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Preface to “Emerging Technologies for Electric and
Hybrid Vehicles”

Electric and hybrid vehicles are probably the cleanest and greenest road transportation, and
are currently superseding internal combustion engine vehicles. The purpose of this book is to
collect the wisdom of contributors with expertise in various technologies for electric and hybrid
vehicles. Hence, the book will consolidate emerging technologies for electric and hybrid vehicles,
with an emphasis on three main themes—the energy systems, the propulsion systems and the
auxiliary systems.

In this book, fifteen outstanding papers are collected. Firstly, it starts with general reviews of
electric vehicle technologies as well as their challenges, developments and applications. Secondly,
some emerging technologies within the field of energy systems for electric and hybrid vehicles,
including their battery costing, modeling, fault diagnosis and parameter estimation, are presented.
Apart from these on-board energy systems, off-board energy systems for electric vehicles are
discussed, which include the optimal siting of charging stations, grid-aware peak shaving and the
bidirectional converter interface with DC microgrids. Thirdly, two emerging technologies in the field
of propulsion systems are elaborated, namely open-end winding permanent magnet synchronous
motor driving for electric vehicles and power split type hybrid drivetrains for plug-in hybrid electric
vehicles. Finally, three emerging technologies in the field of auxiliary systems, namely the optimal
energy management strategy for hybrid electric vehicles, wireless charging systems for electric
vehicles and heat pump air conditioning systems for electric vehicles are discussed.

There is a Chinese idiom, “when you drink water, think of its source”. Hence, I have to express
my special thanks to all contributors to this book. Another Chinese idiom, “collective wisdom reaps
wide benefits” assures that the expertise of various contributors will gather together to derive solid
knowledge of electric and hybrid vehicles, which is beneficial not only to technological advancement
but also to knowledge exchange. Without their contributions, this book would not have seen the
light of day.

While electric and hybrid vehicles are a driving force of a better environment, my family
is the propulsive force for my work on electric and hybrid vehicles. I would like to make use
of this chance to express my heartfelt gratitude to Aten Man-Ho and Joan Wai-Yi for their
heartfelt support throughout.

K.T. Chau

The University of Hong Kong
Hong Kong
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Abstract: Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle
(HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming
more commonplace in the transportation sector in recent times. As the present trend suggests, this
mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future.
Each of the main EV components has a number of technologies that are currently in use or can
become prominent in the future. EVs can cause significant impacts on the environment, power
system, and other related sectors. The present power system could face huge instabilities with
enough EV penetration, but with proper management and coordination, EVs can be turned into a
major contributor to the successful implementation of the smart grid concept. There are possibilities
of immense environmental benefits as well, as the EVs can extensively reduce the greenhouse gas
emissions produced by the transportation sector. However, there are some major obstacles for EVs
to overcome before totally replacing ICE vehicles. This paper is focused on reviewing all the useful
data available on EV configurations, battery energy sources, electrical machines, charging techniques,
optimization techniques, impacts, trends, and possible directions of future developments. Its objective
is to provide an overall picture of the current EV technology and ways of future development to
assist in future researches in this sector.

Keywords: electric vehicle; energy sources; motors; charging technologies; effects of EVs; limitations
of EVs; energy management; control algorithms; global EV sales; trends and future developments

1. Introduction

In recent times, electric vehicles (EV) are gaining popularity, and the reasons behind this are many.
The most eminent one is their contribution in reducing greenhouse gas (GHG) emissions. In 2009,
the transportation sector emitted 25% of the GHGs produced by energy related sectors [1]. EVs, with
enough penetration in the transportation sector, are expected to reduce that figure, but this is not the
only reason bringing this century old and once dead concept back to life, this time as a commercially
viable and available product. As a vehicle, an EV is quiet, easy to operate, and does not have the fuel
costs associated with conventional vehicles. As an urban transport mode, it is highly useful. It does

Energies 2017, 10, 1217; doi:10.3390/en10081217 1 www.mdpi.com/journal/energies
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not use any stored energy or cause any emission while idling, is capable of frequent start-stop driving,
provides the total torque from the startup, and does not require trips to the gas station. It does not
contribute either to any of the smog making the city air highly polluted. The instant torque makes
it highly preferable for motor sports. The quietness and low infrared signature makes it useful in
military use as well. The power sector is going through a changing phase where renewable sources are
gaining momentum. The next generation power grid, called ‘smart grid” is also being developed. EVs
are being considered a major contributor to this new power system comprised of renewable generating
facilities and advanced grid systems [2,3]. All these have led to a renewed interest and development in
this mode of transport.

The idea to employ electric motors to drive a vehicle surfaced after the innovation of the motor
itself. From 1897 to 1900, EVs became 28% of the total vehicles and were preferred over the internal
combustion engine (ICE) ones [1]. But the ICE types gained momentum afterwards, and with very low
oil prices, they soon conquered the market, became much more mature and advanced, and EVs got lost
into oblivion. A chance of resurrection appeared in the form of the EV1 concept from General Motors,
which was launched in 1996, and quickly became very popular. Other leading carmakers, including
Ford, Toyota, and Honda brought out their own EVs as well. Toyota’s highly successful Prius, the first
commercial hybrid electric vehicle (HEV), was launched in Japan in 1997, with 18,000 units sold in
the first year of production [1]. Today, almost none of those twentieth century EVs exist; an exception
can be Toyota Prius, still going strong in a better and evolved form. Now the market is dominated
by Nissan Leaf, Chevrolet Volt, and Tesla Model S; whereas the Chinese market is in the grip of BYD
Auto Co., Ltd. (X’an National Hi-tech Industrial Development Zone, Xi’an, China).

EVs can be considered as a combination of different subsystems. Each of these systems interact
with each other to make the EV work, and there are multiple technologies that can be employed
to operate the subsystems. In Figure 1, key parts of these subsystems and their contribution to the
total system is demonstrated. Some of these parts have to work extensively with some of the others,
whereas some have to interact very less. Whatever the case may be, it is the combined work of all these
systems that make an EV operate.
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Figure 1. Major EV subsystems and their interactions. Some of the subsystems are very closely related
while some others have moderated interactions. Data from [4].



Energies 2017,10,1217

There are quite a few configurations and options to build an EV with. EVs can be solely driven
with stored electrical power, some can generate this energy from an ICE, and there are also some
vehicles that employ both the ICE and the electrical motors together. The general classification is
discussed in Section 2, whereas different configurations are described in Section 3. EVs use different
types of energy storage to store their power. Though batteries are the most used ones, ultracapacitors,
flywheels and fuel cells are also up and coming as potential energy storage systems (ESS). Section 4 is
dedicated to these energy sources. The types of motors that have been used in EVs and can be used
in future are discussed in Section 5. Different charging voltages and charger configurations can be
used in charging the vehicles. Wireless charging is also being examined and experimented with to
increase convenience. These charger standards, configurations and power conversion systems are
demonstrated in Sections 6-8 discusses the effects EVs create in different sectors. Being a developing
technology, EVs still have many limitations that have to be overcome to enable them to penetrate
deeper into the market. These limitations are pointed out in Section 9 along with probable solutions.
Section 10 summed up some strategies used in EVs to enable proper use of the available power.
Section 11 presented different types of control algorithms used for better driving assistance, energy
management, and charging. The current state of the global EV market is briefly presented in Section 12,
followed by Section 13 containing the trends and sectors that may get developed in the future. Finally,
the ultimate outcomes of this paper is presented in Section 14. The topics covered in this paper have
been discussed in different literatures. Over the years, a number of publications have been made
discussing different aspects of EV technology. This paper was created as an effort to sum up all these
works to demonstrate the state-of-the art of the system and to position different technologies side by
side to find out their merits and demerits, and in some cases, which one of them can make its way to
the future EVs.

2. EV Types

EVs can run solely on electric propulsion or they can have an ICE working alongside it. Having
only batteries as energy source constitutes the basic kind of EV, but there are kinds that can employ
other energy source modes. These can be called hybrid EVs (HEVs). The International Electrotechnical
Commission’s Technical Committee 69 (Electric Road Vehicles) proposed that vehicles using two or
more types of energy source, storage or converters can be called as an HEV as long as at least one
of those provide electrical energy [4]. This definition makes a lot of combinations possible for HEV's
like ICE and battery, battery and flywheel, battery and capacitor, battery and fuel cell, etc. Therefore,
the common population and specialists both started calling vehicles with an ICE and electric motor
combination HEVs, battery and capacitor ones as ultra-capacitor-assisted EVs, and the ones with
battery and fuel cell FCEVs [2—4]. These terminologies have become widely accepted and according to
this norm, EVs can be categorized as follows:

(1) Battery Electric Vehicle (BEV)

(2) Hybrid Electric Vehicle (HEV)

(3) Plug-in Hybrid Electric Vehicle (PHEV)
(4) Fuel Cell Electric Vehicle (FCEV)

2.1. Battery Electric Vehicle (BEV)

EVs with only batteries to provide power to the drive train are known as BEVs. BEVs have to rely
solely on the energy stored in their battery packs; therefore the range of such vehicles depends directly
on the battery capacity. Typically they can cover 100 km—250 km on one charge [5], whereas the top-tier
models can go a lot further, from 300 km to 500 km [5]. These ranges depend on driving condition and
style, vehicle configurations, road conditions, climate, battery type and age. Once depleted, charging
the battery pack takes quite a lot of time compared to refueling a conventional ICE vehicle. It can take
as long as 36 h completely replenish the batteries [6,7], there are far less time consuming ones as well,
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but none is comparable to the little time required to refill a fuel tank. Charging time depends on the
charger configuration, its infrastructure and operating power level. Advantages of BEVs are their
simple construction, operation and convenience. These do not produce any greenhouse gas (GHG),
do not create any noise and therefore beneficial to the environment. Electric propulsion provides
instant and high torques, even at low speeds. These advantages, coupled with their limitation of
range, makes them the perfect vehicle to use in urban areas; as depicted in Figure 2, urban driving
requires running at slow or medium speeds, and these ranges demand a lot of torque. Nissan Leaf and
Teslas are some high-selling BEVs these days, along with some Chinese vehicles. Figure 3 shows basic
configuration for BEVs: the wheels are driven by electric motor(s) which is run by batteries through a
power converter circuit.
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Figure 2. Federal Urban Driving Schedule torque-speed requirements. Most of the driving is done in
the 2200 to 4800 rpm range with significant amount of torque. Lower rpms require torques as high as
125 Nm; urban vehicles have to operate in this region regularly as they face frequent start-stops. Data

from [4].
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Figure 3. BEV configuration. The battery’s DC power is converted to AC by the inverter to run the
motor. Adapted from [5].

2.2. Hybrid Electric Vehicle (HEV)

HEVs employ both an ICE and an electrical power train to power the vehicle. The combination of
these two can come in different forms which are discussed later. An HEV uses the electric propulsion
system when the power demand is low. It is a great advantage in low speed conditions like urban areas;
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it also reduces the fuel consumption as the engine stays totally off during idling periods, for example,
traffic jams. This feature also reduces the GHG emission. When higher speed is needed, the HEV
switches to the ICE. The two drive trains can also work together to improve the performance. Hybrid
power systems are used extensively to reduce or to completely remove turbo lag in turbocharged
cars, like the Acura NSX. It also enhances performance by filling the gaps between gear shifts and
providing speed boosts when required. The ICE can charge up the batteries, HEVs can also retrieve
energy by means of regenerative braking. Therefore, HEVs are primarily ICE driven cars that use an
electrical drive train to improve mileage or for performance enhancement. To attain these features,
HEV configurations are being widely adopted by car manufacturers. Figure 4 shows the energy flows
in a basic HEV. While starting the vehicle, the ICE may run the motor as a generator to produce some
power and store it in the battery. Passing needs a boost in speed, therefore the ICE and the motor
both drives the power train. During braking the power train runs the motor as generator to charge
the battery by regenerative braking. While cruising, ICE runs the both the vehicle and the motor as
generator, which charges the battery. The power flow is stopped once the vehicle stops. Figure 5 shows
an example of energy management systems used in HEVs. The one demonstrated here splits power
between the ICE and the electric motor (EM) by considering the vehicle speed, driver’s input, state of
charge (SOC) of battery, and the motor speed to attain maximum fuel efficiency.
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(a) Direction of power flow during starting and when stopped.
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(b) Direction of power flow during passing, braking and cruising.

