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Variation in Surface Energy and Reduction Drive of a
Metal Oxide Lithium-lon Anode with Stoichiometry:

A DFT Study of Lithium Titanate Spinel Surfaces
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Energigune, Albert Einstein 48, 01510 Mifiano, Alava, Spain, and Stephenson Institute for

Renewable Energy, Department of Chemistry, The University of Liverpool, Liverpool, L69 3BX

Abstract

LisTisOy; is a “zero-strain” lithium-ion anode material that shows excellent stability over
repeated lithium insertion—extraction cycles. Although lithium (de)intercalation in the bulk
material has been well characterised, our understanding of surface atomic-scale—structure and
the relationship with electrochemical behaviour is incomplete. To address this, we have mod-
elled the Lis TisOq, (111) , Li7TisO12 (111) and ¢-Li; TiO3 (100), (110), and (111) t-Li, TiO3
surfaces using Hubbard-corrected density-functional theory (GGA+U), screening more than
600 stoichiometric LisTisO, and Li;TisO, (111) surfaces. For LigTisOj, and Li; TisOj, we
find Li-terminated surfaces are more stable than mixed Li/Ti-terminated surfaces, which typi-
cally reconstruct. For a-Li;TiO3, the (100) surface energy is significantly lower than for the

(110) and (111) surfaces, and is competitive with the pristine Li; TisO12 (111) surface. Using
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these stoichiometric surfaces as reference, we also model variation in Li surface coverage as a
function of lithium chemical potential. For LisTisO,, the stoichiometric surface is most stable
across the full chemical potential range of thermodymamic stability, whereas for Li; TisO1,, Li
deficient surfaces are stablised at low Li chemical potentials. The highest occupied electronic
state for Li;TisOjy (111) is 2.56eV below the vacuum energy. This is 0.3eV smaller than
the work function for metallic lithium, indicating an extreme thermodynamic drive for reduc-
tion. In contrast, the highest occupied state for the o-Li; TiO3 (100) surface is 4.71eV below
the vacuum level, indicating a substantially lower reduction drive. This result demonstrates
how stoichiometry can strongly affect the thermodynamic drive for reduction at metal-oxide—
electrode surfaces. In this context, we conclude by discussing the design of highly-reducible
metal-oxide electrode coatings, with the potential for controlled solid-electrolyte—interphase

formation via equilibrium chemistry, by electrode wetting in the absence of any applied bias.

Introduction

The global transition from fossil fuels to renewable low-carbon primary energy sources is, at
present, hindered by the need for secondary energy storage technologies that can operate reli-
ably and cheaply. Lithium-ion batteries are widely used for secondary energy storage in personal
electronics, and increasingly in hybrid electric vehicles, but scaling commercial technologies up
to grid-scale capacities presents a challenge. Conventional Li-ion batteries use graphite anodes,
which are low cost and have excellent lithium-intercalation kinetics. The low intercalation potential
of graphite with respect to Li/Li* means rapid charging causes metallic Li to plate at the electrode—
electrolyte interface.’ Inhomogeneous Li plating can precipitate Li dendrite growth, eventually
causing the cell to short-circuit. Conventional Li-ion batteries use liquid or polymer organic elec-
trolytes, and the rapid release of energy during a short-circuit can initiate electrolyte combustion,
presenting a serious safety concern. In addition, in graphite the intercalation and extraction of
lithium produces large volume changes. Repeated charge—discharge cycles can cause the electrode

to crack, potentially breaking contact between electrode particles and causing irreversible capacity



loss. This manifests as a gradual degradation of battery performance and contributes to limited
battery lifetimes, increasing the lifetime costs of grid-scale storage.

One strategy to address these problems is to replace graphite anodes with a material less prone
to lithium plating or cracking. A promising alternative is Li4TisOj2, which readily intercalates
three lithium ions per formula unit at a voltage of 1.56V versus Li/Li™ to form Li7TisOq,.%
LisTisOj, offers high Li-insertion and extraction rates, and importantly shows excellent stability
over repeated cycles, attributed to two properties. First, LisTisO1; is a “zero-strain” intercalation
compound, with Li intercalation producing lattice parameter changes smaller than 0.1%.° Second,
the relatively high potential for lithium intercalation of 1.56 V limits the formation of dendritic Li,
which mitigates both the degradation of cell performance over repeated charge/discharge cycles
and the risk of catastrophic short-circuiting.

The properties of bulk LisTisO, have been studied in a number of previous works.*™8.2 The
operational characteristics of an electrode, however, depend not only on bulk properties, but also
on the electrode—electrolyte interface. During Li* insertion and extraction, lithium ions move
across this interface and through the electrode near-surface region. Local diffusion barriers, which
may differ from bulk values, determine insertion and extraction kinetics and associated overpo-
tentials. 1Y Electrochemical side-reactions at the electrode surface, such as continuous reduction
of the electrolyte to form a solid-electrolyte interphase (SEI), may also degrade cell performance
over repeated cycles. The thermodynamic driving force for reductive surface reactions, involving
electron transfer from the electrode to the electrolyte, depends on the binding energy for electrons
at the surface (relative to a fixed reference, such as the vacuum energy). Surface electron binding
energies may deviate from bulk values, due to band bending, and electrochemical reactivity and
stability of electrode surfaces therefore depend on their composition and atomic geometry.

A rational development of improved energy storage solutions requires understanding the rela-
tionships between electrode surface composition, geometry, and resulting electrochemical proper-
ties (SEI formation and evolution included). The challenge of experimentally resolving atomic-

scale surface structure and electronic properties makes explicit computational modelling a pow-



erful complementary approach for relating electrode surface chemistry to electrochemical perfor-
mance. Here we focus on the case of LisTisO1,, which shows particularly interesting behaviour.
In 2012, Kitta ef al. studied the evolution of the atomic structure and electrochemical proper-
ties of a LigTisOjp (111) surface during initial lithium insertion and extraction cycles, using a
combination of atomic force microscopy (AFM), transmission electron microscopy (TEM), and
electron energy loss spectroscopy (EELS). Starting from a pristine atomically flat (111) surface,
the first lithium insertion—extraction cycle produced an irreversible structural change, accompa-
nied by a 10nm increase in surface roughness. After this first cycle, the charge transfer resis-
tance of the electrode/electrolyte interface fell by half, then remained constant for the following
charge-discharge cycles. By analysing TEM data these authors identified an epitaxially-matched
o-Li; TiO3 surface-layer phase formed during the first insertion/extraction cycle.

