PI < r < r2 (within the barrier) that the portion of the integral

corresponding to r > rt is negligibly small. For the radioactive

nuclei xx outside the nucleus is less than 10~16 of its value inside, so

that for R = 1 cm. the contribution of the extra-nuclear part of the

integral will not be more than 0-01 per cent, of its total value. As

we have seen above, the potential energy inside the nucleus may be

regarded as approximately constant; consequently the solution for
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X (for r < rj will correspond very nearly to harmonic oscillations of

amplitude A (say). Then, with sufficient accuracy,

J XX dr ~ IA\. (53)

Also, for large r values we have previously used

Xr^ =
tfexp^^Uir),

(54)

so that the probability flux becomes

"''

where v
e is the velocity of the particle outside the nucleus. Substitut-

ing from (53) and (55) in (52) we obtain

*!'* (56)
'i

Q being the transparency of the barrier, which may be taken over

from (37). Then

ri *\ ft J
" ^ ' "

''

ri

in which expression v
i
is written for the velocity of the particle inside

the nucleus. Remembering that the de Broglie wave-length A^ corre-

sponding to this velocity (mvi
A

i
= h ^rcli) must be an exact sub-

multiple of the nuclear diameter (kA t 2^), where k is the radial

quantum number), we have v
i TrkH/mr^ and may write the expres-

sion for the disintegration constant in the final form

4. Comparison with observation

We shall now compare the results of the wave-mechanical theory
of the transparency of nuclear potential barriers with the known facts

concerning the rates of various types of spontaneous nuclear dis-

integration.
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Spontaneous oc-decay of various naturally radioactive substances

presents us with abundant observational material for comparison with

the theory. The three known radioactive families, that of thorium,

uranium, and actinium, contain altogether twenty-four a-decaying

+5-

0-

-5-

-10-

-15-

McC'y
ThA.

Ac Em-,

ThEm / r/ ^[85;2I6]
RaA <J./AcC

MKlSl^

-20 45678 9mev.

FIG. 29. Geigor-Nuttall diagram of radioactive
families (including the newly discovered a-omitters).

bodies for which the energies of emitted a-particles and the corre-

sponding decay-constants have been measured with great accuracy.
These data are shown in Table XIII, which also includes the

information concerning a number of a-unstable nuclei which do not

normally exist in nature but can be produced artificially by the

methods of modern alchemy.
The observed values of E<x and A were known to be connected

through the empirical law of Geiger and Nuttall (Fig. 29) according
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TABLE XHIf

Properties of known a-emitters

t The data for this tahle are taken principally from W. B. Lewis and B. V. Bowden,
Proc. Roy. SOG. 145 (1934), 235. The data on new a-omitters are from 1. M. Cork,

Bad. and Nucl. Phys., Ann Arbor, Mich., 1946.

J In the case of C-bodies A
(X
are estimated from total A

rt
and the branching ratios.

The 'partial half-lives' are not given as having no physical sense.
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to which the decay-constants of different elements within the same

family increase exponentially with increasing energies of emission.

Since, according to the wave-mechanical treatment, the decay-
constants for a-transformations are essentially the same as the corre-

sponding transparencies of the potential barriers involved, the

empirical relation cited above becomes immediately understandable

from the point of view of the theory.
* In order to derive an exact expression for the decay-constant as a

function of the energy of the emitted ex-particle and of other charac-

teristics ofthe decaying nucleus, we shall use the approximate shape of

the potential barrier discussed in 2 of this chapter and represented

graphically in Pig. 22.

We may notice here that the approximation which is to be adopted
will scarcely affect the value of the coefficient of transparency of the

barrier, since the chief part of the integral in formula (37) is taken

over the region of the barrier where deviations from the Coulomb
law are very small. On the other hand, OUT model will give only very

rough results concerning the energy-levels for a-particles within the

nucleus, as the positions of these depend essentially upon the actual

shape of the potential-energy curve. With this warning, however,
we may proceed to calculate the proper-energies involved. The solu-

tion for r < rQ is

Xxj = AMw (- Wr, (59)

where ^+i is a Bessel function of order j+i- If &
OTj-n are

of these functions, we have

(60)

In the case of radial oscillations

XKfi
=
Am^-(E-U^r, (61)

and we have, simply,

In calculating the decay constant for our model we shall first examine

the case of radial motion; this is precisely what has already been

done in using (37) to obtain the expressions (67) and (58) of 3.
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We may rewrite (58) with the new assumptions regarding U(r) as

follows: -*/*

J
r

The integral in the exponent of (63) may be simply evaluated by
means of the substitution!

= ' (64)

m i. ^ ,, .
fcl xWe have A# =- - exP{ --T--(2^ sm2^ )J, (65)

n ve

where *. = - . (65')

In radioactive nuclei the value of r /r* is small and the exponent of

(65) may be developed in powers of this small quantity. Taking the

first two terms only we obtain a simple formula which is very con-

venient for the calculation of decay constants,

ll)+ 8^[(Z-2)r
A (66)

Tf the azimuthal qiiantum number differs from zero we must take

count of the additional potential energy corresponding to the centri-

fugal force, and obtain the expression for the decay constant in the

form

877-M

In radioactive nuclei (Z 80 to 90; rQ ~ 10~12
cm.) the potential

energy corresponding to centrifugal forces will, in general, be very

small compared with the Coulomb potential energy, the ratio a being

given by --
(68)

Thus, for calculation of the integral (67) we may develop the square

root in powers of the small quantity a. We get, finally,

477-e
2
(Z 2)

rS
t r* is the so-called classical radius of the nucleus, i.e. the closest distance of

approach of the a-particle according to classical mechanics.

% In subsequent calculations we shall always take k = 1.
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This shows that the azimuthal quantum number of the emitted par-

ticle must be assumed 'responsible' for a decrease (for the same energy

of disintegration) of the disintegration probability; if this angular

momentum amounts to several units the decrease may be quite appre-

ciable. As we shall see later, we may obtain interesting information

concerning the changes of spin of decaying nuclei on this basis.

Formula (69), which can be written in the form

- . , , Z 2
iogl A = lo

or, putting in numerical values, as

log10 A = 21-66931-191 X 109

+4-084X 10V(-2)Vr [l-0-001j(j+l)], (71)

corresponds to the empirical relation found between the decay con-

stants and the energies (or velocities) of ex-disintegration for different

radioactive bodies by Geiger and Nuttall (p. 170). We see from (70)

that Iog10 A depends actually not only on the velocity of the ejected

a-particle but also on the charge-number Z* and the radius r of the

nucleus, and that therefore it cannot be represented on a two-

dimensional graph. The reason why Geiger and Nuttall could get

a smooth curve by plotting simply log10 A against K (or v) is due to

the fact that the variation of Z, E, and r in a radioactive series is

practically monotonic as we go down the series. We should expect

certain anomalies in the Geiger-Nuttall graph at the points where this

regularity breaks down. Fig. 29 shows that such deviations actually

occur; for example, for AcX the point does not lie on the curve

and this is due to the fact that the velocity of the a-particles ejected

by this element is smaller than for the previous element RaAc,

whereas, generally, the velocity increases as we go down the series.

The values of Iog10 A as calculated from (70) for a chosen constant value

of r give already a good representation of the Geiger-Nuttall graph

because the small changes in radius from element to element (enter-

ing only in the last term) only slightly affect the results; a much

better approximation can be obtained, however, if we assume that

the nuclear radius varies proportionately to the cube root of the

mass number of the nucleus (see Chap. T).

f Here I = 2-303 is the factor for converting natural logarithms to the base 10.
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Using experimental data for decay constants and energies of dis-

integration we can calculate from (71) the values of

roff = r [l 0-001j(j+l)]
2 -~^ r- [l 0-002j(j+l)], (72)

which we may call the effective radius of the nucleus. The effective

radius is the same as the true radius when the emitted a-particle

r pfX!0
I2

(cm.)

0-9

0-8

0-7

0-6

0-5

ThC

RaC

200 210 ~220~ 230 240

FIG. 30. ( Calculated nuclear radii of various a-emitters plotted as
tlie function of atomic weight. The points for ThC', AoC' and the
now element 7, - - 85 fall considerably off tho general curve which

may bo duo to unreliability of measurements. (It may be also

possible that in these cases tho values of Aj, or E^ wore simply
estimated by means of old Cleigor -Nuttall curves.)

possesses no angular momentum ; (72) shows that in other cases it is

smaller than r . The values of the effective radii for all known
a-emitters are given in Table XIV and are also plotted against the

mass number in Fig. 30. We see from this figure that effective

nuclear radii vary in general smoothly, increasing with the mass-

number. However, the ratio is not strictlyco nstant but increases by
15 per cent, from RaF to U, showing that in the region of radioactive

elements we have a slight decrease of nuclear density with increasing

mass ; this effect may be connected with the formation of a new shell

at this stage.
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TABLE XIV

Calculated effective radii of a-decaying nuclei

It is very important to notice that for all three C-products, as well

as for most members of the actinium family, the values of effective

radii are anomalously small. This, as was indicated by Gamow,f may
be due to the fact that in these cases a-particles are emitted with

angular momentum, different from zero. In order to explain the

deviations observed (~ 5 per cent.) we should, according to formula

(72), suppose that in those cases the angular momentum of the

emitted particles is about 4 or 5 quantum units, or, in other words,

that the spins of the disintegrating and product nuclei differ by about

as much. We will see in the next chapter that the effect of the spin-

change is of particular importance for the understanding of the

phenomenon of the so-called 'fine structure' which is typical for

C-products of all radioactive families.

In conclusion we may remark that there is known one a-decaying

element which does not belong to regular radioactive families, and

is located in the region of considerably smaller atomic numbers. This

is the samarium isotope 62Sm148 which forms about 14 per cent, of

natural samarium mixture. The a-activity of Sm, which was first

discovered by Hevesy and later studied in some detail by Wilkins

and Dempster,{ represents an interesting example of irregularities in

t G. Gamow, Nature, 129 (1932), 470.

J T. Wilkins and A. Dempster, Phys. Rev. 54 (1938), 315.
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energy-balance caused by the formation of nuclear shells. The radius
of Sm-nucleus, as calculated from the known values of A and J0,
comes out to be 0-95 x 1CM2 cm. as compared with 0-70 x 10-" cm!
which should follow from the assumption of constant nuclear density.

Spontaneous emission of nuclearfragments heavier than a by various
radioactive elements is also an energetically possible process (cf.

Fig. 20), and the failure to observe the emission of C-particles (Carbon
nuclei) or O-particles in spontaneous decay of heavy elements must
be ascribed entirely to the low probability of such processes. To
illustrate this statement let us calculate, for example, tlie probabili-
ties of the following spontaneous disintegrations :

16. (74)
The energy of emission in these two examples can be calculated as the
difference between the sum of a-decay-energies between the initial and
the final nucleus, and the binding energy of the emitted particles rela-
tive to He atoms (i.e. a negative energy). In the first case we have:

EG = [4-54+4-79+6-40+7-44] M.e.v. = 22-3 M.e.v.

and in the second:

E = [4-54+4-79+ 5-49+ 6-11+ 14-04] M.e.v. = 35-0 M.e.v.

Using these values for the energies, along with the corresponding
values of masses and charges of the emitted particles, we easily
obtain the pertinent decay-constants :

Ac(Io) ^ 10~125 seo.-1(T ^ 10118 years)

A (Io) ^ 10~153 sec.~l
(T ^ 10146 years).

The fact that there are only 10~112 carbon and 10-140 oxygen nuclei
emitted per one ex-particle easily explains the failure to observe the
emission of the heavier nuclei.

Spontaneous fission of the U-nucleus has been mentioned already
in 1 as first observed by Petrzhak and Flerov, who estimate that
there is one fission process per million a-decays ; thus the value of
Afla is about 5xlO~24 sec.-1 Theoretical calculation of the fission

process was first attempted by Bohr and Wheeler (loc. cit.) and was
later elaborated by Present, Reines, and Kmpp.f The fission process
is so complex dynamically, however, that the theories are not ade-

quate to make quantitative predictions (of. App. IV).

t H. D. Present, F. Reinos, and J. K. Knipp, ibid. 70 (1946), 557.
3595 .61 -M.

JN



VJI

ELECTROMAGNETIC RADIATION OF NUCLEI

1. y-spectra and internal conversion

THE atomic nucleus, being a quantized system, is in general capable
of existence in any one of a number of states of different energy.
In its various excited states it may be characterized by definite

probabilities of transition to the various states which have smaller

energy than the state in question: when such a transition occurs it

will usually be with the emission of the excess energy in the form of

a quantum of electromagnetic radiation. This is the formal descrip-

tion of those nuclear processes which are involved in the emission,

in spontaneous and artificial transformations of nuclei, of a quantum
radiation to which the name y-radiation is generally given.

In so far as the energy-differences between nuclear levels are in

general much larger than the corresponding differences for the extra-

nuclear system, the wave-lengths of y-rays are much shorter than

the wave-lengths of atomic radiations and the ordinary methods of

spectroscopy using ruled gratings or crystals are hardly suited to

them. When these methods have been used as originallyby Ruther-

ford and Andrade they have been successful only for the less

energetic components of the radiation. The usual method of y-ray

spectroscopy, worked out independently by Ellis and Meitner, is

based on the phenomenon of 'internal conversion* of y-rays. This

phenomenon can be regarded, to some extent, as a special case of

the photoelectric effect, in that the y-ray quantum is absorbed in the

same atom from the nucleus of which it has just been emitted. As in

the external photoelectric effect an electron is thereby ejected from

one of the atomic levels. That this description of the phenomenon is

imperfect need not concern us here, but we shall see later that there

is also another possibility the direct mechanical transmission of

energy from the excited nucleus to one of the atomic electrons.

Because the internal photoelectric effect may happen for any
electronic shell in the atom, there will arise, for every line in the

y-ray spectrum of the nucleus, a number of secondary electronic

groups having energies hv-EK ,
hvELv hvELu , hvELlII ,

hvEMv ..., where EK ,
ELv E

Lll ,
ELm ,

EMv ... are the binding

energies corresponding to the different electron levels and v is the
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frequency of the y-ray line. Now it has been shown that the y-radia-

tion associated with any particle-disintegration of a radioactive

nucleus is in fact characteristic of the excited product of the dis-

integration; the binding energies above used must thus be under-

stood to refer to this nucleus and not to its immediate parent. The

method of Ellis and Meitner, therefore, consists in determining the

energies of the secondary electron groupsf by magnetic analysis and

applying the above relations to deduce the energies and so the

frequencies in terms of which the primary y-ray spectra are to bo

specified. As an example of the numerical procedure, the table below

contains the results of the work of Meitner on the natural /J-ray

spectrum of actinium X and its analysis in terms of the y-rays

which are emitted from the nuclei left excited by the previous
-

disintegration, AcX -> An.

TABLE XV
Analysis of secondary p-ray spectrum emitted by AcX (Z = 88)

Ashasbeen stated already, the phenomenon ofinternal conversion of

y-rays consists in the emission ofan extranuclear electron in place of a

nuclear y-quantum. It would be erroneous, however, to consider this

phenomenon entirely as a two-step process consisting of the emission

of a y-quantum by the nucleus and the subsequent
*

internal' photo-
effect in the electronic envelope of the same atom. In fact, one must

not forget that, due to the finite values of electronic wave-functions in

t These may easily bo distinguished from the distribution of primary jS-particles,
which have all energies between wide limits (see Chap. V).
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the region occupied by the nucleus, one must also take into account the

possibility of a direct transfer of energy from the excited nucleus to an

atomic electron. Transitions of that kind are analogous to collisions

of the second kind investigated theoretically by Klein and Rosseland.

Since in practice there is no means of separating the effects of these

two processes of absorption, it is more reasonable to consider the

phenomenon of internal conversion as a single process of transmission

of the energy of nuclear excitation to the atomic electrons through the

action of extra- and intranuclear fields of force. Only in the special

case
(*"

-> i 0) is this action confined to one only of these fields;

in this case the periodic components of the extranuclear electromag-
netic fields vanish absolutely, y-radiation is completely forbidden, and

internal conversion is due entirelyto the interaction ofatomic electrons

and the excited nucleus in the region 'within the nucleus
5

.

In the general case the total nuclear transition probability may
be written as the sum of two terms, for dipole radiation, in the above

notation, as /c(o>)+/x(w), where /n(o>) denotes the probability of the

ejection of an atomic electron simultaneously with the nuclear

energy-change. In so far as the secondary electron may originate in

any one of the extranuclear levels of the atom, /x(o>) may be written

in the form fi(oo)
=

Ps:(a) )~^~lJ'Li(a) )+ >
where successive terms on the

right-hand side refer to successive levels in order of decreasing energy
of binding. The ratio of the number of emitted electrons to the total

number of nuclear transitions involving the energy-quantum fta> is

defined as the coefficient of internal convprsion for nuclear radiation

of the corresponding frequency. We have

*(o>)
=

p.(w)l{K(a>)+n(a>)} or /i(co)/ic(a>)
-

a(ai)/{l-a(ai)}. (1)

Again, a(cu) is the sum of a number of terms, a^(o>), Ll(a>),..., corre-

sponding to the various /x's; these terms may be regarded as giving

the internal-conversion coefficients relative to specified electron levels

in the atom. In any case the value of the internal-conversion coeffi-

cient depends upon the atomic electron level involved and upon the

symmetry characteristics of the nuclear transition in question.

Applying standard methods of wave-mechanical perturbation

theory the probability ft(co) may be calculated from the equation

^M =T2 I / tft^o+'ft'Atf, dr \ (2)

where ^ and
ifrj

are the wave-functions describing the orbital and
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free motion of the electron, A and A the scalar and vector potentials
of the radiative field of the nucleus, and p3 and a are the matrices

in Dirac's theory. For the purpose in hand the relativistic form of

the equation for the electron must be used. Calculations on the

basis of (2) were carried out by Hulmef on the assumption that the

0-014

0-012

0-000

electromagnetic field of the nucleus is that of a dipole situated at its

centre. This field may be represented by the potentials

A Q
= #-exp j 27rt(T i^)Jcos0( 1-| )+ complex conjugate,

r
\ \A I) \ <Fl

A, - (3)

A f - A,,
= 0,

... ^TTV CO
with r/

--.= = .

c c

Raving obtained /z(o)) as above described, K(OJ) is given by dividing
the rate of radiation of energy by the field by hco, the quantum
energy of the radiation. As is well known, the rate of radiation of

energy by the field specified by (3) is -
,
thus /c(o>) r -.

3 c 3 nc

From fji(w) and K(O>) the internal-conversion coefficient a(o>) is derived

by equation (1). The values obtained by Hulme in this way for the

internal -conversion coefficients relative to ^C-shell absorption in the

RaC' atom (Z = 84) are plotted as a function of wc2
/#o> in Fig. 31

t H. R. Hulmo, Proc. Ttoy. Soc. 138 (1932), 643. I'rovious calculations by Swirlcs

ami Casiinir wero based on much loss uxaofc approximations ; for tliat reason they will

not be further discussed at this stage.
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(curve ED). The experimental values, also given in the following

table, are those of Ellis and Astonf for the eight most intense y-rays

TABLE XVI

Internal conversion of y-rays of RaCC' and RaBC

(RaCC') (RaBC)

048 r

emitted by this nucleus. Five of these points fit with fair accuracy on

the theoretical curve for dipole radiation. The three points which do

not fit represent considerably

larger internal-conversion co-

efficients: as we shall see later

they must be explained on

the basis of nuclear quadru-

pole radiation. Internal-conver-

sion coefficients relative to the

electronic L levels were also

evaluated by Hulme, with the

following result. In the limiting

case, tlo) -oo, for RaC',

-

= 1:0-149: 0-00 13: 0-0066.

This is in satisfactory agree-

ment with the values experi-

mentally obtained.

Fig. 32 gives the internal

conversion coefficients for somewhat softer y-rays. They have been

calculated for Z 83 in order to be compared with the values of

f K. D. Ellis and G. H. Aston, Froc. Hoy. Hoc. 129 (1930), 180.
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Ellis and Aston for the y-rays emitted after the j8-particle change
RaB -> RaC. The experimental values from the above table are to be
considered in relation to curve ED, It will be seen that experimental
values are all considerably greater than those given by this curve,
which may be taken to prove that the nuclear transitions in ques-
tion cannot be described by a dipole field.

In order to account for the large values found for the internal-

conversion coefficient in such cases, Taylor and Mottf carried out the

calculations for quadrupole radiation, in terms of the potentials

_1 ( ./r \}( r 3i 3 1 \A n = C-Qxv{2<jTi[-- vt\ (2P2(cos0) 1-4 +1J4-
\A /A L gr gV2J^ /^

+complex conjugate,

ri'l

vtf) Jcos 0{
1

-j
j
+ complex conjugate,

At = Ay
= 0.

(4)

In this case K-(OJ)
= -1 y-quanta per sec. The curves EQ of

O fifC

Figs. 31 and 32 give the results of these calculations. It is evident

that these curves go some way towards explaining the experimental
results, although the agreement for the soft y-rays of RaB-C is still

far from exact. This may be due in part to the lower accuracy of the

calculations for y-rays of small quantum energy and to the neglect
of the screening effect of the atomic electrons. It may be noticed

here that apart from the electric dipole and quadrupole radiation

discussed above there is also the possibility of magnetic dipole and

quadrupole radiation due to oscillations of the magnetic moments of

the system. TaylorJ has shown that if some of the nuclear y-rays
have a magnetic origin the coefficients of internal conversion must
be considerably larger than is the case for ordinary electric radiation.

The theoretical values of these coefficients, in the case of magnetic
radiation, are shown in Fig. 32 by curves MD and MQ. We must

notice, however, that since the magnetic radiation possesses, in

general, very small probability, it has to be taken into account only
if electric dipole and quadrupole transitions are not permitted.
The calculations of Hulme and of Taylor and Mott are based on

the hypothesis of dipole and quadrupole moments localized in

t H. M. Taylor and N. F. Mott, ibid. 138 (1932), 665.

j H. M. Taylor, ibid. 146 (1934), 178.
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extremely minute regions in the centre of the nucleus. By consider-

ing the effect of the finite size of the nucleus and the possibility that

the expressions for the various potentials, (3) and (4), may require
modification for values of r less than the nuclear radius, Fowlerj was
able to show, however, that the value of the integral (14) changes but

slightly if these deviations take place inside the region r ~ 1Q-12 cm.

Only in the case of the prohibited radiative transition (i
= -> i ~ 0)

do such considerations become all-important. In this case the direct

interaction of an atomic electron with the excited nucleus represents
the one method of the release of energy. The probability of this

process may be evaluated as to order of magnitude from the per-
turbation formula

/-^[^F^ (0)^(0)]
2

, (5)

where V is the average interaction potential between electron and
nucleus for values of the separation of the order of r . Using the

relativistic expressions for the wave-functions, we obtain, for a

transition energy of 106 e.v. communicated to a ^-electron in an
atom of RaC', // ^ 1011 sec.-1 If the interaction is greater than has

been supposed much larger values of /*' become possible. These values

are of the same order as those calculated above for quadrupolc
radiative transitions of the nucleus; they indicate that, whenever
the mean life of an excited nucleus is ofthe order of 10~12 to 10~u sec.,

internal conversion by direct interaction is an important mode of

transference of energy. At present the only well-established case of

non-radiative nuclear transition is that associated with the quantum
energy 1-414X 1C6 e.v. in RaC-C'. Secondary electron groups corre-

sponding to this quantum are particularly intense, but no evidence

of the corresponding y-ray has been found in emission. Before the

above simple explanation of the results was advanced it was necessary
to assume that for this particular radiation an internal-conversion

coefficient of unity was applicable one formed the strange picture
of the K-electrons absorbing a large fraction of the outgoing quanta
and of the remaining electrons being able completely to absorb the

rest. Secondary electron groups were observed corresponding to

absorption in the K, L, and M levels, respectively. Assuming the

correctness of the present explanation, that we are dealing with a

t H. H. Powlor, Proc. Roy. Hoc. 129 (1<)30), 1
; soo also M. Delbriick and C. Uainow,

Ze.f. Phys. 72 (1931), 492.



Chap. VIF, 1 y-SPECTRA AND INTERNAL CONVERSION 185

non-radiative nuclear transition, very important conclusions may
be drawn. We conclude that the two nuclear levels involved are

both S levels, in other words that these two states ofexcitation possess
zero spin. Moreover, as will appear later, the observed correlation

between y-ray energies arid the energies of the long-range a-particles
from RaC' indicates that the transition in question takes place
between one of the excited states of this nucleus and the ground
state. We conclude, therefore, that in its ground state the nucleus

RaC' has no spin: i ~ 0.

In calculations of the internal conversion coefficients for the y-rays
emitted by natural radioactive elements we must use the exact

expression for the motion of the orbital electron, and the final results

(such as those shown in Figs. 31, 32) can be obtained only by means
of rather lengthy numerical computations. In the case of lighter
elements (internal conversion of y-rays produced in artificial trans-

formations) the problem can be solved purely analytically, and

permits a more general study of the dependence of the internal

conversion coefficient on the multipole nature of the transition.

Calculations of that kind have been performed by Dancoff and
Morrison | (for /if-shell conversion) and by Hebb and NelsonJ (for

^y-shell conversion). For the elements with Z < 30 (non-relativistic

AT-electron) and for y-ray energies much higher than the binding

energy of the K-shell, one obtains for the electric and magnetic

^-polc transitions the following expressions for the /^-conversion

coefficients:
, _, ^.,,,.^,,

^_,
(miuniolic) y \ y /

where y -= hv/wc* and a is the fine-structure constant. Similar,

though somewhat longer, expressions are obtained for the conversion

of the electric and magnetic multipole radiations in the L-shell.

Comparison of the observed conversion coefficients with the

theoretical formulae affords a very convenient method for deter-

mining the changes in nuclear angular momentum that are associated

with the emission of different y-lines and for assigning azimuthal

quantum numbers to the corresponding energy-levels.

f S. M. Dancoff ami P. Morrison, Phys. Kw. 55 (1939), 122.

j M. H. llebb and K. Nelson, ibid. 58 (1940), 486.
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It was pointed out by Oppenheimer and Nedelskijf that a nucleus

that is excited by more than 1 M.e.v. can dispose of its energy of

excitation not only by direct y-ray emission, or by the ejection of one

of the atomic electrons, but also by creating a positron-electron pair

in the nuclear electric field. Calculation of the probability of this

process, known as internal pair-formation, can be reduced to the

evaluation of the matrix element of the perturbation due to radia-

tion. One can write Dirac's relativistic equation for an electron in a

Coulomb field with the nuclear charge oZ (a being the fine-structure

constant) in the form

Stit I QL/J I

1^ r~~^ i ((X P) ~T~ JO i
~~* (X JQ \uf , ()

where $ is the perturbation of the radiation field determined by the

scalar and vector potentials through the relations

= He~iki
-{-complex conjugate

( J)

The potentials V and A are given by:

V =^ ieWt' -i)coH0,

dipole (10)

_ .^Ar.
r

'

-
quadrupole { (11)

where all lengths are expressed in terms of the Compton wave-

length h/me.

Applying the usual method of the variation of constants, the

solutions of eq. (8) can be expressed in terms of probability ampli-

tudes, an (t), of the various states. At the time t the electron is

in the negative energy-state, WQ ,
so that an(0) = 8n0 . One finds from

(8) the probability |aJ 2 that the electron will be in the state Wn at the

time t: -
(12)

t J. R. Oppenheimer and L. Nodelskij, Phys. Rev. 44 (1933), 980.
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where all energies are expressed in units of me2 and Dirac's notation

for matrix elements is used. It remains to sum \an \

2 over the spins,

energies, and directions of the positive and negative electrons formed
in the process.

If one uses the exact solutions of Dirac's equation for an electron

the computations can be performed only by means of numerical

integration. Exact calculations of that kind have been carried out by
Jaeger and Hulme,*f whose results for the total conversion-coefficient,

OLP , for pair-formation in the case of dipole and quadrupole transitions

c
p(d)XI0

3

2 3456810 152025

a

'Ex

2 34568IOI5ZOZ5
b

FIG. 33. Tho coefficient ofinternal pair formation
calculated for dipolo (a) and quadrupole (6)

transitions.

are shown graphically in Fig. 33 a, b (curves marked Ex). One can

obtain reasonably close analytical expressions for the conversion

probabilities also by using one ofthe standard approximation methods
of the perturbation theory, as was done by Rose and UhlenbeckJ

using two different methods of approximation (Born's and Schro-

dinger's). These authors obtained the following expressions for the

conversion coefficients:

f

THC3
'

Born's

method (13)

..l+W+W.+p+p..u
5

J. C. Jaeger and H. H. Hulme, Proc. Roy. Soc. 148 (1935), 708.

M. E. Rose and G. K Uhlonbock, Phys.'ltev. 48 (1935), 211.
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Schrodinger's
method (14)

X

1-5 mev.

FIG. 34. Energy distribution

of positive electrons from

Th(B-fC+ C") source. Points

observed values : solid lino

theory.

where W+ , WL, p+, p~ stand for energy (in units ofme2
)
and momentum

(in units of me) of the positive and negative electrons. Integrating

graphically for all possible partitions of energy between the two

electrons one obtains the values of total

conversioncoefficients shownbythe curves

marked B and Sh in Fig. 33. We see that

the analytical expressions (13) and (14)

lead to fairly good agreement with the

results of the exact numerical calcula-

e tions.

The phenomenon of
*

internal pair-for-

mation' was first observed by Chadwick,

Blackett, and Occhialinif in the case of a

Th(B+C+C") source, and was reported

later bymanyauthorsfor other radioactive

sources possessing strong y-radiation.J The most detailed study of

this process was carried out by Bradt, Halter, Heine, and 8cherrer,

who have measured the total number as well as the energy distribu-

tion of positive electrons emitted from a Th(B+C+C")-source. This

was done with a magnetic jS-spectrograph. Their measurements lead

to the value of 2-3xlO~4
pairs per decaying ThB-nucleus; the

observed energy-distribution of the emitted positive electrons being

shown graphically in Fig. 34. In order to find the theoretically

expected number of positive electrons, one must remember that the

source used in these experiments possesses two strong y-lines capable

of producing electron pairs. These are the quadrupole line at

2-62 M.e.v. belonging to the transition ThC" -> ThD and the weaker

dipole line at 1-802 M.e.v. belonging to ThC -> ThC'. Using the theory

t J. Chadwick, P. M. S. Blackett, and G. P. S. Occhialini, Proc. Roy. Soc. A. 144

(1934), 235.

J For a complete list of references compare H. Bradt, H. 0. Heine, and P. Soherror,

Helvetica Physica Acta, 14 (1943), 492.

H. Bradt, J. Halter, H. C. Heine, and P. Scherrer, ibid. 19 (1946), 431.
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for internal pair-formation described above, we calculate the expected
number of electron pairs produced by these two y-rays to be 2 x 10~4

pairs per ThB disintegration, in excellent agreement with the experi-

ment results. The energy distribution expected theoretically is

shown by the solid line in Fig. 34 and is also in excellent agreement
with the results of measurement.

It may be mentioned in conclusion that the phenomenon ofinternal

pair-formation by an excited nucleus may be closely related to some
of the theories of the nature of nuclear forces discussed in Chapter III.

In fact, the experiments of Conversi, Pancini, and Piccionif on the

nuclear capture of cosmic-ray mesons and the theory of this process

as given by Fermi, Teller, and Weisskopff and by Wheeler, seem

to indicate that the interaction between charged mesons and the

nucleus is too small to make these particles responsible for the

nuclear forces. Alternative possibilities are to ascribe nuclear forces

to an exchange of neutral mesons or, to the similar process, the

exchange of electron pairs. It was pointed out by Gamow|| that if

nuclear forces involve the exchange of electron pairs one should

expect that an excited nucleus will emit pairs through this mechanism

also and that the probability of such an emission may be comparable

to, if not larger than, the probability of ordinary pair-formation.

2. Emission probabilities and selection rules

If we attempt to treat electromagnetic radiation emitted by a

nucleus in a way similar to that used in the case of an atom, i.e.

by ascribing it to the motion of a single, charged particle (proton,

a-particle, . . .), the emission probability of the y-quantum can be

calculated in the conventional, simple way. The dipole transition

probability from a state m to a state n of the radiating system will be

given by the familiar formula :

where F
y

is the so-called radiation-width for a transition from one

level to one other energy-level, a) the 'barred' frequency (Jiw
= hv)

t M. Conversi, E. Pancini, and O. Piccioni, Phys. Rev. 71 (1947), 29; see also

T. Sigurgeirson and A. Yainakawa, ibid. p. 319.

J E. Fermi, E. Teller, and V. Weisskopf, ibid. p. 3H.
J. A. Wheeler, ibid. p. 320.

||
G. Gamow, ibid. p. 550.
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of the emitted radiation, and Mmn is the matrix element of the

electric dipole moment for the transition. For dipole radiation due

to the motion of a single proton one can write

where /mn is the so-called 'oscillator strength
5

which is expected to

he of the order of unity for strong transitions, as in the case of

atomic radiations. From (15) and (Ifi) we obtain:

")*
/,

or numerically, expressing fiaj in M.e.v.:

fp . . ^yte) S-Ov 1015f//r*iW sec ~x (18^
y(</)

""
~i

''/\ l ^ V 1'^') Jinn * \ /

In the case of quadrupole emission, the probability is expected to be

reduced by a factor (r* /A)
2

,
where r is the radius ofthe emitting system

(nuclear radius) and A the 'barred' wave-length defined by A A/27T.

In general, for a 2z

-pole radiation, the emission probability will be

given roughly by the expression (calculated for the liquid droplet

model by Lowenf)
/, ,.j^u ^

4 c

In relating the order I of the emitted radiation to the change Ai of

the nuclear angular momentum, one must take into account also the

parity of the nuclear states in question. From the reflection proper-

ties of the vector potential, we can see that the electric 2'-poles have

parity ( 1)' the magnetic ( 1)
/+1

. Thus, to a given parity change
and At there corresponds a minimum electric and minimum magnetic

multipole, as shown in Table XVII.

TABLE XVII

Minimum allowed multipoles for yivzn parity change, and Ai

t I. S. Lowen, Phys. Rev. 59 (1941), 835.
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Turning now to the observed emission probabilities, we notice

first of all that in the case of nuclear y-spectra the dipole and quadru-

pole transitions seem to possess comparable intensities. In fact,

looking through Table XVI of the preceding section, we fail to notice

any systematic difference between the intensities of y-lines that,

according to their conversion coefficients, have sometimes to be

classed with dipole transitions and sometimes with quadrupole
transitions. Since the theoretically predicted ratio of intensities for

the two types of transitions, in this region of energy (hv
~ 1 M.e.v.;

/(
~ 2X10-11

cm.) is (lO-^/axlO-
11

)

2 -
4J6 ,

we conclude that for

some reason the probability of nuclear dipole radiation is reduced so

drastically as to be brought down to the same order as the probability

of nuclear quadrupole radiation.

We come to the same conclusion on the basis of studies of the

experimental results on the absolute probability ofnuclear y-emission.

As first indicated by Delbriick and Gamow,"]" these absolute magni-
tudes for transition probabilities can be found readily from a study
of the so-called 'long-range' a-particles which are emitted by certain

radioactive elements. When the nucleus of a natural a-emitter is

excited as the result of the transformation in which it was produced,
the excess energy may be released either in the form of a y-quantum,
or else it can be given to the ^-particle which then leaves the nucleus

with a higher speed ('long-range'). The relative frequencies of the

two processes are governed obviously by the relative probabilities

of y-emission and of a-particle emission with the surplus energy.

In the case of ex-emitters which already possess very short lives for

normal a-decay, the probabilities of long-range a-emission may be

expected to be extremely short and to compete successfully with the

probabilities of y-ray emission. Such long-range groups of ct-particles

have been actually observed in the case of the shortlived ex-emitters,

RaC' (A
~ 103 sec.- 1

) and ThC' (A
~ 106 sec.-1

);^ their energies and

relative numbers are listed in Tables XVIII and XIX. We see,

for example, that in the case of the first long-range group (ar )
of

RaC' the probability of a-emission is 0-43 X 10~6
per disintegration.

On the other hand, the study of the absolute intensities of the y-rays

emitted by this element indicates that the number of y-quanta of

t M. Delbriick and G. Gamow, Xs.f. Pkys. 72 (1031 ), 492.

t E. Rutherford, F. Ward, and W. Lewis, Proc. Boy. Soc. A 131 (1931), 684;
142 (1933), $47.
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TABLE XVIII

'Long-range
9

particles of RaC'

TABLE XIX

'Long-range' particles of ThC'

energy 0*608 M.e.v. (corresponding to the selected level) is 0-66 per

disintegration. Thus we have:

Xnr 0-43X10-6

OH66
= 0-65 XlO-6

.

Using the formula (71) of Chapter VI we can calculate that, for the

a-particles in question, A
ai
~ 2x 105 sec."1 Thus we get:

T
y _ 2 XlO5

/7~~ 0-67 XlO-6
= 3 XlO11 sec.-1

,

which is 1,000 times smaller than the value, 3 x 1014 sec." 1
, predicted

by the dipole formula (17).

Since the line hv = 0-603 is a typical strong dipole line of the

y-ray spectra, the result just obtained shows definitely that the

absolute probabilities of y-ray emission are closer to those that would

be predicted by the quadrupole formula. On the basis of the above
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considerations it is also easy to understand why one has failed to

observe any y-radiation corresponding to long-range particles from
ThC'. In fact, one can calculate that for the first long-range group
of ThC' (Eai

= 9-67 M.e.v., hv = 0-73 M.e.v.):

Aar
= 3 X 1010 sec.-1 and S? = 2 x 1011 sec.-1

n

Thus, the expected intensity of the y-radiation must be only

2 x 1011

per disintegration, in this case, and this would escape detection.

