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Abstract

In most industrialized countries, the buildings sector is the largest contributor to energy consumption
and associated carbon emissions. These emissions can be reduced by a combination of energy efficiency
and the use of building integrated renewables. Additionally, either singularly or as a group, buildings
can provide energy network services by timing their use and production of energy. Such grid-aware or
grid-responsive buildings have been termed Active Buildings. The recent UK Government investment of
£36m in the Active Building Centre is a demonstration that such buildings are of considerable interest.
One problem with the concept, however, is that there is no clear definition of Active Buildings, nor a
building code to design or research against. Here we develop and test an initial novel code, called
ABCodel. Itis based on the need to encourage: (i) the minimisation of energy consumption; (ii) building-
integrated generation; (iii) the provision of grid services; and (iv) the minimisation of embodied carbon.
For grid services, we find that a lack of a precise, quantifiable measure, or definition, of such services
means that for the time being, theoretical hours of autonomy of the building is the most reasonable
proxy for these services within such a code.

Practical Application: Buildings have a special role in the transition to a sustainable energy
infrastructure and a decarbonised society. They can become an active part of energy networks by
leveraging strategies and technologies that are already available, but are not yet articulated in an
integrated scheme that facilitates their uptake at scale. This work provides a review of the issues and
opportunities, and introduces a practical framework aimed at helping designers and researchers study
and deliver such buildings, and in particular the buildings that will form the exemplars in the first wave
of Active Buildings.

Keywords: Active Buildings, grid-responsive buildings, defornocere, design standards, ABCodel

1 Introduction

The building sector is responsible for 40% of final energy consumption™ and 36% of greenhouse gas
(GHG) emissions in Europe.! With approximately 80% of final energy consumption in buildings being
supplied by fossil fuels such as coal, oil and natural gas,? the building sector clearly needs to change its
relationship with the energy-services sector.

To minimise CO2 emissions in the EU, the Energy Performance of Buildings Directive (EPBD)3
states that buildings should have a ‘very high energy performance’ (page 153/18), with renewable
energy playing a fundamental role. By producing renewable energy, buildings have the potential to

* Final energy consumption refers to ‘the energy commodities delivered for energy purposes to industry, transport,
households, services including public services, agriculture, forestry and fisheries, including the consumption of
electricity and heat by the energy branch for electricity and heat production and including losses of electricity and heat

in distribution and transmission’.10?



actively contribute to the vision for clean energy. Going further, thanks to the integration of storage
systems and the connectivity to electric vehicles, buildings could be more flexible components of the
energy system, adapting to the needs of the electricity grid through load shifting and peak shavings.*
However, there have been difficulties materialising these aspirations due to ambiguity of definitions,>®
and most implementations have neglected the potential buildings have to support the grid.”

In the UK, the Government has an aspiration to halve the energy use of new buildings by 2030,8"
and Parliament now requires net zero GHG emissions by 2050,° as advised by the Committee on Climate
Change.'® Determining how to deliver high-performing buildings that support the wider energy network
and achieve significant CO; emission reductions is thus critical.

To define such a pathway, this paper explores the concept of Active Buildings (ABs), which have
been portrayed as ‘power stations’ thanks to their ability to generate, store and release energy in
response to their own demand and the needs of the local grid.* Promoted as part of the SPECIFIC
project, the concept was subsequently demonstrated in buildings such as the Active Classroom and
Active Office.’> Nowadays, ABs are advertised as buildings that “support the wider energy system by
intelligently integrating renewable energy technologies for heat, power and transport”.'3 This was not
an isolated effort, but part of an emerging field that recognises the potential for buildings to support
the energy infrastructure, with similar initiatives in the US under the so-called Grid-interactive Efficient
Buildings,'* among others.

However, it is questionable how lessons learned from pioneering experiences can be upscaled to
transform the construction and energy sectors, to meet the societal and environmental agendas. Equally
important, any barriers preventing a timely transition must be acknowledged, along with potential
solutions. To these ends, the UK Research and Innovation'® established the Active Building Centre (ABC)
consortium.

This paper explores a way forward for the AB concept. Section 2 sets the background to the
relationship between buildings and energy networks by reviewing related concepts and discussing how
buildings can promote a net positive environmental impact. Section 3 discusses the issues of grid-
supporting buildings, and indicates why there has been limited progress to date. Section 4 introduces a
novel approach to ABs around an Active Building Code to enable progress while helping gather the
evidence required to inform future developments. Formulated as an active code itself (one that may
change in the future based on such evidence), an initial proposition, called ABCodel, is presented to
explore how previous gaps could be bridged in a way relevant to all stakeholders, together with the
evaluation of twenty demonstrators. Lastly, Section 6 discusses future perspectives and Section 7
summarises the conclusions of this study.

2 Background to buildings and energy networks

This section presents the background to the relationship between buildings and energy networks. The
review focuses on existing building design approaches, definitions and ways in which buildings could
support energy networks to enable a more positive environmental impact.

2.1 Building design approaches

Approaches to designing buildings with a net positive environmental impact have been typically
concerned with the following aspects:

" Targets vary per constituent country and sector, and progress is routinely monitored.



e Energy. The excessive use of natural resources drives the design and the goal is to minimise
energy demand.

e Environmental impact. Environmental degradation drives the design and the goal is to promote
sustainability (commonly expressed via GHG emissions).

e Cost. The goal is to ensure that capital investments offer an acceptable return period.

A complementary aspect is how energy is delivered to the building, either with or without a connection
to an external energy network (Figure 1). There are buildings that meet their energy demand through
on-site energy generation only (autarkic, autonomous or grid-isolated buildings) and others that import
at least some of the required energy from an energy network (grid-connected buildings*). Autarkic
buildings can be viewed as a ‘pure’ example of zero-energy buildings, evoking the ideal of pre-industrial
buildings.® This appears to be a viable approach only if the energy demand of the building is controlled
carefully and its generation and storage systems are meticulously sized.'®'’” Although advantages
include no utility bills and increased levels of resilience in regions with a poor infrastructure, it can lead
to over-engineering, hence becoming an unattractive solution financially. Most buildings in countries
with developed economies are therefore connected to energy networks (Figure 1).

PRE-INDUSTRIAL BUILT STOCK NEW BUILDINGS ASPIRATIONS

a4 »

Figure 1: Overview of the relationship between the building (bld), environment (env) and energy networks (e-net) and the
corresponding mapping between energy demand and generation of buildings (with a dashed line) over time. The green area
indicates net positive buildings. The red area signifies buildings that consume more energy than they produce.

There is an aspiration to transition to low-energy buildings, mainly through a tighter control of energy
demand. Taken further, net zero energy buildings produce as much energy as they consume and net
positive (or net plus) energy buildings have a net surplus than can be exported to the grid. Currently, the
construction and energy sectors pay attention to low, net zero and net positive carbon buildings, which
address both operational and embodied carbon.18-20%

* Use of the word ‘grid’ varies in the literature, from a generic term that could represent any energy network (for example
electrical, gas, district heating) to a specific reference to the power grid (electricity exclusively). Here, we favoured
‘energy networks’ for the former use and ‘grid’ for the latter.

