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Abstract—The water system management problem has been widely 

investigated. However, the interdependencies between water and 

energy systems are significant and the effective co-optimization is 

required considering strong interconnections. This paper proposes a 

two-stage distributionally robust operation model for integrated 

water-energy nexus systems including power, gas and water systems 

networked with energy hub systems at a distribution level considering 

wind uncertainty. The presence of wind power uncertainty inevitably 

leads to risks in the optimization model. Accordingly, a coherent risk 

measure, i.e., conditional value-at-risk, is combined with the 

optimization objective to determine risk-averse operation schemes. 

This two-stage mean-risk distributionally robust optimization is 

solved by Bender’s decomposition method. Both the day-ahead and 

real-time operation cost are minimized with an optimal set of 

scheduling the multi-energy infrastructures. Case studies focus on 

investigating the strong interdependencies among the four 

interconnected energy systems. Numerical results validate the 

economic effectiveness of IES through optimally coordinating the 

multi-energy infrastructures. The proposed model can provide system 

operators a powerful two-stage operation scheme to minimise 

operation cost under water-energy nexus considering risk caused by 

renewable uncertainties，thus benefiting customers with lower utility 

bills.  

 

Index Terms—Integrated energy system, mean-risk optimization, 

power-to-gas, renewable uncertainty, water-energy nexus. 

NOMENCLATURE 

A. Indices and sets 

t, T Index and set of time periods.  

𝑏 , 𝐵  Index and set of electricity buses. 

𝑛 , 𝑁  Index and set of gas nodes. 

𝑤 , 𝑊  Index and set of water nodes. 

𝑖𝑒, 𝐼𝑒 Index and set of traditional distributed generators 

(DG). 

𝑖𝑔, 𝐼𝑔 Index and set of natural gas sources. 

wr, WR Index and set of water reservoirs.  

j,  J Index and set of renewable DGs.  

gt, GT Index and set of gas turbines. 

wp, WP Index and set of water pumps. 

𝑙𝑒, 𝐿𝑒 Index and set of power lines. 

𝑙𝑔, 𝐿𝑔 Index and set of gas pipelines. 

𝑙𝑤, 𝐿𝑤 Index and set of water pipelines without pumps. 

𝑙𝑤𝑝, 𝐿𝑤𝑝 Index and set of water pipelines with pumps. 

𝑘𝑒, 𝐾𝑒 Index and set of power loads. 

𝑘𝑔, 𝐾𝑔 Index and set of gas loads. 

𝑘𝑤, 𝐾𝑤 Index and set of water loads. 

B. Parameters  

𝑃𝑘𝑒,𝑡, 𝑄𝑘𝑒,𝑡, 𝐺𝑘𝑔,𝑡, 

𝑃𝑘𝑤,𝑡 

Demand of active power, reactive power, gas and 

water. 

𝑃𝑚,𝑚𝑎𝑥 , 𝑃𝑤𝑟,𝑚𝑎𝑥 Maximum active power purchase from upper level 

market and water purchase from reservoir. 

𝑅𝑖𝑒
+ , 𝑅𝑖𝑒

− , 𝑅𝑔𝑡
+ , 

𝑅𝑔𝑡
− , 𝑅𝑤𝑝

+ , 𝑅𝑤𝑝
−  

Maximum up and down reserve capacity of 

traditional DGs, the gas turbine and water pumps. 

𝑃𝑖𝑒,𝑚𝑎𝑥, 𝑃𝑖𝑒,𝑚𝑖𝑛, 

𝑃𝑔𝑡,𝑚𝑎𝑥, 𝑃𝑔𝑡,𝑚𝑖𝑛, 

𝑃𝑤𝑝,𝑚𝑎𝑥, 𝑃𝑤𝑝,𝑚𝑖𝑛, 

Maximum and minimum limits for active power 

output of traditional DGs, gas turbine output and 

water pump power consumption. 

𝑄𝑖𝑒,𝑚𝑎𝑥, 

𝑄𝑖𝑒,𝑚𝑖𝑛 

Maximum and minimum reactive power output of 

traditional DG 𝑖𝑒.   

𝑉𝑏,𝑚𝑎𝑥
 ,𝑉𝑏,𝑚𝑖𝑛

  Maximum and minimum voltage limits. 

𝑥𝑙𝑒, 𝑟𝑙𝑒 Reactance and resistance of power line 𝑙𝑒. 

𝑉0 Reference voltage magnitude. 
𝑓𝑙𝑒,𝑚𝑎𝑥,𝑞𝑓𝑙𝑒,𝑚𝑎𝑥 Maximum active and reactive power flow of line 𝑙𝑒. 

𝑐𝑒𝑏, 𝑐𝑔𝑡 Conversion coefficient for electric boilers and the 

gas turbine. 

𝜔𝑗
𝑠(𝑡) Forecasted output of renewable DG j at time t. 

𝐺𝑖𝑔,𝑚𝑎𝑥,𝐺𝑖𝑔,𝑚𝑖𝑛 Maximum and minimum output of gas source 𝑖𝑔.   

𝑃𝑟𝑙𝑔,𝑚𝑎𝑥 , 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛 

Maximum and minimum gas pressure of gas 

pipeline 𝑙𝑔.  

𝛾𝑙𝑔 Coefficient for Weymouth equation. 

𝑓𝑙𝑔,𝑚𝑎𝑥, Maximum gas flow of line 𝑙𝑔. 

𝐶𝐹𝑙𝑔 Gas compressor coefficient. 

𝜂𝑒 Electrical efficiency for electrolyser.  

ℎ𝑤,𝑚𝑎𝑥
𝑙𝑤𝑝

, ℎ
𝑤,𝑚𝑖𝑛

𝑙𝑤𝑝
, 

ℎ𝑤,𝑚𝑎𝑥
𝑙𝑤 , ℎ𝑤,𝑚𝑖𝑛

𝑙𝑤  

Maximum and minimum limits for head pressure of 

water node connected with or without water pump. 

𝑎𝑙𝑤𝑝, 𝑏𝑙𝑤𝑝 Water pump characteristic coefficients.  

𝑅𝑙𝑤𝑝, 𝑅𝑙𝑤 Head gain and loss coefficients. 

𝜋𝑤𝑝 Water pump efficiency. 

𝑓𝑙𝑤𝑝,𝑚𝑎𝑥
𝑠 , 𝑓𝑙𝑤,𝑚𝑎𝑥

𝑠  Water flow for water pipeline with and without 

pump. 
𝜎𝑘𝑐𝑝 , 𝜎𝑘𝑝𝑔 , 𝜎𝑒𝑏 Water consumption efficiency for combined heat 

and power (CHP), power-to-gas and electric boiler. 

𝜂𝑐𝑝𝑒 , 𝜂𝑐𝑝𝑒 Electric and heating efficiency for CHP. 

𝜂𝐶𝑂𝑃,𝜂𝐺𝐹 Coefficient of performance of ground source heat 

pump (GSHP) and efficiency of gas furnace (GF). 

𝑃𝑐𝑝,𝑚𝑎𝑥
𝑖 , 𝑃𝑐𝑝,𝑚𝑖𝑛

𝑖 , 

𝑃𝐻𝑃,𝑚𝑎𝑥
𝑖 , 

𝑃𝐻𝑃,𝑚𝑖𝑛
𝑖 , 𝑃𝐺𝐹,𝑚𝑎𝑥

𝑖 , 𝑃𝐺𝐹,𝑚𝑖𝑛
𝑖  

Maximum and minimum input limits of CHP, 

GSHP and GF. 

𝑃𝐵𝑆,𝑚𝑎𝑥
𝑐ℎ , 𝑃𝐵𝑆,𝑚𝑖𝑛

𝑐ℎ , 

𝑃𝐵𝑆,𝑚𝑎𝑥
𝑑𝑐ℎ , 𝑃𝐵𝑆,𝑚𝑖𝑛

𝑑𝑐ℎ  

Maximum and minimum charging and discharging 

power for battery storage. 

𝑃𝐻𝑆,𝑚𝑎𝑥
𝑐ℎ , 𝑃𝐵𝑆,𝑚𝑖𝑛

𝑐ℎ , 

𝑃𝐻𝑆,𝑚𝑎𝑥
𝑑𝑐ℎ , 𝑃𝐻𝑆,𝑚𝑖𝑛

𝑑𝑐ℎ  

Maximum and minimum charging and discharging 

heat for heat storage. 
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𝜂𝐵𝑆
𝑐ℎ , 𝜂𝐵𝑆

𝑑𝑐ℎ , 𝜂𝐻𝑆
𝑐ℎ , 

𝜂𝐻𝑆
𝑑𝑐ℎ 

Charging and discharging efficiency for battery and 

heat storage. 

𝐸𝐵𝑆,𝑚𝑎𝑥
 , 𝐸𝐵𝑆,𝑚𝑖𝑛

 , 

𝐸𝐻𝑆,𝑚𝑎𝑥
 , 𝐸𝐻𝑆,𝑚𝑖𝑛

 , 

Maximum and minimum remaining energy limits 

of battery and heat storage. 

𝐿𝑒,𝑡, 𝐿ℎ,𝑡 Electricity and heat load ofenergy hub system. 

