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A Statistical Approach to Guide Phase
Swapping for Data-Scarce Low Voltage
Networks

Lurui Fang, Student Member, IEEE, Kang Ma, Xinsong Zhang

Abstract—Phase swapping, which rebalances the unbalanced
three-phase low voltage (LV, 415V) networks, improves network
efficiency by reducing capacity waste and energy losses. A key
challenge against phase swapping is that the majority of LV
networks are data-scarce, i.e. there is a general lack of data in LV
networks. In light of this, this paper proposes a new statistical
approach to develop phase swapping guidance for data-scarce LV
networks with neither time-series network measurements nor
customer metering data. Firstly, given a set of data-rich LV
networks (with time-series phase currents data collected at LV
substations throughout a year), typical load profiles and their
weights in each of the three phases are extracted by applying a
non-negative matrix factorization method. Then, phase swapping
guidance are developed for data-rich LV networks along with
their rebalancing potentials (rebalancing potentials refer to the
reduction of phase imbalance degree). Secondly, a rapid screening
model is developed to efficiently identify the data-scarce LV
networks with high rebalancing potentials. Phase swapping
guidance are then developed for these data-scarce networks with
high rebalancing potentials. Case studies reveal that the statistical
approach produces effective phase swapping guidance, which
reduce the phase imbalance degrees for 99% of the LV networks
and the maximum reduction is 35%. Validation results show that
the average reduction of the phase imbalance degree for data-
scarce networks is only 14.3% less than that for data-rich
networks.

Index Terms—low voltage, phase imbalance, phase balancing,
phase swapping, power distribution, three-phase power, statistical
approach

Hyms The balanced weighting factor matrix
for a data-scarce network
hy The weighting factors in phase @
(@e{a, b, c}) of the data-rich network
Ip The input phase current matrix
Ip the rebalanced time-series phase
current data for a validation sample
Lyg i (1) The time-series phase current data for
phase @ (@e{a,b,c}) of the i, data-
rich LV networks
Ipgp The rebalanced time-series phase
current profiles
Ly, Lyp, Iye The yearly average phase current data
I,p(t)(Pefa,b,c}) The one day’s phase current data
ng The length of the time series phase
current data
n, The total number of phases for all data-
rich LV networks
Npet The number of data-rich LV networks
ng The number of the constituent load
profiles
Nge The length of one-day’ time-series
phase current data
Ngy The number of days throughout a year
SPSS The statistical phase swapping matrix

I. INTRODUCTION

NOMENCLATURE
DPIB,,; The original phase imbalance degree
DPIBg,; The phase imbalance degree after
rebalancing
DPIB, The virtual phase imbalance degree
DPIBgy, The phase imbalance degree after
rebalancing for the validation sample
ey, The rebalancing error
H The matrix of weighting factors
H, et The weighting factor matrix for a data-
rich network
Hyp, The balanced weighting factor matrix
Hgs The weighting factor matrix for a data-
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HASE imbalance causes significant consequences to low

voltage networks (415V, LV), e.g. extra energy losses [1],
[2], additional reinforcement cost [3], risks of network nuisance
tripping (because of a high zero-sequence current) [4], risks of
network overloading [5], and possible damages to induction
motors because of voltage imbalance [6], [7]. Phase swapping
is a natural way to rebalance the three phases and resolve the
above problems [4], [5], [8]. However, developing mass-scale
guidance for phase swapping remains a challenge, because the
majority of LV networks are data-scarce, i.e. there are no time-
series phase current data throughout a year from these LV
networks [9].



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

A number of references focus on developing phase swapping
strategies for data-rich distribution networks. Reference [4]
uses mixed integer programming to develop phase swapping
strategies. References [10], [11] develop optimal phase
swapping strategies using simulated annealing and immune
algorithms, respectively. Reference [12] applies a fuzzy
function to develop phase swapping strategies. Reference [13]
applies an expert system to develop phase swapping strategies.
References [14], [15] apply heuristic algorithms to develop
phase swapping strategies, considering load patterns. Reference
[16] develops phase swapping strategies using look-ahead
optimizations, considering load uncertainties. Reference [17]
summarizes different methods for developing phase swapping
strategies. All the above references perform phase rebalancing
based on full data, including network topology, time-series
network current data, and demand data. However, these data are
not normally available in most LV networks that are data-
scarce.

Reference [18] uses smart meter data for phase swapping.
However, the use of smart meters for phase balancing face three
limitations: 1) a smart meter does not know which phase a
customer is connected to, thus offering limited support for
phase swapping. 2) In the UK, electricity suppliers (i.e.
retailers) and distribution network operators (DNOs) are
separate entities. Data protection concerns arise if suppliers are
to share smart meter data with DNOs. 3) In the UK, not all
customers have smart meters — the rollout of smart meters is
much slower than the original plan of deploying smart meters
for all customers by 2020. Reference [19] uses automated meter
management (AMM) system for phase balancing. The AMM
system overlaps smart meters in terms of functionality: they
both provide customer side data. Therefore, the AMM system
faces the same limitations as smart meters, despite that the
former provides additional data compared to smart meters.
Further, the deployment of the AMM system for millions of LV
networks in the UK is economically infeasible.

