Basics of Corrosion

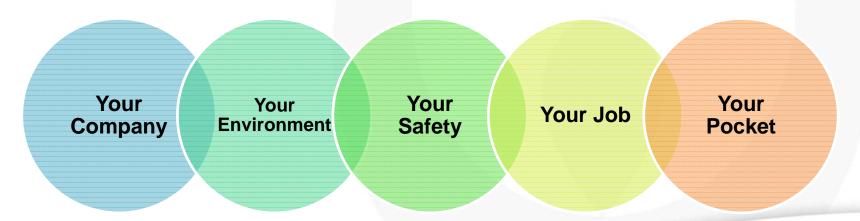
Aasem Zeino

Senior Water Treatment Specialist

Dammam - Saudi Arabia

Topics to be Discussed ..

- Corrosion's Definition
- Corrosion Mechanism
- Corrosion & Environment
- Engineering Materials
- Forms of Corrosion
- Corrosion Control
- Open Discussion


Corrosion Definition

What is corrosion ?!

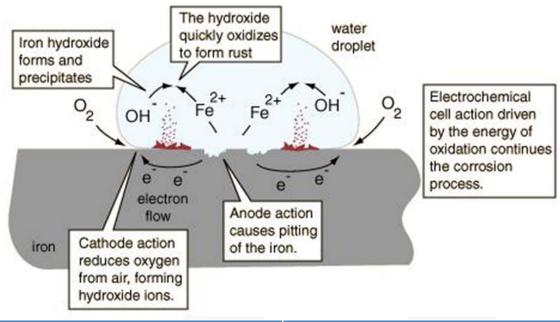
The deterioration of a metal or its properties because of a reaction with its environment (NACE).

Corrosion Affect You!

Corrosion Costs!

Direct Costs	Indirect Costs
Excessive Maintenance	Safety
Replacement	Water
Loss of production / downtime	Consumer Confidence
Product contamination	Toxic Releases
Accidents	Structural Collapse
Capital costs	Appearance

Direct Losses > 300 \$ Billion / Year in U.S.


\$ 300 Billion = \$ 300,000,000,000

3 % of Gross National Product of the U.S.

Corrosion Mechanism

Item	Function
Anode (Metal)	Oxidation: Fe to Fe ⁺²
Cathode (Metal)	Reduction: O ₂ to OH ⁻
Water Droplet	Electrolyte

Galvanic Cell - Spontaneous

Corrosion Reactions

Anodic Reactions:

Generic: $M^0 \longrightarrow M^{n+} + n e^-$ Iron: Fe $\longrightarrow Fe^{++} + 2 e^-$ Fe $\longrightarrow Fe^{+++} + 3 e^-$ Fe⁺⁺ $\longrightarrow Fe^{+++} + e^-$

Aluminum: Al \longrightarrow Al⁺⁺⁺ + 3 e⁻

All anodic reactions make the metal more positive and produce electrons

Cathodic Reactions:

