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An iterative procedure was applied to generate a number of built-up features in the study area.
Their polygon was used in the new DEM modeling. Secondly, a new DEM manipulation was generated
from the built-up area in 2022 via DEM linear modeling. The DEM prediction model was adjusted
to have an accuracy greater than 0.8, and after that it is used as DEM in 2022. DEM in the base year
and Euclidean distance of built-up to streamline are used in the model. Third, the updated heights
are used to analyze the hydrologic characteristics to create a flood areas index (FAI) and Flood Risk
Susceptible (FRS) model. The DEM in 2022 can generate independent variable data in eight different
types of sub-basin. The GWR model tests the ability to predict FRS from the indexes R2 and AIC.
The factors are screened only using the independent variables that influence the sensitive area and the
risk of flooding from the increased number of buildings.

2.3. Built-Up Growth Prediction Model

Many studies and researches on prediction of urban growth using different models have been
carried out throughout the world. In this study, we select two models for urban growth prediction:
The Cellular Automata (CA) model using CA-Markov in IDRISI software package and the Geographic
weighted regression (GWR) model which are summarized herein. CA and GWR models are selected to
predict built-up growth, the results of which are then compared with the interpreted built-up polygon
in 2018.

In references by Benenson and Suwit [36,37] it was said, after that, the model which provides
greater accuracy will be used for built-up growth prediction in 2022. The main tasks concern urban
growth prediction in 2022 using CA-Markov, selection of the optimum iteration model for built-up
growth prediction in the future and prediction of urban growth in 2018 and 2022 as well as similar
approaches conducted by Benenson and Suwit [36,37]. Cellular automata are dynamic models discrete
in time, space and state. A simple cellular automata A is defined by a lattice (L), a state space (Q),
a neighborhood template δ and a local transition function (f ):

A = (L, Q, δ, f ) (1)

Each cell of L can be in a discrete state out of Q according to Benenson and Suwit [36,37]. The cells
can be linked in different ways. Cells can change their states in discrete time-steps. Usually, cellular
automata are synchronous, i.e., all cells change their states simultaneously. The fate of a cell is
dependent on its neighborhood and the corresponding transition function f [38,39]. The formal
definition of Markov processes is very close to that of CA. The Markov process is considered in discrete
time and characterized by variables that can be in one of N states from S = {S1, S2, . . . , SN}. The set T
of transition rules is substituted using a matrix of transition probabilities (P) and this is reflective of the
stochastic nature of the process:

Pij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11 P12 P1n
P21 P22 P2n

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Pn1 Pn2 Pnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

where Pij is the conditional probability that the state of a cell at moment t + 1 will be Sj, given it is Si at
moment t:

prob(Si → Sj) = Pij (3)

Ref. by Suwit [37] said that the Markov process as a whole is given by a set of status S and a
transition matrix P. By definition, in order to always be ‘in one of the states’ for each i, the condition∑

j Pij = 1 should hold [39]. The research made the appropriate configuration of the iteration of CA
model in IDRISI for built-up prediction by 2022.
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2.4. Geographically Weighted Regression (GWR) Model of Flood Risk Susceptible (FRS) Prediction

Geographically Weighted Regression [40,41] is used to combine data in each point of observation
into a regression model using a series of distance-related weights. The relationship between growth
built-up area and location characteristics for a particular point, for example, is given a higher weight
than for points further away from that point. The GWR regression model for Flood area predicted
(Fj) to set as dependent variable, (Y) prediction in Nakhon Ratchasima municipality is shown in the
following Equation (4).

Fj(uivi) = β0(uivi) + β1X1(uivi) + β2X2(uivi) + β3X3(uivi)+

β4X4(uivi) + β5X5(uivi) + β6X6(uivi) + β7X7(uivi) + β8X8(uivi) + εi
(4)

where β0 is the intercept term, β1, β2, β3, β4, β5, and β6 are spatially varying coefficients of the Normalized
Digital Elevation Model Index (NDEMI, X1), Normalized Contour Index (CLI, X2), Area of Built-up
Index (ABUI, X3), Density of Built-up (Dj, X4), Curvature Index (CI, X5), Slope length Index (SLI, X6),
perimeters (Pj, X7), and sub-basin area (Sj, X8) attributes respectively, and εi is an error term at point i,
(uivi) representing the coordinates of the ith point in study extent [41]. The GWR model is modeled
using the GWR 3.0 software package which allows the use of a variety of calibration techniques to
specify regression weights and to optimize bandwidth parameters. In this study, a fixed defined kernel
with a bi-square function (in which the bandwidth was determined through the minimization of the
Akaike Information Criterion (AIC) [40,41] was used. The reason for this is that the points in the spatial
unit of analysis used are in regular and equal sizes. Monte Carlo tests [40,41] were also carried out to
set the significance of the spatial variability in the local parameter estimates. Independent variable
weight values are indicators of which independent variables will influence flood risk. The coefficients
of independent variables have both positive and negative relationships affecting the change of the
flood areas. A series of pre-tested, independent variables provides a satisfactory result in terms of
statistical index value, which is defined as an independent variable to use the Flood Risk Susceptibility
(FRS) prediction in each sub-basin.

The map showing the flood risk area size may not reflect the severity of the spatial unit of each
sub-basin. Therefore, it is necessary to create an additional model to describe the sensitivity of the flood.
Flood Area Index (FAI) was used as a major input in the Flood Risk Susceptibility (FRS) model and
shown as a probability in the term between 0–100 in the following Equation (5) as FAI and Equation (6)
as FRS, respectively.

Many of the previously flooded areas act as indicators of the frequency and severity of flooding in
those areas. Flood information in the past was interpreted from the satellite imagery by Geo-Informatics
and Space Technology Development Agency (Public Organization), (GISTDA). Flood data from
2010–2016 was able to be used to establish a Flood Area Index (FAI Dependent variable, (Y)) as shown
in Equation (5)

Fj =

n∑
i=1

Fijk

Nk
(5)

where Fj is Flood Area Index of each sub-basin any j,
n∑

i=1
Fijk is the summation of flooding in the cell

any j of each sub-basin any j in the year any k and Nk is a number of flooding the cell in the year any k.

FRSj =
Fj

Sj
× 100 (6)

where FRSj is flood risk susceptibility in 2022 of each sub-basin any j where the closer the value is to 1,
the greater the risk (ranged as 0–1) and Fj is Flood Area Index (FAI) predicted in each sub-basin of any
j (sq. km) and Sj is the area of each sub-basin of any j (sq. km).
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2.5. Independent Variables Modeling from Hydrological Characteristics

This study begins by undertaking a Digital Elevation Model (DEM) modeling of a numerical
height to predict the height of the space in the desired future year. These height data are extracted as
an index of the independent variables to be used to create the GWR model. This also uses the flood
data in the past that occurred in the leading area index of Flood Area Index (FAI). The FAI index is a
dependent variable in the GWR model and is extracted to a boundary of each sub-basin and displays
the details of the various indices.

2.5.1. DEM Prediction Modeling

A new DEM in each sub-basin of each following year is derived from the linear model following
Equation (6). The height of DEM on the base-year and the distance of built-up polygons from the
stream are input into the model. The altitude change in the study area is a major factor affecting
the independent variables mentioned above. The coefficient of the independent variable is used to
identify the relationship between the distances from the stream to the predicted altitude as shown in
Equation (7)

Di(n+1) = Di(n) ± Lis (7)

where Di(n+1) is elevated point at any i in next (n + 1) year (meters), Di(n) is elevation point of cell any i
in n year (meters,) and Lis is a distance between the center point of built-up polygons of feature any i to
the closet Lamtaklong stream line feature s (meters).

2.5.2. Normalized Digital Elevation Model Index (NDEMI, X1)

The DEM index is made to analyze the difference in the average altitude in the sub-basin area,
with the assumption that if any of the sub-basin areas are different, then there is a greater risk of
flooding. However, the index only applies to this analysis of risk-prone areas. Flooding may not be
able to identify the total area risk due to the difference in the altitude of the area, resulting in the water
flowing into other subgroups and quickly venting. Therefore, the risk analysis of flooding is necessary
to be used in conjunction with other independent variables. The output of this index is adjusted to a
standard in the range of 0–1. The higher the altitude, the closer the value is to 1, and the lower value
will approach 0. The index guideline makes it possible to measure the difference in the same standard
of that sub-basin. The index shows the calculation of Equation (8).

NDEMIj =

n∑
i=1

[ Ei−Emin
Emax−Emin

]
n∑

i=1
Nij

(8)

where the NDEMIj index is the normalized digital elevation model of the sub-basin any j, is the
proportion of the standard average of the difference in height. Ei is elevation point of any cell i, Emax is
the highest elevation point of each sub-basin any j (meters), Emin is the lowest elevation point of each

sub-basin any j (meters) and
n∑

i=1
Nij is the summation of the number of elevation points of any cell i in

each sub-basin any j.
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2.5.3. Normalized Contour Index (CLI, X2)

The Altitude line length index is calculated based on the multiples of the line length at different
heights per size of each area in any sub-basin. A high index value represents the difference in the
altitude of a basin. A lower index value indicates that the basin is smooth, as shown in Equation (9).

CLIj =

n∑
i=1

CkLi

Pj
(9)

where CLIj is the normalized contour index of sub-basin any j. It is the proportion of the sum product
of a height level and the length of contour lines per any perimeter of sub-basin any j, Ck is a level
of contour line any k in sub-basin any j, Li is a length of contour line any i of contour line any k in
sub-basin any j and Pj is the perimeter of sub-basin any j.

2.5.4. Area of Built-Up Index (ABUI, X3)

This is the proportion of the summation of the built-up area within sub-basin any j per the extent
of sub-basin any j (sq. km). The index is used to analyze the larger and smaller built-up space.
The increase in the building area makes the flow accumulation and the water flow direction in the
basin area more likely to change than the area that rarely changes, as shown in Equation (10).

ABUIj =

n∑
i=1

ABUIi

Sj
(10)

where ABUIj is the area of built-up Index of sub-basin any j,
n∑

i=1
ABUIi is the summation of the built-up

area in the polygon any i of each sub-basin any j and Sj is the area of sub-basin any j (sq. km).

2.5.5. Density of Built-Up (Dj, X4)

This index is similar to the indexes that are referenced above. However, the analysis of the water
path change from the built-up area alone may not be sufficient to predict the flood risk susceptible area.
In addition, the number of buildings is rapidly increasing and the boundaries are becoming close to one
another, causing the water flow to be discontinued and the water is subsequently becoming trapped in
a sub-watershed area that looks like this. Using this independent variable with an index (ABUI), it is
possible to refer to the level of growth of buildings associated with flooding in the sub-basin, as shown
in Equation (11).

Dj =

n∑
i=1

Ni

Sj
(11)

where Dj is built-up density of sub-basin any j, Ni is a number of built-up areas at the center point of
polygon any i within sub-basin any j and Sj is the area of sub-basin any j (sq. km).

2.5.6. Curvature Index (CI, X5)

In the calculation of areas of the surface curvature, the convex is curved, textured, inverted, or has
an embossed appearance, and the concave has a curved, textured, rounded appearance or a puddle.
Convex-style areas pose a risk of less flooding than a concave surface, if the area appears flat, there is a
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value of two areas approaching the center. The index value of any basin is even more vulnerable and
susceptible to flooding less than the low index area, as shown in Equation (12).

CIj =

n∑
i=1

Aconvex(i)

Sj
(12)

where CIj Curvature Index of sub-basin any j, Aconvex(i) is the area of Convex-style areas of polygon
any i within sub-basin any j (sq. km) and Sj is the area of sub-basin any j (sq. km).

2.5.7. Slope Length Index (SLI, X6)

The index is calculated from the proportion of the sum of the slope length per each perimeter
in the sub-basin. This index is used to analyze high-index values, the high and long slopes in the
sub-basin area, allowing water to accumulate in the lowest possible areas while the risk of detention
and drainage is low, as shown in Equation (13).

SLIj =

n∑
i=1

SLi

Pj
(13)

where SLIj is Slope length Index of sub-basin any j, SLi is a length of slope of polyline any i within
sub-basin any j (km) and Pj is the perimeter of sub-basin any j.

In addition to the previously-displayed indexes, there is also an independent variable that is used
as an important piece of data to determine the index values, such as the perimeters where (Pj, X7) is a
calculation of the length of the circumference of the sub-basin, and the sub-basin area where (Sj, X8)
is a calculation of the area of the sub-basin, where both of these values can be calculated from the
mathematical principles of the spatial relationship.

3. Results and Discussion

3.1. Optimal Iterations of CA-Markov Model for Built-Up Growth Prediction in 2022

The results of interpreting satellite imagery from the years 2014, 2016, and 2018 using the
interpretation method interpreted visually (Visual interpretation) based on the composition of the
interpretation consisting of the shape (Shape), size (Pattern), the intensity of colors, and colors (Tone
and color), the texture (Shadow) location, and the association (Site) and its relevance are classified into
five categories, including; (1) community areas and buildings: areas with all types of buildings and
residential trade zones as well as government offices and transportation routes; (2) Miscellaneous areas
including open space; (3) other agricultural areas such as areas, fields, garden areas, etc.; (4) water
source areas that are both natural and man-made water sources; and (5) forest areas, including natural
forest areas and planted forests. The results of the 2016 satellite image interpretation found that: (1) the
Built-up area comprised a total of 209.45 sq. km (32.43%); (2) the miscellaneous area was 40.25 sq. km
(6.25%); (3) the water source area was 7.06 sq. km (1.09%); (4) the forest area was 7.03 sq. km (1.08%);
and (5) the agricultural area was 382.05 sq. km (59.15%). The effect of interpreting satellite imagery
from 2018 found that: (1) the Built-up area was 225.88 sq. km (34.97%); (2) the miscellaneous area
was 36.47 sq. km (5.65%); (3) the water source area was 6.91 sq. km (1.07%); (4) the forest area was
6.52 sq. km (1.01%); and (5) the agricultural area was 370.06 sq. km (57.30%), respectively, and all
interpretation result information is shown in the Appendix A Tables A1–A10.

The transition matrix for built-up prediction in 2022 is shown in Table A10 and the dispersion
position shown in Figure 3. The result of the 2022-year satellite image translation found that: (1) the
Built-up area was 242.85 sq. km (37.6%); (2) the miscellaneous area was 27.49 sq. km (4.26%); (3) the
water source area was 6.97 sq. km (1.08%); (4) the forest area was 6.22 sq. km (0.96%); and (5) the
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agricultural area was 362.31 sq. km (56.1%). Building and road areas tend to increase every year.
The main types of soil cover that are transformed into building areas are: Agricultural areas and water
sources mostly included in some miscellaneous areas. The water source area is being continually
reduced due to the fact that the land is reclaimed in the original water source to make way for
constructions, such as housing projects, housing, and other types of homes, as the position of change
in this way is formed along the road, avoiding the city and the area near the end of the Highway (main
road number-6). Miscellaneous areas are relatively constant, but there is a slight decline shown in the
year 2018. This soil coverage data layer is converted into raster data in the form of a file extension (.RST)
to import into a raster format. The forecast growth of built-up areas is conducted with CA-Markov
models using the IDRISI version 15.0 to create a matrix of changes and analyze the optimal iteration
and simulate land utilization changes.

 
Figure 3. Built-up areas in 2014 and 2018 and built-up growth in 2022.

The calculation of a matrix of the CA-Markov model is different in space. This research configured
the change matrix (all results of the transition matrix are shown in Tables A1–A10.) and the range of
satellite imagery during the year 2014/2016/2018. Selecting a range of images used to create a transition
matrix is a 2-year-old pitch, as it requires satellite imagery to show the expansion pattern of a uniform
building, and the buildings are scattered with similar shapes and orientations. The model can be used
to predict the position of the buildings that will be built in future years according to the assumptions of
the duration of the satellite imagery range. In other words, the range of images must not be too sparse,
and the relation to the land-use must have a similar pattern. However, with the ability of the model to
allow the modification of the iteration loop, this allows the model to predict the expansion space of the
buildings for more than 2 years. However, this research focuses on increasing the loop so that the model
is able to predict future built-up areas to a satisfactory R2 level. Table 1 displays the result of the matrix
result changes. The comparison of land-use classification with visual interpretation data is shown in
Tables A2–A4. From Appendix A the result of the error matrix for accuracy assessment of land-use
types in 2014 found that the overall accuracy = 100% and with Kappa coefficient of agreement = 1.0.
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Table 1. Result comparison of built-up growth simulation using the CA-Markov model with
visual interpretation.

Iterations-Loop
(R2) from Image Simulated Using
Transition Matrix 2014/2016 with

Image Digitized in 2018

(R2) from Image Simulated Using
Transition Matrix 2016/2018 with

Image Digitized in 2018

1 0.91 0.95

2 0.87 0.92

3 0.85 0.91

4 0.81 0.86

5 0.77 0.79

In addition to the error matrix for accuracy assessment inspection in this study, it is used to create
buffer areas out of the predict built-up to compare them with built-up from visual interpretation.
The size of these two building areas is superimposed with the Overlay process.

Recursive loop assignments are defined only around the 1–5 range for a matrix to change the pitch
of a 2-year interval to be used to synthesize the most appropriate iteration loop that is able to predict
the expanding position of the built-up area in the future year, and also the precise test result of the
model. Comparison of the positioning accuracy of the simulated image from the model to the size of
the closed-space image translates from the satellite to the extent that the allowable configuration of the
surplus boundary must be less than 0.04 sq. km, which indicates that the polygon is the same position.

The analysis result of Table 1 showed that the model could create a transition matrix from the
years 2014–2016 to predict the position of the built-up polygon in the year 2018 and found that the R2

is greater than the level 0.81 from the determination of iterations from the range of 1–4. The precision
trend is gradually reduced when a loop is set to cycle 5. The accuracy trend is reduced gradually when
a loop is set to five rounds and this indicates that the ability of the loop to be determined should not
exceed four rounds to be used for future built-up position forecasts. Therefore, this research was made
to predict the expansion position of the built-up area in the year 2022, which was constructed from
the 2018 image range matrix, combined with four rounds of iterations. It is confirmed that the CA
model can predict the buildings in both error matrix and buffer zone tests, with the confidence level of
decision-making more than 81%.

The rise of built-up forecasts found that the area near the end of the Motorway-6 (yellow polyline)
within a radius of 2 km has a higher growth rate than other areas. Although this area has a lower
elevation than the other zone areas, it is also near the Lamtaklong River, as shown in Figure 3. Changes
to the location of the built-up areas are mainly changes to the miscellaneous area. The water and
road areas are rarely altered, although when more iterations are prescribed, the growth rate of the
built-up area is higher, but the growth rate is relatively fixed within a radius of 5 km around the river.
The result of the built-up area’s expansion forecast in the year 2022 found that the built-up area had
expanded along both sites of the road, because this zone area has a dense number of buildings and
was evenly dispersed before the construction of the Highway was approved. The existing built-up
area influences the model to calculate the transition matrix value, making the forecast with a very
high-definition a highly-reproducible cycle, often with high accuracy. A cluster of existing buildings
can also be attached, allowing the open space to be transformed into a built-up area with the driving
force of economic and social factors, making fast changes to land utilization.

The application of a CA-Markov model in predicting the growth of most buildings considers the
following points. The integration of the CA-Markov model is considered to be valuable for modelling
land-use changes and is able to simulate and predict changes [42,43]. The CA-Markov model is the
combination of Cellular Automata and transition probability matrix generated by the cross tabulation
of two different images [42]. This combination of the CA-Markov model provides a robust approach in
spatio-temporal dynamic modelling [42,44]. Furthermore, CA uses Markov to add spatial character
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to the model. On other words, the CA-Markov chain can simulate two-way transitions among any
number of categories and can predict any transition among any number of categories [45,46]. It is
worth mentioning that, the Cellular Automata is a dynamic process model that is used for the land-use
cover change. This kind of model is common in the land-use modelling literature. Each cell with their
own characteristics can represent parcels of land and can represent self-growth interactions as they
are dynamic and reduplicate [47]. Furthermore, the land-use changes for any location (cells) can be
clarified by the existing state and changes in neighbouring cells and can simulate the growth of things
in two directions. This model is broadly used in spatial model for predicting future land-use [43,46].

The precision of the CA-Markov model needs to be monitored in use, but in this study it was
confirmed that the model can be predicted at a satisfactory significant level. The CA-Markov model
can predict the borderless growth of built-up in the Korat area. However, the change in land-use is
a force that promotes built-up with only an expanding area zone, requiring high spatial resolution
data to be used to construct replicas. The resolution of spatial data used in this study confirms that it
is appropriate and directly affects the accuracy of the model. Sometimes, the precision of the model
deviates with the position of the point in comparison with the result of the model. The accuracy test
in this study was used to randomly sample points of each type of land-use. Dividing a basin into a
sub-size allows the CA-Markov model to generate a number of data to calculate the probability more
precisely. Using a 30 m spatial resolution data can create a boundary that can lead to an independent
variable value.

3.2. DEM Change and Hydrological Characteristics in 2022

The result of DEM modeling was used to predict the future of numerical height with a linear
regression model. The data used for modeling is obtained from the 58 field observation points as a
survey by setting the model’s altitude measuring surveyor’s telescope. The original altitude of the
2014 base year was from the Royal Thai Survey Department (RTSD) under the Ministry of Defense
(MOD), Bangkok of Thailand [37]. The altitude information used as the basis for this study was made
by flying with an aircraft of the RTSD agencies, so the spatial resolution is more detailed than other
types of data available. It also updates this information up to date from exploring the field’s altitude.
This is in addition to the use of the proximity measurement method from the angle of contact with the
river line with the function (Near) of the QGIS 3.6.0 to measure the distance between the altitude and
the angle of contact with the river line. These factors are taken as independent variant information
in a linear model. As a result, the data used to create the model in Table 2 results in Equation (14)
and creates a data layer. The height of DEM in 2022 for hydrological characteristic analysis shows the
altitude change of DEM, as Figure 4a–c.

DEMn+1 = 1.02 (DEMn) − (0.0000927 × Li) (14)

where DEMn+1 is (Y, dependent variable) the elevated point at any i in 2022, DEMn is (X1) the elevated
point of cell any i in 2018 (meters) and Li is (X2) the distance between the center point of built-up
polygons of feature any i to the closet Lamtaklong stream line feature s (meters), as shown in the data
input of the model in Table 2. The DEM data is re-adjusted with the Fill tool and Sink to smooth surface
adjustment and water flow.

A model with an R2 value of 0.84 variable coefficient (X2) has a negative relationship with the
altitude value. The utilization form of land buildings near the river is less than 2 km, and there is a
higher filling rate than the areas further away. This linear model confirms that the built-up area is far
away from the river, Most of these areas are the height of the area, less than the area near the river.
Some areas have an increase in altitude, as these areas comprise the built-up type of housing, which
must be filled at a height of more than 4 m.

The variable that influences altitude the most is DEM (X1). The elevation value of the nth base-year
that is known to be influenced by the 1.02 model is when other independent variables have a value
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of 0. This linear regression model is used to predict the future height in the same position found to
change the utilization of land to the built-up area. This cell is recalculated to the new level (1.02 ×
180 = 183.60 m) which causes the altitude value of the elevation to be changed. The DEM model
predicts the elevation map in 2022 from the use of image maps of built-up areas in 2022, imported, and
processed in conjunction with the DEM-year-2018 old map, which has a height point updated from
field exploration. This is shown in Table 2 and Figure 4.
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(a) reclassification of DEM (5 

m) in 2022 
(b) Contour line interval 5 m (c) Sub-basin 

   

(d) Curvature (e) Flow direction (f) Slope 

Figure 4. Maps of hydrological data (a–f) to use for independent variables extraction of FRS-GWR
model in 2022.

From Figure 5a–c, the average altitude is seen to have significantly changed in the upper area of
the Lamtaklong River mainly, and the result of significant hydrologic change in Table 3, the number
of sub-basins generated from the data DEM Years 2014, 2018, and 2022, found that there was a total
number of 2325, 2151, 2050 polygons, respectively. The number of sub-basins tends to be less likely to
decline in future years as they increase the level of numerical height in the joint’s area of the sub-basin
region. The area of any adjacent sub-basin is fused together and water can flow to each area within
the basin. This results in a longer flow sequence length from 878.47, 888.58, and 890.32 km in 2014,
2018, and 2022 respectively. There are several simple studies that say that DEM is converted to affect
the nature of the basin area. The definitions of drainage and relief are essential for understanding
spatial differences within the catchment [48]. Drainage density has been found to correlate with valley
density, channel head source area, relief, climate, vegetation, soil and rock properties, and landscape
evolution processes [49]. Measuring drainage density is extremely difficult, and it relies on good
topographic maps at a detailed scale [50,51]. As an alternative to drainage density, the parameter
of potential drainage density is often obtained from a digital elevation model (DEM) [52]. Drainage
density has been found to correlate with valley density, channel head source area, relief, climate,
vegetation, soil and rock properties, and landscape evolution processes [49]. Analysis by Pal and
Saha [48] showed a high correlation between drainage density and the following parameters: length of
overland flow, number of stream junctions in the basin, and the infiltration coefficient and drainage
texture [48]. Low drainage diversity was related to low drainage density. A guideline for modeling of
this research synthesized variables that influence the changing of the height in a physical area into an
independent variant, which allows the modeling to predict the hydrologic change.
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(a) DEM in 2014 (b) DEM in 2018 (c) DEM in 2022 

Figure 5. Maps of DEM in (a) Year 2014, (b) Year 2018 and (c) Year 2022.

Table 3. DEM change impact to basic hydrological characteristics.

DEM of Year
Number of
Sub-Basins

Number of
Sub-Basins in
Upper Streams

Length of Stream
Order 3 to 6
(Kilometers)

Average Elevation
Range (165–175 m)
in Upper Streams

2014 2325 1185 878.47 173.54

2018 2151 1078 888.58 175.45

2022 2050 984 890.32 177.58

The hydrologic base data that is used to calculate the index of independent variables of the year
2022. Figure 4a is a 5 m data class DEM, a resolution of 5 m, which is divided into a range of 180
over 20 m in height. The DEM 2022 data is used as the basis for the creation of all other information;
(b) contour line interval 5 m; (c) any sub-basin; (d) surface curvature; (e) flow direction; and (f) slope.

The entire data layer uses the edited data modification process (manipulation using GIS process)
to be able to analyze the Geographic Information System (GIS) by assigning the cell sizes of the raster
data to 5 m. The data processing takes a long time, but the results show the resolution and amount of
descriptive data that will improve the accuracy of the GWR model.

The map in Figure 6 displays that the stream order is used to level 3 to 6, because it is a level with
the embodiment of the flow outlet with the flow point from high to low. The stream order generated
from DEM in 2018 compared to the year 2022 found that the stream order in 2022 is longer than that
of the year of 2018 in every buffer distance. The rise of the building position affects the direction of
the water flow. This is observed by comparing the stream length and stream order along the buffer
distance every 1000 m out of the Lamtaklong River, as shown in Figure 7 and Table 4.
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Figure 6. Map of stream order 3 to 6 with buffering from Lamtaklong sreamline.

  
(a) Flooding event during 2010–2016 (b) Flooding frequency during 2010–2016 

Figure 7. Maps of flood change in (a) and Flood Area Index (FAI) in (b).

Table 4. Comparison of stream order length of Year 2018/2022.

Distance from Lamtaklong
Stream (Meters)

Stream Order in 2018 Stream Order in 2022

Order 3 to 6 (Length KM.) Order 3 to 6 (Length KM.)

1000 56.7 56.5

2000 63.9 71.2

3000 73.6 75.4

4000 85.4 86.7

5000 86.1 87.3

6000 87.4 88.7

7000 87.6 88.9

The longer stream length takes much longer to drain. In a buffer space of up to 1000 m, most of
them have a slight slope, allowing the analysis of the length of the flow sequence to be less than the
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buffer range area away from the river. Also, in the buffer range, 2000–3000 m toward the west is found
to have a very dense flow sequence of water.

The area has many large road construction projects. This causes changes to the route, water flow,
and creates a lack of flow lines. This area is frequently affected by flooding. Data from the DEM model
contributes to the FRS-GWR modeling support, as well as the discussion of the results.

3.3. Flood Area Index (FAI)

The FAI index shows the severity of the area where flooding is most frequent from the use of flood
information over a 5-year period. The retrospective of the flood area in the distance edge of about
5 km from the Lamtaklong stream line is where the FAI index is taken. The link is the spatial database
(Attribute) of a variable by (Y) to the data layer. The sub-boundary of the year 2018 is used to create
the GWR model together with other independent variables.

The Dependent variables in this study were used to create an FAI index to find the frequency of
floods in the area with the lead data layer. The flood boundaries are converted into binary variables
(binary). If the area that has flooded is set to 1, and otherwise is 0, the analysis process requires the
conversion of the vector layer (.SHP) to raster (.TIFF) and is used in overlay function with the binary
model using the raster calculation function in QGIS version 3.6.0.

The high values of the flood area index are scattered in the upper area of the study area (depicted
in Figure 7) and the position of the flood reaches an average altitude of about 164–167 m, while the
flood area has the characteristics of land-use as agriculture; this area has also experienced flooding
from the city center, making the flood boundary overlap with other areas. The average of DEM in the
range of 165 to 175 m is consistent with the analysis results from FAR, thus providing a high index in
the same area.