This paper advances from existing references by
extrapolating the knowledge to data-scarce LV networks with
neither time-series network measurements nor customer
metering data. The knowledge extrapolation was an
unanswered question and it calls for a statistical approach. The
extrapolation is also one of the key technical aspects of this
paper. In light of this, this paper makes the following original
contributions:

1) It for the first time develops phase swapping guidance for
data-scarce LV networks with neither the need for any time-
series network measurements nor the need for any customer-
side metering data.

2) To achieve 1), this paper proposes a new statistical
approach.

The statistical approach effectively overcomes the
insufficient data challenge by extrapolating knowledge from a
set of 800 representative data-rich LV networks with time-
series phase current data to the vast population of data-scarce
networks. Given the 800 data-rich LV networks, the first step is
to develop a rebalancing model to rebalance the three phases of
the data-rich networks by applying a non-negative matrix

factorization method. The model also outputs the rebalancing
potentials (the reduction of the phase imbalance degree) of
these data-rich LV networks. At the 2" step, a rapid screening
model is developed to identify the data-scarce LV networks
with high rebalancing potentials among all data-scarce
networks. At the 3™ step, phase swapping guidance are
developed for the identified data-scarce LV networks by
applying the statistical rebalancing model developed in the first
step. The phase swapping guidance guide the distribution
network operators to reallocate loads among the three phases of
data-scarce networks in order to rebalance the three phases.

The statistical approach develops phase swapping guidance
for data-scarce networks, which take the majority of the LV
networks in the UK, while requiring only a minimal amount of
data. The approach is economically appealing in the sense that
no cost in monitoring system is incurred in Scenario 1 (where
only yearly average data is required) and a minimal cost in
monitoring effort is incurred in Scenario 2 (where only one-
day’s time-series data are required). This is compared to
investing in monitoring systems to collect year-round time-
series data from millions of LV networks in the UK. If
distribution network operators (DNOs) follow the phase
swapping guidance, energy losses would be reduced and the
network capacity that is wasted by phase imbalance would be
released.

The rest of this paper is organized as follows: Section II
presents the statistical approach. Section III performs case
studies. Section IV concludes this paper.

II. METHODOLOGY

To develop phase swapping guidance for data-scarce LV
networks, this paper proposes a new statistical approach. It
consists of three steps. Fig. 1 shows the flowchart of the
statistical approach.
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Fig. 1 Methodology of the statistical approach

We have the time-series phase current collected every 10
minutes throughout a year from the substations of 800 data-rich
LV networks within Western Power Distribution (a UK
DNO)’s business area. These LV networks cover
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approximately 10% of the population in South Wales areas with
a good mixture of urban, suburban and rural areas and a good
mixture of domestic and commercial loads [20]. These data
come from the project “Low Voltage Network Template” and
are described in details in [20].

The purpose of Stage 1 is that it derives two key variables
(which are not normally available in data-scarce LV networks)
from data-rich networks for the development of phase swapping
guidance. These two variables are 1) time-series constituent
load profiles; and 2) their weights on each of the three phases.
The reason for developing a rapid screening model in Stage 2 is
that it identifies the data-scarce LV networks with high
rebalancing potentials. These are seriously unbalanced
networks that are worth phase rebalancing. In Stage 3, the
phase swapping guidance developed in Stage 1 is extrapolated
from data-rich networks to data-scarce networks that have high
rebalancing potentials.

A. Develop a statistical rebalancing model

For the 800 data-rich LV networks, a non-negative matrix
factorization (NMF) method is adopted to extract typical load
profiles and their weights in the three phases of the data-rich
networks. The reason for using the NMF method is that it is a
classical method to extract non-negative source signals (e.g.
typical constituent load profiles in this case) and their weighting
factors from mixed signals (e.g. time-series phase current data
from the 800 data-rich LV networks) [21],[22]. In addition,
NMF removes outliers [23]. After deriving typical constituent
load profiles and their weighting factors, a statistical phase
rebalancing model is developed for data-rich LV networks.

1) Extract constituent load profiles and their weights

To apply the NMF method, the time-series phase current data

Lypn(t) from the 800 data-rich LV networks form an input

phase current matrix Ipj, which is given by

Ipi () = [Lyp1(£), Lo 2 (8), -, Ipg e ()] (1)
where I,,4;(t) denotes the time-series phase current data for
phase @ (Oe{a, b, c}) of the iy, data-rich LV networks; Ip; is a
matrix with n, (the length of the time series phase current data)
rows and n, (the total number of phases for all data-rich LV
networks) columns; n,,; is the number of data-rich LV
networks. It is straightforward to see that n, = 3n,,;.

Given the input phase current matrix Ip;, the NMF method is
applied to find the constituent load profiles and weighting
factors in each of the phases. The relationship among Ip;, W,
and H is given by:

Ipp = W-H (2)
where W, given by (3), is a matrix of n non-negative constituent
load profiles; H, given by (4), denotes the matrix of weighting
factors. W and H are given by:

W= Wy, Wy, , Wy, (3)

H = [Hy, Hy, - Hy, | (4)

where WW; is the i, constituent load profile; H; is the weighting
factors of the i;;, load profile in each of the phases in Ipj; ny is

the number of the constituent load profiles. W is an n;-by-n,
matrix. H is an ng-by-n,, matrix.