An epitaxially matched surface-layer phase, such as -Li,TiO3 on LisTisO;,, may be con-
sidered as a solid-electrolyte interphase component. Because the electrochemical performance
of an electrode depends on the surface composition, the observations of Kitta et al. suggest an
intriguing strategy for tailoring electrode surface properties. Targetted in-situ growth of specific
surface-layer phases may lead to enhanced electrode rate capabilities and stability, and correspond-
ingly increased operational lifetimes. In this respect the LisTisO12/Li7TisO12/a-Li TiO3 system
represents an exemplar case for studying the role of surface composition on electrochemical char-
acteristics, as well as being directly relevant to the use of LisTisO1, as a high-stability Li-electrode.

To understand how a surface-layer a-Li;TiO3 phase affects the electrochemical properties of
the LisTisO1, anode, there is a timely need for an atomically resolved structural description of
the competing surfaces and a comparison of their electronic properties. These aspects are chal-
lenging to access experimentally: in the study of Kitta ef al. the structural data lack the atomic
resolution necessary to identify competing surface morphologies, while electronic properties, such
as the electrostatic potential across the electrode—electrolyte interface region, are not accessible.
Density functional theory (DFT) is a useful tool in both these regards, because it provides a direct

description of atomic scale geometries and of electronic structure, and for this reason DFT is a



well established approach for studying simple surfaces.>

In the case of Li, TisO1, surfaces, computational modelling remains challenging. The presence
of non-equivalent crystallographic cuts through the Li, Ti5O1, unit cell means competing surface
planes must be considered. Furthermore, to draw reliable conclusions, one must consider the
size of the configurational space with regard to different arrangements of surface atoms, which
can be computationally restrictive for materials with low unit-cell symmetries, such as Li, Ti5O15.
Previous computational studies of Li, TisO;; surfaces have relied on various simplifying approx-
imations. Gao et al. previously used DFT to investigate competing LisTisO1, (111) surface ter-
minations.!3% The complex LisTisO; cell was approximated using the simpler LiTi,Oy spinel
structure, and possible rearrangements of atoms in the surface layer were not considered. Weber
et al. have also used DFT to calculate surface energies of the (100), (110), and (111) LigTisO1,
and Li;TisO;, surfaces.!> Only a single geometry was modelled for each surface, and it is not
known, therefore, whether these surface energies represent thermodynamically favoured low en-
ergy surfaces, or whether more stable surfaces with different surface planes or alternate surface
atom arrangements exist. The primary objective of this work is to provide an extensive energy
screening of LisTisO1,, Li;TisO;3, and a-Li, TiO3 surfaces.

To this end, we report DFT calculations of the (111) Li4TisO1, and Li;TisO, surfaces, and
the (100), (110), and (111) surfaces of o-Li»TiO3, considering a total of more than 600 surface
structures. For the Li, TisO1; surfaces we consider competing surface terminations along the (111)-
oriented unit cell, and perform a search over different configurations and stoichiometries of under-
coordinated cations at each exposed surface. For o-Li;TiO3 the significant surface roughness
observed by Kitta et al.! for the (111)-grown surface means other crystallagraphic surfaces might
be present in the final as-grown surface morphology, and we therefore compare energies of three
low-index surfaces.

A complete theoretical description of Li,TisO1, surfaces under all accessible experimental
conditions requires considering a comprehensive set of surface stoichiometries, each of which

may become favoured at component atom chemical potentials. A computational study of all pos-



sible surface stoichiometries is impractical: an infinite number of surface configurations may be
constructed. To ensure our study is computationally tractable, we first restrict our attention to
stoichiometric surface models. For the stoichiometric surface models with lowest energy we then
consider adding or removing surface atoms, to understand how the surface structure varies with
chemical conditions.

We find that Li, TisO1, (111) surfaces with pure lithium terminations are more stable than
surfaces with mixed lithium—titanium terminations, which tend to reconstruct. For a-Li,TiO3
the (100) surface energy is significantly lower than the (110) and (111) surface energies. This
indicates that planar (111)-terminated surfaces are unstable with respect to highly-facetted (100)-
terminated surfaces. This preference for surface facetting may contribute to the surface roughen-
ing observed by Kitta et al. during formation of the a-Li>TiO3 surface phase in Li, TisO15. U For
LigTisOj, (111), under all conditions where LisTisO1; is thermodynamically stable, stoichiomet-
ric Li-terminated surfaces are predicted to be stable versus addition or removal of surface lithium.
For Li; TisO1, (111) however, Li-deficient surfaces may be stabilised within a narrow range of low
lithium chemical potentials, before lithium deintercalation from the bulk to form LisTisO5.

By comparing electronic structures and electron binding energies of the Li, TisO> (111) and
a-Li;TiO3 (100) surfaces, we have investigated the thermodynamic driving force for reductive
reactions at the o-Lip;TiO3 surface-layer phase compared to pristine Li, TisO1,. We find electrons
are bound more strongly at the (100) a-Li;TiO3 surface than at the (111) Li;TisO surface, by
2.1eV. a-Li;TiO3 (100) is therefore expected to be much less reductively reactive than Li; TisO1,
(111). For Li7TisO, (111) the energy difference between the highest occupied state and the vac-
uum energy is only 2.49eV.1® This is even smaller than the work function of metallic lithium
of ~2.9eV 1218 which is experimentally observed to reduce electrolytes even in the absence of
an applied bias. Zero-bias SEI formation has been observed in the lithium-ion cathodeLiMn;0O4
for surface facets with a large reduction drive, after electrolyte wetting.1?? The development of
materials or coatings with highly reducing surface facets, which may allow controlled zero-bias

SEI formation, is an interesting and possibly quite general design strategy for future high stability



electrodes. For this strategy to be rationally explored, it is necessary to link the composition and
structure of an electrode surface to the relevant redox chemistry thermodynamics, which we pro-

vide here for the competing phases and surface stoichiometries of lithium-titanate spinel anodes.

