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Abstract

Lead halide perovskites, which are causing a paradigm shift in photovoltaics, exhibit an
atypical temperature dependence of the fundamental gap: it decreases in energy with decreas-

ing temperature. Reports ascribe such a behavior to a strong electron-phonon renormalization



of the gap, neglecting contributions from thermal expansion. However, high pressure exper-
iments performed on the archetypal perovskite MARIMA stands for methylammonium)

yield a negative pressure coefficient for the gap of the tetragonal room-temperature phase,
which speaks against the assumption of negligible thermal expansion effects. Here we show
that for MAPDbk the temperature-induced gap renormalization due to electron-phonon interac-
tion can only account for about 40% of the total energy shift, thus implying thermal expansion
to be more if not as important as electron-phonon coupling. Furthermore, this result possesses
general validity, holding also for the tetragonal or cubic phase, stable at ambient conditions, of

most halide perovskite counterparts.
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Hybrid lead halide perovskites of the type APpXith organic A-site cation and halide sub-
stitution on the X site are the focus of attention of photovoltaic research and to a lesser extent as
light emitters. These materials, which can be cost-effectively deposited from solution, experienced
a rash improvement in solar-energy conversion efficiency, recently reaching a remarkable value of
23.7%1 For a solar cell as well as for a light emitting device, the band gap and its temperature
dependence are fundamental properties of the active material. A peculiarity of the tetragonal and

cubic phases of hybrid lead halide perovskites, which are stable at ambient conditions, is that they



exhibit anatypical dependence on temperature of the fundamental direct gap: it decreases in en-
ergy with decreasing temperature. This temperature dependence of the gap is almost ubiquitous
in halide perovskites, as it can be found, for example, in MAPb? MAPbBr3, %>’ MAPbCI;,

8 FAPbL,® FAPbBE,*° FA\MA 1_4Pbk,® CsPbk,'? CsPbBg, %11 MASNI3!? and CsSr.12 By

atypical it is meant opposite to the temperature behavior of the gaps exhibited by most of cova-
lent bonded semiconductors, for which the gap increases with decreasing temperature (see, for
instance, Ref$*18and references therein).

The theoretical framework for describing the variation of band gaps with temperature was
set by V. Heine and P.B. Alleff and further developed by M. Cardona and coworkers using the
empirical pseudopotential method at an early stage!”2%nd ab-initio techniques afterwards.
18,21.23The changes of the semiconductor band structure with temperature arise essentially from
the effect of thermal expansion (TE) due to the anharmonicity of the crystal potential and from
electron-phonon interaction. The renormalization of the band energies due to electron-phonon
coupling, when considered to second order in the atomic displacements, consists of two terms:
The Debye-Waller (DW) and the self-energy (SE) corrections. Usually, for the direct gaps of most
semiconductors both terms cause a reduction with increasing temperature. The decrease caused by
thermal expansion is mainly due to a positive hydrostatic pressure coefficient of the gaps, whereas
the gap reduction arising from electron-phonon interaction is proportional to the Bose-Einstein
phonon occupation number. There are, however, exceptions to the mentioned rule. The first re-
ported material which appeared to show an abnormal temperature dependence of the fundamental
gap was CuCl, which exhibits a slight sublinear increase of the gap with increasing temperature.
21 Other cuprous halidé$ and several silver chalcopyrites like AgGa&hd AgGaSg also dis-
play abnormal behavior but at low temperatufé® common characteristic of copper halides and

silver chalcopyrites is that the pressure coefficient of the gap is very small, such that the thermal



expansion contribution to the gap renormalization becomes almost irrelevant. As a consequence,
in these cases, the temperature dependence of the gap is mainly determined by electron-phonon
interaction. As far as halide perovskites are concerned, thermal expansion effects were indeed
considered at an early st&deand even taken as the only cause of band gap renormaliZstion.
However, probably mislead by the copper halide results, researchers adopted lately the point of
view of interpreting the atypical temperature dependent renormalization of the fundamental gap
of lead halide perovskites exclusively as due to a particularly strong electron-phonon coupling.
710 Recent results from first principle calculations also seem to indicate that lattice expansion has
negligible effects on the band structure of MARIIl comparison to the electron-phonon coupling.

