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Abstract

Exposure to hypoxia appears to depress appetite and energy intake, however the mechanisms
are not fully understood. The aim of this review was to determine the magnitude of changes in
hunger and energy intake in hypoxic compared with normoxic environments, and establish any
alterations in appetite-related hormone concentrations. PubMed and The Cochrane Library as
well as MEDLINE, SPORTDiscus, PsycINFO and CINAHL, via EBSCOhost, were searched
through 1% April 2017 for studies that evaluated hunger, energy intake and/or appetite-related
hormones in normoxia and during hypoxic exposure in a within-measures design. A total of 28
studies (comprising 54 fasted and 22 postprandial comparisons) were included. A random-
effects meta-analysis was performed to establish standardised mean difference (SMD) with
95% confidence intervals. Hypoxic exposure resulted in a trivial but significant decrease in
postprandial hunger scores (SMD: -0.15, 95% CI: -0.29 to -0.01; n=14; p=0.043) and a
moderate decrease in energy intake (SMD: -0.50, 95% CI: -0.85 to -0.15; n=8; p=0.006).
Hypoxic exposure resulted in a decrease (albeit trivial) in postprandial acylated ghrelin
concentrations (SMD: -0.16, 95% CI: -0.25 to -0.08; n=7; p<0.0005), and a moderate increase
in fasted insulin concentrations (SMD: 0.41, 95% CI: 0.17 to 0.65; n=34; p=0.001). Meta-
regression revealed a decrease in postprandial acylated ghrelin concentrations (p=0.010) and
an increase in fasted insulin concentrations (p=0.020) as hypoxic severity increased. Hypoxic
exposure reduces hunger and energy intake, which may be mediated by decreased circulating
concentrations of acylated ghrelin and elevated insulin concentrations. PROSPERO

registration number: CRD42015017231.
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Introduction

Chronic exposure to hypoxia is associated with a decrease in body mass (Pulfrey & Jones,
1996; Rose et al., 1988; Sergi et al., 2010; Zaccagni et al., 2014), with as much as 67% of body
mass losses coming from reductions in fat-free mass (Rose et al., 1988). Such losses of lean
mass at altitude are likely to have deleterious consequences for altitude sojourners by impairing
physical capabilities (Sergi et al., 2010) and suppressing immune function (Mazzeo, 2005).
These changes in body mass and composition appear to be the result of a chronic negative
energy balance due to reductions in appetite and ad-/ibitum energy intake (Aeberli et al., 2013;
Matu et al., 2017a; Wasse et al., 2012), in combination with potential increases in resting
energy expenditure (Butterfield et al., 1992; Matu et al., 2017a), compared with sea level.
Developing a better understanding of the changes in appetite and energy intake that occur

during hypoxic exposure is vital in designing interventions to minimise energy deficits.

Despite a substantial amount of recent research (Debevec, 2017), the mechanisms
underlying reductions in appetite during hypoxic exposure are not well understood.
Historically, studies have attributed the loss of appetite to acute mountain sickness (AMS),
however this is unlikely to be the sole cause, as symptoms of anorexia persist when AMS has
subsided (Tschop & Morrison, 2001), and others have found appetite suppression in individuals
without symptoms of AMS (Matu et al.,, 2017a). Appetite is regulated, in part, by the
neuroendocrine system (Murphy & Bloom, 2006), and multiple hormones have been
implicated as mediators of hunger and satiety in hypoxia (Bailey et al., 2015; Debevec et al.,
2014a; Debevec et al., 2016; Matu et al., 2017a; Sierra-Johnson et al., 2008; Shulka et al., 2005;
Tschop et al., 1998). Acylated ghrelin has been hypothesized to act physiologically to signal
hunger and initiate eating, and has received growing attention in hypoxic research during recent
years (Bailey et al., 2015; Matu et al., 2017a; Morishima & Goto, 2016; Wasse et al., 2012).
Current evidence suggests that appetite and acylated ghrelin are concomitantly suppressed
during exposure to high, but not moderate, simulated altitude, which suggests a potential
mediating role of this hormone in altitude-induced anorexia (Matu et al., 2017a). However, due
to the complex chemical preparation required for accurate acylated ghrelin measurements
(Hosoda et al., 2004), total ghrelin concentrations have been more commonly measured in
response to hypoxic exposure and the findings remain equivocal (Benso et al., 2007; Debevec
et al., 2014a; Debevec et al., 2016; Mekjavic et al., 2016; Riedl et al., 2012; Riepl et al., 2012;
Shulka et al., 2005).
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The role of circulating leptin concentrations as a mediator of appetite and energy intake
changes at altitude has been a topic of great interest and controversy. Leptin is an adipocytokine
that has been proposed to expresses regulatory physiological effects on appetite and
metabolism (Klok et al., 2007). It is well known that exposure to altitude stimulates hypoxia-
inducible factor 1 (HIF-1) (Semenza, 2012). HIF-1 can transactivate the human leptin gene
promoter, potentially increasing circulating leptin concentrations (Grosfeld et al., 2002). On
the contrary, altitude exposure is often associated with a significant loss of adiposity due to
increased energy expenditure and/or decreased energy intake (Rose et al., 1988; Zaccagni et
al., 2014). This would therefore reduce leptin expression in adipose tissue. Consequently, the
effects of hypoxic exposure on leptin concentrations remain ambiguous (Sierra-Johnson et al.,
2008), and several confounding factors may regulate leptin concentrations in hypoxia, such as
the completion of varying amounts of physical activity (Yu et al., 2017), as well as the duration
and severity of hypoxic exposure. Other hormones which have been investigated in relation to
appetite suppression during hypoxic exposure include glucagon-like peptide-1 (GLP-1) (Bailey
et al., 2004; Bailey et al., 2015; Debevec et al., 2014a; Debevec et al., 2016; Matu et al., 2017a;
Mekjavic et al., 2016; Morishima & Goto, 2016; Snyder et al., 2008), pancreatic polypeptide
(PP) (Matu et al., 2017a; Riepl et al., 2012), peptide YY (PYY) (Bailey et al., 2015; Debevec
et al., 2014a; Debevec et al., 2016; Mekjavic et al., 2016; Wasse et al., 2012), cholecystokinin
(CCK) (Aeberli et al., 2013; Riepl et al., 2012) and insulin (Debevec et al., 2014a; Matu et al.,
2017a; Mekjavic et al., 2016). The results of these studies are equivocal, possibly due to a wide

variety of methodologies employed.

A clear understanding of the dose-response and underlying regulation of hypoxia-
induced appetite suppression in humans requires the equivocal results of previous studies to be
explained. In an attempt to resolve these discrepancies, our objective was to conduct a
systematic review and meta-analysis of within-measures studies which have investigated the
effect of hypoxia on hunger, energy intake and/or hormone concentrations implicated in
appetite regulation. Using post-hoc subgroup analyses and meta-regression, we also aimed to

identify any study characteristics which could help to explain the observed results.

Methods

This systematic review and meta-analysis was performed in accordance with the PRISMA

(Preferred Reporting Items for Systematic Review and Meta-analyses) guidelines (Liberati et
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al., 2009) and was prospectively registered with the PROSPERO database
(CRD42015017231).

Literature Search

PubMed and The Cochrane Library as well as MEDLINE, SPORTDiscus, PsycINFO and
CINAHL, via EBSCOhost, were searched from 3™ March 2015 through 1% April 2017.
Keyword searchers were performed for: ‘altitude’, ‘hypoxia’, ‘hypoxic’, ‘mountaineering’,
‘appetite’, ‘appetite hormones’, ‘ghrelin’, ‘acylated ghrelin’, ‘glp-1°, ‘glucagon like peptide-
1’, ‘peptide YY’, ‘PYY’, ‘leptin’, ‘pancreatic polypeptide’, ‘insulin’, ‘hunger’, ‘satiety’,
‘energy intake’, ‘food intake’, ‘energy balance’ (details of the search strategy are outlined in
the Supplementary Material). This gave a total of 68 combinations. Reference lists of eligible
studies and review articles were also searched. If only the abstract or partial data were published
then the author was contacted for the full data set. No language or date of publication

restrictions were applied during the searches.

Inclusion Criteria

For inclusion, studies were required to meet the following criteria: participants in the studies
were between 18 and 65 years old, non-smokers, not pregnant and had no history of diabetes,
gastrointestinal, inflammatory, metabolic, cardiovascular, neurological or psychological
disease(s). Studies were included if they were published in peer-review journals or were
available as published conference proceedings, theses or dissertations, to minimise the effect

of any potential publication bias.

All studies were required to contain at least one of the following measures: subjective
hunger perceptions measured via visual analogue scales; measurements of blood acylated
ghrelin, total ghrelin, leptin, GLP-1, PYY and/or insulin concentrations; and/or energy intake
measured by the researcher as the weight of food or kJ/kcal (i.e. not self-reported). Hunger was
used as opposed to other subjective appetite measures, as hunger is the most commonly utilised

scale and therefore allowed for the inclusion of more studies.

All studies were required to contain the required measure(s) during a hypoxic exposure.

Hypoxic exposure interventions were defined as original investigations including exposure to
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a true altitude via geographical location (e.g. mountaineering) or a simulated normobaric or
hypobaric exposure (e.g. hypoxic chamber, hypoxic tent or breathing mask). Exposures were
required to be >1000m in altitude (or a simulated hypoxic equivalent) and be of > 30 minutes
in duration. Studies were also required to contain an appropriate within-subjects control, i.e.
the equivalent measure(s) in normoxic conditions prior to the hypoxic exposure or a separate

control (normoxic) condition.

Two researchers (JM and KD) independently assessed studies for inclusion and later
compared notes to reach a mutual consensus. Disagreements about the eligibility of any
particular studies were resolved by a third reviewer (TI). Potential studies that could be
included based on their title or abstract were retrieved in full-text and reviewed against the
inclusion/exclusion criteria independently by two researchers (JM and KD) with a third
researcher (TI) used to settle any disputes. In total, 28 studies met the inclusion criteria and
were included in this meta-analysis (supplementary figure 1). For a variable to be included in
the meta-analysis a minimum of three studies, measuring the respective variable, were required

to meet the inclusion criteria.

Data abstraction

Data were extracted independently by two researchers (JM and KD) into a standardised
spreadsheet, which included (i) characteristics of articles valid for review; (ii) the Cochrane
Collaboration’s tool for assessing risk of bias and (iii) outcome data suitable for successive
analysis based on mean, SD and sample size. Additional data were collected for study design,
participant characteristics, severity and duration of hypoxic exposure, acclimatisation status
and activity status of participants. Participants were deemed to be passive if no exercise was
conducted during the hypoxic exposure (e.g. bedrest, or ascent to altitude by vehicle).
Participants were deemed to be active if exercise was conducted during the hypoxic exposure
(e.g. exercise capacity tests, or trekking to altitude). When studies employed multiple measures
of the same variable in the same hypoxic severity then the first measure and chronologically
final measure were used for analysis. This ensured that single studies were not weighted too
highly due to multiple measures whilst still accounting for the effect of acute and chronic

hypoxic exposure.