Figure 4. Power flow among the basic building blocks of an HEV during various stages of a drive cycle.
Adapted from [8].
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Figure 5. Example of energy management strategy used in HEV. The controller splits power between
the ICE and the motor by considering different input parameters. Adapted from [8].

2.3. Plug-In Hybrid Electric Vehicle (PHEV)

The PHEV concept arose to extend the all-electric range of HEVs [9-14]. It uses both an ICE and
an electrical power train, like a HEV, but the difference between them is that the PHEV uses electric
propulsion as the main driving force, so these vehicles require a bigger battery capacity than HEVs.
PHEVs start in ‘all electric’ mode, runs on electricity and when the batteries are low in charge, it calls
on the ICE to provide a boost or to charge up the battery pack. The ICE is used here to extend the
range. PHEVs can charge their batteries directly from the grid (which HEVs cannot); they also have the
facility to utilize regenerative braking. PHEVs’ ability to run solely on electricity for most of the time
makes its carbon footprint smaller than the HEVs. They consume less fuel as well and thus reduce
the associated cost. The vehicle market is now quite populated with these, Chevrolet Volt and Toyota
Prius sales show their popularity as well.

2.4. Fuel Cell Electric Vehicle (FCEV)

FCEVs also go by the name Fuel Cell Vehicle (FCV). They got the name because the heart of such
vehicles is fuel cells that use chemical reactions to produce electricity [15]. Hydrogen is the fuel of
choice for FCVs to carry out this reaction, so they are often called ‘hydrogen fuel cell vehicles’. FCVs
carry the hydrogen in special high pressure tanks, another ingredient for the power generating process
is oxygen, which it acquires from the air sucked in from the environment. Electricity generated from
the fuel cells goes to an electric motor which drives the wheels. Excess energy is stored in storage
systems like batteries or supercapacitors [2,3,16-18]. Commercially available FCVs like the Toyota
Mirai or Honda Clarity use batteries for this purpose. FCVs only produce water as a byproduct of its
power generating process which is ejected out of the car through the tailpipes. The configuration of
an FCV is shown in Figure 6. An advantage of such vehicles is they can produce their own electricity
which emits no carbon, enabling it to reduce its carbon footprint further than any other EV. Another
major advantage of these are, and maybe the most important one right now, refilling these vehicles
takes the same amount of time required to fill a conventional vehicle at a gas pump. This makes
adoption of these vehicles more likely in the near future [2-4,19]. A major current obstacle in adopting
this technology is the scarcity of hydrogen fuel stations, but then again, BEV or PHEV charging stations
were not a common scenario even a few years back. A report to the U.S. Department of Energy (DOE)
pointed to another disadvantage which is the high cost of fuel cells, that cost more than $200 per kW,
which is far greater than ICE (less than $50 per kW) [20,21]. There are also concerns regarding safety
in case of flammable hydrogen leaking out of the tanks. If these obstacles were eliminated, FCVs
could really represent the future of cars. The possibilities of using this technology in supercars is
shown by Pininfarina’s H2 Speed (Figure 7). Reference [22] compared BEVs and FCEVs in different
aspects, where FCEVs appeared to be better than BEVs in many ways; this comparison is shown in
Figure 8. In this figure, different costs and cost associated issues of BEV and FCEV: weight, required
storage volume, initial GHG emission, required natural gas energy, required wind energy, incremental
costs, fueling infrastructure cost per car, fuel cost per kilometer, and incremental life cycle cost are all
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compared for 320 km (colored blue) and 480 km (colored green) ranges. The horizontal axis shows
the attribute ratio of BEV to FCEV. As having a less value in these attributes indicates an advantage,
any value higher than one in the horizontal axis will declare FCEVs superior to BEVs in that attribute.
That being said, BEVs only appear better in the fields of required wind energy and fuel cost per
kilometer. Fuel cost still appears to be one of the major drawbacks of FCEVs, as a cheap, sustainable
and environment-friendly way of producing hydrogen is still lacking, and the refueling infrastructure
lags behind that of BEVs; but these problems may no longer prevail in the near future.

| Fueling Methods |

Fuel Used

Hydrogen

Hydrogen| Hydrogen
Fuel Cells Cylinder

Current

Water

Hydrogen Storage

|t BooorEbgdl ] and Mounting Methods

Figure 6. FCEV configuration. Oxygen from air and hydrogen from the cylinders react in fuel cells
to produce electricity that runs the motor. Only water is produced as by-product which is released in
the environment.

Figure 7. Pininfarina H2 Speed, a supercar employing hydrogen fuel cells.
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Figure 8. Advanced battery EV attribute and fuel cell EV attribute ratio for 320 km (colored blue) and
480 km (colored green) ranges, with assumptions of average US grid mix in 2010-2020 time-range and
all hydrogen made from natural gas (values greater than one indicate a fuel cell EV advantage over the
battery EV). Data from [22].

Rajashekara predicted a slightly different future for FCVs in [23]. He showed a plug-in fuel
cell vehicle (PFCV) with a larger battery and smaller fuel cell, which makes it battery-dominant car.
According to [23], if hydrogen for such vehicles can be made from renewable sources to run the fuel
cells and the energy to charge the batteries comes from green sources as well, these PFCVs will be the
future of vehicles. The FCVs we see today will not have much appeal other than some niche markets.
Figure 9 shows a basic PFCV configuration. Table 1 compares the different vehicle types in terms of
driving component, energy source, features, and limitations.
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Figure 9. PFCV configuration. In addition to the fuel cells, this arrangement can directly charge the
battery from a power outlet.

Table 1. Comparison of different vehicle types. Adapted from [4].

EV Type Driving Component Energy Source Features Problems
e  Battery price
e No emission and capacity
. o« Battery e Not dependent on oil e Range
BEV e  Electric motor . e  Range depends largely on e  Charging time
e  Ultracapacitor &mng
the type of battery used e Availability of
e Available commercially charging stations
e  High price

e Very little emission
e Longrange

. Battery e  Can get power from both e Management of the
HEV * Electric motor e Ultracapacitor electric supply and fuel energy sources
< e ICE e Complex structure having e Battery and engine
both electrical and size optimization

mechanical drivetrains
e Available commercially

e Very little or no emission
e  High efficiency

e Cost of fuel cell
e  Feasible way to

FCEV e  Electric motor e  Fuelcell e Not depggdent on supply produce fuel
of electricity e Availability of
e  High price fueling facilities

e Available commercially

3. EV Configurations

An electric vehicle, unlike its ICE counterparts, is quite flexible [4]. This is because of the absence
of intricate mechanical arrangements that are required to run a conventional vehicle. In an EV, there
is only one moving part, the motor. It can be controlled by different control arrangements and
techniques. The motor needs a power supply to run which can be from an array of sources. These
two components can be placed at different locations on the vehicle and as long as they are connected
through electrical wires, the vehicle will work. Then again, an EV can run solely on electricity, but
an ICE and electric motor can also work in conjunction to turn the wheels. Because of such flexibility,
different configurations emerged which are adopted according to the type of vehicle. An EV can
be considered as a system incorporating three different subsystems [4]: energy source, propulsion
and auxiliary. The energy source subsystem includes the source, its refueling system and energy
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management system. The propulsion subsystem has the electric motor, power converter, controller,
transmission and the driving wheels as its components. The auxiliary subsystem is comprised of
auxiliary power supply, temperature control system and the power steering unit. These subsystems
are shown in Figure 10.

ric x anne Wheel
Brake Electric Propulsion Subsystem ||
= _, Electronic ey Power ¢ ’ Electric | | Mechanical
'Y ': Controller Converter Motor | Transmission
Accelerometer I
! Wheel
Energy Enere ! Auxiliary Power
Management f— CEY g Power Steering *
Unit Source : Supply Unit
: Steering
I l Wheel
Energy Temperature
! Refueling Control
Energy Source Unit Unit Auxiliary
i Subsystem ' Subsystem
Energy
Source

Figure 10. EV subsystems. Adapted from [4].

The arrows indicate the flow of the entities in question. A backward flow of power can be created
by regenerative actions like regenerative braking. The energy source has to be receptive to store the
energy sent back by regenerative actions. Most of the EV batteries along with capacitors/flywheels
(CFs) are compatible with such energy regeneration techniques [4].

3.1. General EV Setup

EVs can have different configurations as shown in [4]. Figure 11a shows a front-engine front-wheel
drive vehicle with just the ICE replaced by an electric motor. It has a gearbox and clutch that allows
high torque at low speeds and low torque at high speeds. There is a differential as well that allows the
wheels to rotate at different speeds. Figure 11b shows a configuration with the clutch omitted. It has
a fixed gear in place of the gearbox which removes the chance of getting the desired torque-speed
characteristics. The configuration of Figure 11c has the motor, gear and differential as a single unit
that drives both the wheels. The Nissan Leaf, as well as the Chevrolet Spark, uses an electric motor
mounted at the front to drive the front axle. In Figure 11d,e, configurations to obtain differential action
by using two motors for the two wheels are shown. Mechanical interaction can be further reduced
by placing the motors inside the wheels to produce an ‘in-wheel drive’. A planetary gear system is
employed here because advantages like high speed reduction ratio and inline arrangement of input
and output shafts. Mechanical gear system is totally removed in the last configuration (Figure 11f)
by mounting a low-speed motor with an outer rotor configuration on the wheel rim. Controlling the
motor speed thus controls the wheel speed and the vehicle speed.

EVs can be built with rear wheel drive configuration as well. The single motor version of the
Tesla Model S uses this configuration (Figure 12). The Nissan Blade Glider is a rear wheel drive EV
with in-wheel motor arrangement. The use of in-wheel motors enables it to apply different amount of
torques at each of the two rear wheels to allow better cornering.

10
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C: Clutch; D: Differential; FG: Fixed Gearing; GB: Gear Box; M: Electric Motor

Figure 11. Different front wheel drive EV configurations. (a) Front-wheel drive vehicle with the ICE
replaced by an electric motor; (b) Vehicle configuration with the clutch omitted; (c) Configuration with
motor, gear and differential combined as a single unit to drive the front wheels; (d) Configuration
with individual motors with fixed fearing for the front wheels to obtain differential action;
(e) Modified configuration of Figure 11d with the fixed gearing arrangement placed within the wheels;
(f) Configuration with the mechanical gear system removed by mounting a low-speed motor on the
wheel rim. Adapted from [4].

=

Figure 12. Tesla Model S, rear wheel drive configuration [22,24]. (Reprint with permission [24];
2017, Tesla).

For more control and power, all-wheel drive (AWD) configurations can also be used, though it

comes with added cost, weight and complexity. In this case, two motors can be used to drive the front
and the rear axles. An all-wheel drive configuration is shown in Figure 13. AWD configurations are

11
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useful to provide better traction in slippery conditions, they can also use torque vectoring for better
cornering performance and handling. AWD configuration can also be realized for in-wheel motor
systems. It can prove quite useful for city cars like the Hiriko Fold (Figure 14) which has steering
actuator, suspension, brakes and a motor all integrated in each wheel. Such arrangements can provide
efficient all wheel driving, all wheel steering along with ease of parking and cornering.

Figure 14. Hiriko Fold—a vehicle employing in-wheel motors.