Methods

P, 2122 with valence electrons described

Calculations were performed using the DFT code VAS
within a plane-wave basis and an energy cutoff of 500eV. Valence—core interactions were treated
with the projector augmented wave (PAW) method, 2% with cores of [Mg] for Ti, [He] for O,
and [He] for Li. Calculations were performed using the PBE generalised gradient approxima-
tion (GGA) functional,> supplemented with a Dudarev +U correction applied to the Ti d states
(GGA+U). The previous study of Lu et al. presented EELS data for Li;TisO1, that showed distinct
“Ti3+” and “Ti*T” oxidation states,” alongside DFT calculations using both standard GGA (PBE),
and GGA+U (PBE+U) functionals. These GGA calculations qualitatively failed to describe the
distinct Ti oxidation states observed in the EELS spectra. This is due to the self-interaction error
inherent to standard GGA (and LDA) functionals,?9"%% and similar behaviour is well known for
many transition metal oxides with mixed formal oxidation states.??*!' By applying a +U correc-
tion of U = 4.5¢eV to the Ti d states, Lu et al. predicted charge disproportionation into distinct
“Ti3*” and “Ti*T” oxidation states, recovering qualitative agreement with the experimental EELS
data. We use this same value of U« = 4.5€V, noting this is close to the value of Uy« = 4.2eV
used previously to study partially reduced TiO,.3%3233

To obtain equilibrium structures and reference energies for bulk LisTisO1, and Li; TisOq2, full
geometry optimisations were performed for hexagonal cells with compositions LigTij9O24 and
Lij4Tij0O04 respectively, oriented with the close-packed (111) layers perpendicular to the ¢ axis.
k-point sampling used a 3 x 3 x 2 Monkhorst-Pack mesh. Bulk a-Li,TiO3 was modelled using

3vV2%x3v/2%3 supercells of Lip4Tij2036, with a 2 X 3 x 2 Monkhorst-Pack mesh. All calculations

were spin-polarised. Structures were deemed converged when all atomic forces were smaller than



0.01eVA ™', For each structure zero-pressure volumes were obtained by performing a series of
constant-volume cell relaxations and fitting the resultant energy—volume data to the Murnaghan
equation of state. The optimised bulk structures were used as starting points for the surface models.
For all surface models, to minimise spurious slab—slab interactions a vacuum gap of at least 15 A
was placed between slab periodic images along the ¢ direction normal to the surface plane. The
reference energy for metallic lithium, used to calculate surface energies as a function of the lithium
chemical potential, was calculated using a body-centered cubic 2-atom unit cell witha 16 x 16 x 16

Monkhorst-Pack k-point mesh.

Bulk Structures

Li4Ti5 O 12 and Li7 Ti5 O 12 Structures

LisTi501, and Li7TisO1; both consist of a cubic-close-packed oxide ion lattice with lithium and
titanium ions occupying either tetrahedral or octahedral sites (Figure I(a)). In the lithium-poor
LisTi5O1, phase cations are distributed over the tetrahedral and octahedral sites to give a defective
spinel structure. Lithium occupies all the tetrahedral 8a sites and one sixth of the octahedral 16d
sites, and titanium occupies the remaining 16d sites. The lithium-rich Li;TisO1, phase has the
same 16d site occupation (5:1 Ti:Li), but the tetrahedral 8a sites are vacant. Instead the octahedral
16c sites are all occupied by lithium, giving a pseudo-rocksalt structure (Figure I(b)).

An alternative description of LisTisO1, and Li;TisO;, considers hexagonal LigTijgO4 and
Lij4Tij0Oo4 cells. Each (111) layer has eight tetrahedral and four octahedral sites available to
cations, which occupy these sites in alternating (111) layers of [4 tetrahedra + 2 octahedra] / [4
octahedra].**3> The local structure depends on the specific distribution of lithium and titanium
cations over these tetrahedral and octahedral lattice sites. In this work, we use the cation dis-
tributions first proposed by Lu et al.! These authors used DFT calculations to optimise the dis-
tribution of lithium across the octahedral 16d sites in hexagonal cells containing two Li, TisO1;

formula units, oriented with the (111) close-packed layers perpendicular to the cell ¢ direction.



The reported lowest energy distribution of cations for this cell size corresponds to a six-layer
...ABCDCB... stacking sequence, where each layer differs in the number and site occupation of
the lithium and titanium cations (Figure 2). We have tested this LigTisO1, Li/Ti 16d arrangement
for larger supercells by calculating energies for 2 x 2 x 1 hexagonal supercells (192 atoms), and
comparing the structure proposed by Lu et al. against 20 cells with random 16d Li/Ti configu-
rations. All 20 16d-disordered configurations had higher energies than the ordered arrangement
proposed by Lu er al. We also calculated energies for the (100)-oriented LisTisO1; cells proposed

in separate works by Ouyang et al.# and by Weber et al.1>

These structures also gave higher ener-
gies than the structure proposed by Lu et al. (full details are given in the Supplementary Informa-
tion). These are zero-temperature calculations, and in experimental samples some site disorder is
expected from entropy or because non-equilibrium cation distributions may be kinetically trapped
(although the lithium cations are expected to be mobile®®). Any disorder will make the (111)
layers identified in less distinct. Using the (111)-oriented model of Lu ef al. therefore

provides a limiting case where the differences between different (111) surface terminations are

maximally distinct.

a-Li,TiO3 structure

Under ambient conditions, Li» TiO3 preferentially adopts the monoclinic 8 phase, which has been
broadly studied due to potential applications as a microwave dielectric and as a possible tritium
breeder in future fusion reactors.*2=? The o phase, which we are interested in here, is metastable
in bulk systems. This phase can be considered a disordered pseudo-rocksalt, consisting of a fcc
oxide-ion lattice with all the octahedral sites occupied by lithium or titanium. In this resepect,
a-Li,TiO3 is similar to Li; TisO7, but with the octahedral sites are occupied in a 2:1 Li:Ti ratio.
To generate a bulk structure with a reasonable cation distribution we considered more than
40 different cation configurations in a 3v/2x3v/2x 3 supercell containing 12 Li,TiO3 formula
units. By calculating the relative energies for each geometry-optimised structure we found that

our lowest energy cation distribution at zero temperature (i.e. neglecting configurational entropy)



corresponded to a structure with all (100) and (110) planes with Li, TiO3 stoichiometry.*?