Where blood analyte values were reported in pmol-L™!, values were converted to pg-mL-

!'as follows: multiplied by 4 for total PY'Y, 3.297 for total GLP-1, 3.37 for acylated and total
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ghrelin, and 16 for leptin. Insulin was converted from pmol-L! to pU.mL"!.where necessary by
dividing by six. Where values were only presented in figure form, the figure was digitized
using graph digitizer software (Digitizelt, Germany) and the means and SD/SEM were
measured manually at the pixel level to the scale provided on the figure. If area under the curve
values were reported rather than mean values, the authors of the relevant studies were contacted

to obtain the raw dataset and mean values were subsequently calculated.

Assessment of risk of bias in included studies

To assess the risk of bias in included studies The Cochrane Collaboration’s tool for assessing
risk of bias (Higgins et al., 2011) was used independently by two reviewers (JM and LD). Each
study was assessed in the following six domains: sequence generation, allocation concealment,
blinding of participants, personnel and outcome assessors, incomplete outcome data, selective
outcome reporting, and other sources of bias (e.g. has been claimed to have been fraudulent).
A judgement was made on each of the domains by the two independent researchers as to
whether they were ‘high risk ‘or ‘low risk’. When insufficient detail was reported then the
judgement of ‘unclear risk” was made. Disagreements were solved initially via discussion
between the two independent reviewers however a third reviewer (T1) was consulted for dispute
resolution. ‘Risk of bias graphs’ were computed in Review Manager (RevMan) 5.3 (The

Cochrane Collaboration) to include low, unclear and high risk for each domain.

Statistical analysis

Missing standard deviations were calculated from standard errors or confidence intervals.
Outcome measures were converted into the standardised mean difference (SMD) with 95%
confidence intervals (CI) and were used as the summary statistic. The SMD represents the size
of the effect of the intervention relative to the variability observed in that intervention. A
random-effects meta-analysis was performed by JM, JG and KD using Comprehensive Meta-
Analysis Software (version 3, Biostat, Englewood, NJ, USA). A random-effects model was
chosen over a fixed effects model due to unexplained heterogeneity in the included studies
(Ades et al., 2005). The inputted data included sample sizes, outcome measures with their
respective standard deviations, and a correlation coefficient for within-subject measurements.

These correlation coefficients were estimated from prior studies in our laboratory and other
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published studies, and were as follows: fasted hunger » = 0.52, postprandial hunger » = 0.61,
energy intake » = 0.51, postprandial acylated ghrelin r = 0.97, fasted total ghrelin » = 0.40,
postprandial total ghrelin » = 0.53, fasted leptin » = 0.32, fasted GLP-1 r = 0.94, postprandial
GLP-1 r=0.95, fasted PYY r = 0.70, postprandial PYY r = 0.86, fasted insulin » = 0.43 and

postprandial insulin » = 0.53.

We interpreted SMD values of <0.20 as trivial, 0.20-0.39 as small, 0.40-0.80 as
moderate and >0.80 as large (Cohen, 1969). A negative SMD indicates that hypoxic exposure
was associated with a decrease in the respective outcome variable while a positive SMD
indicates that hypoxic exposure was associated with an increase in the respective outcome
variable. Heterogeneity between trials was assessed using the I-squared statistic, where 0-40%
suggests heterogeneity might not be important, 30-60% may represent moderate heterogeneity,
50-90% may represent substantial heterogeneity and 75-100% represents substantial
heterogeneity (Higgins & Thompson, 2002). This measure of heterogeneity was complimented
by also reporting the Tau-squared statistic and the Chi-squared statistic. To examine whether
any conclusions were dependent on a single study, sensitivity analyses was employed for each

variable by repeating the analyses with each study omitted in turn.

Where significant effects of hypoxic exposure were observed, post-hoc meta-regression
analysis (method-of-moments model) was performed. This analysis was used to determine
whether continuous data, including duration or severity of hypoxic exposure, could explain the
variation in the SMD values observed between studies for a respective outcome measure.
Where data were available, subgroup meta-analysis was performed for categorical variables
including acclimatisation status, method of achieving hypoxic exposure and physical activity

status.

Exploration of small study effects

Small study effects were explored with funnel plots of standard difference in means versus
standard errors (Sterne et al., 2011) and by quantifying Egger’s linear regression intercept. A

large and statistically significant Egger statistic indicates the presence of a small study effect.

Results
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Overview

Supplementary figure 1 outlines the flowchart of study selection. In total, 28 studies met the
inclusion criteria for the meta-analysis. All included studies had been published (or accepted
for publication) in peer-reviewed scientific journals at the time of inclusion. Within the 28
included studies a total of 54 fasted and 22 postprandial comparisons were included between
normoxic and hypoxic conditions. Comparisons were segregated into fasted (see
supplementary table 1) and postprandial (see supplementary table 2) responses to differentiate
between findings during these two distinct periods of appetite regulation. Fasted comparisons
represent comparisons of single time points obtained after an overnight fast. Eleven out of the
12 studies which reported postprandial comparisons provided standardised meals to
participants with an energy content of 1347 - 3205 kJ (mean: 2128 kJ) and an observation
period of 50 — 420 minutes (mean: 210 minutes). The remaining study which assessed
postprandial comparisons measured hunger responses to ad libitum feeding during the waking
hours of an entire day (Westerterp-Platenga et al., 1999). All studies involving postprandial
comparisons provided mixed macronutrient meals, with seven studies providing this in the
form of solid foods and five studies providing this in a liquid form. Visual inspection of the
data suggests that the composition of meals provided and observation periods employed did

not dictate the outcomes of postprandial variables.

Participant demographics and hypoxic exposure characteristics

A total of 407 participants (351 men and 56 women; 86% men) were included in this meta-
analysis. Mean age was reported in 22 out of the 28 studies and ranged from 21 to 44 years
(mean: 29 years). Mean BMI was reported in 18 out of the 28 studies and ranged from 20.7 to
25.0 kg'm? (mean: 23.4 kg':m). For all comparisons hypoxic severity ranged from 2134 to
7753m (mean: 4302m) and duration of hypoxic exposure ranged from 50 minutes to two

months (mean: 10 days).

Meta-Analysis

Individual study statistics and results for each outcome variable are summarised in

supplementary tables 3 - 15.
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Standardised mean difference and moderator variables for hunger scores

Hypoxic exposure resulted in a small decrease in fasted hunger scores (SMD: -0.35, 95% CI: -
0.76 t0 0.07; n = 15; p = 0.102). The degree of heterogeneity may be substantial between these
studies (2 =81.6%; Q =76.0, 2 =0.521, dr= 14). Sensitivity analysis revealed that the removal
of one comparison (Aeberli et al. 2013-2) further decreased the SMD to -0.43 (95% CI: -0.85
to -0.01; p = 0.045). Inspection of the funnel plot and Egger’s regression intercept revealed that
there was evidence of small study effects (intercept =-5.522, 95% CI: -9.25 to -1.79; p = 0.007).

Hypoxic exposure resulted in a trivial decrease in postprandial hunger scores (SMD: -
0.15, 95% CI: -0.29 to -0.01; n = 14; p = 0.043; Figure 1). The degree of heterogeneity was
found to be low between these studies (7 = 5.2%; Q = 13.7, 72 = 0.004 and dr= 13). Sensitivity
analysis revealed that the removal of eight single comparisons in turn moderated the statistical
interpretation of the results; for example the removal of the comparison with the largest
negative SMD (Wasse et al., 2012) would increase the SMD to -0.11 (95% CI: -0.25 to 0.03;
p = 0.118). Subgroup analysis indicated a difference between active and passive participants
(»p = 0.049), with postprandial hunger being suppressed to a greater extent in passive
participants (Table 1). Utilising a meta-regression model, neither hypoxic severity nor duration
of exposure were associated with postprandial hunger scores. Inspection of the funnel plot and
Egger’s regression intercept revealed that there was evidence of small study effects (intercept

=-3.332, 95% CI: -6.06 to -0.60; p = 0.021).

[Insert Figure 1 near here]

Standardised mean difference and moderator variables for energy intake

Hypoxic exposure resulted in a moderate decrease in energy intake (SMD: -0.50, 95% CI: -
0.85 to -0.15; n = 8; p = 0.006; Figure 2). The degree of heterogeneity may be substantial
between these studies (7 = 64.5%; Q = 19.7, 2 = 0.159 and d¢= 7). Sensitivity analysis revealed
minor changes only, and these changes did not substantially alter the overall mean effect. Using
duration of exposure as a moderator in a meta-regression model, a shorter duration of exposure
tended to be associated with a larger decrease in energy intake. The slope of the regression
tended to be positive (p = 0.056; Table 1), with a standardised increase in energy intake of

0.051 units for every one day of hypoxic exposure. Inspection of the funnel plot and Egger’s

10
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regression intercept revealed that there was little evidence of small study effects (intercept = -

4.065, 95% CI: -10.04 to 1.91; p = 0.147).

[Insert Figure 2 near here]

Standardised mean difference and moderator variables for acylated ghrelin concentrations

Hypoxic exposure resulted in a trivial decrease in postprandial acylated ghrelin concentrations
(SMD: -0.16, 95% CI: -0.25 to -0.08; n = 7; P < 0.0005; Figure 3). The degree of heterogeneity
was found to be moderate between these studies (* = 56.7%; Q = 13.9, 2 = 0.007 and ds = 6).
Sensitivity analysis revealed minor changes only, and these changes did not substantially
impact the overall mean effect. Using hypoxic severity as a moderator in a meta-regression
model, a higher degree of hypoxia was associated with a larger decrease in acylated ghrelin
concentrations (Figure 4). The slope of the regression was negative (slope: -0.0001, 95% CI -
0.0002 to -0.0000; p = 0.010; Table 1), with a standardised decrease in acylated ghrelin of 0.1
units for every 1000m increase in hypoxic severity. Inspection of the funnel plot and Egger’s
regression intercept revealed that there was little evidence of small study effects (intercept = -

5.431, 95% CI: -21.82 to 10.96; p = 0.467).

[Insert Figure 3 and 4 near here]

Standardised mean difference and moderator variables for total ghrelin concentrations

Hypoxic exposure resulted in trivial changes in fasted (SMD: 0.00, 95% CI: -0.33 to 0.34; n =
14; p = 0.987) and postprandial (SMD: 0.02, 95% CI: -0.37 to 0.41; n = 5; p = 0.920) total
ghrelin concentrations. The degree of heterogeneity may be substantial for fasted comparisons
(> = 74.7%; Q = 51.3, 2> = 0.284 and d¢ = 13) and low for postprandial comparisons (* =
33.4%; Q = 6.0, 7 = 0.064 and dr = 4). Sensitivity analysis revealed only minor changes in the
SMDs for both fasted and postprandial total ghrelin concentrations. Inspection of the funnel
plot and Egger’s regression intercept revealed that there was little evidence of small study
effects for both fasted (1.104, 95% CI: -2.82 to 5.03; p = 0.552) and postprandial (-3.503, 95%
CI: -10.62 to 3.61; p = 0.215) total ghrelin concentrations.

