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1. Introduction 

Wastewater treatment process aims at achieve the purpose of purification by degradation of 
organic matter in water. To ensure the effluent water quality, some indicators should be 
measured, including chemical oxygen demand (COD), Biochemical oxygen demand (BOD), 
etc. Through the prediction on effluent indicators can provide effective guidance for the 
operation of wastewater treatment plant. 
Wastewater treatment process itself is a nonlinear, time-delay process with complex 
reactions. Thus, when using traditional mathematical model there is often a lack of accuracy, 
large amount of calculation and lack of flexibility in system simulation, while the prediction 
based on neural network model can effectively eliminate these disadvantages because of its 
learning mechanism. Nowadays, applying neural network in wastewater treatment process 
has become a research hotpot, and some breakthroughs were achieved in terms of 
algorithms or modelling. 
zhu, et al. used MLP model to reduce the data dimension, then used the time-delay neural 
network to predict the effluent BOD online. Chang, et al. reduced data dimension through 
principal component analysis(PCA), then used extracted system inherent characteristics 
from data by fuzzy C clustering, at last, TSK-type fuzzy inference system was used to 
predict the effluent COD. Chai et al. proposed a activated sludge process mechanism model 
based on hierarchical neural network, connecting the mechanism model and neural network 
in cascade way and with the neural network identifying the reaction rate of nonlinear 
components in activated sludge process model to predict the effluent COD. 
The above evidences show that artificial neural networks can directly establish the model 
according to the input / output data without prior knowledge of the condition object, and 
has strong online correction ability. For the process with a large amount of data information 
which can not be described by rules or formulas, the artificial neural network shows great 
flexibility and adaptability which is ideal for wastewater treatment systems. However, these 
network models have the same shortcomings that the network structure would no longer 
able to modify after finalized in the early stage of designing. For the different cases of 
wastewater treatment process, the re-design of neural network prediction model is 
necessary. To solve this problem, meet the needs of the object by dynamically adjusting the 
neural network structure is an available approach. 
Huang et al. proposed a simple sequential learning algorithm called the “RBF growing and 
pruning algorithm” (GAP-RBF), which was later developed into the GGAP-RBF algorithm. 
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The GAP-RBF and GGAP-RBF methods use the “significance” of a hidden node to decide 
whether to add new nodes or reduce the number of redundant nodes. The “significance” of 
the node is also linked to the learning accuracy. However, since these algorithms are on-line 
procedures, they do not optimize the network over all past training data. Moreover, 
network initialization of the GAP-RBF algorithm requires a priori knowledge of the data 
which may not be available. 
This chapter presented a repair algorithm for the design of a Radial Basis Function (RBF) 

neural network. The proposed repair RBF (RRBF) algorithm starts from a single prototype 

randomly initialized in the feature space. The algorithm has two main phases: an 

architecture learning phase and a parameter adjustment phase. The architecture learning 

phase uses a repair strategy based on a sensitivity analysis (SA) of the network’s output to 

judge when and where hidden nodes should be added to the network. New nodes are 

added to repair the architecture when the prototype does not meet the requirements. The 

parameter adjustment phase uses an adjustment strategy where the capabilities of the 

network are improved by modifying all the weights. The algorithm is shown to be effective 

by approximating a non-linear function, so it is used to model the key parameter, chemical 

oxygen demand (COD) in the waste water treatment process. The results of simulation show 

that the algorithm provides an efficient solution to problems. 

The chapter is organized as follows. Section2 introduces the methods and problems of the 

modelling the key parameter, chemical oxygen demand (COD) in the waste water treatment 

process, and gives the methods of measuring COD. Section3 gives a short description of the 

RBF neural network and the SA output model; briefly analyses the repair method which is 

used to add hidden nodes and describes the algorithm which adjusts the parameters; the 

proposed method is benchmarked against some well-known dynamic RBF algorithms. In 

order to demonstrate the superior performance of the proposed RRBF neural network, the 

algorithm is applied to approximating a nonlinear function. Section4 finishes the Soft 

measurement technique for COD in the waste water treatment process. The conclusion and 

Future work are given in Sec. 5. 

2. Wastewater treatment process 

2.1 The problem in COD measurement 

Wastewater treatment plants are complex nonlinear systems, subject to large disturbances, 

where different physical (such as settling) and biological phenomena are taking place. Many 

models have been proposed in the literature for wastewater treatment process but their 

evaluation and comparison are difficult.  To ensure the good condition and effluent quality 

during wastewater treatment operation process, the key parameters should be obtained in 

time. On the one hand, wastewater treatment aims on reducing the environmental pollution, 

which requires detecting the effluent COD, BOD, TN, TP etc. according to related national 

effluent standard; on the other hand, the normal operation and control implementation of 

each wastewater treatment link depends on real-time detection of controlled variables. 

