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Unit Commitment in Wind Farms based on a
Glowworm Metaphor Algorithm

J. Yan, J. Zhang, Y. Liu, S. Han, L. Li, C. Gu

Abstract—Mechanical health and operational efficiency of a
wind turbine (WT) are important to the overall cost effectiveness
in a wind farm. This paper presents a unit commitment (UC)
model based on fatigue damage modeling of blades and
uncertainty estimation of wind power forecasting (WPF). A novel
glowworm metaphor algorithm (GMA) is developed to solve the
proposed UC problem. During the pheromone updating of GMA,
the luminescence carrying by glowworm reflects the net
improvement by agent moving. This characteristic supports GMA
to find the global optima to optimization of UC problem. The
proposed UC objective is minimizing the mechanical damages of
WTs in the whole wind farm. Uncertain interval of wind power
generation is obtained as constraint function based on relevance
vector machine (RVM). Data from a wind farm in China are used

to validate the feasibility and effectiveness of the proposed method.

Simulation results reveal the capabilities of GMA to efficiently get
the better performance than benchmark methods, in terms of
minimum mechanical damage, reliability and running efficiency.
The benchmark methods are particle swarm optimization (PSO)
and genetic algorithm (GA). The comparison between UC with
and without consideration of WPF uncertainty exhibits the
superiority of the incorporation of WPF uncertainty modeling.

Index Terms—blade fatigue damage value, glowworm
metaphor algorithm, maintenance cost, wind farm, wind power
forecasting, uncertainty estimation.

I. INTRODUCTION

NIT commitment (UC) in a wind farm is to determine the
day ahead start-up/shut-down schedules of WTs in each
operation timeslot. The goal is to minimize the wind power
generation cost while satisfying the constraints of system
demand and wind availabilities, etc. As the increase of wind
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farm scale and wind turbine (WT) capacity, UC is getting more
difficult challenges to solve. This comes from the scaling-up
uncertainty from wind intermittency and computational burden
on operation. Moreover, the large scale WTs bear more fatigue
effects from variable wind, frequent on/off operation etc., and
thereby bringing down their lifespan [1]. It is significant to
improve traditional operation strategy in wind farms, in terms
of mechanical damages of WTs, profitability for wind farm
owners, operation efficiency and quality of wind power output
[2][16].

Most of the early works on the UC problem use deterministic
wind power forecasting (WPF) [9-11]. However, the root
square mean error (RSME) of a day-ahead WPF can be as high
as 20% of the wind farm capacity and even larger in extreme
conditions. When a large-scale wind farm is considered, the
wake effect or topographical effect make wind power even
harder to predict. Therefore, many works consider forecasting
uncertainties during operating wind farms using scenario
constructing method [5], fuzzy set theory [6] or stochastic
programming [7,8]. Kalantari proposed security constrained
unit commitment (SCUC) based on multiple stochastic wind
power scenarios to account for wind power uncertainty, and
improved the computational efficiency; and the proposed
SCUC is reformulated within the loadability set rather than on
the larger set of generation and demand [5]. In paper [6], the 24
hours ahead load forecasting uncertainty was evaluated by
applying fuzzy set theory and added to the multi objective UC
model; this UC is to minimize both the supply risk and the
generation cost. Wang formulated a stochastic price-based UC
problem with chance constraints to ensure wind power
utilization considering price and wind power forecasting
uncertainties; and solved the optimization problem by sample
average approximation method [7].

All the above UC optimizations are commonly with high
dimensional, nonlinear and mixed integer combinatorial
problem. Many mathematical programming and heuristic based
approaches have been utilized to solve the UC problem, for
instance, dynamic programming, neural networks, simulated
annealing, evolutionary programming, constraint logic
programming, genetic algorithms (GA), Lagrangian relaxation,
tabu search and particle swarm optimization (PSO) [12-16].
However, these methods might bear additional computational
burden or even suffer from “dimensional curve”, particularly
when high dimension mathematical model for a large-scale
wind farm with hundreds of WTs or wind farm cluster is
concerned.
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With the intention of developing better algorithm to solve
optimal operation problems, a new searching theory-glowworm
metaphor algorithm (GMA) is proposed by Krishnanand and
Ghose [24]. GMA has been applied for sensor deployment in
wireless sensor networks []. The results prove that GSO
outperforms PSO.