In-wheel motor configurations are quite convenient in the sense that they reduce the weight of the
drive train by removing the central motor, related transmission, differential, universal joints and drive
shaft [25]. They also provide more control, better turning capabilities and more space for batteries,
fuel cells or cargo, but in this case the motor is connected to the power and control systems through
wires that can get damaged because of the harsh environment, vibration and acceleration, thus causing
serious trouble. Sato et al., proposed a wireless in-wheel motor system (W-IWM) in [26] which they
had implemented in an experimental vehicle (shown in Figure 15). Simply put, the wires are replaced
by two coils which are able to transfer power in-between them. Because of vibrations caused by road
conditions, the motor and the vehicle can be misaligned and can cause variation in the secondary side
voltage. In-wheel motor configurations are shown in Figure 16, whereas the efficiencies at different
stages of such a system are shown in Figure 17. In conditions like this, magnetic resonance coupling
is preferred for wireless power transfer [27] as it can overcome the problems associated with such

12
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misalignments [28]. The use of a hysteresis comparator and applying the secondary inverter power
to a controller to counter the change in secondary voltage was also proposed in [28]. Wireless power
transfer (WPT) employing magnetic resonance coupling in a series-parallel arrangement can provide a
transmitting efficiency of 90% in both directions at 2 kW [29]. Therefore, W-IWM is compliant with
regenerative braking as well.

Figure 15. Experimental vehicle with W-IWM system by Sato et al. [26]. (Reprint with permission [26];
2015, IEEE.)

Car Chassis Motor Wheel Car Chassis

Communication

Battery Power
Converter

Figure 16. Conventional and wireless IWM. In the wireless setup, coils are used instead of wires to
transfer power from battery to the motor. Adapted from [26].
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Figure 17. W-IWM setup showing efficiency at 100% torque reference. Adapted from [26].
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3.2. HEV Setup

HEVs use both an electrical propulsion system and an ICE. Various ways in which these two
can be set up to spin the wheels creates different configurations that can be summed up in four
categories [4]:

(1) Series hybrid

(2) Parallel hybrid

(3) Series-parallel hybrid
(4) Complex hybrid

3.2.1. Series Hybrid

This configuration is the simplest one to make an HEV. Only the motor is connected to the wheels
here, the engine is used to run a generator which provides the electrical power. It can be put as an EV
that is assisted by an ICE generator [4]. Series hybrid drive train is shown in Figure 18. Table 2 shows
the merits and demerits of this configuration.

Table 2. Advantages and limitations of series hybrid configuration. Adapted from [8].

Efficient and optimized power-plant
Possibilities for modular power-plant
Optimized drive line

Possibility of swift ‘black box” service exchange
Long lifetime

Mature technology

Fast response

Capable of attaining zero emission

Advantages

Large traction drive system
Limitations Requirement of proper algorithms
Multiple energy conversion steps

14
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Figure 18. Drive train of series hybrid system. The engine is used to generate electricity only and
supply to the motor through a rectifier. Power from the battery goes to the motor through a DC-DC

converter [30].

3.2.2. Parallel Hybrid

This configuration connects both the ICE and the motor in parallel to the wheels. Either one of
them or both take part in delivering the power. It can be considered as an IC engine vehicle with
electric assistance [4]. The energy storages in such a vehicle can be charged by the electric motor by
means of regenerative braking or by the ICE when it produces more than the power required to drive
the wheels. Parallel hybrid drive train is shown in Figure 19. Table 3 shows the merits and demerits of
this configuration, while Table 4 compares the series and the parallel systems.

Fuel Tank
Engi > T
neme E %D > Mechanical
E g »| Transmission
Traction . é 3
Motor Yy
1 1 f Final Drive and
Motor Batte Differential
Controller |l y
A A
T 7T
Battery
Charger

Figure 19. Drive train of parallel hybrid system. The engine and the motor both can run the can

through the mechanical coupling [30].
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Table 3. Advantages and limitations of parallel hybrid configuration. Adapted from [30].

Capable of attaining zero emission
Advantages Economic gain
More flexibility

Expensive

Complex control

Requirement of proper algorithms

Need of high voltage to ensure efficiency

Limitations

Table 4. Comparison of parallel and series hybrid configurations. Data from [8].

Parameters Parallel HEV Series HEV
Voltage 14V,42V, 144V, 300 V 216V, 274V, 300 V, 350 V, 550 V, 900 V
Power requirement 3 KW-40 KW >50 KW
Relative gain in fuel economy (%) 5-40 >75

3.2.3. Series-Parallel Hybrid

In an effort to combine the series and the parallel configuration, this system acquires an additional
mechanical link compared to the series type, or an extra generator when compared to the parallel
type. It provides the advantages of both the systems but is more costly and complicated nonetheless.
Complications in drive train are caused to some extent by the presence of a planetary gear unit [30].
Figure 20 shows a planetary gear arrangement: the sun gear is connected to the generator, the output
shaft of the motor is connected to the ring gear, the ICE is coupled to the planetary carrier, and the
pinion gears keep the whole system connected. A less complex alternative to this system is to use a
transmotor, which is a floating-stator electric machine. In this system the engine is attached to the
stator, and the rotor stays connected to the drive train wheel through the gears. The motor speed is
the relative speed between the rotor and the stator and controlling it adjusts the engine speed for any
particular vehicle speed [30]. Series-parallel hybrid drive train with planetary gear system is shown in
Figure 21; Figure 22 shows the system with a transmotor.

Ring Gear

Sun Gear

Pinion Gear

Planetary
Carrier

Figure 20. Planetary gear system [31].
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Figure 21. Drive train of series-parallel hybrid system using planetary gear unit. The planetary gear
unit combines the engine, the generator and the motor [30].
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Figure 22. Drive train of series-parallel hybrid system using transmotor. The planetary gear system is
absent in this arrangement [30].

3.2.4. Complex Hybrid

This system has one major difference with the series-parallel system, that is, it allows bidirectional
flow of power whereas the series-parallel can provide only unidirectional power flow. However,
using current market terminologies, this configuration is denoted as series-parallel system too. High
complexity and cost are drawbacks of this system, but it is adopted by some vehicles to use dual-axle
propulsion [4]. Constantly variable transmission (CVT) can be used for power splitting in a complex
hybrid system or choosing between the power sources to drive the wheels. Electric arrangements can
be used for such processes and this is dubbed as e-CVT, which has been developed and introduced
by Toyota Motor Co. (Toyota City, Aichi Prefecture 471-8571, Japan). CVTs can be implemented
hydraulically, mechanically, hydro-mechanically or electromechanically [32]. Two methods of power
splitting—input splitting and complex splitting are shown in [32]. Input splitting got the name as
it has a power split device placed at the transmission input. This system is used by certain Toyota
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and Ford models [32]. Reference [32] also showed different modes of these two splitting mechanisms
and provided descriptions of e-CVT systems adopted by different manufacturers which are shown
in Figures 23 and 24. Such power-split HEVs require two electric machines, wheels, an engine and
a planetary gear (PG), combining all of them can be done in twenty-four different ways. If another
PG is used, that number gets greater than one thousand. An optimal design incorporating a single
PG is proposed in [31]. Four-wheel drive (4WD) configurations can benefit from using a two-motor
hybrid configuration as it nullifies the need of a power transmission system to the back wheels (as they
get their own motor) and provides the advantage of energy reproduction by means of regenerative
braking [33]. Four-wheel drive HEV structure is shown in Figure 25. A stability enhancement scheme
for such a configuration by controlling the rear motor is shown in [33].
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Power Split Device
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Electric
Motor-
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Electric
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Motor-
Generator
|

Final Drive to Vehicles
Wheels

I

Input Split,
Qutput Coupled

Figure 23. Input split e-CVT system. Adapted from [32].
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Figure 24. Compound split e-CVT system. Adapted from [32].
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Figure 25. Structure for four-wheel drive HEV [32]. This particular system uses a vehicle controller
which employs a number of sensors to perceive the driving condition and keeps the vehicle stable by
controlling the brake control and the motor control units.

4. Energy Sources

EVs can get the energy required to run from different sources. The criteria such sources have
to satisfy are mentioned in [4], high energy density and high power density being two of the most
important ones [30]. There are other characteristics that are sought after to make a perfect energy
source, fast charging, long service and cycle life, less cost and maintenance being a few of them. High
specific energy is required from a source to provide a long driving range whereas high specific power
helps to increase the acceleration. Because of the diverse characteristics that are required for the perfect
source, quite a few sources or energy storage systems (ESS) come into discussion; they are also used in
different combinations to provide desired power and energy requirements [4].

4.1. Battery

Batteries have been the major energy source for EVs for a long time; though of course, was time
has gone by, different battery technologies have been invented and adopted and this process is still
going on to attain the desired performance goals. Table 5 shows the desired performance for EV
batteries set by the U.S. Advanced Battery Consortium (USABC).

Table 5. Performance goal of EV batteries as set by USABC. Data from [4].

Parameters Mid-Term Long-Term
Energy density (C/3 discharge rate) (Wh/L) 135 300
Specific energy (C/3 discharge rate) (Wh/kg) 80 (Desired: 100) 200
Power density (W/1) 250 600
Specific power (80% DOD/30 s) (W/kg) 150 (Desired: 200) 400
Primary goals Lifetime (year) 5 10
Cycle life (80% DOD) (cycles) 600 1000
Price (USD/kWh) <150 <100
Operating temperature (°C) —30 to 65 —40 to 84
Recharging time (hour) <6 3to6
Fast recharging time (40% to 80% SOC) (hour) 0.25
Self-discharge (%) <15 (48 h) <15 (month)
Efficiency (C/3 discharge, 6 h charge) (%) 75 80
Sec‘::::ry Maintenance No maintenance No maintenance
& Resistance to abuse Tolerance Tolerance
Thermal loss 3.2 W/kWh 3.2 W/kWh
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Some of the prominent battery types are: lead-acid, Ni-Cd, Ni-Zn, Zn/air, Ni-MH, Na/§,
Li-polymer and Li-ion batteries. Yong et al., also showed a battery made out of graphene for EV
use whose advantages, structural model and application is described in [34]. Different battery types
have their own pros and cons, and while selecting one, these things have to be kept in mind. In [35],
Khaligh et al., provided key features of some known batteries which are demonstrated in Table 6.
In Table 7, common battery types are juxtaposed to relative advantage of one battery type over
the others.

Table 6. Common battery types, their basic construction components, advantages and disadvantages.
Data from [35-44].

