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Novel Cost Model for Balancing Wind Power
Forecasting Uncertainty

Jie YAN, Yonggian Liu, Furong Li, Chenghong Gu

Abstract — The intermittency of wind generation creates
nonlinear uncertainties in wind power forecasting (WPF). Thus,
additional operating costs can be incurred for balancing these
forecasting deviations. Normally, large wind power penetration
requires accurate quantification of the uncertainty-induced costs.
This paper defines this type of costs as wind power uncertainty
incremental cost (WPUIC) and wind power uncertainty dispatch
cost (WPUDC), and it then formulates a general methodology for
deriving them based on probabilistic forecasting of wind power.
WPUIC quantifies the incremental cost induced from balancing
the uncertainties of wind power generation. WPUDC is a
balancing cost function with a quadratic form considering diverse
external conditions. Besides, the risk probability (RP) of not
meeting the scheduled obligation is also modelled. Above models
are established based on a newly developed probabilistic
forecasting model, varying variance relevance vector machine
(VVRVM). Demonstration results show that the VVRVM and RP
provide an accurate representation of WPF uncertainties and
corresponding risk, and thus they can better support and validate
the modelling of WPUDC and WPUIC. The proposed cost models
have the potential to easily extend traditional dispatches to a new
low-carbon system with a high penetration of renewables.

Keywords—economic  dispatch, forecasting uncertainty,
incremental cost, uncertainty cost, wind power generation, wind
power forecasting.

I. NOMENCLATURE ABBREVIATIONS

CDF Cumulative distribution function
EIP Energy imbalance prices

NWP Numerical weather prediction
PDF Probability density function
RMSE Root mean square error

RP Risk probability

RVM Relevance vector machine

SBP System buy price

SSp System sell price

VVRVM Variable variance RVM

WPF Wind power forecasting

WPPF Wind power probabilistic forecasting
WPUIC Wind power uncertainty incremental cost
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II. INTRODUCTION

W IND power is increasingly contributing to the
electricity supply worldwide because of its low
environmental impact and negligible generation costsError!
Reference source not found.. Limited predictability of
intermittent wind generation creates uncertainty for system
operation and market trading, which are based on the quality of
wind power forecasting (WPF). However, balancing the load
and generation for systems with large share of wind power
could be technically and economically challenging.
Specifically, larger spinning reserves are required to balance
the possible deviations of wind power generation from
forecasts. Frequent cycling of the operational thermal
generators for balancing increases the outage and operational
expenses. This balancing act increases the operation costs of
the power system and reduces the value of wind power [1,2].
For operational planning in a renewable-rich power system, it is
important to provide an accurate and efficient cost model in
dealing with the situation-dependent uncertainty of wind power
and investigate how such uncertainty affects system operation
costs.

Previous studies have estimated the balancing cost incurred
from wind power uncertainties, most achieved by directly
comparing the total power system costs with uncertainties and
fully predictable wind power [3,4,5,6]. However, such analysis
is limited to payment mechanisms and unfit for the trading or
operating decisions. Another set of approaches use historical
probabilistic density function (PDF) of the wind speed or WPF
deviation to establish the expected value of underestimation
(reserve) costs and overestimation (curtailment) costs in a
probabilistic and integral form. Some of them assumed wind
speed PDF, such as Weibull distribution [7,8,9], and then
transfer it to wind power PDF by using theoretical or mapping
power curve of wind turbines [10]. Another group of
approaches assume PDF of historical WPF deviations to obey
given empirical distributions [11,12,13], such as Gaussian
[14,15], Beta [16], etc. These methods are partly able to
simulate the random distribution of wind power variable and
balancing costs, but still leave several problems to be solved.

The use of historical distribution of WPF deviation implies
that the uncertainty of wind power and its development cannot
be evaluated at a particular time slot. In addition, the empirical
PDF is proved to be unable to simulate the actual distribution.
These two problems will, therefore, bring large errors in the
cost calculation, and thus primarily require an accurate model
for estimating the future uncertainties of wind power. Relevant
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studies basically have two categories [17]. One category
considers a range of possible real-world wind power output
scenarios by using Monte Carlo or Markov simulations
[18,19,20], etc. Scenario based methods generate a number of
scenarios according to historical data and use scenario
reduction techniques to select the representative scenarios and
delete redundant ones. The difficulty here is how to choose the
number of reduced scenarios because a large number of
simulations can exponentially increase computing burden but a
small number can result in poor approximation [21]. Another
category is based on probabilistic forecasting, which generates
a series of uncertain intervals under given confidence
probabilities based on a per look-ahead time basis, for example,
quantile regression [22] and relevance vector machine (RVM)
[23,24]. They do not inform forecasting errors at a given
prediction time point since they neglect the interdependence
structure of forecast errors among look-ahead time [25]. This
will bring successional risk to many time-dependent
decision-making processes.

