UNIVERSITY OF

BATH

Citation for published version:

Herrmann, M & Matthies, K 2018, Uniqueness of solitary waves in the high-energy limit of FPU-type chains. in P
Gurevich, J Hell, B Sandstede & A Scheel (eds), Patterns of Dynamics . vol. 205, Springer Proceedings in
Mathematics & Statistics, vol. 205, Springer, pp. 3-15, International Conference on Patterns of Dynamics 2016,
Berlin, Germany, 25/07/16. https://doi.org/10.1007/978-3-319-64173-7_1

DOI:
10.1007/978-3-319-64173-7_1

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

Publisher Rights
Unspecified

The final publication is available at Springer via: https://doi.org/10.1007/978-3-319-64173-7_1

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Mar. 2023


https://doi.org/10.1007/978-3-319-64173-7_1
https://doi.org/10.1007/978-3-319-64173-7_1
https://researchportal.bath.ac.uk/en/publications/37b8e7a0-f4e9-4ffb-8a0a-5fe500ee489f

Uniqueness of solitary waves in the high-energy
limit of FPU-type chains

Michael Herrmann and Karsten Matthies

Abstract Recent asymptotic results in [HM15] provided detailed information on
the shape of solitary high-energy travelling waves in FPU atomic chains. In this
note we use and extend the methods to understand the linearisation of the travel-
ling wave equation. We show that there are not any other zero eigenvalues than
those created by the translation symmetry and this implies a local uniqueness result.
The key argument in our asymptotic analysis is to replace the linear advance-delay-
differential equation for the eigenfunctions by an approximate ODE.

1 Introduction

We study an aspect of coherent motion within a spatially one-dimensional lattice
with nearest-neighbor interactions in the form of Fermi-Pasta-Ulam or FPU-type
chains given by

ij(t) = D (ujs1 (t) —u;(t)) — D' (uj(t) —uj1 (),  jEZ (1)

We are interested in solitary travelling waves, which are solutions of (1), given for
positive wave-speed parameter ¢ by a distance profile R and a velocity profile V
such that

R(x)=V(x+1/2)-V(x—1/2), oV'(x)=®'(R(x+1/2))— ' (R(x— 1/2()2))
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is satisfied for all x € R. The scalar function @ is the nonlinear interaction potential
and the position u;(¢) of particle j can be obtained by u;(t) = U(j—+/0t), where
U denotes the primitive of V.

In the literature there exist many results on the existence of different types of
travelling waves — see for instance [FW94, FV99, Pan05, SZ09, 1J05] — but almost
nothing is known about the uniqueness for fixed wave-speed or their dynamical
stability with respect to (1). The only exceptions are the completely integrable Toda
chain (see [TesO1] for an overview) and the KdV limit of near-sonic waves with
small energy which have been studied rigorously in [FP99, FP02, FPO4a, FP04b].

Another asymptotic regime is related to high-energy waves in chains with rapidly
increasing or singular potential; we refer to [FM02, Tre04, Her10, Her17] for FPU-
type chains and to [FSD12, TV14, AKJ *15] for similar solutions in other models. In
[HM15] the authors provide a detailed asymptotic analysis for the high-energy limit
for potentials with sufficiently strong singularity and derive explicit leading order
formula for o as well as the next-to-leading order corrections to the asymptotic
profile functions. In this note we apply similiar techniques to the linearisation of (2)
and sketch how the local uniqueness of solitary high-energy waves can be estab-
lished by an implicit function argument. In the final section 4, we set the results into
the wider context of stable coherent motion for FPU lattices.

2 The high-energy limit for singular potentials

As in [HM15] we restrict our considerations to the example potential

cD(r):m(le)((l ! )m—mr—1> with meR and m>1, @3)

which satisfies @(0) = @’(0) = 0 and &”(0) = 1. This potential is convex, well-
defined for r < 1, and singular as r * 1. Moreover, it resembles — up to a reflection
in r — the classical Lennart-Jones potential, for which the analysis holds with minor
modifications.

The subsequent analysis concerns a special family of solitary waves that has been
introduced in [HM15]; similar families have been constructed in [FMO02, Tre04,
Her10].