The constituent loads are interpreted by three typical load
profiles in the UK [11], [24]: low demand households, high
demand households (the households with electric heating), and
commercial loads. Therefore, in this paper, the number of the
constituent load profiles ng = 3.

To obtain W and H, an optimization model is formulated,
which is the key to the NMF method. The optimization model
minimizes the distance between the actual phase current Ip; and
the reconstructed phase current (W - H). This optimization
model is given by [21]:

W
. 2
$;22||1p1,i ~W-H| 5)
i=1
s.t. all elements of Wand H; > 0
where n, is the total number of phases for all data-rich LV
networks; Ip;; is the i, columns of the input phase current
matrix Ip;, which was given by (1); H; is defined in (4). The
detailed procedure for deriving W and H is given in [21].

In this paper, the constituent load profiles derived above are
normalized to be within a band [0, 1]. The normalization is
given by
|74 w. w,

1 2 ng (6)

= ) ) )
Wl,max Wz,max Wnd,max

w

where W; 4, denotes the maximum element of W;, which is
defined in (3).

Correspondingly, the matrix H is adjusted, as given by

H= [Hl ) Wl,maxr H, - Wz,maxr tty Hnd ) Wnd,max]T
= [hg,i]

where H; and W; ,,,,, are defined in (4) and (6), respectively;
hg; is the normalized weighting factors in phase @
(Pefa, b, c}) of the iy, data-rich LV network; hg; is a vector of
Nng TOWS.
2) Develop phase swapping guidance for data-rich LV networks

After deriving the constituent load profile matrix W and the
weighting factor matrix H, a statistical phase rebalancing model
is developed for the 800 data-rich LV networks.

For a data-rich network, a weighting factor matrix H,,,; is
given by:

()

Hyer = [ha, hb' hc] (8)
where hy is the weighting factors in phase @ (@efa, b, c}) of the
data-rich network, as defined in (7); H,,,; is a nz-by-3 matrix.
ng is defined in (4).

Then, a balanced weighting factor matrix Hy,, is derived.

3
1
Hy =3 Hue, ©
i=1

Hym = [Hp, Hy, Hp] (10)
where H,,.; denotes the weighting factors at the i, column
(phase) of H,,,;, which is given by (8).

Secondly, a statistical phase swapping matrix (SPSS) is
given by:
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SPSS = [spssl.’j] = H,,, — H,,
where spss;;; is the iz, row and ji, column of SPSS.
In this paper, spss; ; indicates that the amount (in an average

power (kW)) of the i;, constituent load (the i;;, column of W)
should be moved away from the j,; phase (j = 1,2 and 3

(11)

represent phase a, b and c, respectively) of the data-rich network.

The rebalanced time-series phase current profiles for the data-
rich LV network are given by:

Ippp = Ipg — W - spss; (12)
where Ipgg is a vector of n, rows (@e{a, b, c}). L,p is the time-
series phase current data for phase @, as defined in (1).
Compared to (1), the subscript i of I,4;(t) is dropped, because
now we consider a given data-rich network. W is defined in (6).
spss; is the iy, column of SPSS, which is given by (11).

In addition, this model is the key to calculating the
rebalancing potential (i.e. the reduction of the phase imbalance
degree) for the data-rich LV network. Before deriving the
rebalancing potentials, the following variables are defined.

Imaxeo (£) = max{Ipa (), Ipp (8, Ipe(D)}  (13)
lavers®) = (Ia(6) + Lpp () + Le(©) /3 (14)
where I, (t), I, (t), and L, (t) are defined in (1).
Imaxpos(t) = max{lpap (t), Ipps (£), Ipcr (£)} (15)
Lavepon (8) = (Ipap(t) + Ippp (£) + Ipp(1))/3 (16)

where Ipgp (t) denotes the rebalanced time-series phase current
data for phase @ (@e{a, b, c}) of the data-rich network.

For the data-rich network, the original phase imbalance
degree ( DPIB,,; ) and the phase imbalance degree after
rebalancing (DPIBgg;) are given by:

DPIBori _ Z (ImaxP(Z) (t) _Q) (t;;ePQ) (t)) (1 7)
maxP
DPIBBal — z (ImaxPQ)B (t)PwB (atv)ePQ)B (t)) (18)

where Iy, qypp(t) is deﬁned in (13); Ippepp(t) is defined in (14);
Lnaxpep (t) is defined in (15); I;,eppp(t) is defined in (16). n,
is defined in (1).

Thus, the rebalancing potential RP for the data-rich LV
network is given by:

RP = DPIB,,; — DPIBgy

(19)

B. Develop a rapid screening model

At this stage, a rapid screening model is developed to identify
data-scarce LV networks with high rebalancing potentials.
Phase balancing for these networks would lead to significant
benefits in terms of reducing energy losses and saving network
investment costs. Before developing the rapid screening model,
a virtual phase imbalance degree (DPIB,) is defined:

max{lyq, Iyp, Iyc}—Uya+Iyp+ Lyc)/3

DPIB, = max{lyq, Iyb, lyc}

(20)

where 4, I, and I, denote the average currents for phases a,

bandec, respectlvely, throughout a year. DPIB, is a feature for
both data-rich and data-scarce networks.