𝜆𝑖𝑒
𝑎 , 𝜆𝑖𝑒

𝑏 , 𝜆𝑖𝑒
𝑐  Cost coefficients for generation of traditional DG 

𝑖𝑒.  

𝜆𝑖𝑔 Cost coefficient for output of natural gas source 𝑖𝑔. 

𝜆𝑚,𝜆𝑤𝑟 Cost coefficient of power and water purchase. 

𝜆𝑖𝑒
+ , 𝜆𝑖𝑒

− , 𝜆𝐺𝑇
+ , 

𝜆𝐺𝑇
− , 𝜆𝑤𝑝

+ , 𝜆𝑤𝑝
−  

Cost coefficient for up and down reserve of 

traditional DGs, the gas turbine and water pumps.  

𝜆𝑚
𝑟𝑒 , 𝜆𝑖𝑒

𝑟𝑒 , 𝜆𝑗
𝑟𝑒 , 𝜆𝑖𝑔

𝑟𝑒 , 

𝜆𝑤𝑟
𝑟𝑒  

Regulation cost coefficient of power purchase, 

traditional DGs 𝑖𝑒, wind turbines, natural gas 

sources and water reservoir. 

C. Variables 

𝑃𝑚,𝑡, 𝑃𝑤𝑟,𝑡 Active power and water purchase. 

𝑟𝑖𝑒,𝑡
+ , 𝑟𝑖𝑒,𝑡

− , 𝑟𝑔𝑡,𝑡
+ , 

𝑟𝑔𝑡,𝑡
− , 𝑟𝑤𝑝,𝑡

+ , 𝑟𝑤𝑝,𝑡
−  

Up and down reserve capacity of traditional DGs, 

the gas turbine and water pumps. 

𝑃𝑖𝑒,𝑡
 ,

 𝑃𝑔𝑡,𝑡
 , 𝑃𝑤𝑝,𝑡

  

Active power output of traditional DGs, gas turbine 

output and water pump power consumption. 

𝑄𝑖𝑒,𝑡
  Reactive power output of traditional DGs. 

𝑃𝑖𝑔,𝑡
  Output of natural gas source. 

𝑉𝑏,𝑡
𝑠 , 𝑉𝑏,𝑡

𝑟𝑒 Scheduled and regulated voltage of bus b at time t. 

𝑓𝑙𝑒,𝑡
 , 𝑞𝑓𝑙𝑒,𝑡

 , 𝑓𝑙𝑔,𝑡
   Active and reactive power flow and gas flow. 

𝑓𝑙𝑒,𝑒𝑏,𝑡
 , 𝑃𝑒𝑏,𝑡

  Injected power flow and output of electric boiler.  

𝐺𝑖𝑔,𝑡
  Output of natural gas sources. 

𝑃𝑟𝑛,𝑡
  Pressure of gas node n.  

𝑓𝑙𝑔,𝐺𝑇,𝑡
 , 𝑃𝑔𝑡,𝑡

  Injected gas flow and output of gas turbine.  

𝑃𝑛,𝑡
𝑃2𝐺  Power consumed by the electrolyser. 

𝐺𝑛,𝑡
ℎ𝑦 

, 𝐺𝑛,𝑡
ℎ𝑦_𝑚𝑒 

,

 𝐺𝑛,𝑡
ℎ𝑦_𝑑 

, 𝐺𝑛,𝑡
𝑚𝑒  

Gas output for overall P2G process, direct 

hydrogen injection, hydrogen during methanation 

process and methanation.  

𝐺𝑛,𝑡
𝑐𝑎  Required gas of carbon dioxide during methanation 

process. 

ℎ𝑤,𝑡
𝑙𝑤𝑝
, ℎ𝑤,𝑡
𝑙𝑤 ,  Water pressure of pipe with and without water 

pump. 

ℎ̅𝑤,𝑡
𝑙𝑤 , ℎ̅𝑤,𝑡

𝑙𝑤𝑝
 , 

 

Elevation of water node connected with and 

without pump. 

ℎ̃𝑤,𝑡
𝑙𝑤 , ℎ̃𝑤,𝑡

𝑙𝑤𝑝
 Head loss and gain of water node. 

𝑓𝑙𝑤𝑝,𝑡,
 𝑓𝑙𝑤,𝑡

  Water flow of pipe with and without water pump. 

𝑓𝑙𝑒,𝑡
 𝑖𝑛𝑗
, 𝑓𝑙𝑔,𝑡

 𝑖𝑛𝑗
 Power and gas flow injection to EHSs. 

𝑃𝐶𝑂𝑃,𝑡
𝑖 , 𝑃𝐶𝑂𝑃,𝑡

𝑜 , Power input and heat output of GSHP. 

𝑃𝐺𝐹,𝑡
𝑖 , 𝑃𝐺𝐹,𝑡

𝑜  Gas input and output of gas furnace. 

𝑃𝑐𝑝 ,𝑡
𝑠,𝑖 , 𝑃𝑐𝑝𝑒,𝑡

𝑠,𝑜 , 

𝑃
𝑐𝑝ℎ,𝑡

𝑠,𝑜
 

Gas input and power and heat output of CHP. 

𝑃𝐵𝑆,𝑡
𝑐ℎ , 𝑃𝐵𝑆,𝑡

𝑑𝑐ℎ, 

𝑃𝐻𝑆,𝑡
𝑐ℎ , 𝑃𝐻𝑆,𝑡

𝑑𝑐ℎ 

Charging and discharging power and heat of battery 

and heat storage. 

𝐸𝐵𝑆,𝑡
 , 𝐸𝐻𝑆,𝑡

  Remaining energy of battery and heat storage. 

𝑣𝑒,𝑡
 , 𝑣𝑔,𝑡

  Dispatch factors of power and gas. 

I. INTRODUCTION 

HE integrated energy system (IES) provides an 

interdependent configuration and management solution to 

coordinate multiple energy vectors [1]. It can be realised by the 

utilization of energy converters, e.g., power-to-gas (P2G), 

combined heat and power (CHP), heat pumps and gas turbines, 

etc, further intensify the operational interdependency of IES. 

Through optimally coordinating multiple energy infrastructures, 

the overall system efficiency can be significantly improved, 

renewable energy penetration can be highly facilitated, and 

environmental targets can be achieved.  

Much effort has been focused on the optimization of IES, 

mainly achieving economic and environmental targets. A robust 

optimization (RO) model is proposed for an integrated power-

gas-heat system in smart districts [2]. This model is demonstrated 

on a real multi-energy district and real-world physical limitations 

of energy infrastructures are examined. Paper [3] develops a 

chance constrained operation scheme for multiple interconnected 

IESs in a smart city. The Cornish-Fisher algorithm effectively 

handles the problem. A non-convex energy hub scheduling model 

is proposed for an interconnected system considering battery 

lifetime cost in [4]. The decomposed particle swarm optimization 

(PSO) is utilized which outperforms the conventional PSO. Paper 

[5] proposes a real-time energy hub operation model considering 

the correlation between temperature and gas consumption. The 

impact of seasonal and weekly changes on operation results is 

extensively investigated.  

Traditionally, water and power systems are designed and 

operated separately. Nevertheless, water and energy systems are 

mutually interdependent [6]. According to [7], 3% of U.S. 

electricity is facilitated by water distribution systems and 

approximately 80% of  electricity consumed by water systems is 

used for distributing and pumping water. The abundant water 

resources largely contribute to power generation and conversion 

in power systems.  

The existing work on joint optimization of water and power 

systems mainly focuses on reducing system operation cost and 

gas emissions. Paper [8] proposes an optimal water-power usage 

by controllable assets considering the couplings in an integrated 

water and power system (IWPS). A distributed algorithm based 

on the alternating direction method of multipliers helps pursue 

individual objectives. In [9], a coordinated day-ahead 

optimization model for IWPS is proposed considering the 

hydraulic constraints of water systems. An energy flexibility 

model for water systems is designed to offer the feasible energy 

flexibility capacity to the system operator. Paper [10] proposes an 

optimization model for the demand-side management of IWPS. 

The water system is treated as an effective resource to manage 

renewable generation. Stochastic programming (SP) based multi-

stage fuzzy optimization is developed for a combined operation 

and planning problem in an IWPS considering uncertain power 

demand [11].   

The enormous interdependencies among each subsystem are 

realized by the strong couplings for subsystems with multiple 

energy converters facilitated. CHP enables the conversion from 

gas to both heat and electricity. P2G facilities can convert 

excessive renewable power generation to synthetic natural gas; 

The conversion from gas to power is mainly realized by utilizing 

gas turbines; Ground source heat pump (GSHP) and gas furnace 

(GF) enable the heat conversion from power and gas respectively; 

The electrolyses in the P2G facilities consume the water from 

water system; The energy conversion from CHP relies on the 

water supply; Water pumps consume electricity from power 

system; The electricity boiler in the water system requests the 

electricity supply to convert the water to heat. Modelling and 

optimizing all the subsystems as an entity can facilitate the 

economy and security of the entire system.  