§ To achieve net-zero carbon buildings, emissions must be reduced across the whole life cycle, which means tackling both
the emissions caused by a building’s operational energy use (operational carbon) and the emissions caused by ‘everything
else’, such as the manufacturing of materials, transportation to site, onsite construction, refurbishment and disposal
processes (embodied carbon). As in many contexts, carbon is used as short-hand for ‘greenhouse gases’, quantified in carbon-
dioxide equivalent emissions (CO2e).



2.2 Regulations, standards and definitions

There are numerous building regulations and standards worldwide that aim to deal with the energy and
environmental performance of buildings,®?! with dozens of definitions being suggested or investigated
in relevant studies (see representative examples in Supplemental Material). However, definitions are
not necessarily accompanied by a calculation method, therefore hindering their adoption and practical
application.??%3 Examples of commercially successful initiatives include BREEAM (UK, 1990), Passivhaus
(Germany, 1991) and LEED (US, 1998).

Torcellini et al.?* draw the attention to why definitions and their performance targets matter by
recalling that (i) they help designers make informed design decisions and that (ii) they set a clear goal
for stakeholders, which can be methodically attained during the design process. For example, this is the
case for the Passivhaus Standard, which sets 15 kWh-m2-a* as the maximum allowable value for heating
energy demand and 120 kWh-m?2-a! for primary energy demand. Parkin, Herrera and Coley®
investigated how different definitions related to net zero energy and carbon constrain the design space
for architects, finding that zero-carbon targets offer more design options than zero-energy ones. As an
example, a low-energy building with a total energy demand of just 40 kWh-m2-a’! needs to be under 3
storeys if expected to run on PV panels on its own roof. This points to the need to create a realistic rating
standard which incorporates buildings that are not necessarily net zero energy, and that is most likely
based on a scale, rather than a simple pass/fail philosophy unless we are to overly constrain the design
space.

The lack of a uniform definition of high-performing buildings as well as of a global design
standard has resulted in an ambiguity in the definition of performance targets, and hence of design
spaces. Studies analysing regulatory frameworks and definitions identified this as a source of confusion
for stakeholders and an insurmountable issue when attempting to cross-validate results from different
rating systems. Sartori, Napolitano and Voss?? questioned what aspects need to be considered when
designing net zero energy buildings (Figure 2). For example, grid interaction is one of these aspects but
this is commonly neglected in practice due to challenges such as the spatial variability in the carbon
intensity of electricity generation (Figure 3) or its technology-sensitive cost (Figure 4).

Focusing on metrics, in the UK, whole-life carbon strategies are becoming increasingly important
given the Parliament’s net-zero emissions target by 2050,° similarly to other countries.?%2>26 Section 2.3
discusses how buildings can also support the decarbonisation of energy networks to promote a net
positive environmental impact of both the construction and energy sectors.

SYSTEM'S WEIGHTING BALANCE TEMPORAL MEASUREMENT
BOUNDARY SYSTEM SYSTEM MATCH & VERIFICATION

Physical Metrics Balancing period Load matching Ma&V
building(s) & site kWhip/e, COge, £, ... instant — lifetime stress on generation is it doable?
Balance Symmetry Type Grid interaction Rating system
what goes in bidirectional? loads, exports,... stress on imports ~ compliance tolerance
Boundary Accounting Agenda Whole-systems Enabling learning
comparability value over time hard-set requirements transport introspection

Figure 2: Framework for the definition of net-zero energy buildings (diagram based on the work by Sartori et al.??).
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Figure 4: Levelized cost of energy”” for renewable sources.?®™

" The levelized cost of energy (LCOE) is a metric that describes the overall cost of energy generation system over its lifetime
(e.g. $ or £) per unit of energy generated (e.g. kWh). If the LCOE is lower than the price of energy purchased from the
grid the system is economically advantageous for its owner.

™ Open Energy Information collects data from external publications and reports standardised summaries (see details in
source). The number next to each technology in the x-axis indicates the number of reports considered for the estimates.



2.3 The needs of energy networks

Although there are several energy networks (e.g. electricity, gas), past discussions around grid-servicing
buildings have focused almost exclusively on the electricity grid arguably due to its ubiquity and
versatility to meet energy needs in buildings. As a whole, the UK’s electricity network will need to
overcome three main challenges to transition to a low-carbon economy: the retirement of existing
generators, the rapid installation of new low-carbon and renewable generators, and a significant
increase in electricity demand.3° This is being translated into three core themes: decarbonisation,
decentralisation and digitalisation.3! At the same time, electricity demand is expected to increase
further and rapidly as space heating and road transport shift to electricity. 03

New low-carbon and renewable generators are not simply drop-in replacements because many
are non-dispatchable by themselves (generation depends on weather conditions rather than the energy
demanded) and their characteristics allow for a decentralised implementation in the network.3? This
means that a reinforced and extended network is needed to support the connection of these new
generators as well as new operational challenges to balance the network to deliver a consistent energy
supply (voltage and frequency)3* that is still flexible to adapt to changes in demand.3! The “duck-shaped”
net-load curve illustrates the need for flexibility in energy demand to reduce temporal imbalances
(Figure 5).3> Here, buildings could reduce, shift and flatten their energy demand through demand-side
management strategies (Figure 6), giving rise to a synergetic relationship with the grid and opening new
market opportunities (Table 1).
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Figure 5: Example load curves illustrating grid instability due to high penetration of solar energy production without energy
storage systems compared to a low-penetration baseline based on California 1SO.3> The two main issues to the high-
penetration scenario are the risk of over-generation and rapid changes in net load (depicted by slope a of the tangent line).

Diamonds indicates US Department of Energy estimates, circles those form National Renewable Energy Laboratory
Annual Technology Baseline and triangles indicate point estimates.
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Figure 6: Overview of selected demand-side management strategies and their influence on the final energy demand of the
building.

Grid-supporting buildings represent a great opportunity for the flexibility of the network thanks
to their potential to store and release their self-produced energy in a timely manner (Table 1),
accelerating the transition to a low-carbon grid.3® Buildings can also decentralise energy supply by
shifting from passive users to active parts of the energy infrastructure. This can enhance energy quality
and security3” for example by offering faster responses to the changing levels of renewable generation
or reducing transmission losses.3® By developing a dynamic, two-way interaction with the grid
(aspirations in Figure 1) and integrating electric vehicles, buildings can support the energy network
while meeting occupant needs and minimising their carbon footprint.3® Despite their potential and
critical role in smart energy networks,*® their role as active agents in the grid is often overlooked in
definitions of low-energy and low-carbon buildings, and undefined in relevant design standards
(Sections 2.1 and 2.2).