Generic: $R^+ + e^- \longrightarrow R^0$

Hydrogen Reduction

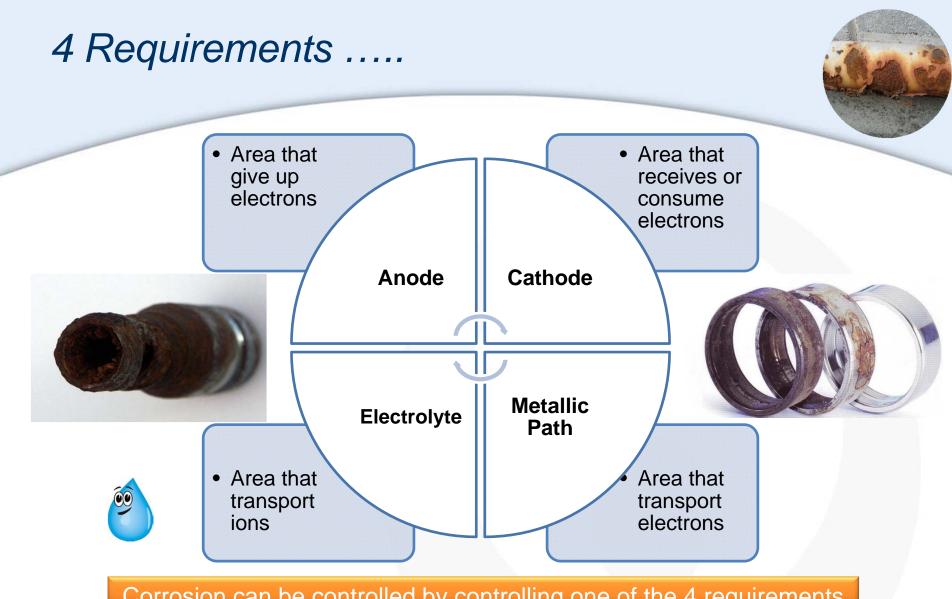
$$2H^+ + 2e^- \longrightarrow H_2$$

Oxygen Reduction

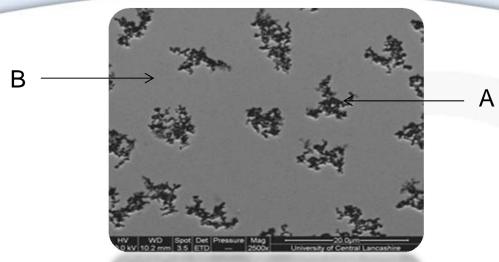
$$2 H_2O + O_2 + 4e^- \longrightarrow 4 (OH)^-$$

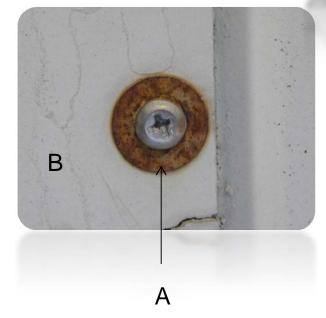
$$O_2 + 4 H^+ + 4e^- \longrightarrow 2 H_2O$$

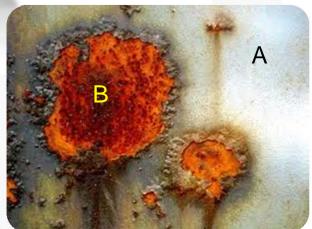
All cathodic reactions make the metal more negative and consume electrons



Corrosion Reactions




Corrosion can be controlled by controlling one of the 4 requirements


Where is the Anode ?!

Corrosion Potential

Facts

- > Energy naturally flows from sites with high energy to sites with low energy.
- > Thermodynamics can predict if corrosion will happen under specific conditions.
- Kinetics can predict the rate of corrosion reactions.
- ➤ A corrosion potential is made by comparing a metal site's voltage to a reference electrode's potential.
- Applying thermodynamics (Nernest Equation) & kinetics (Farady's law) will determine the corrosion rates.

Galvanic Series

Table 1- The Galvanic Series of Metals

Cathodic

Anodic

Platinum

Gold

Carbon (graphite)

☐ Titanium

Type 316 or 304 stainless steel (passive)

Monel metal (70% nickel, 30% copper)

Silver

Nickel

Lead

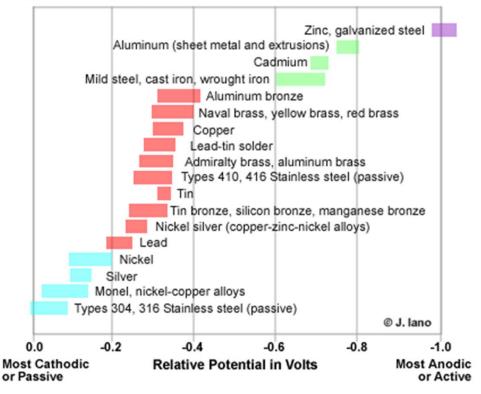
Bronze, Copper, Brass

Tin

Lead/Tin solder

Type 316 or 304 stainless steel (active)

Cast Iron/Mild Steel

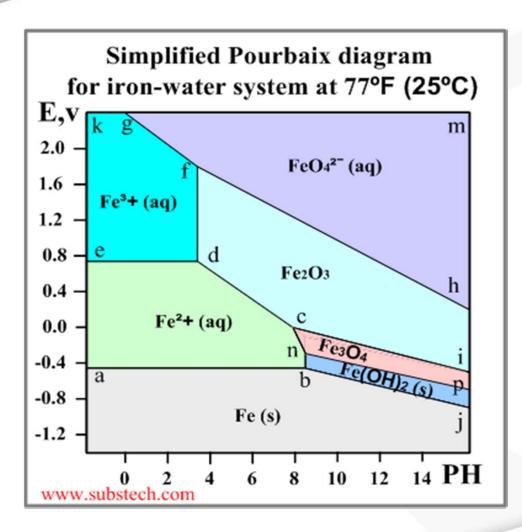

Cadmium

Aluminium

g ≥ Zinc

Magnesium

Galvanic Series of Architectural Metals



Different for different environment

Pourbaix Diagrams

Benefits

- > It is available for each metal
- Predicting stability of substances
- Consider potential & pH
- Predicts corrosion products
- Predicts stability of metal
- Evaluate effects of pH

Passivity

What is Passivity?!