Among these effluent parameters, COD, which indirectly represents the water organic 

pollution degree by DO consumption through microbiology metabolism, is an important 

index accords with the practical self-purification situation and the routes of most 

wastewater treatment processes. Therefore, the detection of COD is significant while some 
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inevitable defects exist by using conventional approaches like COD on-line analyzer: the 

process of COD is complicated, the time spent on detecting will greatly lags to the operating 

time in practice and the results can't reflect the real situation in time [1]; COD on-line 

analyzer is too expensive to extend. Thus, as a cost-effective tool for replacing expensive on-

line sensor, the research on soft-sensing became active since 1990s. Combining soft-sensing 

with neural network to predict key parameters and guide, neural networks are wildly 

applied in process modelling and prediction. Chang, et al. reduced data dimension through 

principal component analysis(PCA), then used extracted system inherent characteristics 

from data by fuzzy C clustering, at last, TSK-type fuzzy inference system was used to 

predict the effluent COD. In this section, the soft-sensing technology applied in wastewater 

treatment process will be introduced. 

2.2 Soft-sensing technology  

Soft sensors have been reported to supplement online instrument measurements for process 

monitoring and control. Both model-based and data-driven soft sensors have been 

developed (B. Lin et al., 2007). As solution for the above problems, the core of soft-sensing is 

mathematical modelling for the objects. To obtain optimal estimation for primary variables 

and set up a soft-sensing model which is suitable for wastewater treatment process, 

selecting appropriate instrumental variables according to wastewater treatment 

characteristics is a must. Principal component analysis can reduce the dimension and 

correlation of process variables (W. Ran et al., 2004), data preprocessing can obtain the 

correct data. So the design steps for soft-sensing are as follows: 

a. Data preprocessing 

Influenced by precision and reliability of measuring instrument and measuring 

environment, the measuring errors are inevitable. Firstly, the ones with different magnitude 

from others were deleted. Then the measuring samples should be handled by data 

normalization using the following: 

 * ij j
ij

jj

p p
p

s

−=  (1)  

Where i is the number of samples, j is the component of samples, ij
p is the j th component of 

the i th sample, jp is the mean of the j th component of the samples, jjS  is the standard error 

of the variable
j
p . 

b. Principal component analysis  
Wastewater treatment process is complicated, contains many variables. And there exists 

quite linear correlation among those measuring variables and data.  

Create a matrix
1 2

[ , , , ]
m

p p p p= A , which composed of process variables and divided by 

columns, to calculate its covariance matrix S. The characteristic roots of S are listed 

as
1 2

0
m

λ λ λ≥ ≥ ≥A , of which the corresponding unit orthogonal Eigenvectors are 

composed of matrix  
1 2

[ , , , ]
m

L L L L= A  (Load Matrix) Dividing x into the exterior product of 

principal components’ sub-matrix T and Load Matrix L , added residual term E, as follows: 

1 1 2 2
T T T T

n nx TL E T L T L T L E= + = + + ⋅ ⋅ ⋅ + +
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Then calculate m (minimum required number of principal components) which make 

cumulative variance contribution rate
1 1

/ 90%
n m

i j

i j

η λ λ
= =

= >∑ ∑ , select relevant n  principal 

components in T. Under the precondition 90%η > , four instrumental variables which 

mostly influenced effluent COD were chosen by analyzing the relation between principal 
components and instrumental variables, they are SS, pH, oil and NH3-N.  
c. Establishment of soft-sensing model 
The well-known mathematical modelling and neural networks methods have limitations to 
incorporate the key process characteristics at the wastewater treatment plants which are 
complex, non-stationary, temporal correlation, and nonlinear systems  (M. H. Kim et al., 
2009). To build soft-sensing model of key water quality parameters, some systematic 
methods of neural networks modelling. Wang, W. (W. Wang & M. Ren, 2002) used BP 
neural network to predict BOD and COD etc. key parameters by modelling wastewater 
process; Guclu, D (D. Guclu & S. Dursun, 2008)  used an artificial neural network to 
implement the prediction of effluent COD concentrations. The common characteristic of 
these techniques is that the feed forward neural network was used to model the wastewater 
treatment process (J. B. Zhu et al., 1998).  Used MLP model to reduce the data dimension, 
then used the time-delay neural network to predict the effluent BOD online. Chai et al. (T.Y. 
Chai et al., 2009) proposed a activated sludge process mechanism model based on 
hierarchical neural network, connecting the mechanism model and neural network in 
cascade way and with the neural network identifying the reaction rate of nonlinear 
components in activated sludge process model to predict the effluent COD. Chen et al. (Q. L. 
Chen et al., 2010) proposed a recurrent neural network model to identifying the BOD by 
modelling wastewater process. 
Researches show that artificial neural network is able to model the wastewater treatment 
process. However, wastewater treatment process is a highly nonlinear and state-varying 
dynamic process; the network’s dynamic performance will vary according to different 
network structure because of the single and immutable mapping ability of fixed-structure 
neural network. Therefore, a self-constructing neural network (J. F. Qiao & H. G. Hang, 
2010) which combined RBF neural networks and principal component analysis technology 
will be presented in section 3. The result of principal component analysis efficiently 
included in the key modelling information of the wastewater treatment process. The above 
four variables are used as the input of RBF model while effluent COD as the output, then we 
choose the proper number of neurons in the hidden layer and train the network by learning 
algorithm. This neural network would adjust network structure according to the complexity 
of wastewater treatment process, which would significantly improve the soft sensor’s 
performance.  