A key consideration for grid-supporting buildings is how to articulate their potential
contributions in the market. Considering the privatized UK market with (1) generators, (2) transmission
network, (3) distribution network and (4) consumers, suppliers typically purchase energy in the
wholesale market to generators to then sell it in the retail one to consumers.*! The advent of on-site
small-scale distributed generators has been translated in limited retail market access via savings in
purchased energy or in payments through specific schemes such as Feed-In Tariffs,*? but the new
possibilities associated with net-zero carbon energy networks have not yet been realised.** This has
been partly addressed with the transition of the Distribution Network Operators (the owners of the
distribution network) to the so-called Distribution System Operators, a name that reflects the new role
they can play balancing this part of the grid thanks to innovations such as smart-metering.! This opens



the door to new relationships with those consumers that could proactively support the network, which
benefits the whole system as the grid features a tight integration of all its elements. However,
possibilities have not yet converged to solutions that values and encourages grid-supporting
contributions from such consumers (including access to the ancillary services market).4344

Although consumers might be able to offer some grid-supporting services in the context of
distribution networks, further potential can be unlocked if several join under the same umbrella in
energy aggregators.* The benefits include not only the possibility of enhanced management of its
members (trading energy internally) or benefitting from the economy of scales (shared generation and
storage infrastructure), but also being perceived as virtual power plants by the wider energy network
thanks to their overall size. As such, they are better positioned to meet the technical requirements
needed for system operators to rely on them as grid-balancing agents in the transmission network.*>46
This, for instance, is already a route to market in the UK, where the National Grid Energy System
Operator welcomes their participation to some grid-balancing services as part of its privatised energy
system.3* However, to encourage their participation in the network, further efforts are also needed here
in terms of regulatory framework (access to wholesale and ancillary services markets), advanced
metering infrastructure (similarly to the decentralisation and digitalisation challenges for system
operators) and improvements of generation forecasts (central in distributed low-carbon
networks).31:4447



Table 1: Summary of the “Potential Grid Services Provided by Demand-Side Management in Buildings” identified in the US
Department of Energy overview on grid-interactive efficient buildings;!* besides the characteristics of the US grid, potential
market size evaluation considers current valuations by their regional transmission organisations and independent systems
operators into large (L), moderate (M) and small (S).

Grid-service Comment and potential benefits Strategies at building level

Potential market
size in the US
Efficiency

Load Shedding
Load Shifting
Load Modulation
Generation

Energy generation Reduces running costs of existing power plants. L
Avoids or reduces investment in new power plants and
associated running costs.
Avoids or reduces costs associated with the backup
generation to meet demand in case of supply disruptions.
This addresses the need of the grid to operate within
statutory frequency limits, which fluctuates with changes in
demanded power, among other events. Potential benefits
include reductions in cost associated with modulation.
This relates to rapid changes in power demand like that
illustrated in Figure 5. Benefits include savings in bringing
generators online (start-up) or offline (shutdown) and
associated costs.
This refers to avoided or deferred investments in power
infrastructure by recognising least-cost actions may be
elsewhere in the demand-supply chain (e.g. influencing M . o o .
power demand needs through better efficiency or load
shifting).
This addresses the need of the grid to operate within
statutory voltage limits, which fluctuates with the
Voltage support characteristics of power demand. Supporting voltage S o
regulation could help avoiding capital costs associated with
control equipment, maintenance and operation.

—
L]
L]

Generation capacity

Contingency reserve

Frequency regulation

Ramping rate

Non-wires
alternatives

3 Discussion

This section discusses how buildings could help decarbonise energy networks. It considers how
associated challenges may jeopardise benefits for energy networks and the environment and the roles
building design standards and their rating systems play in these regards.

3.1 Buildings and energy networks: needs and challenges

Integrating renewables into the wider energy networks is required for a cleaner electricity sector across
Europe,® with energy generation at building level being one of the most promising opportunities.*® The
EPBD?3 dictates the use of energy from renewable sources, but it does not mandate its share in the final
energy consumption. In this regard, the Buildings Performance Institute Europe suggests that the
minimum share of energy from renewable sources in final energy consumption should be 50-90%*° and
even encourages energy positive buildings.”® Achieving the latter may, however, restrict designs to
single-storey buildings>* — indeed most energy positive ones are — even though the building type plays
a pivotal role in this regard (for example, warehouses with minimal plug loads compared to hospitals).>?



To reduce their carbon footprint but also their bills, consumers are often encouraged to
participate in the electricity market by becoming ‘prosumers’: that is, producers and consumers of
renewable energy.>3 This is reinforced by the fact that PV systems are already at grid parity>* in several
European countries such as Italy®> or Germany,*® while others like the UK are expected to follow next.>7#*
Maximising self-consumption can also improve the stability of the grid by flattening the curve of net
energy demand, if generation naturally aligns with demand or if energy storage systems mediate
interactions.* In addition, reductions in peak demand help avoid investments in infrastructure that
would have been needed otherwise (the net effect of existing buildings is to increase the stress on the
grid).>® With the extensive electrification of transport and heating being fundamental to achieving a net
zero economy by 2050, the use of electric vehicles and heat pumps are anticipated to be rapidly
expanded, thus further stressing local electrical networks.

Buildings can provide energy flexibility through distributed online energy storage systems,>®
which could increase the resilience of the network at the expense of a more complex peer-to-peer
communication infrastructure. Here, Weckx et al.3® advocate for a combination of local and centralised
strategies to balance the cost-effectiveness of solutions. Energy aggregators are argued to be best
placed to provide flexibility and facilitate the uptake of grid-supporting buildings because (1) the
economies of scale and scopes makes them cost-effective; (2) they can collect the evidence of how
distributed systems work in practice to allow the market converge to superior solutions; (3) they can
facilitate at present access to the retail, wholesale and ancillary services markets.*>®0 At the same time,
innovations in the way systems operators balance the grid mean that they will be able to operate a
distributed low-carbon grid thanks to digitalisation, which in the UK is expected to happen by 20253!
(although the annual carbon intensity may not drop to net-zero until 2030 in the best-case scenario®?).
Hence, the technical barriers for the adoption of grid-supporting buildings are already being removed.

From a building design perspective, these discussions presume data are available to judge how
ABs could interact with the local network, but at design stage this is unlikely to be the case.®?7%> Overall,
qguantifying the impact of building strategies on the energy network is difficult. This is because (i) it
depends on the characteristics of the local grid and (ii), there is insufficient evidence given that such
strategies have been adopted in pioneering projects in which retailers did not necessarily have a
valuation scheme in place. In the US, the Department of Energy is supporting the research of “Grid-
interactive Efficient Buildings” to explore opportunities and identify potential market sizes (Table 1 and
Supplemental Material).1464%5%8 These are but illustrative estimates because the local features of
networks, policy, regulations and economic schemes will ultimately influence value streams.