(111) Surface Models

To construct models of the Li, TisO1, (111) surfaces, the optimised bulk structures were cleaved
along (111) planes to generate two-dimensional slab geometries. LisTisO;, and Li;TisOj, have
six-layer repeat unit [ABCDCB] stacking sequences along the [111] direction and any layer could,
in principle, be chosen as a surface layer. The cation distribution means that each layer contains
different numbers of lithium and titanium cations, and therefore has a different formal charge
(cf. [Figure 2). Hypothetical slabs with asymmetric layer sequences are therefore dipolar: their
(111) surfaces are non-equivalent, leading to poorly defined surface energies.*!' The asymmet-
ric charge distribution corresponds to a dipole perpendicular to the surface planes, which intro-
duces long-ranged dipole—dipole interactions between periodic slab images, and surface energies
formally diverge with increasing slab thicknesses. To avoid these issues we consider only sym-
metric layer stacking sequences, which give non-polar slabs with well defined surface energies.
In practice, this requires slabs with odd numbers of layers, and layers A or D at their centre. In
the first instance, we consider surface models that maintain corresponding bulk stoichiometries,
1.e. LiyTisOq, or Li;TisOq2. This means surface energies are simply given by the difference in

energies between the two-dimensional slabs and equivalent bulk systems, according to

1
Esurface = ﬂ (Eslab - Ebulk) 5 (1)

where Ej,p, is the energy of the surface cell, Eyyx is the energy of an equal number of formula units
in the bulk, and A is the surface area of one face in the slab model.

Surface stoichiometries may of course differ from those of the corresponding bulk phase. The
large (111) surface unit cells of LigTisOj, and Li;TisOj, mean that considering variable surface
stoichiometries greatly increases the number of possible surfaces that could be constructed, beyond

the already large number of surfaces to be considered under fixed stoichiometries. An exhaustive

10



search over surface structures that takes into account variable stoichiometries, surface terminations,
and surface structures is not computationally tractable within a first-principles approach. Below we
show that the lowest energy stoichometric (111) surfaces for Lis TisO;; and Li; TisO1; are lithium-
terminated. To assess the relative stabilities of surfaces with variable lithium stoichiometries across
relevant chemical conditions, we take these lowest-energy stoichiometric surfaces as templates,
and then add or remove surface lithium at representative surface sites. The surface energies of the

resulting non-stoichiometric surfaces depend on the lithium chemical potential, according to

1
Esurface(.uLi) — ﬂ (Eslab - Ebulk - A”Li (ELi + .uLi)) 3 (2)

where Any; is the number of lithium atoms added or removed at the surface, Ey; is the lithium
reference energy, calculated for metallic bee Li, and py; is the lithium chemical potential. In a
lithium-ion battery uy; is equivalent to the cell voltage relative to metallic Li (scaled by Faraday’s
constant) in the limit that charging or discharging takes place reversibly.

Within the dual constraints of symmetric layer-stacking sequences and bulk stoichiometries,
we initially constructed a range of seven-layer slabs with stacking sequences of (A)BCDCB(A)
or (D)CBABC(D). B- and C-terminated slabs cannot be constructed with planar (111) surfaces
to be symmetric and have bulk stoichiometry. The surface layers, indicated in parentheses, ap-
pear twice: if all the constituent cations were included this would give the slabs stoichiometries
different from the corresponding bulk phases. To maintain bulk stoichiometries, in each surface
model half the cations were removed from one surface layer, (A) or (D), and moved to the opposite
surface, following Tasker’s method.#* This gives equivalent (symmetric) surface layers with half
the cation occupancy of the corresponding bulk layers. The (111)-oriented Li; TisO1; unit cell has
4 octahedral cation sites (occupied) in each (111) layer. At the A-terminated and D-terminated
surfaces, respectively, there are 4 Li and {2 Li + 2 Ti} “under-coordinated” cations, and stoichio-
metric slab models with zero surface-normal dipoles are generated by placing 2 of these cations

(2 Li for the A-terminated surface, 1 Li + 1 Ti for the D-terminated surface) on the opposite slab
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surface. In LisTisOj,, each (111) layer contains only three cations. To construct non-polar slab
models with both surfaces equivalent we therefore used expanded (2 x 1) surface supercells for
all LiyTisOy; surface calculations (Figure 3). Our screening calculations used single—repeat-unit
slabs, corresponding to compositions of Li5Tio0Ou48 (LigTi5sO12) and Lij4Tij0O24 (Li7Ti5O12).

Eliminating slab surface dipoles by symmetrically distributing the surface cations between both
surfaces generates a number of possible cation arrangements at the surface: all of these formally
remove the slab dipole since the two surfaces become stoichiometrically equivalent. Surface en-
ergies, however, can be expected to depend on the specific cation distribution for each partially
coordinated surface layer. To explore this in detail, for each of the four studied Li, TisOj (111)
surfaces: LigTisOjp (111)a, LigTisOpz (111)p, LizTisOjp (111)a, and LizTisO1, (111)p; we
identified all symmetry inequivalent cation distributions commensurate with the appropriate stoi-
chiometry and zero-dipole constraints.

The oxide sub-lattice in Lis TisOj, and Li; TisO; is a face-centered cubic array. The (111) sur-
faces therefore can be considered a triangular lattice of sites with trigonal symmetry. Each surface
site can be classified as “octahedral” or “tetrahedral”, depending on whether it shares a (111) face
with an octahedral site in the sub-surface layer (see [Figure 3)). In each phase the cation sublattice
arrangement of lithium and titanium lowers the surface symmetry. In particular, subsurface octa-
hedral sites may be occupied by either lithium or by titanium, or in the cae of Li4TisO, may be
unoccupied. This subsurface structure can be expected to influence the preferred arrangement of
surface cations. A-terminated surfaces have subsurface B layers, and D-terminated surfaces have
subsurface C layers. Taking into account the symmetry of the appropriate subsurface layer, we gen-
erated all symmetry-inequivalent surface cation configurations for each of the four stoichiometric
surfaces considered, using the bsym symmetry analysis code.*? This gives 9 non-equivalent con-
figurations for Li;TisO2A, 5 configurations for Li; TisO;D, 154 configurations for Liy TisO A,
and 438 configurations for LiyTisO>D. Because of the large number of surface configurations for
the LisTisO1, slab models, these were initially optimised using a Ti PAW pseudopotential with a

[Ar] core, before refining the structures of the 10 lowest energy configurations with the [Mg] core
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PAW pseudopotential.