The reason for using DPIB, as the feature is that: 1) it is
derived from yearly average phase current data, which are
available for both data-rich and data-scarce LV networks [25];
2) the alternative yearly maximum phase current data from
data-scarce LV networks cannot represent the actual phase
imbalance [8].

Based on the virtual phase imbalance degree and the
rebalancing potentials from n,,, data-rich LV networks, a rapid
screening model is developed. It uses a quadratic function to
map the virtual phase imbalance degree ( DPIB,) to the
rebalancing potential, which is given by

RP = f(DPIB,) = 6,DPIB,* + 8,DPIB, + 65 (21)
where RP is defined in (19). DPIB, is the virtual phase
imbalance degree; 6;, 6, and 05 are coefficients.

The choice of a quadratic function is justified by Fig. 4 (in
the case study section), which shows an approximate quadratic
relationship between the degree of phase imbalance and the
rebalancing potential. In other words, the quadratic function
represents an optimal tradeoff between bias and variance. The
fitted quadratic function can then be used to estimate the
rebalancing potentials for data-scarce LV networks.

To derive the optimal coefficients (6;, 6, and 83 ), the
following optimization model is solved:

Nnet

Z (RP, — f(DPIB,))?

min

0, 63, 63 (22)

Npet

where f(DPIB,;) = 6,DPIB,;* + 6,DPIB,,; + 6,
DPIB,, ; is the virtual phase imbalance degree for the i, data-
rich LV networks; RP; denotes the derived rebalancing
potentials for the i, data-rich LV networks; n,,, is the number
of data-rich LV networks.

After developing the rapid screen model, rebalancing
potential are estimated for data-scarce LV networks.
Furthermore, a threshold variable RP; divide rebalancing
potentials into two sections: the low rebalancing potential
section (LR) and high rebalancing potential section (HR). Thus,
a data scarce LV network is identified as a network with high
rebalancing potential, if the estimated rebalancing potential is
greater than RPr. The choice of RP; (i.e. how “high” is a high
rebalancing potential) is subjective. It requires expert’s
judgment and the criteria can vary from case to case. For
example, RP; can be chosen so that the “high rebalancing
potential” section includes the LV networks whose rebalancing
potentials are among the top 25% of all LV networks
considered.

C. Develop phase swapping guidance for data-scarce LV
networks with high rebalancing potentials

In this section, phase swapping guidance are developed for
data-scarce LV networks with high rebalancing potentials
(defined in Section — II — B). The weights of each constituent
load are rebalanced in the three phases according to the
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developed guidance, thus approximately balancing the three
phases. The key is to infer the weighting factor matrix H for
data-scarce LV networks. When applied to the field, different
distribution network operators have different types of available
data: 1) one scenario is where only the yearly average phase
current data (4, I, I,c) are available; 2) the other scenario is
where only one day’s phase current data 1,4 (t) (@€{a, b, c}) are
available. The above two scenarios are considered.
1) Use the yearly average phase current data to infer the
missing weighting factors

Select a data-scarce network as an example, the weighting

factor matrix Hgs is inferred, as given by:

Has) = %I”.%Iy” ,%Iy“ (23)
Wave.i Wavei Wave.i
Has1
T (24)
Hasng

where w,,,; is the average value of the data in the i, column
of W (given by (6)); ng is defined in (3).

After deriving the weighting factor matrix Hyg, a balanced
weighting factor matrix Hy,,s is derived for the data-scarce
network, which is given by:

3
1
Hys =3 ) Has; (25)
i=1
Hbms = [Hbs' Hbs' Hbs] (26)

where Hy, ; denotes the weighting factors at the iy, column of
Hds.

Finally, for the data-scarce L'V network, a statistical phase
swapping matrix (SPSS;) is given by:

SPSS, = [Spsss'i‘j] = Hypme — Hys 27)
where Hy,,,,s and H; are derived in (26) and (24), respectively;
where spssg; ; is the iy, row and j, column of SPSS,. The
variable spss;; ; indicates that the amount of the i, constituent
load (the i;;column of W, as defined in (6)) should be moved
away from the j,, phase (j = 1,2 and 3 represent phases a, b
and c, respectively) of the data-scarce network.

2) Use one day’s phase current data to infer the missing
weighting factors
Select a data-scarce network as an example, the weighting
factor matrix Hyg, as defined in (24), is inferred through the
following steps.
Firstly, for the i;;, constituent load (the i;; column of W),
the j¢, day’s load profile W;; is derived, which is given by

Wi j=W((na:(G — 1) + 1): (nae)), 1) (28)
where W((ng:(j — 1) + 1): (ngj),i) is the iy column,
(ng:(j — 1) + 1) to (ngj) rows of the matrix W, which is
define in (6). W (x, y) denotes the element in the x;, row and
Ve column of matrix W. The “m:n” expression denotes “from
m to n (inclusive)”, e.g. from row (ng(j — 1) + 1) to row
(ng¢j) inclusive of both rows. W ; is a vector of ng, rows; ng,
is the length of one-day’ time-series phase current data.