This paper presents three means of improving traditional UC
within wind farms: 1) a wind farm damage related unit
commitment model is established based on blade fatigue
damage; 2) glowworm metaphor algorithm (GMA) to solve the
mechanical damage minimizing UC problem; and 3)
quantification of WPF uncertainties in a UC formulation based
on wind power interval forecasting. Based on the case study in
a Chinese wind farm, it can be concluded that GMA approach is
reliable and efficient in solving UC problem. The proposed the
mechanical damage minimizing objective and uncertainty
incorporated-UC model can diminish the maintenance cost and
extend wind turbine lifespan in wind farms.

The reminder of the paper is organised as follows. In section
I, the model for calculating fatigue damage values of the
blades (FDVB) in four operational conditions are firstly
established to quantify the mechanical losses of WT. With
fatigue model, the objective of UC problem can be established
in section Ill. Also in section Ill, the uncertainty interval of
wind turbine generation forecasting are estimated and
incorporated into the UC constraints. In section 4, GMA theory
is applied to solve the optimization problem. In section 5, a
wind farm in China is taken as case study to validate the
proposed GMA approach and UC model; and to compare the
performance to benchmark methods — PSO and GA.
Conclusions are drawn in section V1.

Il. FATIGUE DAMAGE VALUE OF BLADES (FDVB)

Blades are important and fragile component for WTs to
convert wind energy into mechanical energy. From the
economic perspectives, blade take up to 20% of the total cost of
WTs [3]. Its maintenance cost is at least 5% of the total O&M
cost for a WT in healthy conditions [4]. This cost goes much
higher if the blades are in malfunction due to frequent
operational motions. And, the profits of wind farms will be
slashed. From the mechanical damage perspectives, wind loads
on a WT are mostly born by blades, especially the root part of
blades, and then transferred to the interconnection piece, rotor
and hub. This mechanical damage potentially reduces the
economic efficiency of wind farm operation or even restricts
the wind power share in a power system. Therefore, it is
significant to incorporate blade damage consideration in
maintenance and operation strategy, especially under the
context when the installation capacity of wind farm is
constantly increasing.

Many studies focus on the fatigue behavior of wind turbine
blades [25-26]. However, none of these works quantifies
damaging model of blades in UC problem. So, the maintenance
cost from the mechanical damages of a WT is not considered in
many previous works, although it is the primary capital flow
during running a wind farm.

A. Therefore, it is significant to improve the traditional UC
models to incorporate mechanical damage formulations for
reducing the total costs of operating and maintaining all WTs
in a wind farm. In this section, the fatigue damage value of
blades [17] indicating the lifetime and damages of WTs is
calculated based on Miner cumulative fatigue damage theory
[18].WT Working Conditions

The framework of deciding the fatigue damage value is
given in Fig.1. First, four typical loading conditions are defined
for simulating various working conditions of WTs, according to
Load Assumptions in GL2003 standard released by
Germanischer Lloyd (GL) [19]. Various operational conditions
of WTs are considered because different external factors have
variable loading effects. For example, when WTSs operate in a
normal generation state with normal wind conditions,
particularly operating in rated power generation state, the load
or damage on blade root is relatively small, while impulse loads
would increase the blade damage when operating yawing or
braking process. Second, based on the modeling of blade
fatigue load in typical operational conditions, loading and
cycling number are calculated to establish the fatigue load
spectrum of blades. And then, fatigue damage value can be
calculated based on miner cumulative fatigue theory.