3.2 Existing standards and rating systems: what is missing?

3.2.1 Design stage

A net-zero carbon economy needs buildings with reduced whole-life carbon emissions.?° Operational
carbon is already being influenced by building regulations,®® which try to reduce the energy demand of
at least some energy end-uses. This is typically based on a notional building of the same size and shape
as the actual building, an approach criticised for accepting poor design decisions and overall
performance, as reductions in emissions are quantified relative to the building’s particular shape and
size.”%72 An alternative is given by the Passivhaus Standard, which influences many more building design
aspects by establishing absolute performance goals.”? Yet, the risk entailed by a pass-or-fail certification

¥ The total installed cost** of solar PVs has dropped'®® to approximately £1,000-kW-! and the electricity retail price for the
residential sector is expected to range between £0.155-kWh™ and £0.195-kWh in the 2020s'%*, making grid parity
attainable if other influential factors'® remain the same.



philosophy hinders a broader adoption of the standard,’* while others like BREEAM or LEED have opted
for non-binary rating systems that are more flexible. Moreover, renewable energy generation is
fundamental to offset operational carbon while energy networks decarbonise.’® Taking into
consideration the wider network interaction is, however, necessary to ensure buildings play a
supportive role according to the state of the grid,’® this needing information that is unlikely to be known
at the early design stages®? and that is expected to change over time. Unfortunately, design standards
do not currently support community-based concepts where prosumers trade energy.’®

A crucial omission from current building standards is embodied carbon.’® However, the
landscape is changing rapidly, following improvements in embodied carbon analysis tools and the
increasing pressure to pursue net-zero carbon buildings.2%’”78 Thus, any new building code aiming to
drive a move to net-zero carbon buildings — such as the one we propose here (see Section 4) — must
include embodied carbon.

3.2.2 In-use stage

At this stage the key variable is energy because it can be measured directly and is the proxy for
operational carbon once construction has been completed. The only predictions available at design
stage in countries like the UK come from design-based compliance procedures, which do not intend to
predict actual in-use energy performance (believing that is the case leads to a prediction gap where in-
use buildings perform demonstrably worse than what compliance modelling may imply due to key
differences in scope and assumptions).”>8! Additional efforts are required to estimate in-use energy
performance during the design stages to be then followed up by POE to ensure performance targets are
met or lessons are being learned for future projects.? However these are activities rarely pursued in
practice'®8384 and, when they are, it is not surprising to discover a significant performance gap.&°

To achieve net zero operational carbon, the UK House of Commons advocates the use of
mandatory operational ratings to promote energy savings.”” In the UK, the Energy Performance
Certificates (EPCs) include the mandatory design compliance ratings that, like the previous, do not
intend to estimate in-use performance, this sparking the general criticism of such certificates.®’ On the
contrary, the Display Energy Certificates (DECs) do target operational ratings, but they are only a
requirement for some public buildings.

Overall, the literature often suggests making the Building Regulations more stringent to improve
operational performance.®> A notorious example is set by the Passivhaus approach given not only its
headline requirements but also by its compulsory quality assurance procedure at all stages that
minimises potential performance gaps between intended and operational energy use.?> Considering the
influence stakeholders such as building owners and occupants have in operational energy use, even in
Passivhaus, standards need to provide incentives for well-performing buildings,® and/or penalties for
not meeting performance targets.®” These aspects are however missing in the majority of the building
regulations of European countries®® and building standards such as BREEAM and LEED.

4 ABCode: a proposition for an Active Building Code

As buildings ought to have a more dynamic relationship with the energy sector, a way of evaluating such
a relationship is required. The lack of a definition of what an active building is seriously curtails the
ability to do research on such buildings, as the problem space is unbounded, and particularly for teams
to compare results. However, as low carbon networks evolve and network-supporting technologies
mature, any rating system will need to evolve as well: not only will active buildings need to be active

% Some rating systems, such as BREEAM, award credits for life cycle assessment, but this is a relatively minor component.



and responsive, but any active building code will need to be active and responsive too. Hence, we
define: an Active Building is one that was rated as ‘active’ by the Active Building Code at the time the
building was designed and built (RIBA Stage 6 or similar). This then raises the question: what should the
Active Building Code include? This section is an initial proposition, called ABCodel (Figure 7).
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Figure 7: Overview of the Active Building Code. Its first iteration (ABCodel) focuses on the design stage (left).

4.1 Vision and principles

The vision for the ABCode is to deliver at scale buildings that ‘do no harm’ according to the non-
defornocere principle.?° Accordingly, we suggest ABs abide by the following general principles:

1. Whole-life sustainability: ABs recognise that the fundamental challenge for the construction
industry is to deliver buildings that satisfy the needs of occupants in a way that is cognisant of
the climate emergency. Given challenges in addressing whole-life sustainability, the
performance targets for ABs at present are reducing both operational and embodied carbon
(whole-life carbon).

2. Energy network support: ABs also recognise that buildings can enhance the performance of
wider energy networks, which requires a whole energy systems thinking at different scales. For
example, how ABs support the power grid, transport, heat and low-carbon gas networks at
building, community and city scales by producing, storing and releasing renewable energy. This
is expressed by the notion of ‘buildings as energy infrastructure’.

4.2 Design standard

ABs need to provide a clear pathway for impact in the building sector and thus need to make technical,
economical, and environmental sense under the non-defornocere vision. In this initial proposition, the
ABCodel is a design standard for new buildings, either individual ones or from a development involving
a single site and owner for the sake of simplicity. However, the general principle of energy network
support may require the aggregation of several ABs in a community (see discussion in Section 4.4).



We propose the following design principles to implement the two general principles presented
in Section 4.1 and inform how buildings should be designed, operated, maintained and demolished or
recycled:

1. Fabric-first approach. This is key to reducing operational energy use, including a compulsory
infiltration test.
2. Low whole-life carbon. Reducing embodied and operational carbon is essential.

Energy efficiency. Resources must be used rationally.

4. Accountable performance. There is a need for reporting energy performance to a central
source.

5. Energy capture. Renewable energy systems like PVs must be prioritised.

6. Energy flexibility and integration. To support energy networks (Figure 6), strategies include
passive storage of thermal energy in the building fabric (e.g. thermal mass or phase change
materials); active storage of thermal energy (e.g. water tanks); and electrical energy storage (e.g.
batteries). Energy can be distributed internally or traded externally, and energy storage systems
can mediate these interactions to match supply and demand. Energy flexibility can be exploited
to reduce the running costs and carbon footprint of buildings (e.g. reduce peak electrical
demand at times where the carbon intensity of the grid is high), but also respond to the needs
of energy networks (e.g. shift energy demand to support wider network infrastructure). Control
systems can help deliver flexibility by supporting demand-response strategies (e.g. delay start
on a washing machine). Given the difficulties in defining it in a meaningful and fair way, ABCodel
focuses on the provision of energy storage as a proxy for energy flexibility.

w

Design principles can be translated into specific design characteristics, which are divided into (Table 2):
e Compulsory, if they are imposed on every design (e.g. sub-metering);
e Contextual, if they are context-dependent (e.g. renewable energy generation capacity); and
e Voluntary, if they are optional (e.g. energy management system (EMS)).