Then, an average load profile that corresponds to the

i, constituent load is given by:
Tldy

I ! EW
pdi — ij
n
dy],:1

Ipq,; is a vector of ng, rows; ng, is defined in (28); W;; is

(29)

defined in (28); ng,, is the number of days throughout a year.
To derive the weighting factor matrix for a data-scarce
network, an optimization problem is solved:

Ngt

1
min — Ig(t) — Wy () - H 2
o™i, ndt;(oa( 45(8) * Has)

(30)
s.t. hyg, hag,--and hy g4 = 0

where st = [Ipd,l , Ipd,z ) lpd,nd ];
Hds,a) = [hl,Q)r hZ,(Z)' Tt hnd,(Z)]T

Ipa,; is define in (29); h; ¢ denotes the weight of the i
constituent load in phase @ (@e{a,b,c}) of the data-scarce
network; I,4(t) is the t,;, element of one day’s phase current
from the data-scarce network; Wys is a matrix with ng, rows
and ny columns. Wy, (t) denotes the elements in the t;;, row of
matrix Wyg; ng, is defined in (28).

The weighting factor matrix for the data-scarce LV network
Hg; is given by:

Hys = [Hds,a' Hys p, Hds,c]

where Hy; 5 (D€{a, b, c}) is defined in (30).

After deriving Hys, the statistical phase swapping matrix
(SPSS;) is given by (25) — (27). SPSS; presents the phase
swapping matrix. SPSS; has the same meaning as that
explained immediately after Equation (27).

€2

D. Method for validation

Before wvalidation, the rebalancing potential RP  for
Nyet(Mper = 800) data rich LV networks are derived in stage 1
(explained in Section IT — A) as the accurate RP.

Then, to validate the developed phase swapping guidance for
data-scarce LV networks, k-fold cross-validation (k = 10 in
this paper) is used. Firstly, the 800 data-rich LV networks are
randomly partitioned into k equal sized groups. Then, the LV
networks from one of the k groups are held out as the validation
samples (treat them as if there were data-scarce LV networks),
the LV networks from the remaining k — 1 groups are used as
the training samples (data-rich LV networks). The training
samples are used to develop the statistical rebalancing model
and rapid screening model as explained in Section — IT — A and
B. Then, the phase swapping guidance are developed for the
validation samples.

For the first scenario (explained in Section I — C — 1)), the
rebalanced time-series phase current data Igp for a validation
sample is given by:

Isg = [Lya, Ipp, Ipc] — W - SPSS; (32)
where W is defined in (6); SPSS; is defined in (27); Ipg is
defined in (1) (Pefa, b, c}); Compared to (1), the subscript i of
Ly ;(t) is dropped, because now we consider a given network.
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The corresponding phase imbalance degree after rebalancing
is given by:

ng
1 I t)— 1 t
DPlBsba — n_tz ( maxSB( ) aveSB( )) (33)
t=1

ImaxSB (t)

where L, 4,55 (t) is the maximum element in the t;, row of Lgg,
which is defined in (32); I ;.55 (t) is the average value of the
elements in the t;;, row of Igz, which is defined in (32); n; is
defined in (1).
The wvalidation rebalancing potential for the wvalidation
sample is given by:
RP, = DPIB,,; — DPIBg, (34)

where DPIB,,; denotes the original phase imbalance degree for
the validation sample (given by (17)); DPIB,, denotes the
phase imbalance degree after rebalancing for the validation
sample (given by (33)).

Through the previous validation, the rebalancing error for the
i;p, validation sample e, is given by

RP — RP,
~ RP
where RP (given by (19)) is the accurate rebalancing potential
for the validation sample; RP, is the rebalancing potential
(given by the proposed statistical rebalancing method) for the
validation sample. This error indicates the validity of the phase
swapping performance for the data-scarce LV networks.

The previous process repeats until each of the k groups has
been held out as the validation samples. After k iterations, the
rebalancing potentials (i.e. the reduction of phase imbalance
degree) are derived for all data-scarce LV networks. The
rebalancing errors are given by (35).

For the second scenario (explained in Section I — C — 2)), the
validation process in each iteration of the k-folds validation is
presented in Fig. 2.

A validation sample
from k-folds validation

A
For j=1:ngy
(ngy is the number [¢&——  YES
of days over a year)

ey (35)

A
Develop phase swapping
strategies (given by (25) - (31))
using the j, day’ s load profile

<D

No

A
Calculate the
rebalancing potential (
(given by (33) - (34))
Fig. 2 Flowchart of the validation process for Scenario 2)

After deriving RP, for the validation sample, the rebalancing
error is given by (35). The above process repeats until each of
the & groups has been held out as the validation samples.

Derive the average
rebalancing potential RP,

III. CASE STUDIES

This section presents the numerical results. The results from
the statistical rebalancing modelling and rapid screening

modelling for data-rich networks are given in Sections IV — A
and B, respectively. Section IV — C presents the phase swapping
results for data-scarce networks. A discussion is presented in
Section IV — D.

A.  Results from the statistical rebalancing model

In the first step, three constituent load profiles are extracted
and normalized: low demand households, high demand
households and commercial loads. Fig. 3 presents the three
constituent load profiles throughout a week.