This drastic reduction of the probability of dipole transitions can

be understood easily if we assume that the various
'

moving parts
'

of the excited nucleus possess the same specific charge ;
in fact, in

this case the centre of gravity of the vibrating system would coincide

with its centre of charge and the dipole moment will be identically
zero. Such an assumption would seem reasonable for those light

nuclei (for which A 2Z) which may be considered as built up

entirely from a-particles, but it is by no means self-evident for the

heavier elements which contain a large excess of neutrons. One can

assume, however, that also in this case the motion of nuclear particles

takes place in such a symmetrical fashion that the centre of gravity
of the protons always coincides with the centre of gravity of the

neutrons. Such motions would obtain, for example, if we consider

the excited states of the nucleus as semi-classical vibrations of a

charged droplet of nuclear fluid in which the protons and neutrons

are rather tightly bound to one another.

3. Selection rules and metastable states

As was first indicated by Weizsacker,f there may exist nuclei in

which the angular momentum of the first excited state is very dif-

ferent from that of the ground state. Since in this event the emission

of a y-quantum, as well as the ejection of an atomic electron (internal

conversion), will be prohibited to a very high degree, the excited

state of the nucleus will be able to exist for a quite considerable

length of time. If the transformation which led to the formation of

this
'

metastable state' of the nucleus, or nuclear isomer, is to be

followed by further transformations, there is also a possibility that

f C. V. Wei/backer, Naturwiss. 24 (1936), 813.

3595.61 Q
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in many cases the next transformation will take place before the

excess energy will be released through the emission of a y-quantum
or a conversion electron. A typical situation of that kind seems to

exist in the nucleus formed as the result of -decay of ITX^ In fact,

as was first observed by Hahn,f the ^-transformation of \JX appears
to lead to two different kinds of nuclei, known as UX2 and UZ with

decay constants 1-01 x 10~2 sec.-1 and 2-87 x 10~5 sec.-1
, respectively

(half-lives 1-14 min. and 6-7 hrs.). Through the emission of another

j8-particle, with a maximum energy of 2-32 M.e.v. in the case of UX
2

and of 0-45 M.e.v. in the case of UZ, both substances are transformed

into the nucleus ofUn which is a normal a-emitter. Since, according
to these data, the nuclei of UX2 and UZ possess the same atomic

and mass-numbers and differ only in their energy content, this case

must be interpreted as a typical example of nuclear metastability in

which the state of higher energy is prevented from losing its energy
in the form of a y-quantum or conversion electron by the existence

of a large difference between the spin in this state and the spin in the

ground state. J The scheme of transformations pertaining to this part
of the uranium family has been investigated in great detail by Feather

and Bretscher and Dunworth and particularly by Bradt and

Scherrer,|| whose results are shown in Fig. 35. One finds that, whereas

the emission of the 2-32 M.e.v. j8-particle transforms the UX2 nucleus

directly into the ground state of Uu , the 0-45 M.e.v. jS-emission by
UZ leads to the formation of an excited state of the Un nucleus

which later goes over into the normal state by the cascade emission

of two y-quanta with a combined energy of 1-5 M.e.v.ff From these

data we find that the energy-difference between UX2 and UZ nuclei

is 2-32- [0-45+ 1-50]
~ 0-37 M.e.v.

And, in fact, observation shows that UX2 possesses a strong y-line

with an energy of 0-394 M.e.v., which is strongly converted in K-, L-,

and M-shells of that atom. The observed fact that the conversion of

t O. Hahn, Ber. Dtsh. Chem. Ges. 54 (1921), 1131.

t In tho second edition of this book an attempt was made to explain nuclear
isomerism as duo to the presence within the nuclear system of an hypothetical
particle known as the negative proton. However, in view of tho much simpler
explanation given below, such an assumption does not appear to be necessary any
more.

N. Feather and E. Bretscher, Proc. Roy. Soc. A. 165 (1938), 530 ; N. Feather and
J. V. Dunworth, ibid. 168 (1938), 566.

||
H. Bradt and P. Scherrer, Ilelv. Phys. Acta, 18 (1945), 405.

ft One actually observes, in this case, a y-radiation with hv ~ 0-75 M.e.v., and the

intensity of about two y-quanta per transformation.
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this line inL- and -M-shells is much stronger than the conversion in the

j -shell indicates that we are dealing with radiation of a high-order

multipole. The absolute probability of this particular y-transition
can be estimated from the known decay-constant of 2-32 M.e.v.

^-transformations and the observed branching ratio of the forking

UX2
4. UZ and UX2

-i Un . We find

#
y
= 0-12 x 1-01 X 1C-2 sec.-1 = 1-2 x 10-3 sec.-1 ,

which corresponds to a y-half-life of 13 hoursl In order to explain

Js UX

FIG. 35. Transformation scheme of UXa and UZ.

this extremely small probability of y-ray emission we have to assume

that the spin difference between UX2 and UZ-states is equal to five

units ;
in fact, with I = 5 and Hw = 0-4 M.e.v. the formula (19) leads

to the half-life of 15 hours. Since UX!, having even atomic number

and even atomic weight, must be expected with great certainty to

have zero spin, and since the transition UX! -> UX2 is a permitted

/^-transformation, this large value of the spin must be ascribed to the

UZ-nucleus. This explains why no direct transition UXX -> UZ was

ever observed and also why the jS-decay of UZ always leads to an

excited state of the Uu-nucleus (which must also have spin zero in its
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ground state). Fig. 35 gives also other spin quantum numbers which

can be assigned to the various states involved.

Although the UX2 nucleus affords an exceptional example of

nuclear metastability, a number of other cases have been established

in the study of nuclei produced in various artificial transformations.

A 50-hour emission in In114 has been alluded to already in Chapter V
as a useful circumstance for the careful determination of the shape

, of the beta-spectrum that follows the isomeric transition. Long-
lived isomers in Rh, Ag, Cd, In, and Au have proved useful also for

the detection of excitation of these nuclei under bombardment by

X-rays.| Such excitation is the reverse process to y-radiation and is

carried out by varying the quantum energy ofa beam ofX-rays, which

is falling on a specific target, until an energy is found for which the

target nuclei absorb the X-rays and jump to an excited state (line-

absorption). The energy of excitation is then re-emitted, but the

emission does not lead necessarily to the ground state at once. There is

a certain chance that on re-emission the nucleus will find itself in a

low, metastable state instead of the ground state. The subsequent

radioactivity of the metastable state then provides a record of the

original absorption of the X-rays and this is the way the energies of

the line-absorptions are determined. The whole process is reminiscent

of that in the production of the Aurorae. In Table XX we give the

levels of the elements cited above as determined in this way by
Wiedenbeck (loc, cit.).

TABLE XX
Low-lying levels of excitation (M.e.v.)

Another interesting example of nuclear isomerism is observed in

the case of iridium subjected to the bombardment by slow neutrons.

t M. L. Wiedonbeck, Phys. Rev. 68 (1945), 1, 237.
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One observes in this case a delayed activity with the half-life of

1-5 min. which was originally ascribed to the /^-decaying product
formed by neutron capture in one of Ir-isotopes. It was, however,
shown by Goldhaber, Muehlhause, and Turkelf that the electron-

emission associated with that period represents actually the result of

Zrshell conversion of the primary y-radiation emitted by the nucleus.

They were able, in fact, to observe this primary y-radiation, and
measured its energy to be about 60 k.e.v. (leading to 47 k.e.v.

electrons in jL-shell conversion). Thus it appears likely that we deal

here with a comparatively long-living isomeric state of Ir192 nucleus

which is formed as the result of neutron capture by the normal

Ir-isotope 191.

We shall mention here also the experiments of de Benedetti and

McGowanJ who applied delayed-coincidence counters to look for

extremely shortlived metastable states of certain artificially produced

isotopes. They have found that the /^-transformation of Hf181 leads

to a metastable state ofTa181 which has a half-life of 22 microseconds,

and that the /?-decay ofW187 leads to a metastable Re187 nucleus with

a half-life of about 1 microsecond. Both these cases were demon-

strated by observing the j8-ray and then, a certain number of micro-

seconds later, counting the y-rays. The plot of the logarithm of the

number of coincidences obtained against the delay time gives the

half-life of the metastable product. Both these examples can be

understood as forbidden y-spectra if the difference in spin entailed is

three units.

4. Nuclear excitation by a-decay

In discussing processes of/^-transformationwe often encounter situa-
o

tions (as, for example, in the case of UZ ->UIT , Fig. 35) in which the

emission of the electron corresponds to transitions to excited states

of the product nucleus because the transition to the ground state is

forbidden by spin (or parity) selection rules. This process is essentially

the same as that just discussed in connexion with metastable states,

the difference being that, in general, the excited state will emit a

y-ray in a normal time, comparable to 1C"11 sec. and the j8-ray and

y-ray will appear to be in exact coincidence. In fact, such coincidence

selection of the y-rays permits a thorough study of the level systems

| M. Goldhabor, C. O. Muehlhause, S. H. Turkel, Phys. Rev. 71 (1947), 372.

J S. do Benedetti and F. K. McGowan, ibid. 70 (1946), 569; 71 (1947), 380.
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in daughter nuclei, and in this way Deutsch and co-workers have
established a number of low-lying levels of excitation in the lighter
nuclei. An example is given by Fe 56

,j for which combining levels

were found at 0-845, 2-11, 2-65, and 2-98 M.e.v.

A situation similar to that for ^-transformations may also exist in

the case of a-transformations with the difference that we may expect
this phenomenon to be limited to small excitation energies because

of the rapid decrease of the transparency of the potential barrier

E

FIG. 36.

with decreasing energy of the emitted a-particles. In these cases we
may predict that the spectra of a-rays will show several discrete

groups corresponding to the different quantum levels of the product
nucleus, as represented schematically in Fig. 36. The excited nucleus
will emit this excess energy in the form of y-radiation, which will

follow immediately (due to the very short period of life of nuclear
excited states) the emission of the a-particle. It is clear that the

y-rays originating in this way belong to the nucleus of the product
element although they are experimentally observed together with the

a-radiation of the original element. It is also clear that the energies
of these y-rays must fit in the level scheme of the product nucleus

which may be obtained directly by turning upside-down a figure

showing the energies of the various groups of a-particles with respect
to the group of smallest energy. We may notice here that, in general,
the intensities of the slower a-components should decrease rapidly

t L. G. Elliott and M. Deutsch, Phys. Rev. 64 (1943), 321.
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due to the increasing difficulty experienced by slower particles in

penetrating the potential barrier.

Such weak groups of a-particles with smaller energies than the main

group were first observed by Rosenblum| when investigating the
deviation of the a-rays from ThC in strong magnetic fields. It

appeared that there were actually five very close components referred

to by Rosenblum as the components of 'fine structure' of the a-rays.
The energy-differences and the relative intensities as measured by
Rosenblum are given in the second and third columns of Table XXI.

TABLE XXI
'Fine structure,' of the a-rays from ThC

JHC"

<*5- -0-626

:o5?
6
7

-0-330

The level scheme for the ThC" nucleus obtained from these energies
is shown in Fig. 37, which also includes the y-ray lines from the

measurements of Ellis. It will be seen

that these fit well into the scheme. Since

the relative intensities of the different ex-

components evidently fix relative values

for the partial decay constants corre- as

spending to the different groups of par-

ticles, we see at once that the probability tt2<

ofdisintegration does notvaryso regularly

(or, as we shall see later, so rapidly) with

energy as might be expected from simple
considerations

;
in particular the intensity

of the group o^ is greater than that of the ocr

group a
, although the energy of the a- a

o;

particles is somewhat smaller. Fia - 37 -

After the discovery of 'fine structure' with thorium C the same

phenomenon was found with a number of other elements. Rutherford

t Rosenblum, C.R. 190 (1930), 1124 ; J. de Phys. I (1930), 438. For later references

see Rosenblum in Reports of the Solvay Congress, 1933.

X
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and his collaborators,! using first the differential counter for range

measurements, and later also the magnetic method, proved that

with radium C and actinium C there are at least two components of

comparable intensity; the corresponding level schemes and the

y-rays are shown in Fig. 38, (a) and (6). Further investigations of

Rosenblum, by the magnetic method, showed the presence of more

complicated and well-marked 'fine structure
'

with many members of

the actinium family ; he found three components with actinon, three

components with actinium X, and eleven components with radio-

AcC" xio6e.tf

0-34

RaC"
,

0-17
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FIG. 38.

actinium. Very probably, also, such 'fine structure' exists in the

case of protoactinium, which, although not investigated by the

magnetic method, is known to possess rather strong y-radiation

which has to be explained by excitation through a-decay.

On the other hand, with all other elements so far investigated
*

fine

structure' is either not observed at all (ThX, Tn, ThA, Rn, RaA,

RaF, AcA) or occurs in the form of an extremely faint component,

corresponding to a y-ray of small intensity (RaTh and Ra).

We shall investigate now in more detail the question of the relative

intensities of different 'fine-structure' components in relation to the

transparencies of the potential barrier for a-particles of the appro-

priate velocities. Using the formula (55) of the previous chapter and

accepting j = (and rQ
= const.) for all components of the structure,

we can calculate the relative intensities which are to be expected.

The results of such a calculation for the groups of the ThC ex-spectrum

are given in the last column of Table XXI. We see that in this case,

and it is equally true in other cases of strong 'fine structure', the

intensities of the components decrease much more slowly than would

t E. Rutherford, F. A. B. Ward, and C. E. Wynn Williams, Proc. Boy. Soc. A. 129

(1930), 211; 139 (1933), 617.
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be expected theoretically and notice even the inversion of order in

the special case of the a and ax groups of ThC. On the other hand,
the faintness of the components with Ra and RaTh is in good agree-
ment with the theoretical expectation. In the same way we might

say that the failure to detect any slow components with other

elements must be due to their extreme weaknessf following the pre-
dictions of theory.

These considerations lead us to the conclusion that we must
consider the presence of strong 'fine-structure' components as an

Orig/naL
Nucteus

FIG. 39.

anomalous effect and try to find some explanation of it in terms of

probabilities of different kinds of disintegration. The explanation
of this effect proposed by GamowJ is based on the dependence

already discussed of the probability of disintegration on the angular
momentum of the emitted particle. Let us consider the process of

a-disintegration of a nucleus possessing a spin i Q when the product
nucleus possesses, in its normal and excited states, spins i'Q ,

i'l9 i'2 , etc.

(Fig. 39). If the spins of the normal states of the original and product
nuclei are the same (i

= i' )
the probability of normal disintegration

(i.e. without excitation) will be given by expression (71) of Chapter
VI with j = 0, as in this case the a-particle can be emitted without

angular momentum. Also, the intensities of disintegrations with

excitation of different levels of the product nucleus will be consider-

ably less than this on account of the smaller energy of the emitted

a-particle and the effect of the additional 'potential barrier of

f Wo say this, rather than ascribe the absence of 'fine structure' to an energetic

impossibility ; iri fact one can feel perfectly sure that in radioactive nuclei there are

always levels with excitation energies less than than energy of a-particles amounting
to at least 4xl06 e.v.

J G. Gamow, Nature, 131 (1933), 618.
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centrifugal force' for those states with spin different from iQ . This

represents just the above-mentioned case of very rapidly decreasing
intensities of fine-structure groups characteristic of those elements

for which a very faint structure or no structure at all has been

observed. Let us imagine now that the normal state of the product
nucleus possesses spin different from that of the original one. In this

case the probability of normal a-decay will be considerably reduced

as the emitted a-particle must take with it the spin-difference and

escape from the nucleus with angular momentum j = |* ~"*ol Ori

the other hand, it might now happen that some of the excited states

of the product nucleus possess spin closer or equal to i Q ,
the spin of

the original nucleus. For transitions to these states the decrease of

disintegration probability due to the smaller energy of the emitted

a-particle will be partially balanced on account of the absence of the

additional 'centrifugal barrier' and the resulting intensity may
become comparable with, or in certain cases even larger than, that of

normal decay. These considerations, relating the existence of strong

'fine structure' with large spin-differences between the normal states

of original and resulting nuclei, throw some light on the question why
this effect is observed only for all three C products and for most

members of the actinium family. For, as we have seen above (Chap.

I), nuclear spins different from zero are to be expected only for

elements with odd atomic number (C products) or odd mass numbers

(actinium family). A glance at Fig. 30 shows us that it is just for the

elements possessing strong 'fine-structure' components that the

anomalously small values of the effective radius are observed, and

this, as has been already mentioned, should be considered as indicat-

ing the emission of an a-particle with angular momentum different

from zero. All these facts seems to prove, rather unambiguously,
that the proposed explanation of the

'

fine-structure
'

effect has the

correct basis.

It is much more difficult, however, to give a quantitative treatment

of that effect, because the formula (71), Chapter VI, used for calcu-

lating the effect of spin on the probability of disintegration does not

take into account all the factors known to be concerned. In fact, in

deriving this formula, we accepted a simplified model of the potential

barrier with a vertical fall at r r
, and correspondingly cut off the

potential barrier of centrifugal force at the same distance. In reality

the fall of potential near the nuclear boundary cannot be so abrupt,
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whilst the addition of centrifugal potential will somewhat change
the whole distribution and slightly decreasef the value to be accepted
for the nuclear radius ; this effect cannot be taken into account until

we know the exact form ofthe potential-energy curve near the nucleus.
The second effect neglected in the formula can be expressed as the

change in the number of collisions of an a-particle inside the nucleus

with the potential barrier: an ex-particle possessing non-zero angular

0-80 -

0-75

0-70

0-65

0*60
205 235

momentum will suffer fewer collisions with the 'wall' than a particle
of the same energy, but without such momentum. At present we
can only say that both these effects will act in the same direction as

the effect already taken in account, so that the actual decrease in

intensity due to spin-differences should be larger than that given by
our formula (71).

Anyhow we shall make the attempt to deduce nuclear spin-
differences from the relative intensities of 'fine-structure' components
and we shall proceed in the following way. For each component we
calculate the partial decay-constant, using the experimental values

of total decay-constant and relative intensities of individual a-ray

components. Substituting these, and the experimental values for

the energies of the different components, in the formula
4 (71), we

t Because it is necessary to come closer to the nucleus in order that the stronger
repulsion (Coulomb+ centrifugal forces) may be compensated by nuclear attractive
iorces.
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obtain the effective radii corresponding to the components of 'fine

structure'. These radii, as calculated by Gamow and Rosenblum,f
are shown in Fig. 40J plotted against the atomic weight of decaying
nucleus. We see that the points representing the effective radii for

the different a-components of the same element are spread over a

considerable region and that they show a tendency to accumulate in

pairs, triplets, or other groups. If we agree, as stated above, that

the reduction of effective radius is to be ascribed to the angular
momentum of the emitted a-particle we must conclude that, for a

given element, the disintegrations characterized by the same effective

radius take place with the same change of angular momentum and
those described by smaller radii with correspondingly large momenta.

For example, the groups a
, 5 ,

and ae in RaAc must have equal

angular momenta and this momentum must be larger than that of

the groups a2 and a3 . In Fig. 40 are included, also, the points repre-

senting the effective radii for different j's as calculated from the

formula (71). We see that, although there is a close similarity between

theoretical and experimental schemes, the experimental points are

situated somewhat farther apart from each other than are the

calculated points. This can be accounted for by the roughness of the

approximation used in obtaining formula (71) as previously men-

tioned. For this reason it is difficult with certainty to assign values

ofj to the different groups ;
for example, in the case of ThC we could

accept ^(0*4)
= 0, jfa and 2 )

=
1, andj(a ,

a3 ,
anda

fi )
= 2, although

the values 0, 2, and 3 or 1
, 3, and 4 are also possible. If, however,

the above-mentioned correction can be taken into account it is not

at all impossible that this method will permit us to give quite

definite j-values to all components. In conclusion we must mention

that our considerations lead only to the spin-differences (j
= ii1

)

between the nuclei, and, in order to assign values to the nuclear spin

itself, a knowledge of at least one spin in each family is necessary.
In the Th and U families it is very likely that the elements of the

main a-decay sequence possess the spin i 0, and for the Ac family
we can use the spin of Pa, which, according to Schiller and Gollnow,

is equal to |.

t G. Gamow and S. Rosonblum, C.R. 197 (1933), 1620.

J The values in Fig. 40 are slightly different from those given above (Fig. 30), as in

the new calculations somewhat improved experimental data have been used.

The difference between the points for ^ and aa in ThC is within the limits of

experimental error.
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A serious difficulty with the spin-theory of fine-structure intensi-

ties arose as a result of the work of Chang,f who, by using a new

technique, was able to study the very weak components of the a-fine-

structure of polonium. The results of his measurements are shown in

Table XXII which gives the energy values for different a-groups as

TABLE XXII

Energy groups of Po ot-particles

well as their relative intensities. In the last two columns we give the

values of the effective nuclear radii calculated by the formula (71) of

Chapter VI, and the values of angular momentum which must be

ascribed to the various a-groups in order to account for the observed

changes in intensity on the theory described above. It goes without

saying that these extremely large values of j do not look real and

that, although the effect of nuclear spin may account for minor

variations of the observed intensities, the main increase of the effec-

tive nuclear radii with increasing energy of excitation in the product
nucleus must be given an entirely different explanation in this case.

The most straightforward way to account for these results would

be to assume that the radius of the nucleus actually does increase with

increasing nuclear excitation. It appears, however, that our present

knowledge of the laws of nuclear forces excludes the possibility of

such comparatively large changes in radius (it would, in fact, require

the nuclear density to become 3 times smaller for a state excited by
1-6 M.e.v. than for the normal state!). Another possibility lies in the

assumption of nuclear polarization produced by the Coulomb field of

t W. Y. Chang, Phys. Rev. 69 (1946), 60.
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the outgoing particle. In this case the emitted a-particle can cross

a good part of the potential barrier still going with a high velocity

and lose part of its original energy only when it is a considerable

distance from the original nuclear surface. An assumption of this

kind of interplay could readily explain the absence of a rapid

exponential decrease in the number of low-energy a-groups.|

t Calculations along these lines are being carried out by R. Peierls and M. A.

Preston (private communication) and they appear to lead to a satisfactory inter-

pretation.



VIII

NUCLEAR COLLISIONS

1. Properties of neutron beams

WE now come to the problems arising in nuclear collisions which

take place when a beam of particles of one kind pass through material

composed of particles of another kind. Historically, these problems
were first investigated in the case of the scattering of a-particles and,

in fact, the observed deviations from the Coulomb scattering supplied
us the first evidence of the dimensions of atomic nuclei. With the

development of experimental technique for producing artificially

accelerated beams these studies were extended to charged particles

other than a-particles. Since, however, the scattering of charged

particles is determined mostly by the external Coulomb field so that

specifically nuclear effects appear as deviations from the inverse

square scattering, much more direct information is obtained by the

use of neutron beams.

Since neutrons exist permanently in nature only as constituents of

atomic nuclei they have to be produced therefrom by bombarding
nuclei with other particles. The classical example of such a nuclear

reaction is the one by which neutrons were discovered, viz. the bom-

bardment of beryllium with fast a-particles :

Be9+He4 - C12+n. (1)

In the early experiments the alphas were obtained from the naturally

radioactive elements, e.g. Po. Since energy must be conserved, the

sum of the binding energies of Be9 and He4
plus the kinetic energy of

the He4 must be equal to the energy of the resulting C12 and neutron.

The latter consists of (1) the kinetic energy of the neutron, (2) the

kinetic energy of the C12 atom, and (3) the binding energy in the C12

atom (relative to hydrogen atoms and neutrons). If the C12 nucleus

is formed in its lowest energy its binding energy is known (cf. Table

II), and we can calculate the total kinetic energy of the particles

produced in reaction (1) to be

(KE)n0 = #a+J(Be9+He4-C12
). (2)

Of this amount, ^E^ appears in the motion of the centre of gravity

of the system and one can readily obtain the energy of neutron, as a

function of the angle with which it is emitted, by a straightforward
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application of the laws of conservation of momentum. It is evident

that, in the general case, the energy of a neutron produced in a given
nuclear reaction will depend upon (1) the atomic weights involved,

(2) the difference in binding energies (with attention to the possi-

bility that the product nucleus need not be formed in its lowest

state), (3) the angle with which the neutron comes off, and (4), the

energy of the bombarding particle. With regard to the last point, if

the bombarding particles are charged particles they will also lose

energy to the atomic electrons in the target and, if in addition the

target is
*

thick', the energy of bombardment will vary from its

maximum value to zero. Generally speaking, although by no means

necessarily so, neutrons produced through nuclear reactions have

kinetic energies of the order of millions of electron volts (M.e.v.) since

this is the usual order of differences in binding energy among nuclei.

The neutrons produced simultaneously with the fission of the heaviest

nuclei are also in this energy range. All such neutrons are referred

to as fast neutrons, and their energies are usually measured in M.e.v.

According to the fundamental laws of the quantum mechanics a

free neutron with kinetic energy E is represented by a plane wave-

function periodic with the wave-length

0-286 __
a /0 .

x ' ()

where EGV means the value of the energy in electron volts. Thus,

even at very low energy, neutron waves are not much longer than

the distances between atoms in a crystal, say, and are certainly short

compared with slit-widths and apertures used in optical experiments.
It is justifiable, therefore, to consider a narrow stream of neutrons,

that has been defined by a slit system, as a plane wave which, at a

given instant, varies with the distance z along the beam as

2irislX
t

In fact, the wave-length region concerned is very similar to that

customarily encountered in ordinary X-rays.
The parameter that enters into calculations of scattering, etc., is

almost always ft = A/ 277, and, for fast neutrons

ft = *fL x lO-i* cm. (4)
VAncv

For fast neutrons, therefore, ft is of the order of nuclear radii.
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It is possible to find nuclear reactions in which the difference in

binding energies is small, or negative, so that the emitted neutron
has a very low kinetic energy. For example, if the bombarding
particle is a y-ray of energy slightly greater than the binding energy
of the last neutron in the target nucleus, the resulting neutron will

be slow. Since the energy of a y-ray is not affected appreciably by
the atomic electrons, the neutrons produced in such a photo-neutron
source will be not only slow but mono-energetic (sometimes called

monochromatic) if the gammas have a sharply defined frequency
themselves. For the purpose of obtaining neutrons of low energy,
however, it is generally more efficient to take fast neutrons from an

ordinary nuclear reaction, or fission, and slow them down by colli-

sions with light nuclei. Obviously the most efficient atom for slowing
down neutrons is hydrogen, which has practically the same mass as the

neutron, so that, if the energy of the neutron is large compared with
the binding of hydrogen atoms in molecules, the neutron loses half

of its energy in each collision, on the average. If the energy of the

neutron is not large enough, so that the hydrogen can be considered

free, the mass with which it collides is effectively the mass of the

molecule. The loss of energy in this case is then a particular example
of general collision between a neutron with a nucleus (or molecule if

the neutron is slow) of mass A. Let the angle by which the neutron

is deflected in the centre of gravity system be 6 and let the incident

energy be A\ and the scattered energy be E2 , then, in general

(5)

which for A = 1 becomes E2
= -^(l+ cosfl). Thus a common

method of producing slow neutrons is to surround a source of fast

neutrons by paraffin in order to reduce the energy through collisions

with the hydrogen nuclei. In the chain-reacting pile the same func-

tion is served by collisions with the carbon nuclei of the moderator.

The natural limit of energy to which neutrons may be slowed by such

methods is determined by the thermal motion of the atoms in the

slowing-down medium, i.e. the velocity of the neutrons eventually
assumes a Maxwellian distribution characteristic of the temperature
of the slowing-down system. Neutrons that have come to equi-
librium with a medium at temperature 5PK are called thermal

neutrons if T is in the neighbourhood of room temperatures, liquid
3595.61 p
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air neutrons if T is the boiling-point of liquid air, and so on. The

value ofA is given by
J..Q9

* =^ 10~" cm" w
so that thermal neutrons have wave-lengths comparable to the

diameters of atoms, or the distances between atoms in condensed

phases.

Except for the (very useful) property of neutrons that they may be

slowed down readily, neutron beams are similar in many respects to

electromagnetic beams (X-rays) of corresponding wave-length. The

phenomena of diffraction, scattering, refraction, reflection (total),

polarization, dispersion, and absorption are well established for

neutron beams by one method or another. In Chapter I we have

referred to the scattering of fast neutrons as a method of estimating

nuclear radii. According to eq. (4), neutrons of 25 M.e.v. have

& ^ 10~13 cm., whereas the radius, R, of a nucleus with A = 200 is

about 7 x 10"13 cm. The scattering of these neutron waves should

thus be similar to the diffraction of optical waves by an obstacle of

diameter 14 ft, since the scattering of waves in such cases is largely

a matter of the effect of the principle of uncertainty. Applying the

diffraction equation of Kirchhoff, Bethe and Placzekf obtain the

familiar formulae for the differential cross-section for a circular disk of

radius E

a(0)dcos(0) ^

Thus, counting up all rays that are bent by any amount whatsoever

leads to an integrated cross-section of Trft2 . From the form of cr(6)

as well as from the physical content of the problem, it is evident that

most of the scattered rays are bent only slightly from their incident

direction. In addition, all those incident rays that fall inside the

area nR* of the disk are either absorbed or reflected. Hence the total

cross-section of an absorbing (or reflecting) sphere of radius R is

27rR2
. Actually, because of the finite range of forces between

nucleons, the radius R is better estimated as the radius of the target

nucleus plus the range of forces. The more precise manner in which

nuclear forces influence the scattering of neutrons is not represented

t H. A. Bethe and G. Placzek, Phys. Rev. 57 (1940), 1075.
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in eq. (7), of course, so that the formula is only approximate.

Attempts to measure the distribution of scattered neutrons as a

function of 6 indicate, however, that the relation is roughly correct.

The diffraction, or scattering, of slow neutrons by atoms is of great
interest because of the possibility of obtaining interference effects

between several scattering centres. In Chapter II we have discussed

already, in a semi-quantitative way, the interference between waves

scattered by the two protons in the hydrogen molecule. There we
related the scattered amplitudes to the

*

phase-shift', 8, produced

by a square potential well. For neutron energies approaching zero,

(8 -> 0), the scattered wave has the approximate form

_?*eM* = ?Oe*f*
f (8)

r r

and the total cross-section is

o- = 47r(8*)
2 =

-na\.

Eq. (8) is equivalent to the definition of the scattering length .

The application to para- and ortho-hydrogen, made in Chapter II, is

not complete for three reasons: (1) the thermal motion of the pro-
tons was not taken into account in calculating A and 8; (2) the

separation of the protons is not entirely negligible compared with A,

although it is nearly so for liquid air neutrons
; and (3) the value of

8 was assumed to be equal to that computed for collision between the

neutron and a single proton. The first point may be corrected by

considering the statistical distribution ofH2
-
velocities, relative to the

neutron beam, and integrating the scattered intensity over the

Maxwell distribution. The second point merely requires a little more
care in the description of the interfering scattered waves.

The third point above, the relation between the phase-shifts caused

by free protons and those by protons that are bound to a heavier

system, may be elucidated further as follows. In singlet collisions of

a neutron with a free proton, for example, 8 is computed from the

refraction of a spherical wave that converges upon, and subsequently

diverges from, the centre of gravity of neutron and proton. The whole

phase-shift in this wave is produced in that part of the collision dur-

ing which neutron and proton are within the range of forces of each

other, i.e. within half a range of the centre of gravity, and amounts

to 28 . If, however, the proton had been assumed to be fixed at the

originofcoordinates, as isthe casewhen it is chemicallyboundtoaheavy
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molecule, the refraction of the neutron wave would begin when the

converging phase of the neutron wave is at the full range of forces

from the origin and continue until the diverging phase reaches that
radius. The resulting phase-shift of the neutron wave will then be
twice as great as for collision with a free proton, i.e. 4S

, and the
cross-section (when 8 is very small) will be 4 times as large. This
factor of four was first pointed out by Fermi.f Since the whole ques-
tion is one of converting the n-p phase-shift to the centre of gravity
motion, it is readily seen that if the proton is bound to a system of
total weight W (neutron masses) the phase-shift as calculated for a
free proton must be multiplied by 2JF/(Jf-fl) and the cross-section

for slow neutrons will be multiplied by this squared. Hence, for the

scattering of neutrons by hydrogen molecules, W = 2, and the cross-

section presented by each proton for slow neutrons is individually

16/9 times that for a free proton.
The interference phenomenon, exemplified in the case of scattering

of slow neutrons by hydrogen molecules, can be extended to other*

molecules as well as to solids and liquids for which the neutron wave-

length A is of the order of the interatomic distances.J Many of these

phenomena are so very similar to those occurring for X-rays of com-

parable wave-length that we shall refer to them only sketchily. In

particular, the Bragg law for reflection of waves by crystal planes,

separated by d: An

where N is an integer, has been found to apply to neutron waves with
A < 2d, just as to X-rays. The selective reflection of neutrons of
definite wave-length has indeed proved to be a useful research tool

for producing highly monochromatic neutron beams, especially when
used with such copious sources of slow neutrons as the thermal
column of a chain-reacting pile. An interesting consequence of the

Bragg law is that neutrons of wave-length greater than 6-7 A are not

deflected by any of the planes in graphite (cf. Fermi and Marshall,
loc. cit.). Hence by filtering thermal neutrons (T ~ 300 K) through
20 cm. of graphite most of the wave-lengths shorter than 7A have
been scattered out of the beam and only the longer wave-lengths,

t E. Fermi, Ric. Sci. 7 (1936), 13.

J A summary of early experiments along those lines is given by J. H. Van Vleck,
Philadelphia Centennial, 1939, and a great deal of the modern work with pile neutrons
is presented by E. Fermi and L. Marshall, Phys. Rev. 71 (1947), 666.
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i.e. cold neutrons (T ~ 20 K), remain. The theory of crystalline

refraction of neutron beams, including possibilities of absorption, has

been reported in a paper by Goldberger and Seitz.f

When the neutron wave-length is too long for Bragg reflection, or

if we are dealing with non-crystalline solids, we may simply compute
a refractive index for the medium. Suppose, for simplicity, that all

nuclei in the medium are equivalent, each producing a phase-shift of

28 in $-waves of the neutron, and let ft be the wave-length over 2?r

for the neutron beam in vacua and ft' the value inside the medium.

The number of $-wave collisions per centimetre of path, and per

square cm. of cross-section of the beam will be TTUI ft
2 where n is the

number of nuclei per cm.3 in the medium. Each collision advances

the phase of the neutron wave by the (small) amount 28. By the

principle of superposition, the advancement of phase per unit length
of path is then 27ra1 ft

28 and by definition, this is I/A' 1/#. Setting n t

the index of refraction, equal to
ft/ft' and using the collision length,

a =-S*,weget n - I -toa,^**.

'

(10)

Whether n is larger than or smaller than unity thus depends upon the

sign of 8, or of . This sign has been determined experimentally for

a number of nuclei by comparing the scattering from composite

crystals of various types of nuclei, and the sign of a is found to be

positive for most cases (H, Li, and Mn have been found to have

negative a). Pure materials of this type will then produce total

reflection of neutron beams that impinge at a glancing angle from the

air-side of a polished surface, just as in the case of X-rays (where
n < 1, also). The total reflection of neutron beams has indeed been

demonstrated for a half-dozen elements (Fermi and Marshall, loc.

cit.) using neutrons of wave-length 1-87 A. The limiting angles of

reflection are about 10 minutes of arc.

Monochromatic neutrons have been produced also by the 'time of

flight' method. This method, originated by Alvarez, derives its

neutrons through a nuclear reaction from a high-voltage source of

protons, or deuterons, such as a cyclotron; the cyclotron is not

operated continuously, however, but in sharp bursts at regulated

intervals. So many microseconds after a burst of charge particles is

made and allowed to fall upon an appropriate target the neutron

counting equipment is activated, also for a very short interval of

t M. L. Goldberger and F. Seitz, ibid. p. 294.
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time. In this way neutrons of rather sharply defined velocity are

recorded in the counters which are at a known distance from the

target. Both the 'time of flight' and Bragg reflection methods have

been applied to studying the absorption spectrum of various materials.

Many of these spectra are characterized by rather sharp regions of

energy in which there is high absorption, and the shape of the

absorption curve in such regions is very similar to that in the resonant

absorption of light. A typical example is shown in Fig. 41. The

energy at the centre of such a peak is called the resonant energy and

the half-width of the resonance is

specified in the usual way. Over fifty

such resonant levels have been found

experimentallyf for neutron energies

mostly in the range of zero to 50

electron volts. They are found with

rather uniform frequency in the range
ofatomic weights from 90 to 200, and
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probably related to the periodic
features of nuclear structure for which the current theory has no

explanation.

The existence of strong absorption lines in the spectra for

slow neutrons is one of the most important characteristics of the

interaction of neutrons with nuclei in this range (i.e. A > 90). In

interpreting the observed distribution of levels, however, it must
be remembered that the (negative) binding energy of the last neutron

decreases steadily from about 10 M.e.v. for A = 90 to about 7 M.e.v.

for A = 200 and to lower values for higher A. We shall return to

the question of the distance between levels in Chapter IX.