Normal generation conditions
(DLC1.2)

| Start-up conditions (DLC3.1)

Definition of working
conditions

| Shut-down conditions (DLC4.1)

Idling conditions (DLC6.4)

Fatigue load spectrum of blades

|

Formulation of fatigue load
value

Fig.1 The framework of deciding fatigue damage value

(i) Normal generation conditions (DLC1.2): Normal
turbulence model -NTM are set under different average wind
speed ranging from V;, <Vyup <Vout (Viy © Cut in wind speed;
Viup: Wind speed at hub height; V. : cut off wind speed) to
calculate shimmy moment of blade root with various wind
conditions;

(if) Start-up conditions (DLC3.1): Normal wind profile
model-NWP are set to calculate shimmy moment under
different stable wind speed ranging from Vi, <V, <Vout:

(iif) Shut-down conditions (DLCA4.1): Normal wind profile
model-NWP are set to calculate shimmy moment under
different stable wind speed ranging from V;, <V, <Vout:

(iv) Idling conditions (DLC6.4): Normal turbulence model
-NTM are set under different average wind speed to calculate
shimmy moment of blade root with various wind conditions.

B. Fatigue Load Spectrum of Blades

After defining four typical working conditions, the fatigue
load spectrum of blades can be calculated based on GH-Bladed
software. Fatigue load spectrum describes the relationship
between cycling times and loading. It is the basics for analyzing
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the loading conditions and forecasting of fatigue lifetime
[20-21].

With GH-Bladed, the external environment and operational
states of WTs can be simulated. In this way, the cycle counts
and the loads at blades root under diverse working conditions
can be achieved. The loading models in GH-Bladed load
module are classified into steady loads, cyclic loads and
transient load.

= Steady load arises from turbulence wind field with
certain mean wind speed;

= Cyclic load arises mainly from wind shear effects,
yawing, tower-shadow effects, etc;

= Transient loads are primarily from start-on, shut-down
of WTs, etc.

The occurrence times of steady and cyclic loads under given
load level can be calculated from wind speed frequency
distribution (typically Weibull distribution) or designing WT
lifespan. As for transient load, it can be determined from GL
standard.

C. Miner Cumulative Fatigue Theory

Components in WTs bear multitudinous cyclic loads with
changing magnitude. This fatigue effect cumulates and causes
equipment failure. Miner theory is commonly-accepted linear
cumulative fatigue theory to quantify accumulative fatigue
damage, which neglects the influence from loading sequence
on the total damage value. Miner theory assumes that: i)
different loads are assumed to be independent from each other;
ii) when cumulative damage value reaches a given ceiling
limits, components or equipment would be damaged.

Assumed that the load magnitude born by WT components is
S, total cycling number is N, , also termed as fatigue lifetime.

The total damage amounts suffered during the whole running
life are linearly allocated to each cycling process. So, damage

value in each cycling process can be written as D; = }{\I Af
1

load magnitude is S, and it happens n; times, the

corresponding component damage value is D, . When

Z:(ni /N;)=1, the whole damaging process is finished and

the component damages with fatigue loads. n, is the cyclic
counts under given cyclic load; N;is the total lifetime under

given load level. Therefore, fatigue damage value (FDV) can be
defined as eq.(1) under various WT operating conditions.
o _MW/N, @
i h

where, i represents given WT working condition; n; is cyclic
counts under i working condition; N; is total cyclic number
under i working conditions; h; is running time or numbers of
start-up/shut-off under i working conditions; n; is relative
damage value per minute under i working conditions.

1. UNIT COMMITMENT FORMULATION
In this section, the established fatigue damage model is

firstly integrated in the objective formulation of the UC
problem. Secondly, we extend our previous work on
forecasting uncertainty modeling and incorporate it in the UC
constraints. Therefore, the tradeoff between maximizing all
available wind energy and minimizing total damage costs in the
UC model can be represented to improve the economic
efficiency of wind farms.

A. Obijectives

To take full advantage of all available wind energy, WTs
might need to operate frequently (for instance start up, shut
down, yaw) according to the current wind availabilities.
However, the mechanical damages during frequent operation
might increase as well as the maintenance costs. In the
proposed UC model, the mechanical damage of blades and
absorption of all available wind energy are tradeoff to
maximize the profits of the whole wind farm.