3.4. GWR Model and Flood Risk Susceptible (FRS) in 2022

Table 5 summarizes the results of the Global and GWR models of study areas in the Muaeng district
of Nakhon Ratchasima Province. The Monte Carlo Test summary table and the GWR model calibration
found that five out of the eight significant independent variables show spatial non- stationarity.
In addition, the GWR model has an R2 level precision at 85%, which is greater than the global
model (R2 = 0.57), the GWR replica creates a layer of free variable data in the GIS data layer with the
interpolation method to show the spatial variation, as shown as the map in Figure 8b–f. An R2 value of
GWR local operation which is significant to the forecast has a value in the range of 0.8–0.88 and is
an average, thus giving 0.6, and the global result of the R2 value is 0.57. It can be assumed that the
relationship between the selected factors and in the created city will be captured by the GWR model
in those regions [41]. The growth of built-up area use in the region with low R2 may be affected to a
greater degree by other factors that were not considered in this study, and there may also be fringe
effects that were also not considered. In the local operation of GWR, an F-test was also used to test
whether spatial changes exist in the relationship under the study [41], specifically testing whether the
GWR model is updated and explains significantly the relationship over the general global operation
using Ordinary Least Square (OLS).
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Table 5. Summary results of the flood risk susceptibility FRS-GWR model.

Flood Risk Susceptibility GWR Model Coefficients

GLOBAL GWR

Variables β t p-Value a

Intercept 40.56 4.16 *** 0.00 ***

Normalized Digital Elevation Model Index (NDEMI, X1) −26.03 −1.61 *** 0.01 ***

Normalized Contour Index (CLI, X2) −21.00 −3.87 *** 0.84 n/s

Area of Built-up Index (ABUI, X3) 1.35 5.25 *** 0.00 ***

Density of Built-up (Dj, X4) 4.82 6.58 *** 0.00 ***

Curvature Index (CI, X5) −0.57 −3.10 *** 0.00 ***

Slope length Index (SLI, X6) −0.48 −2.17 *** 0.00 ***

Perimeters (Pj, X7) 0.03 0.29 n/s 0.95 n/s

Sub-basin Area (Sj, X8) 0.05 0.38 n/s 0.99 n/s

N 2151

Adjusted R2 0.57 0.88

*** = significant at 1% level. n/s = not significant. a Results of Monte Carlo test for spatial non-stationarity [43,44].

   
(a) Local r2 surface (b) T-surface for NEDMI (X1) (c) T-surface for ABUI (X3) 

   
(d) T-surface for Dj (X4) (e) T-surface for CI (X5) (f) T-surface for SLI (X6) 

Figure 8. Maps of Local r-square (a) and T surface distribution of FRS-GWR model (b–f).

The analysis of variance was addressed through the testing of ANOVA for the creation in the city
of Korat. The F-value was 8.231. The high F-value suggests that the GWR format was significantly
improved through a global form to define the relationship between the built-up growth and different
factors. Additionally, the Akaike information (AIC) of the GWR format (178,474.5) is far less than one
of the global operations (20,371.1). This indicates that the GWR local operation is improved more than
the OLS model (referenced in Table 6).
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Table 6. ANOVA test of the FRS-GWR over the OLS regression model.

Source SS DF MS F

OLS Residuals 56,312.3 26.0

GWR Improvement 27,006.7 465.36 4.72

GWR Residuals 29,305.6 3210.53 7.84 8.231

GWR Akaike Information Criterion 178,474.5 (OLS): 20,371.1

The FRS-GWR model predicts the area risk of flood sensitivity in the year 2022. The significant
independent variables were only selected containing the normalized digital elevation model Index
(NDEMI, X1), area of built-up index (ABUI, X3), density of built-up (Dj, X4), curvature index (CI, X5),
and slope length Index (SLI, X6) and to create a model FRS-GWR as Equation (15) when assigning Y
values from GWR model = Fj in Equation (5). The result of the dispersion of independent variables is
as follows Figure 8b–f.

FRS2022 = (4.16− (1.61NEDMI) + (5.25ABUI) +
(
6.58Dj

)
− (3.1CI) − (2.17SLI))x100/Sj (15)

The independent variables are selected from the relationship with the variable as a significant
factor. The surface distribution coefficient (T-surface) (depicted in Figure 8) that is consistent in the
independent variable area NEDMI (X1) shows the dispersion of negative range coefficients; in addition,
however, the higher the R2 high value, the higher the flooding risk. In accordance with the effect of CI
(X5) and SLI (X6), but contrary to the positive coefficient of ABUI (X3) and Dj (X4,) is when there is
space and the density of more built-up areas will hinder the flow of water. Additionally, the variable
that is not mentioned does not have a compliance with Y.

The risk area forecast for flood sensitivity FRS-GWR model in 2022 uses the filtered independent
variant data that is significant and influences the variables followed by the GIS tools simulated from a
hydrologic analysis and then imported into Equation (15). Figure 9 displays the flood risk susceptibility
values that range from 0.6 to 0.86, and this highlights the potential for flooding in the area when it
rains. For approximately 60–86 percent of the space, most of the area is more than 70 percent of the
upper basin above the Lamtaklong River. There are index values ranging from 50, but there are some
areas with a lower flooding potential.

For areas with DEM ranging from 180 to 200 m in the lower part of the sub-basin, most of which
is less prone to flooding as the area has an average altitude of more than the other zones, except the
Eastern zone area, the index value is 40–45 because it is close to the Lamtaklong River. As well as in
the year 2022, expanding the construction of the buildings in this area is rapidly emerging from the
new road-building influence in the year 2018.

An FRS-GWR model compared to (FAI) was found to be consistent, but the FRS-GWR map has
a more continuous dispersion of the area than the FRS-GWR model can predict. The sensitive area
in terms of the risk of flooding and the ideal analysis in the area is not very large, and there is a
large number of sub-areas (spatial units) and the continuous dispersion will greatly improve the
forecast performance.
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Figure 9. Map of flood risk susceptible forecast using FRS-GWR model in 2022.

4. Conclusions

A future building forecast with a CA-Markov model in this study found that it can be adjusted to
require repeated process assignments (Iterations), making it possible to use images to predict future
buildings for many years to come. This study uses land utilization data every 2 years to predict the
position of buildings that are arising up to 4 years, using 2014/2016 data to predict the building of
the year 2018. (R2 value is also greater than 0.8). In general, predictive research with a CA-Markov
model can be used to create a map based on data spacing. According to Bertaud [53], it is important to
note that the areas that are configured in this way require a dispersion of the land cover that requires
continuous dispersion.

This research also found that the GWR modeling provides precise prediction capabilities. It is
necessary to create a layer of spatial units to be appropriate for use. Reference by Brunsdon [54],
explains how the unit of this sub-area is different depending on the spatial relationship of independent
variables and the variables based on this research. This research hypothesized that the data layer DEM
with a higher average level will affect other hydrologic data changes and cause the sub-watershed
boundary (sub-basin) to change. In order to be used to extract variable data, as well as independent
variables, to be consistent and relevant in the testing area, various statistical values, including local
R2, AIC, and F-test, were used to confirm that the GWR model is more accurate than the GLOBAL
model (OLS) in every test. The research developed the GWR model in conjunction with a simulated
flood frequency index model to analyze risk areas of flood sensitivity (FRS-GWR) as confirmed by a
model that can predict the sub-basin that has potential to be at risk of flooding in future years from a
comparative test against flood data from the past.

Modeling guidelines for the relationship of spatial heights affect the analysis of water flow in
both the basin region, flow accumulation, flow direction and stream order. Reference by Jenkins [29],
stated that if there are many adjacent built-ups, there will result a change from an ever-changing area
to a water-inlet area because the water has no outlet.
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However, further research in other areas may be added to the use of TIN data (Tri Irregular
Network) in conjunction with the analysis of the flow of water to provide a more complete flow
direction, as well as analysis of the accumulation of water (flow accumulation). Analysis of flow
accumulation enables a more continuous flow of water to accumulate and this can be used to drain the
water out of the sub-basin area. However, analysis with this information is only appropriate to work
in small spaces, as this takes longer to process than the data DEM.

This study can be used as a prototype to analyze environmental impacts, especially the flow and
barriers of water flow from the further expansions of buildings in other areas. Reference [40] explains
the modeling research in the future to assess the flood-prone area to be included in plans in order
to better cope with climate change that affects the frequency and risk of flood disasters. In addition,
this research will allow stakeholders to better plan their development of urban areas so as to minimize
environmental impacts and make plans for the sustainable growth of a city.
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Appendix A

Table A1. Allocation for land-use categories in 2014, 2016, and 2018.

Land-Use Types 2014 2016 2018

sq. km % sq. km % sq. km %

Urban and built-up area (U) 202.68 31.40 209.45 32.43 225.88 34.97

Agriculture land (A) 385.01 59.61 382.05 59.15 370.06 57.30

Forest land (F) 7.12 1.10 7.03 1.08 6.52 1.01

Water body (W) 7.45 1.15 7.06 1.09 6.91 1.07

Miscellaneous land (M) 43.58 3.33 40.25 6.25 36.47 5.65

Total 645.84 100.00 645.84 100.00 645.84 100.00

Table A2. Error matrix for accuracy assessment of land-use types in 2014.

Land-Use Types in 2014 Reference Data in 2018

U A F W M Total

Urban and built-up area (U) 43 0 0 0 0 43

Agriculture land (A) 0 58 0 0 0 58

Forest land (F) 0 0 3 0 0 3

Water body (W) 0 0 0 15 0 15

Miscellaneous land (M) 0 0 0 0 18 18

Total 43 58 3 15 18 137

Note: 1. Overall accuracy = 100 %. 2. Kappa hat coefficient of agreement = 1.0.
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Table A3. Error matrix for accuracy assessment of land-use types in 2016.

Land-Use Types in 2016 Reference Data in 2018

U A F W M Total

Urban and built-up area (U) 57 0 0 0 0 57

Agriculture land (A) 0 60 0 0 0 60

Forest land (F) 0 0 2 0 0 2

Water body (W) 0 0 0 14 0 14

Miscellaneous land (M) 0 0 0 0 16 16

Total 57 60 2 14 16 149

Note: 1. Overall accuracy = 100 %. 2. Kappa hat coefficient of agreement = 1.0.

Table A4. Error matrix for accuracy assessment of land-use types in 2018.

Land-Use Types in 2018 Reference Data in 2018

U A F W M Total

Urban and built-up area (U) 65 0 0 0 0 65

Agriculture land (A) 0 63 0 0 0 63

Forest land (F) 0 0 2 0 0 2

Water body (W) 0 0 0 12 0 12

Miscellaneous land (M) 0 0 0 0 14 14

Total 65 63 2 12 14 156

Note: 1. Overall accuracy = 100 %. 2. Kappa hat coefficient of agreement = 1.0.

Table A5. Transition area matrix for land-use change between 2014 and 2016.

Land-Use in 2016 Land-Use Types (sq. km)

U A F W M Total

Urban and built-up area (U) 209.45 0.00 0.00 0.00 0.00 209.45

Agriculture land (A) 31.52 330.75 0.00 1.15 18.63 382.05

Forest land (F) 0.05 0.62 5.21 0.01 1.14 7.03

Water body (W) 0.03 0.56 0.00 6.01 0.46 7.06

Miscellaneous land (M) 15.34 1.02 0.00 0.21 23.68 40.25

Total 256.39 332.95 5.21 7.38 43.91 645.84

Table A6. Transition probability matrix for land-use change between 2014 and 2016.

Land-Use in 2016 Land-Use Types

U A F W M Total

Urban and built-up area (U) 1.000 0.000 0.000 0.000 0.000 1.000

Agriculture land (A) 0.083 0.866 0.000 0.003 0.048 1.000

Forest land (F) 0.008 0.088 0.741 0.001 0.162 1.000

Water body (W) 0.004 0.079 0.000 0.852 0.065 1.000

Miscellaneous land (M) 0.381 0.025 0.000 0.005 0.589 1.000
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Table A7. Transition area matrix for land-use change between 2016 and 2018.

Land-Use in 2018 Land-Use Types (sq. km)

U A F W M Total

Urban and built-up area (U) 225.88 0.00 0.00 0.00 0.00 225.88

Agriculture land (A) 35.61 316.87 0.00 1.02 16.56 370.06

Forest land (F) 0.00 0.23 5.15 0.02 1.12 6.52

Water body (W) 1.23 0.03 0.00 4.01 1.64 6.91

Miscellaneous land (M) 14.56 0.95 0.00 0.14 20.82 36.47

Total 277.28 318.08 5.15 5.19 40.14 645.84

Table A8. Transition probability matrix for land-use change between 2016 and 2018.

Land-Use in 2018 Land-Use Types

U A F W M Total

Urban and built-up area (U) 1.000 0.000 0.000 0.000 0.000 1.000

Agriculture land (A) 0.096 0.856 0.000 0.003 0.045 1.000

Forest land (F) 0.000 0.035 0.789 0.003 0.173 1.000

Water body (W) 0.179 0.004 0.000 0.580 0.237 1.000

Miscellaneous land (M) 0.399 0.026 0.000 0.003 0.572 1.000

Table A9. Transition area matrix for land-use change between 2018 and 2022.

Land-Use in 2022 Land-Use Types (sq. km)

U A F W M Total

Urban and built-up area (U) 242.85 0.00 0.00 0.00 0.00 242.85

Agriculture land (A) 42.62 300.06 0.00 1.03 18.60 362.31

Forest land (F) 0.00 0.01 6.17 0.02 0.02 6.22

Water body (W) 1.58 0.82 0.00 2.73 1.84 6.97

Miscellaneous land (M) 15.64 0.20 0.00 0.18 11.47 27.49

Total 302.69 301.09 6.17 3.96 31.93 645.84

Iterations loop = 4.

Table A10. Transition probability matrix for land-use change between 1986 and 1994.

Land-Use in 2022 Land-Use Types

U A F W M Total

Urban and built-up area (U) 1.000 0.000 0.000 0.000 0.000 1.000

Agriculture land (A) 0.117 0.828 0.000 0.003 0.052 1.000

Forest land (F) 0.000 0.002 0.991 0.003 0.023 1.000

Water body (W) 0.227 0.118 0.000 0.392 0.263 1.000

Miscellaneous land (M) 0.569 0.007 0.000 0.007 0.417 1.000

83



Water 2019, 11, 1496

Table A11. Data and Equipment.

Data and Equipment Date
Number of Date

(sheet)
Scale Source/Remarks

1. RS/GIS Data Types

1.1. primary
datasets-Satellite imagery

December
2014/2016/2018 750,000 sheets 0.9 m × 0.9 m Google Earth Pro

-Topographic map
(5438IV) 2018 1 1:50,000 Royal Thai Survey

Department (RTSD)

1.2. Secondary datasets

-Land-use 2014/2016/2018 - 1:4,000

Land Development
Department (LDD) and

updated from field
observation

Road 2018 - -

Department of
Highways (DOH) and

updated from field
observation

Stream 2016 - - Department of Water
Resources

Contour line - - - field observation

DEM 2018 - 5 m × 5 m

(RTSD), FGDS from
Geo-Informatics and

Space Technology
Department Agency

(GISTDA) and updated
from field observation

2. Equipment hardware
and software

2.1. GPS
-Research unit of

Geo-informatics for
Local Development

2.2. Notebook
(Acer Aspire VX15) -Personal

2.3 Software
- QGIS 3.6.0
- IDRISI 15.0
- ArcGIS 9.3.1

-Free
-Personal

-Research unit of
Geo-informatics for
Local Development

Table A12. List of abbreviation.

The Description Abbreviation

Akaike Information Criterion AIC
Area of Built-Up Index (ABUI, X3)
Arc Geographic Information System ArcGIS
Cellular Automata (CA)
Conversion of land use changes and its Effects at Small regional extent CLUE-S
Curvature Index (CI, X5)
Degree of Freedom DF
Density of Built-Up (Dj, X4)
Digital Elevation Model (DEM)
Flood Risk Susceptibility (FRS) in GWR FRS-GWR
F-Ratio F
Geographic Weighted Regression (GWR)
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Table A12. Cont.

The Description Abbreviation

Geographic Resources Analysis Support System GRASS
Integrated Geographic Information System (GIS)
and remote sensing software IDRISI
Land Transformation Model LTM
Land use (LU)
Mean square MS
Nakhon Ratchasima province some called as Korat
Normalized Contour Index (CLI, X2)
Normalized Digital Elevation Model Index (NDEMI, X1)
Ordinary Least Square OLS
Quantum GIS software package QGIS 3.6.0
Raster format in IDRISI (.RST)
Slope Length Index (SLI, X6)
Sum of Square SS
Vector format in ArcGIS (.SHP)
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Abstract: The ability to extract streamflow hydraulic settings using geoinformatic techniques,
especially in high populated territories like urban and peri-urban areas, is an important aspect of any
disaster management plan and flood mitigation effort. 1D and 2D hydraulic models, generated based
on DEMs with high accuracy (e.g., Light Detection and Ranging (LiDAR)) and processed in geographic
information systems (GIS) modeling software (e.g., HEC-RAS), can improve urban flood hazard
maps. In this study, we present a small-scale conceptual approach using HEC-RAS multi-scenario
methodology based on remote sensing (RS), LiDAR data, and 2D hydraulic modeling for the urban
and peri-urban area of Bacău City (Bistriţa River, NE Romania). In order to test the flood mitigation
capacity of Bacău 1 reservoir (rB1) and Bacău 2 reservoir (rB2), four 2D streamflow hydraulic scenarios
(s1–s4) based on average discharge and calculated discharge (s1–s4) data for rB1 spillway gate (Sw1)
and for its hydro-power plant (H-pp) were computed. Compared with the large-scale flood hazard
data provided by regional authorities, the 2D HEC-RAS multi-scenario provided a more realistic
perspective about the possible flood threats in the study area and has shown to be a valuable asset in
the improvement process of the official flood hazard maps.

Keywords: Light Detection and Ranging (LiDAR); HEC-RAS; 2D modeling; flood hazard; urban and
peri-urban area

1. Introduction

1.1. State-of-the-Art

In the last decades, with climate change and global warming, the associated natural disasters have
reached more disastrous and catastrophic scales [1–6]. Many natural disaster patterns have diversified
and modified under the pressure of climate change [7–9]. Among them, the intensification of the
hydrological cycle has made an unprecedented impact on the magnitude, spatial extend, duration and
frequency of hydro-meteorological disaster events [10–12]. Supporting this statement, many scientific
publications support the fact that the occurrence of climate-related disasters (e.g., mainly floods,
severe storms, cyclones, typhoons, droughts) have significantly increased under the abrupt changes in
hydrological climatic conditions, the ecosystems resilience to transitional (wet–dry), and other related
disturbances [13–15]. According to the Emergency Events Database (EM-DAT), in the last 50 years,
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climate related disasters have increased trifold between 1970 and 2017, from an average of 90 events in
the period 1970–1989, to an average of more than 300 events in the period that followed after the year
2000 [16,17]. Among them, flooding phenomena are the most widespread, frequent, and costly natural
disaster for the human societies [18,19], and is the most common natural hazard and the third most
damaging hazard globally after storms and earthquakes [20,21].

In this context, North East of Romania is no exception. Crossed by the Siret and Prut rivers,
which together constitute the biggest river basins in the country according to their surface, this territory
is the most vulnerable area in terms of global climate change and modification of climate patterns.
Modifications in the thermal, pluviometric and hydrological regimes have been noticed [22]. In the
last 30 years, historical flood events were recorded in this area for the entire territory of Romania [23].
Floods have become a constant threat (especially after the year 2000) as, every two years, a major flood
event was documented (e.g., 2004, 2005, 2006, 2008, and 2010) [24–27].

Besides climate change phenomenon implications, the high frequency of floods events is
also determined by a whole range of socio-economic factors such as: Land use practices (e.g.,
changing floodplain functionalities), the development of socio-economic activities in flood-prone areas,
changing living standards (e.g., urbanization—construction in high flood risk areas, urban sprawl),
and poor regulations reflected by the incapacity of the responsible authorities to implement efficient
planning policies [28–32]. The anthropic intervention on land has profoundly modified the natural
standard behavior, and the changes on land use and land management are affecting, in particular,
the river hydrology that determines the flood hazard [33]. This has ended up being a continuous
increased trend in terms of vulnerability and exposure to disasters and flood hazard [34,35]. However,
according to [36], the population has, voluntarily and under the pressure of modern society, exposed the
environment to the possibility of flooding.

In Romania, there is a lack of proper flood defense measures against floods within many river
basins. In general, the current flood defense infrastructure and hydro-technical constructions were
built-up in the 1970s and very few improvements have been made in the years after. In the same time,
over the past decades, the river regularization measures, the intensification of deforestation in the
Carpathian Mountains, and housing development on the floodplains have changed the flood regime in
the Siret and Prut river basins and their sub-basins. This has also the case for one of the most modified
watercourses in the Siret river basin: Bistriţa River. Ten reservoirs, including canals, dams, collectors,
transfer flows, protection works, and banks have been developed on the main course of the Bistriţa
River, in order to mitigate the flood effects, and for the production of electricity using hydro-power
plants [22,26,27]. Although no significant flood event has occurred on the Bistriţa River due to this
considerable protection, the recent changes in pluviometric and hydrological regimes due to climate
change, anthropic intervention on land, and reservoir clogging prove to be real challenges in the future
flood hazard assessment of this area [22].

According to [37], human societies have always tried to reduce flood impact and have always
sought protection from natural disasters by settling in safe areas or by building defense infrastructures.
Throughout human history, there has been a constant preoccupation to understand, assess, and predict
flood events and their impact [38]. Many ways were introduced in order to deal with flooding
phenomena. In this context, aspects like streamflow hydraulic modeling, flood hazard assessment,
and flood risk management have received increasing attention in the second half of the 20th century and
has become a fundamental issue in the beginning of 21st century. Flood risk management can include:
Hazard assessments, exposure assessments, vulnerability assessments, and risk assessments [39,40].
Flood hazard assessment is the most important step in the development of effective flood risk
management; the flood hazard maps are used for danger estimation and for taking preventive
conservation measures for risk mitigation. In this way, valuable information for different decision
makers regarding spatial planning, and the design of infrastructure and emergency response
preparation, become available.
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In order to conduct flood hazard assessments and propose flood risk management measures,
it is important to know what kind of comprehensive tools are available to be used in the analysis of
flood susceptibility [41]. Generally, in flood hazard assessment, field-observed data from gauging
stations are used. The existence of long records of accurate river discharge measurements is requested.
However, these observations can have several uncertainties and the data are not always available [39,42].
Earth Observation (EO) datasets (e.g., space borne, aerial images, and satellite images) together with
geographic information systems (GIS) can be used to determine the extent of flood areas and for the
production of flood hazard and risk maps [43]. Combined with the use of remote sensing (RS) and
GIS, EO datasets provide a favorable environment for relevant information processing in order to
obtain the spatial extent of flood hazard areas and flood mapping [44–47]. Even if the benefits are high,
this technique offers valuable information only for specific flood events, and this aspect is perceived as
a disadvantage because future flood details and impact cannot be investigated [42,45].

Another available tool used in the determination of flood hazard areas is streamflow hydraulic
modeling. The usage of this technique witnessed a considerable development in the recent years.
As flood events have increased significantly over the last decades under the current unpredictable
climate change behavior and human activities, the development of flood inundation models have
become a necessity [39]. Streamflow hydraulic modeling is a useful and efficient tool in the simulation
of flood events, identification of vulnerable areas, and estimation of spatially-distributed variables such
as flow velocity or depth [48]. Since 1970, considerable efforts have been made in order to improve
the capabilities and functionalities of this technique. Recent computational advances in hydraulic
modeling offer new opportunities to support decision-making and adaptation [49]. The applicability
of streamflow models have proved efficient in flood hazard and risk mapping studies [50,51], real time
flood forecasting [52], and in remodeling past flood events [53]. Also, the availability of Digital
Elevation Models (DEMs) [54] based on high-density Light Detection and Ranging (LiDAR) data have
considerably improved the accuracy of flood parameters [47]. Depending on the selected mathematical
method and scale, the complexity of models can be classified in simple interpolation methods (1D) and
spatially detailed models which solve the water equations in 2D [55]. The use of a 1D simple model is
recommended for channels, as long as the water remains in the steep slopes of the channel and no
significant water spread is expected. 1D modeling is the perfect solution in cases of flood propagation
along the main river [56,57]. Two-dimensional models are recommended in cases when the water is
expected to overtop and the flow direction may change, spreading across a large area [42,58]. However,
there are many works which make comparisons between 1D and 2D models [56,58–60].

1.2. Case Study: Aims and Objectives

In this study, we developed a method for flood vulnerability assessment under real (average
discharge) and mathematical (calculated discharge) hydrological data based on HEC-RAS, LiDAR data,
and 2D hydraulic modeling. Different from other studies [23–27,47], which provide flood hazard maps
based on hydrological data calibrated at river basin scale [23,24,26,27], we developed for the first time
in the study area flood hazard maps adapted to local environment settings and calculated discharge.
In this context, four 2D streamflow hydraulic scenarios (s1–s4) were computed in order to test the
flood mitigation capacity of hydro-technical constructions located downstream on the Bistriţa River
(North East Romania) (Figure 1a). The scenarios were based on different discharge releases (average
discharge; calculated discharge: s1–s4) from the Bacău 1 reservoir (rB1), also known as the Lilieci
storage reservoir, and from its hydro-power plant (H-pp) (Figure 1b). The average and calculated
discharges were correlated with the official operating regulations of rB1. The results provided a more
realistic perspective about the possible flood threats located downstream: rB1, an area which overlays
with the urban and peri-urban area of Bacău City; and rB2, with the Bacău 2 reservoir (Figure 1c).

91



Water 2019, 11, 1832

 

Figure 1. (a) Geographic location of the study area in North East Romania; (b) Elevation map and,
(c) Digital Elevation Model (DEM)-derived slope map of the urban and peri-urban areas of Bacău
City. Data collected by the National Administration Romanian Waters (NARW) in 2014; DEM derived
from ground point’s elevation data (0.5 point density) collected using Light Detection and Ranging
(LiDAR) techniques from aircraft. The abbreviations within the (b,c) maps show the locations of the
study site boundaries used in the 2D hydraulic modeling for the Bistriţa River, Bacău 1 (rB1) and
Bacău 2 (rB2) reservoirs, Bacău 1 spillway (Sw1) and Bacău 2 spillway (Sw2) gates, and the Bacău
1 hydro-power plant (H-pp). All spatial data was defined and projected in the Romanian national
projection (STEREO 70).

2. Methodology

2.1. Selected Site for 2D Streamflow Modeling

The study area selected for 2D streamflow hydraulic modeling and for urban food hazard
assessment covers 29.73 km2 in the urban and peri-urban area of Bacău City (Bacău County, North East
Romania) (Figure 1a). The town has a population of 196,883 inhabitants according to the 2016 census,
making it the 12th largest city in Romania. The considered Bistriţa River reach extends 2 km upstream
from the confluence of the Bistriţa and Siret rivers (Figure 1b,c). Due to more than 10 large reservoirs
and other complex hydro-technical works (e.g., dams, water gates, hydro-power plants, channels,
headraces, flood protection dikes) which equip the downstream sector of the Bistriţa watershed,
the predictive flood models are difficult to achieve through classical methods. According to [22],
even if the Bacău City was included on the settlements list potentially affected by floods in North East
Romania, the flood hazard maps provided by the authorities would not highlight this state. For this
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reason, in the last 10 years, new neighborhood areas have been built-up in the floodplain of Bistriţa
River or in the proximity of the rB1 and rB2 reservoirs.

2.2. Data Acquisition

Figure 2 summarizes the workflow chart followed in this study with the hydrological, LiDAR,
and built-up data obtaining process, and the key steps for HEC-RAS 2D streamflow and flood modeling.

Figure 2. Workflow chart of 2D streamflow and flood hydraulic modeling process using hydrological
data (Sw1) and LiDAR ground point elevation (0.5–3 m spatial density) within the urban and peri-urban
area of Bacău City: (a) Generate the LiDAR based DEM with 0.5 m spatial resolution based on LiDAR
ground point elevation; (b) manual digitalization of buildings using a high resolution orthophotos
and built-up data integration in DEM; (c) generate the four 2D multi-scenario (s1–s4) using HEC-RAS
v.5.0.3, where Qavg. was generated based on average discharge at Sw1 for 2D streamflow accuracy,
and s1–s4 was computed using calculated discharge at Sw1 for 2D flood multi-scenario development;
(d) generate the flood pattern for each computed scenario and export the individual layers (e.g., flood
extent, flood velocity, flood depth); (e) flood hazard assessment based on the built-up data and flood
depth classification according to the Ministry of Land Infrastructure and Transport (MLIT) [42].

2.2.1. Development of DEM

The DEM data used in this study comprehends airborne LiDAR technology. LiDAR DEMs
display the terrain with a high degree of horizontal and vertical accuracy, a feature that is essential to
terrain-related applications such as streamflow and flood modeling [54,61,62]. The data was obtained
from the National Administration Romanian Waters (NARW)–Siret Water Basin Administration (SWBA)
and consisted of raw ground point elevation data, at a spatial density between 0.5 and 3 m. More than
7.833 × 106 points covering almost 100 km2 was considered in the DEM computation (Figure 2a).
The final product (DEM) was obtained by means of natural neighbor interpolation technique [63].
The natural neighbor interpolation technique was preferred as it finds the closest subset of input samples
to a query point and applies weights to them based on proportionate areas in order to interpolate a
value [64]. To capture as many topographical details as possible, the DEM was computed at 0.5 m
spatial resolution (Figure 2a).
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As the considered study area overlaps a highly urbanized space, crossed by one of the most
developed hydro-technical rivers in the country, an overview regarding the current situation of the
urban built-up areas was necessary. Initially the open source database offered by OpenStreetMap [65]
was consulted. As the available database proved incomplete, the last step in built-up data acquisition
consisted of the manual digitalization of the missing built-up areas using a high resolution orthophotos
digital image (0.5 m resolution), dating from 2012. In this way, the minimum and maximum
polygonal areas of the improved built-up vector was situated between 10 m2 and 19,534 m2 (Figure 2b).
Furthermore, in order to assure the hydraulic streamflow accuracy, the obtained vector was integrated
into the DEM. The new data was rasterized and then added to the already obtained LiDAR DEM,
taking into consideration an average height of 10 m. The built-up areas affected by the inundation were
identified using the built-up vector obtained in the previous steps. All residential and industrial built-up
areas that intersected or shared a common spatial extend with the inundation extend, were considered
impacted (Figure 2b).