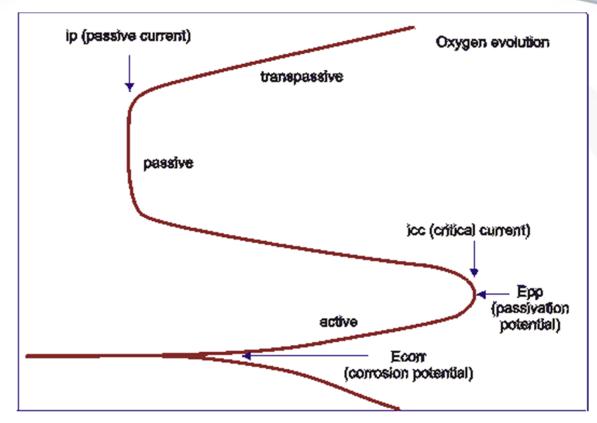
A relatively inactive state in which the metal displays a more noble behavior than thermodynamic conditions predict or simply defined as Formation of passive films of reaction products

Occur Naturally

- Stainless Steel
- Nickel Alloys
- Titanium

Formed
Chemically or
Electrochemically

- Corrosion Inhibitors
- Applied Current


No Corrosion

Passivity

Log (Current density)

Corrosion Rate

Environment

Major Types of Corrosive Environments

- Atmospheric
- Underground
- ☐ Liquid (Submerged)
- ☐ High Temperature

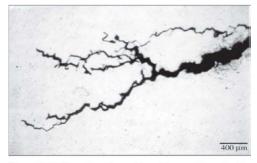
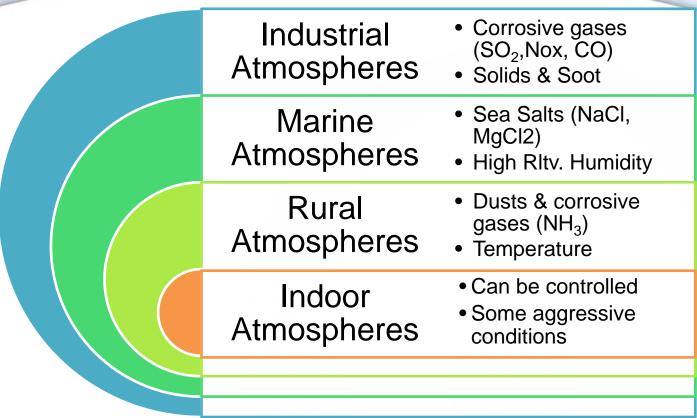


Figure 10. LME cracking of austenitic stainless steel by molten Zn.



Atmospheric Environment

Can you give an example for each case? Let us do it!

Underground Environment

Factors affect the corrosion underground ...

- Physical Soil Characteristics (grain size & distru, Moisture retention)
- ☐ Chemical Soil Characteristics (pH, Water soluble salts, alkalinity)
- Moisture Content (1-100% is possible)
- ☐ Electrical Resistivity (ohm.cm, reciprocal of conductivity)
- Aeration (more oxygen)
- Bacteria (Aerobic less problems, Anaerobic more aggressive such as SRB)

Acidic pH More aeration High conductivity More bacteria More Moisture Corrosion

Liquid Environment

Factors affect the corrosion in liquids ...

- Physical configuration (surface smoothness, etc.)
- Chemical make-up (Dissolved solids, dissolved gases)
- ☐ Flow rate (new surfaces, destroying protective film)
- ☐ Temperature & pressure (more diffusion & dissolved gasses)
- ☐ Biological Organisms (Microbiological Influenced Corrosion MIC)

Qurayyah Case ?!!