Since accountability is a key principle for ABs, performance must be knowable to assist ABs in reducing
a potential performance gap. A built-in monitoring platform should hence be developed to report
operational energy use.

Table 2: Examples of the envisaged relationship between design principles and their influence on the suggested rating
system. Labels correspond to the metrics of the rating system introduced in Table 3 (*).

Design Example Design Influence on the
principle characteristics adoption rating system”
Fabric-first approach Minimal thermal bridges Voluntary R

Low whole-life carbon Use of recycled materials Contextual M

Energy efficiency Best in class systems Compulsory R

Accountable performance  Sub-meters Compulsory —

Energy capture PV panels Contextual P

Energy flexibility Electrical/thermal storage Contextual X

Energy integration EMS in a smart network Voluntary —




4.3 Rating system

A barrier to the broad dissemination of buildings that are certified to the Passivhaus Standard is the
inherent insecurity of its pass-or-fail philosophy (Section 3.2). Hence, we propose a rating system similar
to European energy labelling that considers the general principles of ABs. This is based on four metrics:
embodied carbon; energy consumption; renewable energy production; and energy flexibility (Table 3).
The intention of the ABCode is to balance permanent design aspects, which set the baseline for
environmental performance, with the more ephemeral ones, which depend on the current needs of the
energy network and technology available. Overall, these metrics rate ABs as consumers, producers and
traders of energy and carbon. An overall performance value is computed as the weighted average of all
metrics to express succinctly the relative merits of the design:

Overall value = wy, - M; + wg - R; + wp - P, + wy - X; (1)

where M;, R;, P; and X; are integers varying from 1 to 7 to express the labels of each metric (that is, of
embodied carbon; energy consumption; renewable energy production; and energy flexibility,
respectively) varying from A to G (Table 3), and wy;, wg, wp and wy are the respective weights for each
metric fluctuating between 0 and 1, subject to wy; + wg + wp + wy = 1.

Table 3: The suggested rating system for assessing building performance during the design process. In all cases, m? refers to
treated floor area as defined in the Passivhaus Standard. In the ABCodel, an Active Building (AB) is one that meets the
specifications in labels A-F at the stage of practical completion (RIBA Stage 6 or similar). Label G captures any other case
regardless of the performance attained (*).

Metric Embodied Energy Renewable Energy Post- Obligation to Is the
carbon required energy flexibility Occupancy discuss scheme building
[kgCO2e-m?] [kWh-m2-a?] production [hours]  Evaluation: with considered
[% of R] contractual representatives an AB?

obligation to of local energy
in-use review networks

Label M R P X -
C (300,400] (60,95] (60,80] (6,12] Yes Yes Yes
D (400,450] (95,125] (40,60] (3,6] VYes Yes Yes

E (450,600]  (125,155] (20,40] (1.5,3] VYes

The weighted average is proposed for two reasons. Firstly, it provides an overall label that can be
communicated easily (varying from A to G). Secondly, weights indicate where designers should invest
effort in to achieve a better performance. For instance, weights could be used to encourage the
adoption of novel strategies, such as those related to support energy networks. The following weights
are proposed in ABCodel to reflect the need to reduce operational energy consumption and carbon
footprint whilst incentivising strategies to support energy networks: {w,, = 0.15; wz = 0.50; wp =
0.15; wy = 0.20}. For example, if a building scores {M = D; R = B; P = C; X = E}, this would
translate into {M; = 4; R; = 2; P, = 3; X; = 5} and consequently into an overall value of 0.15-4 +
0.50:-2+0.15:-3+0.20-5 = 3.05 = 3 — C. These weights are but an initial proposal indicative of
the current need to maximise the energy efficiency potential of buildings to minimise their energy
demand, as a first step to achieving a net zero carbon economy.?® The slightly higher weight of energy



flexibility compared to that of energy production illustrates how energy storage could be promoted over
generation to help balance the grid and avoid the duck-shaped profiles depicted in Figure 5.

We propose that labels A-F are accompanied by a contractual obligation to as-built reviews for
M and X (embodied carbon and energy flexibility) and in-use reviews for R and X (energy required and
renewable energy production), with the latter being performed as part of a POE by the design team
within the first three years of operation.”™”

In addition to POE, labels A-F require the design team to discusses with representatives of the
local networks before sizing generation and storage systems. This encourages the design team to be
aware of the local energy context so that the building design is adapted accordingly.

As aresult, it is proposed that Active Buildings are those meeting the ABCodel criteria for labels
A-F, at the time they are designed and built (RIBA Stage 6 or similar). While the rating F does not affect
performance (metrics are open-ended intervals), the ratings A-F and above require contractual
obligations and discussions with representatives of the energy networks to encourage better buildings
and gather the evidence needed to further develop ABs and their goals in the next years.

The individual values that correspond to labels A-F for each metric are displayed in Table 3, and
explained next.

4.3.1 Embodied carbon (M)

ABCodel considers as embodied carbon emissions all those that occur up to the point of practical
completion (life cycle stages A1-A5 in EN15978%). Very few datasets report the embodied carbon of
buildings and those who do draw values from different assessment methods, preventing cross-
comparisons. To define the embodied carbon scale, the dataset of the Carbon Leadership Forum (CLF)
was used, as this is an open, peer-reviewed dataset with a reasonably large number of samples (n =
1,190) with different building types.°?

First, the empirical distribution of carbon intensity was divided into equally spaced quantiles (as
many as there are labels in the scale) and numbers were rounded to the nearest multiple of
50 kgCOze-m2 for usability. This makes each label equally challenging in practice. The scale is ambitious
considering that current standard practices are estimated to entail about 800—1,000 kgCO2e-m2, but
necessarily so to advance the delivery of whole-life net zero carbon buildings. Although the
representativeness of the dataset for the building stock is unknown, the resulting scale is in agreement
with current industry-led initiatives in the UK, and thus considered cognisant of the practical challenges
that arise in the design and construction.”>77°2 Particular ways to achieve a good score are not
prescribed, but these will necessarily entail the efficient use of low-impact materials such as recycled or
biogenic ones.

4.3.2 Energy required (R)

Energy required (life cycle stage B6 in EN15978) is favoured in ABCodel to operational carbon intensity
to avoid designing energy profligate buildings that passively benefit from an increasingly decarbonised
energy network. Datasets reporting the total energy consumption of the building stock feature similar
limitations. This is approached through the Display Energy Certificates®® (DECs) database (n =
357,392), which contains a mix of commercial buildings: mainly schools (n = 177,223), offices (n =
31,046) and university campuses (n = 26,982). As with embodied carbon, how well this dataset
represents the building stock is uncertain. Moreover, the database does not disclose location or year,
which obstructs normalising energy consumption for instance based on weather. Although this dataset

** This is informed by guides such as the Government Soft Landings,®®> which advocates three years of POE to support
stakeholders in aligning actual building performance with the targets set during the design process.



does not include dwellings, ‘General Accommodation’ buildings were considered as a first
approximation.