The objective of the proposed UC problem is shown in
eq.(2). The first item is the damage during normal running state.
The second and third items are damages during start-up and
shut-off, respectively. It aims to achieve the minimum damage
of blades in a whole wind farm within the constraints of both
wind availabilities at each WT location and demand in power
systems.

minF = (xi'jui’j -t)+

!
-

M- 1M
M= 5

Yi,jUi,j(1_Ui,j—1)+iizi,jin,j—l(l_Ui,j) )

=1 =1

where, F represents the total damage value of blades. X; ; , V; j

—.
Il

=Y
1!

Juy

and z; ; are mechanical damage of thei™ WT at j" period

when WT operates in normal running state, start-up state and
shut-down state, respectively. u; ; presents start or stop state of

the i WT within the j™ time slot, and it is a binary variable. 0

indicates shut-down state, while 1 represents operation state. t
is the operation time period of WTs. T is dispatching times. N
is the total number of WTs.

B. Constraints

Different from conventional and hydro power plants, wind
farm operators have neither fuel cost curves for thermal
generators nor flow control curves for hydropower generators
to make day-ahead dispatching schedules. The only
information about wind power for unit commitment is wind
power forecasting curves for a wind farm or each single WT.
Inevitably, forecasting error incurs negative uncertain and risky
effects on decision making.

In our prior paper [22-23], wind power interval forecasting
model is established based on a statistical model termed as
relevance vector machine (RVM). It provides not only single
forecasting value but also uncertain ranges of power output
under given confidence levels. It was proved that RVM has
better performance compared to artificial neural network
(ANN) and support vector machine (SVM) algorithm in a
deterministic and probabilistic manner. Wind power interval
forecasting helps ease the difficulty of integrating WPF
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uncertainties to UC and reduces uncertainty and variability in
wind power operating.

eq.(3) is the power generation constraints based on RVM
wind power interval forecasting model.

Pimn<P,<P 3)

i,j,mi i, j,max

where, and

|Jmax

P ar€ the upper and lower power output

limit of the i WT under certain confidence level at jth period.

P, ; is the scheduled power output of the i*" WT at j™ period.
The power balance constraint is as eq.(4).

Zul j DJ I:)Lj = 0 (4)

where, N is the number of WTs; U; ; is the state of the i"wT

during the jth period. Py is the planning output for wind farm

at jth period and it meets the dispatching command of power

system. P is the line losses of electrical collector system in

wind farm at " period.

The line losses of electrical collector system in wind farm is
assumed as 7% of the total system load, as constraint shown in
eq.(5). So, the spinning reserves is as eq.(6).

P, + P, =1.07P, (5)
Zu” P =1.07P, (6)

IV. OPTIMIZATION WITH GLOWWORM METAPHOR
ALGORITHM (GMA)

Glowworm metaphor algorithm [24] is a novel optimization
technique and it is a variant of a well-known ant colony
optimization (ACO). Glowworms or particles in GMA are
initially distributed randomly in the solution space carrying
with equal luminescence quantity. Each glowworm moves
within the local decision range and changes its moving
direction towards the “brighter” neighbor, whose luminescence
quantity is higher than its own. If the number of neighboring
glowworms is low, the local decision range is enlarged in order
to find more neighbors; otherwise the range is reduced. In fact,
the decision domain range of GMA varies as a function of the
neighbor density. It therefore improves the optimization
performance in terms of maximizing the number of peaks
detected.

The main steps of implementing GMA algorithm in UC
optimization problem are introduced as follow, with the
flowchart given in Fig.2.

(1) Preparation of samples

Interval forecasting results from RVM model are obtained,
including deterministic wind power output, upper and lower
bounds of wind power output at each time slot. Load demands
from power system operators are also imported.

(2) Initialization of GMA

Each glowworm, whose value indicates the state of each WT,
is randomly dispersed in the workspace with equal initialized

quantity of luminescence. "1" represents the WT is in "on"
state; "0" represents the WT is in "stop" state. N is the number
of glowworms (WTs).

(3) Calculation of fitness function

Fitness function shows the merits and demerits of individual
glowworm or their solutions. In GMA, the greater the
luminescence value is, the more optimal the glowworm is. In
this paper, fitness function is presented as the reciprocal of

objective function.
3,0=Y% (7

where, J;(t)is the fitness function at timet ; F is objective

function.