Power (per unit)

0 Il L L L L L Il

0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00
Hours

—Low demand households —Commercial loads —High demand households

Fig. 3 The constituent load profiles throughout a week (Monday to Sunday)
Commercial loads and low demand households share the
same characteristic: the profile is different between workdays
and weekends. For commercial loads, the weekend peak load is
approximately 1/3 of the workday peak. For low demand
households, the first peak of the weekend’s load is
approximately twice of the first peak of the workday’s load.
Select a data-rich network as an example. If the average
power of these typical customers (e.g. low demand household,
high demand household and commercial load) are 0.2 kW, 0.4
kW and 0.8 kW, respectively, the phase swapping guidance are

presented as follows:
TABLE I
A STATISTICAL PHASE SWAPPING GUIDANCE
Unit: kW, number of loads

Phase a Phase b Phase ¢

(kW) (kW)

Low demand households -5.01,-25 443,22 0.57,3
High demand households -2.61,-7 3.10,8 —0.49, 1
Commercial loads -2.90, 4 0.62,1 2.28,3

In TABLE I, a negative number indicates the amount of the
constituent load that should be moved away to other phases; a
positive number indicates the amount of the constituent load
that should be taken in from other phases. For example, for
phase a, 25 low demand households (which sums up to an
average power of 5.01 kW), 7 high demand households (which
sums up to an average power of 2.61 kW), and 4 commercial
loads (which sums up an average power of 2.90 kW) should be
moved away to other phases. If phase swapping strictly follows
the guidance in Table I, the amount of each constituent load in
the three phases is rebalanced, thus balancing the three phases.
For example, after phase swapping, the average power of LDH
is 15 kW in phases a, b and ¢, respectively, but it was 10.8 kW,
20.28 kW and 16.42 kW before phase swapping. The accurate
rebalancing potential (RP) is 0.115.

If the derived phase swapping guidance is followed, it
significantly reduces the degree of phase imbalance for the 800
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data-rich LV networks. It reduces the average and maximum
phase imbalance degree by 34% and 40%, respectively. In
addition, 387 (48.3%) data-rich LV networks have rebalancing
potentials greater than 0.05. Five (0.67%) out of the 800 data-
rich LV networks have negative rebalancing potentials,
indicating that phase swapping actually increases the degree of
phase imbalance. The reason for this is that these few LV
networks have no consistent direction of imbalance among the
three phases. In other words, phase swapping is not applicable
to these five networks.

B.  Results from the rapid screening model

Fig. 4 shows a quadratic mapping from the virtual degree of
phase imbalance to the rebalancing potential, based on the data
from the 800 data-rich LV networks. Such a mapping is the

rapid screening model.
0.4

S B
o 9
:

Rebalancing potential
=

0 0.1 0.2 0.3 0.4 0.5 0.6
Virtual degree of phase imbalance

Fig. 4 The rapid screening model

The majority of the networks have DPIB,, values that fall in
the range of [0, 0.3] and rebalancing potentials that fall in the
range of [0, 0.2]. In this paper, the threshold of the rebalancing
potential is RPr = 0.05. 48.3% of the LV networks have
rebalancing potentials greater than the threshold — they have
high rebalancing potentials.

Based on the data set of the 800 networks, the mapping incurs
a root-mean squared error (RMSE) and a mean absolute
percentage error (MAPE) of 0.0214 and 16.3%, respectively.

C. Phase swapping guidance for data-scarce LV networks
with high rebalancing potentials

To rebalance the data-scarce LV networks with high
rebalancing potentials (explained in Section III — B), two
scenarios are considered: 1) the scenario with yearly average
phase current data; and 2) the scenario with one day’s phase
current data. Phase swapping guidance are developed for the
two scenarios. The results are validated by 10-fold cross-
validation.

1) Phase swapping results for data-scarce networks with
yearly average phase current

Select the data-rich network (the example in Section — III —
A) as a validation sample (treat this data-rich network as if it
were data-scarce by ignoring its time-series data), this network
has yearly average phase currents [Iya, Lyp, ch] =
[90.43A,168.48A,144.63A]. The weighting factors matrix is
calculated as follows:

81.74 159.27 108.36
H4s = |81.74 159.27 108.36
81.74 159.27 108.36

If the average power of these typical customers (e.g. low
demand household, high demand household and commercial
load) are 0.2 kW, 0.4 kW and 0.8 kW, respectively, the phase
swapping guidance are presented as follows:

TABLE II
A STATISTICAL PHASE SWAPPING GUIDANCE
Unit: kW, number of loads

Phase a Phase b Phase ¢

Low demand households -3.52,-17 2.85, 14 0.67,3
High demand households -3.37,-9 2.72,7 0.65,2
Commercial loads —4.26, -5 3.43,4 0.81,1

The meaning of negative numbers and positive numbers are
explained after Table I. For example, for phase b, 14 low
demand households (which sums up to an average power of
2.85 kW), 7 high demand households (which sums up to an
average power of 2.72 kW), and 4 commercial loads (which
sums up an average power of 3.43 kW) should be taken in from
other phases. The rebalancing potential for this network is
0.0959. The rebalancing error e, (defined in (35)) is 16%. It
indicates that, for this validation sample, the rebalancing
potential RP, (given by the proposed method) is 16% lower
than the accurate RP.