2.2.2. Hydrological Data

The hydrological data used in this study was extracted from the Lilieci reservoir (rB1 and H-pp)
official operating rules dated from 2012 and offered by SWBA (Table 1). According to Romanian
regulations STAS—4273/61 and STAS 4273/82, the Lilieci reservoir (rB1) is classified after the height of
the dam and its storage capacity volume, in the third importance category—having the flow sizing rate
Q2% (50-years recurrence interval) = 510 m3/s, and Q0.5% (500-years recurrence interval) verification
flow rate of 1670 m3/s. Nevertheless, the rB1 spillway gates (Sw1) and levees were designed to transit
flow rates that correspond the second importance category—Q1% (100-years recurrence interval) =
1140 m3/s and Q0.1% (1000-years recurrence interval)= 2100 m3/s. The H-pp is located at approximately
1726 m from the Sw1, on a specially designed channel and it is equipped with two Kaplan turbines
with a 180 m3/s maximum flow rate.

Table 1. The volume of water contained (million m3) in the rB1 reservoir according to specific water
surface elevations (m) and related scenarios (s1–s4) developed in the study.

Water surface elevation (m) 172.14 177.86 178.14 178.64 179.14 179.21 179.64 179.8 180.14
Volume of water contained (million m3) 0 4.8 5.41 6.77 8.18 8.4 9.66 10.1 11.18

Related scenario s1 s2 s3 s4

2.3. 2D Hydraulic Modelling

In relation to watercourses (e.g., streams, rivers, channels), the hydraulic models describe water
movement through space in three directions [66]: A downstream direction along the river channel,
a lateral direction (e.g., whenever the water begins to spill out overland), and a vertical direction which
practically defines the height of the flood. Standard flood modeling practices include 1D modeling
(upstream to downstream direction), 2D modeling (downstream and lateral directions), hybrid 1D–2D
modeling and 3D numerical models, along with hydrograph design, specified ground roughness,
and accurate digital elevation data [39,67]. For the present study, a 2D approach was adopted for a
number of reasons (Figure 2c):

• The main purpose of the study was to develop overtopping multi-scenarios in order to define the
areas with risk of flooding in a complex urban environment; where it cannot be assumed that all
flow will be parallel to the main river and where a higher hydrodynamic accuracy is required [68]
(Figure 2d,e).

• Considering that the water will not propagate in the vertical direction, the vertical water velocities
will be negligible compared to the horizontal velocities and also the kinetic energy losses due to the
vertical movement. That is why this study has considered a 2D model to develop its conclusions.

• The highly accurate representation of the river’s bathymetry and floodplain topography, which is
represented by a high resolution digital elevation’s model.
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• Two-dimensional flood propagation modeling offers additional information regarding some
characteristics of the flood, such as flow velocity and water trend propagation.

The 2D functionality builds flood models in a more accurate way, considering the flow variability
in time, and both spatial dimensions, the x and y, making it more suitable for case studies that consider
wide floodplains, urban environments, dam/levee breach situations, where the water is expected to
spread over an open, unconstrained area, in multiple directions [68]. The release of the HEC-RAS
software (5.0 version), in 2016, integrated 2D unsteady flow capabilities, offering the possibility
to analyse water propagation over a predefined surface, which is found in the form of a digital
elevations model [69,70]. HEC-RAS is a well-known software, capable of modeling a flood inundation
event [39,42]. The scenarios proposed by this study were simulated using the open source HEC-RAS
software (5.0.3 version), developed by U.S. Army Corps of Engineers (USAGE). Starting with HEC-RAS
software version 5.0, two-dimensional unsteady water flow modeling can be performed. The program
2D flow modeling algorithm solves either shallow water equations, also called bidimensional Saint
Venant equations (Equation (1)), or the 2D diffusion wave equations (Equations (2) and (3)).
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where, h is the water depth (m), p and q are the specific flow in the x and y directions (m2s−1), ζ is
the surface elevation (m), g is the acceleration due to gravity (ms−2), n is the Manning’s Roughness
coefficient (m−1/3 s), ρ is the water density (kg m−3), τxx, τyy, and τxy are the components of the
effective shear stress and f is the Coriolis (s−1). When the diffusive wave is selected, the inertial terms
of the momentum equations are neglected: ∂p/∂t + ∂/∂x

(
p2/h

)
+ ∂/∂y (pq/h) = 0 (Equation (2));

∂q/∂t + ∂/∂y
(
q2/h

)
+ ∂/∂x (pq/h) = 0 (Equation (3)) [42,45,71].

Due to their faster computational time and greater stability properties, the 2D diffusion wave
equations were preferred in the present study [70]. In this case, the floodplain flow was approximated
as a two-dimensional diffusion wave where water can flow in any direction based on the defined
topography and the resistance to flow determined by the type of land use [72,73]. A 2D model consists
of a 2D computational grid which groups/discretizes the river and its adjacent areas into a collection
of individual and connected cells, called grid cells (2D flow cells), that are used to characterize the
underlying topography [56,74]. The 2D flow area is the region (the boundary selected by the user)
where the water flow will be modeled.

A close polygonal mesh with a computation point spacing of 5 m was built in order to define
the spacing between the computational grid-cells. This managed to capture all the LiDAR terrain
characteristics. In this way, more than 2,000,000 grid cells were generated; therefore, no break line was
needed to be introduced (e.g., top of the levees, along the main channels). The computational mesh
controlled the water flow throughout the 2D flow designed area and from cell to cell. Considering
the underlying terrain and the generated computational mesh, the software developed detailed
elevation–volume relationships and detailed hydraulic property curves for each cell face (elevation vs.
wetted perimeter, area, and roughness) [70]. In this way, the water elevation values were calculated for
each centroid of the grid. The Manning’s Roughness coefficients, specific to each landcover class was
set according to [75] (Figure 3).
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Figure 3. Landcover map within the study area and Manning’s Roughness coefficient n (m−1/3 s) value
for each class according to [75].

After the geometric data is created and the roughness coefficient is set, the next step consists of
establishing the boundary conditions. This means that flood data along the boundaries of the 2D flow
area is assigned. Flow hydrographs and normal depth boundary conditions representing the average
riverbed slope are used in order to bring water into the 2D flow area. Four flood scenarios were
simulated and, for each scenario, two hydrographs and two normal depths boundary conditions were
introduced. The hydrographs were 24 h long with values recorded each hour. The upstream boundary
conditions (the hydrographs representing imposed flow condition) were located in two specific
locations downstream of Lilieci dam: At the hydropower plant of Lilieci reservoir (on the controlled
channel), and on the natural river bed (where water from the reservoir is released). The imposed water
level boundary condition was located at the downstream extremes of the channel and at the end of
storage lake control channel (in the limits of DEM). An energy slope of 10−4 mm−1 was used.

In order to ensure the stability of the model, the time steps were estimated according to the
Courant–Friedrichs–Lewy condition [70] (Equation (4)).

C =
VΔT
Δx

≤ 1.0 (with Cmax = 3.0) or ΔT ≤ Δx
V

(with C = 1.0) (4)

where, C is the Courant number, V is the flood wave velocity (m/s), ΔT the computational time step (s),
and Δx the average cell size (m) [67]. According to Equation (4), a time step of 10 s was selected. To run
a 24 h simulation at a time step of 10 s, the 2D models took between ~3 h (for Qavg. scenario generated
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based on average discharge) and ~12 h (for each s1–s4). The flood inundation (depth), flood velocity,
and other related results were obtained for each hour according to the hydrograph output interval.

2.4. Streamflow and Flood Simulation Accuracy

For accuracy purposes, a 2D water flow test simulation was computed. The data needed for
this flow accuracy assessment test consisted of average discharge values at the Lilieci reservoir (rB1)
for the year 2012 and, respectively, an orthophoto digital image (Figure 4a) and a Landsat 5 satellite
image (Figure 4b) showing the water extend in the area acquired in the same date. The results of this
simulation showed a close agreement between the water extend obtained from the model computation
and the available orthophoto digital image (Figure 4c). The performance assessment was realized
by comparing these three sets of spatial data. A difference of 5% (16 ha) was recorded between the
orthophoto digital image water extend and the 2D average discharge simulation result. A second
comparison was carried out using the Landsat 5 satellite image, acquired on 26 August 2012. The water
extend were extracted according to [23] and compared with the 2D average discharge simulation
result. In this case a difference of 9% (29 ha) was observed. Taking into consideration the presence of
vegetation which could have masked the presence of water in the digital orthophoto images and the
coarse resolution of Landsat scene, the accuracy of the flood extent assessment was judged satisfactory.

Figure 4. Streamflow 2D accuracy: (a) orthophoto (digital image) for 2012, (b) Landsat 5 (satellite
image) for 2012, and (c) results of 2D average discharge simulation result. In all images was highlighted
the water extend within inflow area (fan-delta) of the rB2 reservoir for comparison.

2.5. Multi-Scenario Development

The flood scenarios were based on hydrological data extracted from the Lilieci reservoir (rB1)
official operating rules. Upstream boundary conditions for all scenarios were developed on a simulation
of water flow over a period of 24 h, at a temporal resolution of 1 h. The average discharge scenario,
spatially displays the main channel at a water release of Q = 34 m3/s located at the Lilieci hydro-power
plant (H-pp) and a Q = 2.8 m3/s flow located at the reservoir main gates (Sw1), where the water is
released directly in the main river bed (in order to assure the river servitude discharge). Scenario 1
(s1) takes into consideration the average discharge at H-pp of the Lilieci reservoir (Q = 34 m3/s) and
the maximum water release in the case of the full opening of one gate (Sw1) of the same storage lake
(Q = 490 m3/s). The maximum values were used in the simulation for a period of 1 h, whereas for
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the remaining 23 h, the flow rates were set to their average values (Q = 2.8 m3/s). Scenario 2 (s2)
considers water flow modeling of Q = 34 m3/s at the H-pp and Q = 980 m3/s at the Sw1 when two
gates are fully opened. The distribution of time periods was the same as for s1. For scenario 3 (s3),
the same parameters were used as for s1 and s2, with the exception that a water flow of Q = 1470 m3/s
is assumed when all 3 gates of the Sw1 are opened. The last scenario 4 (s4) simulated the water flow
when all 4 gates of the Sw1 are fully open at a discharge rate of Q = 1960 m3/s. The other parameters
remained unchanged. In Table 2 are the simulation parameters for the 4 modeled scenarios.

Table 2. Streamflow features and flood multi-scenario developed in this study.

2D Streamflow
Scenario Code

No. of Open Gates
(Sw1 1 and H-pp 2)

No. Hours/Open
Gates (Sw1 1)

No. Hours/2D
Simulation

Q 3 (m3/s) (Sw1
1 + H-pp 2)

Total Q 3

(m3/s)
Q 4 (%)

from Sw1 1

Avg. discharge Servitude discharge
and H-ppavg

24 h 24 h 2.8 + 34 36.8 -

Scenario 1.–s1 1 and H-ppmax 1 h 24 h 490 + 34 524 25
Scenario 2.–s2 2 and H-ppmax 1 h 24 h 980 + 34 1014 50
Scenario 3.–s3 3 and H-ppmax 1 h 24 h 1470 + 34 1504 75
Scenario 4.–s4 4 and H-ppmax 1 h 24 h 1960 + 34 1994 100

1 Sw1: Bacău 1 spillway gates; 2 H-pp: Hydro-power plant; 3 Q: Discharge (m3/s); 4 Q: Percentage of total spillway
gates discharge capacity.

3. Results

3.1. Flood Pattern

The 2D modeling was performed using the HEC-RAS 5.0.3 version which offered various output
possibilities in terms of detailed animation and mapping of flood characteristics within the RAS mapper
feature. Following the calculation of the 4 scenarios given in Table 1, individual layers of the flooded
areas along Bistriţa River and Bacău City regarding the flood extent, velocity, water surface elevation
and depth, were exported.

3.1.1. Flood Extent

The flood extent layer consists of an Inundation Boundary shapefile vector layer capturing the areas
affected by the flood during the whole 24 h simulation period (Figure 5). According to s1, an area of
6.27 km2 within the Bistriţa floodplain, the inflow area (fan-delta) of rB2 and downstream sector of rB2
reservoir, are potentially affected by floods. Also, six buildings located within the s1 flood extent are
potentially affected. In the s2 simulation, the total flood extent occupies 8.66 km2 and 173 buildings
in the peri-urban area of Bacău City which are located in the flood zone. In the third scenario (s3),
the water release from Sw1 and H-pp spills over protection dikes and floods the built-up area of Bacău
City. The total flood extent increases to 11.46 km2 (built-up area—1.09 km2) and 2461 of buildings (e.g.,
block with flats, houses and yards, other residential buildings, industrial units) are potentially affected
by the inundation waters. The last scenario (s4) indicates the most catastrophic situation where total
flood extent is 12.82 km2, from which 1.5 km2 are built-up area, and 3780 residential buildings are
vulnerable to the flood hazard (Table 3). Overall, in the first two scenarios (s1 and s2), the flood extent
affected only the built-up areas within the Bistriţa floodplain, and in the last two scenarios (s3 and s4)
the flood extent occupied the peri-urban and urban areas.

Table 3. Flood extent area, built-up area, and number of buildings potentially affected by floods
computed for each scenario (s1–s4).

Flood Extent s1 s2 s3 s4

Total flood extent (km2) 6.27 8.66 11.46 12.82
Built-up area (km2) 0.001 0.04 1.09 1.5

Number of affected buildings 6 173 2461 3780
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Figure 5. Flood extent derived from the HEC-RAS 2D multi-scenario generated based on LiDAR data
and average discharge; s1–s4 was computed using calculated discharge (see Table 2).
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3.1.2. Flood Velocity

Another important result of the 2D modeling process is flood velocity. This is computed by
recording the maximum velocity for each cell in the computational mesh regardless the time when it
was measured in the whole 24 h simulation period (Figure 6). According to all computed scenarios
(s1–s4), the 0.01–1 m/s velocity class has the highest frequency (88.3%), which corresponds with the
average velocity recorded downstream rB2 (0.6 m/s). In the first two scenarios (s1 and s2), all vulnerable
buildings are potentially affected by the 0.01–1 m/s flood velocity class, except three buildings located
in front of Sw1 or along the natural watercourse of Bistriţa River. In the case of s3, only 9% of
total affected buildings are threatened by 2 m/s flood velocity, and in case of s4, only 14% of total
built-up area is potentially affected by high velocity of water (1–5 m/s). However, due to floodplain
roughness and hydro-technical works within study area, the high flood velocities (>5 m/s) are registered
only at the Sw1 and Sw2 gates, and through the narrow sections between rB1 and rB2 river sector
(Table 4). Overall, in each computed scenario, the flood velocity is not the main threat for built-up
area, but the river morphology (e.g., river bed, banks, alluvial deposits), and the hydro-technical
works conservation stage (e.g., dams, channel, bridges) can alter through time. For these reasons,
the maintenance of the flood mitigation equipment within urban and peri-urban areas must be a
priority for the competent authorities.

Table 4. Number of buildings potentially affected by floods vs. flood velocity (m/s) computed for each
scenario (s1–s4).

Flood Velocity (m/s) s1 s2 s3 s4

<1 6 170 2260 3238
1–2 3 184 353
2–3 17 189
3–4
4–5

3.1.3. Flood Depth

The maximum flood depth maps were generated by the 2D model by taking into consideration
the maximum depth for each cell, no matter the time when that maximum depth was registered during
the whole 24 h simulation period (Figure 7). According to s1 and s2, 95.5% of vulnerable buildings
are potentially affected by a flood depth which does not exceed 1 m depth. In case of s3, when water
levels exceed the height of protection dikes and inundates the urban and peri-urban area of Bacău City,
1174 buildings will be affected by floods which do not exceed 1 m in depth; 39.4% of the vulnerable
built-up areas are potentially affected by floods with a depth between 1–2 m, and 12.7% by floods with
a depth between 2–3 m. In the same scenario (s3), only 4 buildings are located in areas with water that
exceeds 3 m. In case of s4, the most catastrophic scenario taken into account in this study, 34.7% of
buildings would be affected by floods with <1 m depth, 30.9% by floods with depths between 1–2 m,
25.9% by floods with depths between 2–3 m, 7.9% by floods with depths between 3–4 m, and the rest
of 0.4% (18 buildings) by floods that exceed >5 m depth (Table 5).

Table 5. Number of buildings potentially affected by floods vs. flood depth (m) computed for each
scenario (s1–s4).

Flood Depth (m) s1 s2 s3 s4

<1.0 6 165 1174 1312
1.0–2.0 8 971 1171
2.0–3.0 312 980
3.0–4.0 4 299
4.0–5.0 18
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Figure 6. Flood velocity derived from the HEC-RAS 2D multi-scenario generated based on LiDAR
data and average discharge; s1–s4 was computed using calculated discharge (see Table 2).
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Figure 7. Flood depth derived from HEC-RAS 2D multi-scenario generated based on LiDAR data and
average discharge; s1–s4 was computed using calculated discharge (see Table 2).
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3.2. Flood Hazard Assessment

Usually, the flood hazard assessment is based on quantifiable variables like flood extent,
water velocity or water depth, and indicate the vulnerability of built-up areas to hydrological
events with possible destructive impact. In this study, we provided the flood hazard assessment using
only the flood extent and flood depth resulting from the four HEC-RAS 2D scenarios (s1–s4). The flood
velocity was not taken into account because is a constant variable in all four flood scenarios (88.3%
from total built-up area are affected by the 0.01–1 m/s velocity class). To generate the flood hazard
categories, the water depth for each flood extent was classified according to the Japanese criteria of
the Ministry of Land Infrastructure and Transport (MLIT) [42]. The criteria suggest five flood hazard
categories: H1—very low hazard (flood depth < 0.5 m); H2—low hazard (flood depth between 0.5–1 m);
H3—medium hazard (flood depth between 1–2 m); H4—high hazard (flood depth between 2–5 m);
H5—extreme hazard (flood depth > 5 m) (Figure 8). The flood hazard classification methodology and
hazard description based on flood depth is detailed in Table 6.

Table 6. Flood hazard classification based on water depth according to the MLIT [42].

Flood Hazard Flood Depth (m) Hazard Classes Hazard Description

H1 <0.5 Very low Flood does not pose hazard to people and on-foot
evacuation is not difficult.

H2 0.5–1 Low
Flood water poses hazard for infants and on-foot
evacuation of adults becomes difficult; evacuation
becomes more complicated.

H3 1–2 Medium Flood depth can drown people; people may be safe
inside their homes.

H4 2–5 High
People are exposed to flood hazard even inside their
homes and evacuate towards the roof of their homes
is suggested.

H5 >5 Extreme
Built-up structures like homes may get covered by
the flood; people may get drowned even if they
evacuate towards the roof of their homes.

According to s1, even if all 5 hazard classes are encountered, all vulnerable buildings are situated
in the very low class of hazard (H1). In case of s2, 86.7% of total vulnerable buildings are very
low affected by flood (H1), 8.75% are low affected by flood (H2), and the rest of 4.6% are located in
the medium exposed area to flood hazards (H3). In s3 situation, the number of potentially affected
buildings is significantly increased: H1—674 buildings; H2—500 buildings; H3—971 buildings;
and H4—316 buildings. Also, this is the moment when the floods will affect the urban area of Bacău
City. According to s4, more the 34.3% of total flood extent are located in the high (H4) and extreme
(H5) hazard classes, the number of potentially affected buildings exceed the all NARW scenarios based
on recurrence flood interval probabilities: H1—694 buildings; H2—618 buildings; H3—1171 buildings;
H4—1279 buildings; and H5—18 buildings (Table 7; Figure 9a,b).

Table 7. Number of buildings potentially affected by floods vs. flood hazard classes computed for each
scenario (s1–s4).

Flood Hazard Classes 1 s1 s2 s3 s4

H1 (Very low) 6 150 674 694
H2 (Low) 15 500 618

H3 (Medium) 8 971 1171
H4 (High) 316 1279

H5 (Extreme) 18
1 Flood hazard classes according to [42] (see Table 6).
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Figure 8. Flood hazard maps based on flood depth classification according to the MLIT [42] (see Table 5).
Data derived from HEC-RAS 2D multi-scenario generated based on LiDAR data and average discharge;
s1–s4 was computed using calculated discharge (see Table 2).
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Figure 9. The distributions of flood hazard classes within (a) flood extent area, and (b) built-up area,
according to MLIT [42] criteria (see Table 6). The statistics apply for all 2D multi-scenarios (s1–s4) in
each chart.

4. Discussion

Floods can cause a tremendous amount of damage, especially in the highly regulated river sectors
overlaid with highly urbanized areas along the floodplain. For this reason, the multiple viewpoints,
methods, assumptions, and future possibilities adapted to new trends (social, economic, natural)
and determined by different factors, play an important role in the flood hazard management and
establishing flood-vulnerable areas [39]. Even in a highly regulated river system, flood hazards exist;
properties and lives are in danger. A flash flood, dense precipitation, or an error in the discharge
flow at the gates of the reservoirs can turn into a catastrophic flood event. For this reason, a good
preparation regarding this topic is always welcomed. As remote sensing (RS) techniques continue
to improve and the availability of data increases, more RS data will be integrated and used in flood
modeling. In this context, according to [54], 2D LiDAR DEM based flood simulations provide the best
results. The horizontal, vertical accuracy is better on flat terrain (such as wide floodplains) and the
integration of vegetation and building heights offer the perfect support for flood hydraulic simulations
and accurate water flow propagation.

Due to the unavailability of LiDAR surface elevation points, we were not able to perform the
simulation on a Digital Surface Model (DSM with vegetation and building integration). We computed
the DEM and manually integrated the building heights. Manually integration of building heights
(in the case of data unavailability) can be a solution. Prior to this step, we wanted to check if
any open source satellite imagery could be used in order to extract the built-up areas. Initially,
a Landsat 8 satellite image dated 11 August 2018 was downloaded using the US Geological Survey
(USGS) website [76], pre-processed and processed—including radiometric and atmospheric calibration,
maximum likelihood classification (MLC), classification accuracy assessment—in order to extract the
areas containing artificial surfaces, residential, commercial, industrial, and transportation infrastructure.
A full methodology of the previous mentioned steps can be consulted in the works of [77]. In this way
a full perspective regarding the current situation of the urban development throughout the floodplain
can be obtained. However, even though this method is practical and can be used in areas where no
built-up data is available, the results proved to be at a coarse resolution and impracticable for the
level of study we proposed. Therefore we decided to extract the built-up areas at a higher resolution.
We manually digitized the missing built-up areas using an orthophotos digital image, dating from 2012.
The association of open source imagery (Landsat, Sentinel) and LiDAR data offered unsuitable results.

The 2D flow models and LiDAR DEMs prove to be the perfect combination when it comes to
the flood hazard assessment and accurate inundation delineation. Due to its accurate representation
of the complex hydraulic conditions that can be found in floodplains (e.g., channels, confluences,
bridges, water reservoirs, roads, etc.), 2D hydraulic models can capture the hydraulic behavior of the
river in a more accurate way. Water propagation, extent, velocity, and elevation can be reproduced
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under real and hypothetical flow data and boundary conditions input. In this way we can simulate for
different purposes the past flood events, using registered hydrographs at gauging stations, or we can
imagine a theoretical hypothesis and, in this way, improve flood hazard and risk maps. This method
is the best option in case of flood map creation due to possible reservoir dam failure at various dam
discharges. On the other hand, the unavailability of high resolution DEMs can end up underestimating
the flood hazard and its dangers. A precise representation of reality is mandatory for accurate flood
mapping process.

Our study was focused on a highly regulated and well-equipped hydro-technical river sector which
overlays the urban area of Bacău. This proved to be an impediment in the validation process of the 2D
hydraulic modeling, as no notable flood event was recorded here in the recent years. Controlled water
discharges from the reservoirs located upstream protect the areas downstream. For this reason,
a considerable development of built-up areas and urban sprawl was noticed downstream, on both
sides of the riverbed. Having only the average official discharges for the year 2012 available at the
H-pp and Sw1 to model, we still managed to model the flood hazard in the area based on the official
operating rules of the dam Sw1 and taking into consideration the reservoir maximum water retention
capacity (Figure 10a).

Figure 10. Comparison between flood extent maps within the urban and peri-urban area of Bacău City:
(a) 2D HEC-RAS multi-scenario based on average discharge and calculated discharge (s1–s4) developed
in these study, and (b) official flood extent maps (NARW) [78] based on large-scale hydrological
and spatial data, calculated for 10% (10-year), 5% (20-year), 1% (100-year), and 0.1% (1000-year)
recurrence intervals.

Furthermore, we managed to compare the 2D flood extent results with the official available
hazard and risk maps available in [78], which was realized under the Directive 2007/60/EC of the
European Parliament and Council [79,80] on the assessment and management of flood risks (Figure 10b).
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The comparison results showed similarities even when the input material for their computation were
at different scales and resolution. According to the National Administration “Romanian Waters”,
the hazard and risk maps for Bistriţa River were realized for the entire catchment at a spatial resolution
between 5 and 10 m, while our analysis used a local 0.5 m input DEM where all the topographical
details and hydraulic conditions were taken into consideration. Additionally, in a highly regulated
river sector where several reservoirs are present, such as in our study area, the flood hazard is governed
by their operating rules and management. Any mistake in the manipulation of water discharge can
prove catastrophic for the areas downstream.

5. Conclusions

The 2D hydraulic modeling using HEC-RAS (v 5.0.3) and high-density LiDAR data applied
for streamflow simulation within the urban and peri-urban area of Bacău City (North East
Romania), produced sufficiently accurate information regarding flood hazard vulnerability. Based on
multi-scenario development using different discharge releases from the rB1 (average discharge;
calculated discharge: s1–s4) and its hydro-power plant (H-pp), the following concluding remarks can
be summarized:

• Combining 2D hydraulic modeling with RS LiDAR data and local hydrological parameters proved
to be an efficient method in order to improve the streamflow and spatial distribution of water over
a densely urbanized and well-equipped hydro-technical area, in case of a flood event triggered by
different discharges from the rB1 and its hydro-power plant (H-pp).

• The multi-scenario approach allowed the testing of flow capacity throughout the rB1 downstream
floodplain, determining in this way, the discharge value which can cause a flood event. s1 and s2
scenarios kept the flood extent inside the river levees, meaning that a discharge up to 1160 m3/s
for a period of one hour can be handled by the hydro-technical works downstream. The flood
only starts to spread over the urban and peri-urban areas of Bacău City at a discharge rate over
1160 m3/s (s3 and s4).

• Scenario 2 (s2) allows a discharge of 6,636,960 m3 of water, in a 24 h period (according to the input
hydrograph) and captures the flood extent in the case where almost all the contained water in
rB1 (Lilieci reservoir) is discharged. At a water surface elevation of 178.64 m and taking into
consideration the existing LiDAR DEM, the reservoir stores 6,770,000 m3 of water.

Overall, the 2D hydraulic modeling multi-scenario results can be exported into a set of flood
hazard parameters such as flood depth, flood extent, flood velocity, or water surface elevation; and can
answer real questions regarding the flood hazard threat at local level. Developing streamflow scenarios
on a small-scale level is a very important aspect for any flood mitigation effort, especially in the urban
areas located along main rivers, because large-scale analysis (river basin analysis) understates flood
risk perception. Due to the adaptability of the 2D streamflow hydraulic model proposed in this study,
the method can become a valuable asset in flood mitigation. However, a LiDAR DEM based 2D flood
simulation is essential for every urbanized environment in the context of climate change and modern
society development pressure and trends.
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The following abbreviations are used in this manuscript:

DEM’s Digital Elevation Models
DSM Digital Surface Models
EM-DAT Emergency Events Database
EO Earth Observation
GIS Geographic Information System
HEC-RAS Hydrologic Engineering Canter’s—River Analysis System
H-pp Hydro-power plant
LiDAR Light Detection and Ranging
MLC Maximum Likelihood Classification
MLIT Ministry of Land Infrastructure and Transport (Japan)
NARW National Administration “Romanian Waters”
rB1 Bacău 1 reservoir (Lilieci storage reservoir)
rB2 Bacău 2 reservoir
RS Remote Sensing
s1–s4 2D streamflow hydraulic scenarios used in this study
SWBA Siret Water Basin Administration
Sw1 Bacău 1 dam spillway gates
Sw2 Bacău 2 dam spillway gates
USACE U.S. Army Corps of Engineers
USGS US Geological Survey
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Abstract: Floods are critical disasters affecting urban areas and their users. Interactions with
floodwater spreading and built environment features influence the users’ reaction to the emergency,
especially during immediate disaster phases (i.e., evacuation). Recent studies tried to define simulation
models to evaluate such exposure-related criticalities, assess individuals’ flood risk, and propose
risk-mitigation strategies aimed at supporting the community’s proper response. Although they
generally include safety issues (e.g., human body stability), such tools usually adopt a simplified
approach to individuals’ motion representation in floodwaters, i.e., using input from non-specialized
databases and models. This study provides general modelling approaches to estimate evacuation
speed variations depending on individual’s excitement (walking, running), floodwaters depths
and individuals’ features (age, gender, height, average speed on dry surfaces). The proposed
models prefer a normalized evacuation speeds approach in respect of minimum motion constraint
conditions to extend their applicability depending on the individuals’ characteristics. Speed data
from previous experiments are organized using linear regression models. Results confirm how
individuals’ speed reduces when depth and age increase. The most significant models are discussed
to be implemented in evacuation simulation models to describe the evacuees’ motion in floodwaters
with different confidence degree levels and then assess the community’s flood risk and risk-reduction
strategies effectiveness.

