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Abstract — The intermittency of wind generation creates 

nonlinear uncertainties in wind power forecasting (WPF). Thus, 

additional operating costs can be incurred for balancing these 

forecasting deviations. Normally, large wind power penetration 

requires accurate quantification of the uncertainty-induced costs. 

This paper defines this type of costs as wind power uncertainty 

incremental cost (WPUIC) and wind power uncertainty dispatch 

cost (WPUDC), and it then formulates a general methodology for 

deriving them based on probabilistic forecasting of wind power. 

WPUIC quantifies the incremental cost induced from balancing 

the uncertainties of wind power generation. WPUDC is a 

balancing cost function with a quadratic form considering diverse 

external conditions. Besides, the risk probability (RP) of not 

meeting the scheduled obligation is also modelled. Above models 

are established based on a newly developed probabilistic 

forecasting model, varying variance relevance vector machine 

(VVRVM). Demonstration results show that the VVRVM and RP 

provide an accurate representation of WPF uncertainties and 

corresponding risk, and thus they can better support and validate 

the modelling of WPUDC and WPUIC. The proposed cost models 

have the potential to easily extend traditional dispatches to a new 

low-carbon system with a high penetration of renewables.  

Keywords—economic dispatch, forecasting uncertainty, 

incremental cost, uncertainty cost, wind power generation, wind 

power forecasting.   

I. NOMENCLATURE ABBREVIATIONS 

CDF Cumulative distribution function 

EIP Energy imbalance prices  

NWP Numerical weather prediction  

PDF Probability density function 

RMSE Root mean square error  

RP Risk probability  

RVM Relevance vector machine  

SBP System buy price  

SSP System sell price  

VVRVM Variable variance RVM 

WPF Wind power forecasting  

WPPF Wind power probabilistic forecasting  

WPUIC Wind power uncertainty incremental cost 
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WPUDC Wind power uncertainty dispatching cost 

II. INTRODUCTION 

IND power is increasingly contributing to the 

electricity supply worldwide because of its low 

environmental impact and negligible generation costsError! 

Reference source not found.. Limited predictability of 

intermittent wind generation creates uncertainty for system 

operation and market trading, which are based on the quality of 

wind power forecasting (WPF). However, balancing the load 

and generation for systems with large share of wind power 

could be technically and economically challenging. 

Specifically, larger spinning reserves are required to balance 

the possible deviations of wind power generation from 

forecasts. Frequent cycling of the operational thermal 

generators for balancing increases the outage and operational 

expenses. This balancing act increases the operation costs of 

the power system and reduces the value of wind power [1,2]. 

For operational planning in a renewable-rich power system, it is 

important to provide an accurate and efficient cost model in 

dealing with the situation-dependent uncertainty of wind power 

and investigate how such uncertainty affects system operation 

costs.  

Previous studies have estimated the balancing cost incurred 

from wind power uncertainties, most achieved by directly 

comparing the total power system costs with uncertainties and 

fully predictable wind power [3,4,5,6]. However, such analysis 

is limited to payment mechanisms and unfit for the trading or 

operating decisions. Another set of approaches use historical 

probabilistic density function (PDF) of the wind speed or WPF 

deviation to establish the expected value of underestimation 

(reserve) costs and overestimation (curtailment) costs in a 

probabilistic and integral form. Some of them assumed wind 

speed PDF, such as Weibull distribution [7,8,9], and then 

transfer it to wind power PDF by using theoretical or mapping 

power curve of wind turbines [10]. Another group of 

approaches assume PDF of historical WPF deviations to obey 

given empirical distributions [11,12,13], such as Gaussian 

[14,15], Beta [16], etc. These methods are partly able to 

simulate the random distribution of wind power variable and 

balancing costs, but still leave several problems to be solved. 

The use of historical distribution of WPF deviation implies 

that the uncertainty of wind power and its development cannot 

be evaluated at a particular time slot. In addition, the empirical 

PDF is proved to be unable to simulate the actual distribution. 