Another salient feature of the interaction of neutrons with nuclei

t B. D.McDaniel, Phys. Rev. 70 (1946), 83 (In) ;W.W.Havens, Jr , and J. Rainwater,
ibid. p. 154 (Sb, Hg) ; L. J. Rainwater, W. W. Havens, Jr., C. S. Wu, J. R. Dunning,
ibid. 71 (1947), 65 (Cd, Ag, Ir, Sb, Mn) ; W. W. Havens, Jr., C. S. Wu, L. J. Rainwater,
and C. J. Meaker, ibid. p. 165 (Au, In, Ta, W, Pt, Zr); C. S. Wu, L. J. Rainwater,
W. W. Havens, Jr., ibid. p. 174 (Os, Co, Tl, Cb, Go); R. E. Lapp, J. R. Van Horn,
A. J. Dempster, ibid. p. 745 (Gd, Sm) ; W. J. Sturm, ibid. p. 757 (Rh, Au, Ir, Gd,
Sm, Eu, Dy).



Chap. VIII, 1 PROPERTIES OF NEUTRON BEAMS 215

is illustrated best by those absorption spectra in which no sharp lines

occur. For example, the absorption cross-sections for Li and B, for

neutrons in the range of energy up to 100 e.v., are represented by the

formulae :

110

CTB = -Iff-
X 10-" cm."

V/J/ev

This characteristic dependence of non-resonant absorption at low

energy on E~ l- is known as the l/v-law, we shall take up its theo-

retical foundation in Chapter IX.

The analogy between neutron beams and beams of electromagnetic
radiation extends to include polarization. Both beams are capable
of two independent polarizations which, in the case of the neutron,

are associated with the two possible orientations of the spin-vector

along a chosen axis of reference. Physically, it is possible to define

a preferential direction in space by applying a magnetic field. Then,
since the neutron carries a magnetic moment, the two polarizations

of neutron beam will be refracted, or otherwise behave, differently

when passing through such a field. An ingenious method of putting
such an effect into evidence has been proposed and used by
F. Bloch.| This method is to pass the neutron beam through a

magnetized sheet of iron. Interference between scattering by the

iron nuclei and scattering by the atomic magnetic moments tends to

remove (scatter) one spin-polarization from the original beam more

effectively than the opposite polarization. The beam then emerges
from the iron partially polarized, and this can be demonstrated by
'

analysing
}

the transmitted beam with a second sheet of magnetized
iron.

To illustrate the principles of Bloch's method in more detail, con-

sider the scattering of a slow neutron beam by a single paramagnetic
atom or ion. The nucleus ofthe atom will scatter a certain, spherically

symmetrical intensity which determines the elastic cross-section, a
l)9

for nuclear scattering. In addition to these scattered waves, the

electron cloud about the nucleus will scatter the neutron waves

through the interaction of their resultant magnetic moment and

the magnetic moment of the neutron. If the resultant electronic

f F. Bloch, ibid. 50 (1936), 259; 51 (1937), 994.
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magnetic moment, j!e , could be visualized as a point dipole coincident

with the nucleus, the added potential would be

Actually, the neutron interacts at each point in the electron cloud

with the magnetic polarization, due to electrons, mf(re), at that

point, so that more exactly:

=
J

Since we are dealing with slow neutrons, and very small phase-shifts,

we may use the Born approximation which says that the perturbing

potential acts like a source of Huygens wavelets of amplitude

where k is the wave-number vector of the incident beam, and k
/t

of the scattered beam. At large distances from the atom, the scat-

tered wave has the form:

9 M
-

(13)

We are primarily interested in those waves originating from ?/(rn )

that interfere with the waves scattered from the nucleus. It is

assumed that the spin of the neutron is not changed by interaction

with the nucleus, and since f/(r) is a weak potential we may restrict

the calculation to those components of U(r) in which
fjtn is diagonal.

Taking the spin-effects into account, one then substitutes (12) into

(13) and integrates to obtain the amplitude scattered by the magnetic
field of the atom. The integral is not elementary, however, because

of the singularity at rn re 0.

Bloch (loc. cit.) has shown that, if one encloses the position of the

neutron by a small volume bounded by the surface 8, the angular
distribution of neutrons scattered both by the nuclei and by the

magnetic polarization of the electron cloud is given by the differential

cross-section

where 9
q

is the angle included by the vector difference k k
Ai
and
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the vector
J
me(r)e

l'<k -k >r
dr, yn is the magnetic moment of the

neutron measured in nuclear magnetons, and ye is the magnetic
moment of the electron measured in Bohr magnetons. The number C
is the result ofthe integration over the surface ofthe excluded volume,
and may be expressed in coordinates relative to the centre of that

volume as

The value of C thus depends upon the 'shape' of the neutron. If S
is a needle-like volume such as one should use to enclose two mono-

poles forming a dipole in the ^-direction, C obviously vanishes; if 8
is disk-shaped, presumably the case ifthe neutron's magnetic moment
is due to a small Amperian current, C = 1; if S is a sphere, C = ^,

and so on.

The plus or minus sign in eq. (14) refers to one polarization, or

the opposite, of the neutron's spin relative to the axis defined by
the electronic magnetic moment. It is evident that the differential

cross-section for a given angle of scattering will be larger or smaller

according to whether the waves scattered magnetically interfere con-

structively or destructively with the waves scattered by the nucleus.

Since, if waves of one spin-orientation interfere constructively, waves
of the opposite orientation interfere destructively, the scattered

intensities will be different and the scattered and transmitted beams
will be partially polarized. Experimentally, the degree of polariza-

tion appears to be about 10 per cent. This method of producing

polarized beams of neutrons was used in the first determination of

the magnetic moment of the neutron.f

2. Elastic scattering

In Chapter II we have introduced the theory of scattering of one

nucleon by another, with special attention given to the effect of short-

range nuclear forces on the $-wave component of a plane wave. The
restriction to $-waves was made possible by the fact that A, for the

cases considered, was long compared with the range of forces. Since,

in general, the collision of particles in nuclear bombardment involves

scattering by short-range forces, it is evident that we have merely to

extend this theory to apply to scattering by complex nuclei. It is

usually convenient to think of the scattering nucleus as an effectively

t L. W. Alvarez and F. Bloch, Phys. Rev. 57 (1940), 111.
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infinitely heavy object representing a refractive region for nucleonio

waves, which region extends to a definite radius R. In the mathe-

matics, one automatically expresses the proper approach by going
over to reduced masses. Let us imagine a plane through the centre of

the scattering nucleus and perpendicular to the direction of bombard-

ment, and let us draw circles on this plane about the centre and of

radii A, 2A, 3&,..., etc. If the radius of the refractive region, jR, lies

whollywithin the first ofthese circles it is sufficient, in good approxima-

tion, to consider only the head-on collisions, or $-waves. IfR extends

into the second zone, however, collisions with orbital angular momen-
tum unity are affected appreciably and the P-wave refraction has to

be taken into account. It will be noted that the area presented to a

plane wave by the zone of orbital angular momentum I is

The method of Chapter II is readily generalized to include refrac-

tion in the states of higher orbital angular momenta. The problem
considered here has axial symmetry about the direction of bombard-

ment which we shall denote by z or by rcosfl.f It is then most

convenient to expand the bombarding plane wave in eigenfunctions

of angular momenta by the well-known formula :

(16)

where J/+j(Ar) is the Bessel function of half-integral order that is

bounded at r = 0, and j^(cos#) is the Legendre polynomial. As

suggested above, only those states of angular momentum with zero

component about the direction of bombardment can occur in this

expression.

Ultimately, we are interested in the effect of a short-range region

of refraction, around r = 0, on the plane wave (16), but we first

concern ourselves with the net effect at large distances from this

region. We may then use the asymptotic expressions for the Bessel

functions:

WfeO -

J\-jj-]
sin(AT-^Z), (17)

t The situation becomes less symmetrical in the case of polarized spins, in the

beam, or in the target or both, as, for example, in tho scattering of neutrons by
magnetic iron discussed in 1.
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and eq. (16) becomes:

^-(-iye-^]. (18 a)

1=0

The trigonometric functions are expanded to put into evidence the

incoming partf of the incident wave, at large r, e~ikr
,
and the out-

going part, eikr . The short-range region of refraction will induce a

certain total shift in phase, 28,, which is represented by inserting the

factor e2i8< in the outgoing part for each I. The asymptotic form of

the refracted wave is then:

(-l)'e-^]. (18 b)

Subtracting (18 a) from (18 6) we get the scattered amplitude,

8 = (21+1)^0*9)^. (19)
^w KT
Z =

However, r2 times the scattered intensity is just the differential

cross-section for scattering into unit solid angle in the direction 9,

and this is a(9)

~ 3e^ sin S^osfl...+ (2Z+l)e*' sin 8,^(008 0)...|
2

.

K

(20)

The fact that the sum of terms belonging to different I occurs

inside the absolute square expresses the possibility of interference

between these waves, which must be possible since all scattered

waves originate from a single plane wave. Generally speaking, scat-

tered waves of the incident particle will interfere if the initial and the

final states are the same. Since we have been disregarding spin, a

final state may be completely specified as a plane wave travelling

in the direction 9 and will contain, for example, an S P interference

term given by:
6 sin 8 sin 8X cos(8 S^cos 9. (20 a)

The rule for interference permits one to treat the collision of par-

ticles with spin, as we did in Chapter II, by setting up independent

expressions for the differential cross-sections, one for each possible

f This is the incoming part in accordance with the convention that the time-

dependent factor of the wave-function is e~<2f<
/*, whence a given phase progresses

inward with time.
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spin-combination, and then adding the cr(6) with the statistical weight

appropriate to each. If the colliding particles have spins s and t,

there are (2s+I)(2i+l) possible polarizations of the system, and

these may be grouped into eigenstates of total spin, j,

In the general case, the phase-shifts will be different for different j

'(double, or multiple, refraction!) and the combined scattering cross-

section must be written:

The total elastic scattering cross-section is then

a
el
= 27r

J a(6)d cos 0. (22)

A complication arises if the forces that produce the refraction may
also turn over the spins. In this case the final states are not always
the same and non-interfering terms appear in the scattered intensity.

The treatment of this question is a part of the general theory of

transmutation that is considered in the next chapter, but a simple

example will be taken up at the end of this section.

For the sake of completeness, we write down at this point also the

analogous expressions for <j(0) in case there are long-range forces, i.e.

Coulomb forces. As discussed in 1, Chapter II, we find that the

particle waves are refracted everywhere and the analysis is more

complicated than for short-range forces alone. One can follow through
the method introduced in Chapter II for higher angular momenta,

however, with the general result :|

T(0)
1 e^ ln{2/d-cos 6)} I ei8 sin s

A:
2

1 cos#

+3cos06*+^sin81+...(2J+l)c
<8'+^sinS

l
P

l(cos0) , (23)

Z,Zz e
z

.
(where

rj
==.

1 * ^ = arg-

for particles of charge Zl and Z2 and with relative velocity v. For

high velocities and small charges, 1 77 1
<^ 1

,
and

<j>tmay be approximated

t W. Gordon, Za.f. Phya. 48 (1928), 180.
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We turn now to the rather more specifically nuclear part of the

theory of scattering in which we attempt to evaluate the S/s in terms

of the short-range forces between the incident particle and the scat-

tering nucleus. To take the simplest case, let us suppose we are

dealing with a slow neutron incident upon a heavy nucleus, so that

ft ^> R, where R is the radius of the nucleus plus the range of force.

In Chapter II, 2, we had precisely this case for scattering ofneutrons

by protons. But we shall simplify the present example further by
neglecting the spin of the neutron as well as of the scattering nucleus,

if any. Ifwe should represent the nucleus by a
'

square well' of radius

R and depth h2
kl/2M, the calculation of 8 would be formally the

same as in the case of hydrogen and we should obtain

kR
(24)

and, since S
t
of higher / are negligibly small, the total cross-section is:

a
el
=

|[.un8 (25)

in accordance with eq. (20).

The feature of these formulae (24) and (25) that is most readily

checked against observation is the occurrence of resonant energies,

i.e. values of hz
k?/2M for which S (n+^)7T, where n is an integer

and, therefore, for which the scattering cross-section reaches its

maximum possible value for an $-wave, 4?r
2A. From eq. (24) we may

readily estimate the distance (difference in energy) between succes-
o> o

sive resonance levels to be Dn ^ P n
'
^ we su^stitute n 1,

R = 6x 10~13
cm., as representative values for, say, Si28 ,

we find a

value of D1 to be 22 M.e.v. ! This is to be compared with the observed

level distance in Si28 of about 0-030 M.e.v. (at an excitation of

10 M.e.v., p. 236). This obvious inadequacy of the 'potential well

model' springs from the fact that such a model assumes that the

impinging neutron moves in the average field of the other nucleons

while inside the radius R> and otherwise quite independently,

Actually, the strong, short-range forces between nucleons makes it

possible for the incident neutron to share quickly its energy witl:

other nucleons in the nucleus. The energy of bombardment, plus th<

potential energy (binding energy of the next neutron), is then distri

buted throughout the composite system formed by the neutron aiu
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the target nucleus. This composite system is the compound nucleus^
in the currently accepted terminology, and the term applies as well if

particles other than neutrons are used in the bombardment. Owing to

this sharing of the excitation energy in rather statistical fashion, the

neutron spends a much longer time in the field of the nuclear forces

than if it moved independently, i.e. it has to wait until all its original

energy has been restored to it in order to become elastically scattered.

By the uncertainty principle, the longer the duration of the com-

pound state the smaller the width of the resonant level. An essen-

tially equivalent physical picture is that the strong coupling between

nucleons splits the individual particle levels predicted by the poten-

tial well model into very many quantum states, the energy separations
of which is rather to be determined from statistical theory considered

in the following chapter.

We shall see later that the average distance between resonant

levels for neutrons in rather heavy nuclei is in the range of 10-100 e.v.

This means that 8 should go through TT radians whenever the energy
of bombardment is advanced by this amount rather than by some

10 M.e.v. which eq. (24) would require. In order to take account of

the fact that resonant levels occur much more frequently than allowed

by eq. (24), we shall replace the argument of the cot, ^(k
2+k\)E, in

that equation by a much more rapidly varying function of the excita-

tion energy, U, viz. <j>(U).% The phase-shift for scattering of neutrons

in $-waves is then

8 = -fctf+arctan {K = J(k*+k*)}. (
2fl

)A COt <p

The new function, </>
=

<f>(U), is then a kind of 'phase of neutron

waves' at the radius R and has to be determined from the experi-

mental results on 8 as a function of the energy of excitation. It is

evident that for low energies of bombardment, for which kE is very

small, a resonant energy, Er ,
will correspond to

(f>r (nr+\)-n. The

most fundamental type of information concerning ^ as a function

of energy is then the location of the resonant energies, Er . From these

one may then calculate the resonant excitations Ur E
r -\-Bn ,

where

Bn is the binding energy for the neutron. Next in importance to

finding the positions of the levels is to determine the width of each

t N. Bohr, Nature 137 (1936), 344.

| This approach to a description of resonant scattering is essentially that presented
by H. Feshbach, D. C. Peaslee, and V. F. Weisskopf, Phys. Rev. 71 (1947), 145.
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resonant level. The relation between the width of a level and the

function <f>(E) is evidently that the width F^ is proportional to

(dE/d<f))r . We shall now turn to the problem of expressing 8 and

the cross-section for scattering in terms of the positions and widths

of the resonant levels.

Substituting (26) into eq. (25) and rearranging factors we obtain

for the total scattering cross-section:

47T I
(27^

i-(Kcot<t>/Ic)
' V ;

If we are concerned with the neighbourhood of a resonant energy Er

(for which cot< vanishes) and the width of this level is known, it is

convenient to approximate Kcot<f> as a linear function:

*. (28)

where we define 'the neutron width
5

,
for the level r

"-'/(S),
and, in these terms,

(29)

The resonant feature of the scattering is contained in the second term

under the absolute square in eq. (29). The first term is a potential

scattering
' term of the type that would be obtained by assuming the

nucleus to be an impenetrable sphere. At low energies, kR <^ 1,

and this term may be disregarded, giving,

At resonance, E = E
r ,
and <r

rf
takes its maximum value 47r&2 . It will

be noticed that in the more complete expression, eq. (29), the maxi-

mum cross-section does not occur exactly at Er because of the inter-

ference with the potential term. Nevertheless, it is convenient to

retain the definition of a resonant energy as that energy for which

cot
</>

vanishes. Equation (30) is a special case of the
'

dispersion

formula* first derived by Breit and Wignerf for the description of

t G. Breit and E. P. Wigner, ibid. 49 (1936), 519.
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nuclear processes in the region of a resonant energy. In their deriva-

tion of this particular case it would be assumed that the compound
nucleus can get rid of its energy of excitation only by ejecting a

neutron. The probability of neutron emission is proportional to

P? and this, in the original form of the theory, was calculated from

perturbation theory in the usual way as, F? 27r|Jjf^|
2
, where H]. is

the matrix element of the perturbation that couples the resonant

state r with the initial state i (neutron incident upon the target

nucleus) which is normalized to unit energy. Since, however, the

nuclear forces are so strong, it is not clear in what sense the Hl
r may

be considered as matrix elements of a small perturbation. Conse-

quently many attempts have been made to formulate the resonant

phenomena without recourse to perturbation theory, in addition to

that followed above.f Certain features of these theories will be

returned to later.

So far as the development that we have been following goes,

eq. (29), or (30), holds only near a single resonance and in the event

of many resonant energies one must specify how the functionK cot
<f>

varies in the regions between them. Since, in all practical cases, the

excitation energy, U, is very large compared with the level distances,

we might expect the general behaviour ofK cot
<f>
to be quite similar

for a number of resonant energies in the neighbourhood of a given

excitation. In particular, we may note that 7r(dEld<f>) should be of

the order of magnitude of the level distance, for $-levels, and may be

represented by an average value over a region that embraces many
levels. Using such an average value, one sees also that the neutron

Width
/--at!"

** ]-2 k
r
~ " K d<>

will vary with the energy of bombardment essentially as k, or E*.

Hence, as E -> 0, the scattering cross-section (41) approaches a

finite value.

The scattering formula for the more general cases of neutron waves

of higher angular momentum in their orbital motion, or waves of

charged particles in the Coulomb field of the nucleus, are readily

deduced along the lines of the foregoing calculation. We shall continue

to denote the phase-function for the internal wave by <, it being under-

t P. L. Kapur and R. Peierls, Proc. Roy. Soc. 166 (1938), 277; A. J. F. Siegert,

Phya. Rev. 56 (1939), 750; E. P. Wigner, ibid. 70 (1946), 15, 606; E. P. Wigner and
L. Eiaonbud, ibid. 72 (1947), 29.
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stood that it may now depend upon the angular momentum and

charge of the bombarding particle, as well as the energy of excita-

tion, <f>
=

<f>(U, 1
9 77). Through this function we fit the internal wave

smoothly on to an external wave of the general form

where F^(r) is the appropriate bounded radial wave-function (times r)

for the particular values of I and
77 concerned, and G

tfr}
(r) is the

corresponding unbounded wave-function. Then, assuming that the

internal waves may still be approximated as simple sine waves, and
rj~ui (Y\~\

writing F' for -W-? and similarly for 0', we get:
L * } R

.F'cosS+G'sinS

which we may readily solve for 8. The scattered amplitude is

proportional to

ei8 sin s _ _ -
-i~ F'-FKcot<l>+i(G'-GKcot<t>)'

v '

Even for this more general (/>
we shall retain the notion of a 'funda-

mental width', FJ, for each resonant level r such that near resonance

K cot
</> may be approximated linearly by

rtjL

Kcot<t>^-(E-Er)^. (33)

It is evident from eq. (32) that the scattered intensity will have its

maximum value whenever

G'-GKcot<f> = 0,

r G'^=-1-' (34)

since, in any practical case, HG'/G < 1 and T^/2kR is of the order

of the distance between neighbouring levels.

The observed width of the resonance at Er will not be FJ, which

is more closely related to the level spacing, but will rather be

rfri
= Etr-E->

where E r
means that value of the bombarding energy for which the

scattering intensity has just dropped to one-half its value at Er ,
as

energy is increased, and E_
lr

is the corresponding value on the lower

3595.61 Q
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side of Er . In these simple scattering formulae it is evident from

eq. (32) that E r and E_kr correspond to cot 8 = 1 and to 1,

respectively. Substituting these values of 8 into eq. (31), and the

resulting values of cot^ into eq. (33), we get

w , R(F'+G'} R(F'-G')- ~

2R(F'QG'F)= G*~F* ~G*~
9

since G2
^> F2 under the conditions of our approximations (a more

careful analysis shows the denominator to be (r
2+^2

). From this

calculation, therefore, we get the simple relation

r^ = -g-. (35)^
For neutrons in $-waves, G = coskR ^ 1. For higher angular

momenta, however, and small kR

and rJ - r
'[OT8--W- '*<' <36)

Thus, the width of a level of higher angular momentum is much

narrower, if kR <^ 1, than that of an $-level for the same spacing
between levels. Since F ^ k ~ v, the level width for neutrons of

angular momentum I and small k varies as A;
2/+1 ^ v +1

(v is the

velocity of the neutron outside the nucleus). This sharpening of the

levels may be said to be due to the fact that the neutron must

penetrate a potential barrier of centrifugal force in order to reach

the nucleus and, therefore, the probability is large only very close to

exact resonance. For high energy, and thus large k, the centrifugal

barrier is ineffective and F7^ -> F . The correct expression for Fz in

intermediate ranges of kR may be derived from the more elaborate

theories (cf. Wigner and Eisenbud, loc. cit.), and we list here the

results for the lvalues 0, 1, and 2:

r* = r (i
= o)

(37)

,226 v h
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In a Coulomb field, e.g. for protons instead ofneutrons, O^ depends

upon the value of
T?
= Ze2

/fiv, as well as upon I, and P* becomes multi-

plied by an additional factor which is essentially the penetration
factor for a Coulomb barrier. For kE < 1, we have the approximate

expression

(38)

In the case of I = 0, i.e. $-wave collisions of protons on a resonating

nucleus, and for reasonably large 77, say of the order unity:

T07
?

27r7?e-
27"?r. (39)

Hence, owing to the necessity for penetration of the Coulomb barrier,

resonance widths for protons, or a-particles, are much narrower than

for neutrons of the same value of k. As IcR increases, its most impor-
tant effect appears first in the Coulomb penetration factor, and it

becomes appropriate to apply the more complete expressions for

barrier penetration presented in Chapter VI. According to the

calculations in that chapter, one would apply a further (energy-

independent) factor to eq. (38) and (39) of

for protons; of course, 77
must be made twice as large in all these

formula when applied to a-particles. It will be noted, also, that if

TI J> I then the factor in front of e-27rr?+4^27
?
/fl2

>, in the general expres-

sion for F^, will not depend sensitively upon v, since (kErj)
21^^^ v.

This means that by the time the proton wave has penetrated to a

radius at which the centrifugal barrier is noticeable, the Coulomb

barrier has reduced its amplitude so much that the effect of the

centrifugal barrier is entirely unimportant.

Experimental material on resonant scattering is rather scarce, but

there is one highly interesting example, namely, the scattering of

neutrons by helium. The work of Staub and Tatelf shows that the

backward scattering of neutrons by helium is a sensitive function of

energy in the neighbourhood of 1 M.e.v. From eqs. (20) and (20 a) we

expect preferential backward scattering to arise first as S-P inter-

ference. Referring to Chapter IV, we remember also that He5
,
which

would be the compound nucleus in this case, is not stable, but in its

lowest state the third neutron should be most likely in a P-state. We

t H. Staub and H. Tatol, Phys. Rev. 58 (1940), 820.
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should deduce, therefore, that what is being observed is a resonance

of the neutron with this P-state. In the simplest form of scattering

formula, then, we should include a resonant term for the P-wave
but none for the /Sf-wave (since we do not expect any). For the

$-wave, we shall include a potential scattering term, but the possi-

bility of such a term for the P-wave will be disregarded. The

formula for the differential cross-section should then look like :

a(0) = A2

where El is the resonant energy of the P-state and 1^ its half-width.

The experimental results indicate, however, that there are two reso-

nant energies, rather close together. The natural interpretation of

this observation is that there is spin-orbit coupling in the resonant

states such that theP andP
f states lie at somewhat different energies.

Now the waves scattered from these two levels will interfere if the

spin-orientation of the neutron does not change, so that, for these waves,

we simply replace

(41)

where we allow for the fact that two-thirds of the scattered amplitude
will spring from the fourfold degenerate P|-state and one-third from

the doubly degenerate J^-state. But the mere existence of spin-orbit

coupling means that in some of the collisions the spin of the neutron

will turn over. The scattered amplitudes in such cases will not be

coherent with those above and their contribution should be discussed

more properly as a nuclear reaction.

We shall discuss the spin-reversing process here in the following

elementary way. Consider a neutron with spin 'up' colliding with

a He4 nucleus in a P-wave. The partial wave of this neutron must

be ofthe form 3a cos 0, where a stands for spin 'up' (jS
for spin 'down')

and the cos 6 comes from eq. (16). This form is not a pure component
of either a P$- or P^-wave, but, as can be seen easily, is rather a

linear superposition:

This means that f of the collisions may be considered as subject to
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the forces characteristic of a Prstate and to those of a Prstate.

These states, for m =
,
look like:

Pj = 4;{2acos0--]8e**sin0}* V2 X M f

(ro
=

i) (42)

Pj
= acos0+j8e^sin0.

Hence, if the neutron enters the Pg-state there is one chance in three

that it will emerge as j8e^sin0, i.e. with spin and sign reversed and
with its orbital motion changed (reoriented). If it enters the P^-state,
there is a two-thirds probability of its coming out in the wave

jSe^sin 6. These two possible paths will interfere with each other, but

not with the a-waves. To summarize: the incoming wave 3cos0

overlaps the eigenstate Pt (which is normalized to 4?r) by a factor V2

and may be scattered from this state with spin up as V2acos0

(cf. eq. (42)) and it overlaps P^ by a factor unity and may be scattered

as acos0; this gives just the substitution noted in (41); in addition,

however, the neutron may emerge from the P
s
-state in the wave

V2-,-j8e^sm0 = /fe**sin0, and from the Prstate in the wave

]8e
l'^sin 0. Collecting these numbers, we find for the differential cross-

section, including the non-interfering elements:

(7(0)
- A2

+ sin2 (43)

This theory was first presented by F. Bloch.f The analysis of the

data indicates E
l 0-70, E

k
= 1-08 M.e.v. with T

k
=

T^
= 0-32. In

other words, although unstable, the Prstate of He5 lies lower and

with a 'binding energy' of 0-76 M.e.v., i.e. not bound. J It will be

recollected also that the Li7-P
f
lies lower than the P^ by 0-44 M.e.v.

t F. Bloch, Phys. Rev. 58 (1940), 829.

t Cf. J. H. Williams, W. G. Shepherd, R. O. Haxby, ibid. 51 (1937), 888.



IX

NUCLEAR TRANSFORMATIONS

1. Energy -levels in nuclei

So far we have become acquainted with two general categories of

excitation levels in nuclei. The first category includes the levels of

daughter nuclei discussed in Chapter VII; these may be excited

by a-decay and j8-decay and, in some cases, by direct bombardment
with X-rays. These levels correspond to the familiar excited states

of atoms with the characteristic difference that the quanta emitted

in transitions between nuclear states are usually of the order of

M.e.v. instead of the order of volts, as in atoms. The excitation in

such levels is generally lower than the binding energy of a single

nucleon and we shall refer to them as the low-lying levels. According
to the experiments! results cited in Chapter VII, one may expect
such low-lying levels that enter into y-ray transitions to appear at

intervals of about 0-4 M.e.v., on the average, as one increases the

energy of excitation, and in nuclei with A > 100.

For nuclei with A < 100 the average distance between low-lying
levels gradually increases, roughly as 1/-4*, but in a way that is

rather strongly influenced by shell-structure, symmetry, etc.,

especially in the very light nuclei. Independent evidence of the

low-lying levels in light nuclei can be obtained, however, by study-

ing the energy-balances in nuclear reactions. As a first example,
consider the reaction,f Mn55

(d,

Mn55+H2 -> Mn^+H1
. (1)

According to Table II, the neutron is bound in Mn56 by 8-8 M.e.v.

and in H2
by 2-2 M.e.v. Except for small corrections due to the

kinetic energy of the Mn, the emitted proton will carry away the

original kinetic energy of the deuteron plus 6-6 M.e.v., provided

the Mn56 nucleus is left in its lowest state. Actually, Martin observes

protons of six different energies, corresponding to six different states

of the residual nucleus, one ofwhich is the ground state. The energies

of excitation of the other five states are 1-07, 1-77, 248, 3-61, and

4-38 M.e.v., or an average spacing of 0-88 M.e.v. The (d, p) reaction

t A. B. Martin, Phya. Rev. 71 (1947), 127.
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has been used on numerous other nuclei, for example A\27
(d, ^p)Al

28
f

and on the separated isotopes of neon.J The average spacing found

in Al28 was 1-3 M.e.v. and in Ne21 and Ne23 about 0-9 M.e.v. The

(d, n) reactions also lead to information on excited levels, although
it is more difficult to measure the energy of an emitted neutron than

of a proton. For example, using proton recoils in a cloud chamber,

Bonner and Brubaker have studied the neutron energies from

Be9+H2 -> B10+w (2)

and find excited levels of B10 at 0-5, 2-0, and 3-3 M.e.v.

a-Particle bombardment has been as useful as deuteron bombard-

ment in studying the low-lying nuclear levels. Here, again, we shall

only give representative examples, such as

Be9+He4 -> C12
+rc, (3)

from which Bernardini and Bocciarelli|| determined levels in the C12

nucleus at 3-0, 4-4, and 6-4 M.e.v., and

F19+He4 -> Ne^+H1
, (4)

which indicates excited levels ofNe22 at 0-6, 1-4, 3-4, and 4-5 M.e.v.ft

Needless to say, the energy-release, or Q-value, for the lowest state

of the residual nucleus is useful for checking, or determining, the

differences in binding energy of the nuclei involved.

Perhaps the simplest type of
'

nuclear reaction
' from which informa-

tion is obtained about excitation levels is that in which neither mass

nor charge of the target nucleus is changed but only its internal

energy. The bombarding particle is then indastically scattered.

Quantitative work of this type has been done by determining the

energy lost by protons when scattered from various materials. In

Al27
, for example,:^ energy-levels appear at 0-87, 2-03, 2-70, and 3-5

M.e.v., i.e. an average spacing of 0-9 M.e.v.

The data acquired to date on the low-lying levels cannot be con-

sidered a priori as representative of the complete term systems of

f E. M. McMillan arid E. O. Lawrence, ibid. 47 (1935), 343.

| F. K. Elder, H. T. Motz, P. W. Davison, ibid. 71 (1947), 917.

T. W. Bonner and W. M. Brubaker, ibid. 50 (1936), 308.

||
G. Bernardini and D. Bocciarelli, Accad. Lincei Atti, 24 (1936), 132.

ft J. Chadwick and J. E. R. Constable, Proc. Roy. Soc. 135 (1931), 48, and A. N.

May and R. Vaidyanathan, ibid. 155 (1936), 519. The reader is referred to M. S.

Livingston and H. A. Bethe, Rev. Mod. Phys. 9 (1937), 246, for a systematic collec-

tion of the early data on reactions and excitation energies.

H R. H. Bicke and J. Marshall, Jr., Phya. Rev. 63 (1943), 86.
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the nuclei; it is probably more justifiable to consider the levels

found thus far to be the 'easy
5

levels to excite, since, in the usual

nuclear bombardment, the particles that get close enough to the

target to make a transmutation have very low angular momentum

(S- and P-waves in the orbital motion and spin-unity at most (deuteron

bombardment)). Hence there is little chance of exciting low-lying
states of high angular momentum, even though they exist. Offhand,

one might expect the number of low-lying levels with high angular
momenta to be quite large, especially in heavy nuclei, since the

moment of inertia is / = fMn A*rQQ (r00
= 1-45 x 10~13 cm., Mn is the

nucleonic mass) and the kinetic energy of rotation is

25/07+1)

for the rotational quantum number J. Thus, even in Al27 there

should be levels spaced by a few hundred kilovolts, and in Pb the

spacing drops to a few kilovolts. Such a profusion of low levels is in

contradiction with many of the observed properties of nuclei, such as

rather high metastable states in heavy nuclei, and the existence of

strongly forbidden j8-spectra, etc. This question has been taken up

by Teller and Wheeler,f who point out that a nucleus should behave

like a body of rather high spatial symmetry and that, consequently,

many states (especially with small values of J) will be forbidden by
the symmetrization of the wave-function, just as in the rotation of

molecules. In fact, they find that a nucleus behaves approximately
as though there were A* a-particles equidistantly disposed around

its equator. Then, if the lowest state of the nucleus corresponds to

J = 0, the next lowest state of rotation that is allowed by the

Einstein-Bose statistics is J = A*. Substituting in the formula for

AJ, we get an estimate of the first rotational level to be 25jA M.e.v.

which is compatible with experiment. It would appear, therefore,

that the 'easy' levels give a more complete term system than might
be expected offhand but that there are several demonstrated cases

of low-lying, metastable levels that are excited only indirectly by
bombardment (cf. Chap. VII).

Although the term systems of nuclei have not been anywhere near

completely explored, one can detect a tendency of the average

distance between low-lying levels to decrease with increasing A

t E. Teller and J. A. Wheeler, Phya. Eev. 53 (1938), 778.
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approximately as A~*. This tendency, as well as absolute magnitudes
of the spacings, substantiate Bohr and Kalckar'sf interpretation of

the lower levels of a nucleus as characteristic of the vibrations of a

liquid droplet. The lowest lying levels of a liquid drop will be those

in which the energy of excitation is in surface vibration at constant

density. Suppose the surface radius, JR8 , moves according to the law :

E8
= fi {l+aaPa(cos0)sinorf}. (5)

We have seen in Chapter VI that the surface potential energy due
to such a distortion (from a sphere) will be

and we shall disregard the change in potential energy of the Coulomb
field which is relatively unimportant in lighter nuclei. Then assuming
the radial velocity at r to be vr(r) = a2 rajP2(cos 0)cos cut, the tangential

velocity for irrotational flow will be VQ
= fa2 r^ sin 20 cos o> and

the kinetic energy

In order that the sum of potential and kinetic energy be independent
of time, the coefficients of sin* cut and cos2

ou have to be the same,
and we get ^

<" = 5ZT *" =
31
M 'e 'v -

Hence the magnitude ofthe quanta ofsurface vibration varywith A~*.

Since there are five linearly independent surface vibrations of the

type (15), and since these are probably coupled rather strongly with

other modes, we should expect the average spacing between low-lying
levels to be of the order of #w/5 or 6/A* M.e.v., in reasonable agree-
ment with observation.

We turn now to the second category of excited quantum states in

nuclei which includes the resonant energies of neutron absorption
discussed in the preceding chapter. It will be recalled that the average
distance between such levels appears to be about 10 e.v. for nuclei

in the range 90 < A < 200. This level spacing is much smaller than

that for the low-lying levels, and the reason for this is that the nucleus

concerned is the nucleus formed by adding a neutron (of small kinetic

energy) to the original target nucleus. This temporary, composite

t N. Bohr and F. Kalckar, Kgl. Danske Videnskab. Selskab. 14 (1937), No. 10.
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system is called the compound nucleus, and it is evident that the

energy of excitation, produced by adding one slow neutron, is just

the binding energy of the last neutron in the newly formed isotope

and this is usually in the range of 10 to 6 M.e.v. As we shall see, the

smaller spacing of these levels is due to the higher excitation, and

we shall refer to these levels as high-lying levels. In every practical

case the high-lying levels that have been determined experimentally

are also levels of a compound nucleus rather than levels of a product
nucleus.

It was first suggested by Gurneyf that ifthe energy ofthe bombard-

ing particles were close to one of the virtual energy-states of the

composite system there would be a resonance phenomenon resulting

in a large increase of the probability of a nuclear reaction. At that

time the neutron was unknown and one had in mind virtual levels of

nuclei that can emit (or accept) charged particles, such as the natural

a-emitters; such levels are relatively long-lived, and hence well

defined in energy, because a potential barrier has to be penetrated.

The first indication of a large increase in the yield of emitted particles

for certain discrete energies of the bombarding particles was found

by PoseJ in his experiments on the artificial transformation of

aluminium under bombardment by a-particles. In these experi-

ments Pose used thick layers of Al (~ 0-04 mm.), so that the incident

a-particles were gradually losing energy and were finally stopped

before escaping on the other side of the target. In such a case we
should expect that the protons produced by collision of a-particles

with Al nuclei at different depths would have different velocities, so

that their observed energy-distribution would be in the form of a

continuous spectrum extending from an upper limit determined by
the original energy of the a-particle to much smaller values. The

measurements indicated, however, that the ejected protons belonged

to several more or less discrete groups, as shown in Fig. 42, where the

number of ejected protons is plotted against their range. This

observation can be explained only on the hypothesis that the observed

groups of protons were produced at a number of particular depths

in the Al target, evidently the depths at which the a-particles

(continuously slowing down) have energies just corresponding to reso-

nance penetration. A somewhat more detailed study ofthe resonance

t R. W. Gurney, Nature, 123 (1929), 565.

J H. Pose, Zs.f. Phya. 30 (1929), 780; 64 (1930), 1.



Chap. IX, 1 ENERGY-LEVELS IN NUCLEI 235

phenomena with aluminium was carried out by Chadwick and Con-

stable^ who found a still larger number of discrete groups than was

originally observed by Pose. It was shown that to each resonance-

level correspond several proton groups as if the a-particle entering

Nf

-$>*/

AA
20 30 40 50 60 70 '

FIG. 42.

