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 

Abstract—Mechanical health and operational efficiency of a 

wind turbine (WT) are important to the overall cost effectiveness 

in a wind farm. This paper presents a unit commitment (UC) 

model based on fatigue damage modeling of blades and 

uncertainty estimation of wind power forecasting (WPF). A novel 

glowworm metaphor algorithm (GMA) is developed to solve the 

proposed UC problem. During the pheromone updating of GMA, 

the luminescence carrying by glowworm reflects the net 

improvement by agent moving. This characteristic supports GMA 

to find the global optima to optimization of UC problem. The 

proposed UC objective is minimizing the mechanical damages of 

WTs in the whole wind farm. Uncertain interval of wind power 

generation is obtained as constraint function based on relevance 

vector machine (RVM). Data from a wind farm in China are used 

to validate the feasibility and effectiveness of the proposed method.  

Simulation results reveal the capabilities of GMA to efficiently get 

the better performance than benchmark methods, in terms of 

minimum mechanical damage, reliability and running efficiency. 

The benchmark methods are particle swarm optimization (PSO) 

and genetic algorithm (GA). The comparison between UC with 

and without consideration of WPF uncertainty exhibits the 

superiority of the incorporation of WPF uncertainty modeling.  

 
Index Terms—blade fatigue damage value, glowworm 

metaphor algorithm, maintenance cost, wind farm, wind power 

forecasting, uncertainty estimation. 

 

I. INTRODUCTION 

NIT commitment (UC) in a wind farm is to determine the 

day ahead start-up/shut-down schedules of WTs in each 

operation timeslot. The goal is to minimize the wind power 

generation cost while satisfying the constraints of system 

demand and wind availabilities, etc. As the increase of wind 
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farm scale and wind turbine (WT) capacity, UC is getting more 

difficult challenges to solve. This comes from the scaling-up 

uncertainty from wind intermittency and computational burden 

on operation.  Moreover, the large scale WTs bear more fatigue 

effects from variable wind, frequent on/off operation etc., and 

thereby bringing down their lifespan [1]. It is significant to 

improve traditional operation strategy in wind farms, in terms 

of mechanical damages of WTs,  profitability for wind farm 

owners, operation efficiency and quality of wind power output 

[2][16].  

Most of the early works on the UC problem use deterministic 

wind power forecasting (WPF) [9-11]. However, the root 

square mean error (RSME) of a day-ahead WPF can be as high 

as 20% of the wind farm capacity and even larger in extreme 

conditions. When a large-scale wind farm is considered, the 

wake effect or topographical effect make wind power even 

harder to predict. Therefore, many works consider forecasting 

uncertainties during operating wind farms using scenario 

constructing method [5], fuzzy set theory [6] or stochastic 

programming [7,8]. Kalantari proposed security constrained 

unit commitment (SCUC) based on multiple stochastic wind 

power scenarios to account for wind power uncertainty, and 

improved the computational efficiency; and the proposed 

SCUC is reformulated within the loadability set rather than on 

the larger set of generation and demand [5]. In paper [6], the 24 

hours ahead load forecasting uncertainty was evaluated by 

applying fuzzy set theory and added to the multi objective UC 

model; this UC is to minimize both the supply risk and the 

generation cost. Wang formulated a stochastic price-based UC 

problem with chance constraints to ensure wind power 

utilization considering price and wind power forecasting 

uncertainties; and solved the optimization problem by sample 

average approximation method [7].  

All the above UC optimizations are commonly with high 

dimensional, nonlinear and mixed integer combinatorial 

problem. Many mathematical programming and heuristic based 

approaches have been utilized to solve the UC problem, for 

instance, dynamic programming, neural networks, simulated 

annealing, evolutionary programming, constraint logic 

programming, genetic algorithms (GA), Lagrangian relaxation, 

tabu search and particle swarm optimization (PSO) [12-16]. 

However, these methods might bear additional computational 

burden or even suffer from “dimensional curve”, particularly 

when high dimension mathematical model for a large-scale 

wind farm with hundreds of WTs or wind farm cluster is 

concerned.  
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With the intention of developing better algorithm to solve 

optimal operation problems, a new searching theory-glowworm 

metaphor algorithm (GMA) is proposed by Krishnanand and 

Ghose [24]. GMA has been applied for sensor deployment in 

wireless sensor networks []. The results prove that GSO 

outperforms PSO.  