Battery Type Components Advantage Disadvantage
o Negative active e  Cannot discharge more than
material: ) ) ) 20% of its capacity
spongy lead e  Available in production volume e  Has a limited life cycle if
i e Dositive active e  Comparatively low in cost operated on a deep rate of SOC
Lead-acid material: lead oxide ®  Mature technology as used for (state of charge)
. Electr;l};te: diluxtle d over fifty years e Low gnergy and power density
sulfuric acid »  Heavier
e  May need maintenance
e Double energy density
compared to lead-acid
e Electrolyte: e  Harmless to the environment
. ?’l::z?i:ee ch):ttrlzge : g:fcg (C)la:rlaetion at high voltage Reduced lifetime qf around
NiMH nickel hydroxide : e  Can tpr volum trig v rg 2007300 cyclgs if discharged
(Nickel-Metal e Negative electrode: and :n(;re oo rapidly on high load currents
Hydride) allogy of nickel . . Cyele lif g_y 1 . Reduced usable power
L7 " yele lites longer because of memory effect
titanium, vanadium Operating temperature range
and other metals. is long
e Resistant to over-charge
and discharge
e  High energy density, twice
e  Positive electrode: of NiMH
oxidized e  Good performance at
cobalt material high temperature e  High cost
Li-Ion e Negative electrode: e  Recyclable e Recharging still takes quite a
(Lithium-Ion) carbon material . Low memory effect long time, though better than
. Electrolyte: lithium o High specific power most batteries
salt solution in an e High specific energy
organic solvent . Long battery life, around
1000 cycles
e  High energy density
e  Positive electrode: o High power densﬁy'
Ni-Zn nickel oxyhydroxide ¢ Useslow cost material e  Fast growth of dendrite,
(Nickel-Zinc) . Negative ° Cépable of deeP cycle preventing use in vehicles
electrode: zinc e  Friendly to environment
e  Usable in a wide temperature

range from —10 °C to 50 °C

e  Positive electrode: Long lifetime e  Cadmium can cause pollution
Ni-Cd nickel hydroxide e Candischarge fully without in case of not being properly
(Nickel-Cadmium) ®  Negative being damaged disposed of
electrode: cadmium ~ ®  Recyclable e Costly for

vehicular application
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The battery packs used in EVs are made of numerous battery cells (Figure 26). The Tesla Model S,
for example, has 7104 Li-Ion cells in the 85 kWh pack. All these cells are desired to have the same
SOC at all times to have the same degradation rate and same capacity over the lifetime, preventing
premature end of life (EOL) [46]. A power electronic control device, called a cell voltage equalizer, can
achieve this feat by taking active measures to equalize the SOC and voltage of each cell. The equalizers
can be of different types according to their construction and working principle. Resistive equalizers
keep all the cells at the same voltage level by burning up the extra power at cells with higher voltages.
Capacitive equalizers, on the other hand, transfers energy from the higher energy cells to the lower
energy ones by switching capacitors. Inductive capacitors can be of different configurations: basic,
Cuk, and single of multiple transformer based; but all of them transfer energy from higher energy
cells to the ones with lower energy by using inductors [46-52]. All these configurations have their
own merits and demerits, which are shown in Table 8; the schematics are shown in Figures 27 and 28.
Table 9 shows comparisons between the equalizer types.

Cooling tube
Battery cells

Figure 26. Battery cell arrangement in a battery pack. Cooling tubes are used to dissipate the heat
generated in the battery cells.
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Figure 27. Equalizer configurations: (a) Resistive equalizer, extra power from any cell is burned up in
the resistance; (b) Capacitive equalizer, excess energy is transferred to lower energy cells by switching
of capacitors.
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Table 8. Advantages and disadvantages of different equalizer types. Data from [46-52].

Equalizer Type Advantage Disadvantage
e Inherent heating problem
e Low equalizing current (300-500) mA
e Only usable in the last stages of charging
o Cheapest, widely utilized for and flotation
Resistive laptop batteries e  Efficiency is almost 0%
e All equalizing current transforms into heat
for EV application, therefore
not recommended
e  Unable to control inrush current
Better current capabilities than e Dotentially harmful current ripples can flow
. resistive equalizers for big cell voltage differences
Capacitive No control issue

Simple implementation

Cannot provide any required voltage
difference which is essential for
SOC equalization

Basic Inductive

Relatively simple

Capable of transporting high
amount of energy

Can handle complex control
schemes like voltage difference
control and current limitation
Can compensate for internal
resistance of cells

Increased equalizing current
Not dependent on cell voltage

Requires additional components to prevent
ripple currents

Needs two switches in addition to drivers
and controls in each cell

Current distribution is highly concentrated
in neighboring cells because of

switching loss

Has all the advantages of
inductive equalizres

Additional cost of higher voltage and
current rated switches, power capacitors
Subjected to loss caused by series capacitor
A little less efficient than typical

Cuk Inductive Can accomquate complex inductive equalizers
control and withstand i o
high current . Faces'p.roblems during distributing )
equalizing currents all over the cell string

e  May need additional processing power
e  Complex transformer with multiple

Theoretically permits proper secondary, which is very much challenging

Transformer

based Inductive

current distribution in all cells
without addition control or loss

to mass produce
Not an option for EV packs
Cannot handle complex control algorithms

Multiple
transformer
based Inductive

Separate transformers are used
which are easier for
mass production

Still difficult to build with commercial
inductors without facing voltage and
current imbalance

Table 9. Comparison of equalizers; a 1 sign indicates an advantage whereas the | signs indicate

drawbacks. Adapted from [46].

Equalizer Type E(‘jl::rleiiir D(i:slzgle)ﬂtion glolflrtergf (13;111;1:11; t Manufacture Cost Control
Resistive H N/A i T M T T
Capacitive I T 4 1A 1N 1) 1
Basic Inductive ™ T 1T o 1 1 I
Cuk " T T " 1 H 1
Transformer T T H H H H "
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Figure 28. Inductive equalizer configurations: (a) Basic; (b) Cuk; (c) Transformer based; (d) Multiple
transformers based. Excess energy is transferred to lower energy cells by using inductors.

Lithium-ion batteries are being used everywhere these days. It has replaced the lead-acid
counterpart and became a mature technology itself. Their popularity can be justified by the fact
that best-selling EVs, for example, Nissan Leaf and Tesla Model S—all use these batteries [53,54].
Battery parameters of some current EVs are shown in Table 10. Lithium batteries also have lots of
scope to improve [55]. Better battery technologies have been discovered already, but they are not being
pursued because of the exorbitant costs associated with their research and development, so it can be
said that, lithium batteries will dominate the EV scene for quite some time to come.

Table 10. Battery parameters of some current EVs. Data from [5].

Model Total Energy (kWh) Usable Energy (kWh) Usable Energy (%)
i3 22 18.8 85
C30 24 227 95
B-Class 36 28 78
e6 61.4 57 93
RAV4 418 35 84

4.2. Ultracapacitors (UCs)

UCs have two electrodes separated by an ion-enriched liquid dielectric. When a potential is
applied, the positive electrode attracts the negative ions and the negative electrode gathers the positive
ones. The charges get stored physically stored on electrodes this way and provide a considerably high
power density. As no chemical reactions take place on the electrodes, ultra- capacitors tend to have a
long cycle life; but the absence of any chemical reaction also makes them low in energy density [35].
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The internal resistance is low too, making it highly efficient, but it also causes high output current if
charged at a state of extremely low SOC [56,57]. A UC’s terminal voltage is directly proportional to its
SOC; so it can also operate all through its voltage range [35]. Basic construction of an UC cell is shown
in Figure 29. EVs go through start/stop conditions quite a lot, especially in urban driving situations.
This makes the battery discharge rate highly changeable. The average power required from batteries is
low, but during acceleration or conditions like hill-climb a high power is required in a short duration of
time [4,35]. The peak power required in a high-performance electric vehicle can be up to sixteen times
the average power [4]. UCs fit in perfectly in such a scenario as it can provide high power for short
durations. It is also fast in capturing the energy generated by regenerative braking [2,35]. A combined
battery-UC system (as shown in Figure 30) negates each other’s shortcomings and provides an efficient
and reliable energy system. The low cost, load leveling capability, temperature adaptability and long
service life of UCs make them a likable option as well [4,30].
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Figure 29. An UC cell; a separator keeps the two electrodes apart [58].
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Figure 30. Combination of battery and UC to complement each-other’s shortcomings [59].

4.3. Fuel Cell (FC)

Fuel cells generate electricity by electrochemical reaction. An FC has an anode (A), a cathode (C)
and an electrolyte (E) between them. Fuel is introduced to the anode, gets oxidized there, the ions
created travel through the electrolyte to the cathode and combine with the other reactant introduced
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there. The electrons produced by oxidation at the anode produce the electricity. Hydrogen is used
in FCEVs because of its high energy content, and the facts it is non-polluting (producing only water
as exhaust) and abundant in Nature in the form of different compounds such as hydrocarbons [4].
Hydrogen can be stored in different methods for use in EVs [4]; commercially available FCVs like the
Toyota Mirai use cylinders to store it. The operating principle of a general fuel cell is demonstrated in
Figure 31, while Figure 32 shows a hydrogen fuel cell. According to the material used, fuel cells can be
classified into different types. A comparison among them is shown in Table 11. The chemical reaction
governing the working of a fuel cell is stated below:

2H, + O, = 2H,0 1
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Figure 31. Working principle of fuel cell. Fuel and oxygen is taken in, exhaust and current is generated
as the products of chemical reaction. Adapted from [4].
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Figure 32. Hydrogen fuel cell configuration. Hydrogen is used as the fuel which reacts with oxygen
and produces water and current as products. Adapted from [35].
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Table 11. Comparison of different fuel cell configurations. Data from [2].

PAFC AFC MCFC SOFC SPFC DMFC
Working temp. (°C) 150210 60-100  600-700  900-1000  50-100 50-100
Power density 02-025  02-03 01-02 02403 03506  0.04-025
(W/cm*)
Estimated life (kh) 40 10 40 40 40 10

Estimated cost
(USD/KW) 1000 200 1000 1500 200 200

PAFC: Phosphoric acid fuel cell; AFC: Alkaline fuel cell; SOFC: Solid oxide fuel cell; SPFC: Solid polymer fuel cell,
also known as proton exchange membrane fuel cell.

Fuel cells have many advantages for EV use like efficient production of electricity from fuel,
noiseless operation, fast refueling, no or low emissions, durability and the ability to provide high
density current output [24,60]. A main drawback of this technology is the high price. Hydrogen also
have lower energy density compared to petroleum derived fuel, therefore larger fuel tanks are required
for FCEVs, these tanks also have to capable enough to contain the hydrogen properly and to minimize
risk of any explosion in case of an accident. FC’s efficiency depends on the power it is supplying;
efficiency generally decreases if more power is drawn. Voltage drop in internal resistances cause most
of the losses. Response time of FCs is comparatively higher to UCs or batteries [35]. Because of these
reasons, storage like batteries or UCs is used alongside FCs. The Toyota Mirai uses batteries to power
its motor and the FC is used to charge the batteries. The batteries receive the power reproduced by
regenerative braking as well. This combination provides more flexibility as the batteries do not need
to be charged, only the fuel for the FC has to be replenished and it takes far less time than recharging
the batteries.

4.4. Flywheel

Flywheels are used as energy storage by using the energy to spin the flywheel which keeps
on spinning because of inertia. The flywheel acts as a motor during the storage stage. When the
energy is needed to be recovered, the flywheel’s kinetic energy can be used to rotate a generator to
produce power. Advanced flywheels can have their rotors made out of sophisticated materials like
carbon composites and are placed in a vacuum chamber suspended by magnetic bearings. Figure 33
shows a flywheel used in the Formula One (F1) racing kinetic energy recovery system (KERS). The
major components of a flywheel are demonstrated in Figure 34. Flywheels offer a lot of advantages
over other storage forms for EV use as they are lighter, faster and more efficient at absorbing power
from regenerative braking, faster at supplying a huge amount of power in a short time when rapid
acceleration is needed and can go through a lot of charge-discharge cycles over their lifetime. They are
especially favored for hybrid racecars which go through a lot of abrupt braking and acceleration, which
are also at much higher g-force than normal commuter cars. Storage systems like batteries or UCs
cannot capture the energy generated by regenerative braking in situations like this properly. Flywheels,
on the other hand, because of their fast response, have a better efficiency in similar scenarios, by
making use of regenerative braking more effectively; it reduces pressure on the brake pads as well. The
Porsche 911GT3R hybrid made use of this technology. Flywheels can be made with different materials,
each with their own merits and demerits. Characteristics of some these materials are shown in Table 12;
among the ones displayed in the table, carbon T1000 offers the highest amount of energy density, but it
is much costlier than the others. Therefore, there remains a trade-off between cost and performance.
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Figure 33. A flywheel used in the Formula One racing kinetic energy recovery system (KERS).
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Figure 34. Basic flywheel components. The flywheel is suspended in tis hosing by bearings, and is
connected to a motor-generator to store and supply energy [61].

Table 12. Characteristics of different materials used for flywheels [62].