These two problems will, therefore, bring large errors in the 

cost calculation, and thus primarily require an accurate model 

for estimating the future uncertainties of wind power. Relevant 
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studies basically have two categories [17]. One category 

considers a range of possible real-world wind power output 

scenarios by using Monte Carlo or Markov simulations 

[18,19,20], etc. Scenario based methods generate a number of 

scenarios according to historical data and use scenario 

reduction techniques to select the representative scenarios and 

delete redundant ones. The difficulty here is how to choose the 

number of reduced scenarios because a large number of 

simulations can exponentially increase computing burden but a 

small number can result in poor approximation [21]. Another 

category is based on probabilistic forecasting, which generates 

a series of uncertain intervals under given confidence 

probabilities based on a per look-ahead time basis, for example, 

quantile regression [22] and relevance vector machine (RVM) 

[23,24]. They do not inform forecasting errors at a given 

prediction time point since they neglect the interdependence 

structure of forecast errors among look-ahead time [25]. This 

will bring successional risk to many time-dependent 

decision-making processes.  

 The inverse function of  such mentioned cost models does 

not have an analytical form and thus makes system dispatch 

hard to be solved by traditional optimization algorithms but 

solved by artificial intelligent algorithms (such as PSO, etc.).  

This fact implies that the system operation method in a 

conventional system requires large changes or requires more 

computational burden in order to accommodate increasing 

wind generation.  

In response to above problems, the main contribution of this 

paper is to introduce the concept of wind power uncertainty 

incremental cost (WPUIC) and wind power uncertainty 

dispatch cost (WPUDC) to enable wind power uncertainty cost 

in system operation. WPUIC is able to analytically present the 

incremental cost of accommodating uncertain wind power. 

WPUDC is developed to quantify the potential balancing cost 

associated with wind power uncertainties. Different from 

existing studies, the two models: i) they have an analytical form, 

which facilitates the system operation of a renewable power 

system easily; ii)they are able to differentiate the seasonal 

impacts and other external conditions by adjusting the 

characteristic parameters in the cost formulation. Continuous 

updates of the two parameters can benefit a rolling plan to 

instantaneously capture wind power uncertainties.  

Moreover, this paper also proposes a wind power 

probabilistic forecasting (WPPF) model based on varying 

variance relevance vector machine (VVRVM) in order to 

estimate future uncertainties of wind power. Another 

contribution of the paper  is that VVRVM is able to adjust the 

estimated uncertainty in each training iteration according to 

previous training deviation and current forecast level. Such 

varying variance adjusted with the error interdependence and 

variable weather conditions can facilitate more accurate 

uncertainty estimation at a given time point.  

The rest of paper is organized as follows. Section III 

introduces a probabilistic forecasting method based on 

VVRVM to model the WPF uncertainty in cost formulation. 

Section IV describes the concept and formulation of WPUIC 

and WPUDC. A case study in Section VI investigates the WPF 

uncertainty features and validates the proposed cost models. 

Finally, Section VII concludes the findings. 

III. FORECASTING UNCERTAINTY FORMULATION 

System operators and wind power producers are all subject to 

additional costs for balancing fluctuating wind generation. An 

accurate WPF model and uncertainty estimation can lay the 

foundation for advanced decision making in power system 

operation or market participation.  

This section first proposes one probabilistic forecasting 

method based on VVRVM and demonstrates its results. The 

results of VVRVM are used as an example to demonstrate how 

a probabilistic forecasting method can serve for the proposed 

balancing cost modelling. Before the cost modelling, the 

probability with respect to given uncertain wind power range 

and the risk of failing to meet the wind power obligation are 

calculated based on the results of WPPF.  

A. Probabilistic forecasting based on VVRVM 

Given a set of input-target pairs  
1

,
N

n n n
x t


, assume that

 ;i i it y x w   . i is Gaussian noise with mean zero and 

variance
2 . The prediction is made by  

  T

01
; ( ) ( , )

M

i ii
y x w w x w K x x w


               (1) 

where, ( )x is the vector of a basis function;

 0 1 2, , ,..., Mw w w w w  is weights vector;  , iK x x is kernel 

function; M is the total sample number. 

Constraint on weights iw was imposed by ‘prior’ probability 

distribution as below 

   1

0| | 0,N

i i ip w N w  

                        (2) 

where,   is 1N  vector termed as ‘hyperparameters’.  

The posterior probabilities over unknown samples could be 

obtained from Bayesian inference. The learning process aims to 

search 
2,   2   by using maximum marginal likelihood 

estimation. 
2,  are assumed to follow Gamma distributions 

with parameters of ,c d , which affect the interval of the 

proposed forecasting uncertainty. They are variable with 

forecasting errors from last iteration and current inputs 

(including weather inputs and forecasts level). In this way, 

VVRVM is able to track real-time uncertainties and error 

interdependency in a more accurate manner. 