Proposition 1 (family of solitary waves and its high-energy limit). There exists a

Sfamily of solitary waves ((Vg, Rs, 65))0<5<1 with the following properties:

1. Vs and Rs belong to L*(R) NBC!(R) and are nonnegative and even. They are
also unimodal, i.e. increasing and decreasing for x < 0 and x > 0, respectively.
2. Vs is normalized by ||Vs|2» = 1 — 8 and Rg takes values in [0, 1).

Moreover, the potential energy explodes in the sense of ps := [ P (Rs(x)) dx — oo
as 6 — 0.
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The asymptotic results from [HM15] can be summarized as follows, where the small

quantities
g =1 —R5(0) and HUs := 1/ Os SgHZ

measure the inverse impact of the singularity and determine the length scale for the
leading order corrections to the asymptotic profile functions, respectively.

Proposition 2 (global approximation in the high-energy limit). The formulas
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approximate the solitary waves from Proposition 1 in the sense of
[Ra = Rey 15— ey |, + 85t — -+ 03 — 85, | = O(e§) = 0(5™)

for any q € [1, «|. Here, § solves the ODE initial-value problem
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and T(%) := 1 (S(x) + Tx+%).

In this note we establish a local uniqueness result for the solitary waves from Propo-
sition 1.

Theorem 1. Suppose that & > 0 is sufficiently small, then the solitary waves
(Rs, Vs) for given og are locally unique for 0 < 8 < 8. More precisely, there ex-
ists co > 0 such that there are no other non-negative, even, and unimodal solutions
(R,V) of (2) for fixed o5 with |(R,V) — (Rg,Vs)l.2 < co.

Furthermore the family R,V depends continuously on the wave parameter ©.

The proof is based on an implicit function argument applied to the nonlinear
travelling wave operator
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Fig. 1 Numerical results for high energy waves with m = 2: The velocity profile Vg (black, dashed)
approaches as 6 — 0 the indicator function V; while the distance profiles Rs (gray, solid) converges
to the tent map Ry.

d +
ZR()—-VT, V()
Z(RV,05)=| 2 : 5)
V() =3V, (P(R())
where the main challenge is to control the kernel of its linearisation.
3 Linearisation
The linearisation of (5) around a travelling wave (Rg, Vs) with speed o5 reads
Ls <S(') ): 0V ©)
W) T\ aw) - Vi, (@ (Rs())S()

with Vli/z being the standard centered-difference operator with spacing 1/2. We
consider Lg as an operator on the weighted Sobolev space

LZ:={(S,W) : R — R?: exp(ax)(S(x), W (x)) € L*(R,R?)},
which is for given parameter a > 0 defined on the dense subspace
H! .= {(S,W) : R — R? : exp(ax)(S(x),W (x)) € H (R, R?)}.

The first important observation is that the shift symmetry of (5) implies that Lg
has at least one kernel function.

Lemma 1. Ler a > 0 be given, § > 0 be sufficiently small, and (Rg,Vs) be a travel-

ling wave. Then
dRs dVy
Sis:Wis) =——, — 7
(S1.5,Wi5) ( I dx) (7
is in the kernel of Ls and belongs to HL N H! .

Proof. Theidentity Ls(S) 5, W) 5) = 0 is obtained by differentiating (2) with respect
to x. The decay properties follow from ideas in [HR10] as in [HM15, Thm. 10].
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Our main asymptotic result can be formulated as follows and will be proven in
several steps.

Proposition 3. There exists &y > 0 such that

kerLs = span { (S 5, Wi 5)}

holds for all 0 < § < &.

3.1 Prelimenaries

In what follows we denote the wave speed by ¢ = /0.
Lemma 2.

(a) The operator Vli/z is invertible on L2 for a > 0.
(b) The operator Lg : H}, — L2 is Fredholm for 0 < a < a, where a. > 0 is uniquely
determined by sinh(a./2)/(ac/2) = c.