25 Here we show this is not the case.

In this Letter, we demonstrate that the role of the electron-phonon interaction in the
temperature-induced renormalization of the gap of lead halide perovskites has been widely over-
estimated. Using available data for the hydrostatic pressure coefficient of the gap, we show for
the archetypal perovskite compound MAPhat the thermal expansion contribution is the lead-
ing term in the temperature dependence of the direct gap, whereas electron-phonon interaction
effects accounts for ca. 40% of the total energy shift. Moreover, we provide arguments in favor of
an interpretation of the sign and magnitude of the electron-phonon renormalization terms, which
holds also for other halide perovskites. Based on the results of previous empirical pseudopotential
calculations, we infer that the electron-phonon coupling affects electronic states in different ways,
depending on their bonding/antibonding and atomic orbital character.

The MAPbk samples used for the high pressure experiments are high quality single crystals
grown by the space-confined on-substrate fabrication method, as reported els&nareg a
suitable final thickness of ca. 30m. Otherwise, for the experiments as a function of temperature

we used large and thick single crystals of about2x 1 mn? synthesized from aqueous solution



by similar proceduré’ The high-pressure photoluminescence (PL) measurements were performed
at room temperature employing a gasketed diamond anvil cell (DAC) with anhydrous propanol
as pressure transmitting medidfiwhereas the temperature dependent PL measurements were
carried out in vacuum using a gas-flow cryostathe PL spectra were excited with the 633 nm

line of a He-Ne laser using a very low incident light power of cau\WW (a power density below

15 W/cnt) to avoid photo-degradation of the samples. Spectra were collected using larRg

working distance objective with NA=0.35 and dispersed with a high-resolution LabRam HR800
grating spectrometer equipped with a charge-coupled device detector. PL spectra were corrected
for the spectral response of the spectrometer by normalizing each spectrum using the detector and

the 600-grooves/mm grating characteristics.

1.60 ———1———— 1T 1
(@) MAPDbI, (b) MAPbI
r 3
633 nm o®

P < - ‘o -
= s k| S 159 s
c L .'
= A g c’.
£ i 8 ]
= »‘\ > 1.58 /0./
[a¥ i =
o /‘;/"" GC) .J
e i uw Y
N ~ 157 F g -
s | = S <
£ ¥ o °
o /’\ I ..

/ (]

/ ° tetragonal phase |

170 K
1 PR D s s e S—— — T | 155 PRI S T T ST S T ST T S S N S SN
14 15 16 17 18 19 20 150 200 250 300 350
Energy (eV) Temperature (K)

Figure 1. (a) PL spectra of MAPbmeasured at different temperatures in the range of stability of
the tetragonal phase (ca. 170 to 311 K) using the red line (633 nm) for excitation. The spectra were
normalized to their maximum intensity and plotted with a vertical shift for increasing temperature.
(b) Plot of the temperature dependence of the maximum peak poBgiohthe spectra displayed

in part (a).

Figure la shows the evolution of the PL spectra with temperature in the stability range of the



tetragonal phase of MAPAI All spectra were normalized to its absolute maximum intensity and
vertically offset for clarity. The main PL peak exhibits a gradual redshift and sharpening with
decreasing temperature. To analyze the PL spectra of MARbIused a Gaussian-Lorentzian
cross-product function for describing the main peak which is ascribed to free-exciton recombina-
tion.?% The values of the fitting parameter corresponding to the erigyg§the PL peak maximum
are plotted as a function of temperature in Fig. 1b. Although we cannot tell the absolute values
of bandgap and/or exciton binding energy from the lineshape fits, the shift of the PL peak energy
Ep with temperature (or pressure) is to a large extent dictated by the shift of the gap which for
MAPDI3 exhibits a fairly linear decrease with decreasing temperature.

As mentioned before, the derivative of the gap over temperature contains two terms; one ac-
counts for thermal expansion effects (TE) and the other corresponds to the renormalization directly

caused by electron-phonon interaction (EP), which includes the Debye-Waller and self-energy cor-
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The effect on the gap due to the contraction of the lattice with decreasing temperature is intimately

rections1415.21

related to the response of the electronic band structure upon application of external hydrostatic

pressure. It thus holdé1>18

where —ay is the volumetric expansion coefficierg is the bulk modulus, i.e. the inverse of

the compressibility, ané% is the pressure coefficient of the gap, which can be determined from
high pressure experiments. The last two factors depend only weakly on temperature. As shown in
the Supplementary Information, the strongest temperature variation comeayfr@aiso including

zero-point vibration&?). At room temperatures, is positive and the sign of Eq. (2) for the thermal



expansion contribution is determined by the sign of the pressure coefficient. For most semiconduc-
tor direct gaps‘fj—EF? Is positive as well. Hence, thermal expansion causes a gap reduction. The lead
halide perovskites are an exception. Figure 2 shows the variation with pressure of the energy posi-
tion of the PL peak measured in MARIingle crystals with the DAC in the short stability range