Keywords: flood risk assessment; flood evacuation; evacuation modelling; behavioral design; urban
built environment at risk; human motion in floodwaters

1. Introduction

Floods have been provoked over 93,000 victims worldwide in the years 2000–2018, being
the second most disruptive natural disaster (after earthquakes) affecting our communities’ safety
(Source: EMDAT (2019): OFDA/CRED International Disaster Database, Université catholique de
Louvain, Brussels, Belgium, https://www.emdat.be/, last access: 16 December 2019). Only in Italy,
in the years 2014–2018, there were over 70 dead or missing persons, over 30 wounded, and over
21,000 individuals who had to evacuate and were homeless because of such kind of events (Source:
http://polaris.irpi.cnr.it/report/last-report/, last access: 16 December 2019). In this general context,
urban areas are the riskiest scenarios because of the combination between the built environment (in the
following, BE) features (defined as a network of buildings, infrastructures and open spaces) and
the high density of hosted exposed inhabitants [1–3]. Previous works demonstrated the significant
importance of the interactions between the individuals and the flood-affected BE during the immediate
response phases, and in particular during the emergency evacuation process [4–6]. In such conditions,
the hosted population can attempt to move (drive or walk) in floodwaters-affected scenarios towards
“safer” areas, with the aim to reduce threats [7–12]. Most of the flood-related fatalities occur in outdoor
spaces during such activities and so it is essential to understand the underlying phenomena [13].
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This is particularly evident in the following relevant scenarios [10,13–21]:

• Pre-emergency evacuation strategies cannot be implemented because of lack of early warnings or
Civil Body Protection/First Responders management activities, thus making ineffective coordinated
motor vehicles and public transport-based solutions (including, e.g., scenarios in underdeveloped
countries);

• Flash flood conditions can exist;
• Flood-affected areas are pedestrian areas and/or the majority of the exposed population is placed

outdoors, e.g., along the streets and the public squares;
• The motor vehicle evacuation cannot be performed because of specific conditions, e.g., (a) the

urban space configuration (e.g., see compact urban fabric in historical scenarios); (b) critical effects
in vehicle use along the evacuation roads, essentially due to vehicle-density related issues, such as
traffic jams; (c) prevalence of pedestrian evacuees in respect to motorized ones (e.g., because of
socio-economic factors, as for example, in underdeveloped countries);

• Distances to the evacuation areas (or the flood-affected area dimensions) are quite limited, such
as in case of shelters in urban areas or “invacuation” strategies (According to PD 25111:2010,
this evacuation solution concerns “the movement of people to pre-identified areas inside the
building/site in order to protect them from external dangers during an incident”. In flood
evacuation, building occupants can remain inside and move towards the higher stories, while
individuals placed in the building surrounding try to reach the nearest one and then move
upstairs), and they should be reached on foot;

• Disruption of the mobility system can appear as leading people to move on foot;
• The real emergency scenario is quite different from what is expected, thus affecting one of the

previous elements;
• Some First Responders activities can imply the movement on foot to support the population in

the emergency scenarios.

The following cases can be combined and represent only an exemplification of the main conditions
based on the literature review.

In such scenarios, individual’s behaviors could lead to additional risks, too [6,10,22].
In this way, a brief overview on the current topics concerning a better risk assessment, counting

for people moving in floodwaters and a proper effectiveness analysis of risk mitigation strategies, is
reported in the next sub-sections, to have a general reference framework:

• Which are the risk-affecting factors in BE, by underlining the population-related contribute
(Section 1.1);

• Which tools can be used to merge such two aspects to evaluate the effectiveness of the evacuation
(Section 1.2);

• Which models can be used to evaluate man-floodwaters interactions in pedestrian evacuation
(Section 1.3).

In particular, this study deals with this last issue, to improve the development of pedestrians’
evacuation simulators in the context of flood disasters.

1.1. BE Risk-Affecting Factors and the Population-Related Contribute

Risk-increasing factors concerning the urban areas can be distinguished between those related
to the BE itself (by including physical and management-related issues) and those related to the
hosted population.

About the BE itself, they can be mainly related (but not limited) to [1,5,23–27]:

• Location of settlement on floodplains;
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• Land use-related issues, by including a lower capacity of absorbing rain by urban surfaces (e.g., low
porosity of urban surfaces, especially in high-built up areas) in respect to the ones in rural areas;

• Compact urban areas layout which can increase open-channel related effects in floodwater spreading;
• Insufficient sewer systems, because, e.g., of poor maintenance plans and actions as well as of the

variations in functioning conditions (e.g., severity of floods different from the one used in their
design) also due to climate-change effects;

• Vulnerability of buildings, suffering damage because of a low resistance level in respect to
floodwater strains (e.g., elevations, foundations);

• Low level of control of possible hazard conditions, also in relation to poor flood sensor systems;
inadequate management of immediate pre-disaster and disaster conditions, with the possible lack
of early warning systems, which can provoke a delay in emergency action starting.

From the inhabitants’ perspective, the general high population density in urban BE (in terms of
inhabitants’ number and localization on the urban layout) is matched with additional exposure-related
factors such as social-economic factors, individuals’ risk perception and awareness/preparedness and
behavioral issues, which can lead people to additional dangers in emergency scenarios [5,10,19,28–30].

In such a framework, the two main elements characterizing the floodwaters and their direct effects
on evacuees are their depth D (m) and speed Vf (m/s) [7–11]. In critical D-Vf conditions, fatalities can be
mainly due to: (a) interaction with debris dragged by floodwaters, with the possibility of minor injuries;
(b) stability loss (e.g., for pedestrians, they can be due to possible buoyancy or body failure/dragging
phenomena), with the consequent possibility of drowning and death. Similar problems can be related
to both people moving on foot or by (motor) vehicles [7,8].

Besides, some human behavior in floods could increase risks during the evacuation process [4,6,
10,13,17,29,31–33]:

• Emergency planning elements: poor awareness/preparedness levels of the population can bring
people to adopt risky behaviors, underestimate the impact of disasters conditions, and delay the
starting of safety procedures. Meanwhile, a similar result can be provoked by ineffective early
warning systems. Emergency plans can be not well known by the population, hence making
impossible to properly identify “safe” areas and gathering points, as well as evacuation paths;

• Surrounding BE elements: people generally try to move towards the nearest areas with lower
floodwaters depth and speed (e.g., ground elevations), by looking for direct support of unmovable
obstacles to move in floodwaters (e.g., fences, street furniture). Meanwhile, they try to modify
their motion direction to avoid all the obstacles dragged by the flood (e.g., cars, debris);

• Other individuals and belongings: social share identity (including phenomena connected to
information exchange) and attachment-to-things effects are time-wasting behaviors that can delay
or slow down the evacuation process. Such elements can also bring people to move towards
“unsafe” areas (e.g., to rescue other individuals, to retrieve some personal belongings, or to guard
the properties). People can also prefer to move in a group by sharing evacuation direction and
motion speed;

• Floodwaters: “curiosity” effects lead individuals to delay the evacuation starting to observe
floodwaters conditions or event recording with smartphones or cameras. Meanwhile, when
floodwaters depth and speed increase, the possibility to freely move is reduced and the evacuees’
motion process is slowed down, hence increasing the overall evacuation time.

All these behaviors could lead people to interact with critical floodwater levels, by leading people
to be exposed to more critical floodwater conditions because of, e.g., not being able to choose the
proper evacuation direction or spend time in dangerous areas.

1.2. Simulation Tools to Risk-Assessment and Risk-Mitigation Strategies Evaluation

Simulation models are effective evaluation tools for safety planners and designers for coordinating
preparedness-oriented and response-oriented efforts of local Authorities and First Responders. Anyway,
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they should be developed by pursuing a behavioral point of view, to include the man-floodwater and
the man-BE interactions as focus assessment elements [1,5,13,21,34].

As for other kinds of disasters [35–37], evacuation simulators could support this process by jointly
representing behavioral issues, floodwater spreading and BE modifications over time and space. Most of
the current simulators generally deal with a territorial/full urban scale, by mainly using motor vehicles
or public transportation as evacuation means [5,15,26,38–40]. Such kind of model could introduce
simplifications in the evacuation rules by adopting “macroscopic” models (e.g., density-related models
for motion estimation). This choice is reasonable if considering the widescale application but can limit
the simulator effectiveness while it locally evaluates threats for the population, especially in case of
local interactions with the floodwaters (i.e., for pedestrian evacuation). Meanwhile, the number of
simulators dealing with pedestrian evacuation seems to be still limited [13,21,34]. In view of the above,
“microscopic” approaches should be preferred [10,34,41]. These approaches assign motion rules to each
of the simulated individuals to derive the overall evacuation phenomena and then estimate the safety
level for the population [21]. Hence, they allow evaluating risks at the typical scale (dimension and
configuration) of each element composing the BE (i.e., streets and other open spaces, buildings) [13].

1.3. Modelling Pedestrians’ Evacuation in Floodwater: Current Approaches and Limitations

The “microscopic” approach defines the overall motion phenomena by overlapping the effects of
different behavioral rules assigned to each simulated evacuee [10,41]. To this aim, it is important to
analyze the behavioral rules of an “isolated” pedestrian, that is, an individual moving into the floodwater
by himself/herself (free-flowing movement conditions). Additional interaction behaviors could be then
overlapped to this, to define the overall motion rules. Furthermore, individuals’ variations in behavior
could be randomly assigned, by allowing to describe different evacuees’ attitude in the evacuation
process. In this view, besides the definition of qualitative behavioral rules in flood evacuation [6,10,17],
the determination of motion quantities plays a pivotal role for the following reasons.

Previous studies demonstrate how differences between general-purpose and flood-related
motion quantities exist, especially about the evacuation speed, which is affected by the levels of
the floodwaters [10,33,42,43]. Efforts to assess the individual’s evacuation speed vi (m/s) have
been recently performed through real-world event analysis [10] or laboratory experiments in open
channels [33,44] or pools [42]. Nevertheless, only a limited number of works succeeds in overlaying
the main constraints due to [33,36,42]: (a) the limited number of individuals, also in relation to the
different age classes; (b) the effects of individuals’ excitement conditions (i.e., walking versus running).

This is the object of the present paper: D is here considered as the main floodwater evacuation
affecting parameter in both walking and running conditions, as well as, its correlations with individuals’
gender and age.

2. Phases, Materials, and Methods

This work is organized into three main phases:

1. General characterization of the selected database, according to Section 2.2 methods. The motion
speeds in walking and running conditions are compared depending on D and on the individuals’
gender. In this way, it can be possible to respectively trace general relationships depending on
floodwater-characterization constraints to motion and to individuals’ main features;

2. Modelling of the speed variation (normalized speed and dimensional speed variations) depending
on D and in respect of the dry surface motion, according to Section 2.3 methods. In particular,
dry surface motion speeds are retrieved according to average literature values depending on
the age [43]. The individuals’ height (i.e., the knee height from the ground) is considered in the
model because of the related influence assessed by preliminary works on motion and human
body stability conditions in floodwaters [9,44];
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3. Modelling of the normalized speed variation depending on D in respect to the minimum
constraint and maximum excitement conditions for the considered database, according to
methods in Section 2.4. Such model delves into specific experimental conditions and sample
features, to generalize speed estimation data regardless of dry surface motion conditions data.

2.1. Materials: Original Input Database Characterization

The database by Bernardini et al. [44] is used as the input reference for the model definition
(Raw data are available as supplementary files). More than 200 individuals were involved in laboratory
experiments by moving in walking and running excitement conditions along a 24-m-long path into
an open channel (rectangular section of 1 × 1 m; concrete horizontal bottom surface; individuals
wearing fishermen’s suits). A total of 555 samples compose the overall database.

The volunteers’ sample was defined according to the Italian National age statistics and included
individuals from 8 to 83 years old (males: 56%, females: 44%). Tested floodwaters D were equal to 0.2,
0.3, 0.4, 0.5, 0.6 and 0.7 m, by considering still water (Vf = 0 m/s) to better focus on the effects of depth
on vi. For each individual involved in the test, the original database includes: (a) the motion speeds vi
(m/s) referred to the specific tested floodwaters and excitement conditions; (b) the individuals’ features
(i.e., sex, gender, height, mass, body mass index); (c) the number of performed tests. Each individual
performed the test once in walking and running conditions, for a given D, and 31 individuals performed
the test for all the D values.

2.2. General Methods for Model Definition and Characterization of the Selected Database

A preliminary analysis to assess the relative position of the knee height in respect of the floodwater
depth has been performed, to evidence if the original database could be affected by the individuals’
height H (m). In fact, previous works on human body kinematics suggest that differences in individuals’
motion could exist for intermediate D values (e.g., 0.4 to 0.6 cm) in case the knee is outside or inside the
water level. In particular, a physiological constraint (i.e., “the difficulty to articulate the motion of the
legs”) can be induced while moving the knee and the part of the above leg inside the floodwaters [44].
In general terms, the knee height K (m) can be calculated as 0.285 × H [44,45]. The distribution of K-D
((cm) or (m)) in respect to D tested values is assessed and shown by a boxplot comparison, while linear
regression is provided to evidence the general trend of the sample.

Then, the database has been mainly characterized by the comparison between walking and
running conditions through vw,exp-vr,exp (m/s) pairs analysis depending on:

• D, to evaluate the impact of floodwaters constraint conditions. It could be assumed that higher
D implies smaller differences between vw,exp and vr,exp [33,44];

• Gender, to evaluate difference among the two excitement conditions and compare them with
previous works outcomes (i.e., males generally moves faster than females) [43].

Linear regression models are tested by reporting the R2 values to focus on the direct correlation
between the two assessed variables. Then, simple models to be integrated into simulators can be
traced. According to previous works on the original database [44], all the models have been evaluated
through the Bisquare regression method, which allows finding the regression that fits the bulk of the
data and minimizes the effect of outliers.

For each of this analysis, the vw,ex = vr,exp line (no differences between walking and running
conditions) is shown to confirm if the above regressions are over this ratio.

2.3. Methods for Speed Variation Modelling Depending on D and Dry Surface Motion Conditions

The analysis methods described in this section are applied to the whole original sample, regardless
of the number of tests performed by the volunteers. The database significant dimension is similar to
those of previous experimental activities chosen as reference works [43,46].
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Previous studies tried to derive correlations between the individuals’ speeds vi (m/s) and D in
absolute terms (m/s) [33,34,44], but only a limited number of works tried to define such correlations in
respect of free-flowing and dry surface motion conditions [33], that is, the no-constraint conditions for
human body motion also in evacuation conditions. The use of such normalized speed could instead
improve the generalization of simulation models by allowing to overlap normalized speed variations
and the main motion-affecting individuals’ parameters (e.g., age, gender) [43,46]. Thus, this second
approach has been followed, and the individuals’ speeds vi (m/s) have been expressed in relation to
maximum or ideal evacuation speeds and so in non-dimensional terms (-).

The input data are then organized to trace the variation of speed in walking and running conditions
depending on the dry surface motion conditions according to literature values [43]. For each database
element, the average motion speed on dry surfaces (m/s) is calculated as a function of the related
individuals’ age, according to the correlation curves given by previous studies on wide databases
(see the curves in Figure 1). Hence, two values of dry surfaces average motion speed depending on age
are provided for each individual: vid,a, according to the curve a [46] (see Figure 1a) and vid,b, according
to the curve b [43] (see Figure 1b). These two curves offer different age-related values, and in particular,
the curve b [43] can be selected to consider precautionary conditions in normal motion since it generally
offers speed values lower than the one of the curve a [46].

 
(a) (b) 

Figure 1. Reference curves for speed normalization depending on the individuals’ age according to:
(a) the curve a, to derive vid,a [46] and (b) to the curve b, to derive vid,b [43].

Then, Equation (1) is applied to derive the individual’s normalized speed v* (-) according to the
two considered curves, in running (v*a,r and v*b,r) and walking (v*a,w and v*b,w) conditions:

v*a,r = vr,exp/vid,a, v*b,r = vr,exp/vid,b, v*a,w = vw,exp/vid,a, v*b,w = vw,exp/vid,b (1)

These values are then organized according to the following modelling approaches, to retrieve
according to linear regression models for the prediction of the output in both walking and running
conditions:

1. Variation of the normalized speed v* in respect of D experimental classes: the distribution of v* in
respect of D experimental classes takes advantages of boxplot analysis and graph to evidence if
and how the input data are widespread and if outliers are present. Input data involve the whole
sample and male (outlined by subscript M) and female (outlined by subscript F) separate samples
to highlight the differences due to gender. In general terms, it is expected that running regression
model should involve higher v* values, especially for lower D-related input data;

2. Variation of the normalized speed v* in respect of K-D: linear regression models are tested. Such
modelling approach allows detecting the effects of the reciprocal position of knee and floodwater
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levels. Male and female samples are shown in the regression model but considered together
in the regression model to focus on the main factor influencing human behavior, which is the
individuals’ height. It is expected that v* should be equal to or higher than 1 when the knee is
placed outside the floodwaters, especially in running conditions.

In addition, a dimensional age-evacuation speed (m/s) model has been tested for the different
D values according to a polynomial (4th degree) regression model, which considered the general
literature reference curves trend [43,46]. This model allows tracing the differences between the motion
curves in no-constraint conditions versus D-constraints conditions. Male and female samples are
considered together in the regression model. This choice allows: (a) focusing on the main factor
influencing the human behavior, which is the individuals’ age and (b) comparing this study curves
with the ones of reference works. The regression models are tested for the whole sample (average
behavior of the tested population) and for the maximum values of the experimental pairs (maximum
limit behavior). Meanwhile, minimum values are not considered due to their similarities regardless of
the specific D values, as demonstrated in the original input database assessment [44]. It is assumed
that lower D curves could produce speed values higher than the references curves, especially for
running conditions.

2.4. Methods for Normalized Speed Variation Modelling Depending on D, Minimum Constraint, and
Maximum Excitement Conditions for the Considered Database

The analysis reported in this section concerns the database subsample including the individuals
who performed all the experiments for each D. It includes 186 tests performed by 31 individuals
(age characterization: mean age of 32 years, standard deviation of 9 years, range from 21 to 66 years;
height characterization: mean height of 1.71 m, standard deviation of 0.07 m, range from 1.55 m to
1.83 m; 16 females and 15 males). The analysis of such data is considered to trace the variation of speed
in walking and running conditions depending on the maximum excitement conditions (running) with
minimum floodwater experimental constraint (D = 0.2 m). In fact, it is possible to compare the motion
behaviors of considered volunteers for each of the tested conditions.

For each individual, the ideal normalized speed with respect to the maximum excitement-minimum
experimental constraint conditions (-) is calculated as in Equation (2):

vi,r,0.2 = vr,exp/vr,0.2, vi,w,0.2 = vw,exp/vr,0.2 (2)

where vr,0.2 (m/s) is the individuals’ running speed for D = 0.2 m. For this reason, all the vi,r,0.2 for
D = 0.2 m will be equal to 1. The distribution of vi,r,0.2 (cm) in respect to D tested values is assessed and
shown by a boxplot comparison. Linear regression is provided to evidence the general trend of the
sample for separated running and walking excitement conditions. Due to the smaller sample dimension,
it is assumed that the regressions are evaluated by collecting males and females in a unique sample.

In addition, the linear regressions are also tested for the sub-sample of individuals who moved
with the knee inside and outside the floodwater, according to the same procedure. To this end,
Equation (3) has been applied to separately retrieve the normalized speed value in running vi,r,max and
walking vi,w,max excitement conditions:

vi,r,max = vr,exp/vr,ma, vi,w,max = vw,exp/vw,max (3)

where vr,max and vw,max are respectively the maximum running and maximum walking speed.
This normalization procedure allows to consider the effective D value for which the individual
had the maximum motion speed. Hence, the boxplot distribution representation can have vi,r,max and
vi,w,max values equal to 1 also for D > 0.2 m.
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3. Results

3.1. Characterization of the Selected Database

Figure 2 demonstrates that the overall sample can be characterized by a significant linear trend
in K-D (cm) values. The main classes affected by the possibility to have the knee inside or outside of
the floodwater levels are D = 0.4 m and 0.5 m. Hence, the results for these classes can be effectively
affected by the relative position between the knee and the floodwater surface. Lower D classes have
many outliers with respect to the others because of the values connected to the child, which have
a lower height.

Figure 2. Database characterization depending on K-D versus the tested D values. The boxplot graph
includes possible outliers (shown by “+”). The linear regression and the 99% boundaries are shown.

Figure 3 confirms how the male sample individuals seem to move faster in running conditions
than the female sample individuals [43]. Anyway, differences between the two linear regression
models are slight (about 10% in respect of the male regression coefficient). R2 values show a moderate
correlation trend for both the gender-related sample.

Figure 3. Database characterization depending on vw,exp and vr,exp pairs, for each individual, by
distinguishing females (continuous red line) and males (dashed blue line) linear regressions and
related samples.

Figure 4 confirms how the increase of D implies a slighter difference between running and walking
excitement conditions, with a general moderate correlation trend (compare R2 values for the regression
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models). D equal to 0.4 m and 0.5 m evidences small differences in regression trends (5% in respect of
D = 0.5 m) because the related sample is composed by individuals with knees outside and inside the
floodwater level, also according to Figure 2 results. Meanwhile, D equal to 0.5 m and 0.6 m seems
to additionally provoke the same conditions in vw,exp and vr,exp pairs, confirming previous works
outcomes [44]. In such conditions, the knee and a part of the above leg are generally placed inside the
water, by involving a similar physiological and kinematic constraint in human body motion.

Figure 4. Database characterization depending on vw,exp and vr,exp pairs, for each individual, by
distinguishing the linear regressions for each of the tested D. The regression equations are shown as
a function of the respective vw,exp for the considered D value (subscript expressed in (cm)).

3.2. Speed Variation Modelling Depending on D and Dry Surface Motion Conditions

Figure 5 resumes the normalized speed variation models according to the two reference curves,
for running conditions, while Figure 6 evidences the same model in walking conditions. In general
terms, all the provided models confirm how [33,41,43,44]:

1. Motion speed (and so v*) decreases while D increases. Regressions on the curve a-based model
show a slighter regression slope, according to the first term in the regression equation (−8% for
running conditions and −16% for walking conditions in respect to the curve a-based model).
Hence, curve b-based models seem to amplify the v* reduction;

2. The speed-D relationship in both the excitement conditions can be properly represented by using
speed normalization. In particular, regressions on the curve a [46]-based model show a moderate
relationship, according to the R2 value, for both walking and running conditions. R2 values for
the curve b [43]-based model are lower than these, suggesting that this model more limitedly
represents the effects of D in v* variation. Hence, the adoption of curve a-based model could
improve the prediction model capabilities in evacuation simulators;

3. In view of the above, differences between running and walking excitement conditions exist. In
particular, the effects of D on the variation of speed in walking conditions seem to be less relevant
than the ones of running conditions. This result is evidenced by the more significant presence
of possible outliers (see Figure 6) and by the lower value of the first coefficient of the linear
regression (about −70% in respect to running conditions model). This result confirms the original
work outcomes [44] and the outcomes of studies concerning other evacuation typologies [47].
In fact, issues related to the individual’s motion effort and the distance between individual and
motion goals seem to be more relevant while people are running towards the motion goal (as in
evacuation conditions). In addition, it is worth noting that the assessed v* value in the dry surface
for running conditions is about 2 times greater than the one for walking conditions, regardless of

121



Water 2020, 12, 1316

the adopted model. Besides, v* in running conditions seems to be equal to about 1 when D is
about 0.3 to 0.5m, which corresponds to the D classes for which the individuals’ knee is generally
closer to the floodwater level, according to Figure 2 statistics;

4. Differences between dry surface motion in literature reference works [43,46] and the adopted
database [44] exist (compare the second linear regression coefficient in all the models), by
underlining how specific database should be adopted to represent the flood evacuation. Forecasted
v* for D < 0.2 m are beyond the lower limit of the tested D conditions and so they could be affected
by additional non-linear speed-D interferences [33]. Nevertheless, the importance of this result is
shown by the v* values for the minimum tested constraint conditions (D = 0.2 m) in both walking
and running conditions.

 

(a) (b) 

Figure 5. Normalized speed variation for running conditions depending on D in respect to dry surface
motion conditions, for the whole sample (male and female together): (a) according to the curve a [46];
(b) according to the curve b [43]. Linear regressions (dashed lines refer to prevised values outside of
the tested D range) and boundary conditions (99%) are shown. Outliers are shown in the boxplot
representation (marked by “+”).

 

(a) (b) 

Figure 6. Normalized speed variation for walking conditions depending on D in respect to dry surface
motion conditions, for the whole sample (male and female together): (a) according to the curve a [46];
(b) according to the curve b [43]. Linear regressions (dashed lines refer to prevised values outside of
the tested D range) and boundary conditions (99%) are shown. Outliers are shown in the boxplot
representation (marked by “+”).

The same results are highlighted by the running and walking models related to male and female
separated samples, as shown by Figures 7 and 8. Besides the higher accuracy of the curve a-based
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model in prediction v* variation depending on D, the comparison between running and walking
conditions for male and female subsamples underlines how:

• Differences in walking conditions for the two subsamples in respect to the general subsample
are really limited (compare the regression coefficients of Figure 6a to Figures 7c and 8c, and the
regression coefficients of Figure 6b to Figures 7d and 8d);

• Males seem to move faster than females in running conditions, confirming previous works
outcomes [33,43] and Section 3.1 (i.e., compare with Figure 3) outcomes. This result is evidenced
by the second linear regression coefficient in both the models (in curve a-based model: 1.33 for
males versus 1.23 for females; in curve b-based model: 1.47 for males versus 1.36 for females).
In particular, males seem to move +8% faster (in normalized terms) in dry surface conditions, in
both models;

• At the same time, the increase of D has the same effect on both males and females, in both models,
since the first regression coefficient does not significantly change (compare Figure 7a to Figure 8a
and Figure 7b to Figure 8b).

 
(a) (b) 

 
(c) (d) 

Figure 7. Normalized speed variation depending on D in respect to dry surface motion conditions,
for the male sample: (a) for running conditions, according to the curve a [46]; (b) for running conditions,
according to the curve b [43]; (c) for walking conditions, according to the curve a [46]; (d) for walking
conditions, according to the curve b [43]. Linear regressions (dashed lines refer to expected values
outside of the tested D range) and boundary conditions (99%) are shown. Outliers are shown in the
boxplot representation (marked by “+”).
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(a) (b) 

 
(c) (d) 

Figure 8. Normalized speed variation depending on D in respect to dry surface motion conditions,
for the female sample: (a) for running conditions, according to the curve a [46]; (b) for running
conditions, according to the curve b [43]; (c) for walking conditions, according to the curve a [46]; (d) for
walking conditions, according to the curve b [43]. Linear regressions (dashed lines refer to expected
values outside of the tested D range) and boundary conditions (99%) are shown. Outliers are shown in
the boxplot representation (marked by “+”).

Figures 9 and 10 confirm the previous results by focusing on the knee-floodwater depth interaction
and by representing the normalized speed variation according to the reciprocal knee-D position.
The database characterization according to K-D values is offered by previous Figure 2. The male and
female samples are jointly considered to focus the regression model on the individuals’ height-related
behavioral driver. Firstly, according to Figures 6 and 7 outcomes, the effect of D on the human motion
is more relevant in running conditions (see the first regression coefficient in all the models). Secondly,
v* is quite equal to 1 for K-D values close to 0 in both running conditions related models. Finally, all the
regression models (both using curve a and curve b) seem to have a more relevant statistical significance
in respect of the v*-D ones (R2 generally higher also for curve b-based model). All these results confirm
the importance of floodwater-knee interaction as the main behavioral driver for the whole sample [44].

It is also worth noting that the general dispersion of forecaster v* data is quite small and increases
for individuals moving with the knee outside of the water (i.e., K-D > 0 m). This result is shown by
the reciprocal position of the linear boundary conditions (99%) in respect of the linear regression line
(which refers to forecasted median values).
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(a) 

 
(b) 

Figure 9. Normalized speed variation for running conditions depending on K-D in respect to dry
surface motion conditions, for the whole sample (male and female together): (a) according to the
curve a [46]; (b) according to the curve b [43]. Linear regressions (dashed lines refer to expected values
outside of the tested D range) and boundary conditions (99%) are shown. Male and female samples
experimental pairs are shown.

 
(a) 

 
(b) 

Figure 10. Normalized speed variation for walking conditions depending on K-D in respect to dry
surface motion conditions, for the whole sample (male and female together): (a) according to the
curve a [46]; (b) according to the curve b [43]. Linear regressions (dashed lines refer to expected values
outside of the tested D range) and boundary conditions (99%) are shown. Male and female samples
experimental pairs are shown.

The age-evacuation speed v (m/s) models are assessed at the different tested D values for the whole
sample (average regression) and maximum age-v pairs, by using a 4th-degree polynomial regression
which has a similar form in respect of the reference curves. Figures 11 and 12 respectively show the
results for the overall sample in running and walking conditions, and by considering the comparison
between the curve a and the curve b. Figures 13 and 14 show the regression for the maximum age-v pairs.
In each excitement condition, considered age being equal, the increase of D corresponds to a decrease
in predicted motion speed. Differences are more relevant in running tests. The regression models could
be affected by the original database characterization in terms of age classes and overall age range [44],
as outlined by low R2 values (<0.25) for “average” age-v regression line (due to the original database
pairs dispersion). Nevertheless, they generally confirm the previous modelling outcomes as well as the
results of previous works. Firstly, the general trend of 4th polynomial regression is confirmed in each
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excitement conditions, by underlining that elderly’s speeds are lower than the one of adult individuals.
In addition, it could be evidenced that:

• Considering running conditions, the age-v regression for the overall sample is over the references
curves when D ranges from 0.2 m to 0.4 m, regardless of the considered curve in the model;
this result confirms the “average” results of Figure 9. Meanwhile, the regression curves on
the maximum age-v pairs seem to be always over the reference curves or, at least, equal (i.e., if
considering the curve b data);

• On the contrary, walking conditions-related regression on maximum age-v pairs are generally
under the reference curves, with similar predicted values for the age range 10 to 30 years.
This seems to evidence that younger individuals can generally be less affected in their motion
by D conditions, confirming previous results on age-related impact on motion speed [42–44].
Average age-v pairs regression in walking speeds seems to evidence no substantial differences,
especially for intermediate ranges, confirming the interpretation of outcomes in Figures 6 and 10.