Proof. Part (a) follows by Fourier arguments since Vf[/z acts on L2 as a weighted

difference operator. For part (b), the essential spectrum can be calculated explicitly
as in [FP04a, Lem. 4.2]. For any a € R, the essential spectrum of L in L2 is given
by the following union of two curves:

{A:A =P, (ik—a) forsome k e R}U{A : A = Z_(ik — a) for some k € R},

with 22, (u) = u 42— sinh(u/2). In particular,

NG
max{ReA : A € Op(Ls)} = —a+ % ‘Sinh (g)‘ =: —b.(c,a) <0,

so the essential spectrum does not intersect the closed right complex half plane and
hence 0 if and only if ¢ > 1 and 0 < a < a., where a, > 0 is the solution of the given
transcendental equation and increases with c. As 0 is not in the essential spectrum
Lg, the operator itself is Fredholm.

3.2 Rescaling

We next transform (6) into a second-order advance-delay-differential equation.
Letting S5(x) = exp(—ax)Gg(x) with G5 € L we express the linearised equation
as

i 2G =A iQ G 8
dx a S5 — ],*aca 8Y6
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where Qg(x) = @”(Rs(x)) and the transformed discrete Laplacian is given by
A _4F (x) =exp(—a)F (x+ 1) +exp(+a)F(x—1) —2F (x). )

Any solution G to (8) gives immediately a corresponding Ss and then due to the
invertibility of Vf/z on L2 also W to obtain a solution of (6).

The key asymptotic observation for the high-energy limit 6 — O is that the
advance-delay-differential equation (8) implies an effective ODE for both Gg and
Ss in the vicinity of x = 0 (‘tip of the tent’ in Fig.1). We therefore rescale the profile

G5 according to

x=06% Gs(¥) =Gs(8%), O (i)—a—zQ (8%) 4 _14d
- ) ) = Us 9 ) - 68 S ) df - 5 dx .
With respect to the new coordinates, (8) becomes
d 2 -
(di - 50) Gs =A1)5-4(05Gs), (10

where the operator A; /5 _, is defined analogously to (9) with spacing & ~1. More-
over, the Green’s function of the differential operator on the left hand side is given
by

Hy (%) = —Xexp(0a%) x(—w0) (%) (11)

and the corresponding convolution operator has the following properties.

Lemma 3. There exists a constant C > 0 which depends on the parameter a but not
on § such that for all F € L*> we have

(i) Hs % (A1 )5 o) = (A1)5,—aH5) ¥ F,

.. o 7 T ~\/ ~ ~\ I ~

(ii) 82| Hy x F 2+ 8| (Hs + F) |12+ | (Hs  F)" [l < ClIF |2,

L ~\/ ~ ~ ~\ / ~
(iii) 82| (Hy * F) |l < CIIF |12 and || (s # F) |l < C|IF|.

Proof. Part (i) follows immediately from the Fourier representations of A /5 _, and

Hj. In particular, the symbol of Hj is hs(k) := (il~c —8a) 2 s0 part (ii) is a direct
consequence of Parseval’s inequality. We finally observe that Young’s inequality
yields

U - - . . 1 1
[ (o FY |l = |5« Pl < [H5 [ 1FLl, with 2 =1,
and hence part (iii) via || H} |, < C8~1/2 for p =2 and |Hj||« < C for p = 1.

Our asymptotic analysis strongly relies on the following characterisation of Q5.

Proposition 4 (properties of the coefficient function).

1. We have
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~ o 25 o
Q5 (%) = P() + 8™ Z5(%)

where P is even, decays as "2 as ¥ — oo, and does not depend on 8, while the
perturbation Zg is uniformly bounded in L>.

2. The solution space of the ODE
T" = —2PT 12)

is spanned by an even function T, and an odd function T, which can be normal-
ized by

() 1, Tm) 2
and satisfy
sup (| (95— o) + | (TL(5) — 1)@ +| Ty (@2 ) < €
xeR

for some constant C depending on m.

Proof We refer to [HM15] for the details but mention that the coefficient function P
has been constructed from the solution of the nonlinear ODE initial-value problem
(4). In a nutshell, we have P :=¥”(R,), where R, is the even and asymptotically
affine solution to

R'=2%'(R), R(0)=0, R.(0)=1

with ¥/ (r) ~ (r) ™! for large |r|. In particular, P has the non-generic property that
the odd solution to the linear ODE (12) is asymptotically constant as it is given by
T, = cR’for some constant c. The remaining assertions on (12) follow from standard
ODE arguments and the estimates for Zs are provided by an asymptotic analysis of
the nonlinear advance-delay-differential equation (2).