3. A Self-constructing RBF neural network  

This section will introduce a self-constructing RBF neural network which based on a repair 
algorithm. Cell replacement therapy is emerging as a novel method for restoration of the 
defective tissues by repairing the inactive cells. This innovative strategy has attracted 
considerable attention to the human embryonic stem cell recently (Mathur A et al., 2004). 
Similarly, it is well known that the connecting cells of the biological networks are repaired in 
the neural systems (Noriaki Suetake & Eiji Uchino, 2007). A Radial Basis Function (RBF) 
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neural network is a simple neural system model, which is often applied to machine learning 
problems, because it can approximate non-linear mappings directly from input patterns (S.S. 
Panda et al., 2008; Xabier Barandiaran & Alvaro Moreno, 2008). In theory, all RBF network 
topologies should be able to learn any given task to some level of competency. In reality, 
however, a given topology can be both a bottleneck and a constraint on a system. If the size 
of the network is chosen incorrectly it becomes moribund, rendering the results meaning 
less (A. Esposito et al., 2000; Wang, X. X. et al., 2004). Consequently a lot of research has 
focused on the difficult problem of determining the optimal size of a RBF neural network (S. 
Chen et al., 1991 & 1996). The size of the input and output layers in a RBF neural network is 

fixed − only the size of the hidden layer can be modified. Two main methods, “growing“ 
and “pruning“, have been developed to dynamically change the size of a network. Esposito 
et al. (A. Esposito et al., 2000) have proposed a growing method based on an evolutionary 
optimization strategy. However, this method has a number of drawbacks: it requires a large 
amount of processing power; the convergence time is very long, and the convergence is 
sometimes premature. To reduce the amount of computational time an a priori clustering 
method has been proposed (X. X. Wang et al., 2004). Unfortunately the proposed algorithm 
is intrinsically flawed limiting its usefulness (N. Y. Liang&G. B. Huang, 2008). Orr (M. J. L. 
Orr, 1995) has proposed a regularized forward selection (RFS) algorithm, based on subset 
selection (S. Chen et al., 1996), which combines forward subset selection and zero-order 
regularization. However, the subset selection method has several major disadvantages, the 
worst of which is that in order to increase the chance of obtaining a satisfactory RBF 
network; it has to use a very large set of candidate RBF nodes with different centers and 
radiuses. There are a  number of other growing strategies (K. Li, J. Peng & G. W. Irwin, 2005; 
A. L. I. Oliveira et al., 2006 ; J. Gonzalez et al., 2003), but in all these methods the criterion for 
determining growth suffers from a lack of objectivity. Many of them are also time-
consuming, sensitive to the input data, and do not consider the effect of the RBF output. 
Yingwei et al. (L. Yingwei et al., 1998) have proposed a pruning strategy, based on the 
relative contribution of each hidden node to the overall network output, which aims to 
reduce the complexity of the RBF neural network. In theory the size of the final neural 
network obtained by this method is minimal. Other methods for pruning RBF neural 
networks have been proposed by Salmer’ on et al., (M. Salmer’ on et al., 2001) Rojas et al., (I. 
Rojas et al.,2002)  and Hao et al. (P. Hao & J. Chiang, 2006). A major problem with pruning 
methods is that they often require more computational time than growing methods. In fact, 
there are also quite a large number of parameters or variables that need to be preset; the 
training data needs to be stored and re-used for pruning purposes. A promising alternative 
is to combine growing and pruning methods together. Huang et al. (G. B. Huang et al., 2004) 
proposed a simple sequential learning algorithm called the “RBF growing and pruning 
algorithm“(GAP-RBF), which was later developed into the GGAP-RBF algorithm (G. B. 
Huang et al., 2004; Q. Meng & M. Lee, 2008). The GAP-RBF and GGAP-RBF methods use the 
“significance“ of a hidden node to decide whether to add new nodes or reduce the number 
of redundant nodes. The “significance“ of the node is also linked to the learning accuracy. 
However, since these algorithms are on-line procedures, they do not optimize the network 
over all past training data. Moreover, network initialization of the GAP-RBF algorithm 
requires a priori knowledge of the data which may not be available. Lian et al. (J. M. Lian et 
al., 2008) have proposed a self-organizing RBF neural network (SORBF) for real-time 
approximation of continuous-time dynamic systems. The aim of the SORBF network is to 
develop an algorithm that can be used in real time processes. However, the authors do not 
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investigate the failure cases for the algorithm. How to choose a suitable criterion to design 
RBF neural network architecture remains an open question. 
Section 3 presents a new RBF neural network design method which is called the “repair RBF 
neural network algorithm“ (RRBF). RRBF performs simultaneous network architecture 
design and parameter optimization within an integrated analytic framework. This approach 
has two technical advantages. The first advantage is that the method is not dependent on 
the input data: when the sensitivity analysis (SA) of the RBF output indicates that the 
prototype is not suitable, the RBF architecture is repaired. The second advantage is that the 
criterion used to determine whether the network should be repaired or not is more objective 
than the criterion used in other similar time-based methods (e.g. RFS and GAF-RBF): it is 
based on the sensitivity analysis (SA) value which calculates the contribution from hidden 
nodes over a given time period (t + 1, t + 2, . . . , t + m, where m is the period). The learning 
process starts by randomly initializing a single prototype in the feature space; then, the 
prototypes undergoes adaptive repair until the most appropriate number of prototypes is 
reached. 