High Temperature Corrosion

Oxidizing Atmosphere
e- are lost
Oxygen not necessary
Oxygen + Sulfur
increases the rate
(Sulfidation)

High temperature Reduction

Reducing Atmosphere

In presence of reducing gases
H₂, CO, CO₂

Factors should be in materials have oxide films:

- Physical Stability & low volatility (don't melt don't boil)
- Maintenance of good mechanical integrity (don't crack)
- ☐ Slow growth kinetics (don't allow rapid corrosion)

Engineering Materials

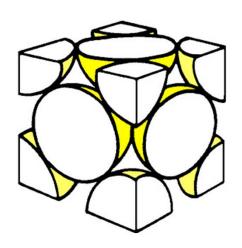
Metals

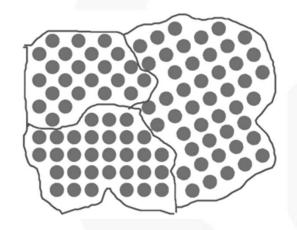
Ceramics

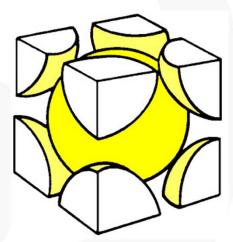
Concrete

Elastomers

Plastics




Metals Metallurgy Concepts



Crystalline Structure:

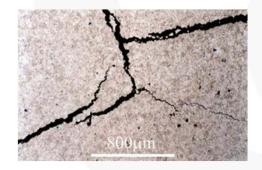
- Repeating pattern of atoms called Unit Cells (Crystals = Grains)
- ☐ In each grain the crystal structure is fairly uniform (0.025 0.25 mm)
- ☐ Grain boundaries is area of disorder (less purity Imperfection)

Metals Metallurgy Concepts

Alloys:

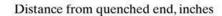
- Mixture of two or more metals, 2 types: Solid Solution, Multiphase
- Solidification by slow cooling produces large grains
- Solidification by fast cooling produces large grains

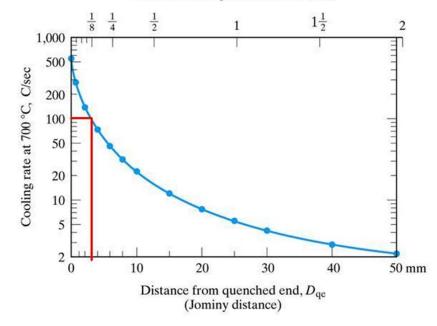
Solid Solution Alloys	Multiphase Alloys
Two solid metals	Insolubility of metals
Properties related to mixture	Properties depends on phases
Uniform structure	Phase diagrams show phase changes
Brass	Cast Iron


Metallurgy Cells

Quenching Problems:

- Stresses may be produced during quenching which will produce corrosion cells
- Non-uniform structures may produce corrosion cells caused by non-uniform cooling rates
- Some of the problems can be corrected by heat treatment after quenching.

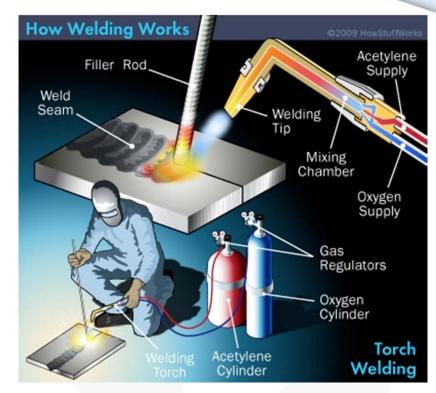

Metallurgy Cells



Causes of Metallurgy Cells:

- Stressed areas
- ☐ Imperfections & impurities
- Alloy additions
- Unequal Cooling rates
- welding

The cooling rate for the Jominy bar varies along its length. This curve applies to virtually all carbon and low-alloy steels.


Welding

Welding Benefits:

- Low cost solution
- High strength
- High corrosion resistance
- Wide range of materials (Filler Rod)
- Some materials are unweldable

How you can avoid corrosion due to welding & cutting?

SS 316

Carbon & Low Allow Steel (CS)

Inexpensive & available materials

Wide range of properties

Weldable

Commonly 0.2% Carbon

Tensile strength range 40 – 200 ksi (275-1,400 Mpa)

Few % of alloying elements (Cr, Ni, Cu, Mo, P, V)

Similar corrosion resistance & some additions improve it

Cast Iron (CI)

- ☐ Higher Carbon content 2 4%, in the form of graphite
- Low cost of castings
- Relatively brittle
- Has six types

Gray CI

- Carbon as Flakes
- Brittle

Malleable CI

- Carbon as rosettes
- Less brittle than gray

White CI

- Carbon as Iron carbide
- Hard & brittle
- Not weldable

Ductile CI

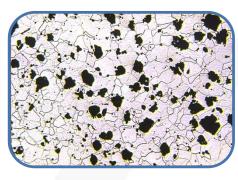
- Carbon as spheroids
- Ductile

High Silicon CI

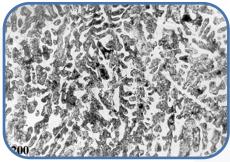
- Highly corrosion resistant
- Used as anodes in CP
- Si > 14%