To create the scale, the overall metered fuel and electricity use of buildings (kWh-m=2-a'!) was
calculated, and its lowest half selected to incentivise low-energy buildings. Data was split linearly since
this dataset is biased towards older buildings (the UK features one of the oldest building stocks in the
world), while ABCodel focuses on the design of new buildings. Lastly, data was rounded to the nearest
multiple of 5 kWh-m2-a’! for readability. The resulting first two categories of R also happen to reflect
the three certification categories promoted in Passivhaus,” which give a notion of how feasible these
categories are in practice. Note that energy consumption is independent of renewable generation,
although heat pumps (ambient heat) is considered as part of the energy efficiency measures of the
building and thus counted in R rather than P.

4.3.3 Renewable energy production (P)

The metric to evaluate generation is derived from others quantifying energy as a proxy not only for
carbon but also for the potential to alleviate stress in the local energy network. Aspirations for energy
generation (heat and/or electricity) at a building scale vary substantially in the literature. Although
domestic buildings have the potential to be net energy positive, this could be more challenging, and
often not cost-effective, for other building types. Considering this and the lack of representative
empirical datasets to inform values, the resulting scale for production expresses the ratio of the value
for metric R (energy required). The advantage is that this definition encompasses all possibilities, from
no generation (0%) to energy positive buildings (>100%). This is regardless of the temporal match
between generation and consumption, because at present it is assumed that energy will be useful
elsewhere in the energy network. Disadvantages include that the metric for R influences two aspects
of the rating system and it does not differentiate building types at present.

4.3.4 Energy flexibility (X)

Despite the numerous ways available to express energy flexibility, it is unknown which ones should be
used in practice given the lack of empirical evidence. It is still unclear what performance aspirations
should be defined to account for the needs of the built environment and energy networks, and how
they would influence the more permanent aspects of building design.

ABCodel considers energy flexibility as the number of typical hours the building could run
autonomously, theoretically, without demanding energy from the network or producing on-site energy
(considering all forms of energy consumed in the building). Label A expresses a higher than 24-hour
flexibility and label B signifies a flexibility within (12,24], with each label then referring to a range that
halves previous values. This has the advantage that it is comprehensible and suitable for early design
stages because it is not directly linked to the needs of the local energy networks, which are likely
unknown at such stages. Yet, it acts as a proxy for the actual flexibility buildings could demonstrate in
practice.

What truly represents energy flexibility is in the way the stored energy and the building are used.
This could be coordinated by (i) control systems® — including both the hardware (sensors, meters,
actuators) and software (strategy, as informed by representatives of the energy networks) — and (ii)
occupant behaviour. These aspects are envisioned as parts of a unified building-user system that
governs the way in which energy is exchanged with the networks, but one that cannot be fully addressed
until more information about the practicalities of ABs is gathered. Until then, the value of the X metric

" Note however that the three limits, 60, 45 and 30 kWh-m2-a™ for Passivhaus Classic, Plus and Premium, respectively are
referred to Primary Energy Renewable, a country-specific indicator that describes how much renewable energy needs
to be supplied to the grid to satisfy the final energy consumption of a building.



is merely a summary of the installed capacity, not prescribing particular building-user systems, nor
metrics that value specific ways of supporting the local energy networks (Figure 6). As part of the POE
process, evidence would be gathered to these ends.

The value for X is obtained from the annual energy consumption (from all sources and for all
uses, including plug loads and domestic hot water) — hence the use of the term typical hours, as the
consumption might be higher than typical in winter for example. As the building might use a variety of
energy sources, it would only be theoretically autonomous for the given number of hours. This is in line
with ABCode being applicable at an early stage, before any dynamic thermal model is created, hence
heat stored in the fabric cannot be accounted for. However, it might be possible to include fabric storage
in a simple heuristic manner in much the same way that the Passive House Planning Package (PHPP)
considers thermal mass when discussing summertime overheating.®* To avoid double counting, and
because the temporal generation of any renewables at building level might not match the need for
autonomy or useful contributions to the local network, only storage is considered in X, regardless of on-
site generation.

ABCodel focuses on short-term storage (hours) rather than the longer seasonal storage (months)
given the uncertainty to establish general initial guidelines for a variety of new buildings types and the
market readiness of long-term storage solutions at scale. Nevertheless, this aligns with the timescales
at which most building-level grid-services are useful to the grid,'* that is, from minutes to day(s).

4.4  Discussion

Future revisions of the code (ABCode2 etc.) could refine the rating system to reflect the performance
achieved by demonstrator buildings, as well as the state-of-the-art in the building sector and energy
network. For example, on-site renewable energy production might be useful at present for the UK power
grid but, this might no longer be a desirable design strategy once a low-carbon grid is available, nor a
crucial metric for the rating system. Since the ABCode is active itself, it could support such a transition,
adjusting its design principles and rating system (scales and weights) to reflect the real needs of the
built environment and energy networks.

The energy required (R) and the energy production (P) have been kept separate, yet P is
expressed as a percentage of R and so they are clearly dependent. Alternatives would be to make them
independent, thereby encouraging maximum generation regardless of the energy consumption of the
building. This was disregarded, as for most buildings it is likely that P < R, possibly P < R, and it is
likely to be more intuitive for the user to quantify energy generation as a percentage of energy use (even
if some generated energy is exported). We feel that the alternative to make the reported metric simply
use minus generation, would not be cognisant of the timeline of design, where energy minimisation
occurs before considerations of generation, and often by different teams. It also possibly encourages
energy profligate buildings. Here, the formulation of P as a percentage of R makes high scores for P
unattainable in practice for high values of R and, conversely, the better the score for R the easier it
becomes to achieve good P scores. Furthermore, by keeping R and P separate, and applying weights as
we do, not only keeps two different aspects of building design (consumption and generation) separate
but also the focus can be moved between the two in future versions of the code as needed by the
current context.

As applied below, the ABCode is based on a single building. It is however likely that ABs will be
developed as collectives of buildings. Within the collective, the buildings might well support each other
and provide different active services, either grossly, or temporally, and it might well make sense to
maximise these on some buildings and not others (for example PV generation). Hence, we propose that
ABCode can be reported at either the single or collective level, but not both at the same time. The



reason for this is that allowing both has the potential to cause confusion, and the selective use of the
labels. An example would be a collective that scored B from a mix of A and D buildings. It would be
unreasonable for a developer or owner to simultaneously claim the collective was B, and that a
particular building was an A, but by omission therefore suggest the D buildings were B.