(4) Luminescence update phase

Glowworms start with equal luminescence value and update
their luminescence according to each glowworm fitness value
at their current position. The updating rule of glowworm is

given by:
7j(t+12) = max{0, (- p)e; (t)+ 9 (¢ + 1) (®)

where, p is the luminescence decay constant (0 < p <1); yis
the luminescence enhancement constant, being proportional to
the luminescence; J;(t) is the objective function value of j"
glowworm or WT at time of t.

@

‘ Sample preparation ‘ Optimal pammetcrs

‘ Initiation of GMA }‘7
l

‘ Fitness calculation ‘

l NO
Luminescence Termination
updating Conditions
‘ Movement ‘
Decision range
updating

Fig. 2 Flowchart of GMA
(5) Movement phase
Each glowworm (WT) identifies a set of neighbors using
following rules in eq.(9).

N, (D) ={j:d(i,j,t)<r )iz () <z (1)} TeNi®) )
where N, (t) is a set of neighbors for the i" glowworm (or

WT) at timet; d (i, j,t) is the Euclidian distance between

WTiand WT j;

WTi at time t and it is bounded by the radial range of the
luminescence sensor r, ; rj(t) is the luminescence level

I’di (t) is the local decision range value of

associated with WT j at timet .

And then, glowworms identify a brighter neighbor (with
larger luminescence value) using probabilistic mechanism. For
each WT i, the probability of moving towards a neighbor j
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P (t) is calculated using eq.(10).

=0 (t) (10)
pWw="~§
YR
JEN; (t)
(6) Decision domain updating
The local decision range of each WT is updating by
. r (11)
nt+l)=—"—~
(t+1) 1+ D, (t)
N, (t) . . . o
where, D; (t)=—_~is the neighbor density of WTi at timet ;
ﬂrS

[ is a constant parameter.

V. CASE STUDY

Data from a wind farm in North China is used to validate the
proposed model. There are 33 1.5MW doubly-fed induction
wind turbines installed and the total installed capacity is 49.5
MW. Within the operating period, demand constraints at each
time slot are assumed to be 16,000 kW, 16,000 kW, 20,000 kW,
20,000 kW, respectively. The numerical simulation is carried
out in GH-Bladed 3.81 for fatigue damage modeling, and
Matlab b2011 is the platform for unit commitment using GMA
to search for a target of minimum total mechanical damage in

the wind farm. Yawing error is set to be = 8< and safety factor
is 1.0.

A. Fatigue Damage Analysis

The loads at blade root under four working conditions with
cut-in wind speed (3.5 m/s), rated wind speed (9 m/s) and
cut-off wind speed (25m/s) are shown in Fig.3-14.

(1) Normal generation conditions (DLC1.2). It is clear to see
that the loads in three conditions are changing cyclically,
especially under cut-in and rated wind speed. Besides, the load
amplitudes and its fluctuation frequencies increase with the
growth of mean wind speed.

1000000 T Blade 1 Mx / Nm
800000 A M ‘ A A 7 A
600000 + f \ j ‘.L J! | | '\l | “ﬂ / \{l ‘f‘ ‘1‘ ‘,“ \ ;’} |
| \ |
ZH AL
20000 J[ \\ ’f &\ lf \\ I “‘ l I‘ \I ‘l |‘ \ J ‘J J [\
Hioshmgaton { e froapenfictionpantuected |
sl B W WA E A N
| | [
400000~1‘ | 1 I)“ " i fs) J‘ ‘\ ‘ L ‘ | f ‘\1 |
-GOOUOO«H(‘ / L?I | '\ { ‘I‘ JI‘ K‘ ‘J | \J | / { }“ \ ’J}
v L/ ; 4" ; 1 ‘/‘ i ‘\1/ ; "\J‘ | V
0 1'0 20 30 40 50 60

Time/s

Fig. 3 Loads when wind speed is 3.5m/s
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0
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0 10 20 30 40 50 60
Time /s

Fig. 4 Loads when wind speed is 9m/s

2000000 -
Blade 1 Mx / Nm

1500000

1000000

500000+

-5000004

-1000000—-
-1500000 } } } } } {
0 10 20 30 40 50 60

Time /s
Fig. 5 Loads when wind speed is 25m/s
(2) Shut-down conditions (DLC3.1). The loads tend to a
stable value during shutting down, no matter what wind
condition is considered. But, the fluctuation under shut-down
wind speed is small and is easy to converge to zero comparing
to those of other two conditions.