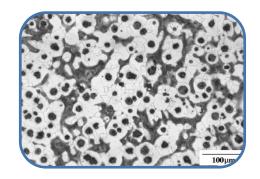
Alloy CI

- Ni resistant – pumps & turbines
- Ni hard erosion resistant



Cast Iron (CI)




Gray CI

Malleable CI

White CI

Ductile CI

High Silicon CI

Alloy CI

Cast Iron (CI)

Cast Iron Corrosion

- Atmospheric corrosion is slower than Carbon steel
- De-alloying corrosion is possible & also graphitization

Brittle Failure

Copper Alloys

Copper Alloy Benefits

- Good corrosion resistance
- High heat & electrical conductivity
- Good mechanical properties ductility
- Can form passive films in aqueous environments
- Wide range of alloys in a variety of applications

Brass: copper-zinc alloys

Bronze: copper-tin alloys

Principle: Always use UNS & ASTM numbers for alloys, No common names

Copper Alloys

99%	Cu
00,0	<u> </u>

C11000 Copper

90% Cu, 10% Zn

C22000 Commercial Bronze

Cu, Sn, Pb, Zn

C23000 Red Brass

70% Cu, 30% Zn

C26000 Cartrige Brass

60% Cu, 40% Zn

C28000 Minitz Metal

Cu, Zn, Pb, Fe

C38500 Architectural Bronze

C65500 Silicon Bronze

Cu, Zn = Ni

C74500 Nickel Silver

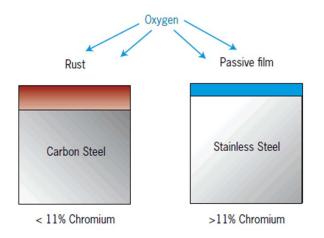
Cu, Ni

C70600 Copper Nickel

Copper Alloys

Technical Points

- Copper corrodes in the presence of oxidants such as Nitric acid, hydrogen peroxide .. etc.
- Copper alloys are generally subject to erosion-corrosion in high velocity flow conditions.
- Poor resistance to CO₂, acids, chlorides, sulfides and ammonia compounds.
- Patina: a thin protective layer of corrosion products.



Stainless Steel

Stainless Steel Benefits

- ☐ Highly corrosion resistant in specific environments
- Forms passive films of chromium oxide
- Corrosion resistance depends on passive film stability
- □ Alloying elements increases passive film stability (Mo, Ni)
- Wide range of alloys in a many applications (families & groups)

Stainless Steel Groups

Martensitic SS

- AISI 400 series
- 12-17% Cr
- Moderate corrosion resistance
- Weldable
- Used for valves, cutlery

AISI 400 series

• 12-30% Cr

Ferritic SS

- Better corrosion resistance
- Resistance to Cl stress cracking
- Difficult to weld
- Used for furnace parts, exhaust systems

Magnetic

Austenitic SS

- AISI 200 & 300
- 17-25% Cr + 9-10% Ni
- 200 use Mn partially of Ni %
- High corrosion resistance (Ni)
- Mo addition is good for Sea water
- Weldable

Nonmagnetic

Duplex SS

- 20-30% Cr + 3-10% Ni + 1-5% Mo
- High corrosion resistance
- Resistance to Cl stress cracking
- Good ductility & high strength
- Used for marine tanks, heat exchangers

Magnetic

Magnetic

Nickel Alloys

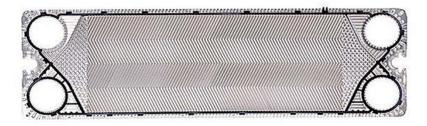
Nickel Alloys

- Highly corrosion resistant
- Corrosion resistance depends on alloy & environment
- Resistant to alkaline environments
- Highly resistant to pitting & crevice corrosion
- Must be carefully selected & specified
- Not universally immune

Aluminum Alloys

Aluminum Alloys

- Used for low weight applications
- Reactive metal (Amphoteric metal)
- \square Corrosion resistance due to passive film (Al₂O₃)
- Exfoliation problems
- Stable in neutral solutions & oxidizing acids (why?!)
- Unstable in acids, alkaline & Cl solutions.



Titanium & Its Alloys

Titanium & Its Alloys

- Reactive metal
- ☐ High Corrosion resistance due to passive film (TiO₂)
- Low weight, high strength, high strength to weight ratio
- Difficult to form & fabricate
- Very stable & resistant to chloride, chlorine & sea water.