of the tetragonal phase. A linear fit to the data points (dot-dashed line) yields an unusually large
but negative pressure coefficient, as indicated. The negative si%% @frises from the inverted
atomic orbital character of the states at the top and bottom of the valence and conduction band of
MAPDIs, respectively, as explained elsewhéfeThis implies that for MAPb{ the expansion of

the lattice with increasing temperature leads to a gradual opening of the gap, as displayed in Fig.
1b. The magnitude of this effect will be discussed later together with the gap renormalization due

to electron-phonon interaction.
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Figure 2: The energl, of the PL peak maximum (blue symbols) plotted as a function of pressure
in the stability range of the tetragonal phase of MARbrhe dot-dashed line represents a fit to

the data points using a linear function (its slope is indicated). The red symbols correspond to PL
emission from regions of the sample which had already underwent the phase transition into the
high pressure cubic phase (see Rfor details).

Gopalanet al.1® derived an expression for the shift and broadening induced by temperature,



through electron-phonon interaction, of any electronic dEatevith band indexh and wavevector

k, for which all phonon modes of the branghwavevectoij and frequencyojq contribute:

aEnk 1
E(T) = 3 G (malT) 3 @

wherenjq = (eﬁﬁ“’m — 1>_ is the Bose-Einstein phonon occupation factor vﬁth: . The

real part of the complex interaction coefﬁcier%%?qL contribute to the energy shift of the bands and

contain both the DW and SE parts, whereas the imaginary part leads to a lifetime broadening of

the electronic states. Obviously, the sign of the renormalization of a gap is thus determined by the

difference in magnitude and sign of the respective energy shift of valence and conduction band.
By invoking energy conservation, the summation in Eq. (3) transforms into an integral over the

phonon frequencie®®

2E(T) = [ do-FFnk.0) (”m(TH%)
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The functiong®F (n,k, @) is the so-called electron-phonon spectral function and is essentially the
phonon density of states (DOS) appropriately weighted by electron-phonon matrix elements. As
such, the spectral function is temperature independent, which means that the temperature depen-
dence of the electron-phonon contribution to the gap shift arises solely from the Bose-Einstein
occupation facton;q(T).

This is an important result because Eqgs. (3) and (4) clearly indicate that the main contributions
to the electron-phonon renormalization of the gap arise from peaks in the phonon density of states.

In fact, this is at the origin of the Einstein-oscillator model introduced by Cardona and coworkers,



21-23which approximate th%% coefficients by effective electron-phonon interaction parameters
A; for phonons with average frequenay, inferred from the peaks in the phonon DOS. The EP

correction to the gap then reads

BBy ep = S A (mo(@.T)+3). ©

whereng again stands for the Bose-Einstein factor. In special cases of materials with two atoms
per unit cell with markedly different masses like the cuprous hafdés,it is allowed to use
a two-oscillator model with a modified effective EP coefficient which explicitly accounts for its
dependence on the average phonon frequency and atomic specié\masgiﬁ{;l—i). This isjustified
because the phonon DOS exhibits two peaks, one at the average frequency of the acoustic phonon
branches at the Brillouin zone edges, corresponding to vibrations of the heavier mass specie, and
another oscillator accounting for the optical phonon contribution, corresponding to vibrations of
the lighter mass atomic specie. For exactly the same reason each of the two oscillators is identified
with the contribution from acoustic and optical phonons to the electron-phonon renormalization.
We point out that this model cannot be simply transferred to the case of the halide pero¥Rites,
because perovskites have many atoms per unit cell and the vibrations cannot be classified as lead
only or halide only. In fact, an inspection of the phonon DOS for the three methylammonium lead
halide compound® indicates that the DOS exhibits up to four well-defined peaks or bands, not
two, with partial intermixing of optical and acoustical branches.