Standardised mean difference and moderator variables for GLP-1 concentrations

11
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Hypoxic exposure resulted in a trivial increase in fasted (SMD: 0.03, 95% CI: -0.11 to 0.17; n
= 8; p = 0.684) and postprandial (SMD: 0.03, 95% CI: -0.05 to 0.11; n = 10; p = 0.474) GLP-
1 concentrations. The degree of heterogeneity may be substantial for fasted comparisons (2 =
62.1%; Q = 18.5, 2 = 0.024 and dr = 7) and was moderate for postprandial comparisons (/> =
39.2%; Q = 14.8, 2 = 0.006 and dr = 9). Sensitivity analysis revealed only minor changes in
the SMDs for both fasted and postprandial GLP-1 concentrations. Inspection of the funnel plot
and Egger’s regression intercept revealed that there was little evidence of small study effects
for both fasted (intercept =5.819, 95% CI: -4.71 to 16.35; p = 0.225) and postprandial (intercept
=4.524, 95% CI: -3.73 to 12.78; p = 0.242) GLP-1 concentrations.

Standardised mean difference and moderator variables for leptin concentrations

Hypoxic exposure resulted in a trivial decrease in fasted leptin concentrations (SMD: -0.09,
95% CI: -0.40 to 0.23; n = 25; p = 0.588). The degree of heterogeneity was found to be
substantial between these studies (studies (> = 82.8%; Q = 139.8, 7 = 0.493 and dr = 24).
Sensitivity analysis revealed minor changes only, and these changes did not impact the overall
mean effect. Inspection of the funnel plot and Egger’s regression intercept revealed that there

was little evidence of small study effects (intercept = 0.953, 95% CI: -1.97 to 3.87; p = 0.500).

Standardised mean difference and moderator variables for PYY concentrations

Hypoxic exposure resulted in a trivial increase in fasted (SMD: 0.02, 95% CI: -0.18 to 0.21; n
=7; p = 0.865) and postprandial (SMD: 0.02, 95% CI: -0.14 to 0.18; n = 8; p = 0.810) PYY
concentrations. The degree of heterogeneity was low for fasted comparisons (/2 = 0.0%; Q =
3.2, 72 = 0.000 and dr = 6) and moderate for postprandial comparisons (/> = 44.2%; Q = 12.6,
72 = 0.023 and dr = 7). Sensitivity analysis revealed only minor changes in the SMDs for both
fasted and postprandial PYY concentrations. Inspection of the funnel plot and Egger’s
regression intercept revealed that there was some evidence of small study effects for fasted
PYY concentrations (-9.938, 95% CI: -7.87 to 0.00; p = 0.050) but little evidence for
postprandial PY'Y concentrations (-2.485, 95% CI: -14.86 to 9.89; p = 0.641).

Standardised mean difference and moderator variables for insulin concentrations

12
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Hypoxic exposure resulted in a moderate increase in fasted insulin concentrations (SMD: 0.41,
95% CI: 0.17 to 0.65; n = 34; p = 0.001; Figure 4). The degree of heterogeneity may be
substantial between these studies ( = 70.6%; Q = 112.1, 2 = 0.323, dr = 33). Sensitivity
analysis revealed minor changes only, and these changes did not impact the overall mean effect.
Subgroup analysis indicated a difference between the acclimatisation status of the participants
(» < 0.0005), with acclimatised individuals experiencing a larger increase in insulin
concentrations. Additionally, there was a difference between the methods of achieving hypoxia
(»p < 0.0005), with simulated hypobaric hypoxia inducing the largest increases in insulin
concentrations (Table 1). Using hypoxic severity as a moderator in a meta-regression model, a
higher degree of hypoxia was associated with a greater increase in insulin concentration (Figure
6). The slope of the regression was positive (slope: 0.0003, 95% CI 0.0000 to 0.0005; p =
0.020; Table 1), with a standardised increase in insulin of 0.3 units for every 1000m increase
in hypoxic severity. Inspection of the funnel plot and Egger’s regression intercept revealed that

there was evidence of small study effects (intercept =2.617, 95% CI: 0.78 to 4.46; p = 0.007).

Hypoxic exposure resulted in a small decrease in postprandial insulin concentrations
(SMD: -0.035, 95% CI: -0.22 to 0.15; n = 11; p = 0.707). The degree of heterogeneity was
found to be low between these studies (7 0.00%; Q = 9.5, 7 0.00 and dr = 10). Sensitivity
analysis revealed minor changes only, and these changes did not impact the overall mean effect.
Inspection of the funnel plot and Egger’s regression intercept revealed that there was evidence

of small study effects (intercept = -5.36, 95% CI: -9.03 to -1.69; p = 0.009).
[Insert Figure 5 and 6 near here]

[Insert Table 1 near here]

Risk of bias

Since many of the studies included were high altitude expeditions, certain biases were often

unavoidable, such as blinding of participants and personnel (Figure 7).

[Insert Figure 7 near here]

Discussion
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The purpose of this meta-analysis was to examine the effect of hypoxic exposure on hunger
and energy intake responses, and to investigate changes in appetite-related hormones as
potential mechanistic variables. We observed decreases in postprandial hunger scores and
energy intake during hypoxic exposure compared with normoxia. Furthermore, we found
postprandial acylated ghrelin concentrations to be suppressed and fasted insulin concentrations
to be elevated during hypoxic exposure compared with normoxia. The observed reductions in
postprandial hunger and energy intake accord with the hypothesised orexigenic effects of
acylated ghrelin (Monteiro & Batterham, 2017) and anorexigenic effects of insulin (Air et al.,
2002; Hallschmid et al., 2012). We did not find any significant effects of hypoxic exposure,
compared with normoxia, on circulating total ghrelin, GLP-1, leptin or PYY concentrations,

which suggests that these hormones are unlikely to play a role in altitude-induced anorexia.

Interestingly, the reductions observed in postprandial hunger during hypoxia compared
with normoxia do not appear to be moderated by the duration of hypoxic exposure. This
speculation aligns with previous research that has observed significant reductions in appetite
with both acute (Matu et al., 2017a; Wasse et al., 2012) and chronic (Westerterp et al., 1994;
Westerterp-Platenga et al., 1999) hypoxic exposures. However, reductions in energy intake
tended to be associated with a shorter duration of hypoxic exposure, signifying a possible
acclimatisation response during prolonged exposures. No other variables were found to be
moderated by the duration of hypoxic exposure, therefore suggesting that other factors may be
involved in the regulation of energy intake at altitude. Surprisingly, subgroup analysis revealed
that hypoxic exposure was associated with a smaller reduction in postprandial hunger in the
studies involving the completion of physical activity than those involving passive exposure to
hypoxia. This finding may seem unexpected considering the longstanding evidence that
strenuous exercise (=60% of maximum oxygen uptake) induces a transient suppression of
appetite known as exercise-induced anorexia (Deighton & Stensel, 2014). Although it is
difficult to provide a precise explanation for this observation, it seems feasible that any
exercise-induced appetite suppression during normoxic trials may have reduced the relative
decrease in hunger during matched hypoxic trials due to a baseline effect. It must also be
acknowledged that subgroup and meta-regression analyses are observational, in contrast to the
main analysis and summary effect which represent the impact of the hypoxic interventions.
Subsequently, it is feasible that the moderating effect of activity status on postprandial hunger
is confounded by other factors within the study designs such as the participant characteristics

or the nature of the hypoxic exposure (type, duration, severity of hypoxia etc.).
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It must be noted that appetite perceptions and hormonal regulation are just two aspects
of a multifaceted system controlling energy intake in humans. Hypoxia has been shown to
degrade the taste of food in both humans (Matu et al., 2017b) and rodents (Ettinger & Staddon,
1982), and this could potentially alter food reward (Berthoud, 2006). Furthermore, individuals
exposed to chronic altitude may consciously attempt to maintain energy balance to avoid illness
and fatigue (Matu et al., 2017b). This behavioural regulation of energy intake may confound
the observed reductions in energy intake during chronic hypoxic exposure. It is also possible
that the initial body composition and fitness levels of the participants included in the current
review may alter their hormonal responses to altitude. For example, an increased adiposity can
lead to a decrease in insulin and leptin sensitivity (Adam et al., 2009). However, not enough

studies reported these data for them to be included as moderator variables.

The current review found an inverse association between hypoxic severity and changes
in acylated ghrelin concentrations. This finding concords with those of Matu et al. (2017a),
who found that acylated ghrelin was suppressed with high but not moderate simulated altitude
exposure. The findings of this meta-analysis demonstrate that acylated ghrelin is suppressed in
hypoxia compared with normoxia but that total ghrelin concentrations remain unchanged. Total
ghrelin consists of the combined levels of des-acyl ghrelin and acylated ghrelin, and recent
research has found that des-acyl ghrelin can inhibit the orexigenic effects of acylated ghrelin
by targeting the arcuate nucleus, independently of the growth hormone secretagogue receptor
(Fernandez et al., 2016). The opposing effects of these hormones suggest that physiologically
relevant changes in ghrelin constituents may be masked by the measurement of total ghrelin. It
would therefore be beneficial for further research in this area to differentiate between the

ghrelin constituents.

Fasting insulin concentrations were found to be elevated with hypoxic exposure
compared with normoxia, and this effect was positively associated with the severity of
hypoxia. Additionally, a larger effect was observed in acclimatised participants than in
unacclimatised participants. However, this observation may be confounded by the fact that
studies that tend to recruit acclimatised participants often use higher altitudes. These higher
altitudes may be the factor causing the larger increase in insulin concentrations, which is
supported by the meta-regression between hypoxic severity and changes in insulin
concentrations. Such increases in insulin concentration may contribute to the observed
reductions in hunger during hypoxic exposure but could also represent a reduction in insulin

sensitivity. An increase in fasted, but not postprandial insulin concentrations, suggests that
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hepatic insulin sensitivity is more heavily influenced by hypoxia then peripheral insulin
sensitivity (Matsuda & DeFronzo, 1999; Radziuk, 2014). Hypoxia has been shown to induce
whole-body insulin resistance in mice (Murphy et al., 2017). Furthermore, the use of a
hyperinsulinaemic, euglycaemic clamp in humans has demonstrated that an acute 30-min
hypoxic exposure (resulting in a blood oxygen saturation of ~75%) rapidly reduces whole-
body insulin sensitivity by ~15% (Oltmanns et al., 2004). The reduction in insulin sensitivity
could be due to catecholamine responses, adipose tissue inflammation, and/or HIF signalling
(Murphy et al., 2017; Oltmanns et al., 2004). This reduction in insulin sensitivity may be
transient, as others have shown that following an acute hypoxic exposure, insulin sensitivity
under normoxia is increased compared to continuous normoxia. Therefore, hypoxia may
acutely reduce insulin sensitivity, with a subsequent “rebound” upon return to normoxia.
Further work is required to establish whether chronic, sustained hypoxia reduces hepatic

and/or peripheral insulin sensitivity.