3.1 Previous and related works 

a. RBF neural network 
A standard RBF neural network consists of three layers: an input layer, a hidden layer, and 
an output layer. Fig. 1 shows a schematic diagram of the RBF network. As the nodes in the 
input layer represent the variables from input space and the nodes in the outer layer 
represent the desired response, the number of nodes in the input and output layers is 
configured in advance. A learning algorithm uses the defined optimization criteria to 
minimize the error between the actual response and the desired response. 
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Fig. 1. Schematic diagram of RBF neural network (RBFNN) 

As depicted in Fig. 1, the r -th output node of the RBF network can be expressed as follows:  

 
1

( ) ,
p

i k k ik
k

y x c wφ
=

= − ⋅∑ 1,2, ,i m= A  (2) 

where [ ]1 2, , ,
T

nx x x x= A  is an input value; n is the number of input node; kc  is the k -th 
center node in the hidden layer, 1,2, ,k p= A , and p  is the number of hidden nodes; 
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kx c− denotes the Euclidean distance between kc  and x ; ( )kφ •  is the nonlinear transfer 
function of the k-th center; ikw  is the weighting value between the k-th center and the i-th 
output node; and m  is the number of output nodes.  

Equation (2) reveals that the output of the network is computed as a weighted sum of the 

hidden layer outputs. The nonlinear output of the hidden layer are described as ( )kφ • , which 

are radial symmetrical. Here the function chosen for this neural network is Gaussian 

function, and the description is shown as follows: 

 

2

2

( )
( )

( )

x v

x e δφ
−−=  (3) 

where v  and δ  are the parameters of position and width of the centers. The activation 

functions commonly used for the classification and regression problems are in the Gaussian 

functions because they are continuous and differentiable; they provide softer output and 

improve interpolation capabilities. The significant parameters to design an RBFNN for 

solving problems are shown as: 

1. The RBF position of the centers v ; 

2. The widthδ of the centers; 

3. The weights w ; 

4. The number of the hidden nodes p ; 

Based on 1), 2) and 4), the initializations of the centers are very important, if an incorrect 

initialization of the centers is performed, the approximation error could be increased. The 

reason is that during the execution of a local search algorithm to make a fine tuning of the 

centers and the radius, there is a possibility of falling into a bad local minimum. An on-line 

self-organizing algorithm is used for selecting the centers of the RBFNN in this chapter. This 

algorithm can add new centers to repair the RBFNN, which solves the pre-set problem of 

the conventional RBFNN. Meanwhile, the width of the centers is very important, if the 

width is not appropriate for the RBF, the training time will be heavy. When the RBFNN 

selects correct centers, the parameters of the widths and the weights will be adjusted at the 

same time. 

b. The Sensitivity Analysis of Model Output (SAMO) 
A thorough description of sensitivity analysis methods can be found in (Andrea Saltelli et 
al., 2006). The most common SA is sampling-based. There are several steps to conduct SA. 
The following steps can be identified as (the details can be found in (Andrea Saltelli et al., 
2006)):  
Step 1. Define the model, its input factors and output variable. 
Step 2. Assign probability density functions or ranges of the variation to each input factor. 
Step 3. Generate an input matrix through sampling design. 
Step 4. Evaluate the output. 
Step 5. Assess the influences or relative importance of each input factor on the output 

variable. 
At Step 4), an empirical probability distribution for the output can be created which may 
lead to a first step of uncertainty analysis. After quantifying the variation of the output, SA 
consists in apportioning the variance of the output according to the input factors. The 
representation of the results can be described as the contribution to the input that describes 
the variance of the output into the percentages that each factor is accounting for. In this way, 
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the variance decomposition may allow the identification of the most influential factors. Then 
the SA should present analyses over the full range of plausible values of key parameters and 
their interactions, to assess how the change in response impacts changes in key parameters. 
Sensitivity analysis (SA) is an available tool (J. Cariboni et al., 2007; A. Saltelli et al., 2000) 
which may be used to study the behavior of a system, or a model, and to ascertain the 
contribution ratio of the outputs depending on each or some of the input parameters. 
Among the SA methods, quite often they are identified almost as a mathematical definition, 
with a differentiation of the output respecting to the input. For this reason, quantitative 
measure of sensitivity, such as the EFAST method (A. Saltelli et al., 1999) is described as 
follows: 

 
[ ( )]

( )
h h h

h

Var E Y Z
S

Var Y

α==  (4) 

where, hZ denotes an input factor, 1,2, ,h p= A , and hZ  represents the output connecting 

value of the hidden nodes in the RBFNN in this chapter. Y is the model response, 

( )h hE Y Z α= is the expectation of Y  conditional on a fixed value hα of hZ and the variance 

hVar is taken over all the possible value of hZ . The ratio hS represents the main effect. It is 

called the first-order index in the SA terminology. Thus, the main effect of a factor 

represents the average effect of that factor on the response or conversely these methods 

allow the computation of that fraction of the variance of a given model output which is due 

to each input factor. In addition to the computation of the EFAST method which also 

provided an estimation of the total sensitivity index hST . The total effect includes the main 

effect as well as all the interaction terms involving that factor. The total effect is defined by: 

 
mod var

var
h

h
Amount of el response iance Z

ST
Model response iance

=  (5) 

The model is additive when the response is nonlinear but interactions are negligible. In that 

case, the main effects are the suitable indexes for the sensitivity analysis of model output 

(Philippe Lauret et al., 2006). 