This paper presents three means of improving traditional UC 

within wind farms: 1) a wind farm damage related unit 

commitment model is established based on blade fatigue 

damage; 2) glowworm metaphor algorithm (GMA) to solve the 

mechanical damage minimizing UC problem; and 3) 

quantification of WPF uncertainties in a UC formulation based 

on wind power interval forecasting. Based on the case study in 

a Chinese wind farm, it can be concluded that GMA approach is 

reliable and efficient in solving UC problem. The proposed the 

mechanical damage minimizing objective and uncertainty 

incorporated-UC model can diminish the maintenance cost and 

extend wind turbine lifespan in wind farms.  

The reminder of the paper is organised as follows. In section 

II, the model for calculating fatigue damage values of the 

blades (FDVB) in four operational conditions are firstly 

established to quantify the mechanical losses of WT. With 

fatigue model, the objective of UC problem can be established 

in section III. Also in section III, the uncertainty interval of 

wind turbine generation forecasting are estimated and 

incorporated into the UC constraints. In section 4, GMA theory 

is applied to solve the optimization problem. In section 5, a 

wind farm in China is taken as case study to validate the 

proposed GMA approach and UC model; and to compare the 

performance to benchmark methods – PSO and GA. 

Conclusions are drawn in section VI.  

II. FATIGUE DAMAGE VALUE OF BLADES (FDVB) 

 

Blades are important and fragile component for WTs to 

convert wind energy into mechanical energy. From the 

economic perspectives, blade take up to 20% of the total cost of 

WTs [3]. Its maintenance cost is at least 5% of the total O&M 

cost for a WT in healthy conditions [4]. This cost goes much 

higher if the blades are in malfunction due to frequent 

operational motions. And, the profits of wind farms will be 

slashed. From the mechanical damage perspectives, wind loads 

on a WT are mostly born by blades, especially the root part of 

blades, and then transferred to the interconnection piece, rotor 

and hub. This mechanical damage potentially reduces the 

economic efficiency of wind farm operation or even restricts 

the wind power share in a power system. Therefore, it is 

significant to incorporate blade damage consideration in 

maintenance and operation strategy, especially under the 

context when the installation capacity of wind farm is 

constantly increasing.  

Many studies focus on the fatigue behavior of wind turbine 

blades [25-26]. However, none of these works quantifies 

damaging model of blades in UC problem. So, the maintenance 

cost from the mechanical damages of a WT is not considered in 

many previous works, although it is the primary capital flow 

during running a wind farm.  

A. Therefore, it is significant to improve the traditional UC 

models to incorporate mechanical damage formulations for 

reducing the total costs of operating and maintaining all WTs 

in a wind farm. In this section, the fatigue damage value of 

blades [17] indicating the lifetime and damages of WTs is 

calculated based on Miner cumulative fatigue damage theory 

[18].WT Working Conditions 

The framework of deciding the fatigue damage value is 

given in Fig.1. First, four typical loading conditions are defined 

for simulating various working conditions of WTs, according to 

Load Assumptions in GL2003 standard released by 

Germanischer Lloyd (GL) [19]. Various operational conditions 

of WTs are considered because different external factors have 

variable loading effects. For example, when WTs operate in a 

normal generation state with normal wind conditions, 

particularly operating in rated power generation state, the load 

or damage on blade root is relatively small, while impulse loads 

would increase the blade damage when operating yawing or 

braking process. Second, based on the modeling of blade 

fatigue load in typical operational conditions, loading and 

cycling number are calculated to establish the fatigue load 

spectrum of blades. And then, fatigue damage value can be 

calculated based on miner cumulative fatigue theory. 