Using (11) and Proposition 4 we can finally transform (10) into the fixed point
problem

Gy = Ay + (M5 - (PG5 +8"*225G5) ) (13)

and are now in the position to characterize the kernel of Lg by identifying the afore-
mentioned asymptotic ODE.

3.3 Sketch of the proof of Proposition 3

In this section we fix a > 0, consider families (65)0<5<1 C L2 of solutions to (13),
and show that G is — up to normalisation factors and small error terms — uniquely

determined.
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Compactness: Bootstrapping shows that G is smooth, and without loss of gener-
ality we normalise G by

|G5(0)| +|PGs || +|1PGs > = 1. (14)

In view of Lemma 3 — and thanks to (13), || Zs]|. < C, and the uniform LP-continuity
of the operator Ay /5 _, — we estimate

1Gsll2 < C572(|PGsl2+C8"|1Gs 2

and obtain ||Gg||» < C8~2 for all sufficiently small § > 0. Moreover, using Lemma 3
again as well as m > 1 we find

1G5l < €([1Gs ], +8"+2Gs) < €
and
1G5112 < (|1PGs]l, + 5"+211Gall2) <.

which in turn give rise to uniform Lipschitz and Holder estimates for G5 and G,
respectively. By the Arzela-Ascoli theorem we can therefore extract a (not relabeled)
subsequence such that G converges in BC}.._ to a limit function Gy. The bounds for
G;(0) and || G|/ ensure

|Gs(%)| < 1+Cl#| (15)

and hence s
1PGs — PGolli + |PGs—PGolla =% 0

by dominated convergence and due to the tightness of P. In particular, the limit Go
does not vanish as it also satisfies the normalisation condition (14).

Asymptotic ODE: We next study the functions S5 with

S5(%) := exp (—ad%)G5(%) = S5(83),

which also converge in BCJ. to the nontrivial limit Sy = Gy and satisfy the advance-
delay-differential equation

Sy = Aisso((P+6"25)S5) (16)

thanks to (10), where A, /s abbreviates the discrete Laplacian with spacing 1/6
and standard weights. Combining (16) with the decay of P, the uniform bounds for
Zs, and the affine bound for Gg from (15) we obtain
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Fig. 2 Cartoon of the unique rescaled eigenfunction S5 (gray, solid) and its pointwise limit Sy
(black, dashed) with respect to the scaled phase variable *.

Ss(®)]+|S5(8)]  — 0
as well as
s o= s—1
|S§(f)}§CeXp((~8a;)§;L§ ) for i>38!
§_
and hence
Ss(367)[=0(8"""),  [S5(387")|=0(8") a7

after integration over ¥ > %6 ~1. Using the pointwise estimates and the decay of P
we further verify

S§(%) = —2P(%)S5(X) +Eg5(¥)  for xels:=[-56"",+567"] (18)
as well as
S5(8+67") =P(®)S5(%)+E,5(¥)  for felf, (19)

where the error terms are pointwise of order O(6™) and satisfy
/i & (|Eos(®)|+|EL5(8)])dE=0(8"")  for i€{0,1}. (20)
5

In other words, we can replace the nonlocal equation (16) on the interval Is5 by an
asymptotic ODE since both the advance and the delay terms on the right hand side
are small, while on the shifted interval I5 + ! the main contribution stems from
the delay term. (On [5 — 8!, the advance term is the most relevant one.)

Uniqueness of accumulation points: The linear ODE (18) and the error estimates
(20) imply

Ss(®) = co5To (%) +c, 6To(F) +O(8™ ") forall xels (1)
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with 7, and 7, as in Proposition 4. The constants c..5 and cg 5 are uniquely deter-
mined by S5(0) and §(0), and satisfy

’0675’""!60,5’ ﬂ> C#O

due to the locally uniform convergence of S5 and Sg and the nontriviality of the
limit. We further employ the identity