The partial differential of the maximum likelihood function, 

which is shown in (3), is set to zero with respect to  and  . 

The results are shown in (4)-(7) [26]. 
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where, i  is the i -th mean of the posterior from (6); ii is 

the i -th diagonal element of posterior covariance from (7), 

computed by
2,  from current iteration. The superscript 

“new” means that the two parameters are newly updated value 

in the latest iteration, and they are updated in each iteration 

until convergence. 

Assuming the new input to be *x , the predicted distribution 

of wind power is as below [26].  

 * *

Ty x                                    (8) 

   2 2

* MP * *

T
x x     

                    
(9) 

where, *y is the point forecasts; the subscript “MP” means 

“make prediction”, which declares that the parameter is 

obtained from the final iteration and used to make a prediction. 

Details on RVM theory and RVM-based WPPF methods can be 

found in our prior work [23,24]. 

The results of VVRVM on a random day in December are 

shown in Fig.1. This case is based on a Chinese wind farm, 

whose details are given in the case study. Forecasting intervals 

under 90%, 80%, 70% and 60% confidence levels are drawn 

along with the deterministic power forecasts and actual power 

output. The reliabilities of all confidence levels are 93.1%, 

82.3%, 70.7%, 61.6% respectively. Most estimated intervals 

are able to cover the fluctuations of actual power output by 

reasonable bounds, illustrating the reliability and sharpness of 

the VVRVM model.  

 
Fig.1 Probabilistic forecasting of VVRVM on a day in December 

B. Probability of Uncertain Wind Power Range 

Probabilistic forecasting, i.e. in the form of predictive 

distribution, basically has two aspects: uncertain range and 

probabilities. To capture the features, the probability with 

respect to given uncertain wind power range is calculated based 

on the VVRVM forecasts. 

Considering a random wind power variable w ,  .wf

represents its PDF and  .F is its cumulative distribution 

function (CDF). Given a wind power value x , the CDF of w  

can be expressed as 

    ProbF x w x m ≤  (11) 

Quantile function  Q m w x , or written as  Q m , is the 

inverse function of  F x at confidence level  ( 0,1 )   . 

    -1Q m w x F m   (12) 

According to above quantile definition, the forecasting 

interval generated from the probabilistic forecasting can be 

transformed to quantile version  

      ,l uI Q m Q m      (13) 

where,  is the theoretical confidence probability, at which the 

actual power production is within the given uncertain power 

range;  I  is forecasting interval;  uQ m and  lQ m are the 

upper and lower limits of future wind power respectively.  

According to the definition of confidence level in quantile, 

um and lm can be further inferred as follow. 

 1u lm m   (14) 

 u lm m    (15) 

 
1 1

;
2 2

u lm m
  

   (16) 

With given predicted wind power ( predw ), the confidence 

probabilities of each uncertain power range ( predw w   ) 

are calculated based on 24-hour ahead and 4-hour ahead WPPF. 

Fig.2 depicts the CDF of  . It is clear to see that three curves 

are monotonic decreasing and smaller forecasting horizon has a 

higher confidence level with the same uncertain power range. 

For the 24-hour ahead and 4-hour ahead forecasting, their 

confidence probability curves are approximately linear. As for 

the 1-hour ahead forecasting, it might need piecewise 

linearization. To sum up, CDF of   for each horizon can be 

linearized or piecewise linearized as below. 

  11 11

1 1

12 12

, 0

, 0

pred a b
F w a b

a b

 

 

    
     

   
    (17) 

 
Fig.2 Confidence probability of VVRVM within each power range for different 

forecasting horizon 

A series of  I  and ,u lm m can be obtained by using 

VVRVM based WPPF and (13). The probabilities of a random 

wind power variable to be within a given range ],[ 21 PP can be 

calculated by (18) based on CDF of   in (17).  



> PAPER IDENTIFICATION NUMBER < 

 

4 

     

     
1 2 2 1

2 2 1 1

2 1

Prob -

-

P P P F P F P

F Q m P F Q m P

m m

  



 

      (18)         

Fig.3 depicts the relations between each given power range 

and its corresponding probability  1 2Prob P P P  . It can be 

seen that the probability curves for the 4-hour ahead and 

24-hour ahead forecastings are stable at around 3%-6%. This to 

some extent validates the scientificity of (17). Meanwhile, the 

1-hour ahead curve is close to a linear line initially but drops 

sharply from 14% to 0%. Thus, this linear relation can be 

written as below.  