The inverse function of such mentioned cost models does
not have an analytical form and thus makes system dispatch
hard to be solved by traditional optimization algorithms but
solved by artificial intelligent algorithms (such as PSO, etc.).
This fact implies that the system operation method in a
conventional system requires large changes or requires more
computational burden in order to accommodate increasing
wind generation.

In response to above problems, the main contribution of this
paper is to introduce the concept of wind power uncertainty
incremental cost (WPUIC) and wind power uncertainty
dispatch cost (WPUDC) to enable wind power uncertainty cost
in system operation. WPUIC is able to analytically present the
incremental cost of accommodating uncertain wind power.
WPUDC is developed to quantify the potential balancing cost
associated with wind power uncertainties. Different from
existing studies, the two models: 1) they have an analytical form,
which facilitates the system operation of a renewable power
system easily; ii)they are able to differentiate the seasonal
impacts and other external conditions by adjusting the
characteristic parameters in the cost formulation. Continuous
updates of the two parameters can benefit a rolling plan to
instantaneously capture wind power uncertainties.

Moreover, this paper also proposes a wind power
probabilistic forecasting (WPPF) model based on varying
variance relevance vector machine (VVRVM) in order to
estimate future uncertainties of wind power. Another
contribution of the paper is that VVRVM is able to adjust the
estimated uncertainty in each training iteration according to
previous training deviation and current forecast level. Such
varying variance adjusted with the error interdependence and
variable weather conditions can facilitate more accurate
uncertainty estimation at a given time point.

The rest of paper is organized as follows. Section III
introduces a probabilistic forecasting method based on
VVRVM to model the WPF uncertainty in cost formulation.
Section IV describes the concept and formulation of WPUIC
and WPUDC. A case study in Section VI investigates the WPF

uncertainty features and validates the proposed cost models.
Finally, Section VII concludes the findings.

III. FORECASTING UNCERTAINTY FORMULATION

System operators and wind power producers are all subject to
additional costs for balancing fluctuating wind generation. An
accurate WPF model and uncertainty estimation can lay the
foundation for advanced decision making in power system
operation or market participation.

This section first proposes one probabilistic forecasting
method based on VVRVM and demonstrates its results. The
results of VVRVM are used as an example to demonstrate how
a probabilistic forecasting method can serve for the proposed
balancing cost modelling. Before the cost modelling, the
probability with respect to given uncertain wind power range
and the risk of failing to meet the wind power obligation are
calculated based on the results of WPPF.

A. Probabilistic forecasting based on VVRVM
Given a set of input-target pairs {x,,z, }ivzl , assume that
t, = y(xl.;w) +¢&, . & is Gaussian noise with mean zero and
variance &~ . The prediction is made by
y(x; w) =w'p(x) = zzl wK(x,x,)+w, €))

where, @(x) is the vector of a Dbasis function;

w= (W, W, W,,...,w, ) is weights vector; K(x,x,)is kernel
function; M is the total sample number.
Constraint on weights w, was imposed by ‘prior’ probability
distribution as below
p(wla) =1 N (w10, e
where, & is N +1vector termed as ‘hyperparameters’.

The posterior probabilities over unknown samples could be
obtained from Bayesian inference. The learning process aims to

search a,c’ ( p=0c" ) by using maximum marginal likelihood

estimation. «,c”are assumed to follow Gamma distributions
with parameters of ¢,d , which affect the interval of the

proposed forecasting uncertainty. They are variable with
forecasting errors from last iteration and current inputs
(including weather inputs and forecasts level). In this way,
VVRVM is able to track real-time uncertainties and error
interdependency in a more accurate manner.

The partial differential of the maximum likelihood function,
which is shown in (3), is set to zero with respect to @ and S .

The results are shown in (4)-(7) [26].
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where, g, is the i -th mean of the posterior from (6); z 418

the i -th diagonal element of posterior covariance from (7),
computed by a,c” from current iteration. The superscript
“new” means that the two parameters are newly updated value
in the latest iteration, and they are updated in each iteration
until convergence.
Assuming the new input to be x., the predicted distribution
of wind power is as below [26].
v.=uo(x) ®)

ol =l +o(x) Zo(x) Q)
where, y,.is the point forecasts; the subscript “MP” means

“make prediction”, which declares that the parameter is
obtained from the final iteration and used to make a prediction.
Details on RVM theory and RVM-based WPPF methods can be
found in our prior work [23,24].