$5(%) =85 (367" + 85 (367 (x /s"

along with (17) and the asymptotic differential relations (18)+(19) to get

35—1
2
Ss(367") = | S5 (F-367")dv+0(8")
+%6*1
- / S§F+6 ) ([F+16 ) dy+0(5™ )
,%571
11
+§5
- / (7%%,5@//(}7)*%6'0577/()7))(y+%5_1)d)7+0(6m—1)
s
2
87! +1571
_646; / e//(~)dy~_%2’5 / T, (9)yds+0(5"")
_%871 _%3—1
_Czeg ~e/(%571) +C,,5To(%5*l> _i_0(6m71)7

dy

Equating this with (21) evaluated at = 1§~ ! we arrive at

B[—

Sa (s +28T.(357)) ~ 05 ),

On the other hand, the properties of T, — see again Proposition 4 — provide
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T,(367") =287.(367") +0(3),  T/(367")=1+0(8")
and we conclude that
Ces =0(8"), o5 =Cco0+0(8"), (22)
where ¢, 0 # 0 is uniquely determined by the normalisation condition (14).

Conclusion: In (21) and (22) have shown that S5 can be approximated with high
accuracy by a certain multiple of the odd solution to the linear ODE (12), see Figure
2 for an illustration, and Lemma 2 implies the corresponding asymptotic uniqueness
for Ws. In particular, this result applies to the rescaled kernel functions (5 1,65 le(g)
from (7) as well as to the rescaling of any other solution to Lg(Ss, Ws) = 0. If
Proposition 3 was false, we would find another solution (557 W5) in the orthogonal
L2-complement of (S 5, W, 5) and hence a contradiction.

3.4 Local uniqueness and differentiability of travelling waves

We finally sketch the proof of Theorem 1. We look for solutions of the nonlinear
travelling wave equation (5) in L2 and thanks to Lemma 2 we can recover V for
given R. So it suffices to seek solutions to the second order nonlinear equation

92 1
@R~ G A (RO) =0, @3)

We note that .%,(., 65) : H2 — L2 maps even to even and odd to odd functions and
aim to apply the implicit function theorem to (23). The solutions given in Propo-
sition 1 provide a point with .%,(Rs,05) = 0 and the kernel of Lg is spanned by
a single odd profile, see Proposition 3. By Lemma 2 b), 0 is not in the essential
spectrum and this implies that the second order version of Lg as corresponding to
(8) is invertible on the space of even functions. Hence D.%,(R, Og) is invertible on
even functions if 0 < § < &. Consequently, the uniqueness part of Theorem 1 is a
consequence of the implicit function theorem. Furthermore, R depends smoothly on
the wave speed parameter ¢ as long as § is small enough such that o will be large.
This completes the proof of Theorem 1.

fz(R, 65) =

4 Discussion

The control of the kernel of Lg is an important step to study the dynamical stability
of the waves given in Proposition 1. Following [FP04a] it is enough to study eigen-
functions to eigenvalues with non-negative real part of the linearisation of (1) around
the travelling waves. The current analysis helps with this as one needs to show that
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neutral modes are just those 2 x 2 Jordan blocks that are created due to the symmetry
of the system. The symmetry solutions are (S 1,6 Wlﬁ) from (7) and

dRs dV,
(52,& W2,6) = (d;’ d;)

and satisfy the Jordan relations

Ls(S15:Wi5) =0,  Ls(S25,Was) = —%(51,5, Wis).
This programme will be carried out in a forth-coming paper for the high-energy
limit using a similar combination of techniques of detailed asymptotic analysis and
the structure of the underlying equations. Most of the analysis will hold for other
potentials than (3) as long as one can guarantee certain non-degeneracy conditions
for the energy of a solitary wave. In particular, one needs to show that

dH(R;,Vs) dos
75 #0 and 75 #0

holds in the high-energy limit, where H can be computed using the FPU energy.

Unimodal solitary travelling waves exist following [FW94] for all supersonic
wave speeds. They are locally unique and dynamically stable in KdV regime close
to the sound speed by [FP99, FP02, FP04a, FP04b]. For the high-energy, i.e. high
velocity limit, we have established local uniqueness in this note, whereas results
on dynamical stability are forthcoming. We conjecture that for most potentials the
whole family of unimodal solitary travelling waves are indeed unique and stable,
but new methods need to be developed to understand the linearisation of (1) around
the travelling waves for moderate speeds.
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