Interestingly, subgroup analysis revealed a larger increase in fasted insulin
concentrations under conditions of simulated hypobaric hypoxia than terrestrial altitude or
simulated normobaric hypoxia. Although further research is required, some evidence suggests
that simulated hypobaric hypoxia induces greater physiological stress than simulated
normobaric hypoxia (Coppel et al., 2015), which may contribute to the larger increases in
fasted insulin levels under this condition. It also seems feasible that simulated hypobaric
hypoxia may be a more potent physiological stressor than terrestrial altitude due to the
immediacy of the hypoxic exposure (i.e., walking through the door of an environmental
chamber rather than ascending more gradually to terrestrial altitude by transport or trekking).
Despite these potential effects, other differences between the studies assessing fasted insulin
concentrations may also have contributed to this observation, including the severity of

hypoxia induced in the different experiments.

The findings of the current review provide support for the notion that leptin
concentrations are not consistently affected by hypoxic exposure. From the studies included in
this review it appears that shorter duration studies utilising simulated altitudes result in
elevations of leptin concentrations compared with normoxia (Mekjavic et al., 2016; Snyder et
al., 2008), whereas longer duration studies at terrestrial altitude result in reductions in leptin
levels compared with normoxia (Benso et al., 2007; Castell et al., 2010; Vats et al., 2004).
These observations concur with the hypothesis that hypoxia stimulates HIF-1, which can

increase leptin concentrations. However chronic hypoxic exposure can suppress leptin
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concentrations by reducing adiposity. This explains the lack of an overall effect in the current
meta-analysis. Due to multiple confounding factors in the included studies, which were not
possible to account for in the current analysis (e.g. sleep, cold, smoking status), further well
designed research would be beneficial to elucidate the effects of hypoxia per se on circulating

leptin concentrations in humans.

In the current review the only hormones investigated which aligned with the observed
reductions in hunger and energy intake were acylated ghrelin and insulin. Each of the other
appetite-related hormones were not found to change significantly in hypoxia compared with
normoxia. One recent study found that a high fat breakfast directly increased postprandial
acylated ghrelin and reduced postprandial insulin concentrations at simulated altitude,
compared with a high carbohydrate breakfast (Matu et al., 2017c). These alterations in hormone
concentrations were associated with increased appetite perceptions during an exercise bout that
simulated trekking activity. This research supports the conclusions of this review, and suggests
that it may be beneficial for further future studies to focus on interventions to minimise altitude-
induced changes in acylated ghrelin and insulin concentrations in an attempt to augment energy

intake, particularly during prolonged periods of hypoxic exposure.

Some notable limitations must be acknowledged in this meta-analysis. First, the
postprandial comparisons included within this review included a range of feeding protocols
and observation durations. Although these factors did not appear to have any noticeable effect
on the direction of the overall findings, it is possible that these factors may have influenced the
findings of each individual study. For example, the studies that provided meals containing
higher energy content or in the form of solid food would be expected to induce greater
reductions in hunger than lower energy or liquid meals (Tieken et al., 2007). It remains unclear
whether this would alter the effects of hypoxic exposure on the variables measured in this
review when compared with a matched normoxic trial, but this remains an important
consideration and an avenue for future investigation. Second, the hormones PP and CCK are
proposed to exert anorexigenic effects but these hormones were not included in this meta-
analysis as only two studies met the inclusion criteria for each hormone. These studies both
reported that hypoxic exposure suppressed concentrations of PP (Matu et al., 2017a; Riepl et
al.,2012) and CCK (Aeberli et al., 2013; Riepl et al., 2012) in the fasted and postprandial states,
suggesting that neither hormone plays a role in altitude-induced anorexia, as suppression of
these hormones would be expected to increase hunger. Third, we decided to exclude self-

reported energy intake data and only include energy intake data from studies where it was
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measured by the research team. In total 27 studies were excluded for this reason, and thus it
may be argued that conclusions from this meta-analysis may be biased. However, this decision
was made a-priori due to the various limitations associated with self-report methods (Hill &
Davies, 2001) and recent conclusions that self-reported energy intake should not be used as a
measure of energy intake in scientific research (Dhurandhar et al., 2016; Subar et al., 2015).
Fourth, the statistical power of the analysis must be considered when interpreting the results,
particularly with regard to the subgroup analysis. As few as two comparisons were included in
some subgroups for analysis, and therefore may be underpowered. Fifth, as shown in Figure 7,
many of the included studies were classified as high risk for random sequence generation,
allocation concealment and blinding. However, it is important to note this this appraisal does
not necessarily mean the studies were methodologically flawed as these factors are often not
possible to incorporate during high altitude trekking studies. Finally, despite an extensive
search returning 2834 records, we cannot guarantee that our search was completely exhaustive
of the relevant literature. However, having searched the reference lists of all included studies

we are confident to have included all available relevant studies.

In conclusion, this meta-analysis reveals that exposure to hypoxia decreases hunger and
energy intake compared with normoxia, and that these reductions are associated with depressed
acylated ghrelin concentrations and elevated insulin concentrations. Given the hypothesised
roles of these hormones in the control of appetite, these changes are plausible neuroendocrine
signals mediating altitude-induced anorexia. It may be beneficial for future research to
investigate interventions that increase acylated ghrelin concentrations and decrease insulin
concentrations at altitude, with the aims of maintaining insulin sensitivity, and increasing

appetite and energy intake to assist with the maintenance of energy balance.
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Figure 1. Forest plot of standardised mean differences (means = 95% confidence intervals
[CIs]) for studies evaluating the influence of hypoxic exposure on postprandial hunger scores
compared with sea level. The size of each circle represents the relative weight of each
comparison. The diamond represents a SMD (mean + 95% CI) for the model.

Figure 2. Forest plot of standardised mean differences (means = 95% confidence intervals
[CIs]) for studies evaluating the influence of hypoxic exposure on energy intake compared with
sea level. The size of each circle represents the relative weight of each comparison. The
diamond represents a SMD (mean + 95% CI) for the model.

Figure 3. Forest plot of standardised mean differences (means = 95% confidence intervals
[CIs]) for studies evaluating the influence of hypoxic exposure on postprandial acylated ghrelin
concentrations compared with sea level. The size of each circle represents the relative weight
of each comparison. The diamond represents a SMD (mean + 95% CI) for the model.

Figure 4. Univariable meta-regression for hypoxic severity versus the postprandial acylated
ghrelin concentration responses to hypoxic exposure expressed as standardised mean
difference (SMD).

Figure 5. Forest plot of standardised mean differences (means + 95% confidence intervals
[CIs]) for studies evaluating the influence of hypoxic exposure on fasted insulin concentrations
compared with sea level. The size of each circle represents the relative weight of each
comparison. The diamond represents a SMD (mean + 95% CI) for the model.

Figure 6. Univariable meta-regression for hypoxic severity versus fasted insulin concentration
responses to hypoxic exposure expressed as standardised mean difference (SMD).

Figure 7. Risk of bias across expressed as a percentage across all included studies. White, grey
and black bars indicate low, unclear and high risk of bias, respectively.
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Table 1. Summary of moderator variable analysis for postprandial hunger, energy intake, postprandial acylated ghrelin and fasted insulin meta-analysis by subgroup and

meta-regression

Moderator Variable p value Comparison
Postprandial hunger
Acclimatisation status 0.183 Acclimatised (n = 3; SMD -0.382, 95% CI -0.749 to -0.015)
Unacclimatised (n = 11; SMD -0.110, 95% CI -0.270 to 0.050)
Hypoxic method 0.396 Simulated hypobaric (n = 3; SMD -0.382, 95% CI -0.749 to -0.015)
Simulated normobaric (n =9; SMD -0.151, 95% CI -0.330 to 0.028)
Terrestrial altitude (n = 2; SMD -0.001, 95% CI -0.457 to 0.455)
Activity status 0.049 Passive (n = 6; SMD -0.350, 95% CI -0.598 to -0.103)
Active (n=38; SMD -0.051, 95% CI-0.216 to 0.114)
Hypoxic severity 0.175 Meta-regression of altitude height vs. SMD (slope -0.0001, 95% CI -0.0002 to 0.0000)
Duration of exposure 0.889 Meta-regression of duration of exposure vs. SMD (slope -0.0017, 95% CI -0.0224 to 0.0258)
Energy intake
Hypoxic method 0.833 Simulated normobaric (n = 6; SMD -0.531, 95% CI -1.014 to -0.047)
Terrestrial altitude (n = 2; SMD -0.448, 95% CI -1.045 to 0.149)
Activity status 0.970 Passive (n =2; SMD -0.489, 95% CI -1.207 to 0.230)
Active (n = 6; SMD -0.505, 95% CI -0.941 to -0.069)
Hypoxic severity 0.289 Meta-regression of altitude height vs. SMD (slope -0.0003, 95% CI -0.0007 to 0.0002)
Duration of exposure 0.056 Meta-regression of duration of exposure vs. SMD (slope 0.0509, 95% CI -0.0014 to 0.1031)
Postprandial acylated ghrelin
Activity status 0.450 Passive (n =2; SMD -0.207, 95% CI -0.321 to -0.092)
Active (n =5; SMD -0.145, 95% CI -0.258 to -0.031)
Hypoxic severity 0.010 Meta-regression of hypoxic severity vs. SMD (slope -0.0001, 95% CI -0.0002 to -0.0000)
Duration of exposure 0.293 Meta-regression of duration of exposure vs. SMD (slope -0.4196, 95% CI -1.2018 to 0.3625)
Fasted insulin
Acclimatisation status <0.0005 Acclimatised (n = 12; SMD 1.016, 95% CI 0.582 to 1.450)
Unacclimatised (n = 22; SMD 0.121, 95% CI -0.121 to 0.363)
Hypoxic method <0.0005 Simulated hypobaric (n = 6; SMD 1.052, 95% CI 0.638 to 1.467)
Simulated normobaric (n =7; SMD -0.215, 95% CI -0.913 to 0.361)
Terrestrial altitude (n =21; SMD 0.443, 95% CI 0.162 to 0.724)
Activity status 0.107 Passive (n = 16; SMD 0.619, 95% CI 0.184 to 1.055)
Active (n=18; SMD 0.211, 95% CI -0.027 to 0.450)
Hypoxic severity 0.020 Meta-regression of hypoxic severity vs. SMD (slope 0.0003, 95% CI 0.0000 to 0.0005)
Duration of exposure 0.377 Meta-regression of duration of exposure vs. SMD (slope 0.0079, 95% CI -0.0096 to 0.0255)
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Figure 4
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Figure 6
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Supplementary Table 1. Effects of hypoxic exposure on fasted hunger and fasted hormone concentrations