The results of VVRVM on a random day in December are
shown in Fig.1. This case is based on a Chinese wind farm,
whose details are given in the case study. Forecasting intervals
under 90%, 80%, 70% and 60% confidence levels are drawn
along with the deterministic power forecasts and actual power
output. The reliabilities of all confidence levels are 93.1%,
82.3%, 70.7%, 61.6% respectively. Most estimated intervals
are able to cover the fluctuations of actual power output by
reasonable bounds, illustrating the reliability and sharpness of
the VVRVM model.

mmm 0% Confidence level 70% Confidence level 80% Confidence level

—Predicted Power

mmm 90% Confidence level --w-- Actual Power

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
Time series
Fig.1 Probabilistic forecasting of VVRVM on a day in December

B. Probability of Uncertain Wind Power Range

Probabilistic forecasting, i.e. in the form of predictive
distribution, basically has two aspects: uncertain range and
probabilities. To capture the features, the probability with
respect to given uncertain wind power range is calculated based
on the VVRVM forecasts.

Considering a random wind power variable w , " ()

represents its PDF and F () is its cumulative distribution

function (CDF). Given a wind power value X , the CDF of w
can be expressed as

F(x)=Prob(w<ux)=m (11)

Quantile function Q(m|w£x), or written as Q(m), is the
inverse function of F(x)at confidence level 7 (re [0, 1]) :

O(mlws<x)=F"(m) (12)
According to above quantile definition, the forecasting

interval generated from the probabilistic forecasting can be
transformed to quantile version

1(r)=[o(m).0(m,)] (13)
where, 7 is the theoretical confidence probability, at which the
actual power production is within the given uncertain power
range; /(z)is forecasting interval; Q(m,)and Q(m,)are the
upper and lower limits of future wind power respectively.

According to the definition of confidence level in quantile,
m,and m, can be further inferred as follow.

m, +m, =1 (14)
m,—m =7 (15)
1+7 1-7
m =—; m =— 16
u 2 1 2 ( )

pred

With given predicted wind power (w”“ ), the confidence

)
are calculated based on 24-hour ahead and 4-hour ahead WPPF.
Fig.2 depicts the CDF of A . It is clear to see that three curves
are monotonic decreasing and smaller forecasting horizon has a
higher confidence level with the same uncertain power range.
For the 24-hour ahead and 4-hour ahead forecasting, their
confidence probability curves are approximately linear. As for
the 1-hour ahead forecasting, it might need piecewise

probabilities of each uncertain power range (A= |w—w”’“’

linearization. To sum up, CDF of A for each horizon can be
linearized or piecewise linearized as below.

anxAi+b“,Ai>O (17)
a, XA +b,,A" <0

122

F(Apw"™ ) =a,xA+b ={
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Fig.2 Confidence probability of VVRVM within each power range for different
forecasting horizon

A series of I(z)and m,,m, can be obtained by using

VVRVM based WPPF and (13). The probabilities of a random
wind power variable to be within a given range[R,, P,] can be

calculated by (18) based on CDF of A in (17).
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Prob(B < P<B)=F(B)-F(R)

=F(Q(m|R))-F(2(m[7))

=my,—m

(18)

Fig.3 depicts the relations between each given power range
and its corresponding probability Prob(F < P < P,). It can be

seen that the probability curves for the 4-hour ahead and
24-hour ahead forecastings are stable at around 3%-6%. This to
some extent validates the scientificity of (17). Meanwhile, the
1-hour ahead curve is close to a linear line initially but drops
sharply from 14% to 0%. Thus, this linear relation can be
written as below.

£ (M) =ay < 19)

1L =#=24-hour ahead
1-hour ahead

= 4-hour ahead

range (%)

Probability of uncertain power

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35
Normalized uncertain power range (%)

Fig. 3 Curves of the uncertain power range and its probability for different
forecasting horizon

C. Risk Probability (RP) Function
Risk probability (RP) is proposed to quantify the probability
of failure to meet the scheduled obligation. CDF of the

uncertain power range A in (17) is used to derive the RP
function

1-Prob(A")=1-07., (r)+ 0} (r), W™ >w

(20)
1-Prob(A") =1+ 0., (r)- 0. (r).

red
wl <w

d
pre —w.

where AT = w—w”*: A" =w

According to (17), the relationship between uncertain power
range and its corresponding risk probability can be written as a
linear function with respect to dual characteristic parameters in
(21). Two characteristic parameters in the RP function are
termed as scale parameter and margin parameter, which vary
with weather conditions or specific wind farms. Adjustable
parameters allow RP function to reflect the seasonality and
dispersion of stochastic wind.

RP (W) =cpp |W— we?

+b,p

€2y
where, b,, is the interception of RP function, termed as “scale

parameter”, indicating the average magnitude of the WPF
deviation; c,, is the slope of RP function or marginal risk,

termed as “margin parameter”, indicating the dispersion of the
WPF error distribution. A small marginal risk reflects a fairly
stable WPF performance probably due to a simple
meteorological pattern.