The inherent interdependencies between subsystems in IES 

have been promoted due to increasing energy demand growth, 

lower prices of gas resources, and emerging conversion 

technologies for interconnecting subsystems [12-14]. The 

aforementioned literature in the IES demonstrates the benefits of 

interdependencies [1-7, 14-16]. Moreover, the integration of 

T 
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multiple energy systems and water systems will further 

strengthen the couplings and interdependencies.  

In the existing literature, the uncertainty pertaining to 

renewable generation in IES operation is commonly handled by 

SP [15, 16] and RO [2]. SP assumes that the distribution of 

uncertain variables is known. However, obtaining explicit 

distributions is impractical and the scenario approach will lead to 

computational burden in optimization. RO copes with uncertainty 

considering all realizations, including the worst-case renewable 

fluctuation scenario, which ensures system robustness but 

sacrifices system cost effectiveness. Distributionally robust 

optimization (DRO), which employs partial distributional 

information to capture the ambiguous uncertainty distributions, 

can overcome the limitations and deficiencies of SP and RO [17]. 

Recently, DRO has been applied in the operation of distribution 

systems. Paper [18] proposes distributionally robust scheduling 

for integrated electricity and gas systems considering demand 

response. The revenue from demand response is maximized and 

expected load shedding cost is minimized. A distributionally 

robust operation for electric vehicle aggregators is proposed in 

[19]. The DRO technique is effective for avoiding unnecessary 

costs considering temporal and spatial characteristics of the 

charging demands of aggregators.  

DRO employs ambiguity sets to capture the uncertainties 

pertaining to known distributional information. The optimization 

results will be intractable or over-conservative if the ambiguity 

set is not chosen appropriately [20]. There are two common 

methods to characterize ambiguity sets, moment-based ambiguity 

set and discrepancy-based ambiguity set. The former one has 

simple tractable reformulations, e.g., semidefinite program (SDP) 

or second-order cone program (SOCP). Nevertheless, different 

distributions might have the same moment information, which 

introduces challenges for determining the worst-case distribution. 

Discrepancy-based ambiguity set measures the statistical distance 

between the reference distribution and candidate distributions. 

Kullback-Leibler (KL) divergence is widely applied in operation 

problems in the area of power systems [21, 22].  

The uncertainties bring risks into economic operation. 

Intuitively, risks in the proposed IES operation model can lead to 

abnormal high operation cost. Mean-risk optimization considers 

a coherent trade-off between system economic performance and 

risk, which has been applied with SP on energy system operation 

[23-25]. Paper [23] develops a mean-risk stochastic programming 

model for unit commitment considering renewable energy 

uncertainty. A conditional value-at-risk (CVaR) is incorporated 

to assess the risk from renewable energy uncertainty. In [25], a 

day-ahead operational planning model for a regional energy 

service provider with electricity price uncertainty is proposed. 

The CVaR criterion is employed to hedge against the uncertainty.  

This paper aims at constructing a two-stage mean-risk DRO 

model, which is helpful for providing system operators the trade-

off operation scheme between operation cost and risk mitigation. 

Based on the common IES, this paper proposes a coordinated 

optimization for integrated water-energy nexus system (IWENS) 

with the connection of multiple energy hub systems (EHSs) 

containing power, gas and water systems. This paper proposes a 

two-stage mean-risk distributionally robust optimization (TSMR-

DRO) for IWENS considering the uncertainty of wind power 

generation. The two-stage model includes day-ahead and real-

time operation schemes, prior to and after wind uncertainty 

realization. The ambiguity set for capturing wind uncertainty is 

constructed using KL divergence. The coherent risk measure, i.e., 

CVaR is employed to model the trade-off between expected 

computational performance and risk. Bender’s decomposition is 

applied to solve the problem in an iterative manner. The proposed 

IWENS provides utility system operators a two-stage operation 

scheme to minimize operation cost when dealing with enormous 

cross energy vector interdependencies.  

The main contributions of this paper are as follows: 

1) It develops an innovative IWENS structure networked with 

EHSs and renewable distributed generators (DGs) for integrated 

energy distribution systems. The intricate nexus between power, 

gas and water is extensively modelled.  

2) It aggregates considerable interconnections and converters 

among subsystems, e.g., gas turbines, P2G facilities, CHP, GF, 

GSHP, water pumps and electric boilers. The enormous 

interdependencies and interactions between energy sectors are 

beneficial for improving economic efficiency and sustainability. 

3) A two-stage DRO model is applied to optimize both day-

ahead and real-time operation schemes. The day-ahead stage 

determines the initial operation scheme with reserve capacity 

from traditional DGs and CHPs and water pumps. 

4) It combines DRO with mean-risk optimization. The benefits 

of the proposed DR-MRO is in threefold: i) it overcomes the 

shortages of SO and RO by using partial distributional 

information with moderate robustness, ii) the KL divergence-

based ambiguity set can flexibly shape the considered candidate 

distributions compared with moment-based ambiguity sets and 

accordingly yields less-conservative results and iii) the trade-off 

between economic performance and risk can be realized based on 

the incorporation of CVaR on the objective function. 

    The remainder of this paper is organized as follows. Section Ⅱ 

presents the objective function and constraints for both day-ahead 

and real-time stages. Section Ⅲ proposes the method for solving 

KL divergence-based TSMR-DRO considering the incorporation 

of CVaR. The case studies for demonstrating the advantages of 

IWENS and TSMR-DRO are given in Section Ⅳ. Finally, section 

Ⅴ concludes the entire paper.  

II. PROBLEM FORMULATION  

This section proposes the mathematical modelling for IWENS 

including both day-ahead and real-time operation schemes. Then 

the risk measure is given. Finally, the objective function is 

illustrated. The assumption is made that the entire IWENS is 

owned by a single entity which controls all the energy 

infrastructures and there is no trading between each subsystem. 

The proposed IWENS structure is given in Fig. 1, where the 

power, gas and water systems are shown in black, navy and blue. 

The power and gas systems have three interconnection points: i) 

buses 6 and 15 in power system are connected with node 2 and 6 

in the gas system via gas turbines and P2G facility at bus 10 is 

connected with gas node 3. The two EHSs are sourced from both 

power and gas systems. The water distribution system 

interconnects with all the other subsystems: i) water node 11 is 

connected with the P2G facility for the water electrolysis process, 

ii) water node 2 connects with EHSs 1 and 2 for CHP conversion; 

iii) water pump at nodes 1, 2 and 6 consume electricity from EHS 

1 and iv) water system is connected with EHS via an electric 

boiler. The IWENS contains two EHSs. Each EHS contains a 

CHP, a GSHP, a GF. EHS 1 contains an energy storage system 
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(ESS). The ESS is composed of a battery storage and a water tank 

for storing excessive electricity and heating respectively [26, 27].  

A. Day-ahead Operation 

The day-ahead optimization schedules power generation plan 

of traditional DGs and the reserve capacity dispatch from 

traditional DGs, gas turbines and water pumps considering the 

operation status of other energy infrastructures. The constraints 

are in (1)-(40). The power purchase from upper-level market is 

given in (1). The reserve capacity from traditional DGs, gas 

turbines and water pumps are shown in (2) and (3), followed by 

their output limits in (4) and (5). Constraint (6) limits the reactive 

power output of traditional DGs. Constraints (8) and (9) are the 

linearised DistFlow equations for distribution networks. They are 

obtained based on the assumption that i) losses are negligible, ii) 

the voltage at each bus is close to 1.0 p.u. and iii) the voltage at 

the reference bus is 1.0 p.u. [28-30]. Constraint (10) is the output 

of electric boiler. The balancing conditions for active and reactive 

power are in (11) and (12).   

The output of the natural gas source is constrained in (13). 

Constraints (14) and (15) are used to limit the gas pressure. Note 

that the gas pressures of initial nodes are always higher than 

terminal nodes due to the unidirectional gas flow. Accordingly, 

constraint (15) is used to ensure unidirectional gas flow. Equation 

(16) is the Weymouth gas flow equation that characterizes the 

relationship between gas pressure and flow. The gas flow of gas 

pipelines is constrained in (17). The output of gas turbine is in 

(18). Equation (19) presents the relationship between the gas 

pressure of initial and terminal nodes of  gas compressors. The 

excessive renewable generation can be converted into gas via 

P2G. The electrolyser splits water into hydrogen and oxygen. The 

output of electrolyser is given in (20). The nodal gas balance is 

given in (21).  

In water distribution systems, constraint (22) limits the output 

of reservoir. Equation (23) is the constraint of water pressure limit 

for pipes installed with and without water pumps. In (24)-(27), 

the hydraulic characteristics of water pipes are given for pipes 

installed with and without water pump in terms of head gain and 

loss. The pressure head gain of water pump is in (26). Equation 

(27) describes the hydraulic characteristic of pipes without pumps 

using Darcy-Weisbach equation [31]. The power consumption of 

water pump is in (28). Constraint (29) limits the water flow 

magnitude. The mass balance for the water system is in (30). The 

water consumption of energy converters is also given in (30), 

where 𝜎𝑘𝑐𝑝𝑃𝑐𝑝,𝑡
𝑠,𝑖

, 𝜎𝑘𝑝𝑔𝑃𝑛,𝑡
𝑠,𝑃2𝐺

, and 𝜎𝑒𝑏𝑃𝑒𝑏,𝑡
𝑠  represent the water 

consumed from CHPs, P2Gs and electric boilers, respectively 

[32, 33].  