EFAST is based on the Fourier decomposition of the variance in the frequency domain. This 

method is especially suited for a quantitative model independent global SA. The 

computational cost of this method is the number of model evaluations required and is a 

function of the number of input factors and the complexity of the model. The ever-

increasing power of computers tends to make these global methods affordable for a large 

class of models. Among the SA methods, the total sensitivity index is undoubtedly the best 

guide to quantitatively rank the factors by order of importance. Indeed, even if this occurs 

rarely, interaction effects on a model response may dominate the main effects. So, whether 

the interaction effects are taken into account or not, the analysis may result in a different 

ranking of the factors’ importance. 

3.2 The repair method for selecting hidden nodes of RBFNN 

Considering the intrinsic structure of RBFNN, if the RBFNN consists of assured inputs, 
certain hidden nodes and outputs, it can only adjust the weights v , δ and w which are in 
the hidden layer or connecting the hidden nodes and the output nodes. In this chapter, the 
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single response relationship between the hidden neurons and the output of the RBF is 
discussed. We state that the relevance of a hidden node is related to its influence on the RBF 
response. This is the key idea of the method proposed to determine the optimal architecture 
for the RBF. The parameters w of the hidden nodes are the input values of the repair 
algorithm based on the sensitivity analysis (SA). And this SA is based on the Fourier 
decomposition of the variance in the frequency domain. 
a. Selecting Hidden Nodes 
A generic model is assumed to describe an RBF neural network system. The model is 
represented by a mapping f (a deterministic or stochastic function) which relates the inputs 
domain to the output space: 

 1 2
1

( , , , )
p

p i i
i

Y f Z Z Z Zβ
=

= =∑A  (6) 

The input factors 1 2( , , , )pZ Z ZA are supposed to be the variables described by the 

parameters w of the RBF hidden nodes, 1 1 2 2, , , p pZ w Z w Z w• • •= = =A , p is the number of 

the nodes in the output layer; 1 11 12 1[ , , , ]Tmw w w w• = A , m is the number of the nodes in the 

output layer. Y is taken to be a scalar even in the application we shall consider each output 

variable in turn. Based on the EFAST method, the polynomial expansion can be described 

again. The range of the factor hZ is ,q qa b⎡ ⎤⎣ ⎦ , so the hZ  performances as follows: 

 ( ) ( )( 2) ( 2)sin( )q q
q q q q hhZ b a b a sω= + + −  (7) 

where, ( ) 2qs n Nπ= , hω is the frequency, q is the simulation number, N is the total 

simulation number. If ( )q
hZ is straightforward to note ( ) ( )sin( )q q

hhz sω= and that the formula 

(6) should be as:  

 

( )( )
0

1

( ) ( )

1 1

sin( )

sin( )sin( )

p
qn

i i
i

p p
q q

ij i j
i j

Y Y s

s s

β ω

β ω ω
=

= =

= +

+
+

∑
∑∑
A

 (8) 

Based on this formula, the linear effect of hZ  corresponds to the Fourier amplitude at the 

fundamental frequency hω . In EFAST, each input factor hZ  is related to a frequency hω  and 

a set of suitable defined parametric equations: 

 ( ) (sin( )) 1,2, ,h h hZ s G s h pω= = A  (9) 

The equations allow each factor to vary in a given range, as the new parameter s is varied. 

They define a curve which explores the input factors’ space systematically. As s varies, all 

the factors oscillate at the corresponding driving frequency hω  and their range is 

systematically explored. For the EFAST method, a parametric representation of the form is 

often used. 
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1 1

( ) arcsin(sin( ))
2

h hZ s sωπ= +  (10) 

This transformation allows a better coverage of the factors’ apace since it generates samples 
that are uniformly distributed in the range [0, 1]. 

If the range of variation of the factor hZ is [ ,a b ], the parametric representation of the form 
should be: 

 ( ) arcsin(sin( ))
2

h h
b a b a

Z s sωπ
+ −= +  (11) 

As each factor hZ oscillates periodically between [ ,a b ] at the corresponding frequency hω , 

the model output Y exhibits different periodicities that result from the combination of the 

different frequencies 1, ,i pω = A , whatever the model f  is. Just for Fourier amplitudes, the p -

factor model can be described as follows: 

 1 2( ) ( ( ), ( ), , ( ))pf s f Z s Z s Z s= A  (12) 

where, the range of s  is [ ,π π− ], so the expanded in a Fourier series of the form: 

 ( ) ( cos( ) sin( ))j j j j
j

f s A s B sω ω∞
=−∞

= +∑  (13) 

where, the Fourier coefficients are defined as: 

1
( )cos( )

2
j jA f s s ds

π
π

ωπ −
= ∫ ,

1
( )sin( )

2
j jB f s s ds

π
π

ωπ −
= ∫ ; the range of s  is [ ,π π− ]. 