Corrosion Science

Forms of Corrosion

Forms of Corrosion

There are 16 types of Corrosion !!!

Corrosion Types	
General Corrosion	Corrosion Fatigue
Pitting Corrosion (Localized)	Erosion corrosion
Crevice Corrosion (Localized)	Impingement Corrosion
Filiform Corrosion (Localized)	Cavitation Corrosion
Galvanic Corrosion	Intergranular Corrosion
Stress Corrosion Cracking (Environ)	Dealloying Corrosion
Hydrogen Induced Cracking (Environ)	Fretting Corrosion
Liquid Metal embrittlement (Environ)	High-temperature Corrosion

Forms of Corrosion

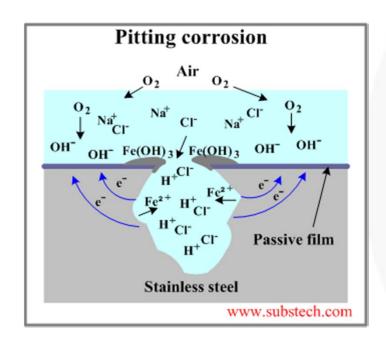
Principle:

More than one form of corrosion can, and usually dose, occur within a system, even on a single alloy at different points

General Corrosion

- It is a corrosion that proceeds more or less uniformity over the entire exposed surface.
- It is forming anodic & cathodic sites

General corrosion - Structural steel I-beam support



Pitting Corrosion

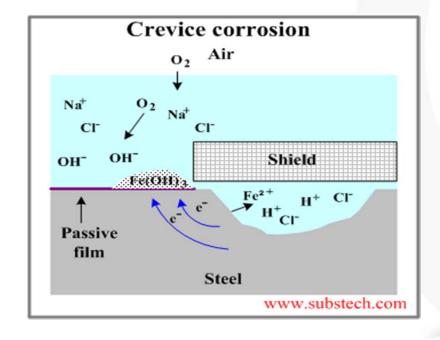
- It is a form of localized corrosion appears as deep narrow attack
 & rapid penetration.
- Interior is anodic, exterior is cathodic.

QCCPP Story ?!

Pitting Corrosion

Performance of Metals & Alloys

- Aluminum alloys (Halides)
- Stainless Steel (Chlorides)
- Copper alloys (NH₃, Hot O₂ water, Soft water, Sulfides, oxidizing acids)
- Carbon Steel

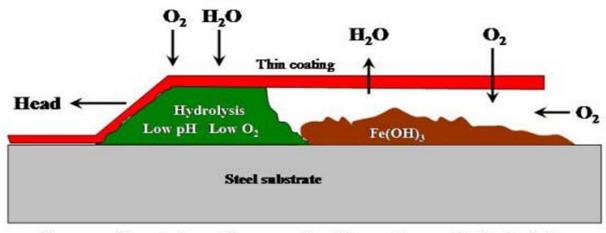

What are the solutions ?!

Crevice Corrosion

- It is a localized attack that occurs in areas where access to surrounding environment is restricted
- Crevices: Metal-to-Metal, Metal-to-nonmetal, deposits of depris or corrosion products
- Anodic sites will be concentrated in the crevice.

Crevice Corrosion

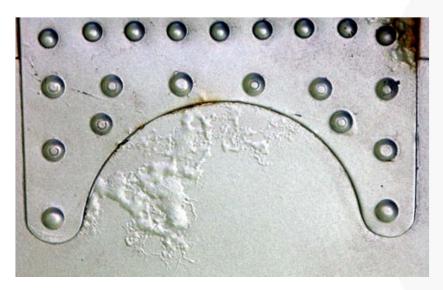
- Crevice corrosion is initiating under deposit attack.
- Most metals could face this problem
- Materials selection is very important
- Eliminate crevices during design
- Cathodic protection reduces its effects
- Avoid skip welds & provide drainage.
- Use seal joints



Filiform Corrosion

- It is a special localized corrosion occurring beneath a metallic or organic coating (Corrosion Under coating)
- Driven by potential difference between head of attack and area behind (oxygen concentration cell)
- Associated with surface contamination (coating quality & selectivity).

Cross sectional view of a corrosion filament on a steel substrate

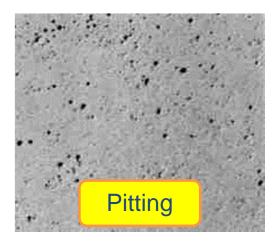


Filiform Corrosion

Solutions

- Proper surface preparation (ex. Sand blasting)
- Clean & dry surfaces for coatings

Which corrosion is that?