In EHSs, the energy conversion of CHP, GF and GSHP are in 

(31)-(33). The input limit for all converters is given in (34). 

Equation (35) is the constraint of the charging and discharging 

power and heat for ESSs. Constraint (36) and (37) limit the 

remaining energy for battery storage and water tank. Constraint 

(38) presents the coupling relationship for the EHSs, which is the 

energy balance constraint of EHSs.  
0 ≤ 𝑃𝑚,𝑡

𝑠 ≤ 𝑃𝑚,𝑚𝑎𝑥  (1) 

0 ≤ 𝑟{∙},𝑡
+ ≤ 𝑅{∙}

+ , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (2) 

0 ≤ 𝑟{∙},𝑡
− ≤ 𝑅{∙}

− , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (3) 

𝑃{∙},𝑡
𝑠 + 𝑟{∙},𝑡

+ ≤ 𝑃{∙},𝑚𝑎𝑥, {∙} = 𝑖𝑒, 𝑔𝑡,𝑤𝑝 (4) 

𝑃{∙},𝑚𝑖𝑛 ≤ 𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− , {∙} = 𝑖𝑒, 𝑔𝑡, 𝑤𝑝 (5) 

𝑄𝑖𝑒,𝑚𝑖𝑛 ≤ 𝑄𝑖𝑒,𝑡
𝑠 ≤ 𝑄𝑖𝑒,𝑚𝑎𝑥  (6) 

𝑉𝑏,𝑚𝑖𝑛
 ≤ 𝑉𝑏,𝑡

𝑠 ≤ 𝑉𝑏,𝑚𝑎𝑥
  (7) 

𝑉𝑏
𝑠,𝑖𝑛𝑖 − 𝑉𝑏

𝑠,𝑡𝑒𝑟 = (𝑓𝑙𝑒,𝑡
 𝑠 𝑟𝑙𝑒 + 𝑞𝑓𝑙𝑒,𝑡

 𝑠 𝑥𝑙𝑒)/𝑉0 (8) 

0 ≤ {∙}𝑙𝑒,𝑡
 𝑠 ≤ {∙}𝑙𝑒,𝑚𝑎𝑥

𝑠 , {∙} = 𝑓, 𝑞𝑓 (9) 

𝑃𝑒𝑏,𝑡
 𝑠 = 𝑐𝑒𝑏𝑓𝑙𝑒,𝑒𝑏

 𝑠  (10) 

∑ 𝑃𝑖𝑒 ,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑𝜔𝑗,𝑡
𝑠 + ∑ 𝑓𝑙𝑒 ,𝑡

𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒 ,𝑡
𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

+ 𝑃𝑔𝑡,𝑡
 𝑠 =

𝑗∈𝐽

∑ 𝑃𝑘𝑒 ,𝑡
𝑘𝑒∈𝐾𝑒

+ ∑ 𝑓𝑙𝑒 ,𝑡
 𝑠,𝑖𝑛𝑗

𝑙𝑒∈𝐿𝑒

+ ∑ 𝑃𝑒𝑏,𝑡
𝑠

𝑒𝑏∈𝐸𝐵

+∑𝑃𝑛,𝑡
𝑠,𝑃2𝐺

𝑛∈𝑁

+ ∑ 𝑃 𝑤𝑝,𝑡
𝑠

𝑤𝑝∈𝑊𝑃

 

(11) 

∑ 𝑄𝑖𝑒,𝑡
𝑠 +

𝑖𝑒∈𝐼𝑒

∑ 𝑞𝑓𝑙𝑒,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑞𝑓𝑙𝑒,𝑡
𝑠,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

= ∑ 𝑄𝑘𝑒,𝑡
𝑘𝑒∈𝐾𝑒

 (12) 

 

𝐺𝑖𝑔,𝑚𝑖𝑛
  ≤ 𝐺𝑖𝑔,𝑡

𝑠 ≤ 𝐺𝑖𝑔,𝑚𝑎𝑥
  (13) 

𝑃𝑟𝑙𝑔,𝑚𝑖𝑛
2   

≤ 𝑃𝑟𝑙𝑔,𝑡
𝑠2 ≤ 𝑃𝑟𝑙𝑔,𝑚𝑎𝑥

 2  (14) 

𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖  ≥ 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟   
 (15) 

𝑓𝑙𝑔,𝑡
 𝑠 2

= 𝛾𝑙𝑔 (𝑃𝑟𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖2 − 𝑃𝑟𝑙𝑔,𝑡

𝑠,𝑡𝑒𝑟2
 

) (16) 

0 ≤ 𝑓𝑙𝑔,𝑡
 𝑠 ≤ 𝑓𝑙𝑔,𝑚𝑎𝑥

 𝑠  (17) 

𝑃𝑔𝑡,𝑡
 𝑠 = 𝑐𝐺𝑇𝑓𝑙𝑔,𝑔𝑡,𝑡

 𝑠  (18) 

𝑃𝑟𝑙𝑔,𝑡
𝑡𝑒𝑟  ≤ 𝐶𝐹𝑙𝑔𝑃𝑟𝑙𝑔,𝑡

𝑖𝑛𝑖   (19) 

𝐺𝑛,𝑡
𝑠,ℎ𝑦 

= 𝜂𝑒
𝑃𝑛,𝑡
𝑠,𝑃2𝐺

𝛺ℎ𝑦
 

(20) 

∑ 𝐺𝑖𝑔,𝑡
𝑠

𝑖𝑔∈𝐼𝑔

+∑𝐺𝑛,𝑡
𝑠,ℎ𝑦

𝑛∈𝑁

+ ∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑖𝑛𝑖 −

𝑙𝑔∈𝐿𝑔

∑ 𝑓𝑙𝑔,𝑡
𝑠,𝑡𝑒𝑟   

𝑙𝑔∈𝐿𝑔

= ∑ 𝐺𝑘𝑔,𝑡
𝑘𝑔∈𝐾𝑔

+ ∑ 𝑓𝑙𝑔,𝑔𝑡,𝑡
𝑠

𝑙𝑔∈𝐿𝑔

+ ∑ 𝑓𝑙𝑔,𝑡
 𝑠,𝑖𝑛𝑗

𝑙𝑔∈𝐿𝑔

 

(21) 

0 ≤ 𝑃𝑤𝑟,𝑡
𝑠 ≤ 𝑃𝑤𝑟,𝑚𝑎𝑥

  (22) 

ℎ𝑤,𝑚𝑖𝑛
{∙} ≤ ℎ𝑤,𝑡

𝑠,{∙} ≤ ℎ𝑤,𝑚𝑎𝑥
{∙} , {∙} = 𝑙𝑤 , 𝑙𝑤𝑝 (23) 

ℎ̃{∙},𝑡
𝑠 = (ℎ𝑤,𝑡

𝑠,{∙},𝑖𝑛𝑖 + ℎ̅𝑤,𝑡
𝑠,{∙},𝑖𝑛𝑖

) − (ℎ𝑤,𝑡
𝑠,{∙},𝑡𝑒𝑟 + ℎ̅𝑤,𝑡

𝑠,{∙},𝑡𝑒𝑟
), {∙} = 𝑙𝑤 , 𝑙𝑤𝑝 (24) 

ℎ̃𝑙𝑤𝑝,𝑡
𝑠 ≥ 0 (25) 

ℎ̃𝑙𝑤𝑝,𝑡
𝑠 + 𝑎𝑙𝑤𝑝𝑓𝑙𝑤𝑝,𝑡

 𝑠  
+ 𝑏𝑙𝑤𝑝

 = 𝑅𝑙𝑤𝑝𝑓𝑙𝑤𝑝,𝑡
 𝑠 2

 (26) 

ℎ̃𝑙𝑤,𝑡
𝑠 = 𝑅𝑙𝑤𝑓𝑙𝑤𝑝,𝑡

 𝑠 2
 (27) 

𝑃 𝑤𝑝,𝑡
𝑠 = (𝑎𝑙𝑤𝑝𝑓𝑙𝑤𝑝,𝑡

 𝑠 2
+ 𝑏𝑙𝑤𝑝𝑓𝑙𝑤𝑝,𝑡

 𝑠  
) /𝜋𝑤𝑝 (28) 

0 ≤ 𝑓{∙},𝑡
 𝑠 ≤ 𝑓{∙},𝑚𝑎𝑥

𝑠 , {∙} = 𝑙𝑤 , 𝑙𝑤𝑝 (29) 

∑ 𝑃𝑤𝑟,𝑡
𝑠

𝑤𝑟∈𝑊𝑅

+ ∑ 𝑓{∙},𝑡
𝑠,𝑖𝑛𝑖 −

{∙}∈𝐿𝑤,𝐿𝑤𝑝

∑ 𝑓{∙},𝑡
𝑠,𝑡𝑒𝑟  

{∙}∈𝐿𝑤,𝐿𝑤𝑝

 