Therefore, N equally spaced sample points are required to perform the Fourier analysis. 

N represents the sample size and coincides with the number of model evaluations. Based on 

the Fourier translation, the variance yD can be computed as: 

 2 2

1

( ) 2 ( )y k k
k

D Var Y A B
+∞
=

= = +∑  (14) 

The portion of the variance of Y explained by hZ alone is: 

 2 2

1

[ ( )] 2 ( )
h h hy Z h k k

k

D Var E Y Z A Bω ω
+∞
=

= = +∑  (15) 

where, 
hkA ω and

hkB ω denote the Fourier coefficients for the fundamental frequency and its 

higher harmonics hkω . Then the expansion of the main effect is given by: 

 

2 2

1

2
[ ( )]

( ) ( )

h h

h

k k
Z h k

h

A B
Var E Y Z

S
Var Y Var Y

ω ω
+∞
=

+
= =

∑
 (16) 
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We stated above that in order to evaluate the main effect of hZ , one must calculate the 

Fourier coefficients at the fundamental frequency hω and all the harmonics.  
Because there is M interference factor (usually set to 4 or 6 in the SA community). So that the 
first-order sensitivity index is approximated by: 

 

2 2

1

2
[ ( )]

( ) ( )

h h

h

M

k k
Z h k

h

A B
Var E Y Z

S
Var Y Var Y

ω ω=
+

= =
∑

 (17) 

The number of simulation runs represents the sampling frequency and, to meet the Nyquist 
criterion, it must equal to: 

 max2 1N Mω= + , ( max max( )iω ω= ) (18)   

The variance ( )Var Y can be evaluated in the frequency domain through the following 

relationship: 

 

( 1)

2
2 2

1

( ) 2 ( )

N

w

Var Y A Bω ω
−

=
= +∑  (19) 

Aω and Bω denote the Fourier coefficients at frequency ω . In fact, based on this analysis the 

total sensitivity index hST  can be shown as: 

 

( 1)

2
2 2

max( ) 1

( 1)

2
2 2

1
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−
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−

=

+
=

+

∑
∑

 (20) 

The advantages of the hST make the judgments in this chapter much better than the hS . 
Based on the former analysis of hST , the main steps of the proposed approach for selecting 
hidden nodes in the RBF are as table 1. For the proposed total sensitivity index, some points 
have to be highlighted. First, usually, the sensitivity index for the ratio of the inputs is 
dependent on the current time ( t m+ ). But the total sensitivity index can calculate the 
contribution of period of time ( , 1, ,t t t m+ +A ) which is more objective then the others 
based on the current time ( t m+ ). Second, the computation of total sensitivity index occurs 
when the FNN has been trained into a minimum of the error function or when over fitting 
begins. But this proposed approach is not necessary. In other words, computation of total 
sensitivity index starts when the FNN has been trained for some epochs in this chapter. 
b. Adding New Nodes 

As the active nodes in the hidden layer are found by the SA, the new nodes will be inserted 

to repair the prototype of the RBFNN. The parameters v , δ and w of the new nodes are 

given as follows (assuming the h -th node is the active node and only a new node will be 

inserted): 
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1. The position of the centers v ; in order to speed up the convergence, the center of the 

new inserted node is given by the Nearest Neighbor Interpolation theory, and the 

position of the center is: 
1

2
h nearestv v v= + . nearestv  is the nearest node of the active node. 

2. The widthδ of the centers; finding out the minimal value of δ within the existing 

nodes, and the width of the new node is: min( )iδ δ= . 

3. The weights w ; in order to speed up the convergence and keep the least error of the 

next output of the RBF. The weights w of the new node is: 0.5 actw w= × , actw is the 

weights of the active node. 

By adding a new node to the hidden layer, the number of the nodes in hidden layer will be 

updated, the centers, width and the weights should be updated for the whole RBFNN. Since 

the new node is inserted based on the activity of the node for the output, the new node can 

ensure the activity for the whole network. 

 

pFor each factor hZ , finding its minimal and maximal values ha and hb . 

qSetting the interference factor to M and choose the number of simulation runs N . 

rComputing the frequency ( 1) 2h N Mω = − to be assigned to the factor hZ . 

sJust considering the output of the hidden nodes in the RBFNN, the factors are varied 

according to the curve definition; computing the total sensitivity index hST of the factor 

hZ  based on formula (20). 

tComputing the percentage contribution 
1

p

h i
i

ST ST
=∑  of the output of each hidden 

node. 

uIf the percentage contribution 
1

p

h i
i

ST ST
=∑  larger than 1ε , the node h   is the active 

node and a new node should be inserted with relation to the active node. 

vRepeating p-u until all of the existing hidden nodes are considered. 
 

Table 1.  Procedure of selecting hidden nodes. 

c. Parameters adjusting 
After adding new nodes to the RBFNN, the number of the centers is confirmed timely. Then 

the whole parameters of the RBFNN will be adjusted. In fact, these parameters adjusting 

relate to the final capabilities of the RBFNN directly.  