This RP function is used to analyze and validate the
following proposed WPUDC model. The so-called “risk”
relates to two issues: i) the fast start-up and more reserves for

the deficiencies of wind power, and ii) the curtailment for
overscheduling wind power.

IV. UNCERTAINTY COST FORMULATION

A. Concept and formulation of WPUIC

The incremental cost of power production in a power system,
whatever from renewables or conventional generators, is a
basic way to expose the mechanism of economic dispatching
and market clearing [27]. The incremental cost of a
conventional generator varies depending on load level, machine
type and fuel price, which is relatively easy to formulate.
Renewables have nearly zero incremental fuel cost, but the
balancing costs for wind power can be substantially high
because of errors in hour-by-hour forecasting [28].

Much of up-to-date research has concentrated on the use of a
total cost model by system operators. However, they are not
able to discriminate between wind power producers who incur
additional balancing costs or auxiliary service reinforcement,
and those who reduce the system imbalance. It is for this reason
that the concept of WPUIC and WPUDC are introduced to
quantify the additional cost for balancing uncertain wind power
in a power system.

In this section, wind power uncertainty incremental cost
(WPUIC) is defined to quantify the extra balancing cost for
increasing unit wind power generation in a power system. The
definition of WPUIC is as below.

OE| Cost,,, (AP,
WPUIC( ) |: lmb imb ):| (22)
OP,
where, P, is the scheduled wind power generation;

AR, =\ w*

wind power and actual generation; Cost,,, (AP,

imb

— P, |is the power deviation between scheduled
)is the cost

for balancing power deviation from wind in the future;
E[Costimb (Ame)] is the mathematical expectation of

COSttmb (APimb) .

For power and energy balance in a system, if a wind power
producer has underproduction or overproduction compared to
the contracted amount due to the partial predictability of wind,
the energy difference must be settled by energy imbalance price
(EIP) as unit payments. Specifically, it must purchase the
shortfall at System Sell Price (SSP) or sell the surplus at System
Buy Price (SBP) [29]. These prices can help to quantify the
costs to balance wind energy deviations.

The balancing cost and its mathematical expectation are
defined as

C, (Pw) =k, W —=P|,Ww*“ =P, >0
Cost,, (P,)= (23)
Cr (R@) = kr Rv - WM’ s W‘“" - Rv < O
E[C ost,mb )}
j o 'Cost,, (P,)g (x)dx (24)

I x)dx+k I (x)dx
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where, kp,kr are the unit price for the curtailment at SSP and
the reserve at SBP respectively; g(x) is the predicted PDF of
future wind power variable; C, (PW) is the costs for balancing
the overproduction of wind; C, (Pw) is the costs for balancing

the underproduction of wind; Q(m, ),0(m,)is the upper and

lower limits of each forecasting interval respectively, which
can be set to [0,1] (normalized power value) as a conservative

range.
Therefore, WPUIC can be formulated as

8E[C ost,,, (PW)]
oP,

oE[C,(P,)] @E[C, (R,)]
“ T op

=kG(P,)-k,G(Q(m,))-k,G(Q(m))+k,G(P,)
(25)
where, G() is the predicted CDF of future wind power

WPUIC =

variable generated from a WPPF method and in this paper it is
VVRVM.

In this case, the predicted CDF of wind power variable x is
piecewise linear functions with three segments. Fig.4 show the
predicted CDF curves with different normalized WPF value.
The red curve is the proposed and linearized piecewise CDFs of
future wind power, while the blue one is the non-linearized raw
CDF. The average absolute deviations between the two curves
are 1.91%, 1.58%, 2.37%, and 1.55%, when the normalized
predicted wind power is 0.2, 0.4, 0.6, and 0.8 respectively.

1 A
/-
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© 04
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0 PR S O S T O S S T ST N SN N S
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Normalized wind power
(a)
1 A
0.8
I, 0.6
s
04
= #e= Actual CDF when w?™ =0.4
02 e Piccewise linearized fitting
0 bbbl L

Normalized wind power

(b)

08 =gr = Actual CDF when w* =0.6

e Piecewise linearized fitting

CDF

0 0.1 02 03 04 05 06 07 08 09 1

Normalized wind power

(©

08 = g0 = Actual CDF when w™ =0.8

o Piccewise linearized fitting

CDF

[ S L :
0 01 02 03 04 05 06 07 08 09 1
Normalized wind power
(d
Fig. 4 Curves of the actual CDF and the piecewise linearized predictive CDF

From Fig.4, the predictive CDF can be written as a piecewise
function with three segments in (26). Further, the predictive
PDF can be written as (17)

0, 0<x<-b/a

G(x)=qax+b, -b/a<x<(1-b)/a (26)
1, (1-b)/a<x<1
0, 0<x<-bl/a
g(x)=4a, -b/a<x<(-b)/a (27)

0, (-b)/asx<l

Integrating (26) into (25), WPUIC can be rewritten as a
piecewise function, which consists of a linear function with
respect to P, and a constant. The detailed process to calculate

the WPUIC can be found in Appendix A.