Density Tensile Max Energy

Material (kg/m®) Strength (mpa) Density (mj/kg) Cost (USD/kg)
Monolithic 4340 steel 7700 1520 0.19 1
material
E-glass 2000 100 0.05 11
Composites S2-glass 1920 1470 0.76 24.6
3 Carbon T1000 1520 1950 1.28 101.8
Carbon AS4C 1510 1650 1.1 31.3

Currently, no single energy source can provide the ideal characteristics, i.e., high value of both
power and energy density. Table 13 shows a relative comparison of the energy storages to demonstrate
this fact. Hybrid energy storages can be used to counter this problem by employing one source for
high energy density and another for high power density. Different combinations are possible to create
this hybrid system. It can be a combination of battery and ultracapacitor, battery and flywheel, or fuel

cell and battery [4]. Table 14 shows the storage systems used by some current vehicles.
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Table 13. Relative energy and power densities of different energy storage systems [63].

Storage Energy Density Power Density
Battery High Low
Ultracapacitor Low High
Fuel cell High Low
Flywheel Low High

Table 14. Vehicles using different storage systems.

Storage System Vehicles Using the System
Battery Tesla Model S, Nissan Leaf

Fuel cell + battery Toyota Mirai, Honda Clarity
Flywheel Porsche 911GT3R Hybrid

5. Motors Used

The propulsion system is the heart of an EV [64-69], and the electric motor sits right in the core
of the system. The motor converts electrical energy that it gets from the battery into mechanical
energy which enables the vehicle to move. It also acts as a generator during regenerative action which
sends energy back to the energy source. Based on their requirement, EVs can have different numbers
of motors: the Toyota Prius has one, the Acura NSX has three—the choice depends on the type of
the vehicle and the functions it is supposed to provide. References [4,23] listed the requirements
for a motor for EV use which includes high power, high torque, wide speed range, high efficiency,
reliability, robustness, reasonable cost, low noise and small size. Direct current (DC) motor drives
demonstrate some required properties needed for EV application, but their lack in efficiency, bulky
structure, lack in reliability because of the commutator or brushes present in them and associated
maintenance requirement made them less attractive [4,30]. With the advance of power electronics and
control systems, different motor types emerged to meet the needs of the automotive sector, induction
and permanent magnet (PM) types being the most favored ones [23,30,70].

5.1. Brushed DC Motor

These motors have permanent magnets (PM) to make the stator; rotors have brushes to provide
supply to the stator. Advantages of these motors can be the ability to provide maximum torque in low
speed. The disadvantages, on the other hand, are its bulky structure, low efficiency, heat generated
because of the brushes and associated drop in efficiency. The heat is also difficult to remove as it is
generated in the center of the rotor. Because of these reasons, brushed DC motors are not used in EVs
any more [70].

5.2. Permanent Magnet Brushless DC Motor (BLDC)

The rotor of this motor is made of PM (most commonly NdFeB [4]), the stator is provided an
alternating current (AC) supply from a DC source through an inverter. As there are no windings in
the rotor, there is no rotor copper loss, which makes it more efficient than induction motors. This
motor is also lighter, smaller, better at dissipating heat (as it is generated in the stator), more reliable,
has more torque density and specific power [4]. But because of its restrained field-weakening ability,
the constant power range is quite short. The torque also decreases with increased speed because
of back EMF generated in the stator windings. The use of PM increases the cost as well [30,70].
However, enhancement of speed range and better overall efficiency is possible with additional field
windings [4,71]. Such arrangements are often dubbed PM hybrid motors because of the presence of
both PM and field windings. But such arrangements too are restrained by complexity of structure;
the speed ratio is not enough to meet the needs of EV use, specifically in off-roaders [30]. PM hybrid
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motors can also be constructed using a combination of reluctance motor and PM motor. Controlling
the conduction angle of the power converter can improve the efficiency of PM BLDCs as well as speed
range, reaching as high as four times the base speed, though the efficiency may decrease at very high
speed resulting from demagnetization of PM [4]. Other than the PM hybrid configurations, PM BLDCs
can be buried magnet mounted—which can provide more air gap flux density, or surface magnet
mounted—which require less amount of magnet. BLDCs are useful for use in small cars requiring a
maximum 60 kW of power [72]. The characteristics of PM BLDCs are shown in Figure 35.
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Figure 35. Characteristics of a Permanent Magnet Brushless DC Motor. The torque remains constant at
the maximum right from the start, but starts to decrease exponentially for speeds over the base speed.

5.3. Permanent Magnet Synchronous Motor (PMSM)

These machines are one of the most advanced ones, capable of being operated at a range of speeds
without the need of any gear system. This feature makes these motors more efficient and compact. This
configuration is also very suitable for in-wheel applications, as it is capable of providing high torque,
even at very low speeds. PMSMs with an outer rotor are also possible to construct without the need of
bearings for the rotor. But these machines’ only notable disadvantage also comes in during in-wheel
operations where a huge iron loss is faced at high speeds, making the system unstable [73]. NdFeB
PMs are used for PMSMs for high energy density. The flux linkages in the air-gap are sinusoidal in
nature; therefore, these motors are controllable by sinusoidal voltage supplies and vector control [70].
PMSM is the most used motor in the BEVs available currently; at least 26 vehicle models use this motor
technology [5].

5.4. Induction Motor (IM)

Induction motors are used in early EVs like the GM EV1 [23] as well as current models like the
Teslas [54,74]. Among the different commutatorless motor drive systems, this is the most mature
one [2]. Vector control is useful to make IM drives capable of meeting the needs of EV systems. Such a
system with the ability to minimize loss at any load condition is demonstrated in [75]. Field orientation
control can make an IM act like a separately excited DC motor by decoupling its field control and
torque control. Flux weakening can extend the speed range over the base speed while keeping the
power constant [30], field orientation control can achieve a range three to five times the base speed
with an IM that is properly designed [76]. Three phase, four pole AC motors with copper rotors are
seen to be employed in current EVs. Characteristics of IM are shown in Figure 36.
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Figure 36. Induction motor drive characteristics. Maximum torque is maintained till base speed, and
then decreases exponentially. Adapted from [4].

5.5. Switched Reluctance Motor (SRM)

SRMs, also known as doubly salient motor (because of having salient poles both in the stator and
the rotor) are synchronous motors driven by unipolar inverter-generated current. They demonstrate
simple and robust mechanical construction, low cost, high-speed, less chance of hazards, inherent
long constant power range and high power density useful for EV applications. PM is not required for
such motors and that facilitates enhanced reliability along with fault tolerance. On the downside, they
are very noisy because of the variable torque nature, have low efficiency, and are larger in size and
weight when compared to PM machines. Though such machines have a simple construction, their
design and control are not easy resulting from fringe effect of slots and poles and high saturation of
the pole-tips [4,23,30,70]. Because of such drawbacks, these machines did not advance as much as the
PM or induction machines. However, because of the high cost rare-rare earth materials needed in PM
machines, interest in SRMs are increasing. Advanced SRMs like the one demonstrated by Nidec in
2012 had almost interior permanent machine (IPM)-like performance, with a low cost. Reducing the
noise and torque ripple are the main concerns in researches associated with SRMs [23]. One of the
configurations that came out of these researches uses a dual stator system, which provides low inertia
and noise, superior torque density and increased speed-range compared to conventional SRMs [77,78].
Design by finite element analysis can be employed to reduce the total loss [79], control by fuzzy sliding
mode can also be employed to reduce control chattering and motor nonlinearity management [80].

5.6. Synchronous Reluctance Motor (SynRM)

A Synchronous Reluctance Motor runs at a synchronous speed while combining the advantages of
both PM and induction motors. They are robust and fault tolerant like an IM, efficient and small like a
PM motor, and do not have the drawbacks of PM systems. They have a control strategy similar to that
of PM motors. The problems with SynRM can be pointed as the ones associated with controllability,
manufacturing and low power factor which hinder its use in EVs. However, researches have been
going on and some progress is made as well, the main area of concern being the rotor design. One
way to improve this motor is by increasing the saliency which provides a higher power factor. It can
be achieved by axially or transversally laminated rotor structures, such an arrangement is shown in
Figure 37. Improved design techniques, control systems and advanced manufacturing can help it
make its way into EV applications [23].
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Figure 37. SynRM with axially laminated rotor [23].

5.7. PM Assisted Synchronous Reluctance Motor

Greater power factors can be achieved from SynRMs by integrating some PMs in the rotor, creating
a PM assisted Synchronous Reluctance Motor. Though it is similar to an IPM, the PMs used are fewer
in amount and the flux linkages from them are less too. PMs added in the right amount to the core of
the rotor increase the efficiency with negligible back EMF and little change to the stator. This concept
is free from the problems associated with demagnetization resulting from overloading and high
temperature observed in IPMs. With a proper efficiency optimization technique, this motor can have
the performance similar to IPM motors. A PM-assisted SynRM suitable for EV use was demonstrated
by BRUSA Elektronik AG (Sennwald, Switzerland). Like the SynRM, PM-assisted SynRMs can also get
better with improved design techniques, control systems and advanced manufacturing systems [23].
A demonstration of the rotor of PM-assisted SynRM is shown in Figure 38.

o d axis

‘ ’/PM

q axis

Figure 38. Permanent magnet (PM) assisted SynRM. Permanent magnets are embedded in the
rotor [23].
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5.8. Axial Flux Ironless Permanent Magnet Motor

According to [70], this motor is the most advanced one to be used in EVs. It has an outer rotor
with no slot; use of iron is avoided here as well. The stator core is absent too, reducing the weight
of the machine. The air gap here is radial field type, providing better power density. This motor is
a variable speed one too. One noteworthy advantage of this machine is that the rotors can be fitted
on lateral sides of wheels, placing the stator windings on the axle centrally. The slot-less design also
improves the efficiency by minimizing copper loss as there is more space available [70].

Power comparison of three different motor types is conducted in Table 15. Table 16 compares
torque densities of three motors. Table 17 summarizes the advantages and disadvantages of different
motor types, and shows some vehicles using different motor technologies.

Table 15. Power comparison of different motors having the same size. Data from [72].

Power (kW)
Motor Type Base Speed Maximum Speed
HEV BEV
M 57 93 3000 12,000
SRM 42 77 2000 12,000
BLDC 75 110 4000 9000

Table 16. Typical torque density values of some motors. Data from [30].

Motor Type Torque/Volume (Nm/m?) Torque/Cu Mass (Nm/kg Cu)
PM motor 28,860 28.7-48
M 4170 6.6
SRM 6780 6.1

Table 17. Advantages, disadvantages and usage of different motor types.

Motor Type Advantage Disadvantage Vehicles Used In

e Bulky structure

e  Low efficiency

e  Heat generation
at brushes

Fiat Panda Elettra (Series
DC motor), Conceptor
G-Van (Separately
excited DC motor)

Brushed DC Motor ®  Maximum torque at low speed

e No rotor copper loss Sh
e More efficiency than induction motors ° ort constant
o Lighter power range
Permanent Magnet  ,  galer D?cr?ased torque
Brushless DC Motor Better heat dissipation W‘th increase Toyota Prius (2005)
(BLDC) - in speed
e More reliability High cost because
e More torque density of PM
e More specific power
e Operable in different speed ranges
without using gear systems )
Permanent Magnet o  Efficient Huge iron loss at ) .
Synchronous Motor high speeds during Toyota Prius, Nissan
(PMSM) ° CoTnpact ) o in-wheel operation Leaf, Soul EV
e  Suitable for in-wheel application
e  High torque even at very low speeds

Induction Motor
(IM)

The most mature commutatorless
motor drive system

Can be operated like a separately
excited DC motor by employing field
orientation control

Tesla Model S, Tesla
Model X, Toyota RAV4,
GM EV1
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Table 17. Cont.