  
^

2 2

w predf w a b    (19) 

 
Fig. 3 Curves of the uncertain power range and its probability for different 

forecasting horizon 

C. Risk Probability (RP) Function 

Risk probability (RP) is proposed to quantify the probability 

of failure to meet the scheduled obligation. CDF of the 

uncertain power range   in (17) is used to derive the RP 

function  
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     

   (20) 

where ;pred predw w w w       . 

According to (17), the relationship between uncertain power 

range and its corresponding risk probability can be written as a 

linear function with respect to dual characteristic parameters in 

(21). Two characteristic parameters in the RP function are 

termed as scale parameter and margin parameter, which vary 

with weather conditions or specific wind farms. Adjustable 

parameters allow RP function to reflect the seasonality and 

dispersion of stochastic wind.  

  RP pred

RP RPw c w w b    (21) 

where, RPb  is the interception of RP function, termed as “scale 

parameter”, indicating the average magnitude of the WPF 

deviation; RPc is the slope of RP function or marginal risk, 

termed as “margin parameter”, indicating the dispersion of the 

WPF error distribution. A small marginal risk reflects a fairly 

stable WPF performance probably due to a simple 

meteorological pattern.  

This RP function is used to analyze and validate the 

following proposed WPUDC model. The so-called “risk” 

relates to two issues: i) the fast start-up and more reserves for 

the deficiencies of wind power, and ii) the curtailment for 

overscheduling wind power.  

IV. UNCERTAINTY COST FORMULATION 

A. Concept and formulation of WPUIC 

The incremental cost of power production in a power system, 

whatever from renewables or conventional generators, is a 

basic way to expose the mechanism of economic dispatching 

and market clearing [27]. The incremental cost of a 

conventional generator varies depending on load level, machine 

type and fuel price, which is relatively easy to formulate. 

Renewables have nearly zero incremental fuel cost, but the 

balancing costs for wind power can be substantially high 

because of errors in hour-by-hour forecasting [28].   

Much of up-to-date research has concentrated on the use of a 

total cost model by system operators. However, they are not 

able to discriminate between wind power producers who incur 

additional balancing costs or auxiliary service reinforcement, 

and those who reduce the system imbalance. It is for this reason 

that the concept of WPUIC and WPUDC are introduced to 

quantify the additional cost for balancing uncertain wind power 

in a power system. 

In this section, wind power uncertainty incremental cost 

(WPUIC) is defined to quantify the extra balancing cost for 

increasing unit wind power generation in a power system. The 

definition of WPUIC is as below. 

  
 E Cost

WPUIC
imb imb

w

w

P
P

P

   



 (22) 

where, wP is the scheduled wind power generation; 

| |act

imb wP w P   is the power deviation between scheduled 

wind power and actual generation;  Cost imb imbP is  the cost 

for balancing power deviation from wind in the future;

 E Cost imb imbP    is the mathematical expectation of

 Cost imb imbP . 

For power and energy balance in a system, if a wind power 

producer has underproduction or overproduction compared to 

the contracted amount due to the partial predictability of wind, 

the energy difference must be settled by energy imbalance price 

(EIP) as unit payments. Specifically, it must purchase the 

shortfall at System Sell Price (SSP) or sell the surplus at System 

Buy Price (SBP) [29]. These prices can help to quantify the 

costs to balance wind energy deviations.  

The balancing cost and its mathematical expectation are 

defined as 

 
 

 

, 0
Cost

, 0

act act

p w p w w

imb w act act

r w r w w

C P k w P w P
P

C P k P w w P

    
 

   

    (23) 

 

   
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   
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   
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E Cost

Cost
u

l

w u

l w

imb w

Q m

imb w
Q m

P Q m

r w p w
Q m P

P

P g x dx

k P x g x dx k x P g x dx

  



   



 

      (24) 
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where, ,p rk k are the unit price for the curtailment at SSP and 

the reserve at SBP respectively;  g x is the predicted PDF of 

future wind power variable;  p wC P  is the costs for balancing 

the overproduction of wind;  r wC P is the costs for balancing 

the underproduction of wind;    ,u lQ m Q m is the upper and 

lower limits of each forecasting interval respectively, which 

can be set to  0,1 (normalized power value) as a conservative 

range.  