Considering the training process of the RBF, researchers have put forward many methods to 

adjust the parameters of the RBFNN. The parameter adjusting algorithm is based on the 

mean squared error (MSE) in this chapter: 

 2

1

1
( ) ( ( ) ( ))

T

d
t

E t y t y t
T =

= −∑  (21) 
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Where, T is the total number of the samples, ( )dy t is the expected output of the t  step, ( )y t  

is the practical output of the t  step. The goal of this method is to reach ( )E t ε<  by learning. 

ε is the expected stable error. The details of the adjusting process are: 
4. The weights w ; 

 1
( )

( 1) ( )
( )

ij ij
ij

E t
w t w t

w t
η ∂+ = − ∂  (22) 

1,2, ,i p= A ; 1,2, ,j m= A . 

1η is a plus constant, and it is less than 1. 

5. The widthδ of the centers; 

 2
( )

( 1) ( )
( )

i i
i

E t
t t

t
δ δ η δ

∂+ = − ∂  1,2, ,i N= A ; (23) 

2η is a plus constant, and it is less than 1. 
6. The position v of the centers; 

In section B, the position v of the new inserting nodes has been discussed, and the 

position v of the other centers will be discussed here. 

 
3

4

( ) ( ( ) ( ))

( 1) ( )
( )

( )

i i i

i
i

i

v t P k v t if v is active

v t E t
v t others

v t

η
η

− −⎧⎪+ = ∂⎨ −⎪ ∂⎩
1,2, ,i p= A  (24) 

3 4,η η  are the plus constants, which are less than 1; p is the whole number of the hidden 

nodes after adding new nodes. This new algorithm will continue to circulate until reach the 
stable error. 
d. Repair RBFNN 

Choose the parameters M , N , 1ε , 1η , 2η , 3 4,η η ; initialize  the centers v , The widthδ , The 

weights w and the number of the hidden nodes p . In each sampling period, the main steps 

of the repair RBFNN algorithm are shown as table 2: 
 

Training a given RBF for some epochs. 

Finding out the active nodes in the hidden layer and go to step③; if there is no active 

node, go to step. 

Adding new nodes to the RBFNN. 

Adjusting the parameters of the RBFNN and updating the whole value of the parameters.  

Repeating the step③-③, Stopping computing until the RRBF achieves the expected stable 

MSE. 

Table 2. Procedure of RRBF neural network 

In this proposed repair RBF algorithm, two points need to be highlighted. First, usually, the 
former dynamic RBFNN used the clustering methods or based on the information matrix, 
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these methods required heavy computation. The SA method used in this chapter is based on 
the Fourier translation, and then the percentage contribution of the hidden neurons is 
computed in a quantitative way. This repair does not have to judge for the structure every 
step, therefore gives a completely satisfactory method for growing the hidden nodes.  
Second, the common SA method is based on the quantitative and qualitative methods and 
between local and global techniques. The SA method used in this chapter is global, and the 
percentage contribution of the hidden neurons is direct related to the RBF output. 

3.3 Simulations 

To demonstrate the effectiveness of the proposed algorithm, three examples are discussed in 
this chapter: nonlinear function approximation, dynamic system identification. The results 
are compared with other algorithms such as SGP-RBF (M. J. Er & S. Wu, 2002), and GAP-
RBF (P. Hao & J. Chiang, 2006). 
a. Tracking Nonlinear Function  
Consider a common nonlinear function which was also used in (Gang Lengl et al., 2004) to 
demonstrate the effect of the algorithms: 

 
2

3( /2)2
1 21.1 (1 2 ) −= × − + × xy x x e  (25) 

where there are 3 continuous attributes ix ( 1,2,3i = ). And the data set { ; }ix y  is generated 

by the equation (25), and ix  satisfies the uniform distribution U [0, 10]. For each trial, the 

size of training samples is 200, and the size of testing samples is 200. 

The real output at time k is ( )y k , the required value at time k is ( )dy k , the error at time k will 

be ( ) ( ) ( )de k y k y k= − . The inputs of this SORBF are given as: 1 2 3( ) ( ( ), ( ), ( ))P k x k x k x k= . The 

training MSE for tracking is 0.001, the initial radius of every hidden node is 0.1; the initial 
weight of every hidden node is randomly given in the interval [0, 1]. The initial value of 

M and N are 4M = and 5000N = . There are two initial nodes in the hidden layer.  
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Fig. 2. The error results in the tracking process 

Fig 2 shows 5000 steps of the error values in the training process, the error values show that 
when the new node is inserted to the hidden layer, the error values will shake. However, the 
error values can be convergence quick after adding new nodes; Fig 3 shows the dynamic 
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number of the nodes in the tracking process; Fig 4 shows the widthδ of the centers after 

training; Fig 5 shows the RBF position of the centers v after training. 
 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2

4

6

8

10

12

14

16

18

The training steps

T
h
e
 l
e
ft

 n
o
d
e
s
 o

f 
th

e
 R

B
F

 

Fig. 3. The number of the nodes in the tracking process 
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Fig. 4. The δ  values of the left nodes after training 
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Fig. 5. The v  values of the left nodes after training 
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The final results of all the algorithms are shown in Table 3. The compared values are: 
training time, test error, left nodes after training. 
 