Region ofhigh

Transparency

Resonance
Leveis

the nucleus with a particular resonance-energy might be captured on

different inside levels and consequently give rise to an ejected proton

of one of a number of different energies. The results of more recent

investigations by Duncanson and MillerJ are summarized in Fig. 43,

t J. Chadwick and J. Constable, Proc. Roy. Soc. 135 (1932), 48.

j W. Duncanson and H. Miller, ibid. 146 (1934), 396.
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where the resonance-levels and the stationary levels for the a-particle

are shown, together with the fundamental level of the proton before

its ejection. We see that an incident a-particle may enter the nucleus

through any one of six resonance-levels and that in each case four

distinct modes of capture are possible the particle may, first of all,

occupy any one of the levels a , a1? a2 ,
or a3 . Thus, with a beam of

a-particles bombarding an aluminium target, four discrete groups of

protons are produced for each of six resonance-energies of the ex-

particles. The shaded region near the top of the potential barrier in

Fig. 43 is the region of high transparency through which an a-particle

may enter the nucleus for a wide range of energies : the corresponding
feature of the protons ejected from a thick aluminium target bom-

barded by a-particles is a more or less continuous energy-spectrum.

This historical study thus illustrates the existence of low-lying levels,

the 'excited a-levels' of Fig. 43, resonance penetration due to high-

lying levels, and 'over the barrier', non-resonant, nuclear reaction,

all in one. The '

over the barrier
'

alphas still give four distinct groups
of protons corresponding to excitation of the residual nucleus at one

of the
c
a-levels'.

A somewhat simpler resonant reaction on Al is the radiative cap-

ture of protons
ffl
.+y. (6)

Investigating this reaction with very thin aluminium targets and

very well defined energies in the proton beam, BrostrSm, Huus, and

Tangenf have found thirty-six resonant levels of Si28 for proton

energies between, 0-2 M.e.v. and 1-4 M.e.v. This is an average level

distance of 30 k.e.v. at an average excitation energy of about

11-5 M.e.v. (binding energy of last proton plus 1 M.e.v.). The (p, y)

reaction has been studied in the same way on the other light mono-

isotopic elements Na, J F, and Be.|| The apparent level distances are

87 k.e.v. for Mg24 at an excitation of about 12-5 M.e.v., 46 k.e.v. for

Ne20 at about 13 M.e.v., and 400 k.e.v. for B10 at an excitation of

about 8 M.e.v.

For one target nucleus at least, viz. C12
, resonances are observedff

t K. J. Brostrom, T. Huus, R. Tangen, Phys. Rev. 71 (1947), 661.

j R. L. Burling, ibid. 60 (1941), 340.

W. E. Bennett, T. W. Bonner, C. E. Mandeville, and B. E. Watt, ibid. 70

(1946), 882.

||
W. J. Hushley, ibid. 67 (1945), 34.

ft C. L. Bailey, G. Froier, and J. H. Williams, ibid. 73 (1948), 274.



Chap. IX, 1 ENERGY-LEVELS IN NUCLEI 237

for (d, n) and (d, p) reactions. These results indicate an average

spacing of the order of 150 k.e.v. in N14 at an excitation of about

11 -6 M.e.v. Finally one has a suggestion of the level density in radio-

active nuclei of the natural series at excitations of the order of

3 M.e.v. from their y-spectra. Thus, Ellis and F. Oppenheimer have

assigned levels to the RaC' nucleus that would account for the y-rays

of that nucleus, Fig. 44. At 3 M.e.v. the average level spacing would

appear to be about 30 k.e.v. in this nucleus for which A = 214.

The excitation energy in the high-lying levels is most probably
shared among a large number of nucleons, at any given time, as a

consequence of the strong short-range forces acting between them.

The theory of the level density among these high states is then appro-

priately treated by the methods of statistical thermodynamics. The

average number of levels per M.e.v., />,
will then be proportional

simply to the thermodynamic probability which is, in turn, es t

where S is the entropy of the nucleus measured in units of k. The

entropy is a function of the energy of excitation, U, and this relation

serves to define a temperature of excitation, T, by

^. = 1. (7)3U T ^ )

If the excitation is sufficiently high so that all ^.-particles participate

in sharing it, the entropy per particle will be some function of U/A,

say ,9 = a(U/A)
v

,
and the total entropyf will be of the form

S = aA l~vUv
.

The value of v depends upon the particular model adopted for the

nucleus. If we assume that the A nucleons are independent particles

in a Fermi gas near degeneracy, J the specific heat of the nucleus will

be proportional to T, as in metals at low T, the entropy S ~ T, and

tho energy U ~ T2
;
hence v = ^ and

pm r^ e Ui7)* (Fermi-gas model).

On the other hand, if the nucleus be considered more like an ordinary

solid, for which the specific heat and entropy vary as T3
,
then

U ~ T4 and v = f . This leads to

p( U) ~ e"A*u*
(solid-body model).

f This argument is due to E. Teller, private communication.

J H. A. Bethe, Phys. Rev. 50 (1936), 332; this theory plus making allowance for

correlation (which results in replacing Aby$A, effectively) has been worked out also

by J. Bardeen, ibid. 51 (1937), 799.
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Fia. 44.
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Bethe| has developed the theory of statistical thermodynamics in

its application to find level densities in general. The method is to

construct the thermodynamic potential that pertains to definite

values of the volume of the nucleus, F, temperature, J T, proton

activity \z , neutron activity, A#, and free energy of rotation about

an arbitrary axis, M = TlnXM . This potential is then T times the

logarithm of the grand partition function E:

S= I AJSMSASe-JW* = e*'*
1

, (8)
ktn'iz'tm'

whore the sum runs over all possible energy-levels of the nuclear

systems, Ek9 over all neutron numbers, ri
', proton numbers, 2', and

components of angular momentum, m''. If we write

we may define the level density p(E',n',z',m
f

) by expressing (8) as

an integral:

=
JJJJ

dE'dn'dz'dm' . (8 a)

We now impose the conditions that the total energy have the average
value U, total angular momentumM ,

neutron number N, and proton
number Z. In a sufficiently large system, the integrand in eq. (8 a)

will have a sharp maximum about E' = U, n' = N
9

z' Z, and

m' = M, and it is convenient to write (8 a) in the form

e IT _ p(U,N,Z,M)e-<
u-Nt*-zlM-*txWX(U 9 N,Z,M), (8 6)

where

XdE'dn'dz'dm'. (Be)

From the general theory of statistical thermodynamics we know

t H. A. Bethe, Rev. Mod. Phys. 9 (1937), 81.

j In keeping with the usual practice in nuclear physics we shall measure tempera-
ture in M.e.v., i.e. T takes the place of kT in the familiar form of the equations.

Cf. R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge,

1939), especially chap. vi.
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that the entropy S of the system is related to O and the average

values, U, N, Z, and M through:

ST = 9+U-NtN-Ztz-MtM . (8 d)

Hence, in good approximation,

p(E',U ,z' 9 m') ^ f>S(E',n'J,m')-S(U,N,Z,M) /Q p \= e ' * e

Substituting (8 e) into (8 c), A (U,N,Z,M) may be evaluated in

the usual way by expanding the exponent of e to second order in

a Taylor series (first non-vanishing terms) and integrating.

This theory has been applied directly to several models for nuclei

by Bethef (loc. cit.). We shall consider here only the simplest type
ofnuclear model, viz. a degenerate Fermi gas ofprotons and neutrons.

Nuclear excitations are then achieved by promoting relatively few

(~ V/4) nucleons to higher orbits, and the entropies and derivatives

will be calculated approximately from the known theory of the

degenerate gas, e.g. the theory of metallic electrons. Moreover, we
are not interested in the density of levels for a given component, M
of the angular momentum, but rather the density for a definite total

angular momentum, J. The latter can be found by subtracting

p(U, N, Z, M) from p(U, N, Z, M+l). In this way Bethe finds for the

average number of energy-levels per M.e.v., and for given J, and

N+Z = A:

(9)

S = S(U,A) - " =

where U is measured in M.e.v., and
,
the Fermi energy at T = 0,

is 22*75 M.e.v. Considering that nuclei are not really very extensive

statistical systems,the numerical factor in (9) is relatively meaningless.

The general dependence of p and ofS onA and U appears to be quite

acceptable, however. TheS-U relationmay be used to define a nuclear

temperature: l 9g

f In Bethe's work in Rev. Mod. Phya. 9 (1937), 91, the nuclei are assumed to have
*

large' radii, i.e. r = 2-0 x 10~13 A$ cm., and this leads to too dense level systems
in the free-particle model considered here. With these large nuclei it was found that

the entropy of the surface vibrations was practically sufficient to account for the

level density, but such is not the case for the radii adopted in this book, and now
generally accepted, viz. 1-45 X 10~18 A$ cm. The theory presented here is essentially
that of Bethe's original paper on the subject, Phys. Rev. 50 (1936), 332.
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Comparison between Po(7)
==

Pj(U)/2(2J+l) and the observed
densities for SiMAl(#,y) and Eu152

(rc, y ) are shown in Table XXIII.
In that table is included also the 'nuclear temperature' corresponding
to the excitations involved. It is evident that the values in the
column labelled p are well within the reach of the values under
'Observed' considering the uncertainties in the numerical factor in

(9) and the fact that J remains unspecified. It is by no means clear
at the present time that the agreement between eq. (9) and the

TABLE XXIII

Number of levels per M.e.v.

observed density of levels is not partly fortuitous. In our model no
account has been taken of the contributions to the entropy due to
the specific interaction between nucleons, effects near the nuclear

surface, and so on.

In application of this theory to nuclear cross-sections we shall be

interested, in many instances, in the average distance between levels

of given J, M, and parity, D(U). The level density for given J and
M will be given by (9) divided by the degeneracy factor 2J+1 and
then again by a factor 2 to take account of the fact that (9) includes

both parities. The result is just the Po(U) defined above; and B(U)
is the reciprocal of pQ(U):

2. The theory of nuclear reactions

The concept of nuclear reactions has been used repeatedly in pre-

ceding sections and chapters, especially in connexion with the

energy-balances involved, the determination ofexcited states, and the

occurrence of resonant phenomena. We shall consider the general

theory of such reactions further in this section. The first example of

an artificial nuclear transformation was discovered by Rutherfordf in

1919, who observed that protons are created by bombarding nitrogen

3595.61

E. Rutherford, Phil Mag. Ser. 6, 37 (1919), 581.
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with the fast a-particles from RaC'. Wilson chamber photographs
of this (PL II, facing p. 256), taken by Blackett,| show the tracks
of the bombarding particle, the ejected proton, and the recoil

nucleus but no track corresponding to the original a-particle moving
away after collision. This nuclear reaction would then be written :

N14+He4 -> O^+IF+e, (12)

where Q is the energy-balance.
The left-hand side of eq. (12) represents the reverse of ex-disintegra-

tion, the right-hand side is the result of the disintegration of an

excited, compound nucleus, F18
*, by proton emission. In accordance

with the concept of the compound nucleus the reaction (12) is most

conveniently divided into two independent steps, the first of which is :

(13)

The excited nucleus, F18
*, may, in general, disintegrate in many

ways, and it is assumed that the probabilities of the various modes
of disintegration are independent of the particular method by which
the F18* was created. In other words, the F18* is a radioactive nucleus
in the sense used in Chapter VI. The number of possible modes

depends upon the energy of excitation. If we suppose that the kinetic

energy of the a-particle supplies 8 M.e.v., its binding energy (cf.

Table II) adds another 4 M.e.v., giving a total excitation of 12 M.e.v.

above the ground state of F18
. Such a highly excited state may

disintegrate in the following simple ways :

F18* -> N14+He4
(8 M.e.v. kinetic energy) elastic scattering

->N14*+He4 (< 8 M.e.v. kinetic energy) inelastic

scattering
-> ditto as many ways as there are available energy-

levels in N14

-+ O^+H1
(6-5 M.e.v. kinetic energy)

-^O^+H1 (< 6-5 M.e.v. kinetic energy) as many (14)

ways as there are available energy-levels in O17

-> F17+?& (3 M.e.v. kinetic energy)
_> F17*+r& (< 3 M.e.v. kinetic energy) many ways, etc.

-+ F18
*+fa> 12 M.e.v.) many ways.

t P. Blackett, Proc. Roy. Soc. A 107 1925), 349; P. Blackett and D. Lees, ibid.

136 (1932), 325.
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Owing to the fact that the residual nucleus may be left in one of a

variety of states of excitation, the number of possible reactions

increases very rapidly with the excitation of the compound nucleus.

Each type, i, of disintegration (14) is characterized by a definite

probability of emission, F l

'/#, so that the relative probability of the

kth type of emission is equal to

rk rk
pk _ _ _ __!_ (\K\

~2r*~ r ( >

i

with r = 2 r*
a1ffc

because of the assumption that the probabilities are independent.

The sum of all
'

widths', F, is called the total width of the compound
state in question, and the individual F* are called partial widths.

The absolute values of the various Tk are to be calculated for

neutrons, protons, and a-particles in just the same way as in the

preceding section on resonant scattering. Each Tk is composed of

a 'fundamental width', F
,
which is related to the distance between

consecutive, quasi-stationary levels in the compound nucleus at the

excitation involved (12 M.e.v. in the case of (14)), and of a penetra-

tion factor, Oj~*. From the discussion in the preceding section we
found a 'fundamental' particle width of the form

dE

for the resonant level r for which esc2
</>r

1 . Since
<j>
advances by

TT radians in going from one resonant level to the next, we may
approximate the mean distance between levels by

where the bar over r indicates an average over levels in the vicinity

of the excitation energy, U\ we then express the mean fundamental

width, F, in terms of D(U):

r =
^B(U). (16)

The simplest partial width entering eq. (15) is that for the emission

of a neutron in an $-wave, for which the penetration factor is unity

and (16) is the complete expression. In such a light compound
nucleus one should appeal to experimental results for an estimate of
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D(U) when possible; otherwise, the statistical formula has to be used,

and with A 18, U ~ 12 this leads to an average level distance

(between levels ofsame J,M ,
and parity) of about 1 M.e.v. Similarly,

the value of K, the wave-number (times 2?r) inside the compound
nucleus, may be subject to noticeable variations in light nuclei, but

we shall estimate it in the usual way from the average potential

energy per nucleon, viz. h2K2
/2M ~ 23 M.e.v. Finally, the possible

values of k must be estimated in the light of the binding energy of

the neutron, plus considerations of selection rules where possible.

In reaction (13) we shall assume that the a-particle enters the (even)

N14 nucleus in an $-wave, so that the F18* nucleus is an even state

with spin-unity (same as N14
). The ground state of F17 has spin \

and is probably even. Consequently, it appears possible for a neutron

to be emitted with the maximum energy for such a reaction (3 M.e.v.

in this case) leaving the residual F17 in its ground state. Then,
fi,
2k2/2M 3 M.e.v., determines k. If there were an excited state, of

the same spin and parity, less than 3 M.e.v. above the ground state

of F17
, say at Ult

a second mode of neutron emission would be with

ft
2k' 2/2M = 3 C/j M.e.v. The F for this mode will be somewhat less

than that for the former because of the smaller k. In fact, it seems

unlikely that there is an excited level of F17 similar to the ground
state and within 3 M.e.v. ofthe latter, considering that the estimated

level distance at an excitation of 12 M.e.v. in F18 is around 1 M.e.v.

Individual neutron widths are of particular interest also to the

interpretation of the resonant capture of neutrons in nuclei with

A > 90. We shall return to this question when we consider the

accompanying y-radiation, but, using eq. (16) we estimate the

$-neutron widths at once from the observed fact that the level

distances seem to be about 20 e.v. Expressing the energy of the

neutron in electron volts, Eev ,
and estimating K as above, we find

Fn c 3x 10-3
VJ5?or electron volts for slow neutrons on these nuclei.

If a compound nucleus is excited by an energy U above its ground

state, and if the absolute value of the binding energy of one neutron

is B (</), the nucleus may emit a neutron of any kinetic energy
between zero and UB, provided there are available quantum states

of the residual nucleus. In heavy nuclei, and for high excitations, the

number of available quantum states is enormous and the transition

probability into any one of them (including the ground state) is

negligible compared with the sum over all such transitions. In such
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cases it is convenient to replace the individual partial widths, of

eq. (15) for example, by an integrated width for neutron emission.

Then Pk
gives the relative probability that a neutron of any energy

was 'evaporated' from the nucleus, rather than the probability that

a transition was made to one particular state of the residual nucleus.

As an example, suppose a neutron of energy E falls on a nucleus and

forms a compound nucleus in which it gains the binding energy B.

The compound nucleus, which has an excitation B+E, may now

emit a neutron of energy E'
( < E) leaving the residual nucleus in

a state of excitation EE'. The probability of such an emission is

proportional to the density of nuclear levels at this excitation and

may be written in the form:

dP(E') = JI^\D(B+E)P(E-E'} dE', (17)

where, instead of the K in eq. (16), we use E = lL-, m Under the

conditions postulated, the statistical formula for p(E-E') may be

used, and since this increases so rapidly with its argument, the

maximum of (17) comes at very small values of E' . It is then

convenient to approximate p(E-E') by an exponential that has the

same value and same derivative as the correct statistical formula

when E' = 0, viz.

p(E-E') = p(E)e-*
{sM-*}E'lK

The expression (18) is a Maxwellian distribution of the 'evaporated'

neutrons if the effective temperature is assumed to be related to the

excitation of the residual nucleus through
C\ TTf

(19)

i.e. a little higher than the thermodynamic temperature, 2E/S(E).

According to the evaporation model, therefore, practically all of the

neutron width is due to the emission of rather slow neutrons (pro-

vided always that E is large enough to justify the method just

outlined) and the integrated width may be found, with negligible

error, by integrating (18) from zero to infinity:

fT1 inel
=- -

1/evap
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In principle, the integrated width would be a useful concept also

for particles that have to go through a potential barrier, if the

excitation of the compound nucleus is sufficiently high. In most

practical cases, however, the penetration factor decreases so rapidly

with decreasing energy of the emitted particle (especially charged

particles) that the most probable transitions are those in which the

proton or a-particle carry away the most energy rather than those

that leave the residual nucleus with the most energy. The balance

between penetration and high-level density is probably intermediate

for the emission of neutrons with orbital angular momentum

(IX > R), but no practical cases of this type have been established;

the principal example of this type of 'penetration' is afforded by
the emission of y-rays which we now consider.

In Chapter VII we found that the emission of a single y-ray from

RaC' with an energy of 0-603 M.e.v. corresponded to the probability

3 X 1011 sec."1 This corresponds to the partial width

~27
~ 2 X 10-" e.v.

In order to apply this measurement to estimating the partial widths

for y-rays in other nuclei and of other energies, we shall make two

assumptions: (1) that Thv
,
like the particle widths, is proportional to

D(U), since a partial width should not be greater than the distance

between neighbouring levels of the same J, M, and parity; and

(2) that rhv
is proportional to the fifth power of 7n/,f since y-transi-

tions appear to be predominantly of the quadrupole type, and a fifth

power of the wave-length typifies the penetration of a D-wave. If

we estimate the D(U) pertaining to the low-lying levels of RaC' on

the basis of the surface vibrations of the (charged) liquid droplet we

get about 1-5 M.e.v. and this leads to our estimate of an individual

y-width

where hv is measured in M.e.v. Essentially the same formula is

obtained by Weisskopf (loc. cit.) on the basis of observations of

(y,n) cross-sections.

Ordinarily, a compound nucleus may emit any of a large number
of y-rays which leave the residual nucleus in different states of

t V. F. Weisskopf, Phya. Rev. 59 (1941), 318.
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excitation, so that one is again interested in the integrated width

rather than the individual y-width. The only question remaining is

whether the integrated y-width can compete favourably with the

probability of particle emission. Let pc(E) be the density of com-

bining levels at the excitation E of the residual nucleus, i.e. the final

state of the first y-transition. Then the integrated y-width for a

compound nucleus of excitation U is estimated as

_ u
TY = 2 x W~D(U) j (UE)*Pc(E) dE. (22)

o

According to 1, we may express pc(E) in the form

Pc(E) = CS(E)-*expS(E),

where C is an average of (27+l)/3 over the combining final states,

and hence is a coefficient of the order unity. The integrand in (22)

has a maximum at a certain energy, Em ,
such that

Equation (23) determines both the energy of the most probable final

state, Em ,
and the exponent n which we may use to approximate the

functional dependence of pc(E) in the following form:

_ u

I> = 2X10- 3(7 1^3- f
(U-E)*{ljL}

n

dE, (24)
^(^m) J \Aml

in which we use also the relation pc(Em)
= 3CfD(Em ). Equation (24)

may be integrated readily, and, with the help of Stirling's formula

for the factorials involved, we finally obtain:

As mentioned above, the integrated y-width is of particular interest

for the elements with A > 90 that absorb slow neutrons. If we take

Eu151 as an example, we see from Table XXIII that D(U) ~ 90 e.v.

(using the statistical theory) and from the solution of (23), setting

U = 8, we get Em = 4-56. This value of Em indicates that the (hv)
5

factor has a strong influence on the spectral distribution and, in fact,

leads to a most probable y-ray energy of 3-5 M.e.v. From Em we

find D(Em)
= 9000 e.v., and substituting into (25) we finally obtain

TY = 0-08(7 e.v. (26)
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We note, first of all, that the result (26) is in satisfactory agreement
with the observed widths for absorption of neutrons which are

generally of the order of Ol e.v. Secondly, we should compare the

width (26) with that for the emission of the neutron which formed

the compound state: Tn~ 3xlO-3V#ev e.v. For neutron energies

< 1,000 e.v., Fv > Fn ,
and the more probable process is the emission

of a y-ray thus leading to capture. For neutron energies > 1,000 e.v.

the more probable process is the re-emission of the neutron. At very

high neutron energies the residual nucleus will be left in an excited

state in the usual event, as cited above. These remarks are founded

on the further assumption that only neutron or y-emission is

important to the decay of the compound nucleus. Since the remain-

ing possibilities involve charged particles, this assumption is mostly
valid for heavy nuclei in which the Coulomb barrier is very high,

especially when the reaction is due to slow neutrons. One very

important exception is the nucleus U235
which, when a slow neutron

is added, may show fission as well as y-emission or re-emission of the

neutron. The probability of fission will be represented also by an

integrated width T* since the two fragments may be left with a great

variety of states of excitation. The fraction of disintegrations of the

U236* that are fissions will then be

-pt _ *r -

A preliminary study of the variations of F/, Fn ,
FV with the energy

of excitation of the compound, U236-nucleus has been carried out by
Bohr and Wheeler, f and the results of their calculations are shown

in Fig. 45. It can be seen from this figure that the fission width, F',

is a much more rapidly increasing function of excitation energy
than fy. The curves representing these two widths cross at a certain

energy, and at higher values of the energy the competition of the

y-radiation becomes of minor importance. It must be remarked here

that, whereas the Bohr-Wheeler curves give a fair qualitative picture

of the situation, they cannot be relied upon for quantitative results.

The foregoing discussion has been chiefly concerned with the

development of that part of the theory of nuclear reactions which is

exemplified by the second phase of reaction (12), viz. (14). We shall

consider now the first phase, i.e. (13), which we shall represent in

t N. Bohr and J. A. Wheeler, Phya. Rev. 56 (1939), 426.



Chap. IX, 2 THE THEORY OF NUCLEAR REACTIONS 249

terms of a cross-section for the formation of the compound nucleus^

which we shall denote <r
a
*, the a-exponent indicating that in this

particular case the compound nucleus is formed by an a-particle.

Then the cross-section for a certain reaction (a, k) may be expressed
nfc

(28)a(oc,k)
= a* .

For simplicity, let us assume that the incident a-particle has such an

T(ev)

io
+5

-i

8 10 I2mev.

Fia. 45. The variation of Ty , Tn , I/, and Ta with
the excitation energy of the compound nucleus

after Bohr and Wheeler. (Neutron binding energy
is assumed to be 5-6 M.e.v.)

energy that the collision takes place close to a single $-resonant level.

We have seen in 2, Chapter VIII, that if the compound nucleus

could do nothing but scatter the a-particle elastically it would lead

to the cross-section (disregarding the Coulomb and other potential

terms which are of no interest to the argument)

;. (2)

We now have to generalize this formula to take account of the fact

that the compound state, r, may disintegrate in many ways in

f Cf. V. F. Weisskopf and D. H. Ewing, ibid. 57 (1940), 472.
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addition to re-emitting the a-particle. According to Chapter VI,

this fact may be expressed by adding to the eigenvalue Er just

\i times the sum of the Tk for such additional modes of dis-

integration. This results, therefore, in replacing the F? in the

denominator of (29) by the total width F! The general, single-level

formula for elastic scattering of the a-particle is then

(30)

Comparing (30) with the expression (28) we obtain the desired cross-

section for the formation of a compound nucleus by an a-particle in

an #-wave: 8 pr
a * * r

This formula may be generalized at once to an arbitrary type, j, of

incident particle with orbital angular momentum Iti:

,
ir

*'

The immediately preceding considerations are limited to a single

resonant state of the compound nucleus. In order to extend them

to many such states we shall assume that each level contributes

independently to the cross-sectionf and that the spread in energy
of the incident particles is sufficient to cover a number of resonant

levels. We then integrate over E to obtain the contribution of each

level, r, to <T ?'* and call the contribution, Ar cr J'*:

00

r -
jr
-

j (A

But (22+1)77^1 is the maximum cross-section for the particle j to

form a compound nucleus. Hence 27rFj is, so to speak, the width of

the energy-band in which the particle j surely enters the level r.

The probability that the incident particle will have an energy such

as to fall within this band, or within the similar band for any of the

neighbouring levels, defines an average transmission coefficient, T(E),

f The intermediate situation in which just a few levels are important and in which
one might be interested in the phase relations between particles emitted from each

requires more detailed consideration. An example of this type is the scattering of

neutrons by He considered in 2, Chapter VIII.
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for the formation of a compound nucleus as the result of a single

collision. If F* is the average particle width in this region of energy,
and U the resulting excitation, the transmission coefficient may be

written: ^
(33)

On the other hand, the average transmission coefficient may be

calculated from wave-mechanical considerations, as presented in

Chapter VI:

T(E) = 4^ x (penetration factor)
v
i

k (34)

=4w-
Combining eqs. (33) and (34) we get an expression for F*~, (35)

which is just what one gets also by multiplying the average 'funda-

mental width' (16) by the penetration factor for the particle under

consideration.

We are now prepared to write expressions for the cross-section for

a general reaction (P, Q), at least in certain limiting cases. Let us

assume first that a single resonant level is important to the reaction.

If the incident particle and target nucleus have no spins the cross-

section may be written: -*o
(36)

where Fp is interpreted as the partial width for emission of the

particle (P), with 'wave-length* frp from the compound nucleus into

a normalized eigenstate of orbital angular momentum IH. For con-

venience in the comparison between states of general I and /S-states,

we shall normalize the angular dependence of these eigenstates to 477- .

The angular dependence of a normalized state, with m = 0, is then

(21+ l)*JFJ(cos 6). The angular dependence in the incident plane wave
is (2Z+l)/5(cos0), whence the intensity in the incident wave is 21+1
times normalized, thus accounting for the factor (21+1) in eq. (36)

and similar formulae. The interpretation of FQ ,
on the other hand,

depends upon the physical nature of the cross-section being sought.

We could ask, for example, for the cross-section for the process
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leading to the particle (Q) in a particular state of energy, spin, and

orbital angular momentum. In most cases the individual states of

spin and (especially) orbital angular momentum cannot be dis-

entangled, so that it is physically meaningless to ask for such particular

information. We have seen already a general emission probability

for inelastic scattering would be obtained by summing over all

possible energies of the emitted particles (neutrons, in particular).

In the same way, one would sum over all possible states of angular

momentum to obtain an over-all cross-section. In some cases, how-

ever, one is interested in the angular distribution of the Q-particles,

i.e. o-(P, Q, 0) becomes a differential cross-section. Then one includes

in the individual Tf?m the transition probability from the normalized

eigenstate (Z',m) to a plane wave of direction 0, viz.

and sums over all V and m. The result cannot be a more complicated

function, i.e. a higher power of cos#, than that contained in the

square of the incident harmonic Pj(cos 9). In the following the mean-

ing of TQ will be understood to be determined by the nature of the

cross-section desired.

We shall retain the convention, however, that Tp pertains to the

emission-width for a normalized state. This complicates the formulism

a little if incident particle and target nucleus have spins. Let these

spins be sh and jH respectively, and let the relative orbital motion be

m. There are then (2s+ 1 )(2j+ 1 )(2Z+ 1
) possible states ofwhich 2J+ 1

may form a particular compound nucleus of'spin'J/E. t Thus, if a single

compound nucleus of spin Jh is involved, the formula becomes:

If the spins involved are high enough, the same compound level may
be formed by incident waves of different I (but same parity). The

waves of Q belonging to indistinguishable final states will then not

interfere, since the incident partial waves will belong to different spin-

polarizations. However, those reactions that spring from the same

initial state and go to the same final state through different com-

pound nuclei produce interfering waves of Q-particles, so that one

f For the proof see H. A. Bethe and G. Placzek, Phys. Rev. 51 (1937), 450, or

G. Breit and B. T. Darling, ibid. 71 (1947), 402.
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should add amplitudes of emitted waves and then take the absolute

square to compute the cross-section. This implies taking the

(absolute) square root of each FQ which, in turn, admits an arbitrary

phase-factor. The theory described herein gives no information

about this new factor. In the example of elastic scatting (Chap. VIII)
TQ itself appears. All these rules are exemplified in the theoretical

treatment of the angular distribution of a-particles from the Li7
(^>, a)-

reaction,! but they will not be considered further here.

The question of phase relations between waves emitted through
various compound states remains unsettled for the other limiting

case which we shall discuss, viz. that in which the resonant levels

are too close together to be resolved. In deriving eq. (32) it was

assumed that the phases were uncorrelated, so that the levels could

be considered statistically independent. We shall continue with that

assumption. J Disregarding spins (or rather, summing over all J) the

average cross-section for the formation of a compound nucleus, if the

orbital motion is restricted to lft, is, using eq. (32):

(38)

The reaction cross-section a(P, Q) will be TQ/T times (38), and, in the

event that many values of I can contribute to the emission of Q, the

effective cross-section may be written

a(P, Q) = 2^+l)Af,Ll. (39)

Since each F contains D(V) as a factor, the expressions (38) and (39)

are essentially independent of the level density and are functions of

the particle velocities and penetration factors involved.

Returning to the cross-sections in the resonance region, say eq. (36),

it is interesting to note that in exact resonance (E Er ,
not neces-

sarily the maximum cross-section) and supposing that Fp and F#

represent the only possibilities of emission,

t C. L. Critchfield and E. Teller, ibid. 60 (1941), 10.

j A simple physical example of the importance of phase relations is given by the

collision of billiard balls. The collision excites numerous elastic modes which if they
were independent in phase would mostly warm up the balls. Actually the phase
relations are such as to restore most of the energy to relative motion. The situation

with the phases of the wave-functions in nuclei can be equally decisive, but there is,

as yet, no good evidence on this point.
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which shows that a reaction cross-section may never be larger than

(2Z+l)7rA|> (as compared with 4 times this for resonant scattering

where the scattered wave is coherent with the incident wave). From

eq. (36) also, one can deduce the behaviour of the cross-section for

the absorption of slow neutrons, if there is no resonance very close

to E = 0, by taking I 0. As we have seen above, the significant

emission probabilities for a heavy compound nucleus formed by an

incident slow neutron are Tn and I> such that I> ^> Tn
. Near zero

neutron energy, Fn ^ vn , whereas TV does not vary appreciably if the

excitation is changed by a few volts and neither does the denominator

in (36). In this case, therefore,

<^y)~*X~^. (40)

Equation (40) thus expresses the 1/v-law referred to in 1, Chapter
VIII. The same law applies in any case where F^ is relatively insensi-

tive to the neutron energy, when the latter is low, for instance in the

B10
(n, a)Li

7
-reaction, from which the a-particle carries over 3 M.e.v.,

the 1/v-law applies also.

The magnitude of the reaction cross-section a(P, Q) for low energy
of bombardment, and for light elements (in which the resonant levels

will be widely separated in general), is approximately (cf. eq. (36)):

-
, (41)

whereEt is the resonant energy nearest E = 0. A reasonable estimate

ofE1 would be %D(U), and combining this estimate with eq. (33) we

get an expression for the cross-section in terms of the transmission

coefficient TP(E) of the incident particle P:
2FQ

, Q) ^ v*lTP(E)-. (42)

Substantially this form for the cross-section is used in the following

chapter on thermonuclear reactions. In the applications that have

been made of that work (to astrophysics) D(U) has been estimated

from the individual particle model, along lines pursued in 2,

Chapter VIII, but allowing for the coupling between nucleons by

dividing the characteristic energy-interval, fi?/MR
2

, by the number

of nucleons.t A : D ^MA^ (43)

f The formulae derived in this chapter and those that have been used in the

astrophysical work still differ by a numerical factor of the order of |Z, which, how-

ever, is both unimportant and uncertain.
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Certain general rules are often useful in application of the simple

theory of the compound nucleus, especially for the heavier elements.

One of these rules is that the total width of a level, F, is often

dominated by a single type of integrated width. If the excitation of

the compound nucleus is below the threshold for neutron emission,

this dominant contribution is the integrated y-width, F c^. J>. Above

the neutron threshold the dominant width becomes the integrated

neutron width, F ^. Tn . The region in which y-ray emission com-

petes with (very slow) neutron emission is discussed above. The

neutron width remains dominant so long as the nuclear excitation is

not sufficient to emit a proton
'

over the top
'

of the Coulomb barrier.

At energies sufficient to emit such protons, the integrated neutron and

proton widths become equally important and at energies of excita-

tion over 20 M.e.v. a-particles may be emitted over the barrier, so that

they must be taken into account also.

These general rules do not apply well in very light nuclei because

the Coulomb barriers are not high enough to be decisive. It often

happens that a-particle emission is very important in light particle

reactions and, in fact, it is the (n, a) reaction on B10 that makes this

isotope such a strong absorber of neutrons. As the charge on the

target nuclei is increased, however, the (n, a) reaction becomes very
weak because a-emission cannot compete with neutron-emission and

it becomes detectable again (with the customary neutron sources)

only for the very heavy elements from which the a-particles carry

away an excess of energy.f

Another general rule is that the various expressions for the cross -

section of v(P, Q) are essentially proportional to the factor AJ, FPFQ ,

and this is well confirmed experimentally in cases where P or Q, or

both, are charged particles. In such cases the F's contain penetration

factors that are such strong functions of the energy as to completely

dominate the variation of the cross-section with bombarding energy.

In Fig. 46 we compare the logarithms of the yields as observed by

Rumbaugh, Roberts, and HafstadJ for the reactions

Lio+H1 -> He3+He4+3-7 M.e.v. (44a)

Li'+H1 -> 2He4+17-l M.e.v. (446)

t Cf. R. Sherr, K. T. Bainbridge, and H. H. Anderson, Phys. Rev. 60 (1941), 473.

% L. H. Rumbaugh, R. B. Roberts, and L. R. Hafstad, ibid. 54 (1938),

667.
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The reaction (446), and the related

Li+H2 -> 2He4+22-l M.e.v. (45)

are illustrated in Plate III, as observed by Dee and Walton, f In the

reactions (44 a, 6) the energy released by the transformation is so

large that the variation of the cross-sections with proton energy is

determined primarily by the penetration factor for the proton. And,
in fact, the slopes of the curves in Fig. 46 are given substantially by:

103
InJV-

103
(46)

i.e. the principal term in the exponential of the penetration factor.

kev

0-25 0-30 0-40 0-50 0-60 0-80 1-00

FIG. 46.

An interesting feature of Fig. 46 is that the Li7
(2?,a)a-reaction

is about 30 times less probable than the Li6
(^, He3

)a, despite the fact

that the former releases much more energy. This observation appears
to indicate, at least in part, the operation of selection rules in nuclear

reactions. f According to the general results of Chapter IV, the

Li 7-nucleus should have an odd, P wave-function. Hence, if the

proton collides with it in an $-state, the compound nucleus for (45)

will be an odd state also. It is impossible for two a-particles, moving
about their centre of gravity, to form an odd state because they obey
Bose-Einstein statistics. Thus, for $-wave collisions, Fa = 0. The

a-particles emitted in (45) probably arise from an even compound
nucleus formed by collisions between the proton and the Li7-nucleus

t P. Dee and E. Walton, Proc. Boy. Soc. 141 (1933), 733.

j M. Goldhaber, Proc. Camb. Phil. Soc. 30 (1934), 661.
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PLATE

a)

The tracks of two fission fragments originating in the aluininium-

supported uraniiun layer.