 
(a) (b) 

Figure 11. Average dimensional age-evacuation speed (m/s) model in running conditions, for the
different D values according to a polynomial (4th degree) regression model, performed on all the
experimental pairs (male and female together): (a) compared to the curve a [46]; (b) compared to the
curve b [43].

 
(a) (b) 

Figure 12. Average dimensional age-evacuation speed (m/s) model in walking conditions, for the
different D values according to a polynomial (4th degree) regression model, performed on all the
experimental pairs (male and female together): (a) compared to the curve a [46]; (b) compared to the
curve b [43].
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Figure 13. Maximum dimensional age-evacuation speed (m/s) model in running conditions, for the
different D values according to a polynomial (4th degree) regression model, performed on all the
experimental pairs (male and female together): (a) compared to the curve a [46]; (b) compared to the
curve b [43].

 
(a) (b) 

Figure 14. Average dimensional age-evacuation speed (m/s) model in walking conditions, for the
different D values according to a polynomial (4th degree) regression model, performed on all the
experimental pairs (male and female together): (a) compared to the curve a [46]; (b) compared to the
curve b [43].

3.3. Normalized Speed Variation Modelling Depending on D, Minimum Constraint, and Maximum Excitement
Conditions for the Considered Database

Figure 15 traces the normalized speed trends in respect to the minimum constraint-maximum
excitement conditions (D = 0.2 m; running experiments), depending on D, for data concerning
running (Figure 15a) and walking (Figure 15b) tests. Although the sample dimension is quite limited
(31 individuals for 186 considered tests), the results confirm previous trends discussed in Section 3.2
concerning the speed reduction as a function of D increase.

In particular, Figure 15a evidences how the maximum motion speed is higher for lower D values
in running conditions. Boxplot distribution data for D = 0.2 m are connected to the normalization
of experimental speed by vr,0.2 (hence, all the values are equal to 1), but the maximum vi,r,0.2 values
decrease while D increases. In addition, the median linear regression denotes a moderate relationship
between D and vi,r,0.2, as shown by the R2 value. On the contrary, walking conditions-related speeds
vi,w,0.2 seems to be less influenced by D, as demonstrated by the scattered boxplot values distribution
and by the inconsistent R2 value.
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(a) (b) 

Figure 15. Normalized speed variation depending on D, by normalizing the speed values by vr,0.2

(speed of the individual in minimum constraint and maximum excitement conditions within the tested
D range): (a) for running conditions; (b) for walking conditions. Linear regressions (dashed lines refer
to prevised values outside of the tested D range) and boundary conditions (99%) are shown.

Finally, Figures 16 and 17 examine the effect of Knee position in respect to the floodwater depth,
respectively in running and walking conditions, by considering the normalization according to the
individuals’ effective maximum speed within the tested D range. Although the regressions generally
show a lower statistical significance according to poorer R2 values, it is demonstrated that:

In running conditions, most of vi,r,max values are linked to the lowest D values, while walking
conditions see a more widespread vi,w,max distribution. This outcome evidences the existence of
excitement-related issues (i.e., motion effort increasing with constraints increase) in pseudo-evacuation
excitement conditions, in respect to normal excitement conditions (pseudo-evacuation conditions can
be approximated by running test, while normal conditions by walking tests) [44,47].

• The effect of D on an individual’s speed is higher while the pedestrian is moving with the knee
outside of the floodwater level, especially in running conditions as shown for the sub-sample
with the knee inside the floodwater by: (a) the lower R2 value, (b) the wider range for boundary
conditions (99%) regression lines, and (c) the lower first regression coefficient value (only for
running conditions of Figure 16).

Such outcomes verify the results reported in Section 3.2 about the normalized speed variation
modelling depending on D and the dry surface motion condition. Meanwhile, they use data on the
experimental D range from individuals who performed all the tests (possibility to trace the individuals’
response in all the considered scenarios).
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Figure 16. Effects of knee position (outside and inside the floodwater level) on the normalized speed
variation depending on D, by normalizing the speed values by vr,max. The regressions are shown for
running conditions. Linear regressions (dashed lines refer to prevised values outside of the tested
D range) and boundary conditions (99%) are shown.

 
Figure 17. Effects of knee position (outside and inside the floodwater level) on the normalized speed
variation depending on D, by normalizing the speed values by vw,max. The regressions are shown for
walking conditions. Linear regressions (dashed lines refer to prevised values outside of the tested
D range) and boundary conditions (99%) are shown.

4. Results Discussion in View of Model Implementation in Flood Evacuation Simulators

The modelling approaches offered by this work represent different solutions for the implementation
of quantitative behavioral response aspects (i.e., individuals’ speed) in flood evacuation simulators.

Firstly, all of them are based on a microscopic point of view and so they can be applied in such kind
of simulation models [10,34,39,48]. According to this microscopic standpoint, they trace the “isolated”
pedestrian speed by considering a single environmental driver, which is the floodwater depth and
his/her specific features (mainly age, gender, and excitement level). In some terms, it could be defined
as the ideal speed at which the evacuees try to tend. Anyway, in a real environment, this ideal speed
could be affected by some other behavioral drivers [10,41], such as those described in Section 1.1.
Hence, the final motion velocity (considering the speed (that is, the velocity magnitude), its direction,
and its verse) of each individual should be calculated by overlapping all these phenomena. In this
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context, it is important to underline that some specific effects can provide consistent modifications to
the effective motion velocity:

• Effects due to the presence of other pedestrians: crowd-density effects could reduce the speeds in
compact groups; social shared identity factors could lead people to share the same direction and
to adjust their individual speeds to remain in group (e.g., waiting for more vulnerable and slow
group members);

• Guidance and support elements: they can speed up the process by giving continuous support to
the evacuee in terms of direction to be followed and in terms of physical aid (e.g., handrails along
the paths);

• Other flood-related phenomena like the attraction towards unmovable obstacles, according to the
aforementioned support needs of the evacuees.

In view of the above, the proposed microscopic standpoint allows increasing the possibility of
applying the proposed model to different modelling techniques (e.g., force-driven, velocity-driven,
agent-based).

Secondly, most of the proposed modelling approaches also include specific individuals’ features,
like age, gender and height. Such choice allows considering the possible variation in such parameters
within the simulated population, especially while adopting agent-based modelling techniques [21,34].

Thirdly, the modelling approaches focus on the two different excitement conditions for
pedestrians [41,43,44]:

• Input running conditions used in this study are similar to the one of excited individual, who,
for instance, participate to an evacuation process with a high engagement level (e.g., because of
rising floodwater levels or other hazard-increasing evacuation drivers perceived by the individuals);

• Input walking conditions used in this study are similar to the one of normal motion individual, who
for instance, participate in an evacuation process in still waters, or under organized circumstances.

In this way, simulators could adopt the related models depending on the assumed excitement
conditions (e.g., walking conditions imply the maximization of motion time, moving towards
conservative evaluations). At the same time, simulations under different excitement levels could be
performed to assess the alterations among them [41].

Finally, in view of the above, Tables 1 and 2 summarize the selected modelling approaches
(according to the model significance in terms of fitting performance and description of evacuation
phenomena) that can be included in flood evacuation simulators, by distinguishing between:

• Dimensional models, which are the ones in which the dependent variables are directly expressed
in dimensional terms (i.e., the dependent variable is a speed (m/s) (Table 1). These models
allow tracing the simplest solutions to predict motion speed in flood evacuation according to
a microscopic approach, by directly retrieving evacuation speed values in dimensional terms (m/s)
only according to a single motion driver [41,43];

• Normalized models, which are the ones in which the dependent variables are a non-dimensional
parameter vnorm (-) (Table 2). To calculate the effective motion speed, vnorm should be multiplied
by the isolated individuals’ speed, which can be the one in (a) minimum constraint-maximum
excitement conditions in the tested database (vr,0.2) or (b) dry surface motion (vid). Although the
validity of the model application can be extended to different isolated pedestrians’ speed databases,
the use of reference curves by this work for models development is encouraged especially in the
second aforementioned case (i.e., [46], and so to vid,a, due to the higher statistical significance
of results).

Finally, the proposed models focus on different drivers of human behaviors by confirming the
existence of the main driver in individuals’ response while moving in floodwaters [6,9,10,33,44].
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Nevertheless, it is worth noting that their statistical significance is strictly connected to the original
database adopted by this work.

Table 1. Selected modelling approaches based on dimensional dependent variables.

Independent Variables
(unit of measure)

Dependent Variable
(unit of measure)

Regression Model (sample) 1,2 R2 1 Specific
Discussion

walking speed vw,exp
(m/s); gender (F or M)

running speed vr,exp
(m/s)

vr,exp = 1.6vw,exp (F)
vr,exp = 1.76vw,exp (M) ≈0.5 Figure 3,

Section 3.1

walking speed vw,exp
(m/s); floodwater depth

D (m)

running speed vr,exp
(m/s)

D = 0.2 m: vr,exp = 1.89vw,exp (A)
D = 0.3 m: vr,exp = 1.83vw,exp (A)
D = 0.4 m: vr,exp = 1.67vw,exp (A)

D = 0.5 m, 0.6 m: vr,exp = 1.56vw,exp (A)
D = 0.7 m: vr,exp = 1.48vw,exp (A)

≈0.5 Figure 4,
Section 3.1

age (years) “maximum” running
speed vr,exp (m/s)

4th polynomial regression model
graphically traced in Figure 13 >0.7 Figure 13,

Section 3.2

age (years) “maximum” walking
speed vr,exp (m/s)

4th polynomial regression model
graphically traced in Figure 14 >0.7 Figure 14,

Section 3.2
1 Coefficients are valid for the considered sample; further activities should be performed to check their validity. 2 F
refers to female sample, M refers to male sample, A refers to both male and female samples together.

Table 2. Selected modelling approaches based on non-dimensional dependent variables. In the
regression model column, the expression inside round brackets is vnorm.

Independent Variables
(Unit of Measure)

Dependent Variable
(Unit of Measure)

vnorm Regression Model
(Sample) 1,2 R2 1 Specific

Discussion

floodwater depth D (m) running speed vr (m/s) vr = (−0.85D + 1.28)vid,a (A) ≈0.5 Figure 5a,
Section 3.2

floodwater depth D (m) walking speed vw (m/s) vw = (−0.25D + 0.64)vid,a (A) ≈0.6 Figure 6a,
Section 3.2

floodwater depth D (m);
gender (F or M) running speed vr (m/s) vr = (−0.86D + 1.23)vid,a (F)

vr = (−0.86D + 1.33)vid,a (F) >0.5 Figures 7a and 8a,
Section 3.2

relative position between the
knee height and the

floodwater level K-D (m)
running speed vr (m/s) vr = (−0.86D + 0.86)vid,a (A) ≈0.6 Figure 9a,

Section 3.2

relative position between the
knee height and the

floodwater level K-D (m)
walking speed vw (m/s) vw = (−0.25D + 0.51)vid,a (A) ≈0.6 Figure 10a,

Section 3.2

floodwater depth D (m) running speed 3 vr (m/s) vr = (−0.73D + 1.14)vr,0.2 (A) ≈0.4 Figure 15a,
Section 3.3

1 Coefficients are valid for the considered sample; further activities should be performed to check their validity. 2 F
refers to female sample, M refers to male sample, A refers to both male and female samples together. 3 This model
considers the original database-related speed and not the reference curve as the multiplication value of vnorm.

5. Conclusions and Future Research Remarks

The flood risk assessments in urban areas should consider the evaluation of hosted community’s
exposure to possible emergency conditions, especially if considering the possible man-floodwaters
interactions that play a pivotal role in immediate emergency scenarios, i.e., in the evacuation process.
The effectiveness verification of emergency planning and other risk-mitigation strategies implemented
in the built environment (BE) and oriented at direct support of the involved population should take
advantage of simulation-based analysis.

This work offers a fundamental step toward this goal by providing general and unified modelling
approaches to represent the individuals’ evacuation speed (m/s) depending on (a) his/her walking
speeds (m/s) and gender, (b) the floodwater depth (m), (c) his/her age (years), and (d) the relative
position between the knee height and the floodwater level (m). According to previous research
outcomes, these models confirm how the individuals’ speed decreases when age and floodwater
depths increase, while males generally seem to move faster than females. Moreover, they are generally
characterized by moderate or strong relationship confidence degree, guaranteeing their applicability to
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modelling purposes. Finally, walking speeds can be evaluated by using inverse correlation modelling
based on the proposed ones concerning running speed tests.

Although the used database is significant, different databases could be selected to collect input
data and extend the validity of proposed regression models or compare/validate them. The considered
original database describes characterization only in terms of floodwater depth. Hence, future research
should try including additional significant variables, such as floodwater speed, sediment transport/mud
presence. Additional experimental activities are needed to provide significant data to this end.

Besides, the current work is structured by defining regression models by preferring a continuous
data existence field (for input and outputs). Nevertheless, widest databases could support the
development of multiple linear models to derive the relationship between the moving speed and other
factors (e.g., age, flood depth) one by one. Coherence models (e.g., regression tree-based) could be
provided to have complete modelling result in a microscopic approach.

The proposed modelling approaches could be introduced in flood evacuation simulators by
providing input data, which are more accurate than one of the general-purpose existing databases.
Microscopic-based simulation tools can take advantage of this work’s outcomes since they assign
evacuation quantities to each simulated individual and allow considering specific individuals’ features
(i.e., age, gender, excitement level). The combination of behavioral simulation with flood spreading
simulation in the BE could allow assessing the evacuation timing and so if/how many individuals
could be exposed to significant risk depending on the floodwater hazard evaluation over space. Such
simulators could additionally include rules for motor vehicle and public transport-based evacuation
over time, to evidence which dependencies among effects could emerge about evacuation typologies
and pedestrian-vehicle interactions. Finally, they could also support the analysis of First Responders’
motion in flood-affected scenarios during the emergency response phases.

From this point of view, risk assessment analyses for different flood events and in different
BE layouts will be achieved to trace the effectiveness of risk-reduction interventions. Proposed
risk reduction strategies could involve, e.g., early warning systems, interventions on buildings and
architectural components in public spaces, emergency planning and management including the
possibility to schedule (delay, anticipate, divide per areas) the evacuation starting, interventions for
controlling floodwater spreading, and evacuees’ wayfinding systems. Furthermore, they could be
combined with each other. Simulation-based approaches including the evacuation process will allow
evaluating how such public efforts could effectively support efficiency gains also in case of risky
conditions directly affecting the population and provoking the necessity to evacuate. The positioning
over space of some solutions could be also evaluated.

Meanwhile, they will evaluate which are the minimum strategies that could be introduced in the
BE, e.g., by moving towards minimum conditions in: (a) implementation costs (to reduce public efforts
by local authorities), (b) management of complexity (to reduce the organizational efforts requested
by the First Responders); (c) impact on the BE features (i.e., if considering historical urban heritage).
In this sense, such kind of evaluation could be of interest especially in those urban scenarios where
pedestrians could be caught in the middle of the flood “by surprise” (e.g., due to possible limitations
in warning and communication with the population) as well as where difficulties due to social and
economic factors could increase the overall urban risk (e.g., in underdeveloped countries).
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Abstract: One of the most frequent natural perils affecting the world today is flooding, and over the
years, flooding has caused a large loss of life and damage to property. Remote sensing technology and
satellite imagery derived data are useful in mapping the inundated area, which is useful for flood risk
management. In the current paper, commonly used satellite imagery from the public domain for flood
inundated extent capturing are studied considering Can Tho City as a study area. The differences
in the flood inundated areas from different satellite sensors and the possible reasons are explored.
An effective and relatively advanced method to address the uncertainties—inundated area capture
from different remote sensing sensors—was implemented while establishing the inundated area
pattern between the years 2000 and 2018. This solution involves the usage of a machine learning
technique, Support Vector Machine Regression (SVR) which further helps in filling the gaps whenever
there is lack of data from a single satellite data source. This useful method could be extended to
establish the inundated area patterns over the years in data-sparse regions and in areas where access
is difficult. Furthermore, the method is economical, as freely available data are used for the purpose.

Keywords: remote sensing; flood extent mapping; Can Tho City; Google Earth engine; uncertainty;
support vector machine regression (SVR)

1. Introduction

Floods are one of the most frequent natural hazards affecting the world. Over the years, they have
caused a large loss of life and damage to property [1,2]. Due to changing climates, it is observed that
the magnitude and frequency of the floods are on the rise. In recent times, some of the events were
severe enough to be termed as catastrophic [3]. Such events underlined the importance of estimating
the flood risk and its management.

An important prerequisite for flood risk management is precise information on the real extent
of inundation. There has been limited experience and recorded evidence available about the spatial
extent of extreme floods. Traditional ground survey techniques have certain challenges, like a limited
network of monitoring stations in some developing nations, inaccessibility of the area during floods,
time consuming and laborious processes. [4,5]. In order to address these challenges of conventional
surveys, remote sensing has emerged as an effective and efficient alternative technique. The ability of
remote sensing data to provide a synoptic view of a large area has been found useful for identifying
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flood inundated areas [6]. It has become critical to use data derived from remote sensing technology
along with hydrological models to better manage flooding risk [7].

With the increasing availability of satellite imagery data in the public domain, government
agencies may use the remote sensing data for designing flood mitigation measures [8,9]. In the
absence of reliable historical records, flood risk modelling helps us to look at possible extreme
scenarios, while incorporating the changes in the flood risk profile with the help of remote sensing
data [10–14]. Multilateral agencies such as the World Bank and the Asian Development Bank have
used the results from flood risk assessments from time to time to explore various disaster risk transfer
mechanisms [15,16].

The precise detection of dynamic changes in water levels and land cover change information to
use for flood risk assessment depends on the spatial resolution of the image captured [17]. Various
remote sensing products offer options in capturing the water boundaries over a large area at a certain
point of time. Among them, high resolution satellite imagery data, such as Quickbird and WorldView
images are available, but many of these data are not freely available [18]. Freely available optical
imagery, such as Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) can provide
satellite imagery data at 30 m spatial resolution and an interval of 16 days. Archival records of satellite
imagery data for more than three decades are available [19–21]. The longer-archived data and continual
capture over the same areas makes the data very handy for mapping water bodies at a large regional
scale for a variety of hydrological conditions. Band 7 data from Landsat is useful for distinguishing
water bodies from surrounding land mass, with an error rate around 5%. There is another remote
sensing satellite platform called Moderate Resolution Imaging Spectroradiometer (MODIS) (NASA,
Washington, DC, USA) which includes two key instruments, Terra and Aqua satellites. Terra MODIS
captures the imagery over the earth’s surface every one to two days, and acquires the data in 36 spectral
bands [8,9,15]. While Landsat data have relatively higher spatial resolution compared to data from
MODIS, the revisit time of the Landsat sensor is longer than the MODIS. Remotely sensed images
captured from the Sentinel-2 A and B optical sensors, launched by the European Space Agency in 2014,
were also used in the current study. The revisit time of the Sentinel-2 sensor is about 10 days and the
spatial resolution is between 10 to 60 m [10,16].

The Support Vector Machine (SVM) has been earlier used for applications such as land cover
classification [22] in Can Tho City. The Google Earth Engine (GEE) became available later, which
provides access to data from multiple satellite sensors via a single platform and also facilitates image
processing functions which were earlier carried out in specialized remote sensing software (such as
ERDAS/ENVI). The potential of GEE for analyzing flooded areas from the study area (Can Tho City)
has not been studied much and this paper sheds light onto this important area. It is critical that such
methods are explored in data scarce regions in SE Asia. Furthermore, some of these urban regions
(such as Can Tho City) have experienced high economic growth in the recent years due to infrastructure
development and migration from neighboring rural areas. There has been a scarcity of historical flood
information, such as inundated area from ground surveys. In addition to establishing a procedure to
retrieve the available historical information from GEE platform, our paper also proposes the use of SVM
Regression, a relevant machine learning technique to address the spatial and temporal uncertainties in
such regions. We believe that our paper proposes an important and economical solution which can be
extended to establish historical flooding patterns for many SE Asian regions where such information
is lacking.

Flooded water can be delineated using image processing techniques [11,12] on different satellite
images, in the midst of increasing cloud cover. In order to gain the maximum benefit from satellite
images, it is important to combine information from different kinds of sources, so that problems
with one method can be overcome by employing the other methods [13,14]. However, advances in
machine learning allow us to combine data from different satellites, thus providing an important option
to minimize uncertainties in data resulting from different spatial and temporal resolutions. Here,
we hypothesize that the use of an advanced machine learning technique of Support Vector Machine
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Regression (SVR) can help identify the water-inundation areas over time when using satellite imagery
with different spatio-temporal resolutions [23–25]. SVR also helps when incomplete data are available,
thus enabling a more complete set of readings to be included into any further modelling. SVR can
predict non-linear relationships and therefore used in the current context. The objective of this study is
to minimize the uncertainties related to different spatial resolutions from different satellite platforms,
by using SVR to reconstruct the flooding extents.

In this study, we used imagery from Landsat, MODIS and Sentinel-2 satellite sensors. These
satellite platforms were chosen because of several reasons: 1) availability of data for long periods
2) data being available free of cost and 3) often two to three datasets would be available within the
period from September to October (flooding season in Can Tho City) each year.

2. Materials and Methods

2.1. Study Area

The study area is Can Tho City, which is in the center of the Vietnamese Mekong Delta. Regions
of the Vietnamese Mekong Delta are prone to high to extreme risk from floods [26–29]. The city is
75 km far from the Vietnamese East Sea (Figure 1). Can Tho City is one of the five cities centrally
administered in Vietnam. It is the largest city in the Vietnamese Mekong Delta and an important base
of increasing commerce, industry and transportation network [30,31]. As of April 2019, the city has a
population of 1,235,171 [32] with a natural land area (in 2017) of about 1439 square km [33].

 

Figure 1. Lower Mekong Basin (left figure) in South-East Asia; Study Area Can Tho City (highlighted
in the right figure).

The socioeconomic development goals for 2020 and 2030 of the Vietnamese Mekong Delta see the
increasingly significant role of Can Tho City in achieving the growth objectives [29] Can Tho City is
set to be the regional centre for many upcoming and developing industries, primarily based on the
vast arable land and water bodies. These industries include aquaculture, fishing and food processing.
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Figure 2 below shows the entrance to Tra Noc industrial zone in Can Tho City which houses several
industrial firms. The increasing outputs from these industries in Can Tho City make the city a key
contributor to the food security in the Mekong Delta region. Apart from these industries, Can Tho City
plays an important role in the transportation connectivity via its many waterways, road network and
the international airport. Due to the development of infrastructure as well as the industries, Can Tho
City has attracted a lot of migrants in search of jobs and favorable economic engagement. As a growing
city, it has witnessed a lot of construction activities in the recent times which resulted in changes in
land use patterns. Figure 3 shows the ongoing construction activity of an industrial establishment.
However, some of these economic growth related activities are hampered by the frequent natural
disasters such as floods [34,35].

 

Figure 2. Tra Noc Industrial Zone in Can Tho City. The zone is home to industrial firms producing
electronic, food processing, automotive, construction materials and pharmaceutical products.

 

Figure 3. An industrial building under construction in Can Tho City.

Analysis of flood risk in Can Tho City can be adapted to larger sections of South and South-East
Asia since several of the geographical features with relation to proximity to major rivers and ocean as
well as the weather patterns are noted in several developing cities in South and South-East Asia. Can
Tho City faces threats from the three kinds of flooding: fluvial, pluvial, and tidal [36].

Upstream hydropower development along the Mekong may also cause hydrological
alterations [37], but the impact on the delta is limited, with the change in flooding extents being
slow to develop once they reach the lower parts of the delta. Importantly, the circumstances of the
city are constantly changing and this brings about challenges and uncertainties in flood risk analysis
and management.
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Given the importance of Can Tho City to the economy, indeed to several aspects of the Vietnamese
Mekong Delta, it is a good place to understand the development and maintenance of flood mitigation
and management strategies in place. Can Tho City faces multiple challenges such as the increase in sea
level and river runoff due to climate change, urban runoff caused by imperviousness and potential
intensification of extreme rainfall due to microclimatic shifts [38]. Floods in Can Tho City cause losses
to the city’s infrastructure and result in an adverse impact to the livelihoods of citizens. Some of the
reasons for the flooding in Can Tho City include the lack of robust flood-prevention system and rapid
urbanization [39].

Can Tho City is also an ideal place to study the effect of uncertainties in current flood risk
assessment, which can eventually lead to strategies for tackling these uncertainties. In time, strategies
developed in an accessible—but developing—city, can be adapted to larger sections of South and South
East Asia.

Figure 4a–d below capture some of the scenes observed in the streets of Can Tho City during the
floods in the year 2014. Due to the varied processes via which flooding can occur in the Mekong Delta,
the Vietnamese government is attempting to provide plans to mitigate damage from flooding [29].
One way to do this would be to assess inundation patterns from the past. There is a paucity of
on-the-ground data regarding flood extents in these areas. This has led to greater reliance on data
gathered from remote sensed data. Remotely sensed images from satellites are used to reconstruct
historical flood extent maps in several nations [40,41]. With the different kinds of satellites in use
for accessing these data, reliability and usability of such data should be studied. One of the ways
would be via examining the potential of freely available satellite imagery for the study area. Here, we
used the capacity of the Google Earth Engine (GEE), a web-based platform, to analyze the flooded
areas from three different satellite imagery (Landsat, MODIS and Sentinel-2). Each of these three
satellite image sensors has their own advantages and disadvantages (e.g., different spatial and temporal
resolutions). A range of potential flooded areas are provided by each of these sensors, and SVM was
used to reconstruct the flooding patterns.

 

Figure 4. (a–d) Photographs showing the different inundated areas in Can Tho City during the floods
in the year 2014 (Courtesy: Dr Dunja Krause, United Nations Research Institute for Social Development
(UNRISD, Geneva, Switzerland).
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2.2. Methodology

The below steps were followed to conduct the study. Further description about the data and
techniques are provided in Sections 2.2.1–2.2.3, 2.3 and 2.4.

a. Available satellite imagery from Landsat and Terra MODIS sensors covering the study area
between the years 2000 and 2018 were accessed via the GEE platform. Available imagery from
Sentinel-2 sensor is accessed from the year 2015 onwards.

b. Extent of water bodies from respective satellite imagery are calculated using Normalized
Difference Water Index (NDWI). Details are outlined in Section 2.2.2.

c. The calculated inundated area figures (i.e., extent of water bodies) from different satellite sensors
provide different values. This is due to the spatial and temporal differences of the three different
satellite sensors which were considered. To account for this uncertainty, Support Vector Machine
Regression (SVR) technique has been used to reconstruct the inundated area values for different
months as an integrated value from three sensors.

2.2.1. Google Earth Engine

Google Earth Engine (GEE) is a web-based cloud computing platform capable of storing multi-layer
catalog of satellite images and geospatial datasets within GEE’s Public Data Catalog [42–44]. In addition
to archival, within the GEE script-environment these large datasets can be analyzed for identifying the
changes, mapping variations, and variances on the surface of the earth. Since GEE is a cloud-based
service, there is no necessity to download and analyze imagery in the traditional manner and thus this
saves time.

Phongsapan and colleagues studied the potential of GEE platform in deriving an operational flood
risk index covering Myanmar [45]. Uddin et al. outlined the utility of GEE in using multi-temporal
Sentinel-1 Synthetic Aperture Radar (SAR) satellite imagery in capturing the flood inundated areas in
Bangladesh [46]. Sidhu and team and Celik and team also used GEE for identifying the land cover
changes in urban areas in Singapore [47] and Ankara [48], respectively.

Nguyen and colleagues analyzed several Landsat satellite imageries to examine the changes in
built-up area in Can Tho City between the years 1998 and 2018. However, GEE was not used to retrieve
and analyze the Landsat imagery in this case [49]. Goldblatt et al. earlier demonstrated the application
of GEE for identification of boundaries of urban regions (i.e., built-up areas) in India [50]. Review of
studies such as the above illustrate that there is a gap in research and utilization of GEE for research
work in Can Tho City (study area), more so in the important area of flooding risk. The important idea
of utilization of historical satellite imagery via GEE, an efficient archival and computational platform
in Can Tho City was introduced in our paper.

Researchers wishing to use the service neither need to be familiar with nor need to use specialized
remote sensing software such as Environment for Visualizing Images (ENVI) and Earth Resources
Data Analysis System (ERDAS) Imagine for regular image processing functions. As with other open
source software, several algorithms are provided by other users, thus providing a greater expertise
in analyzing different datasets than would be possible for a single person or team working together.
Bulk downloads and memory use can be avoided since work can be performed online. In this study,
datasets related to Can Tho City from three publicly available platforms, Landsat (5, 7 and 8), Sentinel-2
and MODIS were obtained and analyzed using the Google Earth Engine.