Study Participants Intervention Variables assessed
Design Hypoxic  Duration Acclimatisation —Hypoxic Activity Hunger GLP-1 Insulin Leptin PYY Total
severity status method status /mm Jpg-ml’ /uU-mL". /pg-ml’! Jpg-ml’ ghrelin
/m /pg-ml’!
Acberli et al. 22 men and Longitudinal 4559 2 days Unacclimatised — Terrestrial Active SL: 59 (8) - - - - -
2013-1 women altitude ALT: 43 (8)
combined
Aeberli et al. 22 men and Longitudinal 4559 4 days Unacclimatised  Terrestrial ~ Active SL: 59 (8) - - - - -
2013-2 women altitude ALT: 64 (6)
combined
Bailey et al. 7 men and Longitudinal 4780 11 days  Unacclimatised Terrestrial  Active - SL: 68.2 SL: 13.3 SL:42(19) - -
2004 women altitude (29.7) (5.6) ALT: 34
combined ALT: 893  ALT:10.4 13) #
(44.8) (6.8)
Benso et al. 9 men Longitudinal 5200 61 days  Acclimatised Terrestrial ~ Active - - SL: 10.1 SL: 777 - SL: 147
2007 altitude 2.4) (197) (26)
ALT: 10.9 ALT: 606 ALT: 158
2.4) (209) (45)
Braun et al. 12 females Longitudinal 4300 16 hours  Unacclimatised  Simulated Passive - - SL:3.3 - - -
2001 hypobaric (1.5)
ALT: 5.0
(2.0)
Castell et al. 35 men Longitudinal 2134 1 day Unacclimatised — Terrestrial Active - - - SL:2(2) - -
2010-1 altitude ALT: 2 (1)
Castell et al. 56 men Longitudinal =~ 2743 14 days  Unacclimatised  Terrestrial Active - - - SL:2 (2) - -
2010-2 altitude ALT: 1 (1)
Castell et al. 53 men Longitudinal 2743 28 days Unacclimatised — Terrestrial Active - - - SL:2(2) - -
2010-3 altitude ALT:2(1)
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Study Participants Intervention Variables assessed
Design Hypoxic Duration Acclimatisation Hypoxic Activity Hunger GLP-1 Insulin Leptin PYY Total
severity status method status /mm /pg-ml! /uU-mL". /pg-ml’! /pg-ml! ghrelin
/m /pg-ml‘l
Debevec et al. 11 men Longitudinal 4000 1 day Unacclimatised ~ Simulated Active SL: 40.2 - - - - -
2014a-1 normobaric (36.4)
ALT: 453
31.4)
Debevec et al. 11 men Longitudinal 4000 21 days  Unacclimatised  Simulated Active SL: 40.2 - - - - -
2014a-2 normobaric (36.4)
ALT: 443
(33.6)
Debevec et al. 11 men Longitudinal 4000 1 day Unacclimatised ~ Simulated Passive SL: 49.9 - - - - -
2014a-3 normobaric (29.6)
ALT: 46.4
(40.0)
Debevec et al. 11 men Longitudinal 4000 21 days  Unacclimatised  Simulated Passive SL: 49.9 - - - - -
2014a-4 normobaric (29.6)
ALT: 47.5
(40.1)
Debevec etal. 8 men Longitudinal 4000 1 day Unacclimatised ~ Simulated Active SL:45.6 SL: 12.0 SL: 10.6 SL: 4910 SL:97.8 SL: 911
2014b-1 normobaric (24.0) (21.8) 2.0) (3530) (21.8) (239)
ALT: 47.0 ALT: 12.4 ALT: 10.9 ALT: 6920 ALT:93.8 ALT: 817
(23.2) (19.3) (1.9) (4220) (13.3) (162)
Debevec etal. 8 men Longitudinal 4000 10 days  Unacclimatised ~ Simulated Active SL: 45.6 SL: 12.0 SL: 10.6 SL: 4910 SL:97.8 SL: 911
2014b-2 normobaric (24.0) (21.8) (2.0) (3530) (21.8) (239)
ALT: 50.5 ALT: 9.1 ALT: 8.7 ALT: 3650 ALT: ALT: 876
(20.2) (12.6) (1.9) (2020) 102.2 (247)
(13.6)
Debevec et al. 6 men Longitudinal 4000 1 day Unacclimatised ~ Simulated Passive SL: 44.1 SL: 6.3 SL: 10.4 SL: 3600 SL:101.7 SL: 705
2014b-3 normobaric (10.9) (7.0) (1.5) (1220) (25.6) (160)
ALT: 58.3 ALT: 8.6 ALT: 12.1 ALT: 5030  ALT:96.8  ALT: 743
(19.0) (7.7) (1.9) (2140) 31.2) (145)
Debevecetal. 6 men Longitudinal 4000 10 days ~ Unacclimatised ~ Simulated Passive SL: 44.1 SL: 6.3 SL: 10.4 SL: 3600 SL: 101.7 SL: 705
2014b-4 normobaric (10.9) (7.0) (1.5) (1220) (25.6) (160)
ALT:33.8 ALT: 5.5 ALT: 8.1 ALT:3490  ALT:93.8  ALT:782
(25.9) 6.7) (1.1) (1360) (20.7) (155)
Debevec et al. 11 men Longitudinal 4000 16 days ~ Unacclimatised ~ Simulated Active SL:50.3 SL: 7.0 - SL: 4487 SL: 97.5 SL: 778
2016-1 normobaric (37.5) (3.8) (2977) 34.7) (289)
ALT: 43.2 ALT: 5.6 ALT: 3449 ALT: ALT: 845
(36.6) (1.7) (2891) 100.4 (296)
(354)
Debevec et al. 11 men Longitudinal 4000 16 days  Unacclimatised ~ Simulated Passive SL: 54.5 SL: 6.2 - SL: 5192 SL: 128.6 SL: 761
2016-2 normobaric (26.7) (CN)) (4316) (45.9) (242)
ALT:51.4 ALT: 5.8 ALT: 4431 ALT: 852
(37.5) (2.5) (3689) (254)
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Study Participants Intervention Variables assessed
Design Hypoxic Duration Acclimatisation Hypoxic Activity Hunger GLP-1 Insulin Leptin PYY Total
Zilerlty status method status /mm /pg-ml! /uU-mL". /pg-ml’! /pg-ml! ghrelln- 1
/pg-ml
ALT:
135.0
(40.8)
Larsen et al. 8 men Longitudinal 4559 2 days Unacclimatised ~ True Passive - - SL: 6.8 - - -
1997-1 altitude (1.3)
ALT: 10.5
(2.0)
Larsen et al. 8 men Longitudinal =~ 4559 7 days Unacclimatised  True Passive - - SL: 6.8 - - -
1997-2 altitude (1.3)
ALT: 5.2
2.2)
Mekjavic etal. 11 men Longitudinal 3400 10days  Unacclimatised  Simulated Passive - SL:4.2 SL: 2.7 SL: 2600 SL:97.7 SL: 1030
2016 normobaric (14.0) 4.4) (696) (90.2) (107)
ALT: 6.2 ALT: 2.7 ALT: 3630 ALT: ALT: 1177
(18.7) 5.4) (862) 107.2 (107)
(64.3)
Riedl et al. 33 men and Longitudinal 3440 4 days Unacclimatised — Terrestrial Active - - SL: 6.2 - - SL: 111
2012-1 women altitude (1.9) (45)
combined ALT: 5.9 ALT: 119
(1.9) (57)
Riedl et al. 28 men and Longitudinal ~ 5050 14 days  Unacclimatised  Terrestrial  Active - - SL: 6.2 - - SL: 111
2012-2 women altitude (1.9) (45)
combined ALT: 6.6 ALT: 150
(2.4) (70)
Riepl et al. 5 men Longitudinal 3454 19 hours  Unacclimatised  Terrestrial Passive - - - - - SL: 32 (11)
2012 altitude ALT: 27
®)
Sawhney etal. 10 men Longitudinal ~ 3500 14 days  Unacclimatised  Terrestrial Passive - - SL: 7.4 - - -
1986 altitude 5.4
ALT: 6.2
2.4)
Sawhney etal. 15 men Longitudinal ~ 3500 3 days Acclimatised Terrestrial Passive - - SL: 9.1 - - -
1991-1 altitude (1.2)
ALT: 13.6
1.4)
Sawhney et al. 15 men Longitudinal 3500 21 days Acclimatised Terrestrial Passive - - SL: 9.1 - - -
1991-2 altitude (1.2)
ALT: 10.0
(1.2)
Sawhney etal. 15 men Longitudinal ~ 5080 30 days Acclimatised Terrestrial Passive - - SL: 9.1 - - -
1991-3 altitude (1.2)
ALT: 11.9
(1.4)
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Study Participants Intervention Variables assessed
Design Hypoxic Duration Acclimatisation Hypoxic Activity Hunger GLP-1 Insulin Leptin PYY Total
Zilerity status method status /mm /pg-ml! /uU-mL". /pg-ml’! /pg-ml! ghrelin
/pg-ml!
Sawhney etal. 15 men Longitudinal ~ 5080 41 days  Acclimatised Terrestrial ~ Passive - - SL: 9.1 - - -
1991-4 altitude (1.2)
ALT: 9.8
(1.4)
Shukla et al. 25 men Longitudinal 3600 2 days Unacclimatised — Terrestrial Passive - - - SL: 3500 - SL: 1282
2005-1 altitude (2000) (554)
ALT: 3740 ALT: 836
(1880) (564)
Shukla et al. 25 men Longitudinal 4300 4 days Unacclimatised  Terrestrial Passive - - - SL: 3500 - SL: 1282
2005-2 altitude (2000) (554)
ALT: 5350 ALT: 733
(1980) (527)
Shukla et al. 25 men Longitudinal 4300 11 days  Unacclimatised Terrestrial ~ Passive - - - SL: 3500 - SL: 1282
2005-3 altitude (2000) (554)
ALT: 5130 ALT: 997
(1840) (653)
Simpson et al. 11 men Longitudinal 4000 17 days  Unacclimatised  Simulated Active - - SL: 12.1 - - -
2016-1 normobaric 3.2)
ALT: 10.7
(4.8)
Simpson et al. 11 men Longitudinal 4000 17 days Unacclimatised ~ Simulated Passive - - SL:12.4 - - -
2016-2 normobaric (4.3)
ALT: 11.9
(2.6)
Smith et al. 10 men and Longitudinal 4000 3 days Unacclimatised — Terrestrial Active - - SL: 2.1 SL: 3500 - -
2011-1 women altitude (0.3) (2010)
combined ALT: 2.0 ALT: 3220
(0.5) (2250)
Smith et al. 10 men and Longitudinal 4750 6 days Unacclimatised  Terrestrial Active - - SL: 2.1 SL: 3500 - -
2011-2 women altitude (0.3) (2010)
combined ALT:2.2 ALT: 3450
(0.8) (1800)
Smith et al. 10 men and Longitudinal ~ 5300 9 days Unacclimatised  Terrestrial Active - - SL: 2.1 SL: 3500 - -
2011-3 women altitude (0.3) (2010)
combined ALT: 2.4 ALT: 3640
0.7) (3000)
Snyder et al. 25 men and Longitudinal 4100 17 hours  Unacclimatised — Simulated Passive - - - SL: 5 (1) - -
2008 women normobaric ALT: 8 (2)
combined
Spliethoff et 9 men Longitudinal 4559 2 days Unacclimatised ~ Terrestrial Passive - - SL:5.3 - - -
al. 2013-1 altitude (1.4)
ALT: 7.0
1.4
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Study Participants Intervention Variables assessed
Design Hypoxic Duration Acclimatisation Hypoxic Activity Hunger GLP-1 Insulin Leptin PYY Total
severity status method status /mm /pg-ml! /uU-mL". /pg-ml’! /pg-ml! ghrelin
/m /pg-ml‘l
Spliethoff et 9 men Longitudinal 4559 4 days Unacclimatised  Terrestrial ~ Passive - - SL:5.3 - - -
al. 2013-2 altitude (1.4)
ALT: 6.2
(1.5)
Tschop et al. 20 men Longitudinal 4559 22 hours  Unknown Terrestrial Active - - - SL: 1220 - -
2000 altitude (850)
ALT: 2060
(1521)
Vats et al. 10 men Longitudinal 3600 2 days Unacclimatised  Terrestrial Passive - - SL:5.5 SL: 4500 - -
2004-1 altitude (2.9) (2941)
ALT: 7.1 ALT: 1310
3.4 (885)
Vats et al. 10 men Longitudinal ~ 3600 7 days Unacclimatised  Terrestrial ~ Passive - - SL:5.5 SL: 4500 - -
2004-2 altitude 2.9) (2941)
ALT: 9.0 ALT: 1800
8.1) (1708)
Vats et al. 10 men Longitudinal 4580 9 days Unacclimatised  Terrestrial ~ Active - - SL:5.5 SL: 4500 - -
2004-3 altitude 2.9) (2941)
ALT:5.9 ALT: 1720
(3.5) (1107)
Westerterp- 8 men Longitudinal ~ 5000 4 days Acclimatised Simulated Passive SL: 75.8 - - - - -
Plantenga et hypobaric (7.3)
al. 1999-1 ALT: 68.0
(5.7
Westerterp- 8 men Longitudinal 6000 11 days Acclimatised Simulated Passive SL: 75.8 - - - - -
Plantenga et hypobaric (7.3)
al. 1999-2 ALT: 62.1
(4.3)
Westerterp- 8 men Longitudinal 7000 17 days Acclimatised Simulated Passive SL: 75.8 - - - - -
Plantenga et hypobaric (7.3)
al. 1999-3 ALT: 53.5
(5:3)
Young et al. 6 men Longitudinal 4280 7 days Acclimatised Simulated Active - - SL:5.9 - - -
1989-1 hypobaric (0.7)
ALT: 6.8
2.5)
Young et al. 6 men Longitudinal 5572 16 days Acclimatised Simulated Active - - SL:5.9 - - -
1989-2 hypobaric 0.7)
ALT:9.7
(2-8)
Young et al. 6 men Longitudinal 6509 25 days Acclimatised Simulated Active - - SL:5.9 - - -
1989-3 hypobaric (0.7)
ALT: 11.2
(33
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Study Participants Intervention Variables assessed
Design Hypoxic Duration Acclimatisation Hypoxic Activity Hunger GLP-1 Insulin Leptin PYY Total
?re;:/erity status method status /mm /pg-ml! /uU-mL". /pg-ml’! /pg-ml! ghrelin
/pg-ml!