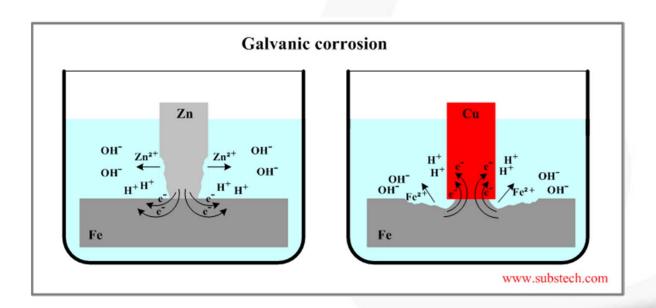


1- General Corrosion

2- Pitting Corrosion

3- Crevice corrosion

4- Filiform Corrosion



Galvanic Corrosion

- It is a classical electrochemical cell.
- □ Corrosion accelerated by the potential differences between metals when they are in electrical contact and exposed to electrolyte (*Atmosphere or immersion*).

S-10

Galvanic Corrosion

Anode Effects

Cathode Effects

Corrosion accelerated

Corrosion reduced

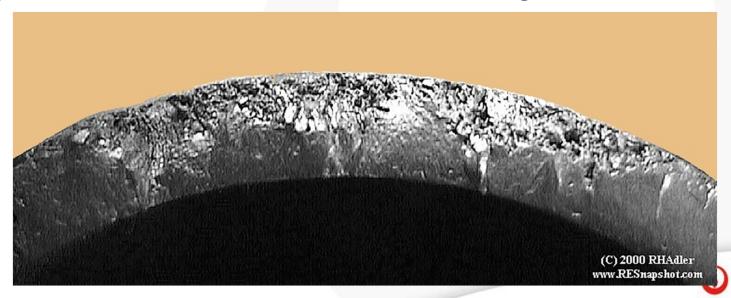
Different forms of attack

Hydrogen effects

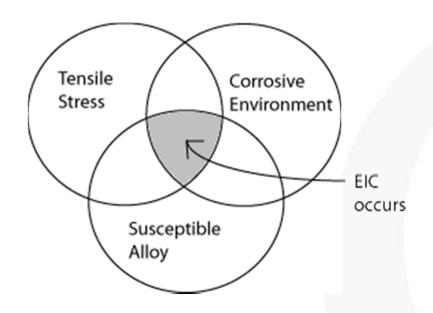
Affected by ...

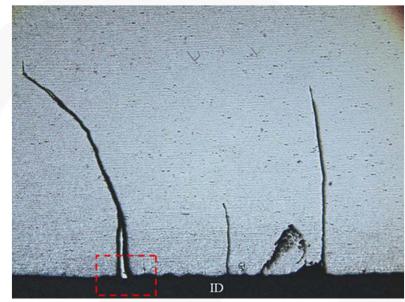
- Nature of the Environment
- Potential difference (metals)
- Resistivity of electrolyte

Why ?!



Corrosion Fatigue




It is a fatigue in a corrosive environment. It is the mechanical degradation of a material under the joint action of corrosion and cyclic loading. Nearly all engineering structures experience some form of alternating stress, and are exposed to harmful environments during their service life.

Corrosion Fatigue

Erosion Corrosion

■ Erosion corrosion is a degradation of material surface due to mechanical action, often by impinging liquid, abrasion by a slurry, particles suspended in fast flowing liquid or gas, bubbles or droplets, cavitation, etc.

Called in some cases: Flow assisted corrosion

It is the most common case for Cupper tube failure

Erosion Corrosion

Brass pump

Brass tube

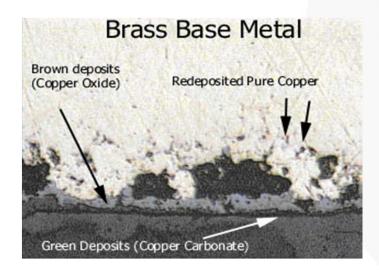
Erosion Corrosion

The recommended maximum velocity for water in a copper tube system is 5 - 8 feet per second (1.5 – 2.4 m/s) for cold water systems,

&

4 - 5 fps (1.2 - 1.5 m/s) for hot water systems $\leq 140^{\circ} \text{ F}$, and 2-3 fps (0.61 - 0.91 m/s) for hot water systems with a temperature greater than 140° F .