The fission track in low pressure hydrogen originating at the uranium-

covered wall of the chamber. In addition to many fine proton branches,

the picture shows one branch resulting from a collision with oxygen nucleus.
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in a P-wave, and the proton width will be somewhat less (~ 0-3)
than for $-wave collisions. There remains a factor 10, however, that
is not accounted for in this way.
The formation of compound nuclei by deuteron bombardment

occupies a special position among nuclear reactions because of the

very high excitation achieved. This comes about because the excita-

tion of the compound nucleus is equal to the sum of binding energies
of a neutron and a proton plus the kinetic energy and less only the

binding energy of the deuteron, 2-18 M.e.v. The high Q-value in

(45) arises in this way. Deuteron reactions on Li6 are shown in

Plate III 6. Owing to the high excitation, all deuteron-induced

reactions produce particles rather than y-rays. The (d, n) reactions are

valuable sources of high-energy neutrons, especially on Li7
:

Li7+H2 -> 2He4+w+ 14-5 M.e.v. (47)

The energy-release in (47) is shared among the two a-particles and
the neutron, so that the latter is by no means 'mono-energetic '. One
of the most useful sources of neutrons of well-defined energy is the

d-d reaction:

which, on account of the small nuclear charges involved, has an

appreciable yield even at low deuteron energy. The reaction (48)

competes, however, with the alternative

H2+H2 -> H8+H1+3-75 M.e.v. (49)

on a practically equal footing, i.e. half of the d-d reactions follow (48),

half follow (49). These reactions were produced first by Oliphant,

Harteck, and Rutherfordf and a Wilson chamber photograph of (49),

taken by Deo,J appears in Plate IV a. The longer tracks showing in

the plate are those of ordinary protons and the shorter tracks are

due to the isotope H3
.

Deuteron reactions among light nuclei probably follow the simple

theory of the formation of a compound nucleus and subsequent,

independent disintegration of the latter. Among heavy nuclei, how-

ever, there appears to be an additional important possibility that the

deuteron is polarized by the target nucleus so strongly that only the

neutron is actually caught, the proton flying on. This process has

been calculated first by Oppenheimer and Phillips. The result is, of

f M. Oliphant, P. Harteck, and E. Rutherford, Proc. Roy. Soc. A 144 (1934), 692.

j P. Deo, Nature, 133 (1934), 564.

J. R. Oppenheimor and M. Phillips, Phys. Rev. 48 (1935), 500.

3696.61 g
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course, that a (d,p) reaction on heavier elements is somewhat more

probable than one would compute from complete penetration by the

deuteron followed by penetration by the proton. This effect has been

verified experimentally by Lawrence, McMillan, and Thornton.f

Among heavier nuclei, the yields of nuclear reactions are largest,

by far, when the bombarding particle is a neutron, since the neutron

is the only particle that does not encounter the Coulomb repulsion

(not counting the y-quantum as a particle). A photograph of the

first neutron reaction to be discoveredrf

N14
+rc -> Bn+He4

(50)

is shown in Plate IV c. Equation (50) is an example of an (n, OL) reac-

tion. Other, very common, types of reactions are (n, p) and (n, n)

(inelastic scattering). The (n, y) reactions for slow neutrons have

been discussed above. If the residual nucleus in an (n, n) reaction is

sufficiently excited it may emit a second neutron, giving rise to an

(n, 2n) reaction. For instance, for the detection of the fast neutrons

used in determining the radii of nuclei with 25 M.e.v. neutrons, Sherr

(Chap. I) used the reaction

C12+w->Cn+2n- 17-5 M.e.v. (51)

The intensity of the bombarding neutrons was then determined from

the intensity of the j8-radiation due to the C11-nuclei.

Of all the reactions induced by neutrons the most spectacular is that

of the fission of the heaviest nuclei, (n,f) reactions. In Plate Va is

shown a Wilson chamber picture of a thin uranium foil (supported

by aluminium) from which two fission fragments are emerging from

a nucleus that has been hit by a neutron. In Plate V b the details of

the track of a fission fragment, as revealed in low-pressure hydrogen,
are shown. In addition to many fine branches due to recoil protons

there is one branch resulting from collision with an oxygen nucleus.

These photographs were taken by T. Lauritsen.

Occasionally one finds nuclear reactions that lead simultaneously

to the emission of several particles. An historic example is given by

Bii+H1 -> 3 He4+8-7 M.e.v., (52)

which is shown in Plate IV b as taken by Dee and Gilbert. Cur-

rently, however, many such reactions are being produced by the

t E. O. Lawrence, E. McMillan, and R. Thornton, Phya. Rev. 48 (1935), 493.

J N. Feather, Proc. Roy. Soc. A 136 (1932), 709.

P. Dee and C. Gilbert, ibid. A. 154 (1936), 279.
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ultra-high-energy particles of the Berkeley cyclotron. Since the exci-

tation of target nuclei hit by neutrons from that machine exceeds 100

M.e.v., the mechanism of nuclear reactions is quite different (com-

pare Appendix V).

3. Nuclear photo -effect

The excitation of nuclei through y-ray bombardment has been

discussed already in Chapter VII in connexion with the resonant

absorption of X-rays. The general theory of nuclear reactions applies
to such processes if we take for Fp the width for a single y-ray and
for r the sum over all possible y-emissions. The product of these

widths is so small, however, that an observable cross-section is

obtained only in the immediate neighbourhood of a resonance, and
it is this fact that was used in applying the method of X-ray excita-

tion to the determination of low-lying levels.

If the energy of the incident y-ray is greater than the (absolute

value) of the binding energy of the last neutron in the target nucleus,

on the other hand, the dominant width is that for neutron emission;

the most probable reaction then becomes (y,ft), sometimes called the

nuclear photo-effect. There are several established cases of (y,p)
reactions which, in the range of y-ray energies used, are generally
much less probable than the (y,n) reactions but which represent a

nuclear photo-effect equally well. A systematic study of the cross-

section, a(y, n), has been made by Bothe and Centner*)* using 12 M.e.v.

y-rays from B(>p,y) and 17 M.e.v. rays from Li(p,y). WeisskopfJ has

analysed these data and arrived at the conclusion that a(y,n) is

relatively independent of the size of the target nucleus and is propor-
tional to the cube of the y-ray energy (hv)

3
. The excitations of the

compound nuclei are quite high, iu these cases, so that the cross-

section averaged over many levels, eq. (39), may be applied. It is

then readily seen that if o-(y, n) varies as (hv)
3 the individual width Thv

is proportional to (hv)
5 and to D(U). This is, in fact, the basis on

which the form of the individual y-width was chosen, eq. (21), and,

as remarked in 2, the numerical factor as derived from the results of

Bothe and Centner is practically the same as that derived from the

known emission probability of 0-603 M.e.v. y-ray from RaC'. It must

be emphasized, however, that this description of the interaction of

t W. Bothe and W. Gentner, Zs.f. Phya. 112 (1939), 45.

j V. F. Weisskopf, Phys. Rev. 59 (1941), 318.
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y-rays with nuclei is only semi-empirical, and it is to be expected that

further study of the action of y-rays in producing nuclear reactions

will lead to a more complete understanding of this interaction.

The particular example of photo-effect that is of greatest funda-

mental interest is the disintegration of the deuteron into a neutron

and a proton H,+fo _^ n+Rl ^ (53)

first reported by Chadwick and Goldhaber,f who determined also

the energy-balance in the reaction and, thereby, the binding energy

of the deuteron. From the mass-spectrographic measurement of the

mass of deuterium one then obtains the mass of the neutron (cf.

Table II). Moreover, the reaction (53) is of great interest because it

should be possible to apply the usual theory of interaction between

electromagnetic radiation and charged particles to predict the angular

distribution, and total cross-section, in the reaction. In principle,

such a calculation is complicated by the fact that the wave-function

of the deuteron is not simple but is a mixture of 8- and D-waves, due

to the existence of tensor forces. Typical examples for the exchange
nature of nuclear forces, i.e. the charged, symmetrical and neutral

theories of Chapter III, have been assumed by Rarita and SchwingerJ

and the corresponding angular distributions of photo-protons (or

neutrons) calculated. Such studies, combined with careful deter-

minations of the angular distributions at various energies of y-rays,

promise to be of great usefulness to the final interpretation of the

nature of the forces between nucleons.

The complete theory, including the small admixture of /)-wave in

the ground state of the deuteron, will not be presented here, but we

shall sketch briefly the more elementary theory which assumes the

deuteron to be a pure $-state as originally worked out by Bethe and

Peierls. The part of the nuclear photo-effect that is due to the

electric vector will be expressed in the same form as the cross-section

for the ordinary photo-effect in the outer atom, in terms of the

frequency of the quantum, v, and the dipole matrix element, ZQK :

*^*-- (
55

)

t J. Chadwick and O. Goldhaber, Nature, 134 (1934), 237; Proc. Roy. Soc. 151

(1935), 479. J W. Rarita and J. Schwinger, Phys. Rev. 59 (1941), 436.

H. A. Bethe and R. Peierls, Proc. Roy. Soc. A. 148 (1936), 146.
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Here \z is the projection on to the direction of polarization of the

displacement of the proton from the centre of mass of the neutron-

proton system, i/r
is the wave-function in the relative coordinates of

neutron and proton forming the ground state of the deuteron, and

0^ is the wave-function representing the system after disintegration

has been effected. We shall assume not only that is spherically

symmetric but also, since the main contribution to the matrix

element (55) arises at rather large r, that
/r

can be represented in

the simplified (normalized) form having the functional dependence
of the 'tail' of the square-well deuteron function (cf. Chapter II):

*=</()-'- (56)

^r (57)

and e is the binding energy of the deuteron. Since the transition is

induced by the dipole moment, |z, the final neutron-proton state

must be a />-wave that varies as z/r cos 0. The short-range forces

will have little effect on such a wave, so that
if/E may be taken to

represent free particles having the correct kinetic energy, ti
2k2

/M,
and normalized to unit energy interval (as required by the form of

eq. (54) in the usual way):

1 (sin AT __ 7jV3cos0 ,~-
, (DX;

(59)

Substituting the wave-functions (58) and (59) into (55) and (54) one

obtains the total cross-section due to the electric vector

167T2

y
3 (60)

.,, hv
with y =s .

To obtain the angular distribution, one does not integrate over

angles. If we let
<j>

be the angle included between the direction of

irradiation and the direction of the emitted protons it is readily seen
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that the differential cross-section (summed over the polarizations in

the incident beam) is

i.e. there is a maximum in the directions at right angles to the y-ray
beam in agreement with what was found in the original investiga-
tions of Chadwick and Goldhaber (loc. cit.).

Under ordinary conditions the transitions due to electric dipole
moments are far more probable than those due to higher moments
and to the magnetic dipole moment. In the special case of the

deuteron, however, it must be remembered that there is a virtual,

singlet /S'-level lying just above zero energy and therefore it is possible
to obtain resonant absorption of y-rays due to the magnetic dipole
transition. The energy of coupling with the radiation is then given

by the product of the magnetic field strength, H, with the magnetic
moments of neutron and proton, pN and ^P respectively. The
calculation then proceeds along lines similar to those followed above
and the details may be found in the review by Bethe and Bacher,f
for example. The result may be expressed as the ratio of the total

cross-section for magnetic dipole transitions, aM , to the total cross-

section for electric dipole transitions and in terms of Tiv, the binding

energy of the triplet deuteron e, and of the singlet deuteron,
e' = 0-llM.e.v.:

-
'ftv)'

2 ~ ( '

where pN and p,P are measured in nuclear magnetons. For the

ThC' y-ray, hv = 2-62 M.e.v., the ratio (101) is just about |, so that

even at this energy the magnetic effect is appreciable. The combined
effect is in reasonable agreement with the observed cross-section

of 6-7 X 1C-28 cm.2

It is evident from the fact that the magnetic dipole transitions

lead to the Estate that the resulting angular distribution of protons

(or neutrons) is spherical. The complete differential cross-section for

this simple theory is then

*W =
l*tf sin* <t>+vM . (62)

The more refined theories, including tensor forces, give a somewhat
different angular distribution, of course, and it is through careful

determination and comparison that one might be able to decide

t H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8 (1936), 82.
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among various possibilities for the nuclear forces. It is evident also

that as hv is decreased towards the threshold value, e, the magnetic
effect far outweighs the electric effect, i.e. the emission of very slow

neutrons and protons is predominantly a magnetic effect. Con-

versely the capture of slow neutrons by protons is predominantly an

effect of the magnetic dipole transitions and, in fact, this mechanism
was introduced first by Fermif to account for the extraordinarily

large capture cross-section for neutrons in hydrogen.
Since the capture of neutrons by protons is simply the reverse of

the photo-effect on the deuteron the total cross-section is readily

computed from a(y,ri)
= <*E -{-vM . Let cr(A,B) be the cross-section

for transformation of the particle system A into the system B, and

let gA and gB be the statistical weights, and A^ and A# be the wave-

lengths for systems A and B, respectively. Then, from the general
form of the reaction cross-sections derived in the preceding sections

we see at once:

In our example, system A is a photon plus the stable deuteron;

the photon is capable of two polarizations and the deuteron of

three, so that gA = 2x3 = 6. System B comprises one neutron and

one proton, each of which has two possible polarizations, so that

gB = 2 X 2 ~ 4. The cross-section for capture of neutrons by pro-

tons is then:

(64)

For thermal neutrons, eq. (64) leads to a cross-section of about

0-2 X 10~24 cm. 2 in reasonable agreement with observation (Fermi,

loc. cit.).

f E. Fermi, Phya. Pev. 48 (1935), 570.



THERMONUCLEAR REACTIONS AND ASTROPHYSICAL
APPLICATIONS

1. Reaction-rate formula

IN the previous chapter we have been considering nuclear transforma-

tions caused by the impact of a beam of fast particles against the

nuclei of the atoms forming the target material. We have seen that

the efficiency of bombardment with charged particles is generally

very low due to the fact that the incident particles lose their initial

kinetic energy through the electric interaction with the electronic

envelopes of the bombarded atoms.

It must be remembered, however, that violent nuclear collisions

can result also from thermal motion if the material is heated to a

sufficiently high temperature. Thus, for example, the reaction

Li'+H1 -> 2He4 can still be observed when the energy of the incident

protons is as low as 8 k.e.v.,"j" which is to be compared with the value

1-7 k.e.v. corresponding to the kinetic energy of thermal motion at

a temperature of 2xl07 C. occurring in the interior of the sun.

We must expect, however, that such a thermonuclear reaction between
lithium and hydrogen would take place at an observable rate at

temperatures considerably lower than that. In fact, whereas the

densities of bombarding ion-beams, obtainable in electric accelerators,

are only of the order of magnitude of 10~14
g.cm.

3
(for a current

density of 1 milliampere per cm.2
), the effective density of the

'isotropic' bombarding begins in thermonuclear processes is com-

parable to the density of the material considered. In comparing
thermonuclear processes with the results of beam-bombardment

experiments it must be kept in mind, also, that in the former case

the bulk of the transformations is not due to particles that possess
the mean energy of thermal motion, but to much faster particles in the

Maxwell distribution for which increased penetration effectiveness

over-compensates the decrease in relative number. In Fig. 47 we

give a schematic presentation of the relative number of particles

dN/dE and of their effective reaction cross-sections a as a function

of energy E. It shows that the number of disintegrations, which
is given essentially by the product <j(E)(dNjdE), reaches a sharp

t E. H. S. Burhop, Proc. Cambr. Phil. Soc. 32 (1936), 643.
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maximum for a certain energy J57opt well above the mean energy

corresponding to the given temperature. In order to estimate the

total reaction-rate one should integrate v(E)(dNjdE) dE over the

entire range of energies forming to oo. Calculations of this type
were carried out for the first time by Atkinson and Houtermans,|
and were later improved by Gamow and Teller.}

In deriving the formula for the rate of thermonuclear reactions

we can assume that the atoms participating in this process are com-

FIG. 47.

pletely stripped of their electronic envelopes, since the collision

energies necessary for effective nuclear penetration are higher than
the total ionization potentials of the corresponding atoms. Thus,
even at very high densities, we may treat the material as an ideal gas
formed by bare nuclei and free electrons.

Consider a gas mixture containing two reacting elements with

atomic numbers Zl and Z2 ,
and atomic weights A l and A z . Let

ct and c2 be the relative concentrations (by weight) of the two

t R. Atkinson and F. Houtermans, Zs.f. Phys. 54 (1928), 656. These calculations
contained two errors which wore due to the lack of knowledge concerning the theory
of nuclear reactions at this early stage of nuclear physics. The probability of radia-
tive capture of protons was calculated under the assumption of dipolo (and not

quadrupolo) radiation, thus leading to numerical values about 1,000 times too large.
On the other hand, the collision cross-section for thermal particles was taken to be

TjTJj (instead of wA2
). Since for thermal protons at the inner-solar temperature of

2 x 107 C. the effective de Broglie wave-length A is about 30 times larger than the
nuclear radius r , this error increased the numerical values by a factor of 1,000, thus

compensating the first error. Altogether the numerical values for the rate of energy-
production in the sun came f>ut approximately correct.

% G. Gamow and E. Teller, Phys. Rev. 53 (1938), 608.
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elements in question, and
/>
and T the density and temperature of

the gas. According to Maxwell's theory, the number dN (per cm.3

per sec.) of reactive collisions between the nuclei of the two kinds,
with a collision energy between E and E-\-dE, is given by:

A A
where A = * *

,
M is the nucleonic mass, and a the effective

^i~r-^2
cross-section for the reaction. The effective cross-section a is given
as the product of the cross-section for penetration of the Coulomb

barrier, eq. (42), Chapter IX, and the ratio of the reaction probability

F/ft to the proper nuclear frequency hjME2A. Thus we have

ME ^
k

where A = 2nfi2/J(2MAE) is the de Broglie wave-length, and R can

be taken to be equal to the radius 1-7+ 1-22 X 10-13(^4 1+^1 2)* cm.

of the compound nucleus formed in the collision. Substituting (2)

into (1), we find that dN/dE has a sharp maximum at

the width of the maximum being given by

- /
8

\SkTJ

Owing to the sharpness of the maximum, we can approximate the
oo

integral I dN by the integral of the error-curve with the same height
o

and width, thus obtaining:

jy ~ * 2

~^(kTY M^A 1A 2 A* *L ^

(5)

Introducing, for the sake of brevity, the notation

'""
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we can write (5) in the form:

N ^ 4 c^zpT

or, numerically,

267

N - 5-3xl02B
/
BC1 ca rty lfa

Tae-Tf

T= 42-7(0^

1

(8)

(9)

(10)

(11)

where p is measured in g./cm.
3

,
T in million degrees centigrade,

and T in electron volts.

CAL.

psr.

20

15

10

5

-5
-10

-15

-20

-25

-30

As the first example, we consider the application of the above
formula to the reaction:

H2+H2-H3
+rc, (12)

in hot deuterium gas, which is evidently the fastest of all thermo-
nuclear reactions. We put here, Z

l
= Z2

=
1, A = A 2

= 2, and
c
x

c2
=

-J. We also know that in this case, F = 3 x 105 e.v.

Assuming for p the value \ g./cm.
3

, which represents the density of

liquid deuterium, we calculate for different temperatures the reaction-
rates shown graphically in Fig. 48.f Remembering that each indi-

vidual process liberates an energy of

3-5 M.e.v. = 5-6 x 10-6
erg = 1-3 x 10~13 cal. f

we can find also the rates of thermonuclear energy production which

f The calculation of this curve was performed by R. A. Alpher.
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are shown on the scale on the right-hand side of the figure. We see

that, whereas at a temperature of 5x 105 C. the energy-production
is still quite negligible (10~

7
cal./g.sec.), it rises to 300, 3x 107

,
and

3xl012
cal./g.sec. when the temperature rises to 106

, 3xl06
, and

107 C. respectively. It goes without saying that the problem of

obtaining such extremely high temperatures on earth is of almost

unsurpassable technical difficulty.

2. Physical conditions in stellar interiors

Whereas the temperatures necessary for thermonuclear reactions,

even among the lightest elements, lie almost beyond any laboratory

possibilities on the earth, they are quite common in the cosmos and,

as a matter of fact, it is now quite certain that the principal sources

of stellar energy lie in various thermonuclear reactions taking place
in the hot interiors of the stars. Detailed information concerning
the physical conditions in the interior of stars is provided by the

theory of stellar structure, developed mainly by the work of Edding-

ton.f The comparative simplicity of the theory of stellar structure

is due to the fact that, under the conditions of very high temperature
such as obtain in stellar interiors, the material of the star is almost

completely ionized and thus can be considered, up to very high densi-

ties, as an ideal gas. All the physical properties of such an ideal gas
mixture formed by bare nuclei and free electrons can be predicted

with great accuracy and certainty by the present quantum theory of

matter.

The fundamental equation of hydrostatic equilibrium in the interior

of a star can evidently be written in the form :

dp OPMr_ --___ --_
f

where Mr (the mass inside of the radius r) is subject to the equation

f'=^V (14)

The total pressure p is composed of the gas-pressure pgas and the

radiative pressure #rad and can be written in the form

(15)

f A. S. Eddington, Internal Constitution of Stars, Cambridge University Press,

1926; see also S. Chandrasekhar, Introduction to the Study of Stellar Structure, Univer-

sity of Chicago Press, 1939.
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where E is the gas constant, a the Stephan-Boltzmann constant, and

/Z the mean molecular weight of the stellar matter. For a completely
ionized element of atomic number Z and atomic weight A we have

the obvious relation \L
= A/(Z-\-l). This gives jlH+ = ^, /Z^ = ^/3,

and a value close to 2 for all heavier elements. It is customary to

represent the heavier components of stellar constitution by the

so-called Russell mixture which contains the most abundant elements

found spectroscopically in stellar atmospheres. This
'

mixture' con-

sists of 50 per cent. O, 25 per cent. Na and Mg, 6 per cent. Si, 6 per
cent. K Ca, and 13 per cent. Fe, and being completely ionized has

the mean molecular weight p,R = 1-85. It may be noticed here that

the possible changes in relative amounts of elements forming the

Russell mixture have only a very small influence on the values of
jiR .

Writing X and Y for the hydrogen- and helium-content of stellar

matter, we evidently obtain

Another fundamental equation of the theory of stellar structure

pertains to the energy-transport through the body of the star. As

first indicated by Eddington, the energy originating in the interior

of the star is carried towards the surface mainly by radiation, i.e.

by diffusion of light quanta through the highly ionized stellar

material. The equation of radiative energy-transport can be written

easily if we remember that in this case the flux of momentum must

be proportional to the gradient of the radiation pressure. We have :

:Zr^_L-l(laT4
), (17)

c. psedr
' v '

where Jr is the radial flux of energy at the distance r from the centre,

and & is the so-called opacity coefficient (per unit mass) of the stellar

matter. If L
r is the total amount of radiation passing through a

sphere of radius r around the centre of the star, and equal to the

total energy production, within this radius, we can rewrite (17) in

the form: JT rai - r (18)
( j

The theory of absorption of high-frequency radiation (at a tem-

perature of 2xl07 C. the maximum of the black-body spectrum
lies at 1-2 A) was first developed by Kramers,t who has shown that

t H. A. Kramers, Phil. Mag. 46 (1923), 836.
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the opacity-coefficient must be proportional to density and inversely

proportional to the 3*5th power of the temperature. It was later

indicated by Eddington that the original Kramer formula must be

corrected slightly by the introduction of the so-called guillotine-

factor t which performs a task similar to that of the famous machine

of the French Revolution by cutting off radiation frequencies at a

sharp absorption edge. Another correction factor g was introduced

by Gaunt on the basis of the wave-mechanical treatment of the

problem. On the basis of that theory we can write for the opacity
coefficient of stellar matter the expression :

fe = *Q pT-, (19)

where = 7-23 x 1024
(l+^)(l~.\:~7)y^ ?, (20)

in which, as before, X and Y represent the hydrogen- and the helium-

content of the stellar matter, and w
t
is the relative concentration of

the element with atomic number Z
L
and atomic weight A t

in the

Russell mixture. For the Russell mixture which consists of the

elements in the ratios given above,

Numerical values of the correction factor g/t have been calculated

for different densities and temperatures of stellar matter by Str0m-

grenf and, more elaborately, by Morse, J who investigated several

different mixtures of heavier elements. As in the case of the mole-

cular weight, the numerical value of as is influenced very little by
uncertainties in the concentrations w. For the temperatures and

densities occurring in the sun the tabulated values of t/g can be

represented with sufficient accuracy by the expression :

log'(*/0)'
= +0-8+log P . (21)

Finally, we have the equation of energy production :

^ = 47rrV dr, (22)
ar

where c is the rate of energy production per unit mass of which the

dependence upon T and p, as well as on chemical constitution of the

t B. Str0mgren, Zs.f. Aphya. 4 (1932), 118.

j P. Morse, Ap. J. 92 (1940), 27.
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stellar material, is determined by special assumptions about the way
in which energy is produced. Since the rate of a thermonuclear

reaction depends exponentially on temperature, and since the tem-

perature increases rather rapidly towards the centre of the star, one

can assume in first approximation that all the energy is produced at

the centre. This leads to the so-called point-source model and we can

put, in this case, L
r const. = observed luminosity of the star.

Making this assumption, we are left with four fundamental equations
of equilibrium, (13), (14), (15), and (18), which contain four unknown
functions of r:

/>, p, T9 and Mr (the quantity & entering into (18)

being determined as a function of T and p by (19), (20), and (21)).

Setting up the boundary conditions :

T = p - p =
Mr
= M (observed mass)

we can integrate (numerically) our system of equations, with any
arbitrary set of values for pi and a? all the way into the interior of

the star.

It may be noted here that, as first pointed out by Cowling,f the

solution of this system of equations which determine the radiative

equilibrium in the star becomes unstable with respect to convection

at a certain distance from the stellar centre where the temperature

gradient, given by (18), exceeds the adiabatic temperature-gradient
determined by the calculated gradient of the density p. Within this

radius radiative equilibrium is broken up and replaced by convective

equilibrium, so that, instead of (18), we must use the adiabatic

equation: *

jat
r R (observed radius), (23)

where y is the ratio of specific heats. This so-called Cowling con-

vective zone extends up to 17 per cent, of the stellar radius and
contains 15 per cent, of the stellar mass.

Continuing the integration of the equilibrium equations all the

way to the centre of the star, we arrive at definite values of T
, />, pQ ,

and Mn . Generally speaking, the value ofM resulting from such an

integration comes out different from zero. Since, on the basis of the

physical picture, we must have MQ (no 'mass-point' and no
'vacuum' in the centre) we must adjust the solution, by adjusting
the parameters p, and as used in the integration, so that the condition

f T. G. Cowling, M.N. 96 (1935), 42.
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M = is satisfied. Since these two quantities depend essentially

only on the hydrogen- and helium -content (equations (16) and (20)),

the internal boundary condition, MQ 0, establishes a definite

relation between X and Y. For each possible set [X, Y] we get

corresponding values of the central temperature, density, and

pressure.

The set of fundamental equations of equilibrium was integrated

numerically by Cowling (loc. cit.) under the assumption ofconstant seQ .

Applying Cowling's solution to the sun, arid using the mean value of

TO-KT'-C

FIG. 49.

seQ for the conditions inside the sun, we get with the assumption
Y = 0: X = 0-35; T = 2 x 107

C., and Po
= 80g./cm.

3 More detailed

integrations, which take into account the variations in aeQ (guillotine

factor), were performed by Blanch, Lowan, Marshak, and Bethef and

also by HenrichJ who obtain T = 2-57 x 10 C., p 1 10 g./cm.
3

,
and

TQ
= 2-5 x 107

, pQ
= 100 g./cm.

3
, respectively.

If we abandon the arbitrary assumption, Y = 0, the problem of

the constitution of the star becomes indefinite, and, as indicated

above, the boundary conditions can be satisfied by various sets of

X and Y. This problem was investigated first by Str0mgren, who
has found that the possible solutions range from a constitution of

almost pure hydrogen, with negligible amounts of helium and heavier

elements, through a more or less even distribution among the three

components to the solution with no helium, 35 per cent, hydrogen,
and 65 per cent, heavier elements. In Fig. 49 we give the results

t G. Blanch, A. N. Lowan, R. E. Marshak, and H. A. Bethe, Ap. J. 94 (1941), 37.

t L. R. Henrich, ibid. 96 (1942), 106.

B. Str0mgron, ibid. 84 (1938), 620.
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of Str0mgren's analysis modified so as to fit the more recent integra-
tions of the equilibrium equations. The horizontal sections indicate

the relative proportions of H, He, and R.M., consistent with the

conditions of equilibrium, whereas the figures on the vertical axis

indicate the corresponding values of mean molecular weight p,,
and

central temperature T .

Which of the possible solutions shown in Fig. 49 corresponds to

reality is a question which cannot be answered on the basis of pure

equilibrium theory ;
as we shall see later, the complete solution of the

problem of solar constitution can be given only on the basis of a

second relation between X and Y which is supplied by the nuclear

theory of the energy production in the star.

3. Thermonuclear reactions in the sun

Knowing the temperature and the density in the central region of

the sun, we can ask ourselves which particular thermonuclear reac-

tion can go under these conditions at the appropriate rate to secure

the necessary energy-supply. This question was first attacked by
Atkinson and Houtermans (loc. cit.) who came to the conclusion that

the only thermonuclear reactions that would proceed at reasonable

rates in the interior of the sun are those between hydrogen and

various light elements. They also have visualized this process as the

successive capture of four protons by some light nucleus resulting

in the emission of an a-particle (' wie kann man einen Helium-Kern im

Potenzial-Topf kochen'), thus introducing the notion of cyclic

nuclear reaction, the importance of which was proved only ten years
later. Considering the possible results of proton-penetration into the

nucleus of another element, we must take into account three different

possibilities :

1. The (p, ^-reaction resulting in the capture of the incident

proton and the emission of an a-particle.f For such processes the

reaction probability T/fi, is comparable to the proper nuclear fre-

quency H/MR2
,
so that the transformation takes place almost for

every penetration. The exact values of F for different reactions can

be estimated from the observed yields in bombardment experiments.
2. The (p, y)-reaction, or the radiative capture of the incident

proton, the probability of which is considerably smaller (by a factor

t The (p, n)-reactions are excluded in our case owing to their endothermic nature,
and the fact that thermal protons have rather low kinetic energy.

3595.61 rp
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1C4 or 105
) than that in the previous case, owing to the small proba-

bility of the y-ray emission.

3. The (p, ^-reaction, i.e. the capture ofthe incident proton through
the spontaneous emission of an electron. The probability of this type
of reaction is much smaller than in the case ofradiative capture, due to

the fact that (for equal energies) the mean life for a /^-transformation

exceeds that for y-emission by a factor ofabout 1016 . It was suggested,

however, by Bethe and Critchfieldf that one particular process of that

type, namely the reaction

m+H1 -> H2+e+ , (25)

may be of importance for the problem of stellar energy-production,
since in this case the low probability of /^-transformation can be

overcompensated by the very high probability for the mutual penetra-

tion of two thermal protons. Since, owing to its very small effective

cross-section, this reaction cannot be expected to be observed in the

laboratory, it is necessary to calculate the corresponding value of e

on the basis of the existing theory of /^-transformations.

Formally, the reaction (25) is a ^-transition between He2 and H2
.

There is no stable nucleus for He2
,
so that one must consider the

parent nucleus in this case to exist momentarily during the collision

of two protons. The ground state of the daughter nucleus is the

deuteron, an even state with spin one. Two protons colliding in the

$-state form an even 'nucleus', but because of the exclusion principle

the spin must be zero. Hence the transition (25) is allowed only if the

spin of the nucleon may turn over, i.e. Gamow-Teller selection rules

are obeyed. If this is the case the transition will be 'really allowed',

by which we mean that the parent and daughter nucleus belong to

the same supermultiplet (100). Then the transition probability is

given by the formula, eq. (6), Chapter V. Substituting the indicated

value of the Fermi constant, as found in that chapter, this formula

may be written ,

T = 6,200 sec.

Although the binding energy of the deuteron is 4-3mc2
,
the energy

available to the positron emission (25) is only l-8mc2 = W, which

is the mass-difference between two protons and a deuteron. The

corresponding value of / is / (1'8) 0-132.

f H. A. Bethe and Chas. Critchfield, Phya. Rev. 54 (1938), 248, 862.
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The distinguishing feature of this type of transition is contained in

the matrix elementM which is essentially an overlap-integral between

the wave-function of the deuteron
if/d on the one hand and the wave-

function of colliding protons $p on the other. If we normalized
iftp to

unit incident current we get directly the expression for the cross-

section for the process which, with the numerical values above,

becomes: o o^m si(j= 2-2xlO~6

|

The wave-functions
I/JP are essentially the same as those presented in

the discussion of proton-proton scattering, Chapter II, but, in the

present instance, we are primarily concerned with these functions

at very low energy and close to the origin. In this region, \jjp may be

represented in good approximation as the product of a function of

radius, which is then integrated out after being multiplied by the

known wave-function of the deuteron, and a function of relative

velocity, which is retained as a factor in a (essentially the penetration

factor in a Coulomb field) and subsequently integrated over the

thermal distribution of the protons. Let v be the relative velocity

of the protons at large distance and b the radius of the deuteron

h - 7*(Jf )-* = 4-37 X 10-13 cm.

Then the expression for a turns out to be

a(v) = A 2 167T2&3 e-2 2

/*'', (27)
TO hv

where A2
is the integral over the function of radius. If the range of

nuclear forces between the protons is taken to be e
2
/mc

2 and the

depth of the (square) well is 10-3 M.e.v., the value of A2 has been

found by Bethe and Critchfield (loc. cit.) to be 8-08.

To obtain the number of reactions per cm.3
per sec. in a gas of

N protons per cm. 3 we have to integrate va(v) over the Maxwell

Boltzmann distribution function </>(v)dv. This integral will be

multiplied by the number of proton pairs, %N2
. Other factors are:

symmetrizing the two-proton wave-function and the fact that either

proton may turn into a neutronf each introducing a factor 2, but the

product is just compensated to unity by the fact that only one-fourth

of the collisions between protons take place in the singlet state.

Substituting for a(v) and <(v) we get p' (per cm.3
per sec.)

f
J

= .

TO \kTj J hv

f This factor was inadvertently omitted in the reference cited.
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The integrand has a strong maximum very close to

v - (7Te*kT/bM)*,

so that the function may be approximated by fitting it to a Gaiissian
'

error-curve
'

at this maximum and integrated to give

T

with r =r-
3(ir*flfe

4
/4

a
fcT)*.

Or, if we measure T in millions of degrees, T 106

T = 33-8J*.

Substituting numerical values into p' we may now express the

number of processes per gramme per second in terms of the density p,

the concentration of hydrogen (by weight) CH and r:

p 3-4xlOVff T^~T
-

Each process leads ultimately to the formation of an <x-particle

through the cycle:

H2+H1 -

releasing 4-3 x 10"5
erg. The energy-production per gramme per sec.

is then:
e = 1460/BC

2
f T

2p-r ergs/g.se(;. (29)

Substituting in eq. (29) values appropriate to the centre of the sun:

p 100, CH - 0-35, T = 11-6 (T ^ 2-6 x 107
), we obtain

= 24 ergs/g.sec.

at the centre. Hence, if the p-transition in eq. (25) is an allowed

transition, it leads to an energy-production ofthe right order of magnitude

for our sun.

In Table XXIV we give theoretical results pertaining to various

thermonuclear reactions under the conditions existing in the sun.

These data are calculated on the basis of formula (10) on the assump-
tions: T = 2x 107 C. and pX = 30 g./cm.

3
f In the third column

we give the 'mean reaction-times' which are evidently independent
of the concentration of the heavy element involved. The fifth column

f These data correspond to Cowling's old integration which assumes Y 0.

According to more detailed integrations (of. Fig. 49) the same central conditions are

obtained for X ~ Y ~ 0-4.
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TABLE XXIV
Mean reaction-times and rates of energy-production for

T = 2x 107
C., p = 80 g./cm.

3
, concentrations = 0-35

contains the rate of energy-liberation calculated under the assump-
tion that the densities of both reactants are equal to 0-30 g./cm.

3

Comparing the figures of Table XXIV with astrophysical evidence

we must remember that :

(1) since the mean energy-production of the sun is

4-1033 erg/sec.
~ 2-1033 g.

= 2 erg/g.sec.,

the rate of energy-liberation in the central regions, where the

energy is actually produced, must be considerably higher than

that figure ;

(2) since, as evidenced by the continuity of evolution of life on our

globe, the sun must have been shining at approximately its

present rate for at least 109 years, the mean life of the process

f This value is smaller than that given on p. 276, since the values of the table have
been calculated on the assumption of lower temperature and density in the centre

of the sun.
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responsible for the energy-production must be considerably

longer than that.

Looking through the figures of Table XXIV we notice first of all

that one possibility consists in the p-p reaction followed by the

sequence of reactions (28). Since the mean periods of the subsequent
reactions are much shorter than the solar life, we must suppose the

sequence to be in equilibrium and thus producing energy at the rate

calculated above. The estimated average energy production for the

sun is then 1 erg/g.sec., i.e. half enough to account for the entire

\C
tt

|c**
radiation. Unfortunately, at the present time,

*x^ ^V<> it is not certain that the /J-transition involved

^$ s* "N. "^ is allowed. If the transition is of the allowed

tt
+ f IB type, thep-p reaction is ofprimary importance

^ V J
* in the sun, and increasingly so for less massive

^ it <5^ stars.