In this respect, we show here that the electron-phonon renormalization can be well accounted
for using a single Einstein oscillator withpsitiveeffective coefficienfq¢, SO as to reproduce
the linear decrease of the gap with decreasing temperature of MABce we do not know
the absolute magnitude of the gap renormalization at room temperature (or at any other temper-

ature), we decided to circumvent this handicap by evaluating instead the derivative with respect
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Figure 3: The first derivative of the PL peak enefgywith respect to temperature (closed black
symbols), numerically calculated from the data of Fig. 1b. The solid black line represents a fit to
the data points, corresponding to the sum of the contribution of thermal expansion (blue dot-dashed
curve) and electron-phonon interaction (red dashed curve). See text for details.

to temperature of the gap renormalization. The closed black symbols in Fig. 3 represent the first
derivative over temperature of the bandgap, numerically calculated point-by-point from the data
set of Eg versus T shown in Fig. 1b. Despite the dispersion of the values, in the temperature range
of stability of the tetragonal phase of MARbthe first derivative of the gap over temperature is, as
expected, essentially constant. The contribution from thermal expansion can be directly obtained
from Eq. (2), using the values of, = 1.57 x 10~* K~12°andBg = 18.8 GP&° from the literature

and the linear pressure coefficient determined by us from high pressure experiments, indicated in
Fig. 2. The result is the constant contribution represented by the blue dot-dashed line in Fig. 3. In
order to calculate the contribution from electron-phonon interaction, we have derived Eq. (5) with

respect to temperature, considering a single oscillator with coupling comstgnand oscillator

frequencywes .

(6)
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This function together with the constant contribution from TE given by Eq. (2) were fitted to the
data points of Fig. 3 using only the electron-phonon coupling constant and the average phonon
frequency as adjustable parameters. The resulting values for these paramet&gs;are8.0(8)
meV andhmet, = 5.8(6) meV, where the numbers in parentheses are the error bars (uncertainty
of the last digits). The solid black curve and the dashed red curve in Fig. 3 represent the result-
ing total rate of gap renormalization per Kelvin and the EP contribution to it, respectively. We
emphasize that without further information apart from the data of Fig. 1b the only way to ensure
uniqueness of the fitting results is to use one Einstein oscillator. Addition of further oscillators
would just introduce strong correlations between oscillators parameters, leading to multi-valued
solutions. In summary, at 300 K we obtain from the fitting results a total renormalization rate
of 0.26(5) meV/K, corresponding to the sum of the contribution from thermal expansion (0.15(5)
meV/K) and that from electron-phonon interaction (0.11(5) meV/K). This is a clear indication that
thermal expansion effects-60%), rather than being negligiblet®2® are even more important
than electron-phonon coupling effects40%). We show below that this situation also holds for
most, if not all, lead halide perovskites investigated so far.

By accounting for the thermal expansion effects, we obtain within the Einstein-oscillator model
a value of ca. 6 meV for effective phonon frequency involved in the gap renormalization, which
is in excellent agreement with the frequency of 1 THz (approx. 4 meV) of the specific phonon
mode which strongly couples to the gap in THz transient transmission experfrardswith
the frequency of 4.2(8) meV of the phonons leading to exciton broadéhibgth in MAPDE,
although the latter holds for the orthorhombic phase. In contrast, if the two-oscillator model is
applied without thermal expansion consideration, unrealistically large average phonon frequencies
for the optical branches of approx. 16 medt even 40 to 50 me¥ are found for the best fit to the

gap-versus-temperature data. We recall that the maximum cutoff frequency of the phonon modes

11



of the inorganic cages of lead halide perovskites is 200'cfoa. 25 meV$2 but the most intense
Raman modes have frequencies below 100 tifta. 12.5 meVY:2 For comparison we show
in the Supporting Information results from a literature survey containing a comprehensive list of

available band-gap pressure and temperature coefficients for different halide perovskite materials.
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Figure 4: Sketch of the sign and magnitude (arrows) of the Debye-Waller (DW) and self-energy
(SE) contributions to the electron-phonon renormalization of valence and conduction band states
of sp® bonded semiconductors, depending on the bonding (B) or antibonding (AB) and atomic
orbital characterqor p) of the involved states for the case of increasing temperature (T).

The calculation by ab-initio methods of the magnitude of the electron-phonon interaction in
materials like the hybrid halide perovskites, characterized by soft and strongly anharmonic vi-
brational modes, constitutes a real challegé33-34Despite their relevance, we prefer to make
use of the semiempirical pseudopotential calculations that provided a detailed, though qualitative,
picture of the electron-phonon interaction in covalesff-bonded semiconductols1>17-20(for
further details see the Supplementary Information). The Debye-Waller correction represents two-
phonon processes for which the lattice vibrations perturb the electronic band structure in the same
way as in the case of x-ray diffraction patterns, i.e., by smearing the pseudopatntaire fac-
tor. In this sense, the DW correction mainly depends on the spatial distribution of the electronic
charge around the lattice atoms. As illustrated in the sketch of Fig. 4, valence band states with
mostly bonding character increase in energy with increasing temperature, whereas the antibond-

ing conduction band states slightly decrease in energy. Hence, the DW term always cause a gap

12



reduction with increasing temperature foPdmnded semiconductors. In contrast, the sign and
magnitude of the self-energy term would depend on how the pseudopotentidiactorsreact to

the different phonon eigenvectors corresponding to the modes leading to the peaks in the phonon
DOS. It turns out that the acoustic-phonon SE contribution almost cancels out the DW correction,
15 which implies that for spbonding only optical phonon contribute to the gap renormalization.
The remaining SE interaction matrix elements are large and positive-like and moderate but
negative fors-like bonding valence-band states, whereas for antibonding conduction-band states
the SE interaction parameters are negativesfand p-like states but larger for the latter (see Fig.