Erosion Corrosion damages even noble metals ... as Titanium, Monel, Stainless Steel



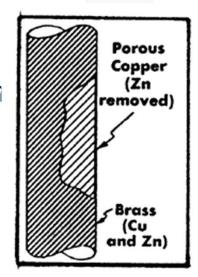
De-Alloying Corrosion

Called also: Selective leaching

□ It is selective removal of one element from an alloy by corrosion processes. A common example is the dezincification of unstabilized brass, whereby a weakened, porous copper structure is produced.

Dezincification

Graphitization



De-Alloying Corrosion

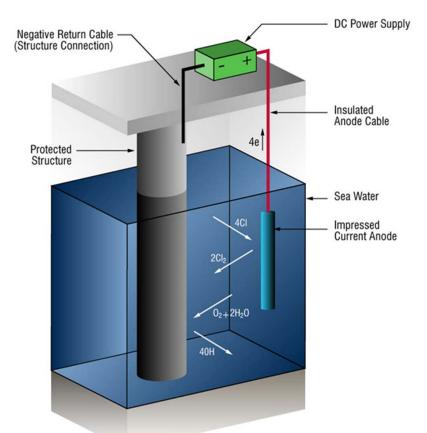
- Active metal selectively removed (corroded)
- Less active metal is residue
- ☐ It is known in brass, copper-zinc alloys (*dezincification*)
- □ Bronze is subjected to the selective removal of tin (destanification)
- Aluminum bronze is subjected to dealuminification
- Cast Iron is subjected to graphitization

Corrosion Science

Methods of Corrosion Control

Corrosion Science

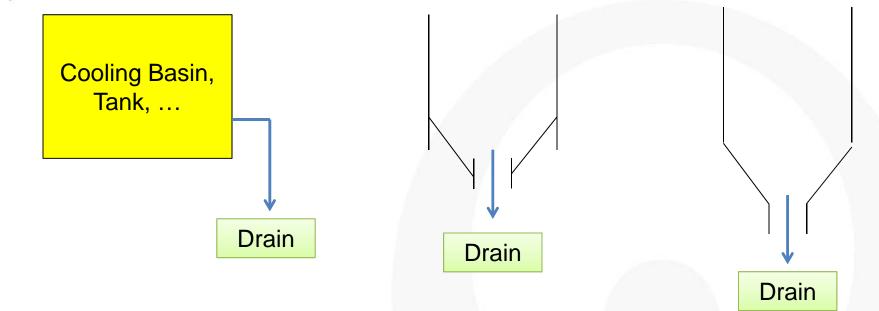
Call Mohammed, Asaad, Ahmed ... don't be late



Methods of Corrosion Control

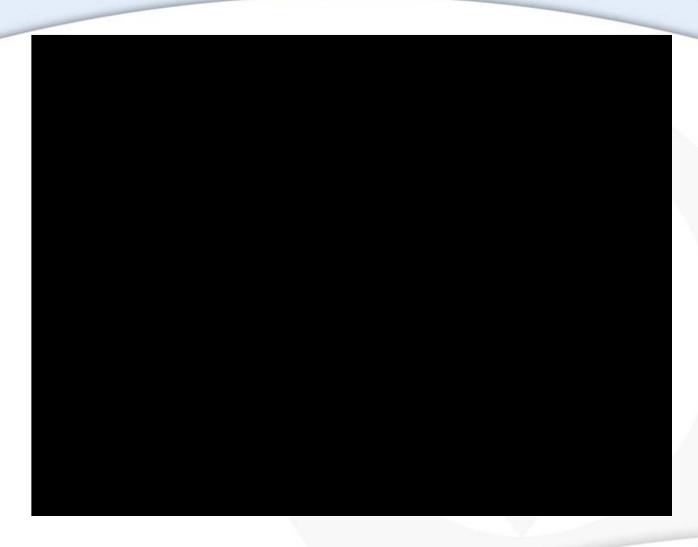
- Design Parameters
- Materials Selection
- Modification of Environment
- Chemical Solutions
- Cathodic Protection
- Protective Coating

Design Parameters



- Materials Selection during design
- Understanding process parameters (chemistry, T, P, velocity ..)
- Construction Parameters (welding)
- Dissimilar Metals
- Avoid crevices (skip welds)
- ☐ Geometry for drain (avoid stagnancy & accumulation)
- Using coating materials for some parts

Design Parameters



What is the best design ?!

Cathodic Protection

Chemical Solutions

- Corrosion Inhibitors
- Dispersants
- Biocides
- Coating Materials

Thank You Questions ?!