= ∑ 𝜎𝑘𝑝𝑔𝑃𝑛,𝑡
𝑠,𝑃2𝐺

𝑘𝑝𝑔∈𝐾𝑝𝑔

+ ∑ 𝜎𝑘𝑐𝑝𝑃𝑐𝑝,𝑡
𝑠,𝑖

 
𝑘𝑐𝑝∈𝐾𝑐𝑝

+ ∑ 𝜎𝑒𝑏
𝑒𝑏∈𝐸𝐵

𝑃𝑒𝑏,𝑡
 𝑠 + ∑ 𝑃𝑘𝑤,𝑡

𝑘𝑤∈𝐾𝑤

 

 

(30) 

𝑃{∙},𝑡
𝑠,𝑜 = 𝜂{∙}𝑃{∙},𝑡

𝑠,𝑖 , {∙} = 𝐶𝑂𝑃, 𝐺𝐹 (31) 

𝑃𝑐𝑝𝑒,𝑡
𝑠,𝑜 = 𝜂𝑐𝑝𝑒𝑃𝑐𝑝 ,𝑡

𝑠,𝑖
 (32) 

𝑃
𝑐𝑝ℎ,𝑡

𝑠,𝑜 = 𝜂𝑐𝑝ℎ𝑃𝑐𝑝 ,𝑡
𝑠,𝑖

 (33) 

𝑃{∙},𝑚𝑖𝑛
𝑖 ≤ 𝑃{∙},𝑡

𝑖 ≤ 𝑃{∙},𝑚𝑎𝑥
𝑖 , {∙} = 𝑐𝑝 , 𝐶𝑂𝑃,𝐺𝐹 (34) 

       

 

Fig. 1.  Proposed structure of IWENS.   
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𝑃{∙},𝑚𝑖𝑛
𝑠,𝑐ℎ/𝑑𝑐ℎ

≤ 𝑃{∙},𝑡
𝑠,𝑐ℎ/𝑑𝑐ℎ

≤ 𝑃{∙},𝑚𝑎𝑥
𝑠,𝑐ℎ/𝑑𝑐ℎ

, {∙} = 𝐵𝑆,𝐻𝑆  (35) 

𝐸{∙},𝑡
𝑠 = 𝐸{∙},𝑡−1

𝑠 +∑ 𝑃{∙},𝑡
𝑠,𝑐ℎ𝜂{∙}

𝑐ℎ −
𝑡

1
𝑃{∙},𝑡
𝑠,𝑑𝑐ℎ/𝜂{∙}

𝑑𝑐ℎ , {∙} = 𝐵𝑆, 𝐻𝑆  
(36) 

𝐸{∙},𝑚𝑖𝑛 ≤ 𝐸{∙},𝑡
𝑠 ≤ 𝐸{∙},𝑚𝑎𝑥

 , {∙} = 𝐵𝑆, 𝐻𝑆  (37) 

[
𝐿𝑒,𝑡 + 𝑃𝐵𝑆,𝑡

𝑠

𝐿ℎ,𝑡 + 𝑃𝐻𝑆,𝑡
𝑠 ] = 

[
1 − 𝑣𝑒,𝑡

𝑠 𝑣𝑔,𝑡
𝑠 𝜂𝐶𝐻𝑃𝑒(1 − 𝑣𝑒,𝑡

𝑠 )

𝑣𝑒,𝑡
𝑠 𝜂𝐶𝑂𝑃 𝑣𝑔,𝑡

𝑠 (𝜂𝐶𝐻𝑃ℎ + 𝜂𝐶𝐻𝑃𝑒𝑣𝑒,𝑡
𝑠 𝜂𝐶𝑂𝑃 + 𝜂𝐺𝐹 − 𝑣𝑔,𝑡

𝑠 𝜂𝐺𝐹)
] × [

𝑓𝑙𝑒,𝑡
 𝑠,𝑖𝑛𝑗

𝑓𝑙𝑔,𝑡
 𝑠,𝑖𝑛𝑗] 

(38) 

B. Real-time Operation  

In the second stage, corrective operation schemes are deployed 

based on the realization of wind uncertainty. Equation (39) is the 

constraint for the regulated power output of traditional DGs and 

gas turbine. And (40) is the new power balance constraint 

considering wind uncertainty. Due to space limitation, the 

constraints for real-time operation are not listed. Apart from (39) 

and (40), the rest second-stage constraints are the same as the 

first-stage constraints, where the superscript ‘s’ on each variable 

is changed to ‘re’. ‘s’ represents the scheduled decision variables 

in the first stage and ‘re’ represents the regulated decision 

variables in the second stage. The regulated decision variables are 

summarized in (41).  
𝑃{∙},𝑡
𝑠 − 𝑟{∙},𝑡

− ≤ 𝑃{∙},𝑡
𝑟𝑒 ≤ 𝑃{∙},𝑡

𝑠 + 𝑟{∙},𝑡
+ , {∙} = 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝 (39) 

∑𝑃𝑖𝑒 ,𝑡
𝑟𝑒 +

𝑖𝑒∈𝐼𝑒

∑𝜉
𝑗,𝑡
+ ∑ 𝑓𝑙𝑒 ,𝑡

𝑟𝑒,𝑖𝑛𝑖 −

𝑙𝑒∈𝐿𝑒

∑ 𝑓𝑙𝑒 ,𝑡
𝑟𝑒,𝑡𝑒𝑟

𝑙𝑒∈𝐿𝑒

+ 𝑃𝐺𝑇,𝑡
 𝑟𝑒 =

𝑗∈𝐽

∑ 𝑃𝑘𝑒 ,𝑡
𝑘𝑒∈𝐾𝑒

+ ∑ 𝑓𝑙𝑒 ,𝑡
 𝑟𝑒,𝑖𝑛𝑗

𝑙𝑒∈𝐿𝑒

+ ∑ 𝑃𝑒𝑏,𝑡
𝑟𝑒

𝑒𝑏∈𝐸𝐵

+∑𝑃𝑛,𝑡
𝑟𝑒,𝑃2𝐺

𝑛∈𝑁

+ ∑ 𝑃 𝑤𝑝,𝑡
𝑟𝑒

𝑤𝑝∈𝑊𝑃

 

(40) 

 𝑦 =

{
  
 

  
 
𝑃𝑚,𝑡
𝑟𝑒 , 𝑃𝑖𝑒,𝑡

𝑟𝑒 , 𝑃𝑔𝑡,𝑡
𝑟𝑒 , 𝑄𝑖𝑒,𝑡

𝑟𝑒 , 𝑉𝑏,𝑡
𝑟𝑒 , 𝑓𝑙𝑒,𝑡

 𝑟𝑒, 𝑞𝑓𝑙𝑒,𝑡
 𝑟𝑒 , 𝐺𝑖𝑔,𝑡

𝑟𝑒 , 𝑃𝑟𝑙𝑔,𝑡
𝑟𝑒  , 𝑓𝑙𝑔,𝑡

 𝑟𝑒, 𝑃𝑔𝑡,𝑡
 𝑟𝑒 , 𝑃𝑛,𝑡

𝑟𝑒,𝑃2𝐺,

𝐺𝑛,𝑡
𝑟𝑒,ℎ𝑦 

, 𝑃𝑛,𝑡
𝑟𝑒,𝑃2𝐺, 𝐺𝑛,𝑡

𝑟𝑒,ℎ𝑦𝑚𝑒 , 𝐺𝑛,𝑡
𝑟𝑒,ℎ𝑦𝑑 , 𝐺𝑛,𝑡

𝑟𝑒,𝑐𝑎, 𝐺𝑛,𝑡
𝑟𝑒,𝑚𝑒, 𝑃𝑤𝑟,𝑡

𝑟𝑒 , ℎ𝑙𝑤,𝑡
𝑟𝑒 , ℎ𝑙𝑤𝑝,𝑡

𝑟𝑒 ,

ℎ̃𝑙𝑤,𝑡
𝑟𝑒 , ℎ̃𝑙𝑤𝑝,𝑡

𝑟𝑒 , 𝑓𝑙𝑤,𝑡
 𝑟𝑒  , 𝑓𝑙𝑤𝑝,𝑡

 𝑟𝑒 , 𝑃 𝑤𝑝,𝑡
𝑟𝑒 , 𝑃𝐶𝑂𝑃,𝑡

𝑟𝑒,𝑖 , 𝑃𝐺𝐹,𝑡
𝑟𝑒,𝑖, 𝑃𝑐𝑝 ,𝑡

𝑟𝑒,𝑖 , 𝑃𝐶𝑂𝑃,𝑡
𝑟𝑒,𝑜 , 𝑃𝐺𝐹,𝑡

𝑟𝑒,𝑜, 𝑃𝑐𝑝𝑒,𝑡
𝑟𝑒,𝑜 ,

𝑃
𝑐𝑝ℎ,𝑡

𝑟𝑒,𝑜 , 𝑃𝐵𝑆,𝑡
𝑟𝑒,𝑐ℎ, 𝑃𝐵𝑆,𝑡

𝑟𝑒,𝑑𝑐ℎ, 𝑃𝐻𝑆,𝑡
𝑟𝑒,𝑐ℎ, 𝑃𝐻𝑆,𝑡

𝑟𝑒,𝑑𝑐ℎ, 𝐸𝐵𝑆,𝑡
𝑟𝑒 , 𝐸𝐻𝑆,𝑡

𝑟𝑒 , 𝑣𝑒,𝑡
𝑟𝑒 , 𝑣𝑔,𝑡

𝑟𝑒

 }
  
 

  
 

 

 

 

(41) 

C. Objective function  

In the first stage, the day-ahead objective in (42) is to minimize 

total operation cost, including i) generation cost of traditional 

DGs and natural gas sources, ii) power purchase cost from day-

ahead upper-level market, iii) water purchase cost from water 

reservoirs, iv) cost for reserve capacity from traditional DGs, gas 

turbines and water pumps.  