Another issue is the use of generation or storage systems that cover more than the buildings
being scored. For example, a district heating system might have been built to cover the heating needs
of a new collective, yet have excess capacity and hence be plumbed into neighbouring pre-existing
buildings. This excess might well not be serendipitous, in that, although the only reason for the creation
of the district heating scheme was the new collective, it only made financial sense because it could sell
excess to the older stock. Because of the temporal nature of demand, it might well be that the district
heating system can only supply 50% of the annual demand of the new collective, yet in total it generates
several times the annual demand of the new collective. We suggest that all generation of such a district
heating scheme is counted as applying to the new collective (for the purpose of rating the collective
with the ABCode). This is similar to the approach with electricity and net-zero energy buildings within
an annual accountancy framework: all the electricity generated does not need to be used by the building
in question, just an amount equal to that which it uses, with export at some times, and import at others.

It is not uncommon for buildings to be designed with an awareness of the future landscape. For
example, including space for air conditioning to be added as the climate warms. With respect to ABs,
one can imagine a similar approach, with buildings being designed so that PV or batteries would be
particular easy to add. We feel though logical, any active-ready status would be too open to simple
claims of “ready”. Therefore, such active-readiness should be encouraged, but not scored.

Although most will be interested in the overall score of the building, others will desire a more
nuanced analysis. The approach laid out here automatically provides this in the form of the four metrics.
For example, a building can either be described as a B, or as a B(A, B, D, C). This will be particularly
useful for those wanting to analyse why a building obtained a particular score, or to compare buildings.
For those wanting the full detail, a score could be represented with the numerical values used via Table
3 as B(121, 36.4,57.1, 6.4) (Figure 8). Given that the ABCode is dynamic to ensure its guidance and
evaluation are consistent with the current landscape, the ratings of a building or a community would be
linked to the applicable version of the ABCode at the time of their development, without subsequent
iterations threatening the scores obtained in the past. Yet, the monitoring system that helps enable
verification, POE and the rating would allow interim calculations of how such buildings would perform
in revisions of the code.



Overall

B(121.0, 36.4, 57.1, 6.4)
F(433.0, 159.1, 13.1, 1.2)

Figure 8: An example comparing two ABCodel ratings in terms of a spider diagram (cases presented in Section 5 for medium-
size offices ‘01995’ and ‘OFEES’ in Tables 4 and 5; n.b. boundaries of each of the four numeric metrics have different units,
as per Table 3).

5 ABCodel in practice

To support designers in assessing the performance of early-stage designs against the ABCode rating
system, a monthly energy balance model called ZEBRA was developed (that is, Zero Energy Building
Reduced Algorithm, where zero energy just signifies that the reduced algorithm is particularly suited to
study buildings with a low energy demand for space conditioning). ZEBRA is a simplified version of PHPP,
but a greater fitness for building design explorations, as it minimises the number of inputs at an early
stage. The main difference, and limitation, is that ZEBRA does not at present account for auxiliary energy
use nor energy losses in storage or other mechanical, electrical and plumbing systems. That would
presume detailed knowledge of systems that have not yet been designed, nor influence early stage
design as much as building envelope characteristics, but could be included through a safety coefficient
based on prior experience in projects with similar systems as an initial estimate if need be.

To demonstrate the applicability of ABCodel, twenty buildings were modelled in ZEBRA, with
their predicted performance values converted into labels according to the rating system (Section 4.3).
These modelled buildings represent different building types: apartment; detached house; (medium-
sized) office; and school. The first two exemplify common domestic archetypes (based on Fosas et al.®>),
and the latter represent common non-domestic building types (based on US building archetypes®®). Five
design alternatives are modelled for each of these types to reflect prevalent fabric efficiency
standards:*** Building Regulations 1985,%7 1995,% 2006,® Fabric Energy Efficiency Standard (FEES),'®
and Passive House Institute Standard (PHIS).1°* Combining the letter of the building type with the year
or standard forms the model ID (Tables 4 and 5). Buildings were assumed to follow the contractual
obligations in ABCodel (Table 3) and hence scores are better than G.

Results demonstrate a wide range of performance for each metric individually as well as overall
(Tables 4 and 5). The rating system is able to reflect the diversity of the modelled buildings as, for

#* Note that ventilation rates as well as metabolic and electrical gains remain fixed across all alternatives to draw attention
to any differences that are associated with building fabric specifications (see Supplemental Material).



instance, buildings having poor insulation receive an F or E label for metric R (energy required), whereas
those having thicker insulation achieve B or A. As the ABCodel weighting system prioritises the
reduction of operational energy consumption, the overall label is biased towards R and hence resilient
to poor performance in other metrics (e.g. case ID A-FEES). When the labels for metrics M, P and X are
different from that of R, the overall rating can be upgraded or degraded up to one label (e.g. case ID O-
2006). With regards to renewable energy production (P), good performance was achieved even in multi-
storey buildings (apartments and offices, Table 4), which can be attributed to the normalisation of this
metric based on energy requirements. This observation similarly applies to energy flexibility (X), as this
also depends on the calculated energy consumption.

Given the current limitations in publicly available datasets, ABCodel defined a rating system that
is agnostic to building type (Section 4.3), but the calculated performance values were found to align
with those in the DEC database. Achieving an A label appears to be challenging but attainable.

Table 4: Evaluation of example buildings: key metrics (model inputs are specified in Supplemental Material and IDs are
specified in Table 5; the apartment refers to a single unit within a four-storey block).
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A-1985 525 4 1940 174 96 225 135 13
A-1995 526 4 1232 174 96 225 0.9
A-2006 52.0 4 625 175 96 227 8 0.5
A-FEES 498 4 220 146 96 237 10 03
A-PHIS 463 4 00 158 9.6 255 4 0.1
D-1985 1343 2 2011 136 96 247 - 3.4
D-1995 1288 2 1386 142 96 257 8 2.4 33
D-2006 1267 2 769 144 96 261 10 15 590 1009 259 68
D-FEES 1182 2 344 137 96 280 12 . 48.5
D-PHIS 1047 2 141 155 9.6 31.6 12 .
0-1985 15000 3  203.1 49 123 208 -
0-1995 1500.0 3  142.0 49 123 208 32 433
0-2006 1500.0 3 542 49 123 208 40 122 438 714 292 323
O-FEES 15000 3 203 3.9 123 208 40
O-PHIS 1500.0 3 86 39 123 208 80
51985 57258 1 3981 243 62 36.6 320
51995 57258 1 3137 243 62 36.6 320
52006 57258 1 1158 243 62 36.6 320
S-FEES 57258 1 603 216 62 36.6 320
S-PHIS 57258 1 278 195 6.2 36.6 320




Table 5: Labelling of example buildings (model inputs are specified in Supplemental Material).