 
Fig.1 The framework of deciding fatigue damage value 

(i) Normal generation conditions (DLC1.2): Normal 

turbulence model -NTM are set under different average wind 

speed ranging from outhubin VVV  ( inV : cut in wind speed;

hubV : wind speed at hub height; outV : cut off wind speed) to 

calculate shimmy moment of blade root with various wind 

conditions;  

(ii) Start-up conditions (DLC3.1): Normal wind profile 

model-NWP are set to calculate shimmy moment under 

different stable wind speed ranging from outhubin VVV  ;  

(iii) Shut-down conditions (DLC4.1): Normal wind profile 

model-NWP are set to calculate shimmy moment under 

different stable wind speed ranging from outhubin VVV  ; 

(iv) Idling conditions (DLC6.4): Normal turbulence model 

-NTM are set under different average wind speed to calculate 

shimmy moment of blade root with various wind conditions. 

B. Fatigue Load Spectrum of Blades 

After defining four typical working conditions, the fatigue 

load spectrum of blades can be calculated based on GH-Bladed 

software. Fatigue load spectrum describes the relationship 

between cycling times and loading. It is the basics for analyzing 
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the loading conditions and forecasting of fatigue lifetime 

[20-21].  

With GH-Bladed, the external environment and operational 

states of WTs can be simulated. In this way, the cycle counts 

and the loads at blades root under diverse working conditions 

can be achieved. The loading models in GH-Bladed load 

module are classified into steady loads, cyclic loads and 

transient load.  

 Steady load arises from turbulence wind field with 

certain mean wind speed;  

 Cyclic load arises mainly from wind shear effects, 

yawing, tower-shadow effects, etc;  

 Transient loads are primarily from start-on, shut-down 

of WTs, etc.  

The occurrence times of steady and cyclic loads under given 

load level can be calculated from wind speed frequency 

distribution (typically Weibull distribution) or designing WT 

lifespan. As for transient load, it can be determined from GL 

standard.  

C. Miner Cumulative Fatigue Theory 

Components in WTs bear multitudinous cyclic loads with 

changing magnitude. This fatigue effect cumulates and causes 

equipment failure. Miner theory is commonly-accepted linear 

cumulative fatigue theory to quantify accumulative fatigue 

damage, which neglects the influence from loading sequence 

on the total damage value. Miner theory assumes that: i) 

different loads are assumed to be independent from each other; 

ii) when cumulative damage value reaches a given ceiling 

limits, components or equipment would be damaged. 

Assumed that the load magnitude born by WT components is

1aS ; total cycling number is 1N , also termed as fatigue lifetime. 

The total damage amounts suffered during the whole running 

life are linearly allocated to each cycling process. So, damage 

value in each cycling process can be written as
1

1
1

N
D  . If 

load magnitude is 1aS  and it happens 1n  times, the 

corresponding component damage value is 1D . When

  1/ ii Nn , the whole damaging process is finished and 

the component damages with fatigue loads. 1n is the cyclic 

counts under given cyclic load; iN is the total lifetime under 

given load level. Therefore, fatigue damage value (FDV) can be 

defined as eq.(1) under various WT operating conditions. 

 /i i
i

i

n N
D

h


 

(1) 

where, i  represents given WT working condition; in is cyclic 

counts under i working condition; iN is total cyclic number 

under i working conditions; ih is running time or numbers of 

start-up/shut-off under i working conditions; in is relative 

damage value per minute under i working conditions. 

III. UNIT COMMITMENT FORMULATION 

In this section, the established fatigue damage model is 

firstly integrated in the objective formulation of the UC 

problem. Secondly, we extend our previous work on 

forecasting uncertainty modeling and incorporate it in the UC 

constraints. Therefore, the tradeoff between maximizing all 

available wind energy and minimizing total damage costs in the 

UC model can be represented to improve the economic 

efficiency of wind farms. 

A. Objectives  

To take full advantage of all available wind energy, WTs 

might need to operate frequently (for instance start up, shut 

down, yaw) according to the current wind availabilities. 

However, the mechanical damages during frequent operation 

might increase as well as the maintenance costs. In the 

proposed UC model, the mechanical damage of blades and 

absorption of all available wind energy are tradeoff to 

maximize the profits of the whole wind farm.  

The objective of the proposed UC problem is shown in 

eq.(2). The first item is the damage during normal running state. 

The second and third items are damages during start-up and 

shut-off, respectively. It aims to achieve the minimum damage 

of blades in a whole wind farm within the constraints of both 

wind availabilities at each WT location and demand in power 

systems. 