Therefore, WPUIC can be formulated as  

 

   

         

Cost
WPUIC

imb w

w

p w r w

w w

r w r u p l p w

E P

P

E C P E C P

P P

k G P k G Q m k G Q m k G P

   




       
 

 

   

 

(25) 

where,  .G  is the predicted CDF of future wind power 

variable generated from a WPPF method and in this paper it is 

VVRVM. 

In this case, the predicted CDF of wind power variable x is 

piecewise linear functions with three segments. Fig.4 show the 

predicted CDF curves with different normalized WPF value. 

The red curve is the proposed and linearized piecewise CDFs of 

future wind power, while the blue one is the non-linearized raw 

CDF. The average absolute deviations between the two curves 

are 1.91%, 1.58%, 2.37%, and 1.55%, when the normalized 

predicted wind power is 0.2, 0.4, 0.6, and 0.8 respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4 Curves of the actual CDF and the piecewise linearized predictive CDF 

From Fig.4, the predictive CDF can be written as a piecewise 

function with three segments in (26). Further, the predictive 

PDF can be written as (17) 

  

0, 0 /

, / (1 ) /

1, (1 ) / 1

x b a

G x ax b b a x b a

b a x

  


     
   

 (26) 

  

0, 0 /

, / (1 ) /

0, (1 ) / 1

x b a

g x a b a x b a

b a x

  


    
   

 (27) 

Integrating (26) into (25), WPUIC can be rewritten as a 

piecewise function, which consists of a linear function with 

respect to wP and a constant. The detailed process to calculate 

the WPUIC can be found in Appendix A. 

 WPUIC w

w

C
P

M P N


 

 
                        (28) 

where, , ,C M N are constant depending on values of , ,p r wk k P , 

and    ,u lQ m Q m . 

B. Formulation of WPUDC 

This section defines wind power uncertainty dispatch cost 

(WPUDC) as the mathematical expectation of the operational 

costs for balancing deficits or surplus incurred by WPF 

uncertainties. 

According to Newton-Leibniz theorem, WPUDC function 

can be rewritten in (29), where Const is a constant. 

   

 
0

WPUDC E Cost

WPUIC
w

w imb w

P

P P

w dw Const

   

 
       (29) 

To validate the mathematical scientificity of the proposed 
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modelling, we deduce WPUDC function from both CDF and 

PDF perspectives as cross-validation. In the CDF deducing 

method, the predictive CDF with respect to uncertain power 

range is firstly used to calculate WPUIC, and then it is 

integrated into (29) to calculate WPUDC. In the PDF deducing 

method, the predictive PDF is used instead to be integrated into 

(24). The details of the deducing processes and resultant 

WPUDC function can be found in the Appendix B. The 

resultant WPUDC is a piecewise function with three segments, 

whose second segment is shown as a quadratic function  

  2WPUDC w w w w w wP P P                     (30) 

where, , ,w w w   are adjustable parameters in WPUDC.  

To examine the impacts of curve linearization on the model 

precision, the results of CDF deducing and PDF deducing 

methods are compared to the actual integral results without 

linearization in Fig.5. It is seen that the results from the two 

deducing techniques match very well with the actual integral 

results. In addition, their average absolute deviations are 1.31 

and 1.13 in cost unit. 

 
Fig. 5 Results of two deducing methods and the actual integral 

This section emphasizes the definition and modelling of 

WPUDC andEIP  ,p rk k is assumed to be constant. In above 

figure, the parameters are set to

0.45, 150, 200pred

p rw k k   . 

C. Properties of WPUDC Model 

Two valuable properties of the proposed cost model are:  

1) WPUDC can better quantify the features of forecasting 

uncertainties with respect to any meteorological conditions and 

forecasted power magnitude, by adjusting parameters to 

suitable values. The generality of WPUDC is attributed to the 

adjustable scale and margin parameters. This allows WPUDC 

to facilitate rolling scheduling. 

2) It is a convex problem which can be easily incorporated in 

a typical optimization problem, such as system dispatching. 

This minimizes the effort to transform system dispatching for a 

traditional high-carbon system to a low-carbon system and also 

increases system efficiency with more penetration of uncertain 

renewable.  