𝛤1 = min ∑ 𝜆𝑚
 𝑃𝑚,𝑡

𝑠 + 𝜆𝑖𝑒
𝑎

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇,𝑤𝑟∈𝑊𝑅,𝑔𝑡∈𝐺𝑇 

𝑃𝑖𝑒,𝑡
𝑠 2

+ 𝜆𝑖𝑒
𝑏 𝑃𝑖𝑒,𝑡

𝑠 + 𝜆𝑖𝑒
𝑐

+ 𝜆𝑤𝑟𝑃𝑤𝑟,𝑡
𝑠 + 𝜆𝑖𝑔𝑃𝑖𝑔,𝑡

𝑠 + 𝜆{∙}
+ 𝑟{∙},𝑡

+ + 𝜆{∙}
− 𝑟{∙},𝑡

− , {∙}

= 𝑖𝑒 , 𝑔𝑡, 𝑤𝑝  

 

(42) 

The second-stage problem considers real-time redispatch and 

corrective actions pertaining to wind uncertainty. The objective 

function contains the penalties due to the overestimation or 

underestimation of scheduling in the first stage. The first-stage 

generation decisions include the scheduled power and water 

purchase, wind generation forecast, scheduled output of 

traditional DGs and natural gas sources. The minimization of 

deviation between scheduled and regulated results promotes the 

utilization of renewable energy [34].  

𝛤2 = min ∑ 𝜆𝑚
𝑟𝑒|𝑃𝑚,𝑡

𝑠 − 𝑃𝑚,𝑡
𝑟𝑒 | + 𝜆𝑗

𝑟𝑒|𝜔𝑗,𝑡
𝑠 − 𝜉𝑗,𝑡|

𝑖𝑒∈𝐼𝑒,𝑖𝑔∈𝐼𝑔,𝑡∈𝑇,𝑤𝑟∈𝑊𝑅

+ 𝜆𝑖𝑒
𝑟𝑒|𝑃𝑖𝑒,𝑡

𝑠 − 𝑃𝑖𝑒,𝑡
𝑟𝑒 | + 𝜆𝑖𝑔

𝑟𝑒 |𝑃𝑖𝑔,𝑡
𝑠 − 𝑃𝑖𝑔,𝑡

𝑟𝑒 |

+ 𝜆𝑤𝑟
𝑟𝑒 |𝑃𝑤𝑟,𝑡

𝑠 − 𝑃𝑤𝑟,𝑡
𝑟𝑒 | 

 

(43) 

III. METHODOLOGY 

The proposed DR-IWENS is a two-stage minmax DRO model, 

which can be solved by the Bender’s decomposition, shown in 

this section. Firstly, the linear problem is represented by a 

compact form for notation brevity. Secondly, the KL divergence-

based ambiguity set is used to define the uncertainty. Then, CVaR 

is derived. The final step incorporates the mathematical 

reformulation and decomposition methods for solving the 

problem.  

A. Formulation in Brevity  

The original problem can be represented by vectors and 

matrices to represent the objective function and constraints for 

notation simplicity. Compared to the proposed risk-averse model, 

the traditional risk-neutral DRO model does not consider risk 

factor, which is given in (44).  
min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑝∈𝐷𝜉 

𝐸𝑝[𝑄(𝑥, 𝜉)] (44) 

Based on the traditional risk-neutral DRO model, the risk 

measure can be included in the second stage problem, shown 

below: 
min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑝∈𝐷𝜉 

{(1 − 𝛼)𝐸𝑝[𝑄(𝑥, 𝜉)] + 𝛼𝑅(𝑄(𝑥, 𝜉))}   (45) 

                        s.t. 𝐴𝑥 ≤ 𝑏,  (46) 

𝑄(𝑥, 𝜉) = min
𝑦
𝑓′𝑦 (47) 

                        s.t. 𝐸𝑥 + 𝐹𝑦 + 𝐺𝜉 ≤ ℎ,  (48) 

The risk-averse objective function (45) is to minimize the sum 

of the first-stage objective 𝑐′𝑥, the weighted expected second-

stage objective (1 − 𝛼)𝐸𝑝[𝑄(𝑥, 𝜉)] , and the weighted risk 

measure 𝛼𝑅(𝑄(𝑥, 𝜉)). 𝐷𝜉  denotes the ambiguity set, containing 

distribution 𝑝. The weighting factor 𝛼 ranges between 0 and 1. 

When 𝛼=0, (45) degrades to the traditional risk-neutral DRO. 

Equation (46) presents the first-stage constraints. The recourse 

process is represented by (47) and (48), where f denotes the 

coefficient of (47).  

         

Fig. 2.  Flowchart of Bender’s decomposition approach.   
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B. KL Divergence-Based Ambiguity Set  

The discrepancy-based ambiguity set is constructed based on 

measuring the distance between probability distributions, i.e., the 

divergence tolerance η in (49). The true and reference probability 

distribution are represented by 𝑝 and 𝑝𝑟𝑒𝑓, respectively. The KL 

divergence between 𝑝 and 𝑝𝑟𝑒𝑓  is defined in (50), where 𝑝 (𝜉) 

and 𝑝𝑟𝑒𝑓(𝜉) are the probability density functions. 

𝐷𝑖𝑠 = {𝑝 ∈ 𝐷𝜉,|𝐷𝜉,(𝑝‖𝑝𝑟𝑒𝑓) ≤ 𝜂} (49) 

𝐷𝜉,(𝑝‖𝑝𝑟𝑒𝑓) = ∫𝑓 (𝜉) 𝑙𝑜𝑔
𝑝 (𝜉)

𝑝𝑟𝑒𝑓(𝜉)
𝑑𝜉 

(50) 

KL-divergence function of variable a is in (51) and it will be 

used in the dual formulation to solve the inner maximization 

problem in section D. 
𝜑𝐾𝐿(𝑎):= 𝑎 log 𝑎 − 𝑎 + 1 (51) 

C. Coherent Risk Measure  

The probability of the second-stage objective function 𝑄(𝑥, 𝜉), 
i.e., the corrective operation cost including load shedding lost, is 

restricted by the threshold ζ. As an emerging risk measure 

method, CVaR is a coherent risk measure, which is convex, 

transition-equivalent, and monotonic. The original expression of 

CVaR is in (52), which can be further approximated by (53) to 

avoid the computation of multiple integral [35]. [𝑄(𝑥, 𝜉) − 𝜁]+ 

represent determining the larger value between 𝑄(𝑥, 𝜉) − 𝜁 and 

0.  

𝐶𝑉𝑎𝑅𝛽(𝑄(𝑥, 𝜉)):=
1

1 − 𝛽
∫ 𝑄(𝑥, 𝜉)𝑝 (𝜉)𝑑𝜉
 

𝑄(𝑥,𝜉)≥𝑉𝑎𝑅𝛽(𝑥,𝜉)

 
(52) 

𝐶𝑉𝑎𝑅𝛽(𝑄(𝑥, 𝜉)):= min
𝜁∈ℝ

{𝜁 +
1

1 − 𝛽
𝐸𝑝[𝑄(𝑥, 𝜉) − 𝜁]

+ } 
(53) 

D. Risk-Averse DRO 

The proposed TSMR-DRO is formulated as (54) with weighted 

CVaR.  Equation (55) can be derived by substituting CVaR in (56) 

with (55).  
min
𝑥∈𝑋

𝑐′𝑥 + sup
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{(1 − 𝛼)𝐸𝑝[𝑄(𝑥, 𝜉)] + 𝛼𝐶𝑉𝑎𝑅𝛽(𝑄(𝑥, 𝜉))}   (54) 

min
𝑥∈𝑋

{𝑐′𝑥 + sup
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

min
𝜁∈ℝ

{𝛼𝜁 + 𝐸𝑝[𝐺(𝑥, 𝜉)]}  } 
(55) 

𝐺(𝑥, 𝜉):= (1 − 𝛼)[𝑄(𝑥, 𝜉)] +
𝛼

1 − 𝛽
𝑎̃  

s.t.𝑄(𝑥, 𝜉) − 𝑎̃ − 𝜁 ≤ 0, 𝑎̃ ≥ 0  

Based on the proof in [36] on the strong duality, (55) can be 

reformulated into (56) and then (57).  

min
𝑥∈𝑋

{𝑐′𝑥 +min
𝜁∈ℝ

sup
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{𝛼𝜁 + 𝐸𝑝[𝐺(𝑥, 𝜉)]}  } 
 

(56) 

min
𝑥∈𝑋

{𝑐′𝑥 + 𝛼𝜁 + max
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{∑𝑝𝑖𝐺𝑖(𝑥, 𝜉)

𝑚

𝑖=1

}  } 
 

(57) 

The inner maximization problem can be handled by the Lagrange 

function (58) with its dual formulation (64). 