4). As a consequence a single Einstein oscillator with a negative coupling coAstargrovides

a good description of the gap reduction induced by an increase in temperature in conventional
semiconductors.

A common feature of the materials showing an abnormal temperature dependence of their gap,
like certain cuprous halidé-??and Ag chalcopyrité® compounds, is the presenceds$tates in the
valence band. The Cuw3and Ag 4i-like valence electrons hybridize with the usyelike coun-
terparts, reverting the sign of the electron-phonon interaction and so leading to a strong downshift
of the valence band with increasing temperature. dtstates hybridization also has important
consequences for the pressure coefficient of the®gayhich is largely reduced, because the AB
d-states push up the top of the valence band with pressure at a similar pace than the upshift of the
bottom of the conduction band. On the contrary, the unusual temperature-induced gap renormal-
ization in lead halide perovskites possesses a different origin, since there is no hybridization with
d-states whatsoever. It is the huge spin-orbit interaction which causes a so-called band inversion.
Relativistic band-structure calculatiol¥s3for a pseudo-cubic phase of MARhpredict that for
the direct gap at the R-point of the Brillouin zone the top of the valence band is predominantly

composed by Pbgorbitals slightly hybridized with | p orbitals, whereas the bottom of the con-

13



duction band is formed by the split-off Plp®rbitals. Hence, one expects the EP interaction to
lead to a gap increase with increasing temperature (see Suplementary Information for details). This
is supported by ultraviolet photoemission spectroscopy combined with optical gap measurements,
which for MAPblk show a stronger lowering of the valence band maximum with respect to the
conduction band minimum, as temperature is rafs®¢ note that in tin halide perovskités;3

despite the weaker spin-orbit coupling as for lead-based compounds, a similar band inversion oc-
curs, leading to a totally similar atomic orbital character of the electronic states at the conduction
and valence band extreftfd ! like in MAPbI3. Furthermore, such band inversion also explains

the negative pressure coefficient observed in halide perovskites (see Supporting Information for
a complete survey of literature data). The pressure coefficient determines the sign of the thermal
expansion contribution, which thus adds up to the effects of electron-phonon interaction as far as
the gap renormalization is concerned. Since all arguments presented here are valid for all halide
perovskites crystallizing in the tetragonal and/or cubic phases, the same behavior of the gap with
temperature, which is ubiquitous in this material system, has similar explanation.

In conclusion, we have shown that the importance of the electron-phonon interactiomb the
normaltemperature dependence of the fundamental gap of the tetragonal or cubic phases of halide
perovskites has been widely overestimated in previous work. This was the result of totally neglect-
ing the effects of thermal expansion. As a consequence, disproportionately large electron-phonon
coupling constants and average phonon frequencies were needed to explain the variation of the gap
with temperature in halide perovskites. Using MAP&$ representative example, we showed that
the thermal expansion effects can be readily quantified from the measured (also unusual) negative
pressure coefficient of the gap. Our findings, which have general validity for halide perovskites,
clearly indicate that thermal expansion has to be treated on equal footing with the electron-phonon

interaction for the correct interpretation of temperature effects on their electronic structure. Given

14



the relevance of the electron-phonon interaction for a variety of physical phenomena apart from
the temperature dependence of the gap (charge transport, exciton lifetimes, non-radiative relax-
ation processes, thermoelectric properties, etc.), its correct assessment is fundamental for further

scientific and/or technological developments with halide perovskites.

Supporting Information

Contains details of the theoretical discussion, based on the empirical pseudopotential method, of
the effects of thermal expansion and electron-phonon interaction on the renormalization of gaps
with temperature for conventional semiconductors. It also contains a table with the gap pressure
and temperature coefficients of the PL peak en&gfor the phase of different halide perovskites
stable at ambient conditions and a plot showing the smoothing procedure of the dagavset

temperature for the calculation of the first derivative.
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