2.2.2. Extraction of Water Body Extent

The Normalized Difference Water Index (NDWI) [42,51,52] is an index derived from the satellite
imagery using the Near-Infrared (NIR) and Green wavelengths. NDWI can capture the water
body presence from remote sensing imagery via separating non-water related features. Reflected
near-infrared radiation and green light are used in the calculation since this helps in excluding

142



Water 2020, 12, 1543

vegetation and land, while improving water detection [52]. NDWI is calculated with the formula as
shown below:

NDWI =
Green−NIR
Green + NIR

(1)

where the Green is the band which captures reflected green light and the NIR represents the near-
infrared radiation.

By using green wavelengths, the typical reflectance of water features is maximized, the low
reflectance of NIR by water bodies is minimized and the high reflectance of NIR by vegetation and soil
features from the land is maximized. The outcomes from the above index are that water bodies have
positive values while using multispectral imagery which has a reflected green band and an NIR band.
Soil and vegetation features have zero or negative values due to the typical high reflectance of NIR
than the green light [52].

During the processing of satellite imagery, an appropriate threshold was applied based on the
presence and extent of cloud cover in the imagery. For example, a threshold value of 0.1 was applied
for imagery with high cloud coverage whereas a threshold value of 0.3 was applied for the satellite
imagery with relatively less cloud coverage [53]. This helps in capturing even very low values of
NDWI which may result from high cloud coverage or the absence of water bearing pixels. When the
water bodies are clearly visible, the increase in threshold value beyond 0.3 does not have much effect;
hence a threshold value of 0.3 is good enough for imagery with clear water body presence and less
cloud cover.

2.2.3. Data (Landsat 5,7,8, Terra MODIS and Sentinel-2)

Landsat

The Landsat programme is a joint venture of United States Geological Survey (USGS), National
Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration
(NOAA), and has been in use since 1972 [20,21]. For most Landsat imagery, the temporal resolution
(sensor revisit time) of Landsat is 16 days. For Landsat imagery that includes multi-spectral and
thermal data, spatial resolution is mostly about 30 m. Landsat data are available in the GEE in its
raw form, surface reflection, Top Of Atmosphere (TOA)-corrected reflection, and other ready-made
products, such as NDWI, NDVI and EVI indices. Landsat sensor, however, cannot capture the data
when there is a cloud cover. From Figure 5a below, it can be noted that parts of the study area, covered
with clouds are captured as white patches. This posed issue with derivation of accurate inundated
area during certain periods. Scanline collector failure of the Landsat 7 Enhanced Thematic Mapper
in 2003 led to data gaps with 22 percent of the coverable area missing. Figure 5b below illustrates
this issue. Images acquired in these two cases (with cloud cover and scan line cover) introduce some
uncertainty in the inundation area captured. Figure 5c,d below show the false color Landsat images
acquired during dry and flood season respectively.
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Figure 5. False color Landsat imagery showing the study area during (a) cloud cover (b) scan line
collector failure (c) dry season (d) flood season.

MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS) was built by Santa Barbara Remote
Sensing facility and was launched into the orbit by NASA during the year 1999 on board the Terra
(EOS AM) Satellite, and in 2002 on board the Aqua (EOS PM) satellite [15,54]. These instruments are
capable of imaging the surface of the Earth every 1 to 2 days, at 250 m, 500 m and 1 km resolutions.
Data are captured in more than 35 spectral bands, ranging from <1 μm to nearly 15 μm. Changes and
processes occurring in the oceans and on land can be captured by MODIS. Figure 6a,b show the False
color Terra MODIS images acquired during dry and flood seasons respectively.

 

Figure 6. False color Terra Moderate Resolution Imaging Spectroradiometer (MODIS) image showing
the study area during (a) dry season and (b) flood season.

Sentinel-2

Sentinel is a group of satellites managed by the European Space Agency (ESA, Paris, France)
under the Copernicus program in 2014 [10,16,55]. Here, we used high-resolution optical images from

144



Water 2020, 12, 1543

Sentinel-2A and 2B, which together have a temporal resolution of about 5 days and a spatial resolution
of 30 to 60 m. Figure 7a,b show the false color Sentinel images showing the study area captured during
dry and flood season respectively.

 

Figure 7. False color Sentinel-2 image showing the study area during (a) dry season and (b) flood season.

2.3. Data Time-Period

In this study, data from the years 2000 to 2018 were collected for the study area from Landsat
(5,7,8) and Terra MODIS. We attempted to collect one data point from the data from each month
in this time period (total of 228 possible months). Certain prerequisites needed to be maintained
when remotely sensed images were collected for analyses of flooding extent, like less than 20% cloud
coverage (0% if possible, since floods occur during the rainy season) of the images. Landsat provided
spotty images between 2003 and 2014, due to the partial failure (scan line collector failure) of the
Landsat 7 satellite [56,57]. Additionally, the Sentinel-2 satellite was launched recently, and data are
only available from the year 2015 onwards.

Here, we used the classification of pixels in the remote sensing image into those containing water
and those not containing water by using the NDWI. This was undertaken for all the available and
usable images from Landsat, MODIS and Sentinel-2 sensors. Of the possible 228 data points from each
type of sensor, data from 82 months is available from Landsat and data from 214 months is available
from MODIS. For Sentinel, data are only available from September 2015, and of the possible data from
40 months, we obtained data available from 27 months.

While analyzing data from different platforms, discrepancies are noted in the inundated areas
obtained from each platform. We therefore used support vector regression (SVR), a non-linear
regression technique, to reconstruct flooding patterns.

2.4. Support Vector Machine Regression (SVR)

SVM has earlier been used mainly as a supervised classification technique while analyzing
satellite imagery [58]. It is a supervised, non-parametric classification algorithm, used for linear binary
classification of data points [23,59]. Support vector refers to data points that fall along the border of the
margin of separation. As with any supervised classification algorithm, SVM requires a training data
set. However, with SVM, a small training set is enough and can provide good classification accuracy.
For every data point, a decision is made whether it is far from the support vector. The distance from the
support vector determines the margin of classification. It classifies each new datapoint from the testing
set without making assumptions as to the classification, i.e., data classification is not dependent on
assumption of Gaussian distribution and not based on nearest neighbors. SVMs also provide a balance
between data overfitting and underfitting, even when limited training samples are used. This method
is often used to for images obtained from multi-spectral satellite sensor images.

The potential of Support Vector Machine (SVM) as a supervised machine learning classifier in
deriving the flooded area from Landsat imagery has been studied by Ireland and colleagues [60].
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Syifa et al. utilized SVM and Artificial Neural Network (ANN) classification techniques to derive
the map showing the flooded area after the collapse of Brumadinho dam wall in Brazil during
January 2019 [61]. However, the SVM technique can be applied for both classification and regression.
In the current study, we applied the principles of SVM for regression, called Support Vector Machine
Regression or simply Support Vector Regression (SVR). Gizaw and Gan applied SVR technique for
the estimation of regional flood frequency covering two study areas in Canada [62]. Chen and Yu
adopted SVR to develop a model to provide a deterministic flooding stage forecasting for Lang-Yang
river in Taiwan [63]. SVM and SVR have become effective machine learning substitutes to Artificial
Neural Networks (ANNs), finding more applications in flood prediction [64]. These methods have
been applied in several flood prediction studies with better performance results compared to ANN
and Multiple Linear Regression (MLR) techniques. These methods were applied involving data such
as flood time series, extreme rainfall and streamflow [64,65].

For the training set, data from homogenous areas in the collected images were utilized. Here,
SVR was used to adjust for the missing data from several months. When data from at least one sensor
are available, SVR can generate a composite value for the inundated area. The major reason for using
SVR is the different spatial and temporal resolutions for the three satellite imagery we analyzed here.
While Landsat and Sentinel-2 imagery provide relatively high spatial resolution, they have lower
temporal resolution. In addition, SVR can better predict non-linear predictor/predictand data as used
here, and which cannot be well predicted via linear regression methods.

In total, we analyzed 83 Landsat images, 214 MODIS images and 27 Sentinel images.
Where available, for each Landsat or Sentinel image, we found a corresponding MODIS image
and there were 105 image pairs. We bootstrapped these pairs with the training and the testing ratio of
7:3, 100 times. The average value of coefficient of determination (R2) for 100 rounds of this was 0.85 for
training, and 0.72 for prediction. By using this method, we were able to reconstruct integrated flood
extent values from MODIS data using the SVR model constructed from the image pairs. Packages
e1071 and boot were used for these analyses, performed on R [66–69].

3. Results

3.1. Capturing Inundated Areas Using GEE

In this study, “ground-truth” information from the field survey was not available for the study
area under consideration. This issue is not uncommon for flooding risk and this often results in scarcity
of quantitative validation [70]. To address this challenge, we collected 200 random high-resolution
Google Earth images (100 water and 100 non-water images). The Kappa Coefficient of Landsat, MODIS
and Sentinel-2 accessed from GEE were 0.87, 0.75 and 0.89 respectively. These Kappa index values
demonstrate strong (Kappa value > 0.8) to moderate (Kappa value > 0.7) correlation between inundated
areas as determined by satellite imagery from GEE and an external source, thus allowing for the use
of satellite images and the corresponding thresholds in classifying the inundated areas/water bodies.
The lower K value of MODIS compared to the two others may be caused by its lower spatial resolution.

3.2. Correlation and Differences Between Data from Different Satellite Sources

In this study, data from different satellites were utilized to derive the extent of water inundation
in Can Tho City. As an initial step, it is necessary to assess the degree of agreement between the
flood extents derived from the different satellite images. As such, we performed Pearson’s correlation
between data from Landsat and MODIS images. The data are highly correlated, with a Pearson’s r of
0.84 (Figure 8a). We also performed Pearson’s correlation between Landsat and MODIS data separately
for the low inundation period (from the months of February to July) and the high inundation period
(August to January). For this process, we collated the Landsat data from the months of February to
July throughout the study period and correlated it with the MODIS data collected from February to
July during the study period. A similar correlation was performed on data collected from August
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to January. The results showed that the Pearson’s correlation coefficient was low during the low
inundation period (r = 0.15, low inundation period). However, the correlation was high during the
high inundation period (r = 0.79, high inundation).

 
Figure 8. Correlation of inundation data between different sensors. Monthly inundated area captured
from one sensor is plotted on the x-axis and the other is plotted along the y-axis. (a) Left picture:
Landsat and MODIS Sensors; (b) Middle picture: Landsat and Sentinel-2 Sensors and (c) Right picture:
MODIS and Sentinel-2 Sensors.

Similarly, Pearson’s correlation analysis was performed between data from Landsat and Sentinel-2
images (Figure 8b) and MODIS and Sentinel-2 images (Figure 8c). These data are also highly correlated,
with a Pearson’s r of 0.91 and 0.80, respectively. Limited data are available from Sentinel-2, since it was
launched more recently than the others. Its correlation with the Landsat data is very high, given the
similarly high spatial resolutions of both these data.

A major reason for the differences between the data collected from the three sensors is the
differences in spatial resolution of the data collected. Additionally, cloud coverage, especially during
the times of high inundation, is another important factor. High inundation happens during the rainy
season, and therefore completely avoiding cloud cover would be nearly impossible. Nevertheless,
the great degree of correlation informs us that over a long period of time, data from different sensors
can similarly inform us about the water-inundated area over several years.

Unfortunately, the “ground-truth” information from the field survey is not available for the study
area under consideration. This issue is not uncommon for flooding risk and this often results in scarcity
of quantitative validation [70].

3.3. Seasonal Variations in Water Levels Observed by Different Sensors

As stated in the previous section, the correlation between Landsat and MODIS data was lower
during the months of low inundation. To assess the agreeability between the different sensor data,
we also plotted the time course of the Landsat, MODIS and Sentinel-2 data over the full time period
of analysis, from 2000 to 2018. We observed that the data collected from the different sensors show
some differences. However, the results from all the sensors demonstrate increase in the inundation
area during the months of increase in rainfall and decrease in months when there is decrease in rainfall
(Figure 9).

 
Figure 9. Seasonal variations in water levels observed by different sensors Landsat (red), Terra MODIS
(blue) and Sentinel-2 (pink).
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3.4. Use of Support Vector Machine Regression (SVR) for Reconstructing Inundation Areas

The correspondence of inundation areas derived from Landsat and Sentinel-2 imagery is observed
to be high (Figure 8b), as can be expected based on the high correlation (Pearson’s r = 0.91). Hence,
we used the Landsat and Sentinel-2 data to train the MODIS data using the SVR approach.

Reconstructed values were obtained for inundation during all the months when images from
MODIS were available. Inundated area values obtained from the sensors and reconstructed data
are plotted in Figure 10 below. The MODIS data from the 105 image pairs are trained from the
corresponding Landsat/Sentinel-2 data (Figure 10a, red dots) via SVM regression and the reconstructed
data derived (Figure 10a, blue dots). There is a reduction in the variation in the reconstructed values
compared to those from MODIS data (Figure 10b).

 
Figure 10. Reconstructed data from Support Vector Machine Regression (SVR) analysis (a). Comparison
of image pairs used for Support Vector Machine (SVM) regression analysis and reconstructed data.
The 105 image pairs used to train the SVM regression model are plotted in red and the SVR results
are plotted in blue. The x-axis indicates original inundated area in sq km derived from Terra MODIS
and y-axis indicates inundated area data in sq km from Landsat/Sentinel-2 (for the red dots) and from
reconstructed data (for the blue dots); (b). Box plots showing the inundated area in square kilometers
from Terra MODIS sensor (left) and the reconstructed value (right). The y-axis shows inundated area
(MODIS data and reconstructed values) in sq km.

When the reconstructed data are plotted against time, the pattern of the data shows increases in the
water-inundated area during the wet months and decreases during the dry months, when water flows
only in the waterways, as is seen with the original data (Figure 11). This training approach ensures
that data from more than one sensor can be used to generate a composite model of the inundation
areas during all the months when data from at least one sensor is available.

 

Figure 11. Reconstructed area of flood inundation using support vector machine regression (black).

3.5. Trend of Inundation Areas in Can Tho City

During the years of the study, it was noted that the total inundation area has steadily decreased
in Can Tho City. To better observe this, we obtained the average monthly inundation every year
using the reconstructed SVR data (Figure 10). In the graph shown below (Figure 12), the average
monthly inundated area (in square kilometers) reconstructed using Support Vector Machine technique
is plotted on the y-axis against the respective years from 2000 to 2018 on the X-axis. The seasonal
Mann-Kendall test was used to test this. The Mann-Kendall Tau was −0.1003, with a p value of 0.03.
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This indicates that the inundation decreased overall during the time period of the study. After the year
2000, the Vietnamese government invested more in the dyke system to increase agricultural production
(rice) in Vietnamese Mekong Delta (VMD). This resulted in a general decrease in flooding area over the
years. A similar pattern has been reported in studies conducted in the other parts of VMD, such as the
Long Xuyen Quadrangle (LXQ), the Plains of Reeds (POR) and An Giang province of the Vietnamese
Mekong delta [34]. Though it is not a direct validation, the similarity in the trends with the other
regions provides the consistency in the effects after the investment in dyke systems from the year 2000.

Figure 12. The reconstructed average monthly inundation area in Can Tho City from 2000 to 2018.
Inundation is decreasing over time similar to that observed in other parts of the Vietnamese Mekong
Delta [34].

4. Discussion

In this study, we analyzed images of Can Tho city from three different satellites (Landsat, MODIS
and Sentinel-2) with varying temporal and spatial resolutions, and used a non-linear regression
method—Support Vector Machine Regression—to integrate all the data an derive one single value.
Here, we show that the correlation between data from different satellites is high, allowing for the
training of the SVM to obtain inundation data for the period of 19 years, from 2000 to 2018. We also
observe that the inundation area has been steadily decreasing over the years. Our results provide a
proof-of-concept that machine learning algorithms like SVM can be successfully applied to combine
data from different satellites to obtain one seamless inundation result that can be used for flood risk
management. The results show that this can be completed with the use of freely available data and
cloud computing platforms, thus allowing economically viable solutions for rapidly developing regions
in South East Asia, such as those exemplified by Can Tho City.

Several studies have been carried out on flood risk assessment, via the use of satellite imagery.
However, use of satellite data leads to the introduction of uncertainties. This is because of the different
spatial and temporal resolutions of the satellite data. In addition, the failure of Landsat scan line
corrector from May 2003 adds another layer of uncertainty, leading to lack of data for a certain period.
These uncertainties are the epistemic uncertainties seen in flood risk assessment, that are introduced
due to a lack of sufficient data and knowledge [71]. These uncertainties can be reduced by combining
data from different satellites as we did in this study, and by using the power of machine learning to
resolve these issues, which is a step in the right direction. While it is tempting to compare the data
from our current study to historical flood extent data, this was not carried out, because the historical
flood extent data are obtained from Landsat data, and thus cannot be compared here.

Here, we also showed that GEE can be used successfully to capture the inundated areas. The cloud
computing capacity of GEE can be used to analyze massive amounts of data in a relatively short period
of time. One other advantage is that the GEE platform provides data from different satellites under one
platform. While GEE has mostly been used to detect changes in land cover, here, we used the engine
to analyze data related to inundated regions. From the reconstructed average monthly inundation
between the years 2000 and 2018, it is noted that there is a general decreasing trend. The possible
reasons for this decreasing trend include urban expansion (i.e., urban built up area) and increase in the
local flood protection systems [22,72]. Furthermore, more water is transferred to the middle of the
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Vietnamese Mekong Delta due to the upstream flood prevention systems and sea level rise. [27,73,74].
There is some uncertainty in the inundated area capture due to the cloud cover in some satellite imagery
and the operation of sluice gates. However, the effect of this uncertainty on the long-term inundation
pattern is minimized by using the data from three different satellites (Landsat, MODIS and Sentinel-2)
and SVM regression approach.

The temporal resolution of MODIS satellite sensor is around two days, whereas the satellite revisit
periods of Landsat and Sentinel-2 are 16 and five days respectively. Furthermore, Sentinel-2 data only
became available from September 2015. Landsat sensor provided spotty images between 2003 and
2014. Data from Terra MODIS are therefore more frequently available than the other two sensors,
although its spatial resolution is relatively low. Hence, the data were available for certain months from
the three different sensors, but there are cases where the inundated area data are available only from
MODIS. We used the SVM technique to integrate the three techniques to output a single inundation
value, a reconstructed inundated area figure when two or three different figures are available.

Satellite remote sensing imagery derived data have been increasingly recognized as a critical
source for identifying land features and changes in the land cover from time to time. There are several
freely available satellite data sources and the user community, particularly engaged in flood risk
management, could benefit from this open source data. Whilst there are differences in the temporal
and spatial resolutions from different data sources, appropriate techniques could be applied to derive
optimal advantage from this disparate sets of data. For example, advanced data science techniques
like machine learning could be employed to “fill-in” the data gaps while using the available records
from multiple sources. This information is quite useful in the sense that it helps provide an indicative
reference information based on scientific methods. During floods, it is not uncommon that a robust
mechanism is not always available or possible to capture the “ground-truth” or actual flood extent
map [75]. This issue is prevalent in many Asian territories, including Vietnam. The reasons for this
include the difficulties in logistics of field surveying, and issues with reaching inaccessible areas during
or immediately after a flooding event [5].

In the absence of ground-truthing data, alternative methods such as the usage of crowdsourcing
data (photographs), development and deployment of mobile applications for automatic inundated
area detections and analyzing the information shared via social media platforms (e.g., geotagged
images) can be considered [76]. The role of people living in the flooded areas is crucial for information
dissemination about the flood event. They can help in verifying the data collected and contribute to
the reports when flood detection sensors are not available.

The contribution from citizens and development of integrated platforms to collect and analyse the
data can help in improving the granularity of the data, such as both the temporal and spatial resolutions,
and can be an effective form of the validation of data from other sources like remote sensing satellites.
Some good examples of such initiatives include WeSenseIt, Ground Truth 2.0, and FloodCitiSense
projects funded by European Union [77]. The accretion of crowdsourcing data for understanding
flooding events is vital, even more so when the events occur in urban regions. The limitations in the
temporal resolution from remote sensing sensors can be overcome as the crowdsourcing information
can be made immediately accessible. Furthermore, flood depth information can also be collected at
various places of interest at regular intervals to augment the data from other sources [78].

The recent improvements in remote sensing and geographical information systems (GIS)
technologies have paved the way for further innovations in natural disaster risk management,
particularly in flood risk assessment, damage assessment and planning [79]. There could be newer
machine learning methods or improvisations to potentially enhance the SVR going forward. Further
studies in this direction are important.

5. Conclusions

Flooding in Can Tho City can cause huge economic losses and impact many lives. In this study,
a cost-effective solution for the study of flood risk via the usage of freely available satellite imagery
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(Landsat, MODIS and Sentinel-2) was proposed. Google Earth Engine, a powerful satellite imagery
data archival and computing platform, was used to derive the areal extents of the inundated area
for every month over a period between the years 2000 and 2018. Support Vector Regression (SVR),
a supervised machine learning algorithm has been used to reconstruct the water-inundated areas.
This reconstruction allowed for the filling of the data gaps while considering the data uncertainties
from different satellite sensors with various temporal and spatial resolutions. This also helped establish
a relationship for identifying the flooding pattern over the years. The inundated area pattern allows
the users to examine the trends in flooding and assess the flood risk. This is a useful technique which
could be extended to several other SE Asian cities and provinces which are prone to flooding.

Remote sensing can provide spatially continuous data, unlike point measurements, from gauging
stations, and this is especially useful in the case of long duration floods [80]. Satellite revisit time
allows for flood monitoring at regular intervals without a physical presence at the location of flooding,
especially when access is difficult. In addition, the remote sensing data are easy to access, and are
rapidly processed. However, these data carry some limitations; the quality and applicability is subject
to the spatial resolution and satellite repeat visit time. There is also scope for errors in identifying the
flooded area based on the image processing algorithm used. If the revisit time of the satellite is longer,
then the monitoring is not possible at short intervals of time [14]. Nevertheless, the advantages of these
data far outweigh the disadvantages and with improved techniques and sensors, these disadvantages
can be overcome.

In this study, we provided a proof-of-concept, showing that using machine learning algorithms can
help integrate data from three different satellite sensors to derive one single integrated value, providing
economically more feasible methods in regions of the world undergoing rapid growth. A small number
of data pairs can be sufficient to do so, especially when techniques such as bootstrapping are utilized
along with support vectors, as was carried out here. Since a greater number of MODIS images are
available due to its relatively higher temporal resolution, we propose that Landsat and/or Sentinel-2
data can be used to train MODIS to derive the composite inundation values. In this way, the advantages
of data from greater temporal and spatial resolution may be integrated by the researchers and other
practitioners. Here, all the data and analytical tools we used are freely available. We hope that others
can use similar methods to access data in places where field data are not easily available, but where the
assessment of flood risk is critical for planning and development purposes.
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Abstract: Historic city centres near watercourses are a specific type of urban area that are particularly
vulnerable to flooding. In this study, we present a new methodology of flood risk assessment
that crosses hazard and physical vulnerability information. We have selected the Historic City
Centre of Guimarães (Portugal), a UNESCO Heritage Site, for developing and testing the defined
methodology. The flood hazard scenario was obtained through the hydrologic–hydraulic modelling
of peak flows with a 100-year return period, which provided flood extent, depths, and velocities.
A decomposition of the momentum equation, using depth and velocity, allowed reaching a final
hazard score. Flood vulnerability was assessed through combining an exposure component and
a sensitivity component, from field-collected data regarding wall orientation, heritage status, age,
number of storeys, condition, and material of buildings. By combining the results of the hazard
and vulnerability modules in a risk-matrix, three qualitative levels of flood risk were defined.
The individual and crossed analysis of results proved to be complementary. On one hand, it allows
the identification of the more relevant risk factors—from the hazard or vulnerability modules. On the
other hand, the risk-matrix identified other buildings with a high risk that otherwise would remain
unnoticed to risk managers.

Keywords: urban flood; flood risk assessment; risk management; Historic City Centre of Guimarães

1. Introduction

The dizzying rate of urbanisation over the last few decades has led to an exponential increase
in the magnitude of losses caused by natural and technological hazards worldwide. According to
the risk-related literature, these losses can be understood as the consequence of a certain level of risk
associated with a specific community or society over some specified time period [1]. In a broader
sense, disaster risk is a compound concept determined by the combination of the hazard, exposure,
and intrinsic vulnerability. Moreover, because vulnerability and hazard may change over time, disaster
risk is highly dynamic [2,3]. For this reason, it is fundamental to have ways of monitoring this risk and,
when necessary, supporting the definition and implementation of risk mitigation actions.

As a result of their heritage value and high physical vulnerability, historical centres are particularly
critical areas and, therefore, deserve particular attention. According to the literature [4,5], in the last few
decades, the impact of flooding events in historic centres has indeed increased steadily. As reported
by Miranda and Ferreira [6], examples of recent high-impacting flooding events in historical centres
include those that occurred in Central Europe, back in 2002 and 2010, in South Asia, in 2007 and
2008, and the New Orleans flood of 2005, caused by Hurricane Katrina. In a recent attempt to
study this phenomenon, Marzeion and Levermann [7] investigated the number of cultural heritage
sites worldwide that, due to global warming, are at risk of being flooded in the next two millennia.
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The results of this study are quite conclusive, pointing out that approximately 6% of current UNESCO
sites (about 40 sites) will be flooded, particularly in China and India.

The present article addresses this challenge by discussing the application of an integrated flood
risk assessment approach, which combines flood hazard and building vulnerability indicators to
identify and classify risk and to narrow intervention priorities. The Historic City Centre of Guimarães
(Portugal)—a World Heritage Site inscribed by UNESCO since 2001 due to its extraordinary authenticity
and well-preserved condition—is explored here to illustrate the application of the methodology.
After modelling the flood hazard using the hydrologic–hydraulic method and evaluating the flood
vulnerability of the buildings by resorting to a simplified vulnerability assessment method, we provide
a comprehensive analysis of the outputs, both in an individual and integrated manner. Finally, we used
a risk-matrix approach to aggregate these hazard and vulnerability outputs and categorise the buildings
into three qualitative levels of risk.

More than the results themselves—which are indeed very important for the Municipality of
Guimarães, but eventually will be of little relevance to the reader—the interest and the innovation of
this paper lies in how this integrated flood risk assessment approach (which results from the original
combination of two already existing methods) can be used to individualise and guide intervention
decisions. It is this analysis that, we believe, can be of great interest and direct relevance to the reader’s
own practice.

2. The Historic City Centre of Guimarães

Located in northern Portugal, the city of Guimarães is usually referred to as the cradle of the
Portuguese nationality [8]. The Historic City Centre of Guimarães is a World Heritage Site, deemed as
such in 2001. According to the classification committee, the Historic City Centre of Guimarães is an
exceptionally well-preserved and authentic example of the evolution of a Medieval settlement into a
modern town, see Figure 1a. The architectural characteristics of the Historic City Centre of Guimarães,
marked by a rich diversity of construction typologies associated with different evolution periods of
the place, as well as its unity and integration with the landscape setting, compounds outstanding
universal values.

 
(a) 

 
(b) 

Figure 1. The Historic City Centre of Guimarães: (a) View to one of its squares; (b) Example of a flood
event in the Couros’ river basin (source: Guimarães City Council).

According to Miranda and Ferreira [6], in recent decades, the city of Guimarães has been subjected
to intense anthropogenic pressure as a result of a steady increase of urban and industrial occupation.
This has led to the depreciation of the Couros river basin, which was once a central part of the
population’s life and a vital element for the development of the leather industry [9]. As a result,
the levels of pollution and contamination in the Couros creek, as well as the severity of flood events in
the Historic City Centre of Guimarães, have increased substantially, Figure 1b.

The coexistence of the aspects mentioned above makes the assessment of the flood risk in the
Historic City Centre of Guimarães a particularly challenging and relevant work, constituting, therefore,
the justification for the selection of this case study.
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Past Flood Events in the Historic City Centre of Guimarães

The Couros river basin (11.2 km2) is part of the Selho river basin (67.7 km2), which is a sub-basin
of the Ave river basin (1390 km2) which drains to the Atlantic Ocean. The Couros river (5.6 km length)
is thus a small left tributary of Selho river, located entirely in the Municipality of Guimarães.

Water availability soon became a relevant driver of human occupancy along the Couros river
valley that crosses the Historic City Centre of Guimarães.

According to the DISASTER database [10], there are 10 flood occurrences in the municipality.
This database covers the period from 1865 to 2015 and includes only the most severe cases of flooding
(i.e., when at least one casualty, injured, missing, displaced, or evacuated person is registered in the data
sources). In the study area, along the Couros river, there are two flood occurrences of the DISASTER
type, both occurring during the flood event of 28 February 1978: in the elder residential structure
“Lar dos Santos Passos”, where 23 persons were evacuated; and a few hundred meters downstream,
at the trucking station, where three families were evacuated.

Despite this apparently modest record of severe losses, the dense artificialisation and
imperviousness of the basin—particularly in the Historic City Centre—has been causing frequent
episodes of flooding with only material consequences and economic losses. The most recent occurred
on 20 December 2019, which was associated with the Elsa atmospheric depression.

3. Materials and Methods

To better explain the methodological framework adopted in this work, this section presents and
discusses the fundamentals of the applied flood risk assessment method. As schematically illustrated
in Figure 2, the approach is composed of two main modules, the hazard and the vulnerability module.
The bases of these two modules are detailed in Sections 3.1 and 3.2. Finally, Section 3.4 introduces the
study area and the approach adopted in this research to collect, manage, and explore data.

Figure 2. The conceptual framework of the integrated flood risk assessment approach.

3.1. Hazard Module

The flood hazard was assessed using the hydrologic–hydraulic method. The assessment
process involved the acquisition and preparation of geometric data, the estimation of the peak
flow, the hydraulic modelling, and the GIS post-processing and mapping.