ℒ(𝑝, 𝜏, 𝜇) =∑𝑝𝑖𝐺𝑖(𝑥, 𝜉)

𝑚

𝑖=1

+ 𝜏 (1 −∑𝑝𝑖

𝑚

𝑖=1

) + 𝜇(𝜂 −∑𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

𝜑𝐾𝐿 (
𝑝𝑖

𝑝𝑟𝑒𝑓,𝑖
)) 

 

(58) 

max  ℒ(𝑝, 𝜏, 𝜇) = 𝜏 + 𝜂𝜇 + 𝜇∑𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

[exp(
𝐺𝑖(𝑥, 𝜉) − 𝜏

𝜇
) − 1] 

 

(59) 

According to Slater’s condition [37], when 𝜂 is larger than 0, the 

below reformulation can be made: 

max
𝑝∈𝐷𝜉,𝜉=Δ𝑃𝑘,𝜉𝑗 

{∑𝑝𝑖𝐺𝑖(𝑥, 𝜉)

𝑚

𝑖=1

} = min
𝜏,𝜇≥0

max  ℒ(𝑝, 𝜏, 𝜇)

  

 
 

(60) 

= min
𝜏,𝜇≥0

{𝜏 + 𝜂𝜇 + 𝜇∑𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

[exp(
𝐺𝑖(𝑥, 𝜉) − 𝜏

𝜇
) − 1]} 

 

(61) 

Substituting the inner maximization in (57) with (61), the below 

derivation can be obtained.  

min
𝜁,𝜏,𝜇≥0

{𝑐′𝑥 + 𝛼𝜁 + 𝜏 + 𝜂𝜇 + 𝜇∑𝑝𝑟𝑒𝑓,𝑖

𝑚

𝑖=1

[exp (
𝐺𝑖(𝑥, 𝜉) − 𝜏

𝜇
) − 1]} 

 

(62) 

s.t. 𝑥 ∈ 𝑋, 𝑄(𝑥, 𝜉) − 𝑎̃ − 𝜁 ≤ 0, 𝑎̃ ≥ 0, 

𝐺(𝑥, 𝜉):= (1 − 𝛼)[𝑄(𝑥, 𝜉)] +
𝛼

1 − 𝛽
𝑎̃ 

However, the optimization problem (62) is nonlinear, which needs 

to be linearized before decomposition. For a given 𝑥 = 𝑥𝑘 , when 

𝑄(𝑥𝑘 , 𝜉) < ∞, then 𝑄(𝑥𝑘 , 𝜉) is subdifferentiable [38] and equation (63) 

can be obtained, where 𝐷𝑢𝑎𝑙(𝑥𝑘) = 𝑎𝑟𝑔max{𝜋′(ℎ − 𝐸𝑥𝑘):𝐹′𝜋 ≤ 𝑓}  is 

the set of optimal solutions of dual problem for (47) and 𝜋𝑘,𝑖 ∈

𝐷𝑢𝑎𝑙(𝑥𝑘) is optimal solution for the ith and kth iterations. 
𝜕𝑄(𝑥𝑘 , 𝜉) = −𝐸′𝐷𝑢𝑎𝑙(𝑥𝑘) (63) 

Let 𝑠𝑘: =
𝐺𝑖(𝑥

𝑘,𝜉)−𝜏𝑘

𝜇𝑘
 and 𝐹𝑖

𝑘: = 𝜇𝑘[exp(𝑠𝑘) − 1], the subgradient of 𝐹𝑖
𝑘 

can be described as: 
𝜕𝐹𝑖

𝑘 = [(1 − 𝛼)exp(𝑠𝑘)𝐸′𝜋𝑘,𝑖 , (1 − 𝑠𝑘)exp(𝑠𝑘) − 1,−exp(𝑠𝑘),
𝛼

1 − 𝛽
exp(𝑠𝑘)] (64) 

Based on the subgradient inequality of convex function, the below 

equation can be obtained. The optimality cut can be defined in (66). 
𝐹𝑖
 (𝑥, 𝜇, 𝜏, 𝑎̃𝑖) ≥ 𝐹𝑖

 (𝑥𝑘, 𝜇𝑘 , 𝜏𝑘, 𝑎̃𝑖
𝑘) + 𝜕𝐹𝑖

𝑘 ∙ (𝑥 − 𝑥𝑘, 𝜇 − 𝜇𝑘 , 𝜏 − 𝜏𝑘, 𝑎̃𝑖 − 𝑎̃𝑖
𝑘) (65) 

𝐹𝑖
 (𝑥, 𝜇, 𝜏, 𝑎̃𝑖) ≥ [𝐺𝑖(𝑥

𝑘, 𝜉) + (1 − 𝛼)(𝜋𝑘,𝑖)′𝐸𝑥𝑘 −
𝛼𝑎̃𝑖

𝑘

1 − 𝛽
] + 𝜕𝐹𝑖

𝑘(𝑥  , 𝜇 , 𝜏  , 𝑎̃𝑖
 ) (66) 

A Bender’s decomposition is employed to solve the TSMR-DRO 

problem and the flowchart is given in Fig. 2.   

IV. CASE STUDIES  

The proposed DR-IWENS is verified on a district water-energy 

nexus system consisting of a modified IEEE 33-bus system, a 6-

node gas system, two EHSs and a 11-node water system, where 

generator information is given in TABLEs Ⅰ, Ⅱ and Ⅲ . The 

power system has two traditional DGs and four renewable DGs. 

The power system is connected with the gas system via two gas 

turbines and a P2G facility. Two EHSs are supplied by both 

electricity buses 20 and 25 and natural gas nodes 2 and 5. The 

technical parameters of EHSs can be found in the existing 

publications [3, 39]. The water consumption of  P2G and CHPs 

are supplied by node 11 of the water system. Electric boilers 

enable the heating conversion from power and water. This study 

considers 5 cases for demonstrating the effectiveness of the 

model, which is presented in TABLE Ⅳ.  

The economic performance for all the cases is studied firstly in 

this section, followed by the optimal schedule of interdependent 

energy converters. The mathematical performance with different 

risk-aversion parameters is given in section C. 

A. Economic Performance of Each Subsystem  

 The economic performance for all the cases is given in 

TABLE Ⅴ, which incorporates the operation cost of power 

system, gas system, water system and entire IES. Overall, case 3 

with twice output of the renewable DGs yields the lowest total 

operation cost whilst the total operation cost of case 5 is the 

highest when gas price is twice of case 1. Case 2 is the risk-neutral 

optimization without considering CVaR in the objective function. 

It can be seen that the operation cost of each subsystem is lower 

than those of case 1. The total operation cost, i.e., $36687, is 91% 

of that of case 1. When the output of renewable DGs is doubled 

in case 3, the most distinct feature is the operation cost of power 

system, which is only $13275. Meanwhile, the gas system 

operation cost is also reduced by $3468 since there is more 

excessive renewable output injecting to the gas system via the 

P2G facility. However, the water system operation cost is $348 

more than that of case 1. The reason is that P2G and CHPs 
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consume more water with increasing renewable output. In case 4, 

there is no supply from the power system to the gas system, which 

causes the higher operation cost of gas system since the excessive 

renewable generation cannot be fully utilized. The operation cost 

of all the subsystems and the overall system is the highest in case 

5. Compared with case 3 with the lowest cost, the total operation 

cost is 107% higher. Particularly, the gas system operation cost is 

$26140, which is $10628 more than that of case 1.  

The IWENS operation cost of first and second stages are 

presented in TABLE Ⅵ. Case 5 results in the highest cost for both 

the first and second stages, i.e., $47840 and $9577. When the 

twice of the renewable generation capacity is considered, case 3 

yields $5601 of the adaptive recourse cost. In Fig. 3, the total 

expected IWENS oepration cost with different number of 

simulation samples is given. The second-stage expected 

performance is conducted based on 1000 simulated uncertainty 

realizations. The sample size is changed to investigate its impact 

on second-stage operation cost. In Fig. 3, the result of case 1 

fluctuates when the sample is fewer than 1000 and converges 

toward $40374 afterwards.  

B. Analysis of Energy Conversions  

This section investigates the scheduling of coupling devices for 

interconnecting each system, i.e., gas turbines, P2G facility, 

electric boilers, CHP, gas furnace and GSHP. To begin with, the 

operation scheme of gas turbines and the P2G facility is given in 

Fig. 4. Note that it shows the input of gas turbines and output of 

P2G facility. It can be seen that the gas turbine at node 2 has 

higher gas consumption than node 5. The average gas 

consumption of node 2 is 1867kcf and that of node 5 is 591kcf. 