Young et al. 6 men Longitudinal 7753 32days  Acclimatised Simulated Active - - SL:5.9 - - -
1989-4 hypobaric 0.7)

ALT: 11.4

(4.8)
Young et al. 6 men Longitudinal 7753 40 days  Acclimatised Simulated Active - - SL:5.9 - - -
1989-5 hypobaric 0.7)

ALT: 12.0

(63)
Zaccaria et al. 12 men Longitudinal ~ 5050 1.6 days  Acclimatised True Active - - SL: 6.3 SL: 1880 - -
2004-1 altitude (1.9) (1120)

ALT: 6.8 ALT: 1210

2.7 (1040)
Zaccaria et al. 12 men Longitudinal ~ 5050 14 days  Acclimatised True Active - - SL: 6.3 SL: 1880 - -
2004-2 altitude (1.9) (1120)

ALT: 7.2 ALT: 1060

(1.4) (740)

Data are mean (SD); RCT = randomised controlled trial, SL = sea-level, ALT = altitude

41



Supplementary Table 2. Effects of hypoxic exposure on postprandial hunger, postprandial hormone concentration and energy intake

Study Participants Intervention Variables assessed
Design Hypoxic  Duration  Acclimatisation  Hypoxic Activity Hunger GLP-1 Insulin PYY Acylated Total Energy
severity status method status /mm /pg-ml! /uU-mL".  /pg-ml! ghrelin ghrelin intake
/m /pg'ml'l /pg'ml'l /kJ
Aeberli et al. 22 menand Longitudinal 4559 2 days Unacclimatised ~ Terrestrial Active SL: 45 - - - - - SL: 3983
2013-1 women altitude (34) (1916)
combined ALT: 37 ALT:
(€2)) 2690
(1289)
Aeberli et al. 22 menand Longitudinal 4559 4 days Unacclimatised ~ Terrestrial Active SL: 45 - - - - - SL: 3983
2013-2 women altitude 34) (1916)
combined ALT: 52 ALT:
31 3724
(1247)
Bailey et al. 12 men RCT 2980 50 Unacclimatised Simulated Active SL: 39 SL: 164 SL: 12 (8) SL: 130 SL: 55 - -
2015-1 minutes normobaric ~ (moderat  (14) (74) ALT: 14 (52) (55)
e ALT: 40 ALT: 163 (9) ALT: 127  ALT:49
intensity)  (16) (80) %) (53)
Bailey et al. 12 men RCT 2980 50 Unacclimatised ~ Simulated Active SL: 32 SL: 169 SL:10(6) SL:118 SL: 52 - -
2015-2 minutes normobaric  (high (15) (76) ALT: 10 (40) (44)
intensity)  ALT: 30 ALT: 168 (5) ALT: 138  ALT: 48
(14) (76) (52) (57)
Debevec et al. 8 men Longitudinal ~ 4000 10 days Unacclimatised ~ Simulated Active - SL: 19 SL: 52 SL: 121 - SL: 751 -
2014b-2 normobaric (24) (16) (30) (165)
ALT: 17 ALT: 40 ALT: 124 ALT: 734
15) ® (20) (163)
Debevec et al. 6 men Longitudinal 4000 10 days Unacclimatised ~ Simulated Passive - SL: 13 (7) SL:55 SL: 126 - SL: 647 -
2014b-4 normobaric ALT: 15 (23) (35) 94)
®) ALT: 43 ALT: 124 ALT: 695
an (29) (132)
Debevec et al. 11 men Longitudinal 4000 16 days Unacclimatised ~ Simulated Active SL: 46 SL: 17 (8) - SL: 121 - SL: 621 SL: 1120
2016-1 normobaric (32) ALT: 18 37) (237) (478)
ALT: 48 7 ALT: 139 ALT: 636 ALT:
(34) (76) (199) 1142
(478)
Debevec et al. 11 men Longitudinal 4000 16 days Unacclimatised ~ Simulated Passive SL: 47 SL: 18 - SL: 157 - SL: 583 SL: 1075
2016-2 normobaric 27 (12) (48) (169) (344)
ALT: 46 ALT: 14 ALT: 159 ALT: 632 ALT:
(34) (@) (46) (160) 1017
(408)
Matu et al. 12 men RCT 2150 5 hours Unacclimatised ~ Simulated Active SL: 42 SL: 92 SL: 17 - SL: 97 - SL: 7358
2017a-1 normobaric 27) (50) (16) 59) (1789)
ALT: 45 ALT: 96 ALT: 16 ALT: 94 ALT:
(28) (52) (15) 59) 7390
(1226)
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Study Participants Intervention Variables assessed
Design Hypoxic  Duration  Acclimatisation  Hypoxic Activity Hunger GLP-1 Insulin PYY Acylated Total Energy
severity status method status /mm /pg-ml! /uU-mL".  /pg-ml! ghrelin ghrelin intake
/m /pg'ml'l /pg'ml'l /kJ
Matu et al. 12 men RCT 4300 5 hours Unacclimatised ~ Simulated Active SL: 42 SL: 92 SL: 17 - SL: 97 - SL: 7358
2017a-2 normobaric 27) (50) (16) (59) (1789)
ALT: 34 ALT: 93 ALT: 18 ALT: 56 ALT:
27) (54) (12) 33) 3728
(3179)
Mekjavic et al. 11 men Longitudinal ~ 3400 10 days Unacclimatised ~ Simulated Passive - SL: 6 SL: 41 - - - -
2016 normobaric (16) (71)
ALT: 8 ALT: 62
(19) 99)
Morishima & 8 men RCT 2540 7 hours Unacclimatised ~ Simulated Passive SL: 40 SL: 16 - - SL: 22 - -
Goto 2016 normobaric ) 4) 9)
ALT: 38 ALT: 17 ALT: 20
%) ) ©)
Riepl et al. S men Longitudinal =~ 3454 19 hours Unacclimatised ~ Terrestrial Passive - - - - - SL: 26 -
2012 altitude 7
ALT: 19
©
Simpson et al. 11 men Longitudinal ~ 4000 17 days Unacclimatised ~ Simulated Active - - SL: 67.1 - - -
2016-1 normobaric (22.8)
ALT:
58.9
(24.9)
Simpson et al. 11 men Longitudinal ~ 4000 17 days Unacclimatised ~ Simulated Passive - - SL: 73.0 - - -
2016-2 normobaric (32.6)
ALT:
77.9
(38.5)
Spliethoffetal. 9 men Longitudinal ~ 4559 2 days Unacclimatised ~ Terrestrial Passive - - SL: 10 - - - -
2013-1 altitude 7
ALT: 9
()
Spliethoffetal. 9 men Longitudinal ~ 4559 4 days Unacclimatised ~ Terrestrial Passive - - SL: 10 - - - -
2013-2 altitude 7
ALT: 12
Q)]
Wasse et al. 10 men RCT 4000 7 hours Unacclimatised ~ Simulated Passive SL: 50 - - SL: 125 SL: 109 - SL: 7535
2012-1 normobaric ®) (30) 79) (2112)
ALT: 39 ALT: 113 ALT:85 ALT:
a7 42) (61) 5504
(2427)
Wasse et al. 10 men RCT 4000 7 hours Unacclimatised Simulated Active SL: 44 - - SL: 133 SL: 92 - SL: 7909
2012-2 normobaric (18) (44) (58) (2599)
ALT: 36 ALT: 124 ALT: 80
19 (40) (@2Y)
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Study Participants Intervention Variables assessed
Design Hypoxic  Duration  Acclimatisation  Hypoxic Activity Hunger GLP-1 Insulin PYY Acylated Total Energy
severity status method status /mm /pg-ml! /uU-mL".  /pg-ml! ghrelin ghrelin intake
/m /pg'ml'l /pg'ml'l /kJ
ALT:
5084
(1952)
Westerterp- 8 men Longitudinal ~ 5000 4 days Acclimatised Simulated Passive SL: 44 - - - - - -
Plantenga et al. hypobaric (24)
1999-1 ALT: 38
12)
Westerterp- 8 men Longitudinal ~ 6000 11 days Acclimatised Simulated Passive SL: 44 - - - - - -
Plantenga et al. hypobaric (24)
1999-2 ALT: 36
©
Westerterp- 8 men Longitudinal 7000 17 days Acclimatised Simulated Passive SL: 44 - - - - - -
Plantenga et al. hypobaric (24)
1999-3 ALT: 32
®)

Data are mean (SD); RCT = randomised controlled trial, SL = sea-level, ALT = altitude
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Supplementary Table 3. Individual study characteristics for studies evaluating fasted hunger

Study Standardised  Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Aeberli et al. 2013-1 -2.000 0.362 0.131 -2.709 -1.291 -5.528 0.000 22 5.66
Acberli et al. 2013-2 0.692 0.233 0.054 0.236 1.148 2.976 0.003 22 6.52
Westerterp-Plantenga et al.