Motor Type Advantage Disadvantage Vehicles Used In
. iimple and robust construction Very noisy
(] OW cost .-
Switched e Highspeed Low efficiency )
Reluctance Motor Larger and heavier Chloride Lucas
(SRM) e Less chance of hazard than PM machines
. L(_mg constant power range Complex design
o High power density and control
. Robust X
Synchronous e  Fault tolerant Pr"bleﬂ“i '?
Reluctance Motor . Efficient controllability X
(SynRM) e Small and manufacturing
Low power factor
PM assisted e  Greater power factor than SynRMs
Synchronous . Free from demagnetizing problems BMW i3
Reluctance Motor observed in IPM
. No iron used in outer rotor
e  No stator core
e  Lightweight
Axial Flux Ironless ~ ®  Better power density
Permanent Magnet ®  Minimized copper loss Renovo Coupe
Motor e  Better efficiency
e  Variable speed machine
e Rotor is capable of being fitted to the

lateral side of the wheel

6. Charging Systems

For charging of EVs, DC or AC systems can be used. There are different current and voltage

configurations for charging, generally denoted as ‘levels’. The time required for a full charge depends
on the level being employed. Wireless charging has also been tested and researched for quite a long
time. It has different configurations as well. The charging standards are shown in Table 18. The safety
standards that should be complied by the chargers are the following [46]:

SAE ]J2929: Electric and Hybrid Vehicle Propulsion Battery System Safety Standard

ISO 26262: Road Vehicles—Functional safety

ISO 6469-3: Electric Road Vehicles—Safety Specifications—Part 3: Protection of Persons Against
Electric Hazards

ECE R100: Protection against Electric Shock

IEC 61000: Electromagnetic Compatibility (EMC)

IEC 61851-21: Electric Vehicle Conductive Charging system—Part 21:
Requirements for Conductive Connection to an AC/DC Supply

IEC 60950: Safety of Information Technology Equipment

UL 2202: Electric Vehicle (EV) Charging System Equipment

FCC Part 15 Class B: The Federal Code of Regulation (CFR) FCC Part 15 for EMC Emission
Measurement Services for Information Technology Equipment.

IP6K9K, IP6K7 protection class

—40 °C to 105 °C ambient air temperature

Electric Vehicle

6.1. AC Charging

AC charging system provides an AC supply that is converted into DC to charge the batteries. This

system needs an AC-DC converter. According to the SAE EV AC Charging Power Levels, they can be
classified as below:
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e Level 1: The maximum voltage is 120 V, the current can be 12 A or 16 A depending on the circuit
ratings. This system can be used with standard 110 V household outlets without requiring any
special arrangement, using on-board chargers. Charging a small EV with this arrangement can
take 0.5-12.5 h. These characteristics make this system suitable for overnight charging [5,46,81].

o Level 2: Level 2 charging uses a direct connection to the grid through an Electric Vehicle Service
Equipment (EVSE). On-board charger is used for this system. Maximum system ratings are 240 V,
60 A and 14.4 kW. This system is used as a primary charging method for EVs [46,81].

e  Level 3: This system uses a permanently wired supply dedicated for EV charging, with power
ratings greater than 14.4 kW. ‘Fast chargers’—which recharge an average EV battery pack in no
more than 30 min, can be considered level 3 chargers. All level 3 chargers are not fast chargers
though [46,82]. Table 19 shows the AC charging characteristics defined by Society of Automotive

Engineers (SAE).
Table 18. Charging standards. Data from [81].
Standard Scope
IEC 61851-1 Defines plugs and cables setup
IEC 61851: Conductive IEC 61851-23 Explains electrical safety, grid connection, harmonics, and
charging system communication architecture for DCFC station (DCFCS)

IEC 61851-24 Describes digital communication for controlling DC charging

1EC 62196: Socket outlets, 1EC 62196-1 Defines general requirements of EV connectors

plugs, vehicle inlets and TEC 62196-2 Explains coupler classifications for different modes of charging

connectors IEC 62196-3 Describes inlets and connectors for DCFCS

IEC 60309-1 Describes CS general requirements

Explains sockets and plugs sizes having different number of

IEC 60309: Socket outlets, pins determined by current supply and number of phases,

plugs, and couplers TEC 60309-2 defines connector color codes according to voltage range
and frequency.
1EC 60364 Explains electrical installations for buildings
SAE J1772: Conductive Defines AC charging connectors and new Combo connector
charging systems for DCFCS
SAE J2847-1 Explains communication medium and criteria for connecting
SAE J2847: Communication EV to utility for AC level 1&2 charging
SAE ]2847-2 Defines messages for DC charging
g Explains total EV energy transfer system, defines requirements
SAE J2293 SAE J2293-1 for EVSE for different system architectures
SAE J2344 Defines EV safety guidelines
SAE J2954: Inductive charging Being developed

Table 19. SAE (Society of Automotive Engineers) AC charging characteristics. Data from [44,80].

AC Charging Supply Maximum Current Branch Circuit Output Power
System Voltage (V) (A) Breaker Rating (A) Level (kW)
Level 1 120 V, 1-phase 12 15 1.08

ceve 120 V, 1-phase 16 20 1.44
208 to 240 V, 1-phase 16 20 3.3
Level 2 208 to 240 V, 1-phase 32 40 6.6
208 to 240 V, 1-phase <80 Per NEC 635 <144
Level 3 208/480/600 V 150400 150 3

6.2. DC Charging

DC systems require dedicated wiring and installations and can be mounted at garages or charging
stations. They have more power than the AC systems and can charge EVs faster. As the output is DC,
the voltage has to be changed for different vehicles to suit the battery packs. Modern stations have the
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capability to do it automatically [46]. All DC charging systems has a permanently connected Electric
Vehicle Service Equipment (EVSE) that incorporates the charger. Their classification is done depending
on the power levels they supply to the battery:

o  Level 1: The rated voltage is 450 V with 80 A of current. The system is capable of providing power
up to 36 kW.

e Level 2: It has the same voltage rating as the level 1 system; the current rating is increased to
200 A and the power to 90 kW.

e Level 3: Voltage in this system is rated to 600 V. Maximum current is 400 A with a power rating
of 240 kW. Table 20 shows the DC charging characteristics defined by Society of Automotive
Engineers (SAE).

Table 20. SAE (Society of Automotive Engineers) DC charging characteristics. Data from [46].

DC Charging System DC Voltage Range (V) Maximum Current (A) Power (kW)
Level 1 200-450 <80 <36
Level 2 200-450 <200 <90
Level 3 200-600 <400 <240

6.3. Wireless Charging

Wireless charging or wireless power transfer (WPT) enjoys significant interest because of the
conveniences it offers. This system does not require the plugs and cables required in wired charging
systems, there is no need of attaching the cable to the car, low risk of sparks and shocks in dirty or wet
environment and less chance of vandalism. Forerunners in WPT research include R&D centers and
government organizations like Phillips Research Europe, Energy Dynamic Laboratory (EDL), US DOT,
DOE; universities including the University of Tennessee, the University of British Columbia, Korea
Advance Institute of Science and Technology (KAIST); automobile manufacturers including Daimler,
Toyota, BMW, GM and Chrysler. The suppliers of such technology include Witricity, LG, Evatran,
HaloIPT (owned by Qualcomm), Momentum Dynamics and Conductix-Wampfler [27]. However, this
technology is not currently available for commercial EVs because of the health and safety concerns
associated with the current technology. The specifications are determined by different standardization
organizations in different countries: Canadian Safety Code 6 in Canada [83], IEEE C95.1 in the USA [84],
ICNIRP in Europe [85] and ARPANSA in Australia [86]. There are different technologies that are being
considered to provide WPT facilities. They differ in the operating frequency, efficiency, associated
electromagnetic interference (EMI), and other factors.

Inductive power transfer (IPT) is a mature technology, but it is only contactless, not wireless.
Capacitive power transfer (CPT) has significant advantage at lower power levels because of low cost
and size, but not suitable for higher power applications like EV charging. Permanent magnet coupling
power transfer (PMPT) is low in efficiency, other factors are not favorable as well. Resonant inductive
power transfer (RIPT) as well as On-line inductive power transfer (OLPT) appears to be the most
promising ones, but their infrastructuret may not allow them to be a viable solution. Resonant antennae
power transfer (RAPT) is made on a similar concept as RIPT, but the resonant frequency in this case
is in MHz range, which is capable of damage to humans if not shielded properly. The shielding is
likely to hinder range and performance; generation of such high frequencies is also a challenge for
power electronics [87]. Table 21 compares different wireless charging systems in terms of performance,
cost, size, complexity, and power level. Wireless charging for personal vehicles is unlikely to be
available soon because of health, fire and safety hazards, misalignment problems and range. Roads
with WPT systems embedded into them for charging passing vehicles also face major cost issues [27].
Only a few wireless systems are available now, and those too are in trial stage. WiTricity is working
with Delphi Electronics, Toyota, Honda and Mitsubishi Motors. Evatran is collaborating with Nissan

36



Energies 2017,10,1217

and GM for providing wireless facilities for Nissan Leaf and Chevrolet Volt models. However, with
significant advance in the technology, wireless charging is likely to be integrated in the EV scenario,
the conveniences it offers are too appealing to overlook.

Table 21. Comparison of wireless charging systems.

Wireless Charging Performance Cost Volume/Size Complexity Power Level
System Efficiency EMI Frequency
Inductive power Medium Medium 10-50 kHz Medium Medium Medium  Medium/High
transfer (IPT)
Capacitive power Low Medium 100-500 kHz Low Low Medium Low
transfer (CPT)
Permanent magnet
coupling power transfer Low High 100-500 kHz High High High Medium/Low
(PMPT)
Resonant inductive Medium Low 1-20 MHz Medium Medium Medium  Medium/Low
power transfer (RIPT)
On-line inductive power f 4 Medium 10-50 kHz High High Medium High

transfer (OLPT)

Resonant antennae

power transfer (RAPT) Medium Medium 100-500 kHz Medium Medium Medium Medium/Low

For the current EV systems, on-board AC systems are used for the lowest power levels, for higher
power, DC systems are used. DC systems currently have three existing standards [16]:

e  Combined Charging System (CCS)
e CHAdeMO (CHArge de MOve, meaning: ‘move by charge’)
e  Supercharger (for Tesla vehicles)

The powers offered by CCS and CHAdeMO are 50 kW and 120 kW for the Supercharger
system [88,89]. CCS and CHAdeMO are also capable of providing fast charging, dynamic charging
and vehicle to infrastructure (V2X) facilities [6,90]. Most of the EV charging stations at this time
provides level 2 AC charging facilities. Level 3 DC charging network, which is being increased
rapidly, is also available for Tesla cars. The stations may provide the CHAdeMO standard or the
CCS, therefore, a vehicle has to be compatible with the configuration provided to be charged from the
station. The CHAdeMO system is favored by the Japanese manufacturers like Nissan, Toyota and
Honda whereas the European and US automakers, including Volkswagen, BMW, General Motors and
Ford, prefer the CCS standard. Reference [5] discusses the charging systems used by current EVs along
with the time required to get them fully charged.