The potential reason of the higher gas consumption at node 2 are 

i) node 2 is connected to a natural gas source which has abundant 

gas supply and ii) the requirement of power transformation at bus 

6 is higher as it is connected with more buses. As for P2G, it 

produces 549kcf averagely. The transformed gas from P2G can 

supply loads at nodes 3, 5 and 6. In addition, abundant gas can be 

converted back to the power system at node 5. The scheduling of 

TABLE Ⅰ 

 PARAMETERS OF WATER RESERVOIRS 

 

Node No. 
𝑃𝑤𝑟,𝑚𝑎𝑥 

(m3/h) 

𝜆𝑤𝑟 

($/m3) 

Elevation 

(m) 

1 325 6.4 -252.5 

2 700 2.6 -255 

 
TABLE Ⅱ 

PARAMETERS OF NATURAL GAS SOURCES 

 

Node No. 
𝑃𝑖𝑔,𝑚𝑖𝑛 

(kcf/h) 

𝑃𝑖𝑔,𝑚𝑎𝑥 

(kcf/h) 

𝜆𝑖𝑔 

($/kcf) 

1 0 35.31 2.2 

2 0 70.63 2 

 
TABLE Ⅲ 

 GENERATOR PARAMETERS 

 

Bus No. 
𝑃𝑖𝑒,𝑚𝑎𝑥 

(MW) 

𝑃𝑖𝑒,𝑚𝑖𝑛 

(MW) 

𝑅𝑖
+, 𝑅𝑖

− 

(MW) 

𝑎𝑖  
($/MW2) 

𝑏𝑖 
($/MW) 

𝑐𝑖 
($) 

13 1.2 0.3 0.2 6000 7100 6200 

28 1.0 0.1 0.2 4500 10500 4000 

 

TABLE Ⅳ 

 CASE ILLUSTRATION 
 

Case 

No. 
Risk measure 

Renewable 

DG capacity 

P2G 

connection 

Gas 

generation 

price 

1 Yes Nominal Yes Nominal 

2 No Nominal Yes Nominal 

3 Yes Twice Yes Nomimal 

4 Yes Nominal No Nominal 

5 Yes Nominal Yes Twice 

 

TABLE Ⅴ 

ECONOMIC PERFORMANCE FOR ALL CASES 
 

Economic result Case 1 Case 2 Case 3 Case 4 Case 5 

Power system 

operation cost ($) 
22900 20400 13275 21472 28925 

Gas system 

operation cost ($) 
15512 14485 12044 16324 26140 

Water system 

operation cost ($) 
1962 1802 2310 1858 2352 

System operation 

cost ($) 
40374 36687 27629 39609 57417 

 

TABLE Ⅵ 
ECONOMIC PERFORMANCE FOR TWO STAGES 

 

Economic 

result 
Case 1 Case 2 Case 3 Case 4 Case 5 

First-stage 

cost ($) 
32526 29520 22028 31087 47840 

Expected 

Second-stage 

cost ($) 
7848 7167 5601 8522 9577 

Total cost ($) 40374 36687 27629 39609 57417 

 

 
Fig. 3.  Total expected cost of case 1 based on different sample size. 
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Fig. 4.  Gas scheduling of gas turbines and P2G.  
 

 
Fig. 5.  Water injection of boilers.  
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water injection of electric boilers is shown in Fig. 5. The water 

injection is 3 at node 6m3 and 37 m3 at node 1 averagely. 

Although the heating loads of EHS 1 and 2 have similar amount, 

the heating supplied by water system at water node 1 is more than 

6 times of that at node 6. Since the gas supply of EHS 2 connected 

to gas node 5 is less. However, the water supply from water node 

1 is sufficiently connected to the water reservoir.  

In Fig. 6, the heating output of converters in EHS 1 and 2 are 

given, respectively. Overall, the total heating output of converters 

in EHS 1 is 0.1MW higher than that of EHS 2. The heating supply 

composition is different for EHS 1 and 2. The CHP is utilized 

around 0.15MW for each hour and takes up 50% of the total 

heating output of converters. While the CHP in EHS 2 outputs 

approximately 0.33MW, which is 81% of the total heating 

conversion. The reason is that the supply from the power system 

is not sufficient, which affects the heat conversion of GSHP even 

though the heating conversion efficiency of GSHP is high. The 

insufficient electricity consumption needs to be satisfied by CHP 

conversion, which also increases heating conversion.  

The water consumption of CHPs and P2G is in Fig. 7. As 

discussed for Fig. 6, the heating conversion from CHP in EHS 2 

is higher than that of EHS 1. The water consumption of CHP in 

EHS 2 is also higher than that of EHS 1, i.e., the average water 

consumption of CHP in EHS 2 is 0.28m3 and it is 0.77 m3 of CHP 

in EHS 1. Compared to CHP, P2G consumes less water and its 

average water consumption is 0.15 m3.  

C. The Impact of CVaR on Economic Performance  

Through adjusting the confidence level and weighting factor 

for operation cost versus risk trade-off, the overall economic 

performance varies. TABLEs Ⅶ and Ⅷ present the economic 

performance with different β and α, respectively. This paper 

considers 95% as the benchmark α used in TABLEs Ⅴ and Ⅵ. 

As shown in TABLE Ⅶ, the total cost increases with the 

increase of α. For case 1, the highest total operation cost is 

$40652 with β =0.9 and the lowest total operation cost is $35635 

with β =0.99. When β is fixed, case 5 which considers twice of 

the original gas price has the highest total operation cost, 

followed by cases 4, 1 and 3, which is the same as discussed in 

section A. In TABLE Ⅷ, the impact of changing β on the 

economic performance for all cases is presented. It can be seen 

that the higher α causes higher priority on minimizing the risk, 

which leads to higher operation cost. When α=0, the mean-risk 

DRO degrades into the risk-neutral DRO. For case 5, the total 

operation cost is only $50767 compared with the $57417 solved 

by the benchmark mean-risk DRO.  

D. Result Discussion 

This section presents the result discussion for sections A-C. 

The economic performance of all the cases is shown in TABLEs 

Ⅴ-Ⅵ and Fig. 3. When CVaR is not considered in the objective 

function, there is a 10% reduction of the operation cost. The 

lowest operation cost is yielded when twice the capacity of 

renewable DGs is applied. Result also indicates that P2G 

connection does not have a profound impact on the economic 

performance. The twice of the gas generation price yields the 

highest operation cost, i.e., $57417. In Fig. 3, the second-stage 

expected operation cost of case 1 shows that the computational 

result converges when the sample size is sufficiently large, i.e., 

1000 samples. Based on different risk measure parameters, the 

economic performance is given in TABLEs Ⅶ and Ⅷ. The 

results show that the higher confidence level and weighting 

coefficient lead to higher operation cost, e.g., the operation cost 

of case with β=0.99 is 14% higher than that with β=0.8. 

 The scheduling results of energy converters in Figs. 4-7 

provide the system operator the guide for decision making. The 

converter scheduling of gas turbines, P2G facilities and boilers 

with water consumption are given in Figs. 4 and 5. Figs. 6 and 7 

show that CHP is scheduled dominantly. GSHP with the highest 

conversion efficiency also presents a high utilization rate.   

 

V. CONCLUSION 

A mean-risk coordinated optimization for an IES in the water-

energy nexus with enormous interdependencies is proposed in 

this paper. The tight couplings and interactions between each 

subsystem enable the reliable and economic operation for the 

entire IES. The renewable uncertainty is captured by mean-risk 

DRO. The coherent risk measure, CVaR provides the trade-off to 

system operators with flexible alternatives on choosing between 

 
Fig. 6. Heating output of CHP, gas furnace and GSHP.  
 

 
Fig. 7.  Water consumption of CHPs and P2G.  

 

TABLE Ⅶ 

ECONOMIC PERFORMANCE WITH DIFFERENT WEIGHTING FACTORS 

 

Economic 

result ($) 
β=0.8 β=0.9 β=0.95 β=0.99 

Case 1 35635 39573 40374 40652 

Case 3 25830 26412 27629 27940 

Case 4 38749 39015 39609 40527 

Case 5 54119 57087 57417 57906 

 

TABLE Ⅷ 

ECONOMIC PERFORMANCE WITH DIFFERENT CONFIDENCE LEVELS 
 

Economic 
result ($) 

α=0 α=0.25 α=0.5 α=0.75 

Case 1 36687 38200 40374 42049 

Case 3 25872 26412 27629 28950 

Case 4 37321 38580 39609 47140 

Case 5 50767 51263 57417 62875 
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economic efficiency and risk. A tractable Bender’s 

decomposition is employed to solve the DR-IWENS problem. 

Through the extensive case studies on the economic performance, 

scheduling of interdependent coupling devices and the risk 

management via adjusting parameters, the major contributions 

are tested: 

▪ The coordination of each subsystem with the conversion 

technologies enhances the energy efficiency of all vectors. 

▪ The water system should be considered in the IES operation 

as water is extensively consumed by energy conversions.   

▪ The mean-risk DRO applied in IES operation problem 

provides system operators with not only economic but risk 

concerns. 

This work provides system operators a two-stage operation 

scheme to minimise system operation cost while dealing with 

enormous cross energy vector interdependencies, thus helping 

lowering utility bills for end customers.  

The future work aims to resolve two problems: i) a more 

practical decentralized operation mechanism will be considered, 

i.e., power, gas and water subsystems are owned by independent 

system operators, and ii) a complete heating network will be 

modelled in the IWENS, which will further enhance the energy 

efficiency for the system with more supply flexibility for energy 

hubs. 
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