D. Discussion 

Firstly, each wind power producer is assumed to be a price 

taker and does not affect market prices for energy or ancillary 

services. ,p rk k are assumed to be asymmetric and constant in 

the case study, because the proposed cost is mainly about 

incorporating situation-dependent wind power uncertainty into 

balancing cost, which is important for power system operation 

with large wind power penetration. The proposed cost model is 

built to reveal the features of actual forecasting uncertainty and 

its influence on risk probability proved in Fig.9-10. The results 

will not be affected by the price assumption. Besides, many 

previous works have assumed constant prices [7,21,30], and 

thus we think that the conclusion and contribution will not be 

compromised if the prices are assumed to be constant. To 

supplement the results with the assumed constant prices, 

several price pairs of ,p rk k are selected according to the daily 

average prices in December of 2015 in the UK [29] to 

demonstrate the impact changing prices on balancing cost. This 

new effort can represent the actual daily average status of prices 

to some extent since both extreme situations and average 

situations are included. In the case study, the prices are set 

equal to their average values; or/and another ranges from the 

minimum to  maximum. Our future work will be dedicating to 

modelling these parameters. 

Secondly, we use a piecewise function to approximate the 

CDF of wind power to formulate WPUDC. In this case, the 

results in Fig.4 and Fig.5 proved that three segments can be 

well fitting the actual CDF. If more accurate results are 

desirable, more segments should be used. 

V. CASE STUDY 

A. Data 

This case study considers the operation data from a wind farm 

in North China, containing actual wind power generation as 

well as numerical weather prediction (NWP) in 2010. Based on 

these data, the developed VVRVM based probabilistic 

forecasting model is established. The forecasting horizon is 24 

hours and the time resolution is 15 minutes. The installed 

capacity of this wind farm is 183 MW. 

The normalized value of power is calculated by dividing 

wind farm installed capacity in order to facilitate future 

comparison with other wind farms. WPF deviation is given by 

the predicted power minus actual wind power. 

B. Features of Forecasting Uncertainties 

Based on the features of WPF uncertainties, the proposed RP 

function and cost models can be validated accordingly. Results 

show that WPF uncertainties have two main features with 

respect to the forecasted magnitude and season.  

1) Uncertainties for Given Forecasted Magnitude 

Results in Fig.6 and Fig.7 show that: i) The absolute 

forecasting deviation increases with the growth of power output 

in every season. ii) For a small power output, the probability 

distribution is concentrated or “pointed” and the forecasted 

value tends to be closer to the actual value. iii) For a large 

power output, the probability distribution is dispersive or “flat” 

and the forecasted value tends to be dispersed from the actual 

value. 
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Fig.6 Deviation interval for given normalized wind power output in different 

seasons 

 

Fig.7 provides the probability distribution of the forecasting 

deviation for various forecasted power output. The distribution 

shapes are not symmetrical. For example, for 0-0.1 normalized 

forecasted wind power in the front row, the highest probability 

bar is up to 50%, and the corresponding normalized WPF 

deviation is zero. The probabilities for negative deviation are 

nearly 45%, while the positive deviation is only less than 5%. 

For 0.91-1 normalized forecasted magnitude at the end of row 

(dark purple bar), the highest probability bar decreases to less 

than 40%, where the normalized WPF deviation is around 0.5 

and 0.6. Probabilities for the negative deviations are less than 

3%, while they increase to about 95%  for the positive 

deviation.  

 

 
Fig. 7 Probabilistic distribution of WPF deviation for various normalized WPF 

magnitude 

 

2) Uncertainties for Given Season 

With changing weather system, the magnitude and 

distribution of WPF deviation change accordingly. Results in 

Fig. 8 show that: i) during winter, the meteorological pattern is 

relatively simple and easy to simulate. Hence, NWP and WPF 

are more accurate. ii) During summer, WPF’s RMSE is 

normally low because of wind scarcity. iii) During spring and 

autumn, WPF’s RMSE increases. This is because that the 

meteorological condition is unstable and complex and  thus 

wind fluctuates frequently and dramatically. Under this 

circumstances, the mechanical failures could make WPF be 

more difficult. 