7. Power Conversion Techniques

Batteries or ultracapacitors (UC) store energy as a DC charge. Normally they have to obtain that
energy from AC lines connected to the grid, and this process can be wired or wireless. To deliver this
energy to the motors, it has to be converted back again. These processes work in the reverse direction
as well i.e., power being fed back to the batteries (regenerative braking) or getting supplied to grid
when the vehicle in idle (V2G) [91]. Typical placement of different converters in an EV is shown in
Figure 39 along with the power flow directions. This conversion can be DC-DC or DC-AC. For all
this conversion work required to fill up the energy storage of EVs and then to use them to propel the
vehicle, power converters are required [72], and they come in different forms. A detailed description of
power electronics converters is provided in [92]. Further classification of AC-AC converters is shown
in [93]. A detailed classification of converters is shown in Figure 40.
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Figure 39. Typical placements of different converters in an EV. AC-DC converter transforms the power
from grid to be stored in the storage through another stage of DC-DC conversion. Power is supplied to
the motor from the storage through the DC-DC converter and the motor drives [72].
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Figure 40. Detailed classification of converters. Data from [92,93].
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7.1. Converters for Wired Charging

DC-DC boost converter is used to drive DC motors by increasing the battery voltage up to the
operating level [72]. DC-DC converters are useful to combine a power source with a complementing
energy source [94]. Figure 41 shows a universal DC-DC converter used for DC-DC conversion. It can
be used as a boost converter for battery to DC link power flow and as a buck converter when the flow
is reversed. The operating conditions and associated switching configuration is presented in Table 22.
DC-DC boost converters can also use a digital signal processor [95].
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Figure 41. Universal DC-DC converter [72].

Table 22. Operating conditions for universal DC-DC converter. Adapted from [88].

Direction Mode T T, Ts Ty Ts

Ve 10 Vpagt Boost On Off Off On PWM

Ve t0 Vpait Buck PWM Off Off On Off

Vpatt t0 Ve Boost Off On On Off PWM

Vbatt 1o Ve Buck Off On PWM Off Off

According to [72], dual inverter is the most updated technology to drive AC motors like permanent
magnet synchronous motors (PMSMs), shown in Figure 42. For dual voltage source applications,
the system of Figure 43 is used [96]. These inverters operate on space vector PWM. For use on both
PMSMs and induction motors (IMs), a bidirectional stacked matrix inverter can be used; such a system
is shown in Figure 44.

Inverter 1 Inverter 2

PSMS Stator }
Winding E {@ {@

[+

Battery
I

Figure 42. Dual inverter for single source [72].
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Figure 43. Dual inverter with dual sources [72].
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Figure 44. Novel stacked matrix inverter as shown in [97].
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Some notable conventional DC-DC converters are: phase-shift full-bridge (PSFB),
inductor-inductor-capacitor (LLC), and series resonant converter (SRC). A comparison of components
used in these three converters is presented in [98], which is demonstrated here in Table 23. The DC-DC
converters used are required to have low cost, weight and size for being used in automobiles [99].
Interleaved converters are a preferable option regarding these considerations, it offers some other
advantages as well [100-103], though using it may increase the weight and volume of the inductors
compared to the customary single-phase boost converters [99]. To solve this problem, Close-Coupled
Inductor (CCI) and Loosely-Coupled Inductor (LCI) integrated interleaved converters have been
proposed in [99]. In [48] converters for AC level-1 and level-2 chargers are shown by Williamson et al.,
who stated that Power Factor Correction (PFC) is a must to acquire high power density and efficiency.
Two types of PFC technique are shown here: single-stage approach and two-stage approach. The first
one suits for low-power use and charge only lead-acid batteries because of high low frequency ripple.
To avoid these problems, the second technique is used.
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Table 23. Comparison of components used in PSFB, LLC and SRC converter. Adapted from [98].

Item PSFB LLC SRC
Number of switch blocks 4 4 4
Number of diode blocks 4 4 4
Number of transformers 1 1 2
Number of inductors 1 0 0
Additional capacitor Blocking capacitor - -
Output filter size Small - Large

In [34], Yong et al., presented the front end AC-DC converters. The Interleaved Boost PFC
Converter (Figure 45) has a couple of boost converters connected in parallel and working in 180° out
of phase [104-106]. The ripple currents of the inductors cancel each other. This configuration also
provides twice the effective switching frequency and provides a lower ripple in input current, resulting
in a relatively small EMI filter [103,107]. In Bridgeless/Dual Boost PFC Converter (Figure 46), the
gating signals are made identical here by tying the power-train switches. The MOSFET gates are not
made decoupled. Rectifier input bridge is not needed here. The Bridgeless Interleaved Boost PFC
Converter (Figure 47) is proposed to operate above the 3.5 kW level. It has two MOSFETS and uses
two fast diodes; the gating signals have a phase difference of 180°.
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Figure 45. Interleaved Boost PFC Converter [46].
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Figure 46. Bridgeless/Dual Boost PFC Converter. Adapted from [46].
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Figure 47. Bridgeless Interleaved Boost PFC Converter [46].

Williamson et al., presented some isolated DC-DC converter topologies in [44]. The ZVS FB
Converter with Capacitive Output Filter (Figure 48) can achieve high efficiency as it uses zero voltage
switching (ZVS) along with the capacitive output filters which reduces the ringing of diode rectifiers.
The trailing edge PWM full-bridge system proposed in [107]. The Interleaved ZVS FB Converter with
Voltage Doubler (Figure 49) further reduces the voltage stress and ripple current on the capacitive
output filter, it reduces the cost too. Interleaving allows equal power and thermal loss distribution in
each cell. The number of secondary diodes is reduced significantly by the voltage doubler rectifier
at the output [34]. Among its operating modes, DCM (discontinuous conduction mode) and BCM
(boundary conduction mode) are preferable. The Full Bridge LLC Resonant Converter (Figure 50) is
widely used in telecom industry for the benefits like high efficiency at resonant frequency. But unlike
the telecom sector, EV applications require a wide operating range. Reference [41] shows a design
procedure for such configurations for these applications.
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Figure 48. ZVS FB Converter with Capacitive Output Filter [46].

42



Energies 2017, 10,1217

ro

CiT

Figure 49. Interleaved ZVS FB Converter with Voltage Doubler [46].
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Figure 50. Full Bridge LLC Resonant Converter. Adapted from [46].

Balch et al., showed converter configurations that are used in different types of EVs in [42].
In Figure 51, a converter arrangement for a BEV is shown. An AC-DC charger is used for charging the
battery pack here while a two-quadrant DC-DC converter is used for power delivery to the DC bus
form the battery pack. This particular example included an ultracapacitor as well. An almost similar
arrangement was shown in [42] for PHEVs (Figure 52) where a bidirectional DC-DC converter was
used between the DC bus and the battery pack to facilitate regeneration. Use of integrated converter in
PHEYV is shown in Figure 53. Figure 54 shows converter arrangement for a PECV; this configuration is
quite similar to one shown for BEV, but it contains an additional boost converter to adjust the power

produced by the fuel cell stack to be sent to the DC bus.
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Figure 54. Converter arrangement in PFCV. Adapted from [35]. An AC-DC converter is used to convert
the power from the grid; DC-DC converter is used for power exchange between the DC bus and battery;
boost converter is used to make the voltage generated from the fuel cell stack suitable for the DC bus.

Bidirectional converters allow transmission of power from the motors to the energy sources and
also from vehicle to grid. Novel topologies for bidirectional AC/DC-DC/DC converters to be used
in PHEVs are being researched [103,108-112], such a configuration in shown in Figure 55. Kok et al.,
showed different DC-DC converter arrangements for EVs using multiple energy sources in [94] which
are presented in Figure 56. The first system has both battery and ultracapacitor added in cascade, while
the second one has them connected in parallel. The third one shows a system employing fuel cells, and
battery for backup. In [113], Koushki et al., classified bidirectional AC-DC converters into two main
groups: Low frequency AC-High frequency AC-DC (Figure 57), and Low frequency AC-DC- High
frequency AC-DC (Figure 58). The first kind can also be called single-stage converters where the latter
may be described as two-stage, which can be justified from their topologies. Converters employed
for EV application are compiled in Table 24. From this table, it is evident that step down converters
are required for charging the batteries from a higher voltage grid voltage, bidirectional converters are
needed for providing power flow in both directions, and specialized converters such as the last three,
are needed for better charging performances.

AC-DC converters are used to charge the batteries from AC supply-lines; DC-DC converters are
required for sending power to the motors from the batteries. The power flow can be reversed in case
of regenerative actions or V2G. Bidirectional converters are required in such cases. Different converter
configurations have different advantages and shortcomings which engendered a lot of research and
proliferation of hybrid converter topologies.
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Figure 56. Converter arrangements as shown in [94]: (a) Cascaded connection; (b) Parallel connection;
(c) Fuel cell with battery backup. Adapted from [94].
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Figure 57. Low frequency AC-High frequency AC-DC converter, also called single-stage
converter [113].
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Figure 58. Low frequency AC-DC-High frequency AC-DC converter, also called two-stage converter.
Adapted from [113].

Table 24. Converters with EV application displaying their key features and uses in EVs.

Configuration Reference Operation Key Features Application in EV

Can operate in

Buck converter Bose [92] Step down continuous or Sending power to

discontinuous mode the battery
Buck-Boost converter Bose [92] Step up and step Two quadrant operation Regen?rahve
down of chopper action
Interleaved Boost Williamson etal.  Step up with power  Relatively small input Charein
PFC converter [46] factor correction EMI filter arging
Bridgeless/Dual Williamson etal. ~ Step up with power  Does not require rectifier Charein
Boost PFC Converter [46] factor correction input bridge 88
ZVS FB Converter Williamson et al
with Capacitive " AC-DC conversion  Zero voltage switching Charging

Output Filter 46l
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7.2. Systems for Wireless Charging

Wireless charging or wireless power transfer (WPT) uses a principle similar to transformer. There
is a primary circuit at the charger end, from where the energy is transferred to the secondary circuit
located at the vehicle. In case of inductive coupling, the voltage obtained at the secondary side is:

Vp = Lz(diz /df) + M(d11 /dt) (2)
M is the mutual inductance and can be calculated by:
M =ky/(LiL) ©)

The term k here is the coupling co-efficient; L; and L, are the inductances of primary and
secondary circuit. Figure 59 shows the ‘double D" arrangement for WPT which demonstrates the basic
principle of wireless power transfer by means of flux linkages. A variety of configurations can be
employed for wireless power transfer; some of them meet a few desired properties to charge vehicles.
Inductive WPT, shown in Figure 60a, is the most rudimentary type, transfer power from one coil
to another just like the double D system. Capacitive WPT (Figure 60b) uses a similar structure as
the inductive system, but it has two coupling transformers at its core. Low frequency permanent
magnet coupling power transfer (PMPT) is shown in Figure 60c; it uses a permanent magnet rotor
to transmit power, another rotor placed in the vehicle acts as the receiver. Resonant antennae power
transfer (RAPT) (Figure 60d) uses resonant antennas for wireless transfer of power. Resonant inductive
power transfer (RIPT), shown in Figure 60e, uses resonance circuits for power transfer. Online power
transfer (OLPT) has a similar working principle as RIPT, it can be used in realizing roadways that can
charge vehicles wirelessly by integrating the transmitter with the roadway (pilot projects using similar
technology placed them just beneath the road surface), and equipping vehicles with receivers to collect
power from there. Schematic for this system is shown in Figure 60f. Characteristics of these systems
are shown in Table 25.

Figure 59. Double D arrangement for WPT. Fluxes generated in one coil cut the other one and induces
a voltage there, enabling power transfer between the coils without any wired connection [27].
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Table 25. Characteristics of wireless charging systems [87].

Technology Characteristics

e Itis not actually wireless, just does not require any connection.

e  Primary and secondary coils are sealed in epoxy.

e  Can provide power of either 6.6 kW or 50 kW.

e  Coaxial winding transformer can be used to place all the transformer core

Inductive WPT materials off-board.

° Losses including geometric effects, eddy current loss, EMI are mainly caused by
nonlinear flux distribution.

. A piecewise assembly of ferrite core and dividing the secondary winding
symmetrically can help minimizing the losses.

° Capacitive power transfer or CPT interface is built with two coupling transformers at
the center; the rest of the system is similar to inductive WPT.

° Capacitive interface is helpful in reducing the size and cost of the required galvanic

Capacitive WPT isolating parts.