*^* H^
K *

Looking farther through Table XXIV we
w

may first get the impression that there is no
iio. 50. other reaction suitable for the energy-produc-

tion of the sun. In fact, the mean reaction-times for Li, Be, B, C, N,
and F are much shorter than 109 years, and, on the other hand, the

calculated rates of energy-production involving O, Ne, Mg, Si, etc., as

well as those involving He, are much too low. This apparent difficulty,

however, is straightened out, unexpectedly, by the peculiar nature

of the reactions involving carbon and nitrogen. In fact, it was shown

independently by Weizsackerf and by BetheJ that the reactions

involving these two elements represent different links in a single

cyclic reaction-chain, in which the nuclei of C and N are regenerated
after each complete cycle. This reaction-chain, now known as the

carbon cycle, is represented schematically in Fig. 50, which shows

that the net result of each cycle is the transformation of four hydro-

gen atoms into one atom of helium. Since carbon and nitrogen nuclei

are not destroyed in this process, the comparatively short reaction-

times of the individual links do not play any role in determining its

duration, and the liberation of energy will continue uninterrupted as

long as there is hydrogen left in the star (or rather, in its internal

convective zone).

t C. v. Weizsacker, Phya. Z*. 39 (1938), 633.

j H. A. Bethe, P%*. Rev. 55 (1939), 434.

We may note at this point that such a cyclic reaction proceeding in the solar
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Calculating the total energy-balance of the carbon cycle, we have :

CJ12 + Hl -> N13 + y 2-0

N13 -^ Cia + e+ + (neutrino) 0-5 = (| X 1-36)

CJ13 + H l -> N14 + y 8-2

N14 + H1 -^ O lfi + y 7-8

O 15 -> N18 + e+ + (neutrino) 0-7 = (f X 1-85)

N1S + H1 -> C12 + He* 5-2

Total 24-4 M.m.u.

or 3-66 X 10~5
erg

Here, as also in the case of the p-p reaction, we have subtracted the

energy carried away by the neutrinos (f of the total energy of

^-transformation) which amounts to about 7 per cent, of the total

energy-balance. Since the duration of a single cycle is the sum of

durations of the individual links, the cycle period will be determined

essentially by the sum of C12 and N14 lives:

2-5 X 106+4X l() = 6-5 x 1C6
years = 1-95X 1014 sec.

Thus the rate of energy-production (for pX = 30) becomes:

= 4x 10~5 -5 = 104<7 6
, (30)

12X1-65X10-24 1-95X1014 c
g.sec.

v '

where Cc is the concentration of carbon. Thus we see that even for

carbon concentrations as low as 1 per cent., we still have

lOO'erg/g.sec.,

which is high enough to account for the energy-production in the sun.

Although the calculated rates of energy-production by the H H
interior must necessarily establish a definite dynamic equilibrium between the species
of atomic nuclei participating in the process. In this state of equilibrium the relative

amounts of different nuclei must become directly proportional to the corresponding
mean periods of the reactions. Using the data of Table XXIV we find that in such
an equilibrium Cla and N14 must be present in the ratio

C12 :N14 - 2-5xlO:5xl04 = 5:8

whereas the relative abundances of their stable isotopes must be given by
C12 :C18 = 2-5xl06 :5xl04 = 50 and N14 :N16 = 4xl08 :20 = 2xl05

.

Comparing these figures with the relative abundances of these nuclei on the earth

(C
12 :N14 = 3; C12 :C13 = 140 N14 :N15 = 250)

we fail to find any agreement, especially in the case of nitrogen isotopes. This is, of

course, not surprising in view of still larger disagreements in the case of such nuclei

as H2
, Li, Be, and B which must be completely absent from the reaction region of the

sun, but are present in noticeable amounts in the solar atmosphere and on the earth.

This result suggests that the material forming our globe has never been a constituent

part of the interior of the sun.
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reaction and by the carbon cycle appear to favour the latter as the

main source of solar energy, it is of interest to make an independent
test based on the difference between the two processes with respect

to their dependence on temperature. The temperature dependence
of the rate of reaction, which is generally given by an exponential

function, can be approximated within a given temperature interval

by a power law: _
eo r. (3 i)

Comparing the derivative of this formula and of the exact formula

(10) we obtain:

<
32

>

For the H H reaction near 2x 107 C. this gives n = 3-5, whereas

for the carbon cycle we obtain n 17.

Substituting the expression (31) for e into the fundamental equation
of energy-production (22), neglecting the variability of the guillotine

factor, and assuming that the radiation pressure is negligible com-

pared with the gas pressure (for the sun, and stars of comparable

mass, the former is only 0-3 per cent, of the latter),! we obtain a

system of five homogeneous equations, (13), (14), (15), (18), and (22),

containing nine independent variables T, p, p, L, R, M, /Z,
a?

,
and e .

This set of equations is invariant to homology (or similarity) trans-

formations in which the scale-factors of any five variables are deter-

mined as functions of those of the remaining four. Assuming /Z, ,

and constant, and increasing the mass M by the factor a, we find

that the remaining characteristics of the star must be changed by
the following factors :J

L . . a<31+10w >/<5+2^

R ^ ( all-2(31+10H)/(5+2n)

T . . a-io+2(3i+ion)/(5+2n) (33)

p ^ a-32+6(31+10/i)/(5+2n)

p ^ _ a-42+8(31+10?i)/(5+2w)
<

Using the values of n derived above, we obtain the following

t The ratio of the radiation pressure to the total pressure, usually denoted by
(1 ]8), depends essentially only on the mass of the star and is given by the following
table calculated by Eddington (loc. cit.).

Stellar mass (in sun masses) 1 5 10 20 40

(l-j3) 0-003 0-6 0-15 0-30 0-45

| G. Gamow, Zs.f. Astrophys. 16 (1938), 113.
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expressions for the dependence of stellar luminosity, radius, and
central temperature on the stellar mass:

H H reaction C cycle

R~MQ
(const) R ~ M '7

(34)

T1 ^> M1 ' T f

In Fig. 51 a, b we give the plot of log L and log R against logM for

15 stars with masses between 0-4 and 2-5 sun masses,f

The lines marked H H and C-cycle represent the theoretical

dependence for the H H reaction and the carbon cycle, as given

by (34), respectively. Whereas the [log L, logM] graph does not

permit one to distinguish between the two possibilities, the [log.R,

log M] graph shows beyond any doubt that for stars of these masses

the main part of the energy-production must be due to the carbon

cycle. It should be noted, however, that for less massive stars the

situation is reversed. In fact, since

rate of (C H) T17

__ 7U3-5
rate of (H H) T8 '5

and since for 2x 107 C. the energy-production by H H reactions

amounts to a fraction of that for the carbon cycle, the two rates

become equal at some lower temperature which depends upon the

exact ratio of the two sources in the sun which, in turn, is not known.

f G. Gamow, Ap. J. 89 (1939), 130.
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If this ratio is 1 per cent., the central temperature for which the rates

are equal is TQ = 2x lO^O-Ol)
1/13

'5 = 1-5 x 107
C., and from (34) (for

the carbon cycle) the corresponding stellar mass is about 0-4 suns.

According to astronomical data, stars of this and still smaller mass

form the bulk of the stellar population of our galaxy, so that we can

say that, whereas the carbon cycle is used by comparatively few

exceptionally brilliant stars, the rank and file of the stellar popu-
lation quite possibly draws its life energy from the H H process.

Having established that the energy production in the sun, and in

stars of comparable mass, is due to the carbon cycle, we can use

this knowledge for a more detailed analysis of the solar constitution.

In fact, we have seen in the previous section that purely astrophysical

evidence gives us one relation between the hydrogen content X and

the helium content F (Fig. 49). Knowing the nature of the energy-

source, we can now get another relation between these two quantities

that will permit us to estimate X and Y separately. Calculations of

this type have been performed by Schwarzschild.f He assumed, on

the basis of analyses of the solar atmosphere, that carbon represents

2 per cent, of the Russell mixture of heavier elements, so that

Cc
= 0-02(1 XY). Remembering that at T -= 2x 107

, PX = 0-30,

104(7C erg/g.sec., one can write for neighbouring temperatures
and densities:

V / 71

e(p,T)-= 200(1 ^X-Y)~
PI

and calculate the total energy-production L as the integral

Fcouv

L = f e(p, T)47rr
2
p dr, (36)

where rconv is the radius of the convective core. The results of these

calculations are shown in Fig. 52, where the curve A represents the

[X, Y] dependence obtained from equilibrium conditions, whereas

the curve B gives the [X, Y] relation which follows from the con-

siderations of energy-production. The point of intersection corre-

sponds to

X = 0-47 Y = 0-41 R.M. = 0-12

p,
= 0-76 Tc = 1-98X1070 C.

/>
= 112 g./cm.

3

The lighter curves in Fig. 52 represent the effect of possible (rather

t M. Schwarzacliild, Ap. J. 104 (1940), 201.
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liberally estimated) errors in Xc and as of the Russell mixture. It

seems certain that for the sun the value of X lies between 0-35 and

0-60, the value of Y between 0-25 and 0*50, whereas the total amount

of heavier elements is between zero and 0-30. This result is in excel-

lent agreement with the more recent results of spectroscopic analysis

of solarf and stellarj atmospheres which indicate 54 per cent,

hydrogen, 44 per cent, helium, and only about 1 per cent, of the

heavier elements.

0-55-

Y
0-50-

0-45-1

0-40

0-35

0-30

0-25

0-35 (MO 045 0-50 0-55 0-60 0-65

Fio. 52.

4. Thermonuclear reactions in other stars

Turning to the problem of thermonuclear energy-production in

other stars, we must first get acquainted with the stellar classification

as given by the so-called Hertzsprung-Russell diagram (Fig. 53). In

this diagram the logarithms of the observed stellar luminosities (con-

nected with 'stellar magnitudes' by the relation AJf = 2-5Alog)
are plotted against the logarithms of the observed surface tempera-
tures (determining the so-called 'spectral class' of the star). The

radius of a star is connected with the two quantities above by the

obvious relation: L = 47rR2
aT*, and is increasing towards the upper

right corner of the diagram.
We see that the known stars can be classified into three major

groups :

1 . The main sequence, containing the stars that fall within a narrow

band crossing the diagram from the region of very hot (blue)

t D. H. Monzel, ibid, (in the press, 1948).

t A. Unsold, ibid. 100 (1944), 110.
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and very luminous stars, to the region of cool (red) stars of

rather small luminosity.

2. The red giant group, containing the stars of low surface tempera-

ture, high luminosities, and very large radii.

3. The white dwarf group, containing the stars of very high surface

temperature, low luminosity, and very small radii.

-5-0

-2-5J

42^

45-0

+7-5-1

410-0

H2-5

415-0

Ma3n=-2-5I9L

.'RED GIANTS;\ ^ ^+s

44 4-2 4-0 3-8 3-6 3-4 3-2

Fm. 53.

Since our sun itself belongs to the main sequence, it would be

natural to suppose that all other stars of this group possess the same

general structure and have the same source of energy as the sun,

differing from it only with respect to mass. And, in fact, using the

homologic transformations (33) (with n = 18 for M > 0-4 Jf
, and

n = 3*5 for M < O4 MQ) it is possible to account for the observed

luminosities and radii (or surface temperatures) of all the main-

sequence stars entirely on the basis of their observed differences

in mass.t
t 0. Gamow, Phya. Rev. 65 (1944), 20 (Fig. 1).
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The problem of the red giants, on the other hand, presents serious

difficulties which have not yet been overcome. If we assume that

these stars are built on the same plan as the sun, and the other stars

of the main sequence, the calculations lead to only a few million

degrees for the values of their central temperatures. Since neither

the H H reaction nor the carbon cycle would produce significant

power at these low temperatures, it was suggested by Gamow and

Tellerf that the sources of energy for these stars lie in the trans-

formations of light elements, Li, Be, and B. According to this

assumption, red giants would represent the early stages of stellar

evolution in which these light elements are being successively burned

out, preliminary to the star's entrance into the main sequence. Since

the reactions involving these elements are not cyclic, the duration of

each evolutionary stage must be comparatively short, and ayoung star,

contracting under the force of gravity from a primary diffuse mass,
would stop in the corresponding regions of the Hertzsprung-Russell

diagram only long enough to 'burn out' the small amounts of these

elements which were originally present in the mass. A detailed study
of this assumption, at first sight very attractive, indicated, however,

that, although stars of such a description may exist in the sky, the

majority of the red giants certainly require some other explanation. J
A new bit of evidence concerning the nature of red giant stars is

presented by an analysis made by Chandrasekhar, who has shown,
on the basis of observational material, that red giants possess a much

higher central condensation of material than normal stars of the main

sequence. Thus, whereas in the normal point-source model 90 per
cent, of the stellar mass occupies about one-half of the stellar radius,

typical red super-giants like VV Ceph M or e Aur I have 90 per cent,

of their mass condensed within 0*21 and 0-24 R from their centres.

An attempt to explain the properties of red giant and supergiant
stars by a change of model was made by Gamow and Keller, ||

who proposed that these stars may represent later stages of stellar

t G. Gamow and E. Teller, ibid. 55 (1939), 791; see also M. Greenfield, ibid. 60
(1941), 175.

J The difficulties of the Gamow Teller hypothesis lay mainly in the fact that it

fails to account for the characteristic distribution of the red giants in the frame of the

Hortzsprung-Russell diagram, and also cannot explain their comparatively large
number.

S. Chandrasekhar, Introduction to the Study of Stellar Structure, loc. cit.

|| G. Gamow, Phys. Rev. 67 (1945), 120 ; G. Gamow and G. Keller, Rev. Mod. Phys.
17 (1945), 125; of. also M. Harrison, Ap. J. 103 (1946), 193.
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evolution that follow the depletion of hydrogen in the central convec-

tive zone. In fact, it is easy to see that, as soon as the material of

this zone (which is being constantly stirred up by convective currents)

becomes finally deprived of hydrogen, the structure of the star must

change from the conventional point-source model to the so-called

shell-source model in which the energy is produced along the spherical

surface that separates the dehydrogenized material on the inside

from the hydrogen-rich material on the outside. Whereas, under

these conditions, the matter within the energy-producing shell must

be considered to be in a state of isothermal equilibrium (since no

energy is produced there), the outer portion of the star remains

subject to the equations of radiative equilibrium. The temperature
of the energy-producing shell, as well as that of the dehydrogenized
material inside of it, must be maintained, of course, at a level for

which the carbon cycle will operate, i.e. at about 2 x 107 0. As the

process of the H > He transformation progresses, the energy-

producing shell advances towards the outer surface of the star, and an

ever-increasing fraction of the total mass of the star becomes included

in the isothermal core. Detailed analysis of the process shows that

the growth of the energy-producing shell leads to degeneracy of the

material near the centre of the star, so that the resulting stellar model

must consist of three regions: (1) the degenerate nucleus (similar to

the white-dwarf configuration), (2) the isothermal core of dehydro-

genized gas surrounding this nucleus, and (3), the outer envelope

containing the normal concentration of hydrogen. Calculations on

such composite stellar models are necessarily rather complicated,

and in spite of the fact that they seem to indicate that the growth
of the energy-producing shell in radius results in an unlimited increase

of the outer radius of the star, it has not yet been possible to find a

satisfactory correlation between the properties of such
'

overgrown-
shell' models and the observed characteristics of the red giant stars.

It may be noticed here, however, that this point of view leads to an

interesting interpretation of the origin of the white dwarf stars,

which represent, as we shall see later, degenerate configurations of

dehydrogenized stellar material. In fact, the proposed two-way

process in which part of the material of the star becomes concen-

trated into the central degenerate core, while another part forms an

ever-expanding envelope, must lead to the ultimate dispersion of the

outer material, thus revealing the hot, central body to the eye of the
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astronomer. This is in agreement with observational evidence which

indicates that many stars of this type possess composite spectra in

which high-temperature characteristics are mixed with those corre-

sponding to a much lower temperature. According to the so-called

Nutty-Menzel hypothesis, such composite spectra are due to the fact

that we see the light of the hot central body shining through the

comparatively cool outer envelope of the star. It may be added that

the temperature of the degenerate central condensation which is left

over after the dispersal of the envelope must be expected to be equal
to the temperature of the isothermal core within which it was formed,

i.e. to 2 x 107 C. (since the temperature of the isothermal core is

determined by the temperature of the energy-producing shell in which

the carbon cycle is taking place), which is in perfect agreement with

the estimated internal temperatures of the known white dwarfs.

We may add that the problem of internal structure and energy
sources of red giants and supergiants is closely connected with the

important problem of stellar pulsations. It is observed that the stars

that fall within a certain narrow band in the Hertzsprung-Russell

diagram ('pulsation-region' in Fig. 53) are in a state of regular pulsa-

tion, their luminosities and radii varying in time with a period that

depends upon the total mass in each case. The dynamical theory of

pulsating gaseous spheres developed by Eddington leads to the

following relation between the period of pulsation II and the central

density />
:

f
,

4\ -i-j

II- y 3--ip , (37)

(where is Newton's constant ofgravitation and y is the ratio of speci-
fic heats) which is in generally good agreement with the observed

facts.f It can be shown also that, due to the dissipation of energy, a

f It may be remarked here that the observed stellar pulsations do not agree in

every detail with the simple theory of pulsating gas spheres. First of all, whereas
the simple theory requires a simple sine wave for the variation of the light emitted,
the observed luminosity curves do not rise and fall symmetrically but rise sharply
and fall slowly. Also, the simple theory predicts that the maximum luminosity is

coincident with the minimum stellar radius, whereas the observations are that the

maximum and minimum luminosities coincide with the maximum expansion and
contraction velocities of the stellar surface (as measured by means of the Doppler
effect). The asymmetry of the light curves and the 90 phase-shift of luminosity rela-

tive to radial motion suggest that the star does not pulsate as a whole, but that one
has to do with waves of compression which originate from a regularly pulsating
central body and travel through the outer envelope of the star. More detailed study
of this process is bound to give us valuable information concerning the internal

structure of these stars.
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pulsation of a star which is excited by some external cause must

die out in a few thousand years. Since this is certainly not the case

for the observed pulsating stars, it is necessary to assume that some

intrinsic instability exists which forces the pulsation to go on at the

cost of the general energy production in the interior. To explain the

observed distribution of pulsating stars in the frame of the Hertz-

sprung-Russell diagram, it must be assumed further that such an

instability occurs only for a definite relation between the luminosity

of the star and its radius.f One possible interpretation of the pheno-
menon of self-supporting stellar pulsations may lie in the notion of

the so-called superstability in stellar structure, first introduced by

Eddington. He indicated that, in such cases when the rate of energy-

production near the centre of the star depends very strongly upon the

temperature, the adiabatic temperature rise in the contracted phase

may cause the liberation of such large amounts of energy in a short

time that the body of the star will be '

swung out
'

to a maximum
radius larger than the maximum radius preceding the contraction.

The next contraction will then cause higher temperatures and will

liberate still larger amounts of energy, resulting in a still larger

subsequent expansion. Thus the pulsation of such a star will increase

rapidly in amplitude and must terminate in the ultimate disruption

of its entire structure. The problem of stellar 'superstability' was

carefully investigated by Cowling,J who formulated a relation

between the exponent n in the temperature dependence of the energy-

production, and the ratio of specific heats y of the stellar material

for which this phenomenon should be expected to take place. For

the value of y = 5/3, which is typical for the sun and all other stars

of not very large mass, the critical value of n is 450, i.e. much larger

than that corresponding to the carbon cycle or any other possible

nuclear reaction. However, for much more massive stars the situa-

tion becomes essentially different since, due to the ever increasing

importance of radiation pressure, the value of y must be compounded
from the value 5/3 for a perfect gas and the value 4/3 for the radiation.

(38)

f From Fig. 53 we find that the pulsation line is represented approximately by the

equation: .L
pul8

= A . T}fvuls) . Remembering that L >-~ RZT* we find that the necessary
condition for pulsation is I/

pnlH
~

J?pUi8
.

I T. G. Cowling, M.N. 94 (1934), 768; 96 (1935), 42.
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For n = 17, superstability occurs when y = 143 which, according
to (38), corresponds to 1

j8
= 0-71. Looking in the table given in the

footnote on p. 280, we find that this corresponds to stellar masses

larger than (17/^
2
)lf0 (100M0for/z = 0-76). This value is considerably

larger than the masses of the pulsating stars, but, on the other hand,
it must be remembered that it was arrived at on the basis of very

rough calculations, and that a detailed analysis might bring it

down. In any attempt to connect the phenomenon of stellar pulsa-
tions with the notion of superstability, one should, of course, account

for the fact that these pulsations do not exceed a certain maximum
amplitude ;

this may be due, for example, to the difference between

homologically pulsating models for which the calculations are

usually made, and the more complicated motions that take place in

a pulsating gas-sphere. To sum up, we must say that the solution of

the riddle of red giant stars lies most probably in their structural and

dynamical aspects rather than in some peculiarity of their nuclear

energy-sources.

The study of white dwarf stars brings in an entirely new aspect of the

theory of matter : the problem of the superdense state. In fact, whereas

the masses of the two best known stars of this type, the companion
of Sirius and 40 Eridani B, are very close to our sun in mass (0*98 J/Q
and 0-45 Jf

, respectively) their radii are only 0-020 and 0-018 of

the solar radius corresponding to mean densities of l-7x!05 and
l*0x 105

g./cm.
3 As first suggested by Fowler,t matter compressed

to such high densities must be considered as being in a state of com-

plete ionization (regardless of temperature) since, indeed, the nuclei

are brought so close together that
'

there is no place
' between them

for the regular electronic orbits. Since at the densities of the order

of magnitude 106
g./cm.

3 the zero-point energy of free electrons is

of the order of 1-5 x 10~7
erg,J we must conclude that an electron gas

resulting from such 'pressure-ionization' will be in a state of almost

complete degeneracy unless the temperature of the material is above
T = (1-5 X 10~7

/p) = 7x 108
C., which is much higher than the

t R. H. Fowler, M.N. 87 (1926), 114.

J The average volume available for each electron is, in this case

so that the average energy (in the non-relativistic case) may be estimated as
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estimated internal temperatures of the white dwarf stars (only

2x 107 C.). Thus one can consider the structure of these stars as

determined entirely by the temperature-independent equilibrium

between the pressure of the degenerate electron gas and the forces of

gravity. The dependence of pressure on density in a degenerate
electron gas may be written in the form :

Pe
- -

3 W2^_3)(^+ i)t+ 3 sinh-^], (39)

, 7T ,.-,where x* = - nf (40)
ra3c3

and ne stands for the number of electrons per unit volume. For

comparatively low densities this expression goes over intor)
5 m \jl/

corresponding to the non-refatiintrtic degenerate gaff, whereas for higher

densities we obtain

Pp
= ^ficnt = 1-23 X loW^

1
, (42)

representing the case of complete rdativiatic degeneracy.

For a completely ionized element with atomic weight A and

atomic number Z, the number of electrons is evidently

where p,e (the mean molecular weight per electron) is equal to one for

hydrogen and two for helium (and approximately two for all heavier

elements). Thus we see that the equilibrium in a white dwarf depends

only on the hydrogen content X of its material (in contrast to normal

stars where Y is also important). Combining the equation of state,

(39), with the hydrostatic equation:

dp, _ GPMr

~~&-~r ( }

one can calculate the external radii (as well as the internal density-

distributions) for the degenerate white dwarf configurations of

various total masses and hydrogen content. Such calculations have

been performed by Chandrasekhar,| whose results are presented

t S. Chandrasekhar, M.N. 95 (1935), 208; see also Introduction to the Study of
Stellar Structure, loo. cit.
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graphically in Fig. 54. These calculations were carried out under the

assumption, p,e
= 1

;
for other values of

p,e ,
M should be multiplied

by /Z~
2

,
R by /I"

1
,
and p by fle .

We notice first of all that for degenerate stellar configurations the

radius of the star decreases with its mass and becomes zero for

MGTit
= 5-75 M&/p%. Since it is reasonable to suppose that the

degenerate configurations represent the ultimate state ofgravitational

contraction of normal stars which have used up their hydrogen, and

are therefore deprived of any source of nuclear energy, we may con-

sider their material as consisting almost entirely of helium and put

/Ze 2. This gives for the critical mass the value MCTit
1*44 Jf0

which is consistent with the fact that the masses of the known white

dwarf stars do not exceed the mass of the sun. Thus, whereas the

contraction of the stars with comparatively small mass must lead

ultimately to the formation of the degenerate white dwarfs (which
after cooling down become lifeless

'

black dwarfs'), the stars of larger

masses should contract, theoretically speaking, into a mathematical

point. It goes without saying that such a thing never actually

happens since, whenever the radius of the star becomes too small, a

number of other physical phenomena may take place. First of all,

the ever-increasing rotational velocity of such a contracting star may
ultimately lead to the formation of a sharp equatorial edge from

which excess mass will be ejected into the surrounding space. Another

reason for the ejection of stellar material can be found in the radia-

tion pressure which increases parallel with the surface temperature
of the contracting star and, at a certain stage of the contraction, may
be expected to overbalance the forces of gravity holding the stellar
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atmosphere together.*)* Finally, the extremely high temperatures

obtaining in the central regions of contracting gas-spheres will lead

to a peculiar type of nuclear process, which will be described in the

following section, and which may result in a catastrophic collapse of

the stellar body and the ejection of the major portion of its mass.

Returning to the sub-critical, degenerate configurations, we may
compare the results of the calculations given in Fig. 54 with the

observational data. Using the observed values of the M J

s and E's,

we can estimate the corresponding value of p,e and, since this value

depends only on X, deduce the hydrogen content of the star. The

result of such calculations is rather surprising, at least in the case

of the best known white dwarf, the companion of Sirius, for which

one obtains /z
= 1-5, which in turn means that about 50 per cent,

of the material of this star is formed of hydrogen. If this hydrogen
is assumed to be distributed more or less uniformly throughout the

star, this result is contrary to what is expected from the evolutionary

point of view, according to which the white dwarfs should represent

the final stages of stellar evolution and therefore must be deprived

completely of hydrogen, and it is in outright contradiction to our

knowledge concerning the thermonuclear reactions. Indeed, since the

internal temperatures of white dwarfs are known to be not very
different from that of the sun, and since their central densities are

several hundred thousand times larger, the energy-production due to

the carbon cycle would exceed the energy-production of the sun by
a factor of millions. Even if we suppose that, for some unknown

reason, carbon and nitrogen are completely absent in the bodies of

these stars, the H+H -> H2+e+ reaction alone would lead to an

energy-production much higher than that in the sun !

A careful analysis of the temperature distribution in white dwarfs

led MarshakJ to the conclusion that the internal temperature of the

companion of Sirius is 1-6 X 107 C. if it is formed entirely of Russell

mixture of heavier elements (an unlikely assumption), and 7 x 106 C.

in the case when the star is made of pure helium. Even for the latter

lower temperature, the hydrogen content may not exceed 0-1 per cent.

It is interesting to note that the conclusion concerning the negligible

hydrogen content in the interior of white dwarfs can be reached

independently of any knowledge of the temperature in the star if

t Cf. G. Gamow, Phy*. Rev. 65 (1944), 20.

J R. E. Morshak, Ap. J. 92 (1940), 321.
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the H H-reaction is allowed. In fact, it can be shown that even at

zero temperature hydrogen-containing materials, compressed to a

density comparable to that in white dwarfs, will produce energy at

a rate inconsistent with the low luminosities of these celestial bodies.f
The point is that at these high densities the zero-point energy of

protons is high enough to produce a high rate of mutual penetration

leading to the formation of IP-nuclei.

The difficulty presented by the companion of Sirius may be
resolved by one of the following three assumptions :

1 . The radius ofthe companion of Sirius is not 0-023 R0 as deduced
from observations, but rather only 0-008 R0 which would follow

from theoretical calculations for M = 0-98 and /Ze
= 2. It is

hard to believe that the measurement of the radius of this star

(based on the relativistic red shift of spectral lines) could be

wrong by a factor of almost three.J

2. The reaction H1+H1 ->H2+e+ is a strongly forbidden trans-

formation such as would obtain if Fermi selection rules applied
instead of the Gamow-Teller selection rules. We have seen, how-

ever, in Chapter IV, that the latter rule appears to be necessary
to explain the /^-transformations observed in the laboratory.

Besides, this point of view would require also an explanation of

the mysterious absence of carbon and nitrogen from these stars.

3. The hydrogen is not uniformly mixed, but occurs only on the

surface and is completely absent from the hot interior. This

point of view is subject to further observational confirmation.

Other, less likely, explanations of the discrepancy include the

assumption that the companion of Sirius is formed almost entirely
of He3 which possesses the proper mean molecular weight, /Ze

=
1-5.||

However, whereas comparatively large concentrations of He3
might

be expected in stars that obtained their energy from the H H reac-

tion and burned up their hydrogen supply in less than 3x 107 years

(the period of the He3+He4 ~> Be7+y reaction), it is hard to see how

t B. S. Kothari, Nature 142 (1938), 916; W. A. Wildhack, Phys. Eev. 57 (1940), 81.

t Nevertheless this explanation has been proved in 1948 to be correct. The point
is that the spectrum of Sirius B is strongly blended with that of the main star, which
affects tho apparent positions of its absorbtion lines. If allowance is made for this

blending, ono arrives at the value of radius consistent with the degenerated model
with zero hydrogen content.

C. L. Critchfield, Ap. J. 96 (1942), 1.

|| G. Chertok, Phys. Rev. 65 (1944), 51.
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any large amount of these nuclei could be produced in stars of solar,

or larger, mass which are known to live almost exclusively on the

carbon cycle. An alternative explanation lies in changing the funda-

mental relation, P = f(p), for the degenerate electron gas as sug-

gested, for example, by Eddington.f According to his theory, the

pressure of a degenerate electron gas is expressed by the formula (41)

no matter how high the density may be. For M = 0-98 and
jie
= 2

(no hydrogen) Eddington finds that (41) stands in a satisfactory

agreement with the observed radius of the companion of Sirius. It

would be, however, a very hard decision to make to accept all the

revolutionary changes proposed by Eddington in the present quantum

theory solely on the basis of the white dwarf trouble.

It may be remarked in conclusion that the difficulty arising in the

case of the companion of Sirius does not exist for the other white

dwarf, 40 Eridani B, for which the values ofM and R are reasonably

well known. In this case, application of Chandrasekhar's results

leads to a value /Ze
= 2, corresponding to complete absence of

hydrogen. Unfortunately we lack sufficiently exact knowledge of the

M's and B's for other known white dwarfs which could help us settle

the existing conflict with theory.

5. Urea-process and supernovae

In the preceding sections we have been considering thermonuclear

reactions taking place between two different (or identical) nuclear

species in material that is subject to sufficiently high temperatures.

We shall now turn our attention to reactions between stable nuclei

and the fast-moving particles of the electron gas. When the energy
of an incident electron is sufficiently high, it can attach itself to a

nucleus by ejecting a neutrino and forming the unstable (with respect

to ^-transformation) isobar of the preceding element :

X%+ e
~~

YZ- i+neutrino .
(
45 a)

Obviously the threshold of this reaction (corresponding to zero

energy for the emitted neutrino) is given by the upper limit of the

continuous j8-spectrum in the spontaneous /^-transformation :

YZ-I -> %-z+ e~+anti-neutrino (45 b)

of the product nucleus, if there is no y-ray in the latter.

f A. Eddington, Fundamental Theory, Cambridge University Press, 1947, and

previous publications.
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If we should heat up the element X in an enclosure the walls of

which are impenetrable by any of the particles participating in the

reaction, there would exist for each value of the temperature a

dynamic equilibrium between processes (45 a) and (456) with definite

percentages of X- and F-nuclei, electrons, neutrinos, and anti-

neutrinos. Since, however, no walls, not even as thick as stellar

bodies, can stop the neutrinos, they will escape continuously into the

surrounding space and carry with them a certain amount of kinetic

energy. As a result, the electron gas within the enclosure will cool

down rapidly, and heat that may be flowing from outside into the

region where this process is taking place will disappear without

trace (so far as direct observation goes), being dissipated by the

escaping stream of neutrinos. This type of process was first studied

by Gamow and Schoenberg,f who called it the Urea-process because

of the evident similarity between the traceless disappearance of heat

by means of this nuclear reaction and the fate of the gamblers'

money in the crowded playrooms of the famous Casino da Urea in

Eio de Janiero.

To get a rough idea about the temperatures necessary for the

Urea-process, and about the corresponding rates of energy-loss

through neutrino emission, we must remember that, although in

principle this process will take place at any temperature due to the

fast electrons in the tail of the Maxwell distribution, it will run at

full speed only when the mean kinetic energy of thermal motion,

fkT, approaches the reaction-threshold, Wnmx
. Under these circum-

stances the atomic concentrations of elements X and Y become

comparable to one another, so that the rate of energy-loss through
neutrino emission will be of the order of magnitude:

W ~mjM> (46)

where Q is the energy of transformation and A is the decay-constant
of the process (456).

Let us consider three typical examples of Urea-processes. We take

first the reactions :

He3+e~ > H3+neutrino,

H3 -> He3
+e-+anti-neutrino.

The decay-constant of H3 seems to be about 7-10-10 (mean life of

t G. Gamow and M. Schoenberg, Phys. Rev. 59 (1941), 539.
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about 30 years), whereas TFmax = 153 k.e.v. The energy 15 k.e.v.

corresponds to a temperature of 1*2 x 108 C., i.e. only 6 times higher

than that in the centre of the sun. According to (46) the rate of

energy-loss at this temperature is W = 2 x 108cHes erg/g.sec.

As our second example we choose the reactions :

Fe56+e~ -> Mn56+neutrino

Mn56 Fe66+e~+anti-neutrino.

The maximum energy of the j8-spec-

trum, Wm&x
,
for Mn58

is known to be

1*7 M.e.v., so that the temperature
needed for this reaction is about

1010 C. Since, on the other hand,

the Fe56-nuclei (the most abundant

iron isotope) form about 13 per cent,

of the Russell mixture or (assuming
CRM 0-03) 0-4 per cent, of the stel-

lar material and, since in this case

A = 7-7 X 10-5 sec.-1 (mean life 2-5

hours) we have
FIG. 55. A diagram showing relative

importance of different elements for the W = 2xl010
erg/g.SCC.

energy-losses through neutrino emis-
.

sion. Thefractionsgivenontheabscissa Finally, let US consider the reac-

axis represent the contraction ofstellar tions
radius [forM ~= 5M( )] for which the

corresponding central temperatures
16+e~ > N16+neutrino,

are attained. (49)N16 -> O16+e~+antmeutrmo.

Here W* = 6 M.e.v., A = 7-7 x 10-2 sec.-1 (mean life 9 sec.) and

c = 0-015. This gives for the necessary temperature the value

4x 1010 C., and for W = 1015 erg/g.sec.

Since every isotope of every chemical element gives rise to an

Urea-process, we have a large choice of different possibilities the

relative importance of which is determined by the corresponding

values of TPnax , A, and c. In Fig. 55 we give a schematic presentation

of different possible processes of that kind, showing the temperatures

necessary and the corresponding rates of energy-loss (calculated for

CUM = 0-03).

The exact expression for the rate of the Urea-process at different

temperatures can be obtainedf by using the regular theory of

f G. Gamow and M. Schoenberg, loc. cit.
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/^-transformation described in Chapter V. Consider a unit mass of

stellar material containing ne free electrons and n\ nuclei of atomic

number Zi which can capture these electrons and go over into

unstable nuclei of atomic number Zl. Since the material is com-

pletely ionized, we have

(50>

Similarly we have n\ = p-^. (51)

If the electron gas is not degenerate (compare the discussion at the

end of this section) and if the temperature is not high enough for the

thermal electrons to have relativistic velocities, the number of elec-

trons with energy between E and E-\-dE is given by

ne(E) dE = 27T-*ne(kT)-ie-
ElkTE* dE. (52)

The mean life of an electron against capture by the nuclei through
emission of a neutrino can be calculated to be

r(E)^7T log 2 . Wc*l[g*nz(E-Wmax
)

2
], (53)

where g is Fermi's constant. The number of electrons captured by
the nuclei in question, per unit volume per unit time, is:

Using (52) and (53) we get:
00

N_ -
J|^|,3^ (

A'T)~* f e-WT(E- W*)*E* dE, (55)

jjrmax

/ ri7max\

V- wor

where the integral
UU

J(x )
=-

C
e-r

(a; x
)

2x* dx (57)

is written with respect to the arguments:

E JFmax

(58)

Estimating this integral by the saddle-point method we get:

J(x )
= 2-15(* +|)Je-*. (59)
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On the other hand, the number of electrons emitted by unstable

nuclei into the energy-interval E, E-\-dE is, according to the

^-transformation formula (for non-relativistic energies) :

dN+ = ,*-l (
Wmax- E)*E* dE, (60)

V27r#7c3

and the total number of electrons per second per unit volume is :

N+ = 0-152^^^(^
max

)*. (61)

In the case of equilibrium N+ = JVL which gives us:

(62)

or since nz ^-i~nz ~ nQ
z

nz-i =

[l+6-4x
10-*-ml(M

T

)-Jfp-
1

(l^+ ?)"* (TP^JM^WJ"

1

(63)

and a similar expression for nz . The total energy taken away by
neutrinos ejected in the process of electron capture, per unit time

per unit volume, can be calculated easily and is found to be:

w(D _ 'z i faTfy-wwikr (64)~~
kT ^ l ; ' V '

while the energy of anti-neutrinos accompanying electron-emissions

18
. (65)

Comparing (63) and (64), and bearing in mind the expression for (65)

we get:

so that for the total rate of energy-loss we obtain finally:

W = WM+WO* =-
[1+8.5^3]!