28
M-P +N %)
where, C,M,N are constant depending on values of k,,k,, P, ,

and Q(m,),0(m,).
B. Formulation of WPUDC

This section defines wind power uncertainty dispatch cost
(WPUDC) as the mathematical expectation of the operational
costs for balancing deficits or surplus incurred by WPF
uncertainties.

According to Newton-Leibniz theorem, WPUDC function
can be rewritten in (29), where Const is a constant.

WPUDC(P,)=E[Cost,, (P,)]

WPUIC(P, ) = {C

By (29)
= I WPUIC ( w) dw+ Const
0

To validate the mathematical scientificity of the proposed
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modelling, we deduce WPUDC function from both CDF and
PDF perspectives as cross-validation. In the CDF deducing
method, the predictive CDF with respect to uncertain power
range is firstly used to calculate WPUIC, and then it is
integrated into (29) to calculate WPUDC. In the PDF deducing
method, the predictive PDF is used instead to be integrated into
(24). The details of the deducing processes and resultant
WPUDC function can be found in the Appendix B. The
resultant WPUDC is a piecewise function with three segments,
whose second segment is shown as a quadratic function

WPUDC(I)W) = awP\j + ﬂwl)w + yw
where, «,,, .7, are adjustable parameters in WPUDC.

(30)

To examine the impacts of curve linearization on the model
precision, the results of CDF deducing and PDF deducing
methods are compared to the actual integral results without
linearization in Fig.5. It is seen that the results from the two
deducing techniques match very well with the actual integral
results. In addition, their average absolute deviations are 1.31
and 1.13 in cost unit.

120
100 ——PDF Deducing Method “/
—#—CDF Deducing Method
80 X . Actual Integral Result / /
- »‘

10 N x
20 \Nﬂ/

0 1 L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

Dispatched wind power (Normalized)

60

WPUDC

Fig. 5 Results of two deducing methods and the actual integral

This section emphasizes the definition and modelling of
WPUDC andEIP (k k,)is assumed to be constant. In above

p2r
figure, the parameters are set to
w! =045, k, =150, k, =200.

C. Properties of WPUDC Model

Two valuable properties of the proposed cost model are:

1) WPUDC can better quantify the features of forecasting
uncertainties with respect to any meteorological conditions and
forecasted power magnitude, by adjusting parameters to
suitable values. The generality of WPUDC is attributed to the
adjustable scale and margin parameters. This allows WPUDC
to facilitate rolling scheduling.

2) It is a convex problem which can be easily incorporated in
a typical optimization problem, such as system dispatching.
This minimizes the effort to transform system dispatching for a
traditional high-carbon system to a low-carbon system and also
increases system efficiency with more penetration of uncertain
renewable.

D. Discussion

Firstly, each wind power producer is assumed to be a price
taker and does not affect market prices for energy or ancillary
services. k,,k, are assumed to be asymmetric and constant in

the case study, because the proposed cost is mainly about

incorporating situation-dependent wind power uncertainty into
balancing cost, which is important for power system operation
with large wind power penetration. The proposed cost model is
built to reveal the features of actual forecasting uncertainty and
its influence on risk probability proved in Fig.9-10. The results
will not be affected by the price assumption. Besides, many
previous works have assumed constant prices [7,21,30], and
thus we think that the conclusion and contribution will not be
compromised if the prices are assumed to be constant. To
supplement the results with the assumed constant prices,
several price pairs of k ,k, are selected according to the daily

average prices in December of 2015 in the UK [29] to
demonstrate the impact changing prices on balancing cost. This
new effort can represent the actual daily average status of prices
to some extent since both extreme situations and average
situations are included. In the case study, the prices are set
equal to their average values; or/and another ranges from the
minimum to maximum. Our future work will be dedicating to
modelling these parameters.

Secondly, we use a piecewise function to approximate the
CDF of wind power to formulate WPUDC. In this case, the
results in Fig.4 and Fig.5 proved that three segments can be
well fitting the actual CDF. If more accurate results are
desirable, more segments should be used.

V. CASE STUDY

A. Data

This case study considers the operation data from a wind farm
in North China, containing actual wind power generation as
well as numerical weather prediction (NWP) in 2010. Based on
these data, the developed VVRVM based probabilistic
forecasting model is established. The forecasting horizon is 24
hours and the time resolution is 15 minutes. The installed
capacity of this wind farm is 183 MW.