Results

Surface energies and preferred cation configurations
Stoichiometric surfaces

The surface energies for A-terminated and D-terminated Li;TisOj, (111) slabs are plotted in
The surface energies for all the A-terminated slabs, which have only Li in the surface layer,
are significantly lower than for the D-terminated slabs, which have mixed Li/Ti surfaces. This
indicates a much greater energy cost for titanium versus lithium being under-coordinated at the
surface.

The lowest energy configuration for the Li;TisO1, (111)4 surface has half the surface lithium
in tetrahedral sites that face-share with subsurface lithium octahedra, and half in octahedral sites
(inset)). These are arranged in a hexagonal pattern that is consistent with minimising the
Coulomb energy of the surface configuration: surface Li maximise their mutual separation, and
only face-share with sub-surface sites containing single-valence lithium.

The larger surface cells necessary to maintain stoichiometry for the LisTisO, (111) surfaces
give a large number of inequivalent structures. The surface energies of these are plotted in
As for the Li7TisO1, surfaces, the A-terminated surfaces, which only have Li surface cations, have
much lower energies than the D-terminated mixed Li/Ti-terminated surfaces. A large number of
low energy configurations exist, with representative surface cation arrangements shown in
These surface configurations are equivalent by symmetry, and are similar to the hexagonal
arrangement found for Li;TisO1y (111)5. Two thirds of the surface Li occupy tetrahedral sites
that face-share with vacant sub-surface octahedra, and the remaining third of the surface Li occupy
octahedral surface sites, avoiding face-sharing with sub-surface Ti octahedra. This arrangement

gives a partial hexagonal motif. The large number of sampled configurations with very similar low

13



energies is due to lithium ions initially placed close to the empty sub-surface octahedral site each
relaxing to the face-sharing tetrahedral site.

Our focus on stoichiometric surfaces means our calculation set excludes non-stoichiometric
B- and C-terminated (111) surfaces. The B- and C-terminated surfaces would present under-
coordinated surface Ti atoms (cf. , similarly to the included D-terminated surfaces. Be-
cause the D-terminated (Li/T1) surfaces have larger surface energies than the A-terminated (purely
Li) surfaces, we expect the B- and C-terminated (111) surfaces to also be disfavoured with respect
to the A-terminated surfaces for both LisTisO;, and Li;TisO;;. A second consideration is that
while the observed surface reconstructions observed for many of the D-terminated surfaces do not
lower the surface energy enough to become competitive with the A-terminated surfaces, more com-
plex reconstructions to low energy surface terminations might exist. To examine this possibility, a
broader search over surface configurations would be necessary, using more sophisticated structure
prediction methods such as evolutionary algorithms. 444

The calculated surface energies for the lowest energy LisTisO1, and Li; TisOp, (111) surfaces
are compared to the &-Li, TiO3 (100), (110), and (111) surface energies in[Table 1] For LisTisO1
and Li7TisOp, (111) the surface energies are 0.022eV A? and 0.038 eV/&f2 respectively. These
surface energies are much lower than those previously calculated by Weber et al. using PBE,
who reported energies of 0.106 eVA " and 0.105eVA respectively.124® This previous study
considered only a single slab geometry for each stoichiometry and surface orientation. The much
lower surface energies for the most stable surfaces considered here suggest that the surface models
used in this previous work correspond to unstable high energy surface terminations. This difference
in calculated values illustrates the need to consider competing surface terminations when modelling
surfaces of materials with complex unit cells.

For o-Li;TiO3, the (111) surface energy is significantly higher than the Li, TisO1, (111) sur-
face energies, at 0.091eV A_z. This a-Li»TiO3 surface underwent a spontaneous disordered re-
construction of the surface and sub-surface layers during geometry optimisation. The (110) sur-

face energy is similarly disfavourable, at 0.118eVA_2. The (100) a-Lip;TiO3 surface however
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has a much smaller surface energy of 0.039 er‘:z, which is not unexpected for a (pseudo)-
rocksalt structure,*” and is now comparable to the Li; TisO1, (111) surface energy. Surface phases
of a-LiyTiO3 are therefore predicted to preferentially express (100) surfaces, and formation of
o-LipTiO3 on (111)-oriented Li, TisOj, is expected to produce highly facetted morphologies,
which provides a possible explanation for the greatly increased surface roughness observed with

a-Li> TiO3 surface phase formation by Kitta ez al.'!

Table 1: Calculated surface energies for the considered LisTisOjz, Li;TisO1p, and a-LirTiO3
surfaces. For the low energy LisTisO1, (111), Li;TisO1, (111), and a-Li;TiO3 (100) surfaces,
doubling the slab model thickness to 13 layers for Li, TisO}, and to 12 layers for a-Li, TiO3 (100)

changed the calculated surface energy by less than 4meV A% * indicates the o-LipTiOs (111)
surface, which underwent significant surface reconstruction.

surface energy [eV A7
LiyTisO;,  (111) | 0.022
Li;TisO;,  (111) | 0.038
o-LipTiO3  (100) | 0.039
o-Li;TiO3  (110) | 0.118
o-LipTiOs  (111) | 0.091*

Non-stoichiometric surfaces

Thus far we have considered only stoichiometric surface models. This restricts the possible sur-
faces to a number that is computationally tractable and simplifies the surface-energy analysis,
because the calculated surface energies are independent of the component chemical potentials.
Lithium-ion batteries are dynamic systems, however, and it is important to consider the stabilities
of competing surfaces under chemical conditions corresponding to cell operation. In particular,
the lithium chemical potential, which is proportional to the cell voltage in the limit of reversible
charging and discharging, may vary by several eV during cell cycling.