IFAn^. (67)

In the case when, due to very high temperature, the particles of the
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electron gas have to be treated relativistically, and when also,

jpnax ^ mc2 simiiar calculations give:

!+6JFma^kT+(Wmax)
2
] x

V 14- f I 4
W C

\ UWniax^-JF^/fcTl
CZ P /co\Xl-fll-hJ^ J6 } -p^ (bJ

L \ "^ *

and TT

Finally for the mixed case when we have a non-relativistic electron

gas and a relativistic ^-emission, we obtain

[H&Tn
wmax

i+^J-V^-i- (69)

nz-i ^ [1+ 0-98. W-*h-*c-*Mp-\W^*)*(kT)-*eWT]-l (70)M
and W ~

[l
+7-1

jj^fr^XW"". (71)

Considering now the implications of the process described above

in the theory of stellar energy and evolution, we must note first of

all tliat it cannot be expected to play any important role in stars

producing their energy by regular thermonuclear reactions. Thus,
for example, the Urea-process in He3 will proceed at a temperature
of 2 X I07 C. at the approximate rate of

2 x
g.sec g.sec

Since, according to the figures given in (29), the concentration of He3

in stellar matter is expected to be

3xl07 _.
,

the energy-losses through neutrino emission will amount in this case

to only ^ 10~2 erg/g.sec. Even if there exists an isotope of some
element with an 'Urea temperature' as low as 2 x 107 C.

(jpnax_ 2'5k.6.V.)

the corresponding decay-constant must be

A = 7 x 10-10
()* sec.-1 ~ 10-11 sec.-1 ,

and the rate of energy-loss at 2 x 107 C. is of the order of magnitude
103c erg/g.sec. Since the concentration c of such an element would

be probably rather small, and in any case smaller than the assumed
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concentration (0-03) of the Russell mixture, the effect will be again

negligible as compared with the rate of energy-production.
On the other hand, Urea-processes should be expected to play an

important role in the later stages of stellar evolution, when, being

ultimately deprived of its hydrogen content, a star begins to contract

under the forces of gravity. It is easy to show, on the basis of the

equilibrium equations corresponding to this case, that the central

-3 -2 -I \

Fia. 66.

temperature of a gravitationally contracting star increases inversely

proportionally to its radius, and that at a certain stage of contraction

it is bound to attain the values necessary for Urea-processes in such

elements as iron or nitrogen. In Fig. 56 we give, as an example, the

rate of energy-loss by Fe-Urca-process in a contracting star of 5 solar

masses. These data are calculated on the basis of the above-derived

formulae (with the assumption cFo 0-4 per cent.) and are plotted

against the radius of the contracting star (relative to its radius on the

main sequence). The broken line represents the liberation of gravita-

tional energy (luminosity) for a contracting star calculated according

to the standard stellar model. We see that for a contraction by
a factor of about ten the energy-loss through neutrino-emission

(in Fe alone) becomes larger than the energy-loss by radiation

from the stellar surface, and that at hundred-fold contraction the

former loss exceeds the latter by a factor 10 5
. It follows that the
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later stages of stellar evolution (contraction) must be considerably
accelerated due to various Urea-processes that start in the star's

interior.

If the increased rate of contraction caused by the Urea-processes
becomes comparable to the rate of 'free-fall' of the stellar material

towards the centre, we may expect the process to end in a cata-

strophic collapse of the star. It is easy to calculate that the time, AZ,

of a free-fall collapse of a star of mass MQ and initial radius RQ is

given by :

1 i

A/ ^ 9. f**>

For a star of mean density p = 100 g./cm.
3

,
this gives kt ci 103 sec.

(i.e. about half an hour). On the other hand, the total gravitational

energy liberated in a contraction to one half of the original radius

is given by: T

Atf ~ GMl-^ ~ GM*p. (73)2MQ

For a star of, say, 5 solar masses and an initial density 100 g./cm.
3

,

this gives 1050
erg. Thus the rate of energy-loss necessary for such

a rapid collapse must be

1050 _ 1Qi3
^g

1034 xl03
g.sec.'

and is not at all inconsistent with the rates of energy-loss by Urea-

processes discussed above. These considerations lead us to a possible

explanation of the vast stellar explosions known as supernova. In

these cosmic catastrophes a star increases its luminosity practically

overnight by a factor of the order of 109
,
and this is followed by a

gradual decrease of luminosity lasting for a period of a year or more.

The total energy liberated in such explosions is of the order of magni-
tude 1050 erg, i.e. about equal to the total content of gravitational

energy in the body of the star. Spectroscopic studies of supernovae
indicate that these explosions are characterized by the ejection of hot

masses moving at very high speed. Later, these ejected masses form

a giant expanding nebulosity surrounding the remainder of the

exploded star and is illuminated by its light. Thus, for example, the

historically famous supernova recorded by Chinese astronomers in

the year A.D. 1054 gave rise to a large and somewhat irregular mass

of gas which is known at present as the Crab Nebula. This gaseous
mass is expanding still, at a rate of 0-23" per year (1,116 km./sec.)
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which is in good agreement with its age (of about 900 years) and its

present diameter. In the centre of this nebulosity one can observe

a comparatively faint, but very hot, starf which presumably repre-

sents a degenerate configuration of the type discussed in the preced-

ing section. However, this body is much hotter than the regular

white dwarfs, its surface temperature being estimated at about

500,000 C. It is of interest to note also that, whereas the mass of

the central star is presumably comparable to the mass of the sun, the

mass of the expanding nebulosity is of the order of 10 solar masses. J

On the basis of this information, we can form a rather convincing

picture of what happens during stellar explosions of that type. Pre-

sumably we see here the result of some internal instability of the

stellar structure which causes a rapid gravitational collapse of the

entire stellar body (as evidenced by the amount of energy liberated).

A part of the material of the original star concentrates near the centre

while another, larger, part is ejected into the surrounding space.

The observed increase of luminosity must be simply due to the fact

that the gas masses ejected from the interior of the star are, so to

speak, saturated with radiation which then becomes free to stream

away. This phenomenon of rapid collapse is just what one would

expect as the result of a sufficiently fast Urea-process being switched

on in the late stages of contractive evolution. In fact, when the rate

of energy-loss through neutrino-emission becomes comparable to the

rate of energy-removal necessary for 'free-fall', the previously

regular contraction must be expected to give way to an irregular

collapse of the type described above. In particular, one would

expect that, due to the axial rotation which becomes of particular

importance in the later stages of contraction, the material of the

polar regions will fall in towards the centre, whereas the equatorial

material (being helped by the centrifugal force) will be thrown out into

space. This last conclusion is in agreement with the observational

evidence that the gaseous nebula ejected in the process of explosion

seems to possess an axial symmetry. However, more study is needed

to check the correctness of the point of view described above.

6. The origin of the chemical elements

We shall now turn our attention to the exciting problem con-

cerned with the origin of the chemical elements, and try to

f W. Baade, Ap. J. 96 (1942), 188. % R. Minkowski, ibid. p. 199.
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understand the reasons for the widely varying proportions in which
different nuclear species are encountered in nature. One of the most

striking features of the chemical composition of the universe is its

high degree of uniformity. In fact, careful chemical and spectro-

scopic studies of the composition of the earth, the meteorites, the

sun, the stars, interstellar gas, and the distant galaxies indicate that,

apart from some exceptions which can be explained in most cases

by local conditions, the relative numbers of various nuclear species
are very nearly the same everywhere in the universe. Notable

among the local deviations mentioned above is the extremely low
terrestrial abundance of hydrogen and helium which are otherwise

the two most abundant elements in the universe (cf. p. 305). The
almost complete absence of hydrogen, helium, and other rare gases
from our planet (and presumably from all minor planets) can be

explained easily by the nature of the processes which were respon-
sible for the formation of the planetary system.f
Another example of local deviations is supplied by the observed

differences between the relative carbon and nitrogen contents in the

atmospheres of the hot Wolf-Rayet stars (the so-called CW- and

NW-stars) which can be interpreted, presumably, as a result of the

thermonuclear reactions (C-N cycle) responsible for their energy-

production.:!: Some differences have been observed also in the rela-

tive abundances of the various isotopes of the same element. Thus,
for example, helium samples obtained from atmospheric air were
found to contain a larger proportion of the HeMsotope than samples
extracted from rocks. This is probably due to the reaction

N+n -> 3 He4+H3

induced in atmospheric nitrogen by fast cosmic-ray neutrons, and

subsequent decay of the H3 into He3
. It remains to be seen whether

the observed differences between H1
/H

2-ratios in the solar atmo-

sphere, and in terrestrial hydrogen, and the apparent excess of the
C13

-isotope in the atmospheres of certain cool stars, can be explained
on a similar basis.

f Compare tho new theory of the origin of the planetary system by C. F. v. Woiz-
sucker, Zs. f. Astrophys. 22 (1944), 319. This theory is reviewed in English by G.
Gamow and J. H. Hyneck, Ap. J. 101 (1945), 249, and by S. Chandrasekhar, Rev.
Mod. Phys. 18 (1946), 94.

J G. Gamow, Ap. J. 98 (1943), 500.
L. W. Alvarez and R. Cornog, Phys. Rev. 56 (1939), 379, 613 ;

L. T. Aldrich and
A. O. Nier, ibid. 70 (1946), 983.
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Neglecting these, in most cases minor, deviations we can say that

the chemical and isotopic constitution of the universe is remarkably
constant. In Fig. 57 is presented a curve based on the work of

Goldschmidt,t who has undertaken a most careful and painstaking

analysis of all existing geochemical and astrochemical data. The most
characteristic feature of the observed abundance is that, apart from

more or less significant ups and downs, the curve shows a rapid

exponential decrease of abundances for elements of the lighter

atomic weights followed by an almost constant value for the heavier

elements. It is difficult to escape the conviction that this striking

difference between the two parts of the abundance curve is somehow
characteristic of the processes which were responsible for the origin

of the elements. On the other hand, the smaller details ofthe empirical

curve must be related more or less directly to the individual stability

of the various nuclear species, and may not be valid criteria for

the validity of different theories of the formation of the atomic

nuclei.

Before we embark on discussions concerning the exact nature of the

processes responsible for the formation of various nuclear species, we

may ask ourselves whether the observed relative abundance of

elements require an explanation at all. In fact, if we should limit

our considerations to stable nuclei, and accept the hypothesis of a

permanent, non-evolving universe, the question of relative abun-

dances could be answered by a dull but perfectly logical statement

to the effect that some elements are very abundant while others are

very rare
'

because it was always that way
J

. However, the existence

of unstable, gradually decaying elements forces us to look more

deeply into the existing state of affairs and to assume that, at least,

the nuclei of the natural radioactive substances were formed 'once

upon a time' in the history of the universe. We can form some idea

about the epoch during which the formation of these radioactive

nuclei must have taken place from a study of their present relative

abundance relative to stable nuclear species of comparable atomic

weight. Thus, the fact that atoms of Th232 and U238
, with mean life-

times of ISxlO9 and 4-4 xlO9
years, respectively, are about as

abundant as the stable atoms of Bi or Hg, indicates that their forma-

tion must have taken place not much earlier than a few thousand

million years ago. On the other hand, the comparative rarity of

| V. M. Goldschmidt, Verteilungsgesetze der Elemente, Oslo, 1938.
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FIG. 57. Abundance of elements in the universe.
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Actinouranium (U
235

)
and K40

,
with mean lives of 7 x 108 and 4x 108

years, respectively, as well as the almost complete*)* absence of Np237

and Pu239
(half-lives of 2-25 x 106 and 2-4 x 104 years), strongly sug-

gests that the formation of these nuclei must have taken place at

least a few thousand million years ago, thus giving them a chance to

decay to a considerable extent. J Assuming for a moment that U235

and K40 were formed originally with abundances comparable to those

corresponding to the main isotopes, and remembering that their

present relative abundances are 7 x 10~3 and 2-5 x 10~ 5
,
we find that

they must have been formed 3-5 x 109 and 4-5 X 109
years ago.

During the same period of time the abundance of U238 would have

decreased only by a factor two or three, whereas the abundance of

Th232 would have changed hardly at all. Considerations of this kind

lead us to the conclusion that all radioactive nuclei found in nature

must Jiave been formed during a certain epoch a few thousand million

years ago, and it is quite natural to assume that the present propor-

tions among various stable nuclei were established during the same

epoch.

Since the possibility of thermonuclear reactions throughout the

entire natural sequence of elements requires temperatures that are

much higher than those encountered in the central regions of the

stars, we must conclude that at the epoch when the elements were

formed the thermal conditions in the universe were considerably

more severe than they are at present. Furthermore, the striking

uniformity of the chemical composition of the universe suggests

strongly that these conditions of extremely high temperature must

have been rather common for all points and masses of the universe.

The above conclusions concerning the past, based entirely on

arguments pertaining to abundances of unstable nuclei in nature,

find beautiful confirmation in the astronomical studies of the uni-

verse. In fact, the observation of the red-shift in the spectra of the

distant galaxies can be interpreted in hardly any other way than

by the assumption that our universe is at present in a state of rapid,

f Minute amounts of Pu289 have been found in uranium ores (1()~
14 with respect to

uranium), apparently due to continuous production by neutrons arising from spon-
taneous uranium fission.

J The negligibly small amounts of these elements found by Seaborg and Perlman in

natural uranium ores are due to continuous production from U238 by bombardment
with cosmic-ray neutrons.

E. Hubble, Proc. Nat. Acad. 15 (1929), 168.
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uniform expansion. Assuming as a first approximation that the rate

of expansion has remained constant and equal to its present value of

560 km./sec. per megaparsec (= 1-8 x 10-17 sec.-1 ), we find that the

expansion starts from a very dense phase about 5-5xl016 sec. or

l-8xl09
years ago. This figure for the age of the universe is in

reasonable agreement with the results of other estimates based on the

evolutionary features of massive stars, the rate of dissipation of

stellar clusters, and the lead-uranium-ratio in the oldest volcanic

rocks on our planet. It is about twice as long as the geological

estimates of the age of the oceans (from salt-content, and sedimenta-

tion process) which evidently represent somewhat later formations.

The astronomical picture of a highly compressed universe in the

early stages of its expansion is exactly what one needs for the

development of a theory for the origin of the elements, and the date

of this epoch as given by purely astronomical evidence is in reasonable

agreement with the figure derived above for the age of the radioactive

elements. We should expect that in this highly compressed initial

state the temperature of the material was very high. Unfortunately
we cannot get a very exact idea about the mean temperature of the

universe at different stages of its expansion by applying, for example,
the temperature-density relation for the adiabatic expansion of a

gas and comparing with the present heat content of the universe.

The point is that a large part of the present heat content in the uni-

verse is due to various nuclear transformations in the interior of the

stars, and there is no simple way of separating it from the heat

that could have been left from the original compressed state. One
can make, however, a simple estimate of the lengths of time which

must have been taken by the universe in passing through different

successive stages of expansion.! According to the general theory
of relativityj the time-dependence of any linear dimension I in the

expanding universe is given by the formula :

dl ,_,.
(74)

where G is Newton's constant of gravitation, p the mean density and
E the curvature of space (real for closed spaces ; imaginary for open

t G. Gamow, Phy*. Rev. 70 (1946), 572.

% Compare R. Tolman, Relativity, Thermodynamics, and Cosmology (Oxford
University Vress, 1934).
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spaces). It may be noted that the expression (74) represents a

relativistic analogue of the simple classical formula

for the velocity for inertial expansion of a gravitating sphere of dust

with the total energy E per unit mass. To use definite numbers, let

us consider in the present state of the universe (assumed to be quite

uniform) a cube containing 1 gramme of matter. Since the present

mean density of the universe is
/>present

c^ 10~30 g./cm.
3

,
the side of

our cube will be /pro8ent 1Q10 cm - Using the value given above for

the rate of expansion (1-8 X 10~17 sec."1
)
we find that

W^Opresent = l'8XlO~7
cm./sec.

Substituting numerical values we obtain

l-8xlO-7 = //5-7xlO-17

-^5^t), (76)
V \

"
/

showing that at the present stage of expansion the first term under

the radical (corresponding to gravitational potential energy) is

negligibly small compared with the second one. For a numerical

value of the (constant) curvature we obtain

R = 1-7 x 1027
V( 1) cm. ^= 2x 109

imaginary light years.

The formula (74) gives us also a more exact value for the beginning
of the expansion. Writing p = I//

3
(according to the definition of I

given above) and using for brevity, A = cZ
presonfc/^, we can integrate

(74) from t = 0, I = to t = *present; I = ^resent obtaining

(77)

The first term in (77) corresponds to a linear expansion and the

second to the gravitational deceleration at the beginning of the

expansion. Numerically we get: present
=

[1-8 x 109 2-2 X 107
] years,

which indicates that by taking into account the effect ofgravitational
deceleration we change the estimated age of the universe by only
1 per cent.

We can now apply our formula to estimate the time intervals

required by the universe to pass through different stages of high

density. For p > 10~21 g./cm.
3 the first term under the radical in
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(74) is of primary importance and deductions about the rates of

expansion become independent of the value of R. Using this

formula, we easily find that the times when the mean density of the

universe was 109
,
106,

103
,
and 1 g./cm.

3
,
its density was dropping by

an order of magnitude in time intervals of 0-04 sec., 1 sec., \ minute,

and \ hour, respectively. These high rates of expansion are simply

due to the fact that, in the early stages of expansion, the mass of the

universe had to have extremely high velocities of recession in order

to overcome the forces of mutual gravitational attraction.

The considerations above lead us to the important conclusion that

the early stage of expansion of the universe, characterized by very high

densities and presumably correspondingly high temperatures suitable

for the formation of the whole variety of nuclear species, could have

lasted for only a very short period of time.

The earliest attempts to give a theoretical explanation of the

observed abundance-curve of the chemical elements were based on

the hypothesis of dynamical equilibrium between the various nuclear

species at a certain high density and temperature. Calculations of

that kind have been carried out by Stern,f Weizsacker,J Chandra-

sekhar and Henrich, Lattes and Wataghin,|| and by Klein, Beskow,

and Treffenberg.tt One can get a preliminary idea concerning the

temperatures and densities which could have been responsible for

the establishment of the present nuclear proportions by studying the

percentage abundances of several isotopes of a given element (Weiz-

sacker, loc. cit.). In fact, let us consider the equations of equilibrium :

between a neutron gas (which must have been present constantly at

sufficiently high temperatures because of the neutron-evaporation)

and the three isotopes A, A+ I, and A+2 of some element of atomic

number Z. According to the well-known formula of statistical equi-

librium we can write :

o U* \*7""*-*r e-j^Wfcr (79)( }

nA+1

t T. E. Stern, M.N. 93 (1933), 736.

J C. F. v. Weizsacker, Phya. Za. 39 (1938), 133.

S. Chandrasekhar and L. R. Henrich, Ap. J. 95 (1942), 288.

||
C. Lattes and G. Wataghin, Phya. Rev. 69 (1946), 237.

ft O. Klein, G. Beskow, and L. Treffenberg, Arkiv f. Math. Aatr. och Fya. 33B

(1946), 1.
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and e-UA+*lkT 9 (80)

where n%, n~l
, n%-

2
,
and nn are the number-densities of the three

isotopic nuclei and the neutrons, the g's represent statistical weights,

EA-I and EA-Z are ^no binding energies of the last neutron in the

corresponding nuclei, and T is the absolute temperature of the

mixture. Eliminating nn from (79) and (80) we obtain:

(81)

Then from observed abundance ratios, a value of nn can be found.

The results of such calculations carried out for different stable

isotopic triples (Chandrasekhar and Henrich, loc. cit.) are shown in

TABLE XXV

Table XXV. We note that all five isotopic triples shown in that table

lead to consistently high temperatures with the mean value

T = (74)xl09
K.,

whereas the neutron densities show considerably larger variations.

(This can be, of course, partially due to the fact that the formulae

(79) and (80) are considerably less sensitive to nn than to T.)

In view of the above, at least partially, encouraging results, one

can try to interpret the entire abundance-curve as the result of a
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thermodynamical equilibrium at a certain high density and tempera-
ture. It can be done best by employing the powerful statistical

thermodynamical method of Gibbs which leads to the result that the

equilibrium concentrations ^ (particle number per unit volume) of

the nuclear species made of N
t
neutrons and Z

t protons is given by
the formula:

'exp kT (82)

where is the multiplicity of the nucleus in question, Mi
its

16 18 2022 2426 28 30 323436 3840

FIG. 58.

mass, Et
the total binding energy, and /x and A the chemical potentials

of a neutron and a proton, respectively. Using the experimental

value of K
t
the formula (82) can be fitted best to the empirical

abundance curve, in the region of light elements, by setting

kT = 1 M.e.v., p,
= 7-6 M.e.v., and A = 11-6 M.e.v. (Klein,

Beskow, and TrefTenberg, loc. cit.). This corresponds to a tempera-
ture of T = 1010 K., and to neutron- and proton-densities of

4-108
g./cm.

3
,
and 8-106

g./cm.
3

, respectively. The large excess of

neutrons over protons results, of course, from the fact that the high

pressures involved favour the reaction p+e~ -+n-{- (neutrino). The

result of such calculations is presented graphically in Fig. 58, which

contains the calculated and the observed abundances for atomic

weights from 16 to 40 (Lattes and Wataghin, loc. cit.).

The evident success of the equilibrium theory among the light

elements of the periodic system turns into a catastrophe, however,
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when the same method is applied to the heavier elements. This can

be seen easily from Fig. 59, where the results of the equilibrium

calculations are compared with the actual abundance. It is clear

81

FIG. 59. Comparison ofthe observed abundance curve

(shaded area) with three proposed theories.

Curve A : Equilibrium hypothesis.
Curve B: Aggregation hypothesis (with capture cross-

section proportional to atomic weight).
Curve C: Fission-hypothesis.
The curves give only the general trend with individual

variations being omitted.

that the striking discrepancy between the calculated and the observed

curves cannot be removed by any reasonable modification of the

calculations, and lies in the hypothesis of equilibrium itself. In fact,

owing to the exponential dependence of the equilibrium concentra-

tion on the total binding energy of the nucleus and the approximate
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linearity of the binding energy as a function of atomic weight, the

equilibrium concentrations are bound to decrease exponentially for

all atomic weights, just as for the lighter elements. An attempt was

made (Chandrasekhar and Henrich, loc. cit.) to account for the

discrepancy by assuming that different parts of the periodic system
were formed at different stages of the expansion of the universe, and

hence under different physical conditions. One could assume, for

example, that the heavier elements were formed at higher tempera-
tures (earlier stages of expansion) and that their relative abundances

were
'

frozen' at the lower temperatures when the transformation of

lighter elements were still taking place. This hypothesis does not

correspond to the physical situation, however, since at the tempera-
tures involved the transformation of the nuclear species is mostly due

to processes of neutron-evaporation and neutron-absorption which

arepracticallyindependent oftheatomicnumberofthe nuclei involved.

Thus it seems necessary to abandon altogether the hypothesis of

thermodynamical equilibrium, and to try to explain the observed

abundance as a result ofsome non-equilibrium process which may have

taken place in the early stages of expansion. Such an assumption

appears particularly reasonable in view of the extremely short

intervals of time allowed by the theory of the expanding universe

for the formation of various atomic species. It can be argued, of

course, that abandoning the eqiiilibrium theory we shall lose the

beautiful, detailed agreement between calculated and observed abun-

dances in the region of the lighter elements. This may not be so con-

clusive an argument, however, since the peak-to-peak correspondence

between the two curves in Fig. 58 represents essentially the correlation

between abundance and intrinsic stability for individual nuclei and

maybe common to non-equilibrium as well as equilibrium theories.

An attempt to formulate a non-equilibrium theory of the origin

of elements has been made by Gamow,f who suggested that the nuclei

of various atomic weights might have originated as aggregations of

neutrons formed in the early stages of the expansion of the universe.

It is reasonable to suppose that in the very early stages of expansion

matter consisted entirely of neutrons, since the high pressure obtain-

ing in the compressed primordial material must have literally

f G. Gamow, Phys. Rev. 70 (1946), 572. More detailed calculations on this non-

equilibrium process are being carried out by R. A. Alpher and will bo published in

due course.
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'squeezed' all free electrons into the available protons,f As the

rapid expansion of the universe took place, this superdense, super-
heated neutron gas-cooled adiabatically to some considerably lower

temperature at which the formation of various neutral aggregates

(polyneutrons) could have started.} The formation of such neutral

aggregates is then followed by successive ^-transformations through
which the newly formed polyneutrons are changed into atomic nuclei

of corresponding mass.

It must be remembered that a process of neutron-aggregation, as

described above, has to compete with the natural decay of the
neutron which should have reduced the number of neutrons prac-

tically to zero within the first few hours following the start of expan-
sion. According to this view, the scarcity of heavier elements is due

simply to the lack of time available for the formation of complex
neutron-aggregates, and the slope of the abundance curve is deter-

mined by this time interval rather than by the temperature existing
at that time. Detailed calculations of such a process of aggregation
in a cool neutron gas are necessarily very complicated since one has
to take into account the continual decrease in neutron-density (due
both to the expansion ofspace and the natural decay of the neutrons),
the variation of capture cross-sections with the rapidly decreasing

temperature, as well as the irregular variations of these cross-sections

from one element to another. One can, however, get a preliminary
idea of the general features by introducing a number of simplifying

assumptions. We may assume, for example, that the neutron-

density (N ) remains constant for a certain time T, and drops to zero

at the end of this period, and that the capture cross-section was

independent of time and was the same for all nuclei. Under these

assumptions we may write, evidently:

dN
-^

= ^(V-i ^-1-^), (
=

1,2,3...) (83)

t We leave it as an exercise for the reader to decide whether this highly compressed
state of matter resulted from a previous contraction of the universe, all record of
which is now completely lost, and whether the present expansion is simply a rebound
from that contraction.

% The reader is given fair warning, however, that such aggregates of neutrons alone
do not follow from the statistical theoryofnuclear structure as presented in Chapter IV.
On the contrary, one can show that such aggregates are not bound if the Majorana
forces exist to the extent assumed there. On the other hand, that theory is by no
means perfect, so that the conjectures made here, and in the following pages, simply
express alternative views of the nature of nuclear forces.
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where JVJ is the number of nuclei with atomic weight i, o^ is their

capture cross-section, and v is the (thermal) velocity of the neutrons.

The equations (83) can be integrated easily if o
t
= const, and lead to

(84)

which gives a rapid decrease of relative abundance with atomic

weight. Adjusting the formula (84) so as to give the correct slope in

the region of the light elements, we find N^avr 30. Since T must be

of the order of magnitude 103 sec. (decay-period of a neutron), and

since the capture cross-section ^ 10~24 cm.2
, we get N: v = 1022 .

Then if we assume that the neutron velocity was 104 cm./sec., the

mean density of the universe becomes p = 1018 XlO-24 = 10-6 g./cm.
3

According to formula (74) this state of the universe must have lasted

for about 2 weeks.

It will be noted that the expression (84), which is plotted in Fig. 59

also, does not explain the observed shape of the abundance curve any
better than the equilibrium theory. The possibility is not excluded,

however, that the theoretical results can be improved considerably

by taking into account variation of the capture cross-section with the

size of the aggregate. Thus, for example, the observed curve of

abundance can be represented very well if one permits the cross-

sections to increase by a factor ten between the light and heavy
elements (compare Appendix VI).

We now turn to another, no less, fantastic picture of the origin of

the elements proposed recently by Goppert-Mayer and Teller,f In

contrast to the theory described above, these authors assume that,

in its most compressed state, the universe was filled with a neutral

nuclear fluid% which consists of neutrons held together by cohesive

forces. As expansion began this nuclear liquid must have broken

up into a number of drops of various sizes. Consider the behaviour

of such a drop, which may be 1 Angstrftm, 1 centimetre, or 1 kilo-

metre in diameter. It is clear that for the reasons that apply to

t The authors are grateful to Dr. Marie Goppert-Mayer and Dr. E. Teller for com-

municating their results previous to their publication.

J The difference between this and the point of view discussed above evidently lies

in different assumptions about the original temperature of the universe. According
to Gamow this temperature was well above what could be called the *

critical tempera-
ture

*

of the nuclear fluid, so that one had essentially a highly compressed gas, whereas

Goppert-Mayer and Teller assume that the temperature was below the critical

temperature, so that the nuclear fluid is essentially a liquid.
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ordinary nuclei having a neutron-excess, a large number of neutrons

will undergo /^-transformation with the emission of negative elec-

trons. When internal equilibrium is finally established there will be

a large, positively charged drop of nuclear liquid (neutron-proton

mixture) with negative electrons partially dissolved in its large

body,| partially forming a thin atmosphere just above its surface.

More detailed calculations show that the thickness of this electronic

-atmosphere will be independent of the size of the drop, being of the

order of magnitude of 1Q-11 cm. The important point concerning
these 'overgrown atomic models' is that the system may be expected
to possess a negative surface tension, because the mutual repulsion

between electrons forming the 'atmosphere' will be larger than the

surface tension due to nuclear forces. Thus, one can expect that the

surface will become 'wavy' and that a number of small droplets will

be separated from the surface of the large mother-drop. Following
this 'budding-theory' of nuclear formation, Goppert-Mayer and

Teller were able to show that the masses of the newly formed nuclei

will be of the order of a few hundred proton-masses. It must be

admitted, however, that this point of view does not explain the

observed abundance-curve any better than any of the other theories,

since it leads to a broad Gaussian distribution of relative abundance

among the heavy elements (cf. Fig. 59), and offers no explanation
whatsoever for the extremely high abundance of the lighter elements

(compare Appendix VI).

t In fact, unlike the case for ordinary nuclei, the electrons can be completely
immersed in the giant nuclear bodies, since, in this case, their Compton wave-length
is smaller than the nuclear diameter.
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NUCLEAR CHAIN REACTIONS

1. Fast neutron chains

IN the preceding chapter we have discussed thermonuclear reactions

caused by general thermal agitation of matter, and we have seen that

even the easiest reactions of this type require extremely high tempera-
tures. There is, however, another type of self-sustaining reactions in

which the transformation of each individual particle leads directly to

similar transformations of one, or several, particles of the material.

These so-called chain reactions take place when each elementary
transformation gives rise to one or several

'

active fragments
'

which
induce new transformations of the same type as soon as they come
into contact with other particles of the material in question. Depend-

ing upon whether such a reaction is developed due to the emission of

a single active fragment, or to the emission of several such frag-

ments, we speak of linear, or branching, chains respectively. Familiar

examples of such reactions in the field of ordinary chemistry are:

(1) the photo-induced linear chain in a mixture of hydrogen and
chlorine (Cl2+7*v -> 2 Cl; C1+H2 -> HC1+H; H+C12

-* HC1+C1:
C1+H2 etc.), and (2) the thermally induced branching chains which

probably take place in many ordinary explosives

(TNT+NO3 -* H2O's+CO's+several NO3's, etc.). (1 )

It is clear that in the problem of nuclear chain reactions the role

of the active fragments can be played only by neutrons that are

emitted in the individual transformations. In fact, any charged frag-
ment (proton, a-particle, etc.) is bound to lose all its original kinetic

energy through electronic friction long before it has a chance to

collide with another nucleus, and will have no chance, consequently,
of penetrating the nuclear potential barrier when such a collision

finally takes place. On the other hand, neutrons are practically
unaffected by the electronic envelopes and they are able, to pene-
trate into the nucleus even if their kinetic energy has been reduced

practically to zero. Thus chain reactions are possible only in the
case of such nuclear transformations which, being caused by the

impact of a neutron, result in the emission of one or several neutrons
of the next generation which are equally able to produce subsequent
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transformations. The only known nuclear transformations satisfying

the above conditions are the fission processes discussed in some

detail in Chapters VI and IX.

We have seen that, although the fission process becomes exoergic

for all nuclei heavier than silver, it becomes particularly efficient for

the elements located near the end of the periodic system. In fact,

for larger values of Z2
/A the activation energy for fission becomes

smaller, whereas the reaction energy increases rapidly, resulting in

larger fission cross-sections and larger numbers of neutrons per

fission. Thus it is clear that the conditions for a self-sustaining chain

reaction must be met for some sufficiently high value of Z2
/A . It is

also clear that this condition will be satisfied by smaller values of

Z2
/A in the case of odd A and even Z because energy of the captured

neutron is greater in such nuclei.

In order to formulate exact conditions that have to be satisfied by
a given nuclear species in order to make possible a self-sustaining

chain reaction,*)" we shall assume that we are dealing with an infinite,

homogeneous medium of this material for which we know} the cross-

section for fission, oy,
for radiative capture, cr

y ,
for elastic scattering,

or
el , and for inelastic scattering a^E') (as a function of the energy E'

of the emitted neutron) as well as the average number, of fission

neutrons emitted, v all expressed as functions of E, the energy of the

incident neutron. It is easy to see that if we introduce into this

material, N neutrons per unit volume, with an energy-distribution

f'(E), the energy-distribution of the next generation (defined as the

neutron population produced by the first collision of all the neutrons

of the previous generation) will be given by the formula :

, E')+vaf(E, E')'-'-I- -^ ----'------ -JET/
'

r
I-
J

(2)

in which it is to be understood that <Jcl(E, E') vanishes ifE ^ E' (i.e.

it is essentially a 8-function). Hence the first and second terms

represent the number scattered into the second generation elas-

t In common parlance such nuclear species are called 'fissionable'; it probably
would be more rational to call such nuclei 'auto-fissionable', reserving the word
*
fissionable' to apply to all nuclei heavier than silver.

J Compare Fig. 45 of Chapter IX.
We assume here that the elastic scattering does not result in loss of energy (due to

recoil) because the above considerations are applicable only to very heavy elements.
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tically and inelastically, respectively, whereas the last term repre-
sents the v neutrons produced in the fission process. It can be

expected that after a comparatively few generations (i.e. iterations

of eq. (2)) the functions f(i\E) will converge to a definite relative

distribution in energy but such that the total number of neutrons per
unit volume in a certain generation is k times that in the preceding

generation,
f(i+l)(E) = /̂(i)(^ (3)

This defines the multiplication factor, k, which must be larger than
or equal to unity if the chain reaction is to be sustained. It has been
found empirically that, of all existing nuclear species, only U235

satisfies the above conditions, although one can build up other heavy
nuclei not existing in nature that also satisfy those conditions. Thus,
for example, another odd fissionable isotope of uranium may be
made by the transmutation

-> Th233+r 's

Th233 -^Pa233
(4)

Pa233 -i U233
,

and one can also produce a fissionable isotope of the new element

plutonium through the transmutations :

U239 - Np239
(5)

For samples of fissionable material of finite size a certain fraction

of the fission neutrons will escape through the surface, which, how-

ever, will not imperil the development of the chain if A; is substantially

larger than unity. One can introduce, in this case, the notion of the

'effective multiplication factor', k', which takes into account these

neutron losses. The value of k' will depend upon the geometrical
dimensions of the sample and will evidently drop below unity for

certain critical dimensions for which the neutron losses through the

surface become too large. These critical dimensions, known as the

'critical size', depend not only upon the properties of the material,

e.g. the value of k, but also upon the shape of the sample.
It goes without saying that in systems of finite size the neutron

distribution will be no longer uniform throughout the material due
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to the loss of neutrons through the surface, and the exact calculation

of the conditions for a reaction to be sustained becomes much more

complicated. It can be easily understood, however, that in the case

when k is not too close to unity the critical size will have linear

dimensions of the order of magnitude of the free path of neutrons.

It is easy to see that if the sample is of exactly critical size it is in

a state of indifferent equilibrium for which the neutron number

remains constant at any arbitrary value. Whereas for k' larger than

unity the neutron number will increase exponentially with time. In

fact, if r is the mean lifetime of a generation and NQ is the number of

neutrons at time zero, we obviously have :

N = NQ e^-
1^. (6)

In pure fissionable material the generation time, estimated as the

ratio of the free path to the velocity of fission neutrons: 4 cm.

(corresponding to the geometrical cross-section of a heavy nucleus)

divided by 109 cm./sec., becomes ^3xlO~8 sec. Thus, unless

k' differs from unity by less than a few millionth of a per cent.,

the reaction will develop into an explosion in a negligible fraction of

a second
;
it goes without saying that such mechanical precision in

preparing the sample of the fissionable material lies beyond practical

possibility.

The above considerations, however, are changed completely if one

remembers that a certain fraction of the fission neutrons are emitted

with a considerable delay (Chap. VI), since, in this case, the number

of prompt neutrons may be not enough to result in an exponentially

increasing reaction rate, whereas the delayed neutrons may take

considerable time to come into the picture. In the following table

we give the data pertaining to the various delayed neutrons emitted

from U235 and Pu239
.

The way in which the delayed neutrons help to reduce the rate of

the runaway chain reactions can be understood on the basis of the

following simple considerations. Let us assume, for simplicity, that

there is only one single group of delayed neutrons emitted with a

certain delay, 8, and representing a fraction, /?,
of the total number

of neutrons emitted per fission. If we take a sample that is approxi-

mately critical with respect to the total number of neutrons emitted,

it will be well under-critical with respect to the prompt neutrons

alone. During the period of time preceding the appearance of the
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TABLE XXVIf
Delayed neutron-groups from U235 and Pu2B9

fission products

delayed neutrons the reaction will proceed entirely on the basis of

the prompt neutrons. If the reaction is started with N neutrons, the

number of neutrons in the second, third, and subsequent generations
will be given, respectively, by N(1P), JV(1 )

2
,..., etc. The mul-

tiplication process is dying out and the total number of neutrons

produced in the burst is obviously

This burst will produce (N/p)p = N delayed neutrons which will be

emitted after the time-interval 8 which is much greater than the time-

interval required for the burst.