In the first step, we obtained the geometric data, representing the morphological features of the
floodplain from a base map at a scale of 1:1000, contour lines 1 m equidistant, and a dense cover of
mass points. Such data allowed us to create a detailed digital elevation model (DEM) with 1 m cell
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size, covering the entire valley of the Couros river, oriented E-W and crossing the Historic City Centre
of Guimarães, illustrating how significantly modified by human intervention the natural morphology
of the study area has been. The DEM features a topographic obstruction crossing the floodplain– and
the Couros river—with an orientation N-S. At this section, flow occurs through a hydraulic passage
of 30 m length, with a rectangular shape of 4.0 m × 3.5 m, which was geometric and hydraulically
modelled as a bridge. Roughness was represented through the Manning’s n value: 0.025 in the channel
and 0.05 in overbank areas.

Flow data were estimated for the 100-year flood, based on the results obtained from the hydrologic
study of Ramísio, Duarte, and Vieira [11,12], in which peak flows were obtained using empirical,
kinematic, and statistical methods. The adopted 100-year peak flow results from a simple average
of the estimates presented in the cited study, regarding four methods. Three of the methods are
kinematic: the Giandotti, the rational method (using Kirpich concentration-time), and the rational
method (using the Chow concentration-time). As for the rational method, we used the rainfall
Intensity-Duration-Frequency (IDF) curve parameters from a rain gauge station located 45 km ENE of
the study area, with a time series of 25 years. Although the gauge is located 45 km from the study
area, it represents the same climatological and pluviogenic context found at the Couros river basin.
Although the rain gauge is located at an elevation of 95 m, its 10 km radius has a mean elevation of
331.4 m, which is circa 70 m above the mean basin’s elevation of 258.8 m. Considering the mountainous
context where both areas are located, such a difference can be considered as not relevant. Of the several
rainfall durations for which those parameters are valid, we have adopted the interval 30 min to 6 h,
which frames the concentration-time found in the upstream sub-basin that drains to the modelled
reach—30.8 min and 71.7 min according to the Kirpich and Chow formulas, respectively. The rainfall
duration is assumed to equal the concentration-time obtained from the simple average of the applied
methods. The runoff coefficient C was estimated from the slope angle, land use data, and the degree of
imperviousness [11]: 0.56 in the upstream basin and 0.73 in the basin crossed by the modelled stream
of the Couros river.

The fourth method is a statistical one, designated as the Loureiro’s formula. This method uses the
area of the basin and regional parameters, valid for the Portuguese context only, calculated from peak
flow data fitted to the Gumbel distribution. The average of the four estimations was used from the
Ramísio, Duarte, and Vieira [12] study in two sections: one, defined at the upstream inlet (35.95 m3/s,
corresponding to a contributing basin of 3.75 km2); the other, estimated at the downstream outlet of the
modelled reach (54.15 m3/s), the difference (18.2 m3/s) of which we have distributed along the 1786 m
length of the modelled reach, proportionally to the drainage area of 11 pour points, Table 1.

Table 1. Estimated flow data for use in the hydraulic model of the Couros river reach, in the Historic
City Centre of Guimarães.

Pour Point Upstream Inlet A B C D E F G H I J K

Reach length
(m) 0.00 33.0 51.6 158.9 260.0 651.2 782.7 1013.7 1146.4 1252.6 1344.2 1495.1

Affluent Qp
(m3/s) 35.95 0.45 1.53 0.60 2.00 1.16 0.32 1.97 7.55 0.38 0.97 1.27

Sum Qp
(m3/s) 35.95 36.40 37.93 38.53 40.53 41.69 42.01 43.98 51.53 51.91 52.88 54.15

By adopting this approach, we have intended to consider the effect of the complex sewer system
that drains the small urban basins directly to the Couros river along the modelled reach.

Pre-processing of geometric data was performed at the HEC-RAS 5.0.7 environment [13], using
the RAS Mapper tool. The modelled reach goes further downstream from the area to which the
vulnerability of buildings was available. This is explained by the existence of the mentioned obstruction
near the study area, leading us to model a flood pathway long enough to allow a proper elongation of
floodwaters downstream of the obstruction. A normal depth slope of 0.015 m/m was used to define the
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downstream reach boundary conditions. A steady flow water surface computation was initiated at the
upstream boundary using the 35.95 m3/s peak flow, to which the mentioned 11 flow change locations
were sequentially added. In the modelling plan, we selected a mixed flow regime and requested the
optional floodplain mapping.

Finally, we sequentially exported the HEC-RAS modelling results to SDF, XML, and GIS formats.
Velocity and depth data were exported as GRID files (ESRI raster format) and the flood boundary as
shapefile (vector polygon), both for the 100-year flood.

3.2. Vulnerability Module

Flood vulnerability is assessed through the application of the simplified flood vulnerability
assessment methodology, which was initially proposed by Miranda and Ferreira [6]. This methodology
consists of the evaluation of two vulnerability components, an exposure and a sensitivity component
(Figure 2), which, through an index, quantify the vulnerability of the building to flood inundation.

As presented in Figure 3, the Exposure Component is composed of one single parameter
(Wall Orientation), which evaluates the influence of the orientation of the main façade wall of the
building to the water flow. This parameter intends to bring together the multiple aspects behind this
phenomenon: the location of the building, the orientation of its main façade wall, and the existence
of openings, knowing that buildings located in low-lying areas are theoretically more susceptible
to inundation due to runoff. Regarding the Sensitivity Component, this focusses on the physical
characteristics of the building by evaluating its Material characteristics, Condition (or conservation
state), Number of Storeys, Age, and Heritage Status. It is worth noting that these indicators were
defined from a comprehensive review of analogous indicators proposed for assessing similar building
typologies and structural characteristics under similar conditions [6].

Figure 3. The schematisation of the vulnerability module.

We obtained the values of the exposure (EC) and the sensitivity (SC) components, which was done
based on the vulnerability classes identified in Figure 3 (where A = 10, B = 40, C = 70, and D = 100),
and individual flood vulnerability (FV) can be obtained using Equation (1).

FV = EC × SC. (1)

For simplicity’s sake, the values of these three indices (EC, SC, and FV)—which range, respectively,
from 10 to 100, 50 to 500, and 500 to 50,000—are normalised to fall within the range of 0 to 100; the lower
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the value of the index, the lower the level of exposure, sensitivity, or vulnerability of the building.
According to Miranda and Ferreira [6], despite the fact that this approach was primarily intended
for assessing the flood vulnerability of single buildings, its simple formulation makes it particularly
suitable to evaluate large urban areas, such as historic city centres. It is precisely in this context that we
apply this methodology herein.

3.3. Risk Matrix

Finally, flood risk is computed from the combination of the hazard and vulnerability results
obtained by using the above-presented approaches. This is done through a vulnerability–hazard
matrix, which relates each building’s vulnerability with the level of hazard to which it is exposed
(see Table 2).

Table 2. Flood risk matrix.

Flood Risk
Hazard

Low Moderate High

Vulnerability

High Middle Risk High Risk High Risk
Moderate Low Risk Middle Risk High Risk

Low Low Risk Low Risk Middle Risk

Regarding the vulnerability level, this is measured directly by the flood vulnerability index.
For such, 20 and 40 were conservatively defined here as plausible threshold values for “moderate”
and “high” vulnerability, respectively. Although this criterion may be debatable, it is important
to note that the value of 40 (the boundary value between “moderate” and “high”) is frequently
used in index-based vulnerability assessment approaches as a threshold for high vulnerability, see,
for example, [14]. Concerning the level of hazard, this is obtained by combining flood velocity (v) and
water depth (y) results according to the criterion given in Equation (2):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v < 2 m/s ∨ y× v < 3 m2/s � Low Hazard

v > 2 m/s
∧

3 m2/s < y× v < 7 m2/s � Moderate Hazard
v > 2 m/s

∧
y× v > 7 m2/s � High Hazard.

(2)

This criterion was proposed originally by Clausen [15] based on empirical data. According to
Kelan and Spence [16], a physical meaning for this condition is related to momentum = mass× v =

pw × volume× v = pw ×horizontal flood area× y× v. If pw is constant in this hypothesis, the horizontal
flood area can be considered constant, thus leaving y× v as the variable.

3.4. Study Area, Building Assessment, and Implementation of a Geographic Information System (GIS) Tool

The study area includes nine blocks with 116 buildings in total. Each one of these buildings
was comprehensively assessed onsite to collect the data required for applying the flood vulnerability
assessment approach, by using a detailed checklist. After being digitalised and systematised, the data
that were contained in the checklists were manually inputted into a spreadsheet database to create a
digital record and to automate some later steps of the work.

Once all the indices and flood indicators were computed, the results were plotted and analysed
spatially using the open-source Geographic Information System software QGIS [17]. Geo-referenced
graphical data (i.e., vectorised information and orthophoto maps) and specific information related to
the hazard and the characteristics of the buildings were combined within the software to obtain first-
and second-order outputs. In this case, each polygon (corresponding to a building) is associated with
several features and attributes, allowing for their visualisation, selection, and search.

Because this GIS tool can efficiently combine highly-relevant hazard, vulnerability, and risk
outputs in a very flexible and dynamic environment (easily updatable or modified at any time), it is
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undoubtedly a significant asset for risk management purposes, allowing the local authorities to define
more consequent risk mitigation strategies.

4. Results and Discussion

Before getting into the integrated risk assessment outputs in Section 4.3, it is worth exploring the
individual hazard and vulnerability results (in Sections 4.1 and 4.2, respectively), which we define as
first-order results.

4.1. Hazard Modelling

The flood modelling process described in Section 3.1 allowed us to obtain a broad set of primary
hazard indicators, which, alone, give us good insight into the potential magnitude of a flood event in
the study area. As already noticed in Section 3, we focused on three primary hazard indicators: flood
extent, velocity, and water depth.

As for the flood extent, we found that for the adopted 100-year peak flow scenario, the study area
was significantly affected by the flood. As illustrated in Figure 4, 41 out of the 116 buildings considered
in this analysis are potentially affected by the flood.

 

Figure 4. Flood inundation map for the adopted 100-year peak flow scenario.

Of these 41 buildings, 23 are affected to the fullest extent, whereas the other 18 are partially
flooded, see Table 3. In absolute numbers, about 11,000 m2 of a total of about 32,000 m2 of built-up
area are affected, which corresponds to about 34%.

Table 3. Number of affected building distributed by ranges of the affected extent.

Flood Extent
Range of Values

>0–20 20–40 40–60 60–80 80–<100 Fully affected

Affected Buildings 4 (9.76%) 2 (4.88%) 4 (9.76%) 1 (2.44%) 7 (17.07%) 23 (56.10%)

Concerning the flood velocity, presented in Figure 5, it ranges between 0.01 m/s and 5.72 m/s.
The average velocity value at the surface of the 41 buildings affected by the flood is about 2.15 m/s—with
a standard deviation value (STD) of 1.68—being that 22 of these 41 building are exposed to surface
velocities higher than 2 m/s. As can be observed in Figure 5, there are two blocks that are particularly
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affected: one located in the northeast zone (15 buildings) and the other roughly at the central zone of
the study area (7 buildings).

 
Figure 5. Flood velocities resulted from the adopted 100-year peak flow scenario.

As for the water depth, from our hazard analysis, it was found that for the considered 100-year
peak flow scenario, the buildings will expectably be exposed to an average depth of about 1.20 m
(STD = 0.97). As illustrated in Figure 6, 31 out of the 41 buildings affected—which is slightly more
than 75%—present a water height of more than 0.5 m, which is a very significant value. The maximum
water depth value was obtained at the triangular shape building located at the southwest zone of the
study area (4.58 m), see Figure 6.

Table 4 summarises the above-discussed results, presenting the absolute and relative number of
potentially affected buildings for different ranges of flood velocity and water depth.

Table 4. Number of affected buildings distributed by ranges of flood velocity and water depth.

Hazard Indicator
Range of Values

0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 3.0–3.5 3.5–4.0 >4.0

Velocity (m/s)
12

(29.3%)
3

(7.3%)
1

(2.4%)
3

(7.3%)
5

(12.2%)
5

(12.2%)
4

(9.8%)
3

(7.3%)
5

(12.2%)

Depth (m)
10

(24.4%)
15

(36.6%)
4

(9.8%)
5

(12.2%)
2

(4.9%)
2

(4.9%)
1

(2.4%)
1

(2.4%)
1

(2.4%)
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Figure 6. Water depth resulted from the adopted 100-year peak flow scenario.

4.2. Flood Vulnerability

From the application of the flood vulnerability assessment approach detailed in Section 3.2,
we found that 60% of the 116 buildings evaluated present a flood vulnerability value (FV) between
0 and 30. As presented in Figure 7, the remaining 40% present values ranging between 30 and 100.
Statistically, the dataset has an average value of 25.70 (STD = 15.95).

Although flood damages cannot be estimated directly from these vulnerability values,
the distribution shown in Figure 7 seems to demonstrate that a significant proportion of the buildings
assessed are potentially very vulnerable to a flood event. We will provide more insight into this in
Section 4.3.

When exploring vulnerability results, it is often relevant to dive into the analysis of the specific
parameters of the methodology. Such analysis allows for a better understanding of the vulnerability
sources, which is a fundamental prerequisite to defining more consequent and effective risk mitigation
measures. Figure 6 presents a set of six maps associated with the spatial distribution of the parameters
that compose the flood vulnerability index.

A comprehensive discussion of the maps gathered in Figure 7 would be of little interest. However,
we find it relevant to highlight some main results.

Firstly, the general conservation state of the buildings: As it is apparent in Figure 7c, in general,
the buildings are either in good condition (Vulnerability Class A, 34%) or have minor conservation
issues (Class B, 46%). Most of these minor conservation issues are related to small cracks or coating
decay. Further, 20% of the buildings are in poor condition, presenting a significant cracking and
moisture phenomena.

Secondly, the distribution of the number of storeys, in Figure 7d: This aspect is especially
relevant since, according to several authors [18,19], the number of storeys has a direct influence on the
vulnerability of the building to flooding. We will go into further detail regarding this when discussing
the second-order risk results. For now, let us emphasise that 113 out of the 116 buildings evaluated
have between 1 and 3 floors, distributed as follows: 38% are single-storey buildings, 33% have two
storeys, and 27% have three.

Finally, the Heritage Status, in Figure 7f: This is a relevant aspect in the sense that buildings
with heritage value deserve particular attention when it comes to risk assessment. Thus, regarding
this aspect, 59% of the buildings assessed are ordinary buildings (i.e., non-classified). Then, 38% are
currently in the process of classification and only 3% correspond to classified buildings.
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(a) 

 
(b) 

 
(c) 

 
(d)

 
(e) 

 
(f)

Figure 7. Mapping of the spatial distribution of the vulnerability classes: (a) Wall Orientation;
(b) Building Material; (c) Condition (or conservation status); (d) Number of Storeys; (e) Building Age;
(f) Heritage Status.

When getting into the discrete exposure, sensitivity, and vulnerability results, it is possible to gain
a much better understanding of the overall vulnerability of the buildings. As illustrated in Figure 8a,b,
respectively, spatial analysis reveals a scattered distribution of exposure and the sensitivity indicators
over the study area. Comparatively, it is also clear that the exposure values are generally higher than
sensitivity values. Despite this, and although there is no correlation between these two indicators,
it is interesting to see that some of the most exposed buildings are also those that revealed to be more
sensitive. This cross analysis is presented in Figure 9a, where we identify the buildings to which
the exposure and the sensitivity values are cumulatively higher than 40. For vulnerability reduction
purposes, these buildings are the most critical ones.
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(a) 

 
(b) 

Figure 8. Spatial distribution of the exposure (a) and the sensitivity (b) indicators.

 
(a) 

 
(b) 

Figure 9. Cross analysis of the exposure and the sensitivity indicators (a) and spatial distribution of the
vulnerability index results (b).

Figure 9b presents the distribution of the vulnerability index results. Although we have already
commented on the most significant aspects when addressing the exposure and the sensitivity results,
it is worth emphasising two further points. First, the fact that a significant part of the most vulnerable
buildings is located in the central part of the study area. As we will have the opportunity to prove
afterwards, this aspect may be essential, taking into account that these more vulnerable buildings are
located coincidentally within the most hazardous area. Second, the fact that some of these buildings
are abandoned. Keeping the social aspects out of the discussion, buildings’ abandonment is one of
the main factors of rapid degradation and, as a result, increased physical vulnerability. During the
discussion of the risk results, we will provide further insight into these critical issues.

4.3. Integrated Risk Assessment

After having discussed the main outputs resulting from the hazard and the vulnerability analysis,
we are in an excellent position to integrate these results in order to obtain more comprehensive flood
risk indicators. As detailed in Section 3.3, this integration will ultimately result in a risk matrix
that correlates the level of vulnerability with the level of hazard to which each building is exposed.
However, before going into such an outcome, we would like to analyse a set of second-order results
obtained by crossing some of the above-discussed indicators.

4.3.1. Second-Order Analysis

The first second-order result that we think is of great interest is the joint analysis of the water depth,
the exposure component of the vulnerability index, and the conservation state of the buildings. Before
going into the result, it is worth justifying the selection of these particular indicators. Water depth
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is recognised as the most relevant hazard indicator when analysing the impact of flood actions on
buildings [15]: depth is usually used to produce vulnerability curves associated with flood events,
which is also known as depth-damage curves [20–22]. In fact, although some studies note the
importance of flood parameters other than depth [16], those are barely analysed so comprehensively.
Equally important is the fact that water depth is directly related to flow velocity and, therefore, with
the effects of the hydrodynamic actions. The impact of these hydrodynamic actions on the buildings
are, of course, very dependent on their level of exposure—a building of which its façade wall is
perpendicular to the direction of the water flow is potentially much more affected than another where
its façade is parallel to the direction of the flow. As referred to in Section 3, this is exactly what the
sensitivity component of the flood vulnerability index seeks to evaluate and that is why it is considered
in this second-order analysis. It is also known that the weaker the state of conservation of the building,
the higher the impact of the flood (due to hydrostatic and hydrodynamic actions). This fact rationalises
the inclusion of this aspect in the present analysis.

Justifying the three indicators considered herein, Figure 10 presents the map resulting from their
integrated analysis. We want to highlight a couple of interesting conclusions from the analysis of this
map. The first one is the identification of highly-exposed buildings (i.e., with an EC value higher
than 40) that, for the adopted 100-year peak flow scenario, are subject to a water depth over 2 m. Based
on this first criterion, it is possible to identify six buildings—about 5% of the building stock within our
study area—which are highlighted in red in Figure 10. However, when including the conservation
state into the analysis, this number can be further reduced to 5 (about 4% of the building stock), making
this result even more informative for decision-making purposes.

 
Figure 10. Joint analysis of water depth, exposure, and condition indicators.

Another second-order result that we find worthy of particular discussion herein is the joint
analysis of the water depth and the sensitivity component of the flood vulnerability index methodology.
Since this component assesses the intrinsic characteristics of the buildings that make them sensitive
to the impact of flood actions, it is undoubtedly relevant to consider these two indicators together.
We would like to note that the conservation sate of the buildings is already part of the sensitivity
component, which is why we now choose not to consider this aspect explicitly. Figure 11 presents the
maps resulting from this analysis.
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Figure 11. Joint analysis of water depth and the sensitivity indicator.

As can be inferred from the analysis of Figure 11, the number of buildings identified from the
joint analysis of the water depth and the buildings’ sensitivity (for the very same 100-year peak flow
scenario) is reduced to 2, which is a little less than 2%. It is also interesting to note that these two
buildings are among the five already identified in Figure 10, which, from a decision-making standpoint,
pushes them to the top of the intervention priorities.

4.3.2. Matrix-Based Analysis

After the above preliminary second-order analysis—through which we have already gained a
deeper understanding about the potential impact of the considered flood scenario in some particular
buildings—we got to the point of combining the obtained hazard and vulnerability results into a
single flood risk indicator. As a result, the level of hazard and vulnerability associated with each
building are related through a risk matrix, wherein the vulnerability is inputted directly using the
flood vulnerability index (FV) and the hazard is derived from the velocity and water depth results,
using Equation (2).

Thus, before diving deeper into the results obtained from the flood risk matrix, it is useful to map
and analyse the spatial distribution of the hazard and vulnerability results. These maps are presented in
Figure 12a,b. According to the criterion adopted in this matrix-based analysis, the level of flood hazard
throughout the study area is quite homogeneous, see Figure 12a. Further, 22 out of the 116 buildings
assessed (about 19%) were identified as having a “Moderate” flood hazard, whereas all the remaining
were labelled with “Low” hazard. In terms of spatial distribution, it is possible to identify two blocks
that can be particularly affected. Let us notice that although the hazard is being evaluated differently
in this section—here, velocity and water depth are combined into a single hazard indicator—this result
is in essential agreement with the discussion provided in Section 4.1. As for the spatial distribution of
the flood vulnerability results, given in Figure 12b, it is visibly more heterogeneous: 37.9% (44), 41.4%
(48), and 20.7% (24) of the buildings were identified as having a “Low”, “Moderate”, and “High” flood
vulnerability, respectively.
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(a) 

 
(b) 

Figure 12. Spatial distribution of the flood hazard (a) and flood vulnerability results (b).

Contextualising the hazard and the vulnerability results, it remains for us to present and discuss
the final flood risk results. They are illustrated in Figure 13 and quantified in Table 3.

 
Figure 13. Spatial distribution of the flood risk results.

As shown in the flood risk matrix provided in Table 5, 66.4% of the buildings (77) were identified
with “Low” flood risk, 29.3% (34) with “Middle” risk, and 4.3% (5) with “High” risk for the same
100-year peak flow scenario considered in this work.

Table 5. Flood risk matrix.

Flood Risk
Hazard

Low Moderate High

Vulnerability

High 19 (16.4%)
Middle Risk

5 (4.3%)
High Risk

0
High Risk

Moderate 33 (28.5%)
Low Risk

15 (12.9%)
Middle Risk

0
High Risk

Low 42 (36.2%)
Low Risk

2 (1.7%)
Low Risk

0
Middle Risk

Complementarily to the main conclusions drawn from the second-order analysis discussed
in Section 4.3.1, this outcome allows us to recognise some additional buildings that, because the
hydrodynamics effects of the flood have been disregarded in that analysis (only water depth was
considered explicitly), are not identified there. In fact, none of the building previously highlighted
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in Figures 10 and 11 are identified in this final analysis as having a “High” flood risk. If in a less
thoughtful consideration these two results may seem divergent, in fact, they prove to us the importance
of considering different criteria and approaches to assess flood risk in urban areas. Still, in this regard,
we would like to stress that these results are obviously conditioned by the criterion used to define the
levels of hazard and vulnerability. If, for example, we had used a different criterion from that given
by Equation (2)—which, as is always the case, was proposed by Clausen [15] from a set of specific
conditions—the results could be very different. This said, the five buildings identified in this analysis,
together with those five identified in Section 4.3.1, should be the priority targets of future flood risk
mitigation programs.

5. Conclusions

This paper presents a new method for assessing the flood risk of the built environment, specifically
adapted to areas classified by their heritage value. For the effect, the Historic City Centre of Guimarães
(Portugal) was selected as a study area.

We have defined a hazard scenario for the 100-year flood by hydraulic modelling with HEC-RAS,
of which its outputs are flood extent, depth, and velocity. Such outputs, derived from a steady
flow analysis, must assume the limitation of not providing information that ultimately would
allow for a better understanding of the flooding process, namely that from a flood hydrograph
(time to peak and duration of inundation), an unsteady analysis would result. The vulnerability has
been assessed by considering an exposure component (based on wall orientation) and a sensitivity
component (based on heritage status, age, number of storeys, condition, and material of buildings).
They define the hazard and vulnerability modules of a GIS tool, which later provided a cross-analysis
of information, culminating in a flood risk matrix. A total of 116 buildings were evaluated with the
developed methodology.

The first insight into each module’s results provided a detailed understanding of flood risk
roots or causes, which gives decision-makers and planners information on which risk factors are
more relevant in each block or building. This highlighted wall orientation and condition as the
most concerning aspects, with exposure being more relevant than sensitivity in explaining physical
vulnerability. The second-order analysis evaluated evidence risk contexts that otherwise would go
unnoticed, namely a) the analysis of flood depths, conservation state (from the sensitivity component of
FV), and wall orientation (from the exposure component of FV) and b) the overlay of flood depths with
the sensitivity component of FV. Complementarily, the risk-matrix analysis identified other buildings
as high risk, some of them not coincident with the individualised analysis of risk components (hazard
and vulnerability).

It is the ability to characterise the potential impacts of hazardous processes that allows us to
prepare and promote the necessary formal and informal changes, which, ultimately, will contribute
to risk reduction [23]. In that sense, we expect the generated knowledge to be applicable in different
fields of flood risk management.

If the individual first-order results are used, resources’ assignment will prove to be more efficient
in addressing the particular risk factors identified as more relevant in each building. Combined
with the risk-matrix classification, the results are capable of informing municipal decision-makers
and planners regarding the intervention priorities of urban rehabilitation projects. Civil protection
agents will be capable of planning efficient and safe evacuation routes, in case of flash flooding.
The business sector will be able to prepare for recurrent flooding with minor consequences, defined by
some as nuisance flooding. Finally, medium- to long-term strategies of spatial planning and design
can be drawn from the risk-matrix results: the eventual relocation of buildings classified as high
risk; the retrofitting of their physical characteristics in order to reduce their physical vulnerability
while maintaining their functionality, if possible, even during flood events, in the areas of low risk.
Intermediate contexts of flood risk require, in terms of spatial and design planning, pondering the
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range of possible interventions, specifically those that better combine urbanity and safety in distinct
degrees of flood adaptation [24].

When coupled with social vulnerability data, the provided risk assessment will significantly
contribute to increasing the resilience of the built environment. The historical centres of cities represent
places of high sensitivity of their exposed elements. In addition to their heritage and cultural value,
the mandated authorities need to consider the functions that these buildings provide, both for the
resident population and the transient population.

The analysis we have presented, although focused on flood risk, can be replicated with some
adaptation, concerning other hazard processes, not exclusively of hydro-geomorphologic origin.
Moreover, provided that the evaluated buildings can be grouped typologically, we believe that this
framework can be easily applied in larger-scale risk assessments, keeping a very reasonable balance
between accuracy and applicability. In that case, blocks of buildings or even entire neighbourhoods
can be used as the basic assessment units. An interesting example of using neighbourhoods as the
basic assessment unit to evaluate fire risk can be found in [25].
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Abstract: This paper presents the application of a graph-based methodology for the assessment
of flood impacts in an urban context. In this methodology, exposed elements are organized as
nodes on a graph, which is used to propagate impacts from directly affected nodes to other nodes
across graph links. Compared to traditional approaches, the main advantage of the adopted
methodology lies in the possibility of identifying and understanding indirect impacts and cascading
effects. The application case concerns floods numerically reconstructed in Mexico City in response to
rainfall events of increasing return periods. The hazard reconstruction was carried out by using a
simplified hydrological/hydraulic model of the urban drainage system, implemented in EPASWMM,
the Storm Water Management Model developed by the United States Environmental Protection
Agency. The paper shows how the impacts are propagated along different orders of the impact chain
for each return period and compares the risk curves between direct and indirect impact. It also
highlights the extent to which the reduction in demand of services from consumers and the loss of
services from suppliers are respectively contributing to the final indirect impacts. Finally, it illustrates
how different impact mitigation measures can be formulated based on systemic information provided
by the analysis of graph properties and taking into account indirect impacts.

Keywords: pluvial flood; indirect impacts; risk assessment; graph analysis; flood mitigation;
Mexico City

1. Introduction

Floods have become one of the most dangerous and costly natural hazards in recent decades.
Economic damage reported worldwide from 2000 to 2006 add up to more than 422 billion dollars,
accompanied by more than 290,000 fatalities and over 1.5 billion affected people [1]. The most
dangerous flood events usually take place in urban areas, where the highest number of inhabitants and
the most valuable exposed assets are located today, due to current urbanization trends [2]. Another
factor contributing to the negative effects of floods is climate change, which appears to be concentrating
the total yearly rainfall volume in increasingly sporadic and intense rain events [3]. As a result,
rainwater discharges have been growing significantly in urban catchments [4], causing the occurrence
of increasingly frequent flood event [5–7]. Due to the rapidity of the governing processes, mainly
related to short concentration times, flood events in urban areas typically occur with little to no early
warning, thus being commonly referred to as flash floods.
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The implementation of effective strategies to manage urban flood risk requires support from risk
assessment studies quantifying the impacts of hazardous events on the built environment, economy,
and society [8]. The research community concerned with disaster risk reduction (DRR), particularly
in the fields of physical and environmental science, has generally agreed on a common approach for
the quantification of risk as a function of hazard, exposure, and vulnerability [9]. Hazard defines the
potentially damaging events and their probabilities of occurrence, exposure represents the population
or assets located in hazard zones that are therefore subject to potential losses, and vulnerability links
the intensity of a hazard to potential losses at exposed elements.

When the pluvial flood hazard component of risk is represented using numerical modelling, it is
generally assumed to include the ponding prior to the ingress of direct runoff into the underground
drainage system (e.g., [10–12]). In terms of floodwater, other contributions come from surcharged
sewers and/or from urban minor watercourses, the flow capacity of which has been exceeded as a
result of heavy rainfall [13,14]. In most applications, flood hazard (flood extension, water levels,
and velocities) is assessed by making use of suitable software (e.g., [15–17]) aiming to reproduce the
response of the urban drainage system to intense rain events of prefixed return period (e.g., [18–20]).
In addition to rainfall, the presence of close rivers and water courses may be an additional potential
driving force for the system [21].