( )+•=min
1= 1=

,,∑∑
T

j

N

i
jiji tuxF  

( ) ( )∑∑∑∑ -- --

T

j

N

i
jijiji

T

j

N

i
jijiji uuzuuy

1= 1=
,1,,

1= 1=
1,,, 1,+1         (2) 

where, F represents the total damage value of blades. jix , , jiy ,  

and jiz ,  are mechanical damage of the thi WT at 
thj  period 

when WT operates in normal running state, start-up state and 

shut-down state, respectively. jiu , presents start or stop state of 

the thi WT within the
thj  time slot, and it is a binary variable. 0 

indicates shut-down state, while 1 represents operation state. t

is the operation time period of WTs. T is dispatching times. N

is the total number of WTs.  

B. Constraints 

Different from conventional and hydro power plants, wind 

farm operators have neither fuel cost curves for thermal 

generators nor flow control curves for hydropower generators 

to make day-ahead dispatching schedules. The only 

information about wind power for unit commitment is wind 

power forecasting curves for a wind farm or each single WT. 

Inevitably, forecasting error incurs negative uncertain and risky 

effects on decision making.  

In our prior paper [22-23], wind power interval forecasting 

model is established based on a statistical model termed as 

relevance vector machine (RVM). It provides not only single 

forecasting value but also uncertain ranges of power output 

under given confidence levels. It was proved that RVM has 

better performance compared to artificial neural network 

(ANN) and support vector machine (SVM) algorithm in a 

deterministic and probabilistic manner. Wind power interval 

forecasting helps ease the difficulty of integrating WPF 
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uncertainties to UC and reduces uncertainty and variability in 

wind power operating. 

eq.(3) is the power generation constraints based on RVM 

wind power interval forecasting model.  

 
, ,min , , ,maxi j i j i jP P P   (3) 

where, 
, ,maxi jP and 

, ,mini jP  are the upper and lower power output 

limit of the thi WT under certain confidence level at thj  period. 

jiP , is the scheduled power output of the thi WT at thj  period. 

The power balance constraint is as eq.(4).  

 , ,

1

0
N

i j i j Dj Lj

i

u P P P


    (4) 

where, N is the number of WTs; ,i ju is the state of the
thi WT 

during the thj  period.
DjP is the planning output for wind farm 

at thj period and it meets the dispatching command of power 

system. LjP is the line losses of electrical collector system in 

wind farm at thj period. 

The line losses of electrical collector system in wind farm is 

assumed as 7% of the total system load, as constraint shown in 

eq.(5). So, the spinning reserves is as eq.(6). 

 1.07Dj Lj DjP P P   (5) 

 max

1

1.07
N

ij Dj

i

u P P



 

(6) 

IV. OPTIMIZATION WITH GLOWWORM METAPHOR 

ALGORITHM (GMA) 

Glowworm metaphor algorithm [24] is a novel optimization 

technique and it is a variant of a well-known ant colony 

optimization (ACO). Glowworms or particles in GMA are 

initially distributed randomly in the solution space carrying 

with equal luminescence quantity. Each glowworm moves 

within the local decision range and changes its moving 

direction towards the “brighter” neighbor, whose luminescence 

quantity is higher than its own. If the number of neighboring 

glowworms is low, the local decision range is enlarged in order 

to find more neighbors; otherwise the range is reduced. In fact, 

the decision domain range of GMA varies as a function of the 

neighbor density. It therefore improves the optimization 

performance in terms of maximizing the number of peaks 

detected.  

The main steps of implementing GMA algorithm in UC 

optimization problem are introduced as follow, with the 

flowchart given in Fig.2.  

(1) Preparation of samples 

Interval forecasting results from RVM model are obtained, 

including deterministic wind power output, upper and lower 

bounds of wind power output at each time slot. Load demands 

from power system operators are also imported. 

(2) Initialization of GMA 

Each glowworm, whose value indicates the state of each WT, 

is randomly dispersed in the workspace with equal initialized 

quantity of luminescence. "1" represents the WT is in "on" 

state; "0" represents the WT is in "stop" state. n is the number 

of glowworms (WTs).  

(3) Calculation of fitness function 

Fitness function shows the merits and demerits of individual 

glowworm or their solutions. In GMA, the greater the 

luminescence value is, the more optimal the glowworm is. In 

this paper, fitness function is presented as the reciprocal of 

objective function. 