800000 -
600000 —

400000
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0

-200000
-400000
-600000—+
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Fig. 6 Loads when wind speed is 3.5m/s
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Fig. 7 Loads when wind speed is 9m/s
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1000000 T Blade 1 Mx / Nm
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600000

400000 +
200000
0 \j U

-200000 -

-400000 t t } } t t t t |
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Time /s

Fig. 8 Loads when wind speed is 25m/s
(3) Start-up conditions (DLC4.1). The amplitudes and
fluctuation range of the loads are small and easily converge to a
stable level, when WTs start up under cut-in wind speed. While
under other wind conditions, the loads are large and fluctuate
dramatically during starting up.
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Fig. 9 Loads when wind speed is 3.5m/s
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Fig. 10 Loads when wind speed is 9m/s

1200000 Blade 1 Mx / Nm
1000000
800000
600000 -7
400000 |
200000

0

-200000 T

-400000 T

-600000 f } f f f } f f } f
0 10 20 30 40 50 60 70 8 9 100
Time/s
Fig. 11 Loads when wind speed is 25m/s
(4) Idling conditions (DLC6.4). The loads fluctuate at a small

level and increase with the growth of wind speed.
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Fig. 12 Loads when wind speed is 3.5m/s
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Fig. 13 Loads when wind speed is 9m/s
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Fig. 14 Loads when wind speed is 25m/s

The proposed fatigue damage values (FDV) and lifetime
equivalent fatigue loads (LEFL) at blade root [22] under
various wind speed and working conditions are calculated and
listed in Table I. It can be seen that blades suffer large and
varying loads in different external conditions, which limits the
total cycle counts. It is also clear that although with the same
wind speed, loads are different under various working
conditions. Therefore, it is significant to schedule WTs
considering fatigue damage in a wind farm and to quantify this
damage values considering both working condition and
variable wind speed.

TABLE |
LIFETIME EQUIVALENT FATIGUE LOADS AND FATIGUE DAMAGE VALUE AT
BLADE ROOT
Working Wind LEFL(kNem) Cumulative  Relative
Conditions Speed Cycle FDV (min)
(m/s) Counts
Generating 4 1948.9 2.42E+08 3.80E-08
6 1967.4 2.33E+08 4.32E-08
8 2016.1 2.12E+08 6.02E-08
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10 2050.7 1.98E+08 8.03E-08
12 2020.1 2.10E+08 9.51E-08
14 2000.2 2.18E+08 1.29€-07
16 1964.2 2.35E+08 1.53E-07
18 1942.8 2.45E+08 1.75E-07
20 1947.6 2.43E+08 2.46E-07
22 1964.9 2.35E+08 2.98E-07
25 2004.5 2.17E+08 4.17E-07
Starting-up 4 956.2 4.18E+09 2.63E-09
12 730.3 1.23E+10 1.22E-09
25 674.5 1.69E+10 1.18E-09
Shutting-down 4 760.1 1.05E+10 2.77E-09
12 634.6 2.15E+10 1.35E-09
25 590.5 2.88E+10 1.15E-09
Idling 3 11.3 2.10E+17 5.25E-16

B. Unit Commitment Results

The interval forecasting data used in this paper are generated
from RVM model and are drawn in Fig.15-16. With forecasting
and its uncertainties, the objective function and constraint
functions can be established. To validate the reliability of the
proposed UC model, the optimization process is conducted
repeatedly for five times.