To investigate the effect of chemical conditions on surface stability, we took as starting tem-
plates the lowest energy stoichiometric surface models, and constructed a series of surface models
with lithium added to or removed from the surface layer. As described above, for both LiyTisO1;

and Li;TisO; the stoichiometric (111) surfaces are more stable when Li-terminated than with
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mixed Li/Ti-termination, and we therefore only consider variable lithium-ion surface coverage.
We have not performed an exhaustive search of all possible surface configurations and stoichiome-
tries. Instead we use the subset of surface sites occupied in the lowest energy stoichiometric
configurations as templates for representative non-stoichiometric structures.

In the lowest energy Li;TisO1, configuration, the surface-layer lithium is arranged in a hexag-
onal pattern (Figure 4). The lowest energy LisTisO, configuration displays a similar hexagonal
motif, but with some lithium vacancies. In each case, we consider surface models with addtional
surface lithium placed either in the centre of these hexagons (Li;TisO1,) or completing the hexag-
onal pattern (Li4TisO12). Within the DFT+U approach (with U« = 4.5eV), adding surface Li
donates additional electrons to the oxide substrate, which are localised at “Ti°T” centres. Both
Li4TisO}, and Li;TisO1, have stoichiometric lowest-energy (111) surfaces where lithium occu-
pies two crystallographically distinct surface sites. For each phase, we consider pairs of lithium-
deficient surfaces with only one of these sites occupied, and also a fully lithium-deficient surface
termination (Figure 6)).

Figure 7| plots the surface energies for these variable—lithium-coverage surfaces, calculated us-
ing equation [2] versus lithium chemical potential, uy;. To identify relevant ranges of iy ;, we have
calculated the chemical potential spaces where LisTi5O1, is thermodynamically stable with re-
spect to rutile TiO; and Li7TisO1;, and where Li;TisO1; is thermodynamically stable with respect
to LisTisO1, and LiyO.4% The lithium chemical-potential ranges where each phase is thermody-
namically unstable are shaded grey in|Figure '/

For LisTisOq;, the stoichiometric surface is most stable over the full stability range of ;.
Kitta ef al. have used STM to characterise Li4TisO15 (111) surfaces under ambient conditions,>>
and observed a hexagonal pattern of points (attributed to surface lithium) separated by 0.6 nm. This
pattern would be consistent with either of the partially lithium-deficient LigTisO1, (111) surface
models. Our calculations indicate that these surfaces are only stable at particularly low lithium
chemical potentials, where bulk LisTisO1, is thermodynamically unstable with respect to TiO;.

This suggests that these observed ex-sifu non-stoichiometric defective samples may be kinetically
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stabilised, and might not be representative of the same materials under charging / discharging
conditions.

For Li;TisOq, the stoichiometric surface is favoured over nearly the whole region of thermo-
dynamic stability. Within a narrow region of relatively low uy; however, close to the stability
limit with respect to Li4 Tis O, partially lithium-deficient surfaces become favoured relative to the

stoichiometric surfaces.

Electronic properties and thermodynamic reduction drive

The different structures and compositions of competing electrode surfaces correspond to differ-
ent local potential profiles and electronic structures. These electronic differences are responsible
for varied electrochemical behaviour with respect to lithium (de)intercalation, SEI formation, and
overall electrode lifetimes. Surfaces with high electron chemical potentials—or equivalently, small
workfunctions—should, if solvent relaxation effects are neglected, exhibit a more pronounced ther-
modynamic drive towards reduction of organic electrolytes, and might promote SEI formation even
in the absence of an external applied voltage.1#?) The atomistic details of such processes are at
present far from clear. In particular it is unknown to what degree zero-bias (equilibrium formed)
SEI’s can perform better than SEI’s formed during lithium-cycling i.e. via non-equilibrium chem-
istry. Computational modelling offers direct access to the electron chemical potential at differ-
ent surfaces, and allows us to explore the scope of possible electronic behaviours. Furthermore,
by identifying surfaces with noteworthy reduction potentials, we hope to stimulate experimental
studies of zero-bias SEI formation in the context of possible improvements to lithium-ion—cell
stabilities.

Having identified the low energy surface terminations for LisTisOj> (111) and Li;TisOy;
(111), and found the (100) surface preferred for a-Li,TiO3, we calculated vacuum-aligned en-
ergies for the highest occupied Kohn-Sham states for these three surfaces, to estimate the thermo-

vac

dynamic reduction drive in each case. These energies, Ey5q were calculated for each slab as the

difference between the electrostatic potential plateau for the vacuum and the energy of the highest
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occupied Kohn-Sham state, Enokss, 22 20

EI‘&aOCS = Enokss — Evacuum- 3)

The vacuum potential and highest-occupied-state energies were calculated in each case using a
geometry-optimised “double-thickness” surface slab: 13 layers for Li4TisO, and Li; TisOjp (111)
and 12 layers for a-Li, TiO3 (100).

The calculated highest-occupied state energies, Eyfq reveal a significant difference
between LigTisOq2 (111) and Li;TisOp (111) of AEYSs = 2.66eV. This difference between
LisTi5O1, and Li7TisO1; can be understood by considering the electronic densities of states
lure 8). In Li4TisO1; all the titanium is in a formal +4 oxidation state, with the Ti 3d states unoc-
cupied, making the highest occupied state the O 2p dominated valence band edge. In Li;TisO3,
however, the additional lithium is charge compensated by electrons that partially reduce the tita-
nium, producing the “Ti>*” characteristics identified in the LEED data of Lu ef al.” These occu-
pied Ti*™ states reside in the band gap, moving the highest occupied states 2eV above the valence
band edge. In addition, the valence and conduction bands are shifted up in energy relative to their
positions in LisTisO12.°! The large increase in E}iSg for Li;TisO5 is therefore due to occupied
band-gap states that lie close to the vacuum level. For a-Li;TiO3 Ejg is —4.71€V; more than
2eV lower than for Li;TisO1, (111). Despite the higher lithium content, Li; TiO3 contains titanium
only with a formal 44 oxidation state, and correspondingly the density of states shows no occupied
titanium band-gap states (Figure §|(c)), giving a valence band edge position comparable to that of
LisTisOp,. For all three slabs the projected densities of states, generated by projecting onto the
PAW projectors, show partial mixing between Ti d and O p states, with very little contribution
from Li s states. This is consistent with stronger covalent interactions between Ti—O than Li-O,
and hence a larger energy penalty for “dangling bonds” at under-coordinated Ti versus Li, in line
with the large surface energies and tendency for spontaneous reconstruction of the Ti-terminated

Li, TisOy, (111) slabs.
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Table 2: Calculated vacuum-aligned highest-occupied state energies for the LigTisOpp (111),
Li;TisO12 (111), and a-Li,TiO3 (100) surfaces (13,13,12 layers). Convergence of E}Sg with
respect to slab thickness is less than 70meV in all cases, from comparison with values for half-
thickness slabs (7,7,6 layers).