 ( )
FtJ j

1=
 

(7) 

where,  tJ j is the fitness function at time t ; F is objective 

function. 

(4) Luminescence update phase 

Glowworms start with equal luminescence value and update 

their luminescence according to each glowworm fitness value 

at their current position. The updating rule of glowworm is 

given by:  

         1-1,0max1  tJtt jjj   (8) 

where,  is the luminescence decay constant  10   ;  is 

the luminescence enhancement constant, being proportional to 

the luminescence;  tJ j  is the objective function value of 
thj

glowworm or WT at time of t . 

 
Fig. 2 Flowchart of GMA 

(5) Movement phase 

Each glowworm (WT) identifies a set of neighbors using 

following rules in eq.(9).  

          : , , ;i

i d i jN t j d i j t r t t t    ,  tNj i  (9) 

where  iN t is a set of neighbors for the 
thi glowworm (or 

WT) at time t ;  , ,d i j t is the Euclidian distance between 

WT i and WT j ;  i

dr t is the local decision range value of 

WT i at time t  and it is bounded by the radial range of the 

luminescence sensor sr ;  tj is the luminescence level 

associated with WT j at time t .  

And then, glowworms identify a brighter neighbor (with 

larger luminescence value) using probabilistic mechanism. For 

each WT i , the probability of moving towards a neighbor j
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 jp t is calculated using eq.(10). 

 
( )

( )

( )
( )

∑
∈

=

tNj

j

j

j

i
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tτ
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(10) 

(6) Decision domain updating 

The local decision range of each WT is updating by 

 
( )

( )tDβ

r
tr

i

si

d +1
=1+

 

(11) 

where,  
 
2
s

i
i

r

tN
tD


 is the neighbor density of WT i at time t ;

 is a constant parameter. 

V. CASE STUDY 

Data from a wind farm in North China is used to validate the 

proposed model. There are 33 1.5MW doubly-fed induction 

wind turbines installed and the total installed capacity is 49.5 

MW. Within the operating period, demand constraints at each 

time slot are assumed to be 16,000 kW, 16,000 kW, 20,000 kW, 

20,000 kW, respectively. The numerical simulation is carried 

out in GH-Bladed 3.81 for fatigue damage modeling, and 

Matlab b2011 is the platform for unit commitment using GMA 

to search for a target of minimum total mechanical damage in 

the wind farm. Yawing error is set to be  8°, and safety factor 

is 1.0. 

A. Fatigue Damage Analysis 

The loads at blade root under four working conditions with 

cut-in wind speed (3.5 m/s), rated wind speed (9 m/s) and 

cut-off wind speed (25m/s) are shown in Fig.3-14.  

(1) Normal generation conditions (DLC1.2). It is clear to see 

that the loads in three conditions are changing cyclically, 

especially under cut-in and rated wind speed. Besides, the load 

amplitudes and its fluctuation frequencies increase with the 

growth of mean wind speed.  

 
Fig. 3 Loads when wind speed is 3.5m/s 

 
Fig. 4 Loads when wind speed is 9m/s 

 
Fig. 5 Loads when wind speed is 25m/s 

 (2) Shut-down conditions (DLC3.1). The loads tend to a 

stable value during shutting down, no matter what wind 

condition is considered. But, the fluctuation under shut-down 

wind speed is small and is easy to converge to zero comparing 

to those of other two conditions. 

 
Fig. 6 Loads when wind speed is 3.5m/s 

 
Fig. 7 Loads when wind speed is 9m/s 
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Fig. 8 Loads when wind speed is 25m/s 

(3) Start-up conditions (DLC4.1). The amplitudes and 

fluctuation range of the loads are small and easily converge to a 

stable level, when WTs start up under cut-in wind speed. While 

under other wind conditions, the loads are large and fluctuate 

dramatically during starting up.  

 
Fig. 9 Loads when wind speed is 3.5m/s 

 
Fig. 10 Loads when wind speed is 9m/s 

 
Fig. 11 Loads when wind speed is 25m/s 

 (4) Idling conditions (DLC6.4). The loads fluctuate at a small 

level and increase with the growth of wind speed. 