The normalized value of power is calculated by dividing
wind farm installed capacity in order to facilitate future
comparison with other wind farms. WPF deviation is given by
the predicted power minus actual wind power.

B. Features of Forecasting Uncertainties

Based on the features of WPF uncertainties, the proposed RP
function and cost models can be validated accordingly. Results
show that WPF uncertainties have two main features with
respect to the forecasted magnitude and season.

1) Uncertainties for Given Forecasted Magnitude

Results in Fig.6 and Fig.7 show that: i) The absolute
forecasting deviation increases with the growth of power output
in every season. ii) For a small power output, the probability
distribution is concentrated or “pointed” and the forecasted
value tends to be closer to the actual value. iii) For a large
power output, the probability distribution is dispersive or “flat”
and the forecasted value tends to be dispersed from the actual
value.
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Fig.6 Deviation interval for given normalized wind power output in different
seasons

Fig.7 provides the probability distribution of the forecasting
deviation for various forecasted power output. The distribution
shapes are not symmetrical. For example, for 0-0.1 normalized
forecasted wind power in the front row, the highest probability
bar is up to 50%, and the corresponding normalized WPF
deviation is zero. The probabilities for negative deviation are
nearly 45%, while the positive deviation is only less than 5%.
For 0.91-1 normalized forecasted magnitude at the end of row
(dark purple bar), the highest probability bar decreases to less
than 40%, where the normalized WPF deviation is around 0.5
and 0.6. Probabilities for the negative deviations are less than
3%, while they increase to about 95% for the positive
deviation.

Normalized predicted wind power
m0-0.1 m0.11-0.2 0.21-0.3
0.51-0.6 m0.61-0.7 m0.71-0.8

m(.31-0.4
m0.81-09

m0.41-0.5
m091-1

60%
50%
40%
30%

Probability

20%
10%
0%

Nomalized WPF deviation (p.u.)

Fig. 7 Probabilistic distribution of WPF deviation for various normalized WPF
magnitude

2) Uncertainties for Given Season

With changing weather system, the magnitude and
distribution of WPF deviation change accordingly. Results in
Fig. 8 show that: i) during winter, the meteorological pattern is
relatively simple and easy to simulate. Hence, NWP and WPF
are more accurate. ii) During summer, WPF’s RMSE is
normally low because of wind scarcity. iii) During spring and
autumn, WPF’s RMSE increases. This is because that the
meteorological condition is unstable and complex and thus
wind fluctuates frequently and dramatically. Under this
circumstances, the mechanical failures could make WPF be
more difficult.

20
16 -
~ 12
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2 3 4 5 6 7 8 9 11 12 Annual
Month
Fig. 8 Monthly RMSE from support vector machine (SVM) and VVRVM WPF
models

C. Results for Risk Probability (RP)

In Fig.9, the RP curves show consistent features of WPF
uncertainty. Firstly, the probability of not meeting the
contracted obligation in every season generally tends to
increase with the growth of uncertain wind power range.
Secondly, spring generally has the highest risk of not meeting
the contracted obligation; autumn takes the second place;
winter is the third, and summer is the smallest. This trend is
consistent to that of monthly WPF’s RMSE. Summer has the
sharpest slope, followed by spring, autumn, and winter.
Specifically, the lowest point of the RP curve appears at the
beginning, while the highest appears at the end of the summer’s
curve. This is because that summer has comparatively accurate
WPF, especially when the generated power level is low. But, it
is risky to schedule a large wind power commitment
considering the scarce wind availability during summer. Winter
has a small slope of the RP curve, reflecting “flat” probability
distribution of WPF deviation, especially for a relatively large
wind power magnitude. The intercept of RP curve represents
the average magnitude of uncertainty, while the slope of the RP
curve represents the shape of the probability distribution of
WPF deviation.
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Fig. 9 Risk probability with respect to absolute value of uncertain wind power
range in each season

Fig.10 is the RP curves with respect to each wind power
uncertain range. These curves are all parabola and have one
lowest point with minimum risk probability, which refers to the
safest scheduling point. Traditionally, system operators make
dispatch the system based on the deterministic WPF without
any uncertainty description, which is represented by the point
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of “0” uncertain wind power range on the X-axis. However, the
safest scheduling point is not at “0” uncertain power range in
this figure. This illustrates that the deterministic forecasting
definitely brings risks in dispatching.