Algorithm CPU Time(s) Training Error Testing Error 
No. of 
Neurons 

SGP-RBF 42.32 0.001 0.0086 19 
GAP-RBF 26.86 0.001 0.0031 16 
RRBF 22.67 0.001 0.0025 18 

Table 3. The performances comparison of the different algorithms 

Based on table 3, the RRBF is faster and more accurate than SGP-RBF and GAP-RBF. The 
structure of this RRBF is simpler than the SGP-RBF; the memory space is fewer owing to the 
simple structure. The nodes in the RRBF are more than the GAP-RBF, but the algorithm is 
faster and more accurate than GAP-RBF. The results prove that this RRBF performs better 
than the former two algorithms and it has better ability to model the nonliear systems. 

4. Experimental results of COD soft-sensing  

The widespread popularity of neural networks in many fields is mainly due to their ability 
to approximate complex nonlinear mappings directly from the input samples. They can 
solve many problems especially in modelling which are difficult to handle using classical 
parametric techniques. Since the activated sludge wastewater treatment process is a high 
nonlinear and complicated system, it is very suitable to be modeled by neural network. In 
the experiment, we select the most important influent water quality parameters COD, Mixed 
Liquor Suspended Solid (MLSS), pH, Oil and NH3-N as the research variables, where COD 
measures the total amount of oxygen that can be combined with the chemical compounds 
(organic and inorganic) in the water. For it is an extremely important value to reveal the 
total amount of pollution in water and is easily to acquire, it is widely used in the 
wastewater treatment process. MLSS is a measure of dry solids concentration in mg/l in 
mixed liquor in an aeration tank. PH shows the degree of acid or alkali in the influent water, 
Oil is the content of oil contamination, and NH3-N delegates the content of nutritious 
contamination in the influent water. The output vector of the network is the value of COD of 
the water flow out of the system after the treatment. By the way, the data used in the 
experiment are from a small wastewater treatment factory. 
The model used the data of SS, pH, oil and NH3-N as inputs to estimate the settled sewage 
COD. Thus, the data set used to develop the model consisted of 100 samples of the model 
inputs and settled sewage COD and 100 samples for testing. Hence, the model has been 
developed to determine if acceptable estimates can be produced from a limited amount of 
relatively inexpensive and readily available information. Note also that for each set of input 
data the model is estimating the corresponding COD. It is used on-line then each model 
would give an instantaneous estimation of the COD that could be expected if standard 
laboratory tests were performed. Each model input was scaled to lie in the range 0 to 1 to 
reduce the effects of widely differing magnitudes of input data that could lead to a biased 
model. The model output was scaled in an identical fashion. The error measures for this 
model are 3mg/L confidence limits. The results are shown Figs. 6–11. 
Fig.6 gives the training results of COD; Fig.7 describes the error value of the trained results 
which are less than 3mg/L; Fig.8 shows the left nodes in the hidden layer after training; 
Fig.9 describes the error value in the training process; Fig.10 shows the predictions results of 
COD; Fig.11 shows the error value of the predicting process. 
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Based on the results, this RRBF is able to be used for the COD measurement on-line. The 
results demonstrate that the COD trends in the settled sewage at the wastewater treatment 
could be predicted with acceptable accuracy using SS, pH, Oil and NH3-N data as model 
inputs. This approach is relatively straightforward to implement on-line, and could offer 
real-time predictions of COD. It is concluded that this is a significant feature of this 
approach since COD is the more commonly used and readily understood measure.  
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Fig. 6. The training results of COD 
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Fig. 7. The error value of the trained results 
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Fig. 8. The number of the nodes in the training process 
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Fig. 9. The error value of the training process 
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Fig. 10. The predictions results of COD 
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Fig. 11. The error value of the predictions results 

5. Conclusion and future work 

Section 3 presents a repair algorithm for the design of a RBF neural network which is called 

RRBF to model the COD in wastewater treatment process.  

The following important points should be noted: 
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1. In most algorithms the criterion used to determine growth is dependent on the current 
time (t + m). This section, however, uses the sensitivity index, which can calculate the 
contributions of hidden nodes over a number of time periods (t + 1, t + 2, . . . , t + m). 
This is more objective than using a criterion based on the current time (t + m). 

2. The criterion used to select hidden nodes is based on the SA method of the RBF output 

− it is independent of the input data. 
3. Less computation is required because the initial weights of the new inserted nodes are 

utilized to calculate the repaired RBF. Simulation results show that the proposed 
algorithm performs well in modelling the key parameter, COD, in the wastewater 
treatment process. This type of RRBF based approach may potentially be used in any 
area where it is difficult to measure a range of variables because of the need for 
specialized equipment. It can, therefore, be a cost effective solution in many application 
areas where such measurements are needed. 

The following future work is under investigation. 
1. An adaptive repairing strategy which will allow the addition of hidden nodes during 

the training process based on the SA of the network output. 
2. A pruning operation which will reduce the hidden nodes that have little contribution to 

the output of the RBF network is under investigation. 
3. The application of the algorithm to other areas is also on-going. 
4. The growing Mechanism need further improvement. 
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