 
Fig. 12 Loads when wind speed is 3.5m/s 

 
Fig. 13 Loads when wind speed is 9m/s 

 
Fig. 14 Loads when wind speed is 25m/s 

The proposed fatigue damage values (FDV) and lifetime 

equivalent fatigue loads (LEFL) at blade root [22] under 

various wind speed and working conditions are calculated and 

listed in Table I. It can be seen that blades suffer large and 

varying loads in different external conditions, which limits the 

total cycle counts. It is also clear that although with the same 

wind speed, loads are different under various working 

conditions. Therefore, it is significant to schedule WTs 

considering fatigue damage in a wind farm and to quantify this 

damage values considering both working condition and 

variable wind speed.  
TABLE I 

LIFETIME EQUIVALENT FATIGUE LOADS AND FATIGUE DAMAGE VALUE AT 

BLADE ROOT 
Working 

Conditions 

Wind 

Speed 

(m/s) 

LEFL(kN•m) Cumulative  

Cycle 

Counts 

Relative 

FDV (min) 

Generating 4 1948.9 2.42E+08 3.80E-08 

6 1967.4 2.33E+08 4.32E-08 

8 2016.1 2.12E+08 6.02E-08 
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10 2050.7 1.98E+08 8.03E-08 

12 2020.1 2.10E+08 9.51E-08 

14 2000.2 2.18E+08 1.29E-07 

16 1964.2 2.35E+08 1.53E-07 

18 1942.8 2.45E+08 1.75E-07 

20 1947.6 2.43E+08 2.46E-07 

22 1964.9 2.35E+08 2.98E-07 

25 2004.5 2.17E+08 4.17E-07 

Starting-up 4 956.2 4.18E+09 2.63E-09 

12 730.3 1.23E+10 1.22E-09 

25 674.5 1.69E+10 1.18E-09 

Shutting-down 4 760.1 1.05E+10 2.77E-09 

12 634.6 2.15E+10 1.35E-09 

25 590.5 2.88E+10 1.15E-09 

Idling 3 11.3 2.10E+17 5.25E-16 

B. Unit Commitment Results 

The interval forecasting data used in this paper are generated 

from RVM model and are drawn in Fig.15-16. With forecasting 

and its uncertainties, the objective function and constraint 

functions can be established. To validate the reliability of the 

proposed UC model, the optimization process is conducted 

repeatedly for five times.  

 
Fig.15 Wind power deterministic forecasting curves for each WT 

 
Fig.16 Wind power interval forecasting for each WT at 1st time slot 

Table II-IV show the results in the 5-time simulations, in 

terms of optimal solutions (minimum fatigue damage value), 

converging iteration step numbers and computational times. It 

is observed that the obtained optimal solutions from GMA are 

better than solutions obtained by the other leading methods – 

PSO and GA. The proposed GMA approach has less fatigue 

damage than that of PSO and GA by 3.7% and 8.2%. Also, 

GMA outperforms GA and PSO in terms of reliability, 

convergence rate and computational efficiency. Specifically, 

GMA has 85.2% and 8.5% less iteration steps to converge; 

44.5% and 13.0% higher computational efficiency. Besides, 

UC model considering WPF uncertainty has better performance 

(lower fatigue value) than UC without uncertainty estimation, 

no matter which optimization algorithm is used. GMA, PSO 

and GA reduce the mechanical losses by 15.9%, 11.8% and 

7.1% on average comparing to UC without uncertainty 

consideration.  

It validates the well representation and contribution of WPF 

uncertainty in UC problem.  
TABLE II 

OPTIMAL SOLUTIONS FOR GMA, PSO AND GA SEARCHING 

NUMBER GMA PSO GA Without uncertainty 

1st 2.816 2.974 3.014 3.386 

2nd 2.840 2.863 3.096 3.269 

3rd 2.790 2.951 3.050 3.592 

4th 2.823 2.906 3.107 3.074 

5th 2.832 2.928 2.990 3.025 

Average 2.820 2.924 3.051 3.269 

 
TABLE III 

ITERATION NUMBERS FOR GMA, PSO AND GA SEARCHING 

NUMBER GMA PSO GA 

1st 113 125 298 

2nd 62 87 276 

3rd 252 259 285 

4th 175 193 294 

5th 178 182 295 

Average 156 169 289 

 
TABLE IV 

COMPUTATIONAL TIMES FOR GMA, PSO AND GA SEARCHING 

NUMBER GMA (s) PSO(s) GA (s) 