1999-1 -1.172 0.450 0.202 -2.054 -0.290 -2.605 0.009 8 5.04
Westerterp-Plantenga et al.

1999-2 -2.146 0.629 0.396 -3.380 -0.912 -3.409 0.001 8 3.90
Westerterp-Plantenga et al.

1999-3 -3.406 0.903 0.816 -5.177 -1.636 -3.770 0.000 8 2.61
Debevec et al. 2014a-1 0.149 0.297 0.088 -0.433 0.731 0.502 0.616 11 6.11
Debevec et al. 2014a-2 0.117 0.296 0.088 -0.464 0.698 0.394 0.693 11 6.11
Debevec et al. 2014a-3 -0.097 0.296 0.088 -0.678 0.483 -0.328 0.743 11 6.11
Debevec et al. 2014a-4 -0.067 0.296 0.087 -0.646 0.513 -0.225 0.822 11 6.11
Debevec et al. 2014b-1 0.061 0.347 0.120 -0.619 0.741 0.176 0.860 8 5.77
Debevec et al. 2014b-2 0.221 0.351 0.123 -0.466 0.908 0.631 0.528 8 5.74
Debevec et al. 2014b-3 0.859 0.468 0.219 -0.059 1.776 1.835 0.067 6 4.92
Debevec et al. 2014b-4 -0.450 0.420 0.176 -1.273 0.373 -1.072 0.284 6 5.25
Debevec et al. 2016-1 -0.191 0.298 0.089 -0.775 0.393 -0.641 0.521 11 6.10
Debevec et al. 2016-2 -0.095 0.296 0.088 -0.675 0.485 -0.321 0.748 11 6.11
Mean -0.347 0.212 0.045 -0.763 0.069 -1.637 0.102
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Supplementary table 4. Individual study characteristics for studies evaluating postprandial hunger

Study Standardised  Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Acberli et al. 2013-1 -0.234 0.191 0.036 0.608 0.140 1.224 0.221 22 129
Acberli et al. 2013-2 0.232 0.191 0.036 20.142 0.606 1214 0.225 22 1297
T omerterp-plantenga ctal. -0.276 0318 0.101 -0.900 0.348 -0.868 0.386 8. 4
T omerterp-plantenga et al -0.356 0.322 0.104 -0.987 0.275 -1.106 0.269 8. 48
Homerterp-plantenga et al -0.526 0.333 0.111 1179 0.127 -1.579 0.114 5. 4
Bailcy ct al. 2015-1 0.099 0.256 0.065 20.402 0.600 0.388 0.698 12 755
Bailcy ct al. 2015-2 0.100 0.256 0.065 20.601 0.401 20.392 0.695 12 755
Wasse ct al. 2012-1 20.731 0.314 0.099 [1.347 0.115 2.324 0.020 10 508
Wasse ct al. 2012-2 -0.416 0.291 0.085 20.987 0.154 -1.430 0.153 10 5.89
Debevec et al. 2016-1 0.054 0.266 0.071 20.469 0.576 0.201 0.841 11 697
Debevec et al. 2016-2 0.044 0.266 0.071 0.566 0.478 0.165 0.869 11 698
Morishima & Goto 2016 20.306 0319 0.102 20.932 0.320 20.957 0.338 8 493
Matu et al. 2017-1 0.112 0.256 0.065 20.390 0.613 0.436 0.663 12 754
Matu et al. 2017-2 20.321 0.261 0.068 20.834 0.191 11,229 0.219 2 723
Mean 0.146 0.072 0.005 20.288 0.005 22.023 0.043
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Supplementary table 5. Individual study characteristics for studies evaluating energy intake

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Acberli et al. 2013-1 -0.763 0.240 0.058 -1.233 -0.293 -3.181 0.001 22 14.73
Acberli et al. 2013-2 -0.154 0.212 0.045 -0.570 0.262 -0.724 0.469 22 15.62
Wasse et al. 2012-1 -0.888 0.370 0.137 -1.613 -0.164 -2.403 0.016 10 10.78
Wasse et al. 2012-2 -1.205 0411 0.169 -2.011 -0.399 -2.929 0.003 10 9.72
Debevec et al. 2016-1 0.046 0.299 0.089 -0.539 0.631 0.154 0.878 11 12.85
Debevec et al. 2016-2 -0.153 0.300 0.090 -0.741 0.436 -0.508 0.611 11 12.80
Matu et al. 2017a-1 0.021 0.286 0.082 -0.540 0.581 0.072 0.943 12 13.25
Matu et al. 2017a-2 -1.312 0.390 0.152 -2.076 -0.548 -3.365 0.001 12 10.26
Mean -0.495 0.179 0.032 -0.845 -0.145 -2.770 0.006
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Supplementary table 6. Individual study characteristics for studies evaluating postprandial acylated ghrelin concentrations

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Bailey et al. 2015-1 -0.108 0.071 0.005 -0.247 0.031 -1.518 0.129 12 15.04
Bailey et al. 2015-2 -0.050 0.071 0.005 -0.189 0.089 -0.709 0.478 12 15.07
Wasse et al. 2012-1 -0.237 0.079 0.006 -0.391 -0.083 -3.015 0.003 10 13.78
Wasse et al. 2012-2 -0.137 0.078 0.006 -0.290 0.016 -1.760 0.078 10 13.90
Morishima & Goto 2016 -0.169 0.087 0.008 -0.340 0.002 -1.940 0.052 8 12.46
Matu et al. 2017a-1 -0.064 0.071 0.005 -0.203 0.074 -0.910 0.363 12 15.07
Matu et al. 2017a-2 -0.367 0.073 0.005 -0.510 -0.224 -5.026 0.000 12 14.68
Mean -0.160 0.043 0.002 -0.245 -0.075 -3.703 0.000
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Supplementary table 7. Individual study characteristics for studies evaluating fasted total ghrelin concentrations

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Benso et al. 2007 0.295 0.373 0.139 -0.436 1.026 0.792 0.429 9 5.56
Riedl et al. 2012-1 0.154 0.192 0.037 -0.222 0.530 0.805 0.421 33 7.72
Riedl et al. 2012-2 0.644 0.227 0.052 0.198 1.090 2.830 0.005 28 7.30
Riepl et al. 2012-4 -0.478 0.517 0.267 -1.491 0.536 -0.924 0.356 5 4.11
Shukla et al. 2005-1 -0.798 0.252 0.063 -1.291 -0.305 -3.172 0.002 25 7.01
Shukla et al. 2005-2 -1.015 0.270 0.073 -1.544 -0.486 -3.764 0.000 25 6.79
Shukla et al. 2005-3 -0.469 0.231 0.053 -0.921 -0.016 -2.030 0.042 25 7.26
Debevec et al. 2014b-1 -0.450 0.406 0.165 -1.246 0.347 -1.107 0.268 8 5.19
Debevec et al. 2014b-2 -0.144 0.389 0.152 -0.907 0.619 -0.370 0.711 8 5.37
Debevec et al. 2014b-3 0.248 0.454 0.206 -0.641 1.138 0.547 0.584 6 4.70
Debevec et al. 2014b-4 0.489 0.473 0.224 -0.439 1.416 1.033 0.302 6 4.51
Mekjavic et al. 2016 1.362 0.459 0.210 0.464 2.261 2.971 0.003 11 4.65
Debevec et al. 2016-1 0.232 0.335 0.112 -0.424 0.888 0.693 0.488 11 6.00
Debevec et al. 2016-2 0.366 0.341 0.116 -0.302 1.035 1.074 0.283 11 5.92
Mean 0.003 0.170 0.029 -0.331 0.337 0.016 0.987
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Supplementary table 8. Individual study characteristics for studies evaluating postprandial total ghrelin concentrations

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Riepl et al. 2012-4 -1.098 0.549 0.301 -2.174 -0.022 -2.001 0.045 5 10.65
Debevec et al. 2014b-2 -0.106 0.344 0.118 -0.780 0.567 -0.309 0.757 8 21.35
Debevec et al. 2014b-4 0.406 0.412 0.170 -0.401 1.214 0.987 0.324 6 16.65
Debevec et al. 2016-1 0.065 0.293 0.086 -0.508 0.639 0.223 0.824 11 25.98
Debevec et al. 2016-2 0.295 0.299 0.089 -0.290 0.881 0.989 0.323 11 25.98
Mean 0.020 0.197 0.039 -0.367 0.407 0.101 0.920
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Supplementary table 9. Individual study characteristics for studies evaluating fasted GLP-1 concentrations

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Bailey et al. 2004 0.370 0.135 0.018 0.105 0.636 2.736 0.006 7 11.49
Debevec et al. 2014b-1 0.015 0.122 0.015 -0.225 0.255 0.124 0.901 8 12.48
Debevec et al. 2014b-2 -0.095 0.123 0.015 -0.336 0.146 -0.775 0.439 8 12.46
Debevec et al. 2014b-3 0.301 0.145 0.021 0.017 0.584 2.079 0.038 6 10.83
Debevec et al. 2014b-4 -0.119 0.142 0.020 -0.398 0.159 -0.842 0.400 6 11.02
Mekjavic et al. 2016 0.095 0.105 0.011 -0.110 0.300 0.910 0.363 11 13.93
Debevec 2016-1 -0.223 0.106 0.011 -0.431 -0.016 -2.112 0.035 11 13.84
Debevec 2016-2 -0.043 0.104 0.011 -0.248 0.161 -0.415 0.678 11 13.95
Mean 0.028 0.070 0.005 -0.108 0.165 0.407 0.684
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Supplementary table 10. Individual study characteristics for studies evaluating postprandial GLP-1 concentrations

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Bailey et al. 2015-1 -0.020 0.091 0.008 -0.199 0.158 -0.224 0.823 12 11.11
Bailey et al. 2015-2 -0.019 0.091 0.008 -0.198 0.160 -0.209 0.835 12 11.11
Debevec et al. 2014b-2 -0.078 0.112 0.013 -0.297 0.142 -0.694 0.488 8 8.63
Debevec et al. 2014b-4 0.299 0.132 0.017 0.040 0.557 2.265 0.024 6 6.86
Mekjavic et al. 2016 0.097 0.096 0.009 -0.090 0.284 1.014 0.310 11 10.54
Debevec et al. 2016-1 0.114 0.096 0.009 -0.073 0.302 1.197 0.231 11 10.52
Debevec et al. 2016-2 -0.227 0.097 0.009 -0.417 -0.038 -2.355 0.019 11 10.41
Morishima & Goto 2016 0.112 0.112 0.013 -0.108 0.332 0.996 0.319 8 8.62
Matu et al. 2017a-1 0.075 0.091 0.008 -0.105 0.254 0.816 0.414 12 11.09
Matu et al. 2017a-2 0.027 0.091 0.008 -0.152 0.206 0.297 0.767 12 11.11
Mean 0.029 0.040 0.002 -0.050 0.108 0.716 0.474
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Supplementary table 11. Individual study characteristics for studies evaluating fasted leptin concentrations