 
Fig. 8 Monthly RMSE from support vector machine (SVM) and VVRVM WPF 

models 

C. Results for Risk Probability (RP) 

In Fig.9, the RP curves show consistent features of WPF 

uncertainty. Firstly, the probability of not meeting the 

contracted obligation in every season generally tends to 

increase with the growth of uncertain wind power range. 

Secondly, spring generally has the highest risk of not meeting 

the contracted obligation; autumn takes the second place; 

winter is the third, and summer is the smallest. This trend is 

consistent to that of monthly WPF’s RMSE. Summer has the 

sharpest slope, followed by spring, autumn, and winter. 

Specifically, the lowest point of the RP curve appears at the 

beginning, while the highest appears at the end of the summer’s 

curve. This is because that summer has comparatively accurate 

WPF, especially when the generated power level is low. But, it 

is risky to schedule a large wind power commitment 

considering the scarce wind availability during summer. Winter 

has a small slope of the RP curve, reflecting “flat” probability 

distribution of WPF deviation, especially for a relatively large 

wind power magnitude. The intercept of RP curve represents 

the average magnitude of uncertainty, while the slope of the RP 

curve represents the shape of the probability distribution of 

WPF deviation. 

 
Fig. 9 Risk probability with respect to absolute value of uncertain wind power 

range in each season 

Fig.10 is the RP curves with respect to each wind power 

uncertain range. These curves are all parabola and have one 

lowest point with minimum risk probability, which refers to the 

safest scheduling point. Traditionally, system operators make 

dispatch the system based on the deterministic WPF without 

any uncertainty description, which is represented by the point 
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of “0” uncertain wind power range on the X-axis. However, the 

safest scheduling point is not at “0” uncertain power range in 

this figure. This illustrates that the deterministic forecasting 

definitely brings risks in dispatching.  

Besides, the lowest RP points on different curves locate at 

various positions of X-axis, i.e. various normalized uncertain 

wind power range. For a small forecasted wind power, the 

safest point is on the positive side of the X-axis (positive 

uncertain power range), reflecting that the underestimation is 

more likely to appear for WPF. For large forecasted power, the 

overestimation is more likely to happen,and thus the safest 

scheduling point is on the negative side of the X-axis (negative 

uncertain power range). In Fig.10, the safest points for 0.1-0.5 

normalized wind power are on the positive side, while the safest 

points for 0.51-1 magnitude are on the negative side. 

Specifically, the safest scheduling point locates at around 0.2 

and -0.4 uncertain power range for 0-0.1 and 0.9-1 normalized 

forecasted wind power, respectively.  

Lastly, a smaller magnitude of forecasted power has smaller 

risk probability, which is also consistent with the features of 

WPF uncertainty. The dark blue curve representing 0-0.1 

normalized wind power generation has the lowest risk. 

 
Fig. 10 RP curves with respect to normalized uncertain wind power ranges 

Thus, if a system operator makes an inflexible schedule 

following deterministic WPF, there could be dual unfavorable 

situations: i)one is the waste of unexpected wind energy when 

WPF deviation is negative; ii)another is to bear more risk and 

high operational costs for the rapid start-up and for balancing 

wind power deficits. Therefore, with the assistance of these RP 

curves, system operators can estimate the differential of 

balancing cost with respect to scheduled wind power. They can  

adjust the original WPF to power commitment with the lowest 

risk on the RP curves. 

D. Results for cost calculations 

In Fig.11, WPUIC increases with growing scheduled wind 

power, which indicates that the impacts of wind power 

uncertainty on balancing cost are linearly aggravating with the 

increase. Especially with higher EIP, the impacts are more 

sensitive, which is reflected in this figure that the curve slope is 

very sharper with higher EIP. A Larger share of wind power in 

a power system needs more auxiliary services and the cost for 

balancing per unit increase  gradually. It is noted that these 

prices are selected according to the actual prices in the UK [29]. 

The monthly average prices are 26.53, 53.53p rk k  . Fig.12 

is the daily average system price over in December of 2015 in 

the UK [29]. 