1st 213 270 286 

2nd 205 238 294 

3rd 198 216 301 

4th 205 219 289 

5th 192 204 293 

Average 203 229 293 

 

The standard deviation of optimal solutions is 1.9% for GMA, 

while 4.3% for PSO and 5.1% for GA. It indicates that GMA is 

capable of searching global optimizations in a steadier and 

more reliable manner. Fig.17 is the GMA converging processes 

in five times simulations. The optimal solution in five times 

iterations varies, and sometimes the results might fall into local 

optimum at first, but finally converge to a global optimal 

solution. In general, the proposed GMA algorithm converges 

stably and efficiently. 

 
Fig. 17 Results of evolutionary process with GMA in 5 tests 
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The wind turbine scheduling results during four consecutive 

scheduling time point are drawn in Fig.18, where 0 and 1 

indicate the shut-down and start-up state, respectively. 

Considering the demand requirements and minimizing damage 

losses, NO.5, NO.6, NO.7, NO.12, NO.16, and NO.18 wind 

turbines are in the shutdown status within this scheduling 

period. Based on the forecasting results with different forecast 

time horizon, different unit commitment optimization in future 

periods can be obtained, for example, day ahead scheduling or 

real time dispatching. The computational times shown in Table 

IV validate the GMA efficiency in a real time operation 

environment. Compared with traditional UC strategies in a 

wind farm, the proposed UC diminishes the random switches of 

WT on/off and the corresponding fatigue damages during 

operation. 

 

Fig.18 UC processing results of the wind farm 

VI. CONCLUSIONS 

In this paper, a wind farm unit commitment mathematical 

model is proposed based on qualifying the fatigue damage 

value of blades under various operational conditions and wind 

power forecasting uncertainty. A novel glowworm metaphor 

algorithm is implemented for solving the proposed unit 

commitment problem. The proposed UC is with the aim of 

minimizing the overall mechanical fatigue damages of wind 

turbine blades. The wind power forecasting uncertainty is 

quantified as the uncertain interval with given confidence level 

based on RVM theory and incorporated into UC constraints. 

Compared with the traditional wind farm unit commitment, 

the proposed method reduces mechanical damage in a wind 

farm while satisfying constrains of wind power forecasting 

uncertainty and power system demand. It also has better 

reliability and higher computational efficiency in UC than that 

of PSO and GA. To sum up, this UC method reduces the 

number of on/off times, extends wind turbine lifespan, and 

mitigates forecasting uncertainty.  

REFERENCES 

[1] Stamford Laurence, Azapagic Adisa. Life cycle sustainability assessment 

of UK electricity scenarios [J]. Energy for Sustainable Development. 
Volume 23, December 2014, Pages 194–211. 

[2] Qinglai Guo, Hongbin Sun, Bin Wang, Boming Zhang, Wenchuan Wu, 

Lei Tang. Hierarchical automatic voltage control for integration of 
large-scale wind power: Design and implementation. Electric Power 

Systems Research, March 2015, 120: 234–241. 

[3] Ponta, FL; Otero, AD; Rajan, A; Lago, LI. The adaptive-blade concept in 
wind-power applications [J]. Energy for Sustainable Development, 2014, 

Vol.22, pp.3-12. 

[4] Besnard F, Bertling L, An approach for condition-based maintenance 

optimization applied to WT blades [J]. Sustainable Energy, IEEE 

Transactions on, 2010, 1(2): 77-83. 

[5] Kalantari A, Restrepo J F, Galiana F D. Security-Constrained Unit 

Commitment with Uncertain Wind Generation: The Loadability Set 
Approach [J]. Power Systems, IEEE Transactions on, 2013, 28(2): 

1787-1796. 