ID Building type Standard LabelM LabelR LabelP Label X Overall Label

A-1985 Apartment 1985
A-1995 Apartment 1995
A-2006 Apartment 2006
A-FEES Apartment FEES
A-PHIS Apartment PHIS
D-1985 Detached 1985
D-1995 Detached 1995
D-2006 Detached 2006
D-FEES Detached FEES
D-PHIS Detached PHIS
0-1985 Office 1985
0-1995 Office 1995
0-2006 Office 2006
O-FEES Office FEES
O-PHIS Office PHIS
$-1985 School 1985
S$-1995 School 1995
S-2006 School 2006
S-FEES  School FEES

S-PHIS School PHIS

6 Limitations and future perspectives

Future revisions of the ABCode should consider the following aspects:

Whole-life performance. This is a necessary step towards implementing ABs. Revisions of
the ABCode should incorporate the real-world knowledge on how ABs perform as obtained
from the monitoring of the performance of demonstrator buildings that are under
construction. With accountability being a design principle for ABs, future work should
develop the built-in monitoring platform that would capture their operational performance.
Energy network support. A more localised definition of grid-supporting strategies may be
necessary in the future, in order to tailor them to foreseeable needs of the local energy
network. The assessment of thermal energy storage systems also needs to be improved.
Lastly, ABs seek to support any energy networks they are connected to, but at present there
is a better understanding and greater focus on how the power grid. Future work should
consider the needs of all the networks that play a role in a decarbonised society.

Occupant behaviour. This could be considered as a mechanism to achieve energy flexibility,
possibly as part of a unified building-user system that governs how energy is exchanged
between the building and the local energy networks.

Communities. Maximising the potential of ABs may require moving from the examined
building scale to the aggregation of several ABs in a community and/or city level to ensure
cost-effectiveness of solutions. Although an initial proposal to rate communities has been
presented, further definition of how this might work in practice is needed considering the
implications of different cooperation strategies in multi-owner developments, including
scenarios with energy aggregators.



e Building types. The possibility of adjusting this rating system to each building type could be
investigated as data becomes publicly available.

e Retrofits. Future iterations of the ABCode should increase their scope and consider retrofits
as well to ensure the transition to a low-carbon economy.

e Expansion of the testing suite. The proposed rating system of ABCodel has been tested
against selected design archetypes and it has been shown to perform as expected. Given the
size and heterogeneity of the building stock, further work is needed to increase the
representativeness of the testing suite whilst reflecting on the lessons learned in each
iteration of the ABCode to control potential abuses to the rating system.

Focusing on the development of the rating system for assessing building performance, future revisions
should address the following limitations:

e Energy required (R): Only single buildings or communities can be rated at the moment.

e Renewable energy production (P): This is based on an annual average.

e Energy flexibility (X): This is based on the hourly average of metric R, which considers total
energy demand (space heating and cooling, domestic hot water, systems, plug loads) against
installed storage capacity. This does not make a distinction in the seasonality of the load nor
the type of stored energy (thermal, electrical).

7 Conclusions

Building design could play a pivotal role in decarbonisation by supporting the needs of the wider energy
infrastructure. The aspirations for a synergetic relationship with the wider energy networks are
underpinned by new design goals and, together with the knowledge and technology involved, ‘Active
Buildings’ (ABs) represent promising opportunities for all stakeholders involved. This paper examines
what ABs are, what opportunities they present, and how the concept could be adopted in practice and
further developed.

A detailed examination of the precedents revealed several building regulations, standards and
initiatives worldwide that aim to encourage the design of high-performing buildings as a response to
the need for minimising GHG emissions. A number of design approaches have been proposed in recent
decades, with net zero energy/carbon buildings now arising as widely acknowledged aspirations for
both policy and industry. Nevertheless, pioneering studies and initiatives have started questioning if
these are the only ways through which buildings could contribute to the aspired transformation of the
construction and energy sectors. Such initiatives advocate an integrated energy-systems thinking, where
buildings are not treated as passive consumers of energy, but as active entities that have the potential
to support energy networks for both the benefit of the wider energy networks as well as building owners
and occupants. Although some strategies (such as renewable energy generation) are already
acknowledged in net zero energy/carbon design approaches and relevant building standards, these tend
to be collateral benefits, rather than holistic solutions that account for the interaction of buildings with
energy networks. For example, solar generation without local energy storage can effectively increase,
rather than decrease, the variability in energy imports from energy networks, creating a greater
problem rather than a means to support them.

Based on the momentum built by research, policy and industry, and the barriers identified in the
literature, the development of a design standard, the Active Building Code (ABCode), is proposed to
help channel these discussions towards a commonly agreed definition and evaluation for ABs for the
first time. Considering the needs of the built environment and energy networks as well as the relevant
shortcomings of existing design approaches, linking the definition of ABs with the ABCode itself would



help ensure they remain true to their two general principles: whole-life sustainability and energy
network support. Based on these, and in order to help designers judge the relative merits of design
alternatives, a new rating system inspired by EU labels was suggested in ABCode1, an initial proposition
for the ABCode. This is based around four metrics: embodied carbon, energy consumption, renewable
energy production, and energy flexibility. To demonstrate the applicability of such a rating system,
ABCodel was integrated into an energy balance model, ZEBRA, and the predicted ratings of twenty
example buildings were examined. Both the calculated values and the resulted labels revealed a wide
range of performance (for each metric individually as well as overall), with the rating system hence being
able to reflect the diversity of modelled buildings.

Future iterations of the code (ABCode2 etc.) will refine the rating system proposed in this paper
to reflect the performance achieved by demonstrator buildings and address current and foreseeable
needs and challenges. At the same time, the Active Building definition proposed in the code will help
gather the fundamental evidence required to stimulate and inform discussions about how buildings
could best support energy networks in practice, and how strategies should influence building design
and operation. This aspect is found to be particularly important to help define and measure energy
flexibility in a way that is both meaningful for building design and support of energy networks. Thanks
to its active philosophy, the ABCode can evolve over time by adjusting its design principles and rating
system to reflect the time-varying circumstances of the built environment and energy networks,
advancing a timely shift towards a decarbonised society.
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Figure 1: Overview of the relationship between the building (bld), environment (env) and energy networks (e-net) and
the corresponding mapping between energy demand and generation of buildings (with a dashed line) over time. The
green area indicates net positive buildings. The red area signifies buildings that consume more energy than they
produce.

Figure 2: Framework for the definition of net-zero energy buildings (diagram based on the work by Sartori et al.??).
Figure 3: Overview of UK’s electricity generation plants and resulting regional carbon intensity.

Figure 4: Levelized cost of energy™ for renewable sources.?*

Figure 5: Example load curves illustrating grid instability due to high penetration of solar energy production without
energy storage systems compared to a low-penetration baseline based on California 1SO.3> The two main issues to the
high-penetration scenario are the risk of over-generation and rapid changes in net load (depicted by slope a of the
tangent line).

Figure 6: Overview of selected demand side management strategies and their influence on the final energy demand of
the building.

Figure 7: Overview of the Active Building Code. Its first iteration (ABCodel) focuses on the design stage (left).

Figure 8: An example comparing two ABCodel ratings in terms of a spider diagram (cases presented in Section 5 for
medium-size offices ‘01995’ and ‘OFEES’ in Tables 4 and 5; n.b. boundaries of each of the four numeric metrics have
different units, as per Table 3).
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