Through validation, the average rebalancing error is 19.33%
in Scenario 1). If the phase swapping implementation strictly
follows the developed guidance, the practical benefits
(including network reinforcement cost reduction [3] and energy

loss reduction [26]) from phase swapping are shown as follows:
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Fig. 5 Practical benefits form phase swapping

In Fig. 5, the average and maximum phase swapping benefits
are: 1) £12,232 and £61,304, respectively, for urban LV
networks; 2) £4,940 and £20,372, respectively, for suburban
LV networks; and 3) £3,280 and £13,919, respectively, for rural
LV networks.
2) Use one day’s phase current data to infer the missing

weighting factor factors

In this scenario, two average load profiles (given by (25)) are
considered: 1) average workday profile; 2) average weekend
profile. The average one day’s load profiles are shown as
follows:
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Fig. 7 Average weekend profiles of constituent loads

Select the data-rich network (the example in Section III — A)
as a validation sample (treat this data-rich network as if it were
data-scarce), this network has one workday’s phase current
data. If the average power of these typical customers (e.g. low
demand household, high demand household and commercial
load) are 0.2 kW, 0.4 kW and 0.8 kW, respectively, the phase

swapping guidance are presented as follows:
TABLE III
A STATISTICAL PHASE SWAPPING GUIDANCE
Unit: kW, number of loads

24:00

High demand households

Phase a Phase b Phase ¢
(kW) (kW) (kW)
Low demand households -6.90, -35 6.14,31 0.76, 4
High demand households -3.34, -8 4.04, 10 -0.70, 2
Commercial loads -2.12,-3 -0.35. -1 2.47,4

The meaning of negative numbers and positive numbers are
explained after Table 1. For example, for phase a, 35 low
demand households (which sums up to an average power of
6.90 kW), 8 high demand households (which sums up to an
average power of 3.34 kW), and 3 commercial loads (which
sums up an average power of 2.12 kW) should be moved away
to other phases. The rebalancing potential for this validation
sample is 0.1037. The rebalancing error e (defined in (35)) is
approximately 10.1%. It indicates that, for this validation
sample, the rebalancing potential RP, (given by the proposed
method) is 10.1% lower than the accurate RP.

Through validation, the average rebalancing errors are: 1)
14.3%, using the workday’s phase current data; 2) 31.9%, using
the weekend’s phase current data for the data-scarce networks.
In this case, using the workday’s phase current data as the
feature for the data-scarce network results in a greater reduction
of the phase imbalance degree, compared with using the
weekend’s phase current data. If the phase swapping
implementation strictly follows the developed guidance, the

practical benefits (including network reinforcement cost
reduction [3] and energy loss reduction [26]) from phase

swapping are shown as follows:
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Fig. 8 Practical benefits form phase swapping

In Fig.8, the average and maximum phase swapping benefits
are: 1) £15,884 and £72,981, respectively, for urban LV
networks; 2) £6,674 and £21,125, respectively, for suburban
LV networks; and 3) £4,710 and £26,457, respectively, for rural
LV networks.

The average rebalancing errors of 19.33% and 14.3% are
acceptable because our statistical approach requires very few
data from data-scarce networks: in Scenario 1), only yearly
average phase currents are required; in Scenario 2), only one-
day’s time-series phase currents are required. There is a tradeoff
between the data requirement from data-scarce networks and
the accuracy (measured by the rebalancing error) of the phase
swapping guidance derived by the statistical approach. The
more data required from these networks, the lower rebalancing
error we will get, but more costs will be needed to obtain the
additional data. In addition, the practical benefits presented in
Fig. 5 and Fig. 8 demonstrate the effectiveness of the statistical
approach.

Phase swaping benefits (k£)

10.00

D. Implementation

The developed approach is not a full phase balancing strategy
but rather provides an important guidance for phase balancing
for data-scarce LV networks at a minimal cost of monitoring.
The guidance does not specify which connection point on the
feeder is to be phase swapped and how, as this depends on the
specific LV feeder topology and customers’ phase connectivity
which vary from case to case. Rather, the approach provides the
following key guidance for phase swapping:

1) whether any given data-scarce network suffers from a
serious phase imbalance or not;

2) whether any given data-scarce network has a phase
imbalance direction or not. A phase imbalance direction refers
to the existence of a particular phase that is consistently heavier
(or lighter) than the other phases. Phase swapping is only
applicable where there is a phase imbalance direction.

3) given any data-scarce network, move what load profiles
from which phase to which phase in order to achieve near-
balanced three phases (the results are presented in Tables IT and
III in the paper).

In other words, the above 1) and 2) inform whether any given
LV network is worthy of phase swapping or not. If yes, to
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develop a network-specific phase swapping strategy, the
following steps should be taken:

1) The DNOs should firstly obtain the network topology.

2)The type of each customer should be identified. The
customers’ phase connectivity should also be obtained.

3) Determine the points of phase swapping so that the phase
swapping strategy closely follows the 3™ guidance as
mentioned above.