[6] Wang B, Li Y, Watada J. Supply Reliability and Generation Cost 
Analysis Due to Load Forecast Uncertainty in Unit Commitment 

Problems [J]. IEEE Transaction on Power Systems. 2013, 28(3): 

2242-2253. 
[7] Wang Q, Wang J, Guan Y. Price-Based Unit Commitment With Wind 

Power Utilization Constraints [J]. Power Systems, IEEE Transactions on, 

2013, 28(3): 2718-2726. 
[8] Shao J, Zhang B H, Deng W S, et al. A Stochastic Programming Method 

for Unit Commitment of Wind Integrated Power System [J]. Advanced 

Materials Research, 2013, 732: 1390-1395. 
[9] De Almeida R G, Castronuovo E.D., Lopes J.A. Pecas. Optimum 

Generation Control in Wind Parks When Carrying out System Operator 

Requests [J]. IEEE Transaction on Power Systems, 2006, 21(2): 718-726. 
[10] Pecas Lopes, Loao A., Moyano, Carlos F.. An optimization approach for 

wind turbine commitment and dispatch in a wind park [J]. Electric Power 

Systems Research, 2009, 79(1): 71-79. 
[11] Liu J Z, Liu Y, Zeng D L, et al. Optimal short-term load dispatch strategy 

in wind farm [J]. Science China Technological Sciences, 2012, 55: 

1140-1145. 
[12] Holmes J D. Fatigue life under along-wind loading-closed-form solutions 

[J]. Engineering Structures, 2002, 24(1): 109-114. 
[13] Swarup K S, Yamashiro S. Unit commitment solution methodology using 

genetic algorithm [J]. Power Systems, IEEE Transactions on, 2002, 17(1): 

87-91. 
[14] Cheng C P, Liu C W, Liu C C. Unit commitment by Lagrangian 

relaxation and genetic algorithms [J]. Power Systems, IEEE Transactions 

on, 2000, 15(2): 707-714. 
[15] Mantawy A H, Abdel-Magid Y L, Selim S Z. Integrating genetic 

algorithms, tabu search, and simulated annealing for the unit commitment 

problem [J]. Power Systems, IEEE Transactions on, 1999, 14(3): 
829-836. 

[16] Chandrasekaran K, Hemamalini S, Simon S P, et al. Thermal unit 

commitment using binary/real coded artificial bee colony algorithm[J]. 
Electric Power Systems Research, 2012, 84(1): 109-119. 

[17] Jinhua Zhang, Yongqian Liu, De Tian, Gouhong Chen. Optimal power 

dispatch in wind farm with life extension of WT blades as target [J]. 
Journal of Renewable and Sustainable Energy, 2013, 5, 033115. 

[18] Miner M A.. Cumulative Damage Fatigue, J. Appl. Meeh, 1945: 159-164. 

[19] Germanischer Lloyd, Hamburg, Germany: “Guideline for the 
Certification of WTs”, Edition 2003 with Supplement 2004 

[20] A.J. Wood, B.F. Wollenberg, Power System Generation, Operation and 

Control, 2nd ed., John Wiley, New York, 1996. 
[21] N.P. Padhy, Unit commitment-a bibliographical survey, IEEE Trans. 

Power Syst. 2004, 6(3): 1196–1205. 

[22] Jie Yan, Yongqian Liu, Shuang Han, etc. Wind power grouping forecasts 
and its uncertainty analysis using optimized relevance vector machine [J]. 

Renewable & Sustainable Energy Reviews, 2013, 27: 613–621. 

[23] Yongqian Liu, Jie Yan, Shuang Han, David Infield, etc. “An optimized 
short-term wind power prediction method considering NWP accuracy,” 

Chinese Science Bulletin. April 2014, 59(11): 1167-1175. 

[24] Krishnanand, K.N.; Ghose, D. Detection of Multiple Source Locations 
using a Glowworm Metaphor with Applications to Collective Robotics 

[C]. Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 

IEEE. 8-10 June 2005: 84-91. 
[25] Zhang, Mingming; Tan, Bin; Xu, Jianzhong. Parameter study of sizing 

and placement of deformable trailing edge flap on blade fatigue load 

reduction [J]. Renewable Energy, May 2015, 77:217-226. 
[26] Movaghghar, A. ; Lvov, G.I. A method of estimating wind turbine blade 

fatigue life and damage using continuum damage mechanics [J]. 

International Journal of Damage Mechanics, Aug 2012, 21(6): 810-821. 

 