Surface E}Ss [eV]
LigTisOq, (111) -5.272
Li;TisOpp (111) | -2.560
(X-LizTiOg, (100) -5.521

Taking EpjSg of the vacuum exposed surfaces as an approximation to their reduction poten-
tial, and neglecting electrolyte adsorption effects, the low values of EfSq for LisTisO1 (111) and
o-Lip TiO3 (100) versus Li;TisOp5 (111) suggest that the thermodynamic drive for electrolyte re-
duction at these surfaces is much smaller than at the Li; TisOj, (111) surface. >2'Where ot-Liy TiO3
forms as a surface phase during lithium cycling, as described, for example, by Kitta et al., this
therefore may be expected to act as an effective SEI layer that stabilises the electrode against
reductive electrolyte decomposition, and potentially improves electrode stability with respect to
repeated charge-cycling.

In contrast, the high value of E}§q = —2.56eV for Li;TisO1, (111) is notable in having a
smaller magnitude than the work function of polycrystalline elemental lithium of ~ 2.9eV1Z53
indicating an extreme drive for reduction at the pristine Li;TisO1, (111) surface. Within the ap-
proximations of this approach, we expect this to correspond to a strong tendency for electrolyte
reduction and SEI formation.”* Based on recent advances in local characterization of Li-titanate
electrodes by Scanning Probe Microscopies,>> this prediction could be the object of future experi-
mental investigations.

Hirayama et al. have previously studied SEI formation and structural changes at LiMn,O4 cath-
ode surfaces during initial electrolyte wetting and subsequent lithium cycling, using in sifu surface
XRD and high-resolution TEM.!? During initial soaking (i.e. under zero bias) the (111) surface of
LiMn; Oy reacts with the electrolyte to form a dense flat SEI layer. This SEI-encapsulated (111)

surface was stable with respect to electrode deterioration during subsequent lithium cycling. In
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contrast, electrolyte wetting of the LiMn,Oy4 (110) surface did not form a SEI layer, and during
the first lithium charge Mn ions dissolved into the electrolyte — a process associated with elec-
trode degradation. These authors suggested the behaviour of the SEI-encapsulated (111) surface
may be due to direct contact between the electrode and electrolyte being blocked by the SEI layer,
providing a more stable electrochemical interface, or due to the SEI layer inducing a structural
transition at the (111) surface that inhibits Mn dissolution. Irrespective of the mechanism, SEI
formation under zero bias at the LiMnyO4 (111) surface is correlated with improved electrode
stability during lithium cycling. Recent DFT calculated values of E}{g for the LiMnyO4 (001)
and (111) surfaces (following the same approach used here) have found a less negative (smaller
magnitude) value for the (111) surface, indicating a larger reduction drive at this surface compared
to the (001) surface.”? When considered alongside the experimental data of Hirayama et al., these
results suggest a possible correlation between surface reduction drive, propensity for SEI forma-
tion under zero-bias, and subsequent electrochemical performance of the SEI-protected electrode.
In this context, we note that He et al. provide experimental evidence for zero-bias SEI formation
on LisTisO2,29 albeit with no electrochemical characterisation. In concert with the observations
of Hirayama et al., this suggests the possibility of zero-bias SEI formation for both cathodic and
anodic metal oxide surfaces.

In the specific case of Li,TisOj5, the reduction drive for the pristine Li;TisO, (111) surface
is calculated to be even greater than that of metallic lithium, and we predict that this surface will
spontaneously reduce common electrolytes under equilibrium conditions. Extrapolating from the
study of Hirayama et al. we hypothesise that a “zero-bias” SEI formed at this surface may be highly
stable, because its formation would not require a driving external potential, and could enhance
the cycle lifetime of the underlying electrode. This proposal requires a pristine Li; TisOj (111)
(substrate or coating) exposed to the electrolyte. In the study of Kitta et al.,™!' the electrochemical
cell was constructed using LisTisO15, and a a-Li; TiO3 surface layer forms upon electrochemical
intercalation, which then separates the (now buried) Li;TisO1, (111) surface from the electrolyte.

The proposed formation of a protective o-Li,TiO3 layer on cycled LisTi5O13 is, to the best of our
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knowledge, yet to be demonstrated on typical polycrystalline Li, Ti5sO1, particles used in practical
lithium-ion batteries. In this situation, energetically-favoured Li;TisO;, (111) surfaces may be
exposed to the electrolyte, causing the proposed “zero-bias” mechanism to be realised. To exploit
this process in a controlled fashion, for example, by attempting to engineer highly stable SEI layers,
both a detailed theoretical understanding of metal oxide surface electrochemistry and experimental
characterisation of the formation and subsequent electrochemical performance of zero-bias SEI
layers are necessary. We speculate that exploring chemical lithiation or direct synthesis of the
relevant lithium-intercalated phase may be rewarding strategies.