Combining the flood hazard component with exposure and vulnerability data and models enables
the computation of flood risk. Methodologies for risk assessment may differ according to the typology
of losses considered, which can be divided into direct and indirect, and tangible and intangible [22,23].
Models for the assessment of direct loss and risk are the most widely used, and the ones which have
received the most scientific attention in recent decades (e.g., [24,25]). The situation is different regarding
indirect losses. In fact, the application of models that take into indirect impacts and cascading effects is
much less frequent [26], and the selection and implementation of a model type for estimating indirect
economic losses for a given application case is not straightforward [27].

The Economic Global Forum Report (2018) highlights the importance to understand the risk due to
the new complexity of our society, and to improve the capacity to model and manage this risk, “When
a risk cascades through a complex system, the danger is not of incremental damage but of ‘runaway
collapse’—or, alternatively, a transition to a new, suboptimal status quo that becomes difficult to
escape.” Pescaroli and Alexander (2016) [28] showed how the complex socio-technological networks of
present-day society, especially in strong urbanized areas, increase the impact of local events on broader
crises. These potential evolution processes require a system thinking and perspective that considers all
the behaviours of a system as a whole in the context of its environment. The systems perspective uses
a non-reductionist approach aiming to describe the properties of the entire system itself. Furthermore,
any description of the whole system must include an explanation of the relationships between the
parts. Arosio et al. (2020) [29] demonstrate the advantages of representing a complex system, such as
an urban settlement, by means of a graph, and using the techniques made available by the branch of
mathematics called graph theory. In fact, it is possible to establish analogies between certain graph
metrics and the risk variables and to use the graph as a tool to propagate the damage into the system.
This approach aims to understand certain risk mechanisms, such as how the impacts of a hazard
are propagated. Therefore, the disaster risk of the system as a whole can be assessed, including
higher-order impacts and cascading effects.

An outstanding example of drainage system that has been put to a severe test by changes in
the last decades is Mexico City (MC). In addition to the effects of climate change and urbanization
on flood risk, an extremely high subsidence rate of about 30 centimetres per year [30] is threatening
the hydraulic functionality of this drainage system. On top of that, the city has been experiencing
significant population growth in the recent decades; thus, making flood management an urgent issue.
Given this context, this paper first provides a simplified model that explicitly integrates the drainage
system and surface runoff for the estimation of pluvial flood hazard, and then estimates direct and
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indirect impacts in terms of number of affected graph nodes and links. In particular, the aims of this
paper are:

• to set up of a simplified hydrological and hydraulic model of the main urban drainage system to
estimate the hazard in terms of flood area extension and water levels;

• to use the graph representation of a system as the basis for assessing higher-order impacts and
cascading effects for different return periods (T), based on the propagation of impacts along graph
links; and

• to illustrate how different impact mitigation measures can be formulated based on systemic
information provided the analysis of graph properties, taking into account indirect impacts.

2. Methodology

2.1. Hazard Modelling

Hazard identification and assessment are carried out by using the Storm Water Management
Model developed by the United States Environmental Protection Agency (EPASWMM) [31], which
has been adopted in many works in the scientific literature (e.g., [32–35]). This software can model
the response of an urban catchment to rain events, while representing the external urban surfaces as
planes featuring pre-assigned values of area, width, and slope. The runoff leaving the planes enters
the underground system through the junctions present at channel ends and is then routed inside
the channels up to the outlet(s) using De Saint Venant equations [36]. At each junction, the mass
conservation equation is applied to balance entering and outgoing flows. In correspondence to intense
rain events, backwater effects can take place, causing junctions to get surcharged. As a result, water goes
out of the underground system, causing floods in the urban environment. The thorough assessment of
flood extension and levels would require 2D flood propagation models to be used. However, if an
urban territory is inside a basin, the propagation effects can be neglected, and flood extension and
levels can be simply assessed by distributing flood volumes over territory, starting from the lowest
ground elevations. This can be accomplished by using simple Geographic Information System (GIS)
procedures [37].

In EPASWMM, the structure of the urban drainage networks needs to be defined in terms of
channel paths, lengths, shapes, and sizes. Then, each junction, which can be a node in common between
two adjacent channels, the starting node of a channel, or the final outlet of the system, can be connected
to an external catchment. Catchments must be associated with a rain gauge, in which hyetographs can
be implemented as time series to represent synthetic rain events of different return periods.

2.2. Graph Construction

This work demonstrates an approach to assess impacts beyond direct tangible damage, integrating
the hazard analysis with a graph representation of a complex system. While the traditional reductionist
risk assessment framework considers each exposed element individually, a graph representation is able
to account for interactions between exposed elements at risk, which is key to a more comprehensive
understanding of risk.

Graphs can be used to represent physical elements in the Euclidean space (e.g., electric power
grids and highways) or entities defined in an intangible space (e.g., collaborations between individuals).
Formally, a graph G consists of a finite set of elements V(G) called vertices (or nodes), and a set E(G)
of pairs of elements of V(G) called edges (or links) [38]. The mathematical properties of a graph can
be studied using graph theory [39,40]. Such properties, e.g., degree, hub and authority, are useful
metrics for analysing the graph structure (i.e., network topology, and arrangement of a network) and
in the present context may be used to characterize a collection of exposed elements from a systemic
viewpoint (e.g., [41]).

The complete procedure to construct a graph representing a system of exposed assets is presented
in Arosio et al. (2020) [29] and its two main steps are summarized here. First, the conceptual network
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is defined by means of two types of network objects, nodes (vertices) and links (edges), and by
specifying their characteristics. Nodes can theoretically represent all the entities to be analysed:
physical elements like single buildings, fire stations, and electric towers; supply of services such as
those provided by schools, hospitals, and fire stations; or even beneficiaries such as population in
general, or students, or elderly people more specifically. Links can be of different types according to
the nature of the connection: physical, geographical, cyber, or logical [42]. Second, once the network
has been conceptually defined, it is necessary to construct the actual connections between all elements.
In fact, the conceptual network determines only the existence of connections between categories of
elements, it does not define which specific node of one typology is linked to a specific node of another
typology. Therefore, it is necessary to define rules that establish connections between single nodes.
These connections can be represented either by a list of pairs of nodes or by an adjacency matrix.

2.3. Impact Assessment

Arosio et al. (2020) [29] propose analysing the properties of both the entire graph and single
nodes. The global properties show how the whole system is vulnerable to an external perturbation,
while the properties of single nodes underline which parts of the system are more critical for the
entire system. The analysis of properties provides valuable information on the system. However, in
order to assess risk and realize a proper DRR strategy, this information needs to be integrated and
overlapped with hazard information (e.g., intensity, extension, and probability of occurrence). In the
present work, the impact is computed by integrating the hazard for different return periods with the
exposed network. The total impact considers both direct impact (D) and indirect impact (I).

For the direct impact, recent literature considers the overall amount of physical damage to assets
(D) equal to the cost to repair and/or replace them, i.e., the sum of the cost to restore the damage (Cn)
of all the nodes N that are hit by the hazard [43]. Under this condition, the direct physical impact is
a function of the number of hit nodes (N), the hazard intensity (Hn) at each node n, and its physical
vulnerability (Vn):

D =
N∑

n=1

Cn(Hn, Vn) (1)

The indirect impact (I) considers the overall amount of tangible losses generated by cascading
effects due to the direct damage (D), i.e., the sum of the economic loss (LS) of all the services S that are
interrupted. In this specific definition, the indirect impact is a function of the number of services lost
(S), the typologies of services (Ts), and economic values (Vs) associated to each typology value.

I =
S∑

s=1

Ls(Ts, Vs) (2)

3. Application: Mexico City

Mexico City is one of the most hazard-prone cities in the world, due to the frequent occurrence
of floods, landslides, subsidence, volcanism, and earthquakes. The Mexico City Metropolitan Area
(MCMA), situated in a high mountain valley (approximately 2200 m a.s.l.), is one of the largest
urban agglomerations in the world. Located in a closed basin of 9600 km2, MCMA spreads over a
surface of 4250 km2. The MCMA has an estimated metropolitan population of about 21.2 million
people, equal to 18% of the country’s population, and generates 35% of Mexico’s gross domestic
product [44]. This application study focusses on Mexico City (also called the Federal District—MCFD),
where approximately 8.8 million people live. The choice of MCFD as a pilot case allows showing
the importance of interdependencies in assessing the total impact in a complex urban environment.
Tellman et al. (2018) [45] show how the risk in Mexico City’s history has become interconnected
and reinforced. In fact, as cities expand spatially and become more interconnected, risk becomes
endogenous. Urbanization, driven by population growth, increases the demand for water and land in
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many parts of the world [46], which is well represented by the choice of Mexico City as case study.
Furthermore, the impact estimated in the present work is expected to worsen in the future, due to the
soil subsidence phenomenon in progress, which is expected to deteriorate the hydraulic capacity of the
drainage system.

3.1. Description of the Application

3.1.1. Hazard Simulation

Rainfall patterns associated with different return periods were obtained through the uniform
depth duration frequency curve (DDF) for the entire MCFD [47]. In particular, Chicago hyetographs
with a duration of 6 h [48] and with peak located at 2.1 h were constructed starting from the DDF
curve [49]. Figure 1 presents the DDF curves computed for different return periods, which were used
in the analysis.

 

Figure 1. Depth duration frequency (DDF) curves for Mexico City.

The EPASWMM model of the main urban drainage system, serving a total area of 1586 km2, was
constructed starting from data made available by the Engineering Institute of the National Autonomus
University of (UNAM) México D.F. The model has 109 junctions (one for each catchment), and 98
underground channels with Strickler roughness set at 52 m1/3/s, the typical value for masonry walls [48]
and consider the condition of possible failure of the pumping system (see Figure 2 for the layout of
the channels).

The model was used to simulate hydrology and hydraulics in Mexico City, i.e., runoff formation
from external catchments and flow-routing in underground channels, respectively, as a result of the
rainfall patterns described above. Water volumes going out from each surcharged node of the model
were lain on its associated urban catchment, starting from the lowest areas close to the node itself.
Incidentally, the neglection of flood propagation over the territory can be considered an acceptable
assumption, due to the basin-shaped orography.

By applying the mass conservation equation to balance entering and outgoing flows at each
junction, EPASWMM estimates the hydrograph of water that comes out when the piezometric curve
exceeds the surface level. Furthermore, in a GIS environment, the volume-depth and depth-area
functions for each basin were computed using a five-meter resolution digital terrain model (DTM).
Knowing the volume from the outgoing hydrographs and using the functions mentioned above,
the flood extension was evaluated independently for each basin at different return periods.
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Figure 2. Spatial representation of the modelled main drainage system.

3.1.2. Network Conceptualization and Graph Construction

The six following critical typologies were selected to for this illustrative pilot study: fire stations,
fuel stations, hospitals, schools, crossroads, and blocks [29]. These six typologies do not intend
to cover all possible typologies of elements in the city, but rather to illustrate the methodology by
representing different types of both tangible and intangible services. The simulation uses blocks instead
of population, as this enables a reduction in computational demand by lowering the number of nodes
from 8 million to a few tens of thousands. Furthermore, the analysis considers a limited number of
central nodes of the city’s transportation network (i.e., crossroads) as providers of the transportation
service to other elements. This approach does not aim to be representative of the complete behaviour
of the road network system (e.g., [50]), but it does allow considering the transportation network in the
analysis in a simplified manner. All the typologies, numbers of elements and the connections between
them are presented in Table 1. The data utilized to build the network were provided by the Engineer
Institute UNAM México D.F.

Table 1. List of nodes adopted in the network conceptualization [29].

Network
Conceptualization

Type of Nodes
Number of
Elements

Service Provided Destination of the Service

 Crossroads 17 Transportation Fire Stations, Schools, Hospitals,
Fuel Stations, and Blocks

Fire Stations 11 Recovery Schools, Hospitals, Fuel Stations,
and Blocks

Fuel Stations 103 Power Blocks

Hospitals 39 Healthcare Blocks

Schools 130 Education Blocks

Blocks 64,282 - -
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The mathematical graph, built from the list of nodes and links considered, was obtained using the
open source igraph package for network analysis of R environment (http://igraph.org/r/), while the full
library of functions adopted are made available by Nepusz and Csard (2018) [51].

3.1.3. Impact Analysis

For the estimation of the direct impact of the nodes, simplified binary vulnerability functions
were adopted, consisting of zero damage for the nodes outside of the flooded area, and full damage
and loss of functionality for the nodes inside the flooded area. This means that directly impacted
nodes are assumed to lose their capacity to provide services, and also their demand for such services.
Admittedly, this simple assumption does not realistically represent the estimation of direct damage.
However, it is considered acceptable in light of the main focus of this work, which is to investigate and
demonstrate the potential of a graph in representing and exploring indirect impacts.

The analysis of the indirect impact refers number of services, as opposed to number of nodes in
the direct impact analysis. In fact, indirect impacts are represented here by the difference between
the number of the services, i.e., links, existing before the hazardous event and the number of services
at the final state, after the cascading effects

(
Sinitial − S f inal

)
. This analysis could be enhanced with

estimates of economic losses corresponding to disrupted services (e.g., related to the fuel sector [52]
or the education sector [53]) and/or with economic models to estimate overall economic impacts at a
regional scale (e.g., [26]), although these are not carried out here as they are outside the scope of the
present article.

The nodes directly impacted by the flood generate a cascading effect into the graph, whereby the
propagation of the impact follows the nodes that have lost at least one service from their providers.
This propagation process is modelled by creating a new graph (G1) where nodes directly affected by
the hazard (i.e., flooded nodes) are removed from the original graph (G0). After that, the degree-in,
representative of the number of received services, of each node in G1 is compared with the corresponding
degree-in in G0. By deleting all nodes experiencing a degree-in reduction from G0 to G1, graph G2 is
obtained. This process is iterated until there are only unaffected nodes in the graph to produce the
final graph Gfinal, which corresponds, to the final state of the affected system.

In this application, two different indirect impacts (i.e., here measured in term of services lost)
are investigated: loss of service providers (SP, i.e., suppliers) and loss of service receivers (SR i.e.,
consumers). In fact, after a hazardous event, nodes that provide services can experience a loss of
demand (LD) from their receivers (R) that are affected by the event. Conversely, the receivers can
observe a loss of services (LS) from their providers (P) after the hazardous event. The loss of provider
services (SP) and of receiver services (SR) can be computed as

SP =
M∑

i=1

N∑
j=1

ωi, j (3)

and

SR =
M∑

i=1

N∑
j=1

ϕi, j, (4)

where ϕ and ω are respectively the degree-in and degree-out of the jth node that at the ith order has
been deleted; N is the number of deleted nodes at step i and M is the last order of loss propagation (i.e.,
4 orders in this application). The loss of demand is computed by summing the degree-in of the deleted
nodes, while the loss of services is computed by summing the degree-out of the deleted nodes.

3.2. Flood Hazard and Impact Results

This section shows the results obtained from the hydrological and hydraulic simulations, followed
by the estimation of direct and indirect impacts. The impacts are previously presented in terms of
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cascading evolution of affected nodes and later in term of lost connections. It is also presented for each
typology of service whether the impact is due to the loss of service provider or of receiver demand and
illustrates how different flood mitigation measures can be formulated based on systemic information
provided the analysis of graph properties.

The hazard analysis provided the pluvial flood areas associated with the precipitation at each
specific return period. As expected, Figure 3 shows that the total flood area increases with growing
return period: from 20 km2 at the 2-year return period up to 55 km2 at the 500-year return period.

 

Figure 3. Flooded areas for different return periods.

For illustration, Figure 4 presents the areas associated with a flood with the 2- and 500-year return
periods, respectively the minimum and maximum considered in this study. In both cases, most water
depth values are within realistic ranges (e.g., up to 1.20 m for the 500-year return period flood), with
only a limited number of outliers located mostly at the borders of the considered basins. While a more
comprehensive flood hazard assessment would be possible by using 2D flood propagation models,
these results are considered suitable for the specific scope of this work, which focuses on demonstrating
a graph-based approach for higher-order impact assessment and risk mitigation.

(a) (b) 

Figure 4. (a) Flood map of 2-year return period; (b) flood map of the 500-year return period.
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Traditional approaches estimate the direct impacts considering only the exposed elements hit
by the flood. Instead, the proposed approach can simulate the evolution of cascading effects after
some elements are directly hit. Figure 5 shows the evolution of cascading effects of affected nodes at
different orders. At each order, the graph was obtained by removing the nodes that were affected in the
previous order. Order 0 is the original graph, order 1 is reduced by the nodes that were affected directly
by the flood, and from orders 2 to 4 the graphs were obtained by removing indirectly affected nodes,
as explained previously. The number of nodes impacted by the event increases when moving from
order 1, which represents the directly affected nodes, to order 3, which is associated with the maximum
number of nodes affected by the event. The cascading effects stop at order 3 because there are no new
nodes affected by parent nodes after that point. Figure 5 shows less than 5000 nodes directly affected
for each return period, specifically 3% of the nodes (1818 nodes) and 8% of the nodes (4904 nodes) are
flooded for the return periods of 2 years and 500 years, respectively. Instead, the total number of nodes
affected at the end of the cascading effects ranges from 23% to 43% of the entire graph, at the 2- and
500-year return periods, respectively.

 
Figure 5. Number of nodes affected at each step for different return periods.

Comparing the shape of the curves in Figure 5, a particular behaviour is remarked between the
2- and 10-year return periods when moving from order 1 to 2. In fact, the difference in number of
affected nodes between the two return periods is much higher at order 2. The increment of nodes
affected at each order, after the direct impact (above order 1), is not proportional with the increment of
flooded extension associated with different return period. This is a peculiar aspect of complex systems,
in which large-scale secondary events play a not-negligible role.

An explanation for this can be found in Figure 6, which shows the propagation of the effects not
only inside the flooded areas, but also outside and potentially over the entire network. Figure 6 shows
in red the nodes that are directly impacted (i.e., inside the flood area), in orange the nodes that are
indirectly impacted due to the absence of service from the provider nodes inside the flood area (black
stars at order 1), and in yellow the nodes at order 3 that are indirectly impacted due to the absence
of service from the provider nodes affected at order 2 (grey stars). Since at order 3 there are no new
affected providers, the propagation effects stop and the number of impacted nodes at order 4 do not
increase. In comparison with the 2-year return period, there is a larger number of nodes affected at
order 2 in the 10-year-return period. This happens because the flood directly impacts a hospital, which
is not reached by the flood at the 2-year return period. This hospital is an important central node of the
graph, which has the capability of influencing many other nodes due to its role of hub. In fact, this
node provides the healthcare service to many other nodes, and as shown by the hub analysis carried
out in Arosio et al. (2020) [29], it has the highest hub value of the entire system. Figure 6 shows, for the
larger return period, more numerous orange nodes (i.e., nodes indirectly impacted at order 2) in the
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south-east part of the city. This large area, characterized by blocks with higher authority values [29],
gets affected due to the absence of service provided by the hospital mentioned above. According
to these results, the blocks with higher authority are the ones that depend on the services from the
providers with higher values of hubs. For this reason, the floods that hit such hubs undermine a
considerable part of the network as is evident for floods with T above 2 years. The strong correlation
between hubs and authority explains these results. However, it is necessary to underline that these
outputs also reflect the assumption of the rules of proximity adopted in this model, where the network
has no redundancy by construction [29]. The redundancy can change the values of hub and authority
of the nodes and can therefore influence the magnitude of cascading impacts that are presented in the
next section.

p

 
(a) 

 
(b) 

Figure 6. Spatial representation of the cascading effects for (a) 2- and (b) 10-year return periods.

Beyond the evolution of the cascading effects, the comparison between the direct and total impact
associated with the flooded areas at different return periods has been investigated and is presented in
Figure 7. This figure confirms that while the number of directly impacted nodes is proportional to
the flooded area, this is not the case for the total number of impacted nodes, which also considers the
indirect impact. As emphasised before, the non-proportional increment is more evident when moving
beyond the 10-year return period flood, past which the node with the highest hub value is flooded.

 
Figure 7. Relation between flooded areas at different return periods and number of nodes impacted
directly (blue), indirectly (green), and in total (red).
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The proposed methodology offers the possibility to investigate not only the nodes but also the
connections that are affected during the evolution of the event. This innovative perspective is presented
in Figure 8, which shows the probability of observing the loss of services for both direct and indirect
impact. In both cases, the curves present the typical shape of risk exceedance probability curves.
This figure highlights the much larger numbers of lost services for the indirect impact relative to the
direct one, especially for rarer events, where direct impact is only a minor part of the total impact.

 

Figure 8. Risk curves expressed as percentage of network services lost due to direct and indirect impact.

A more exhaustive explanation of the service lost is provided by the analysis of the causes that
generate the lack of services. Figure 9 shows the extent to which the lost services (ΔS) is due to the
absence of receivers’ demand (LD on the left) and the absence of offer from providers (LO on the right).
The high values of total demand loss at each return period are mainly driven by the impact on the
population; in particular, for the return period of 2 years, the total loss of demand is below 80,000 in
comparison with the highest return period featuring a loss of demand above 120,000. The total losses
of offers are due to the impacts on the providers and the values are about one third of the total loss
of demands. The plot for 10-year return period highlights that the loss of services is mainly due to
the absence of service provided by the hospital, which is confirmed by the hub analysis mentioned
previously [29]. Conversely, education is the sector across providers that generates more losses,
followed by power and healthcare, whereas crossroads and fire stations do not cause loss of demand.

Figure 9. Number of services lost at different orders: (a,b) show the services lost for different return
periods; (c,d) show the services lost at T = 10 years for different typologies.
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3.3. Mitigation Scenarios

The previous analysis highlights that indirect impacts must not be overlooked when assessing
risk. Accordingly, such impacts should be taken into account for the implementation of effective
risk mitigation measures, which traditionally tend to be based on the analysis of direct impacts only.
The approach used here is able to characterize the system through various graph measures, which can
then be used as a starting point for the identification of efficient solutions to mitigate risk, arising not
only from direct impacts but also from higher-order effects. To illustrate this, three possible mitigation
scenarios (M1, M2, and M3) are proposed. The definition of these hypothetical scenarios was based
on information provided by certain graph properties, in particular, hub and authority values, as
described next.

Scenario M1—Hazard mitigation: One of the most traditional approaches for mitigating flood risk
is to implement measures that reduce the hazard intensity. Therefore, for scenario M1, we consider a
hypothetical intervention in the Au De Uarez basin to increase its permeability and thus to reduce the
volume of flooding from the drainage system in this specific basin. In the Au De Uarez basin, highlighted
in blue in Figure 10, the hospital with the highest value of hub is located. We have considered an
intervention that can reduce the waterproof area by up to 60%. As a result, by using equation

Ψ = ΨP
(
1−Aimp

)
+ Ψimp ×Aimp (5)

where Ψ is the weighted flow coefficient, ΨP and Ψimp are the flow coefficients respectively for
permeable and impermeable area (Aimp) [54], the reduced flooded volume was calculated. Given the
mitigated volume, using the volume–height curve characteristic of the basin, the post-intervention
flood heights and extents were obtained. In this new configuration, the hospital is not flooded for any
return period.

Scenario M2—Mitigation of the physical vulnerability: Another option to reduce risk is to
intervene on the physical vulnerability of the exposed elements. In this alternative, we have chosen
three elements that are within the flooded area and have the highest hub values as provided by the
graph analysis: a hospital, a school, and a petrol station (highlighted in green in Figure 10). Considering
the binary vulnerability functions adopted in this work, reducing the vulnerability means making the
three elements waterproof without the loss of functionality. Note that this assumption does not intend
to realistically represent the reduction in vulnerability provided by actual waterproofing measures
(e.g., [55–57]), but rather to illustrate methodology for this specific scenario.

Scenario M3—Mitigation of the systemic vulnerability: The last scenario is aimed at mitigating the
systemic vulnerability associated with the dependency of a large number of nodes on the three service
providers identified in the previous scenario (i.e., the nods with the highest hub values). To achieve
this, three new providers were added to the network: one hospital, one school, and one petrol station,
highlighted in yellow in Figure 10. The choice of location was made considering the area outside the
flood extents where nodes present the highest authority values [29].

Figure 11 shows the annual exceedance probability curved (i.e., risk curves), expressed in terms of
number of indirectly impacted nodes, for the baseline and the three mitigation scenarios. Regarding
scenario M1, the considered mitigation measure is effective for floods with return periods of 10 years
and higher because the only benefitted provider is not affected by the 2-year return period flood
(i.e., the hospital with hub value equal to 1). Scenario M2 returns the greatest reduction for any return
period, which is reasonable given that waterproofing measures were considered for the three elements
with the highest hub values. However, in practice, a complete mitigation of physical vulnerability is
not attainable, and thus it is likely that flood above a certain return period would affect these elements
to some extent. Scenario M3 also leads to an impact reduction for all return periods, although it is not
as effective as M2 as implemented in this illustrative analysis. Nevertheless, risk is mitigated to some
extent through a redistribution of services provided.
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Figure 10. Map of the 3 mitigation scenarios. In the base scenario, the orange colour scale used to
represent building blocks reflects their authority values, and the symbol size of provider nodes are
proportional to their hub values.
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Figure 11. Comparison of annual exceedance probability curves for the baseline and three hypothetical
mitigation scenarios.

In order analyse the effectiveness of each mitigation scenario, we adopt the most widely-used
metric to express risk, which corresponds to the integral of the annual exceedance probability curves
shown in Figure 11. This approach may be employed even when losses are not expressed in economic
terms [58], as is the case in this study, where our analysis is based on the number of indirectly affected
nodes as a proxy for indirect impacts, for the purpose of illustration. For each scenario, we first
compute a risk index R as the trapezoidal approximation of the area under the risk curve given by

R =
H−1∑
i=1

(Pi+1 − Pi)
Ni+1 −Ni

2
(6)

where H is the number of adopted hazard scenarios, Pi is the annual probability of occurrence of the ith
hazard scenario (which is assumed to be equal to the inverse of its return period), and Ni corresponds
to the number of impacted nodes. We then compute the effectiveness of the different mitigation actions
as the reduction of the risk index in relative terms, given by

RM[%] =
RB −Rj

RB
∗ 100 (7)

where RB is the risk index for the baseline scenario and Rj is the risk index for the jth mitigation
scenario. Table 2 shows the results for each mitigation scenario considered both individually and
in combination, confirming the previously discussed results of Figure 11. In fact, it shows that M2,
and any combination that includes it, are the most effective solutions at mitigating the indirect impacts.

Table 2. Impact mitigation of the indirect consequences for each scenario.

Scenario RM [%]

M2 +M1 77.93
M2 +M3 74.74

M2 53.75
M1 +M3 45.16

M1 24.18
M3 20.99
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4. Concluding Remarks

This work focussed on the analysis of the direct and indirect impacts of flood in a complex urban
environment that is Mexico City. To this end, we first presented and applied methods for flood hazard
assessment at different return periods, due to the spillage of rainwater discharges from surcharged
underground drainage channels, under the assumption of pumping systems being out of service.
Second, we proposed and applied a graph-based methodology to estimate the total impact of the
reconstructed floods and illustrated how graph properties may be used to support the design of
mitigation measures.

The results of the work pointed out that, consistently with engineering judgement, flood extensions
and levels increase as the return period used for modelling the rainfall grows. Naturally, these are
accompanied by the increase of the number of nodes directly affected by the flood. The use of a
graph representation of the system then enables the assessment of indirect impacts associated with
the flood. The results pointed out that, differently from the direct damage, indirect impacts—and
consequently, total impacts—are the result of the number of nodes incrementally affected at each order,
which are not proportional to the growth of the flooded area associated with different return periods.
This behaviour can be ascribed in this case study to the flooding of an important hub of the graph;
thus, generating large cascading effects. Similar situations are expected to occur in other comparable
urban environments.

Furthermore, the study showed how the network experiences loss of services at providers (SP)
and receivers (SR) for each specific typology of nodes at different orders and return periods. The total
losses of service are due to the impacts on the providers and the values are about one third of the total
loss of demands, which are mainly driven by the impact on the population. The highest loss of offer is
mainly due to the interruption of services provided by the healthcare sector. Conversely, education is
the sector that has the highest loss of demand. The impact curves of the lost services in the network
showed the extent to which the total impact is larger than the direct impact. In fact, the results of this
work confirmed that, especially for extreme rain events, considering only the direct impact leads to a
significant underestimation of the total consequences. Furthermore, the last part of the work proved
the graph representation of the impacts to be a useful tool for driving decision makers in the choice
of the interventions to carry out in the territory, which can include the mitigation of hazard and of
physical and systemic vulnerability.

Due to the complexity of the case study and to the unavailability of some data, simplifying
assumptions were made along the way, as far as the assessment of hazard, vulnerability, and exposure.
In terms of the hazard component, flood extension and levels were assessed by distributing flood
volumes over the territory, while neglecting the 2D propagation. Regarding the vulnerability, flood
impact was assumed to reduce the services supplied by the directly and indirectly affected nodes
immediately to zero through a binary vulnerability function, whereas common sense suggests the loss
of functionality to be a growing function of the hazard intensity. Finally, for the exposure component,
the risk mitigation measurements adopted are based on the number of nodes and services impacted
and not on economic values of the assets and services.

The dynamic evolution from direct to indirect impacts is analysed in this paper by the
transformation of the graph at different orders. A more comprehensive analysis should consider the
time evolution of the phenomena and not only a progressive order of states. The introduction of the
time-element would also allow considering the economic consequences of service interruptions. As an
example, regarding the education sector, Sadique et al. [59] investigate the costs of work absenteeism,
in terms of paid productivity loss, of care givers who must stay at home during periods of school
closure; analogous economic considerations can be done for other sectors. This is outside the scope
of the present study, which in this context provides a framework on top of which further economic
analyses may be carried out. Future work will be dedicated to incorporating such analyses within the
proposed framework, in order to obtain more accurate estimates of the overall impacts of floods in
interconnected urban systems.
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