Besides, the lowest RP points on different curves locate at
various positions of X-axis, i.e. various normalized uncertain
wind power range. For a small forecasted wind power, the
safest point is on the positive side of the X-axis (positive
uncertain power range), reflecting that the underestimation is
more likely to appear for WPF. For large forecasted power, the
overestimation is more likely to happen,and thus the safest
scheduling point is on the negative side of the X-axis (negative
uncertain power range). In Fig.10, the safest points for 0.1-0.5
normalized wind power are on the positive side, while the safest
points for 0.51-1 magnitude are on the negative side.
Specifically, the safest scheduling point locates at around 0.2
and -0.4 uncertain power range for 0-0.1 and 0.9-1 normalized
forecasted wind power, respectively.

Lastly, a smaller magnitude of forecasted power has smaller
risk probability, which is also consistent with the features of
WPF uncertainty. The dark blue curve representing 0-0.1
normalized wind power generation has the lowest risk.
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Fig. 10 RP curves with respect to normalized uncertain wind power ranges

Thus, if a system operator makes an inflexible schedule
following deterministic WPF, there could be dual unfavorable
situations: i)one is the waste of unexpected wind energy when
WPF deviation is negative; ii)another is to bear more risk and
high operational costs for the rapid start-up and for balancing
wind power deficits. Therefore, with the assistance of these RP
curves, system operators can estimate the differential of
balancing cost with respect to scheduled wind power. They can
adjust the original WPF to power commitment with the lowest
risk on the RP curves.

D. Results for cost calculations

In Fig.11, WPUIC increases with growing scheduled wind
power, which indicates that the impacts of wind power
uncertainty on balancing cost are linearly aggravating with the
increase. Especially with higher EIP, the impacts are more
sensitive, which is reflected in this figure that the curve slope is
very sharper with higher EIP. A Larger share of wind power in
a power system needs more auxiliary services and the cost for
balancing per unit increase gradually. It is noted that these
prices are selected according to the actual prices in the UK [29].

The monthly average prices are k, =26.53, k, =53.53. Fig.12

is the daily average system price over in December of 2015 in

the UK [29].
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Fig. 11 Curves of WPUIC and dispatched wind power with different EIP
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Fig. 12 Daily average system price over the Dec. of 2015 in the UK

Fig.13 depicts the relations between WPUDC and the
scheduled wind power under different WPF values. Parameters

are set tok, =26.53, k. =53.53. WPUDC reaches its lowest

point at around WPF value, which indicates the significance of
WPF technologies and the deficiency of deterministic
forecasting. The lowest cost does not appear if the operator
dispatches wind power according to deterministic forecasting

value. For example, when w”** = 0.1, the lowest cost appears

when the dispatched wind power is around 0.22; if w”* =0.5,
the lowest cost appears when the dispatched wind power is
around 0.39; when w”* =0.9, the lowest cost appears if the
dispatched wind power is around 0.75. This illustrates the
necessity of the probabilistic forecasting and uncertainty

modelling.
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Besides, the scheduled wind power with the minimum cost
locates below the predicted wind power value when the
predicted value is high. On the contrary, when the predicted
wind power is low, the scheduled wind power with the
minimum cost locates above the predicted value. Meanwhile,
when future wind power is predicted to be high, the lowest cost
point locates further away from the predicted value than that
with lower wind penetration. This phenomenon is consistent to
the features of WPF deviation and thus can serve system
scheduling to minimize balancing cost and risk.
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Fig. 13 Curves of WPUDC and dispatched wind power with different predicted
wind power

VI. CONCLUSION

This paper defines WPUIC and WPUDC to quantify the
impacts of wind power uncertainty on the additional costs from
balancing WPF deviations. Formulations of WPUIC and
WPUDC are presented based on a newly developed
probabilistic forecasting model, VVRVM, for better estimating
WPF uncertainties. Through demonstration, the following
conclusions are reached:

= Unlike a fixed cost function for all external conditions,
WPUIC and WPUDC consider the seasonal diversities by
adjusting two characteristic parameters. This improves
model accuracy and enables flexible scheduling of wind
power considering the distribution of situation-dependent
future uncertainties.

WPUDC has an analytic form having a quadratic function,
which can improve grid’s operational efficiency with
increasing renewable penetration. In addition, the results
reveal the impact of forecasting uncertainties on the risk
probability and cost variations.

RP function is established to quantify the probability of
failing to meet power obligations. It has consistent features
to WPF uncertainties with respect to power magnitude and
season. It can also help to illustrate the essential mechanism
of how deterministic forecasting induces risk and cost
during dispatching.

VVRVM model is proposed to predict deterministic results
and future probabilistic uncertainty. Considering the
interdependence of forecasts error and weather inputs, the
predicted variance is recursive towards the deviation targets
by adjusting hyper-parameter in raw RVM. In this way,
better estimation of WPF uncertainties can be achieved for
computing more accurate balancing costs.

VIIL
In this part, the WPUIC function can be derived in detail.