More generally, engineering highly reducing metal-oxide surfaces, to form stable SEI lay-
ers under zero-bias equilibrium chemistry, is an intriguing and to-date unexplored strategy that
requires further exploration through theoretical and experimental studies. We also note that, in
concert with this stoichiometry-dependence of reduction drive, it may be possible to further tune
the SEI composition, and hence cell performance, by exploiting the different reduction potentials

of the varied electrolytes, additives and organic solvents in practical Li-ion batteries.>’

Summary and Conclusions

We have performed DFT calculations of LisTisOq;, Li;TisO12, and a-Li,TiO3 surfaces, to iden-
tify their preferred structures, compositions, and the thermodynamic reduction drives. For the
LigTisOpp (111) and Li;TisOpp (111) surfaces, we have screened more than 600 symmetry in-
equivalent structures. For both stoichiometries, lithium-terminated surfaces are more stable than
titanium-terminated surfaces, which tend to reconstruct. The lowest energy surfaces have sur-
face energies of O.OZZeVA_Z for LisTisOyp (111) and 0.038 eVA_2 for Li;TisOyp (111). For
o-Li;TiO3, we have modelled the (100), (110), and (111) surfaces. The (110) and (111) sur-
face energies are high (~ 0.1eVA_2). The (100) o-Li,TiO3 surface energy is O.O39eVA_2,
which is comparable to the surface energies of LigTisOj, (111) and Li;TisO1, (111). The high

energy (110) and (111) surfaces are therefore predicted to be unstable with respect to recon-
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struction to facetted (100) surfaces. This is consistent with the surface roughening observed by
Kitta et al. that accompanies the formation of the o-Li;TiO3 surface phase during the first lithium
charge/discharge cycle of Ligy 73 TisO12.

Having identified the lowest energy LisTisO12, Li;TisO12, and a-Li> TiO3 surfaces, we have
calculated energies of the highest-occupied Kohn-Sham states, which were aligned to the vacuum
energy; EpSg. This measure serves as an approximation to the surface reduction drive in the ab-
sence of any external bias, and indicates the propensity for spontaneous electrolyte decomposition
upon substrate wetting. For LisTisOq, (111) and a-LixTiO3 (100), E}Sg = —5.27 and —5.52¢eV
respectively. For Li;TisO» (111), however, Ef§g = —2.56eV, which is smaller in magnitude
than the work function for metallic lithium (2.8eV1218)  This indicates an extreme thermody-
namic drive for reduction at the pristine Li;TisOp (111) surface, which might be exploited to
form a thermodynamically stabilised SEI. This suggestion is conceptually related to the results of
Hirayama et al., who have shown that the superior electrochemical performance of the LiMn;O4
(111) surface versus the (110) face is correlated with the formation of a highly stable SEI on elec-
trolyte wetting under “zero bias” thermodynamic equilibrium.™® The extreme reduction potential
for the pristine Li; TisO1, (111) surface suggests that this surface will form an SEI under zero-bias
equilibrium conditions. An SEI formed in this way may have different, possibly beneficial, proper-
ties relative to conventional SEI formation under an applied bias during the first lithium-insertion.
More generally, preparing electrode materials with highly reducing surfaces, in order that thermo-
dynamically stable zero-bias SEI layers form when wetted by an electrolyte, is an intriguing, and

to-date unexplored, strategy for engineering highly stable electrodes with improved cycle lifetimes.
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Figure 1: Unit cells of (a) LisTisO1, and (b) Li;TisOy;. In both structures, oxygen ions (red) form
an fcc lattice, occupying the 32e sites, and the 16d octahedral sites (grey) are occupied by titanium
and lithium at a ratio of 5 : 1. In (a) LigTi5O13, lithium also occupies the 8a tetrahedra (green). In
(b) Li7TisO1,, all cations are in octahedral sites, with the 16d octahedral sites (grey) occupied by
titanium and lithium at a ratio of 5 : 1, and lithium in the 16¢ octahedra (green).
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Figure 2: Structures of (a) LigTisO17, and (b) Li;TisOj,, with the (111) close-packed direction
oriented along c. For each close-packed layer, the relative number of Ti and Li cations in each
crystallographic site are given. Both structures can be considered an array of (111) close-packed
layers, with [...ABCDCBA...] stacking sequence.

a) Li, Ti,0,, B 1x1 ¢) Li,Ti,0,,C Ix1

7775712 7775712

b) Li,Ti,.O , B 1x2 d) Li,Ti,0,, C 1x2

4775712 4775712

Figure 3: Schematic of the sub-surface unit cells used for generating the surface configurations.
Blue and green polyhedra correspond to titanium and lithium occupied sites, respectively, and grey
shows empty volume in the layer. Sites considered for the surface atoms are represented by dashed
circles. White circles are surface tetrahedral sites, and black circles are surface octahedral sites.
A-terminated surface models are constructed by partial occupation of the surface sites on the B
sub-surface (a and b); D-terminated surface models are constructed by partial occupation of the
surface sites on the C sub-surface (c and d).
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Figure 5: Top panel: Surface energies in eV A7 of the A-terminated and D-terminated LisTisOq;
(111) oriented surface slabs. Only data for the 200 lowest energy D-terminated surfaces are shown.
Middle panel: Surface energies of the 50 lowest energy A-terminated surfaces. These data were
calculated using the [Ar] core pseudopotential for Ti. Bottom panel: The lowest surface energy
configurations for Liy TisO1; (A-terminated). Blue and grey octahedra show titanium-occupied and
vacant subsurface sites, respectively. Yellow circles show lithium positions.
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Figure 6: Schematic of the stoichiometric and variable lithium-coverage A-terminated surface
models that were calculated for LisTisO1, and Li;TisOy5.
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Figure 7: up;-dependent surface energies for A-terminated LigTisOj, and Li;TisOp (111) sur-
faces. The shaded regions show lithium chemical potentials where LisTisO;;, and Li;TisOy; are

predicted to be thermodynamically unstable for unconstrained oxygen / titanium chemical poten-
tials. 48

33



Energy [eV]

LiTi.O,, (111)

4775712

(b) T \‘ T 3\ T

LiTi.O,, (111)

7775712

Li,TiO, (100)

-10 -8 -6 -4 -2 0 2
Energy [eV]

Figure 8: Projected densities of states for the (a) Li4TisO2 (111), (b) Li;TisOj, (111), and (c)
a-Li;TiO3 (100) surface slabs (13,13,12 layers). In each case the energy scale uses the vacuum
energy as zero, shown with the solid vertical line. The energies of the highest occupied states are
shown with dashed vertical lines. Contributions from Li s are shown in green, O p in red, and Ti d
in blue.
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