 
(a) Curves of WPUIC with changing rk  

 
(b) Curves of WPUIC with changing pk  

Fig. 11 Curves of WPUIC and dispatched wind power with different EIP 

 
Fig. 12 Daily average system price over the Dec. of 2015 in the UK 

Fig.13 depicts the relations between WPUDC and the 

scheduled wind power under different WPF values. Parameters 

are set to 26.53, 53.53p rk k  . WPUDC reaches its lowest 

point at around WPF value, which indicates the significance of 

WPF technologies and the deficiency of deterministic 

forecasting. The lowest cost does not appear if the operator 

dispatches wind power according to deterministic forecasting 

value. For example, when 0.1predw  , the lowest cost appears 

when the dispatched wind power is around 0.22; if 0.5predw  , 

the lowest cost appears when the dispatched wind power is 

around 0.39; when 0.9predw  , the lowest cost appears if the 

dispatched wind power is around 0.75. This illustrates the 

necessity of the probabilistic forecasting and uncertainty 

modelling.  
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Besides, the scheduled wind power with the minimum cost 

locates below the predicted wind power value when the 

predicted value is high. On the contrary, when the predicted 

wind power is low, the scheduled wind power with the 

minimum cost locates above the predicted value. Meanwhile, 

when future wind power is predicted to be high, the lowest cost 

point locates further away from the predicted value than that 

with lower wind penetration. This phenomenon is consistent to 

the features of WPF deviation and thus can serve system 

scheduling to minimize balancing cost and risk. 

 
Fig. 13 Curves of WPUDC and dispatched wind power with different predicted 

wind power 

VI. CONCLUSION 

This paper defines WPUIC and WPUDC to quantify the 

impacts of wind power uncertainty on the additional costs from 

balancing WPF deviations. Formulations of WPUIC and 

WPUDC are presented based on a newly developed 

probabilistic forecasting model, VVRVM, for better estimating 

WPF uncertainties. Through demonstration, the following 

conclusions are reached: 

 Unlike a fixed cost function for all external conditions, 

WPUIC and WPUDC consider the seasonal diversities by 

adjusting two characteristic parameters. This improves 

model accuracy and enables flexible scheduling of wind 

power considering the distribution of situation-dependent 

future uncertainties.  

 WPUDC has an analytic form having a quadratic function, 

which can improve grid’s operational efficiency with 

increasing renewable penetration. In addition, the results 

reveal the impact of  forecasting uncertainties on the risk 

probability and cost variations. 

 RP function is established to quantify the probability of 

failing to meet power obligations. It has consistent features 

to WPF uncertainties with respect to power magnitude and 

season. It  can also help to illustrate the essential mechanism 

of how deterministic forecasting induces risk and cost 

during dispatching.   

 VVRVM model is proposed to predict deterministic results 

and future probabilistic uncertainty. Considering the 

interdependence of forecasts error and weather inputs, the 

predicted variance is recursive towards the deviation targets 

by adjusting hyper-parameter in raw RVM.  In this way, 

better estimation of WPF uncertainties can be achieved  for  

computing  more accurate balancing costs. 

VII. APPENDIX A 

In this part, the WPUIC function can be derived in detail. 

(1) When    
1

u w l

b b
Q m P Q m

a a


     , 

 WPUIC =0wP  

(2) When    
1

u w l

b b
Q m P Q m

a a


     , 

   WPUIC = 1 ( )w r uP k a Q m b    

(3) When    
1

u w l

b b
Q m P Q m

a a


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1
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
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1
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1
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
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VIII. APPENDIX B 

In this part, two deducing methods are used to cross-validate 

the formulation of WPUDC. And the comparison of two 

deducing methods to the real data is shown in Fig.5. 

Assumed that jw is the scheduled wind power in j-th wind 

farm or the j-th wind turbine; CDF of the future wind power 

variable x is  G x as in (16), and its piecewise functions in 

three segments are      1 2 3, ,G x G x G x respectively; the 

predictive PDF is  g x  as shown in (27).  

A. CDF Deducing Method 

According to (29), WPUDC function at different wind power 

values is as below. 

 

 1 1
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, 0
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, 1
jb a w
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


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   
 

   
 

1

1 2 3 3
0 1

, 1 1
jb a b a w

b a b a
G x dx G x dx G x dx CC b a x

 

 
       
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(1) When  0,jw b a  , 
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The values of each function at turning points are the same, 

because this piecewise function has no discontinuities. 

Knowing this, the constant items 1 2 3, ,CC CC CC in equation 

sets can be solved. 
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F F
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The solving result is 1 2 3CC CC CC   .                             

B. PDF Deducing Method 

Using PDF for the future wind power variable, WPUDC 

deducing process is as below. 
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