1600

1400
1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
WIND TURBINE NUMBER

1st 2nd 3rd ==@=4th

Fig.15 Wind power deterministic forecasting curves for each WT
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0
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Fig.16 Wind power interval forecasting for each WT at 1st time slot

Table II-1V show the results in the 5-time simulations, in
terms of optimal solutions (minimum fatigue damage value),
converging iteration step numbers and computational times. It
is observed that the obtained optimal solutions from GMA are
better than solutions obtained by the other leading methods —
PSO and GA. The proposed GMA approach has less fatigue
damage than that of PSO and GA by 3.7% and 8.2%. Also,
GMA outperforms GA and PSO in terms of reliability,
convergence rate and computational efficiency. Specifically,
GMA has 85.2% and 8.5% less iteration steps to converge;

44.5% and 13.0% higher computational efficiency. Besides,
UC model considering WPF uncertainty has better performance
(lower fatigue value) than UC without uncertainty estimation,
no matter which optimization algorithm is used. GMA, PSO
and GA reduce the mechanical losses by 15.9%, 11.8% and
7.1% on average comparing to UC without uncertainty
consideration.

It validates the well representation and contribution of WPF

uncertainty in UC problem.
TABLE Il
OPTIMAL SOLUTIONS FOR GMA, PSO AND GA SEARCHING

NUMBER GMA PSO GA  Without uncertainty
st 2.816 2974 3.014 3.386
2nd 2.840 2.863 3.096 3.269
3rd 2.790 2951 3.050 3.592
4th 2.823 2906 3.107 3.074
5th 2.832 2928 2.990 3.025
Average 2.820 2.924 3.051 3.269
TABLE Il

ITERATION NUMBERS FOR GMA, PSO AND GA SEARCHING

NUMBER GMA PSO GA

1st 113 125 298

2nd 62 87 276

3rd 252 259 285

4th 175 193 294

5th 178 182 295

Average 156 169 289

TABLE IV
COMPUTATIONAL TIMES FOR GMA, PSO AND GA SEARCHING

NUMBER GMA (s) PSO(s) GA (s)
1st 213 270 286
2nd 205 238 294
3rd 198 216 301
4th 205 219 289
5th 192 204 293
Average 203 229 293

The standard deviation of optimal solutions is 1.9% for GMA,
while 4.3% for PSO and 5.1% for GA. It indicates that GMA is
capable of searching global optimizations in a steadier and
more reliable manner. Fig.17 is the GMA converging processes
in five times simulations. The optimal solution in five times
iterations varies, and sometimes the results might fall into local
optimum at first, but finally converge to a global optimal
solution. In general, the proposed GMA algorithm converges
stably and efficiently.
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Fig. 17 Results of evolutionary process with GMA in 5 tests
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The wind turbine scheduling results during four consecutive
scheduling time point are drawn in Fig.18, where 0 and 1
indicate the shut-down and start-up state, respectively.
Considering the demand requirements and minimizing damage
losses, NO.5, NO.6, NO.7, NO.12, NO.16, and NO.18 wind
turbines are in the shutdown status within this scheduling
period. Based on the forecasting results with different forecast
time horizon, different unit commitment optimization in future
periods can be obtained, for example, day ahead scheduling or
real time dispatching. The computational times shown in Table
IV validate the GMA efficiency in a real time operation
environment. Compared with traditional UC strategies in a
wind farm, the proposed UC diminishes the random switches of
WT on/off and the corresponding fatigue damages during

operation.
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Fig.18 UC processing results of the wind farm

VI. CONCLUSIONS

In this paper, a wind farm unit commitment mathematical
model is proposed based on qualifying the fatigue damage
value of blades under various operational conditions and wind
power forecasting uncertainty. A novel glowworm metaphor
algorithm is implemented for solving the proposed unit
commitment problem. The proposed UC is with the aim of
minimizing the overall mechanical fatigue damages of wind
turbine blades. The wind power forecasting uncertainty is
quantified as the uncertain interval with given confidence level
based on RVM theory and incorporated into UC constraints.

Compared with the traditional wind farm unit commitment,
the proposed method reduces mechanical damage in a wind
farm while satisfying constrains of wind power forecasting
uncertainty and power system demand. It also has better
reliability and higher computational efficiency in UC than that
of PSO and GA. To sum up, this UC method reduces the
number of on/off times, extends wind turbine lifespan, and
mitigates forecasting uncertainty.
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