APPENDIX A

(1) When —§<%<Q(mu)< P,<Q(m,),

WPUIC(P,)=0

(2) When —2<Q(mu)<ﬂ<Pw<Q(ml),
a a

WPUIC(P, )=k, (1-a-Q(m,)—b)

(3) When —2<Q(mu)<PW <ﬁ<Q(ml),
a a
WPUIC(P,) = (k, +k,)-(aP, +b)—k, (a-O(m,)+b)-

mu)<PW<Q(m,)<ﬁ,
a

WPUIC (P, ) =(k, +k, )-(aP, +b)+..
..—k, (a ~Q(mu)+b)—kp (a ~Q(m1)+b)

(4) When _b <0(
a

(5) When Q(mu)<—2<P <Q(m,)<g,
a a

WPUIC(P,) =(k, +k, )-(aP, +b)~k, (a-Q(m,)+b)

(6) When Q(m,)<P, <——<Q(m,)<M

WPUIC(P,) =k, (a-O(m,)+b)

<Q(m,)<—2<u
a

(7) When Q(mu )
a

WPUIC(P,)=0

VIII. APPENDIX B

In this part, two deducing methods are used to cross-validate
the formulation of WPUDC. And the comparison of two
deducing methods to the real data is shown in Fig.5.

Assumed that w g is the scheduled wind power in j-th wind

farm or the j-th wind turbine; CDF of the future wind power
variable X is G(x) as in (16), and its piecewise functions in

three segments are G, (x),G,(x),G,(x) respectively; the
predictive PDF is g (x) as shown in (27).

A. CDF Deducing Method

According to (29), WPUDC function at different wind power
values is as below.

[ o
I b/“G (x) dx+J‘7:/aG2 (x)dx+CC,,

~bla

x)dx+CC,, 0<x<-b/a

-bla<x<(1-b)/a

G ()]G (x)des]” G (x)ax+CCy (1-b)az<l
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(1) When w, €[0,—b/a),

=1k, (G (x
= jotkpdwcq

=—k,w,+CC,
(2) When w, e[-b/a,(1-b)/a),

WPUDC, ( )—1]+ kG, (x)dx+CC,

~bla

WPUDC, (w;)= [ "k, [G, (x)=1]+ kG, (x)dr+ "] k,[G,(x)=1]+kG, (x)dx+CC,

bla ”
:JO’/U—kpdx-%—Jib/“kp [ax+b—1]+k, [ax+b]dx+CC,
bk, a(k,,2+ k)

- w? +[ bk, +(b=1)k, Jw,+ ..

_{bz (k,+k) o[k, *(bfl)kf’]}wc

2a a

(3) When w, e[ (1-b)/a,1),

~bfa

WPuDC, (w,)= [k, [G, () 1:|+k,,G1(x)dx+ﬂH)/ukp[Gz(x)—1]+

+k,G, (

_j””—kd +j,/

:i+(kp+k,,)(b—l)

P

(x)av+ [ x)=1]+k,G, (x)dx +CC,

ax+b- 1]+k[ax+b]dx+j kdr+CC

b—l bk b—l k
+ [ l )”]+k,(w,+b 1)+CC
a

a 2a a

The values of each function at turning points are the same,
because this piecewise function has no discontinuities.
Knowing this, the constant items CC,,CC,,CC, in equation

A2
22

The solving result is CC, = CC, = CC,

sets can be solved.

B. PDF Deducing Method

Using PDF for the future wind power variable, WPUDC
deducing process is as below.

(1) When w, €[0,-b/a),

WPUDC, (w,)=C, (w,)+C, (w,)

:k’,j‘: (xfw (x)dx +k, I g (x)dx
=k, [‘[;h/ao(xfw/)dx+J1b;a x—w; )(ax+b)dx+j1 o x w )dx:i
(l—b)/a
=k, [%xz —aw,,x)
-b/a

“k, {%w, (b—l)—[bw, +%ﬂ

(2) When w, € [—b/a,(l—b)/a) ,

10

WPUDC, (w,)=C,,(w,)+C.,(w))

:kl,.l.: (xfw

[

j

=k, (%xz 7aw/x)

(b-1)’
=k La+

x)dx+kj (x)dx
(x-w, dquw (- w)dx}kr[; a(w,~xkir |
(”>/‘*+k,(w,gxz) ,

wj —b/u

2 2 2
w (b—1) =2 | g | L[y + 2
g 2 2 M2

Wi

(3) When w, €[ (1-b)/a,1),

WPUDC, (w,)=C, (w, )+ C s (w))

(1

(2]

(3]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

g (x)dx
w. - x)dx + J.(‘:b)/a 0

= kp.‘-:’ (x—w

x)dx+kj.

=k, |:J-Oib/“0 (w -X dx+'[ - b)/“ .

W/ 7x)de
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