E. Discussions

The developed statistical approach addresses a problem that
no existing method can address: developing phase swapping
guidance for data-scarce LV networks with neither network
monitoring nor any metering from the customer side. The phase
swapping guidance derived through the statistical approach
serves as a benchmark. Future research can compare the
effectiveness of their guidance with the one in this paper.

The statistical approach is designed to be generic. To apply
this method to other countries, it requires the following steps:
1) Collect yearly time-series phase current data from N number
of LV networks (N should be at least 800 hundred). These LV
networks should be representative enough. 2) Set the number of
constituent loads, so that the constituent loads are interpretable
in that country, e.g. the low demand households in the UK.
Then, the proposed method can be applied.

It should be noted that there are millions of LV networks in
the UK alone. The fact that the statistical approach only requires
the training data from 800 representative networks is not
demanding, compared to requiring full data from each of the
millions of networks in the UK. Furthermore, distribution
network operators (DNOs) can reasonably monitor the full data
for 800 networks at a moderate cost.

Phase balancing is most needed at LV (11kV/415V)
substations. This is because a substation is a critical load node
seen by higher-level networks. Phase balancing at the
substation would prevent phase imbalance and its consequences
from propagating to higher-level networks. Depending on
individual circumstances, phase balancing may be extended
beyond substations onto critical nodes on LV feeders. However,
phase balancing at every node of the LV network is neither
necessary nor feasible. Therefore, phase swapping is not
required at all connection points but are only required at critical
nodes, e.g. the substation. This significantly relieves the burden
of phase balancing on a mass scale. Further, not all LV
substations need phase balancing, only those with serious phase
imbalance need balancing, thus further relieving the burden of
phase balancing.

This paper uses the average load profiles to approximate
customers’ loads. This approximation is justified in the
following way: 1) the phase swapping guidance derived by
the statistical approach which uses the average load profiles
turns out to have satisfactory accuracy (the accuracy values are
presented in Section III). This implicitly justifies the use of the
average load profiles. 2) The derived load profiles are typical
load profiles for different types of customers (e.g. low demand
households, high demand households and commercial loads)

because the non-negative matrix factorization has clustering
property.

Training data of less durations are also used to develop the
phase swapping guidance. The accuracies of the guidance are
presented in Table I'V:

TABLE IV
EFFECTIVENESS COMPARISON OF DEVELOPED PHASE SWAPPING
GUIDANCE
Year- Half year | One month | One week
round data | data data data
Rebalancing
error 14.3% 16.9% 22.11% 27.4%

The above results prove that our current practice of using
year-round data yields the least rebalancing error. A greater
rebalancing error indicates a lower reduction of phase
imbalance (hence less effectiveness of the phase swapping
guidance) for the data-scarce networks.

The statistical approach does not divide the training data
from the 800 LV networks into urban, suburban, and rural
groups, because: 1) If the division were made, the training data
in each group would be insufficient, thus compromising the
accuracy of the developed phase swapping guidance; and 2) the
case studies yield phase swapping guidance of satisfactory
accuracies for data-scarce LV networks. This in turn justifies
the practice of training the model on the 800 LV networks as a
whole rather than dividing these networks into three groups.

Although the average phase current values are not yet
collected from all LV networks, they can be obtained via the
following means at minimal costs:1) The average phase current
values can be derived from energy meter data if the energy
consumption is recorded per phase. 2) The average phase
current values can be obtained from the protection systems,
which monitor the network operation status over time. 3) A
recent project, OpenLV, sponsored by Western Power
Distribution and undertaken by EA Technology, monitors a
range of LV (11kV/415V) substations and the collected data
include the average phase current values [27]. This paper
advocates the collection of the average phase current values for
the purpose of developing phase swapping guidance.

The developed approach yields effective phase swapping
guidance with satisfactory accuracy for the sample networks we
have. These networks have a low penetration of PVs and EVs,
representing the status quo in Western Power Distribution’s
business areas. To account for increasing single-phase PVs and
EVs, the approach can be adapted by updating the average load
profiles to account for single-phase PVs and EVs. This also
requires the monitoring of representative PV/ EV-rich, data-
rich substations. Then the developed approach can learn the
knowledge and extrapolate it to PV- or EV-rich, data-scarce
substations. This is part of the future work.

IV. CONCLUSIONS

This paper addresses an unresolved problem for distribution
network operators (DNOs): develop phase swapping guidance
for data-scarce low voltage (415V, LV) networks with neither
time-series network measurements nor customer metering data.
To achieve this, this paper develops a new statistical phase
swapping approach, extrapolating knowledge from 800
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representative data-rich networks to data-scarce networks. This
approach produces phase swapping guidance that guides the
DNOs to reallocate typical loads (e.g. low demand households,
high demand households and commercial loads) among the
three phases, thus rebalancing the three phases of data-scarce
networks.

Case studies are performed to validate the statistical phase
swapping approach, which achieves effective reductions of the
phase imbalance degrees for data-scarce networks: the
reduction of phase imbalance degree is only 14.3% lower than
that for data-rich networks. If DNOs follow the phase swapping
guidance produced by the statistical approach, energy losses
would be reduced and the network capacity wasted by phase
imbalance would be released, while only a minimal amount of
data is required.
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