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Zaccaria et al. 2004-1 -0.620 0.368 0.135 -1.340 0.101 -1.686 0.092 12 4.04
Zaccaria et al. 2004-2 -0.848 0.393 0.154 -1.617 -0.079 -2.160 0.031 12 3.92
Bailey et al. 2004 -0.482 0.466 0.217 -1.394 0.431 -1.034 0.301 7 3.58
Benso et al. 2007 -0.842 0.452 0.205 -1.729 0.045 -1.861 0.063 9 3.64
Castell et al. 2010-1 -0.533 0211 0.044 -0.946 -0.121 -2.532 0.011 35 4.73
Castell et al. 2010-2 -1.035 0.193 0.037 -1.414 -0.657 -5.361 0.000 56 4.79
Castell et al. 2010-3 -0.510 0.170 0.029 -0.844 -0.176 -2.996 0.003 53 4.86
Shukla et al. 2005-1 0.124 0214 0.046 -0.295 0.542 0.578 0.563 30 471
Shukla et al. 2005-2 0.930 0.255 0.065 0.430 1.429 3.648 0.000 30 4.55
Shukla et al. 2005-3 0.848 0.248 0.062 0.361 1.334 3414 0.001 30 4.58
Smith et al. 2011-1 -0.131 0.370 0.137 -0.857 0.595 -0.354 0.723 10 4.03
Smith et al. 2011-2 -0.026 0.369 0.136 -0.749 0.697 -0.071 0.943 10 4.04
Smith et al. 2011-3 0.054 0.369 0.136 -0.669 0.777 0.146 0.884 10 4.04
Tschop et al. 2000 0.659 0.288 0.083 0.095 1.223 2.292 0.022 20 441
Vats et al. 2004-1 -1.335 0.507 0.257 -2.329 -0.341 -2.632 0.008 10 3.39
Vats et al. 2004-2 -1.090 0.466 0.217 -2.002 -0.177 -2.340 0.019 10 3.58
Vats et al. 2004-3 -1.162 0.477 0.228 -2.097 -0.226 -2.434 0.015 10 3.52
Debevec et al. 2014b-1 0.515 0.439 0.193 -0.345 1.375 1.173 0.241 8 3.70
Debevec et al. 2014b-2 -0.425 0.430 0.185 -1.268 0.419 -0.986 0.324 8 3.74
Debevec et al. 2014b-3 0.795 0.546 0.298 -0.275 1.866 1.456 0.145 6 3.21
Debevec et al. 2014b-4 -0.085 0.477 0.227 -1.020 0.850 -0.178 0.859 6 3.53
Snyder et al. 2008 2.242 0.437 0.191 1.385 3.098 5.128 0.000 25 3.71
Mekjavic et al. 2016 1.307 0.479 0.229 0.369 2.246 2.730 0.006 11 3.52
Debevec et al. 2016-1 -0.354 0.362 0.131 -1.064 0.356 -0.977 0.329 11 4.07
Debevec et al. 2016-2 -0.189 0.355 0.126 -0.884 0.506 -0.532 0.595 11 4.10
Mean -0.086 0.159 0.025 -0.399 0.226 -0.542 0.588
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Supplementary table 12. Individual study characteristics for studies evaluating fasted PYY concentrations

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Debevec et al. 2014b-1 -0.197 0.277 0.076 -0.739 0.345 -0.714 0.475 8 13.07
Debevec et al. 2014b-2 0.218 0.277 0.077 -0.325 0.761 0.786 0.432 8 13.02
Debevec et al. 2014b-3 -0.168 0.318 0.101 -0.792 0.456 -0.527 0.598 6 9.85
Debevec et al. 2014b-4 -0.331 0.325 0.105 -0.967 0.306 -1.019 0.308 6 9.47
Mekjavic et al. 2016 0.114 0.234 0.055 -0.345 0.573 0.487 0.626 11 18.20
Debevec et al. 2016-1 0.083 0.234 0.055 -0.375 0.542 0.357 0.721 11 18.26
Debevec et al. 2016-2 0.145 0.235 0.055 -0.315 0.606 0.620 0.535 11 18.13
Mean 0.017 0.100 0.010 -0.179 0.213 0.170 0.865
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Supplementary table 13. Individual study characteristics for studies evaluating postprandial PYY concentrations

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Bailey et al. 2015-1 -0.055 0.153 0.023 -0.354 0.245 -0.357 0.721 12 14.06
Bailey et al. 2015-2 0.398 0.159 0.025 0.087 0.709 2.507 0.012 12 13.53
Debevec et al. 2014b-2 0.103 0.188 0.035 -0.265 0.471 0.549 0.583 8 11.20
Debevec et al. 2014b-4 -0.041 0.216 0.047 -0.465 0.383 -0.190 0.850 6 9.34
Wasse et al. 2012-1 -0.285 0.171 0.029 -0.620 0.049 -1.670 0.095 10 12.50
Wasse et al. 2012-2 -0.220 0.169 0.029 -0.552 0.112 -1.297 0.195 10 12.61
Debevec et al. 2016-1 0.195 0.161 0.026 -0.121 0.510 1.208 0.227 11 13.32
Debevec et al. 2016-2 0.022 0.160 0.025 -0.291 0.335 0.138 0.890 11 13.45
Mean 0.019 0.081 0.006 -0.139 0.177 0.241 0.810
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Supplementary table 14. Individual study characteristics for studies evaluating fasted insulin concentrations

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval
Zaccaria et al. 2004-1 0.204 0.311 0.097 -0.406 0.814 0.655 0.513 12 3.48
Zaccaria et al. 2004-2 0.475 0.325 0.106 -0.162 1.113 1.462 0.144 12 3.40
Bailey et al. 2004 -0.459 0.424 0.180 -1.290 0.373 -1.081 0.280 7 2.90
Benso et al. 2007 0.333 0.366 0.134 -0.383 1.050 0.912 0.362 9 3.20
Riedl et al. 2012-1 -0.154 0.187 0.035 -0.520 0.213 -0.823 0.411 33 4.08
Riedl et al. 2012-2 0.196 0.204 0.041 -0.204 0.595 0.961 0.337 28 4.01
Smith et al. 2011-1 -0.203 0.341 0.116 -0.871 0.466 -0.595 0.552 10 3.32
Smith et al. 2011-2 0.180 0.340 0.116 -0.487 0.847 0.529 0.597 10 3.33
Smith et al. 2011-3 0.553 0.363 0.131 -0.157 1.264 1.526 0.127 10 3.21
Spliethoff et al. 2013-1 1.252 0.475 0.226 0.320 2.183 2.634 0.008 9 2.66
Spliethoff et al. 2013-2 0.609 0.387 0.150 -0.151 1.368 1.571 0.116 9 3.09
Vats et al. 2004-1 0.510 0.359 0.129 -0.193 1.214 1.421 0.155 10 3.23
Vats et al. 2004-2 0.499 0.358 0.128 -0.203 1.201 1.393 0.164 10 3.24
Vats et al. 2004-3 0.124 0.339 0.115 -0.541 0.788 0.365 0.715 10 3.33
Young et al. 1989-1 0.431 0.456 0.208 -0.462 1.324 0.946 0.344 6 2.75
Young et al. 1989-2 1.584 0.655 0.428 0.301 2.867 2.420 0.016 6 1.94
Young et al. 1989-3 1.884 0.726 0.527 0.461 3.307 2.595 0.009 6 1.72
Young et al. 1989-4 1.297 0.591 0.350 0.138 2.456 2.193 0.028 6 2.17
Young et al. 1989-5 1.083 0.549 0.301 0.007 2.159 1.973 0.049 6 2.34
Sawhney et al. 1991-1 3.565 0.748 0.559 2.099 5.030 4.768 0.000 15 1.65
Sawhney et al. 1991-2 0.740 0.311 0.097 0.130 1.350 2.379 0.017 15 3.48
Sawhney et al. 1991-3 2.224 0.514 0.264 1.217 3.231 4.329 0.000 15 2.49
Sawhney et al. 1991-4 0.576 0.298 0.089 -0.008 1.159 1.934 0.053 15 3.55
Sawhney et al. 1986 -0.270 0.344 0.118 -0.944 0.403 -0.787 0.431 10 3.31
Larsen et al. 1997-1 2.138 0.684 0.468 0.797 3.479 3.124 0.002 8 1.84
Larsen et al. 1997-2 -0.852 0.441 0.194 -1.716 0.012 -1.934 0.053 8 2.82
Braun et al. 2001 0.965 0.373 0.139 0.234 1.697 2.587 0.010 12 3.16
Debevec et al. 2014b-1 0.154 0.380 0.144 -0.591 0.898 0.405 0.686 8 3.12
Debevec et al. 2014b-2 -0.974 0.458 0.210 -1.872 -0.075 -2.124 0.034 8 2.74
Debevec et al. 2014b-3 0.983 0.531 0.282 -0.057 2.024 1.852 0.064 6 2.41
Debevec et al. 2014b-4 -1.719 0.686 0.471 -3.064 -0.374 -2.505 0.012 6 1.84
Mekjavic et al. 2016 0.004 0.322 0.104 -0.627 0.635 0.013 0.990 11 3.42
Simpson et al. 2016-1 -0.336 0.331 0.109 -0.985 0.312 -1.016 0.310 11 3.38
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Simpson et al. 2016-2

-0.145

0.324

0.105

-0.780

0.489

-0.449

0.653

11

341

Mean

0.408

0.121

0.015

0.171

0.645

3.377

0.001
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Supplementary table 15. Individual study characteristics for studies evaluating postprandial insulin concentrations

Study Standardised Standard error Variance Lower 95% Upper 95% z-value p-value Sample Weight
mean confidence confidence size
difference interval interval

Spliethoff et al. 2013-1 -0.104 0.324 0.105 -0.739 0.531 -0.321 0.748 9 8.25
Spliethoff et al. 2013-2 0.223 0.327 0.107 -0.418 0.864 0.682 0.495 9 8.10
Bailey et al. 2015-1 0.156 0.282 0.079 -0.396 0.708 0.555 0.579 2 10.93
Bailey et al. 2015-2 0.049 0.280 0.078 -0.500 0.598 0.175 0.861 2 11.05
Debevec et al. 2014b-2 -0.845 0.399 0.159 -1.627 -0.062 -2.116 0.034 5.44
Debevec et al. 2014b-4 -0.609 0.431 0.186 -1.454 0.236 -1.413 0.158 6 4.67
Mekjavic et al. 2016 0.240 0.297 0.088 -0.341 0.821 0.810 0418 11 9.86
Matu et al. 2017a-1 -0.056 0.280 0.078 -0.605 0.493 -0.201 0.841 12 11.05
Matu et al. 2017a-2 0.082 0.280 0.079 -0.467 0.632 0.294 0.769 12 11.03
Simpson et al. 2016-1 -0.343 0.301 0.090 -0.932 0.247 -1.139 0.255 11 9.58
Simpson et al. 2016-2 0.136 0.294 0.086 -0.439 0.712 0.464 0.643 11 10.05
Mean -0.035 0.093 0.009 -0.217 0.147 -0.376 0.707
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