Suppose now that, for some reason, the multiplication k' pertaining
to all neutrons becomes larger than unity, in such a way, however,
that &'(! ft) < 1. In this case the total number of prompt neutrons

produced in the first burst will be

tf [*'(!-/?)]-
= -

n=0 1
(8)

This produces T~B delayed neutrons which in their turn will
1 fC-r-p

: which isproduce a second burst of the strength ^
---

(1 K-\-p) 1 A

stronger than the previous one. If k' is reasonably close to unity

(k' l+j8) the multiplication factor per step, &", is less than k'

t D. J. Hughes, J. Dabbs, A. Cahn, and D. Hall, Phys. Rev. (in the press, 1949);
F. de Hoffmann, B. T. Feld, ibid.

J It seems very likely from the inspection of this table that the delayed neutron
emitters are largely the same in the case of U235 and Pu289 fission.

3595.61 V
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without delayed neutrons and, what is much more important, the

interval between successive bursts is of the order of magnitude of

seconds instead of microseconds as in the prompt neutron chains, so

that, even for substantial deviations from the critical size, the

increase of the rate of reaction becomes very low. These simple

considerations can be generalized easily to the actual case in which

there are several groups of delayed neutrons of different mean

delay.

2. Moderated neutron chains

In the preceding section we have discussed the case of a fast chain

reaction in pure fissionable material where the neutrons produced in

one-fission process usually induce another fission while still moving
with high velocity. Remembering that the effective cross-section for

fission increases with decreasing velocity of the neutrons, one can

expect that it may be of some advantage (in the sense that a smaller

amount of fissionable material will be needed) to slow down the

original fission-neutrons to the thermal velocities before they have a

chance to collide with another fissionable nucleus. This can be

achieved by mixing the fissionable material with some other sub-

stance (the so-called moderator) of comparatively small atomic weight
and low neutron-absorptivity that would slow the neutrons down

efficiently without capturing them.

When a neutron undergoes an elastic collision with a nucleus of

atomic weight A it transfers some of its energy to the recoiling

nucleus. For scattering by the angle 6 (in the centre of gravity

system), the laws of conservation of energy and momentum lead to

eq. (5) of Chapter VIII for the relation between initial and final

energy of the neutron. Averaging the logarithm of the ratio of

energies over all angles, we obtain

A (9)v '

The quantity on the right-hand side is usually denoted by ,
and its

value for the light elements appears in Table XXVII. It follows, for

example, that in order to be slowed down from an initial energy of,

say, 1 M.e.v. to thermal energy (g e.v.) a neutron must undergo on

the average 17 collisions in hydrogen, 86 collisions in beryllium, 108

collisions in carbon, or 470 collisions in iron. Among the light



Chap. XI, 2 MODERATED NEUTRON CHAINS

TABLE XXVII

Energy-reduction factor for various Moderators

323

Hydrogen
Deuterium
Helium
Lithium

Beryllium
Boron
Carbon

Oxygen
Iron .

1-00

0-752

0-426

0-260

0-203

0-178

0-158

0-120

0-036

elements there are two nuclear species, Li and B, for which the

absorption cross-sections in the region of low energy (cf. eq. (11),

Chap. VIII) are much larger than the cross-sections for elastic scatter-

ing ;f it follows that these substances are completely excluded as

possible moderators. In the other light elements for which the

absorption cross-sections are very small as compared with the

scattering, the neutron can be slowed down into the region of thermal

energy provided the number of collisions required is not too large.

Since the cross-section for neutron absorption increases with increas-

ing atomic weight, in general, and the number of collisions neces-

sary to slow the fission neutrons down to thermal velocities also

increases the efficiency of moderators drops as the atomic weight
increases.

Let us now describe in greater detail the processes of slowing

down, diffusion, and subsequent capture of the neutrons in the

moderated chain reaction. Consider the stationary case in which

fast neutrons of given energy, EQ ,
are produced at a given rate and at

some point within the infinite moderator, and are gradually slowed

down by elastic collisions while diffusing away from that point. At a

certain distance from the source we shall have a mixture of neutrons

of all possible energies, since, owing to the statistical nature of the

slowing-down process, some of the neutrons will manage to cover that

distance with comparatively small energy-loss, whereas others may
be slowed down quite considerably. The situation is represented

schematically in Fig. 60, where the abscissa corresponds to the space
coordinate while the ordinate represents the energies of the individual

f This is due to the fact that, whereas in the case of the other light elements the

neutrons can be lost only through radiative capture, the absorption in Li and B is

due to a break-up of the compound nucleus which is a much more probable process
than that of the emission of a y-ray.
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neutrons. In a sense, we may speak of the 'diffusion of neutrons

along the energy-axis', with the difference that, while diffusion along
a space-axis involves motion in both directions, the energy-coordinate
of the neutron can only decrease. The number of neutrons within a
certain four-dimensional element formed by the spatial element, dv,

and the energy-interval (E, EdE), may change for two reasons:

(1) the difference in the number of neutrons of that energy entering
and leaving the space element, and (2) the difference between the

number ofneutrons of that space element that are slowed down 'into''

r . i
:

'

'

,' I

I I

E therm.- +~
|-

FIG. 60.

the energy-interval (E, EdE), and those that are slowed down
'out of it'.

We shall introduce the quantity, q(E, r), representing the number
of neutrons (per unit volume) at the coordinate position, r, that are

being slowed down (per unit time)
'

across
'

the energy-value, E. It is

clear that for the stationary case, the number (dqldE)(dE/dt) of
neutrons which come into the energy-interval A#, by virtue of the

slowing-down process, must be equal to the number of neutrons
of that energy which escape per unit volume element by virtue of

ordinary diffusion. According to the elementary theory of diffusion,
the latter number is given by (Av/3)V

2
2, where A is the free path and

v the velocity of the neutrons in question. Thus we can write for the

stationary state : . ,

We can now relate the energy, E, of the neutron to the length of time

elapsed since it was first emitted. In fact, since in each collision the
In of the neutron's enerffv decreases bv fof. an. (&}}. and sinon thft
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neutron suffers, on the average, v/\ collisions per second, we can write,

obviously:

Integrating, we obtain, Eo

t=l~d(lnE). (12)

It is customary to express this (mean) length of time necessary for

slowing the neutron from the original energy EQ to the energy E, in

units of length squared, multiplying it by Xv/3. The quantity:

In*) (13)

thus obtained is known as the 'age' of the neutron. Substituting
it into the original equation (10) we get:

-2- (">

which is the well-known Fermi's age equation.

In the derivation of the above formulae we have assumed that the

number of collisions experienced by a neutron is a large number, and
also that the mean free path between collisions does not vary much
with the energy of the neutron. These assumptions, which are

necessary for the treatment of the slowing down as a continuous

process, are fairly well fulfilled for comparatively heavy moderators,
such as carbon, but may lead to considerable errors in the case of

hydrogen or deuterium.

The eq. (14) has the solution

^ e-**1*7

which is readily checked by substitution, and for which the integral
over all space is just Q. Therefore Q represents the number of

neutrons emitted per second at the point r = 0. For a given modera-
tor the 'age' of neutrons that have just become thermal may be
calculated from eq. (13). Thus the mean distance from the source at

which neutrons become thermalized may be calculated from eq. (15),

and we shall take for this distance the value of r for which the

exponential becomes e-1
,
i.e. rth = 2^rih . Beyond this distance from

the source the neutrons diffuse in the ordinary way without further
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loss of energy. Properly speaking, fissions can be produced by
neutrons at any stage of their slowing-down process. Since, how-

ever, according to eq. (11) the time spent in the low-energy regions is

much greater than in the high-energy regions (factor E~*) and since,

in addition, the fission cross-section increases with decreasing energy,

an overwhelming fraction of the induced fissions will take place after

the neutrons have been thermalized. If the moderator has no strong

regions of absorption in the energy-range between fission energy and

thermal energy of neutrons, which must be true of any good modera-

tor, the multiplication factor for an infinite medium, k", will be given

essentially by
r^^L-, (ifi)

^/-T^abs

where all the cross-sections refer to thermal neutrons and <rab8 includes

the effect of the moderator as well as the absorption by the material

itself.t

In the development of the detailed theory of the moderated chain

reaction it is necessary to use the 'age theory' combined with the

theory of the diffusion of the thermalized neutrons. The situation is

considerably simplified in the case when the fissionable material and

the moderator are distributed homogeneously over a region (size of

sample) that is very large compared with the slowing-down distance,

rth ,
as determined above. Then one can, in good approximation,

describe the distribution of the neutron density, n, by means of the

usual differential equation for diffusion:

^n-(Nvo^B)n+Q(r) = ^, (17)

where the first term gives the familiar effect of non-uniform density,

with the diffusion coefficient, Xv/3 (A
= mean path and v an average

velocity of the neutrons). The second term represents the loss of

f Of particular practical importance is the possibility of a chain reaction in natural

uranium which contains only 07 per cent, of the 'fissionable' isotope, TJ 235 , mixed

with the 'non-fissionable
' U238 which possesses a strong neutron absorption lino. This

results in such a strong absorption of neutrons as they are being slowed down through
the resonance region that no moderator is good enough to raise the value of k" above

unity. As is well known, the situation can be considerably improved by distributing

the uranium in lumps, embedded in the moderator, so that most of the neutrons are

in pure moderator at the time they are going through the resonant-energy region.

However, the requirements on the moderator in such a system are so stringent that

only a few, exceptionally good ones, such as deuterium and carbon can be used as

moderators for natural uranium.
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neutrons per unit time due to an effective absorption per unit volume

of Na^s and Q(r) is the number of thermal neutrons created, per
unit time and unit volume, at the point r. Since the source ofthermal

neutrons, Q(r), is primarily fission neutrons that have been slowed

down, the value of Q(T) will depend upon the thermal neutron density
in a region, essentially of the radius rth , surrounding the point r. In

good approximation, the average over this region can be replaced by

Q(r) - (tfw/)n(r). (18)

and eq. (17) becomes a homogeneous partial differential equation for

n(r). For the stationary case, the right-hand side of (17) vanishes

and the equation becomes a characteristic value problem that has to

be solved subject to the boundary conditions appropriate to the shape
and size of the sample. In general, the solution of the equation for

which n is everywhere positive will determine a certain minimum size

for this system, and this is the critical size. For large values of k"

(cf. eq. (16)) the critical size will have linear dimensions of the order

of a few slowing-down radii, rth , whereas for small values of k" the

critical size becomes very large, as in the case of the natural uranium

'piles'.



APPENDIX I

HEAVY AND LIGHT MESONS
IT has been discovered by Lattes, Muirhead, Occhialini, and Powellf that, in

addition to the ordinary, cosmic ray meson of mass ^ 200 electron masses

(called the /n-meson) there exists a heavier meson which has been called the
7r-meson. Their experimental technique involves the development and analysis
of tracks caused by the mesons in photographic emulsions. Their analyses
show (1) that the 7r-meson has a mass 313^ 16m (m is the electron mass), and
(2) the 7r-meson disintegrates into a charged meson, of mass ~ 200m and witli

kinetic energy about 4 mev, thus indicating the simultaneous emission of a
neutral meson of mass /-^ 90m (the /u,-meson). Presumably, the daughter
meson of mass 200 is the cosmic ray, //.-meson. This discovery is corroborated

by the production of 7r-mesons, 313m, by high-energy (380 mev) a-bombard-
ment with the Berkeley cyclotron.} The cyclotron bombardment appears to

produce the mesons of mass 200m simultaneously with the heavier ones. This
is apparently due to the decay of 7r-mesons stopped in the frame of the

cyclotron. Both the TT- and the /x-mesons occur with either sign of electric

charge.
The significance of the various kinds of mesons relative to the theory of

atomic nuclei is unknown as yet, but current conjecture runs as follows: the
TT-mesons are supposed to be the field particles in Yukawa's theory of nuclear

forces and thus to interact strongly with nucleons ; if this meson obeys Bose
statistics and if there is an electrically neutral state for it (TT) this supposition
fits very well with the discovery by Breit and others that the nuclear

scattering of protons by protons can bo accounted for by a Yukawa type
potential if produced by a meson of mass 326m. On the other hand, the

jit-

mesons are supposed to have practically no interaction with nucleons in order

to account for the great penetrating power of such mesons in the cosmic radia-

tion. In fact Marshak and Bethe|| anticipated the discovery of the 7r-meson by
proposing just such a relationship between two kinds of mesons on theoretical

grounds. The primary cosmic radiation (containing energetic nucleons) quickly

produces 7r-mesons'upon entering the atmosphere through the action of their

nuclear fields ; these 7r-mesons then decay into /x-mesons which can penetrate
the atmosphere with ease.

t Nature, 159 (1947), 694.

j E. Gardner and C. M. G. Lattes, Science, 107 (1948).
L. E. Hoisington, S. S. Share and G. Breit, Phya. Rev. 56 (1939), 884.

||
R. E. Marshak and H. A. Bethe, Phya. Rev. 72 (1947), 506. See also: C. M. G.

Lattes, G. P. S. Occhialini, and C. F. Powell, Nature, 160 (1947), 453, 486 ; Proc. Phya.
Soc. 61 (1948), 173; V. Goldschmidt, D. T. King, H. Muirhead, and D. M. Ritson,
ibid. 61 (1948), 183.
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FURTHER DEVELOPMENTS IN jS-DECAY
RECENT refinements and improvements in measuring the energy-distribution
in the continuous j8-spectra have raised new questions regarding the exact

form of the theory. In particular, the positron and the electron spectra
emitted by Cu84 have been measured quite precisely down to kinetic energies

of 10 k.e.v. by Cook and Langer.f It appears that the upper part of the

spectra (from 270 k.e.v. to 657 k.e.v. for the positrons, and from 190 k.o.v.

to 571 k.e.v. for the electrons) are accounted for very well by the Fermi theory.

The lower parts of those spectra, however, do not fit well with the theory, but

rather more jS-particles (of both signs) are found than aro predicted. Further,

the positrons are in greater excess than the electrons (at the same energy) and
the ratio increases as the energy decreases. This confirms a previous measure-

ment of the ratio by Backus.^ The significance of these new measurements is

not known, at present, but precise data of this typo may be expected to have

an important part in the final construction of the theory.
A second source of information regarding j8-spectra that should assist in

deciding upon the theory of /J-decay is the angular correlation between the

direction of the emitted electron and the direction of the recoil nucleus.

Even in the allowed transitions which may be considered as originating through
interactions with iS-waves there will be an angular correlation between

electron and neutrino waves determined through the *

small' components of

these waves. If 6 is the angle included between the paths of electron and

neutrino, p is the momentum and E the energy of the electron, the predicted
correlation factors for the various theories are

Scalar 1 (cp/E)cos B

Polar Vector 1+ (cp/E)cos 6

Tensor 1+ $(cp/E)cos 6

Axial Vector 1 l(cp/E)cos 6

Pseudoscalar 1 (cp/E)coa

From these, the expected recoil of the nuclei can bo determined. The corre-

sponding factors for the forbidden transitions have been determined.|| Experi-
ments for the determination of these factors are currently in progress.

t C. S. Cook and L. M. Langer, Phys. Rev. 73 (1948), 601.

j J. Backus, ibid. 68 (1945), 59.

F. Bloch and C. Meller, Nature, 136 (1935), 912.

||
D. R. Hamilton, Phys. Rev. 71 (1947), 456.
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MASS OF THE NEUTRINO
A BOUGH indication of the shape of the continuous j8-spectrum ofH3 is given
by the experiments of C. E. Nielsen,t who has counted the number of ions in

the cloud-chamber tracks produced by tritium-containing water vapour. The
results of these measurements are compared in Fig. 61 with the theoretical

curves calculated for the neutrino masses : p,
= and /z

=-=
-,%.

In spite of a large experimental uncertainty arising from the small total

number of measured tracks, the results fit much better with the vanishing or,

at least, extremely small neutrino mass.

t C. E. Niolaen, Phya. Rev. (in the press, 1949).
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NEW CALCULATIONS OF SPONTANEOUS FISSION

A DETAILED mathematical study of the fission process in the nuclear droplet-
model was carried out recently by Frankel and Metropolisf who used for this

purpose the electronic computer known as the 'Eniac'. Assuming the value

1*5 for tho ratio of coulomb energy to the surface tension energy in the U235

nucleus (this value, usually denoted by 2o?, was originally calculated by Bohr
and Wheeler) they have obtained the values 2 X 1020 sec."1 for the vibration

frequency of that nucleus, and the expression G -~ 10~7 "85A.E7 for the penetra-

bility of tho potential barrier (here AE is tho energy-deficit at the saddle point
in M.e.v.). The mean life of the U238-nucleus with respect to spontaneous
iission comes out to be 1026

years, in good agreement with the observed figure.

t S. Frankel and N. Metropolis, ibid. 72 (1947), 914.
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NUCLEAR REACTIONS AT VERY HIGH ENERGY
THE 184-inch synchro-cyclotron at tho Berkeley Radiation Laboratory has

been operating at such a frequency as to produce nuclear beams in which the

energy is about 95 M.e.v. per nucleon (deuterons at 190 M.e.v., or a-particles

at 380 M.e.v.). The production of mesons from the a-particles beam has been

discussed in Appendix I. When tho deuteron beam is directed upon a heavy
target, mesons do not appear, but a narrow beam of very high energy-neutrons

emerges from the target. The angular spread of the neutron beam averages
about 6 around tho direction of the incident deuteron beam. This spread in

angle is just what one would obtain if the proton wero suddenly removed from

a deuteron (of energyEd -- 190 M.e.v.) without disturbing the neutron. When
neutron and proton are outside their range of forces in the ground state of the

deuteron the average kinetic energy of the neutron is e (e = 2-18 M.e.v., the

binding energy ofH2
). Hence, if the proton is suddenly removed, the trajectory

of the neutronmay be expected to lie at an average angle, *J(/1 90 ) 6, relative

to the trajectories of the deuterons. The mechanism by which the proton is

suddenly removed from the deuteron is, of course, the collision of the proton
with a target nucleus while the neutron escapes collision. This process is called

stripping and has been studied in detail by Sorber.f The interpretation given
leads also to tho observed spread in energy of the neutrons, which should be

En
= l(E\)* ~ 9520 M.e.v.

Serber shows that the cross-section for stripping should be, approximately,

TnlR

where R is tho effective radius of the target nucleus. Tho same cross-section

applies to the production of protons (when neutron strikes and proton does

not) but the emergent protons are caught in the magnetic field of tho cyclotron

and have to be detected inside the machine. The cross-section for tho process

in which neither neutron nor proton reaches the nucleus but the deuteron is

simply dissociated by the Coulomb field is considerably smaller.

The neutrons produced by 'stripping' have been used to study nuclear

reactions and scattering. For example, the 95 20 M.e.v. neutrons have been

usedf to determine nuclear radii by the method cited in Chapter I, as applied

by Sherr for 25 M.e.v. neutrons. The results are that the effective radii for

95 M.e.v. neutrons are a little smaller than for 25 M.e.v. neutrons among the

heavy nuclei and considerably smaller among the light nuclei. This indicates

that nuclear matter becomes somewhat transparent as tho energy of the

neutrons is increased. In other words, the cross-section for collisions between

nucleons decreases with the energy of collision. Thus, nuclear reactions

produced by the neutrons in very light nuclei should be caused mostly by a

single collision in the nucleus. The activation of C12 by (n, 2n)C11
supports

t R. Serber, Phys. Rev. 72 (1947), 1008.

j Cork, McMillan, Peterson, and Sewell, unpublished.
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this hypothesis because the cross-section increases with energy up to 30 M.e.v.

and then remains fairly constant up to 90 M.e.v. If, on the other hand, the

concept of the compound nucleus were applicable, one would expect that at

the higher energies the compound, C13
*, nucleus could disintegrate in a large

variety of ways, thus reducing the probability of formation of C11
through

competition.
The average momentum transfer in a single collision between a very fast

neutron and a target neutron should bo of the order of fi/a, where a is the range
of nuclear forces. Actually, since nuclei are degenerate quantum mechanical

systems, the recoiling nucleon must have a higher energy in order to reach

empty orbits in the nucleus and Serberf estimates that the average energy
of recoil is 25 M.e.v. The free path of the 95 M.e.v. neutron is also estimated

at 4x 10~13 cm. in the nuclear fluid. Consequently, the effect of a collision

with a very high energy-neutron depends upon just where the bombarding
particle strikes the nucleus. If it strikes near the edge (of the projected area)
the probability is great that the single recoiling nucleon escapes or, if it recoils

towards the centre, it transmits 25 M.e.v. excitation to the whole nucleus.

The latter then disintegrates according to the *

evaporation* model discussed

in Chapter IX. If the bombarding particle strikes near the centre it may make
several collisions and result in an excited nucleus of correspondingly higher

temperature. Now, the production of a particular type of disintegration may
be expected to be most probable at a certain temperature, but the temperature
may range from that corresponding to 25 M.o.v. excitation to that correspond-

ing to the full energy of the neutron. The probability of attaining a certain

temperature will not change rapidly as the neutron energy is increased, as

a result of this mechanism, and in this way one can account for the observation

that the yields of particular products from the bombardment of heavy nuclei

do not change very much as the neutron energy is increased.

t B. Serbor, Phys. Rev. 72 (1947), 1114.
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THE ORIGIN OF ELEMENTS
IN their recent work, Alpher, Bethe, and Gamowf arrive at a satisfactory

explanation of the observed abundance curve by integrating the system
of equations (83) with <r$'s taken to be equal to the measured values of

capture-cross-sections for fast neutrons. According to the latest measurements

by Hughes, J those cross-sections increase exponentially by a factor of about

one thousand whon atomic weight increases up to one hundred, and remain

more or less constant for heavier elements. The results of computations taking
into account these capture-cross-sections are shown in Fig. 62. For very

large p&t the process reaches the saturation and the number of various nuclei

becomes inversely proportional to tho corresponding capture-cross-sections,

whereas for very small p&t heavier nuclei do not have time to build up to the

saturation point. We see from the figure that for

p&t = 1-3 X 10- fl-^ sec. (nn A* = 0-8 X 1018-^? cm.3 \
n cm.3

the calculated curve stands in a very good agreement with the observational

data. The obtained agreement is amplified by the fact that the observed

abundances show the abnormally high values for the isotopes containing the

completed shells of neutrons or protons; in fact, it is known that such nuclei

possess abnormally small capture-cross-sections which would cause the accumu-

lation of the material at these particular atomic weights. Since the building-up

process must have been accomplished within a time period comparable with

the decay period of neutrons, we have A2 ~ 30 min. ^ 103
sec., from which

follows that during that period tho density of matter must have boon of tho

order of magnitude 10~9
g./cm.

3 On the other hand, since the temperature
must have been of the order of 109 K., the mass-density of radiation aT*/c

2

was comparable with the density of water. Thus we come to an important
conclusion that at that time the expansion of the Universe was governed entirely

by radiation and not by matter. In this case tho rolativistic formula for tho

expansion can be written in tho form:

*_ /(tao^dt~J\ 3 c

whore I is an arbitrary distance in the expanding space, and the constant term

containing the radius of curvature is neglected because of the high density

value. Remembering that forthe adiabatic expansion ofthe radiation: T~ 1 /I,

we can integrate (1) into the form:

3c2 \ 1 2-14 x 1010 __ /0 .

1 r=- JV. [&)
VbnQal ti ti

t R. A. Alpher, H. A. Betho, and G. Gamow, Phys. Rev. 73, 803 (1948), compare
also: R. A. Alpher, ibid. 74, 1677 (1948); and R. A. Alphor and R. C. Herman, ibid.

74, 1737 (1948).

i D. T. Hughes, ibid. 70, 106A (1946), compare also: M. G. Mescheryakov, C.R.

Acad. Sci., USSR,48, 555 (1945); J. H. E. Griffitha, Proc. Roy. Soc. 170, 513 (1939);

H. von Halban and L. Kowarski, Nature, 142, 392 (1938).
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For the mass-density of radiation we have:

3 1 4-5 xlO5
g.

327TG t* t* cm. J

335

(3)

"0 50 100 Bo'32I 150 200 \ 250
ATOMIC WEIGHT 82 PROTONS

FIG. 62.

For the density of matter wo must evidently write:

whore p is to be determined from the conditions ofnuclear building-up process.
It can bo done in the simplest way by considering the building-up of deuterons

by proton-neutron collisions. Writing X(t) for the concentration of neutrons
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(with X(Q) =1), and Y(t) for the concentration of protons (with F(0) = 0)

we obtain the equations:

dX , XY dY
,

, XY ._.

(6)IF
---

S d
-

,

where v is the thermal velocity and a the capture-cross-section which (for the

energies in question) can be sufficiently accurately represented by the formula:

= 2 19 M.e.v. being the binding energy of the deuteron. Expressing Fand

through the temperature, and using (2). wo can rewrite (5) as:

dX _ XY dY
^_ --

,

r;-i, (7)

. , 7r

where T = A* and =- 5211 -* (8)

In order that the equation (7) should yield Y ^ 0-5 for r -> oo (since hydrogen
is known to form about 50 per cent, of all matter) tho coefficient a must be

sot equal to 0-5. Assuming wo find from equation (8) that p -= 7-2 X 10~3

which fixes the dependence of material density on the age of the Universe.

It was shown by Gamowf that tho knowledge of the temperature and

density in expanding Universe leads to very interesting cosmogonical conse-

quences. In fact, once we have p^ and pmat as the functions of time we can

follow the physical processes taking place during the further expansion of

the Universe, and in particular calculate the masses and sizes of the condensa-

tions of that primordial gas which must have originated sooner or later

according to Jeans 's principle of gravitational instability. Jeans 's classical

formulaJ gives the diameter D of tho condensations which will be formed in

the gas of the temperature T and density p in the form:

D* = ^%-tkT. (9)
9ra#p

Using the expressions (2) and (4) we get:

231/857/4^6/4^5^5/4
(10)

^

(where a was expressed through other fundamental constants). It is interesting

to notice that the time-factor cancels out in the calculation of M, so that the

mass of the condensations come out the same, independent of the epoch when

they were formed. It seems, however, reasonable to assume that the effect

of gravitational instability became important only when the mass-density of

radiation became comparable with the density of matter, since it is hard to

imagine a 'gravitational condensation of pure radiation*. Using (3) and (4),

we find that prad - pmat = 3 ' 10
~26

;~1
for * = 3<9 x 1Q15 sec ' = 1<3 x 108 years'

at which point T = 340 K. For this value of t we obtain:

t G. Gamow, Phys. Rev., 15 Aug. 1948; Nature, 162, 680 (1948).

t J. Jeans, Astronomy and Cosmogony (Cambridge University Press, 1929).
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Substituting numerical values we have:

M 5'5x 1040 g. = 2-7 x 107 sun-masses

D = 1-3 X 1022 cm. = 13,000 light-years (12)

which must represent the masses and the diameters of the original galaxies.

The above given estimate of galactic masses falls short by a factor of about
01 e hundred from the mass-values ofgalaxies obtained from astronomical data.

But it must be remembered that the simple Jeans 's formula used in these

calculations does not take into account the effect of radiation-pressure, and
also is applicable only to the gravitational condensations in the non-expanding

pace. The effect of additional radiation pressure (which is quite important
according to the previous considerations) and the tearing force of expansion
will lead to considerably larger condensation masses. The detailed study of

this question will require, however, the extension ofJoans 's classical arguments
for the case of gas and radiation mixture in the expanding space. At the

present stage one should be satisfied with the fact that through such com-

paratively simple and rather natural considerations the masses and sizes

comparable to those of stellar galaxies can be expressed in terms offundamental
constants, and the basic quantities of nuclear physics.

3595.61
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ments, chemical.

Collisions, nuclear, 207 ff. See also Scat-

tering, and Reactions.

Compound nucleus, 222, 234, 249 ff., 255.

Conversion, internal, 178 ff.

Density, nuclear, 11, 53, 83.

Deuteron, ground state of, 42 ff., 50 ff.

photoelectric effect on, 260.

quadrupole moment of, 22, 49 ff.

reactions induced by, 257 ff.

stripping of, 332.

symmetry in, 65.

virtual state of, 45, 47.

Disintegration, alpha, 171.

effect of spin change on, 174ff., 204.

excitation left by, 197 ff.

fine structure in, 176, 199.

formula for probability of, 10, 173.

long-range rays, 191.

radii from, 10, 176.

Samarium, 176.
. theory of, 156 ff.

Disintegration, beta, 5 ff., 92, 99, 112 ff.

angular correlation in, 329.

effect of coulomb field on, 118, 122,

138.

elementary theory of, 118 ff.

field theories of, 81, 128 ff.

forbidden, 118, 136 ff., 144.

half-lives of, 116 ff., 121, 139 ff.

interaction constant, 57, 119, 127,

132.

Kurie plot, 120.

meson theory of, 63, 119, 130 ff.

nuclear matrix elements for, 119,

123 ff., 133 ff., 140 ff.

ratio to K-capture, 329.

selection rules, 89, 124 ff.

Disintegration, compound nucleus, 242 ff .

meson, 7, 61, 328.

spontaneous, 146 ff.

Dispersion formula, 223, 249 ff.

Electromagnetic? radiation from nuclei,
178 ff. See Radiation.

Elementary particles, 8. See Particles.

Elements, chemical, 1 ff.

abundance of, 304, 334.

age of, 304.

Elements, chemical (cont.)

origin of, 302 ff., 336.

Energy, binding, 22 ff., 25, 53.

coulomb effect on, 28, 97 ff., 153.

effect of symmetry on, 83 ff.

isobars, 91.

nucleons in nuclei, 84, 93 ff.

radioactive series, 30.

surface effect on, 28, 94, 153.

complex eigenvalues, 167, 250.

levels, see Levels.

production in stars, 264 ff.

Evaporation, neutrons from nuclei, 245,
333.

Exclusion principle, 29, 87.

Fission, 28, 99, 116, 147, 209, 318 ff.

fragments from, 148.

spontaneous, 147, 177, 331.

theory of, 150 ff., 177.

width, 248.

Forces, Bartlott, 66.

between nucleons, 32 ff., 42 ff.

coulomb, effect on stability, 28, 99,

151.

effect of symmetry on, 63, 86, 88.

exchange, 55, 64, 85 ff.

Heisonberg, 66.

Majorana, 65, 85 ff.

non-central, 49 ff .

ordinary, 54, 56, 69, 85.

saturation of, 54, 69, 81, 85 ff., 91.

short-range, 9.

spin-dependence of, 43, 95 ff., 97.

spin-orbit, 109.

tensor, 49 ff., 104.

velocity dependence of, 54, 85, 106.

Wigner, 54.

Forces, theories of nuclear, 53 ff.

electromagnetic, 74.

electron-neutrino, 57, 81.

electron-pair, 59, 81.

meson, 49, 63 ff., 60.

strong coupling, 81.

weak coupling, 81.

Galaxies, formation of great, 336.

Gamma radiation, see Radiation.
Guillotine factor, 270.

Interaction, see Forces, see also Particles.

Interference of waves, 219, 252.

Isobars, 92, 99, 144.
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Tsomorism, 193, 190.

Isotope displacement, spectral lines, 18 ft'.

Isotopes, 2.

K-capture, 115.

ratio of positron emission, 329.

theory of, 123, 129.

Level width, 225.

dominant, 255.

effect of potential barriers on, 226,

246, 251.

v- fission, 248.

integral over, 250.

neutron, 223, 244.

partial, 243.

radiation, 189, 192, 246, 259.

Levels of excitation, 230 ff.

compound nucleus, 222, 234, 242 ff.

density of, 222, 230, 237 ff., 243.

evidence from alpha-disintegration,
197 ff.

beta-disintegration, 116, 198.
- - inelastic scattering, 231.

'metastablo states, 193 ff.

proton groups, 230 ff.

resonant reactions, 235.

integrals over, 245, 247.

isomeric states, 193, 196.

mean spacing of, 243.

rotational, 232.
*- short-lived isomors, 1 97.

very high, 334.

vibrational, 233.

widths, see Level width.

Liquid drop model, 11, 28.

excitation of, 233.

fission of, 151.

radiation from, 190, 193.

Magic numbers, 31, 101, 148.

Magneton, nuclear, 13.

Mass, atomic, 5, 22 ff., 25.

defect, 23 ff.

doublet method, 24.

spoctroscopy, 24, 26.

unit, 6, 24.

See also Energy, binding.
Mesons, 6, 82, 321.

absorption, 61.

charged, 63 ff., 69, 80.

discovery, 61, 328.

disintegration, 7, 61, 321.

electromagnetic interaction of, 61, 74.

^formalism of theory of, 63 ff .

heavy (TT), 321.

Moller-Rosenfeld theory, 68.

Mesons (cont.)

neutral, 62, 69.

pair theories, 80.

pseudoscalar, 66 ff., 80.

Schwinger's theory, 68.

spin, 63, 66.

symmetrical theory, 69.

theory of beta-decay, 63, 119, 130 ff.

theory of tensor forces, 49, 68.

Metastablo states, 193 ff.

Models, nuclear structure, 83 ff.

alpha-particle, 102 ff., 107

independent particle, 100 ff., 107.

liquid drop, 11, 28, 190, 233.

resonating group, 105

---Rutherford, 3.

statistical, 83 ff.

Moment, mesic dipole, 49.

Moments, magnetic, 11 ff., 17, 106 ff.

field theory of, 64.

isotopic pairs, 108.

magnetic induction method, 16.

molecular beam methods, 14 ff.

neutron, 2 17, proton, 14,triton, 107.

Moments, quadrupole, 20 ff., 17.
. definition of, 21, 22.

deuteron, 22, 49, 50.

heavy nuclei, 110.

Neutrino, 6, 114.

mass of, 135, 330.

spin of, 7, 114.

Neutron, 4.

absorption of, 214, 247 ff., 254.

age equation, 325.

beams, 207 ff.

capture by protons, 263.

chain reactions, 317 ff., moderated,
322 ff.

delayed, 150, 320 ff.

diffraction, 11, 27, 210 ff.

diffusion, 324, 326.

1/v-law, 215, 254.

multiplication, 319.

polarization, 215.

reactions, 258.

reflection, 212 ff.

refraction by solids, 213.

resonant scattering by He4
, 227 ff.

scattering from para-hydrogen, 47 ff.,

211.

slowing down, 209, 322.

spin, 48.

thermal, 209, 322.

velocity selection, 213.

Opacity coefficient (stars), 269.
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Packing fraction, 27.

Pair formation, internal, 186 ff.

Particles, elementary, 8.

interactions among, 67 ff., 74 ff.

quantum theory of, 69 if.

Partition quantum numbers, 89.

Penetration of potential barriers, 150,

156 ff.

Phase shift, 37 ff., 219 ff.

Photoeffect, nuclear, 209, 259 ff.

Pile, 209, 327.

Plutonium, 171, 176, 319.

Positron, theory, 72.

beta-decay, 115, 122.

Proton, 4.

capture, 236.

combination, in stars, 274.

groups (velocity), 230, 234.

spin, 12.

Quantization of wave equations, 74 ff.,

128.

Radiation from nuclei, electromagnetic,
178 ff.

internal conversion of, 178 ff.

selection rules for, 189 ff., 193 ff.

transition probability, 189 ff., 246,

259.

Radii ofnuclei, 8 ff., 175 ff., 203, 210, 332.

effect of angular momenta, 202.

from coulomb energy, 93.

Radioactivity, artificial, 116.

see also Disintegration, Radiation.

Radiofroquency spectra, 14.

Reactions, nuclear, 207, 230 ff.

absorption of slow neutrons, 214, 248.

angular distribution from, 251 ff.

chain, 317 ff.

cyclic, 273.

deutoron induced, 230, 257.

dispersion formula, 223, 249 ff.

energy balance in, 207.

evaporation model, 245, 333.

high energy, 330.

level widths, see Level.

neutron induced, 258.

photoneutron, 209, 259 ff.

resonant, 234, 251, 253.

selection rules, 256.

theory of, 241 ff.

thermonuclear, 254, 264 ff.

Relativity, invariance of interactions,
78 ff.

mass-energy relation, 23.

Saturation, nuclear forces, 64, 69, 81, 85,

86, 91.

Scattering, alpha-particles, 8, 10, 157,

249.

angular dependence, 219 ff.

coulomb field, 34 ff., 220, 225.

effect of chemical binding, 211 ff.

elastic, 217 ff.

inelastic, 231, 242.

length, 211. See also 46 ff.

matrix, 39.

proton on proton, 31 ff., 39 ff., 328.

resonant, 221, 223, 227, 249.

short-range forces, 9, 31 ff., 219 ff.

slow neutron on hydrogen, 47 ff., 211.

spin-dependence, 220, 252.

spin-orbit effect, 228.

Shape of nuclei, 18 ff.

Shells, in nuclear structure, 29 ff., 85,

96, 98, 101, 148 ff.

Spin, isotopic, 65, 88 ff.

nuclear, 11 ff., 17, 106 ff.

states of deuteron, 65.

Spin-dependence, see Forces.

Stars (celestial), carbon cycle in, 278 ff.

chemical composition of, 272.

convection in, 271.

energy production in, 264 ff.

equilibrium conditions for, 268 ff .

main sequence, 283.

point-source model, 271.

rod giants, 284 ff .

shell-source model, 280.

supornovae, 294 ff.

superstability of, 288.

white dwarfs, 284, 289.

Statistical theory ofexcited states, 237 ff.

Statistical theory of nuclei, stable, 83 ff .

Structure, nuclear, 83 ff. See also Models.

Supermultiplets, 89.

Symmetric hamiltonian, 84, 126.

Thermonuclear reactions, 254, 264 ff.

Transformation, nuclear, 230 ff. See

also Reactions.

Universe, expanding, 307, 336.

Urea process, 294 ff.
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