. Cheaper and smaller for lower power applications, but not preferred for high
power usage.

. Useful in consumer electronics, may not be sufficient for EV charging.

e The transmitter is a cylinder-shaped, permanent magnet rotor driven by static
windings placed on the rotor, inside it if the rotor is hollow, or outside the motor,
separated by an air-gap.

Low frequency o  The receiver is placed on the vehicle, similar to the transmitter in construction.
perman.ent magnet e  Transmitter and receiver have to be within 150 mm for charging.
coupling power e Because of magnetic gear effect, the receiver rotor rotates at the same speed as the
transfer (PMPT) ) .
transmitter and energy is transferred.

e  The disadvantages may be the vibration, noise and lifetime associated with the
mechanical components used.

e Most popular WPT system.

° Uses two tuned resonant tanks or more, operating in the same frequency in resonance.

. Resonant circuits enable maximum transfer of power, efficiency optimization,

Resonant inductive impedance matching, compensation of magnetic coupling and magnetizing
power transfer (RIPT) current variation.

° Can couple power for a distance of up to 40 cm.

. Advantages include extended range, reduced EMI, operation at high frequency and
high efficiency.

° Has a similar concept like RIPT, but uses a lower resonant frequency.

. Can be used for high power applications.

° This system is proposed to be applied in public transport system in [87].

e  The primary circuit—a combination of the input of resonant converter and distributed

Online power transfer
(OLPT)

primary windings is integrated in the roadway. This primary side is called the ‘track’.
The secondary is placed in vehicles and is called the “pickup coil’.

Supply of this system is high voltage DC or 3-phase AC.

It can provide frequent charging of the vehicles while they are on the move, reducing
the required battery capacity, which will reduce the cost and weight of the cars.

The costs associated with such arrangement may also make its

implementation unlikely.

Resonant antennae
power transfer (RAPT)

This system uses two resonant antennas, or more, with integrated resonant inductances
and capacitances. The antennas are tuned to identical frequencies.

Large WPT coils are often used as antennas; resonant capacitance is obtained there by
controlled separation in the helical structure.

The frequencies used are in MHz range.

Can transfer power efficiently for distances up to 10 m.

The radiations emitted by most of such systems exceed the basic limits on human
exposure and are difficult to shield without affecting the range and performance.
Generating frequencies in the MHz range is also challenging and costly with present
power electronics technologies.
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8. Effects of EVs

Vehicles may serve the purpose of transportation, but they affect a lot of other areas. Therefore,
the shift in the vehicle world created by EVs impacts the environment, the economy, and being electric,
the electrical systems to a great extent. EVs are gaining popularity because of the benefits they provide
in all these areas, but with them, there come some problems as well. Figure 61 illustrates the impacts
of EVs on the power grid, environment and economy.

| Impacts of EV |
Impacts on Power Impacts on Impacts on
Grid Environment Economy
Negative Positive Less GHG L Lower operating
impacts impacts emission cost
T Chances to benefit
|| Voltage instability Faci |tat|pg smart from V2G
grid
Increased peak Va6
demand
— Harmonics Integration of RES
1 Voltage sag
— Power loss
Overloading of
transformers

Figure 61. A short list of the impacts of EVs on the power grid, environment and economy.

8.1. Impact on the Power Grid

8.1.1. Negative Impacts

EVs are considered to be high power loads [114] and they affect the power distribution system
directly; the distribution transformers, cables and fuses are affected by it the most [115,116]. A Nissan
Leaf with a 24 kWh battery pack can consume power similar to a single European household. A 3.3 kW
charger in a 220 V, 15 A system can raise the current demand by 17% to 25% [117]. The situation gets
quite alarming if charging is done during peak hours, leading to overload on the system, damage of
the system equipment, tripping of protection relays, and subsequently, an increase in the infrastructure
cost [117]. Charging without any concern to the time of drawing power from the grid is denoted
as uncoordinated charging, uncontrolled charging or dumb charging [117,118]. This can lead to the
addition of EV load in peak hours which can cause load unbalance, shortage of energy, instability, and
decrease in reliability and degradation of power quality [116,119]. In case of the modified IEEE 23 kV
distribution system, penetration of EVs can deviate voltage below the 0.9 p.u. level up to 0.83 p.u.,
with increased power losses and generation cost [118]. Level 1 charging from an 110 V outlet does
not affect the power system much, but problems arise as the charging voltage increases. Adding an
EV for fast charging can be equivalent to adding several households to the grid. The grid is likely
to be capable of withstanding it, but distribution networks are designed with specific numbers of
households kept into mind, sudden addition of such huge loads can often lead to problems. Reducing
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the charging time to distinguish their vehicles in the EV market has become the current norm among
the manufacturers, and it requires higher voltages than ever. Therefore, mitigating the adverse effects
is not likely by employing low charging voltages.

To avoid these effects, and to provide efficient charging with the available infrastructure,
coordinated charging (also called controlled or smart charging) has to be adopted. In this scheme, the
EVs are charged during the time periods when the demand is low, for example, after midnight. Such
schemes are beneficial in a lot of ways. It not only prevents addition of extra load during peak hours,
but also increases the load in valley areas of the load curve, facilitating proper use of the power plants
with better efficiency. In [116], Richardson et al., showed that a controlled charging rate can make
high EV penetration possible in the current residential power network with only a few upgrades in
the infrastructure. Geng et al., proposed a charging strategy in [120] comprising of two stages aimed
at providing satisfactory charging for all connected EVs while shifting the loads on the transformers.
On the consumer side, it can reduce the electricity bill as the electricity is consumed by the EVs during
off peak hours, which generally have a cheaper unit rate than peak hours. According to [121], smart
charging systems can reduce the increase investment cost in distribution system by 60-70%. The major
problems that are faced in the power systems because of EVs can be charted as following:

e Voltage instability: Normally power systems are operated close to their stability limit. Voltage
instabilities in such systems can occur because of load characteristics, and that instability can
lead to blackouts. EV loads have nonlinear characteristics, which are different than the general
industrial or domestic loads, and draw large quantities power in a short time period [81,122].
Reference [123] corroborated to the fact that EVs cause serious voltage instability in power systems.
If the EVs have constant impedance load characteristics, then it is possible for the grid to support
a lot of vehicles without facing any instability [81]. However, the EV loads cannot be assumed
beforehand and thus their power consumptions stay unpredictable; addition of a lot of EVs
at a time therefore can lead to violation of distribution constraints. To anticipate these loads
properly, appropriate modeling methods are required. Reference [124] suggested tackling the
instabilities by damping the oscillations caused by charging and discharging of EV batteries using
a wide area control method. The situation can also be handled by changing the tap settings of
transformers [125], by a properly planned charging system, and also by using control systems
like fuzzy logic controllers to calculate voltages and SOCs of batteries [81].

e Harmonics: The EV charger characteristics, being nonlinear, gives raise high frequency
components of current and voltage, known as harmonics. The amount of harmonics in a system
can be expressed by the parameters total current harmonic distortion (THD;) and total voltage

harmonic distortion (THD,):
H
LI
h=
THD; = V=2 % 100%

- @
H
\ h;z th
THD, = ‘;7 x 100% 5)
1

Harmonics distort the voltage and current waveforms, thus can reduce the power quality. It also
causes stress in the power system equipment like cables and fuses [122]. The present cabling is capable
of withstanding 25% EV penetration if slow charging is used, in case of rapid charging, the amount
comes down to 15% [126]. Voltage imbalance and harmonics can also give rise to current flow in the
neutral wire [127,128]. Different approaches have been adopted to determine the effects of harmonics
due to EV penetration. Reference [127] simulated the effects of harmonics using Monte Carlo analysis
to determine the power quality. In [129] the authors showed that THD, can reach 11.4% if a few
number of EVs are fast charging. This is alarming as the safety limit of THD, is 8%. According to
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Melo et al. [130], THD; also becomes high, in the range of 12% to 14%, in case of fast charging, though
it remains in the safe limit during times of slow charging. Studies conducted in [131] show the modern
EVs generate less THD; than the conventional ones, though their THD, values are higher. However,
with increased number of EVs, there are chances of harmonics cancellation because of different load
patterns [132,133]. Different EV chargers can produce different phase angles and magnitudes which
can lead to such cancellations [133]. It is also possible to reduce, even eliminate harmonics by applying
pulse width modulation in the EV chargers [132]. High THD; can be avoided by using filtering
equipment at the supply system [134].

e  Voltage sag: A decrease in the RMS value of voltage for half a cycle or 1 min is denoted as voltage
sag. It can be caused by overload or during the starting of electric machines. Simulation modeled
with an EV charger and a power converter in [135] stated 20% EV penetration can exceed the
voltage sag limit. Reference [136] stated that 60% EV penetration is possible without any negative
impact is possible if controlled charging is employed. The amount, however, plummets to 10% in
case of uncontrolled charging. Leemput et al., conducted a test employing voltage droop charging
and peak shaving by EV charging [137]. This study exhibited considerable decrease in voltage sag
with application of voltage droop charging. Application of smart grid can help in great extents in
mitigating the sag [138].

e Power loss: The extra loss of power caused by EV charging can be formulated as:

PLg = PLgy — 1—)Loriginal (6)

PLoriginal 18 the loss occurred when the EVs are not connected to the grid and PLEV is the loss
with EVs connected. Reference [121] charted the increased power loss as high as 40% in off peak hours
considering 60% of the UK PEVs to be connected to distribution system. Uncoordinated charging,
therefore, can increase the amount of loss furthermore. Taking that into account, a coordinated charging
scheme, based on objective function, to mitigate the losses was proposed in [139]. Coordinated charging
is also favored by [140,141] to reduce power losses significantly. Power generated in the near vicinity
can also help minimizing the losses [142], and distributed generation can be quite helpful in this
prospect, with the vehicle owners using energy generated at their home (by PV cells, CHP plants, etc.)
to charge the vehicles.

e Opverloading of transformers: EV charging directly affects the distribution transformers [81]. The
extra heat generated by EV loads can lead to increased aging rate of the transformers, but it
also depends on the ambient temperature. In places with generally cold weather like Vermont,
the aging due to temperature is negligible [81]. Estimation of the lifetime of a transformer is
done in [143], where factors taken into account are the rate of EV penetration, starting time
of charging and the ambient temperature. It stated that transformers can withstand 10% EV
penetration without getting any decrease in lifetime. The effect of level 1 charging, is in fact, has
negligible effect on this lifetime, but significant increase in level 2 charging can lead to the failure
of transformers [144]. Elnozahy et al., stated that overloading of transformer can happen with
20% PHEV penetration for level 1 charging, whereas level 2 does it with 10% penetration [145].
According to [122], charging that takes place right after an EV being plugged in can be detrimental
to the transformers.

e  Power quality degradation: The increased amount of harmonics and imbalance in voltage will
degrade the power quality in case of massive scale EV penetration to the grid.

8.1.2. Positive Impacts
On the plus side, EVs can prove to be quite useful to the power systems in a number of ways:

e  Smart grid: In the smart grid system, intelligent communication and decision making is
incorporated with the grid architecture. Smart grid is highly regarded as the future of power
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grids and offers a vast array of advantages to offer reliable power supply and advanced control.
In such a system, the much coveted coordinated charging is easily achievable as interaction with
the grid system becomes very much convenient even from the user end. The interaction of EVs
and smart grid can facilitate opportunities like V2G and better integration of renewable energy.
In fact, EV is one the eight priorities listed to create an efficient smart grid [117].

e V2G: V2G or vehicle to grid is a method where the EV can provide power to the grid. In this
system, the vehicles act as loads when they are drawing energy, and then can become dynamic
energy storages by feeding back the energy to the grid. In coordinated charging, the EV loads
are applied in the valley points of the load curve, in V2G; EVs can act as power sources to
provide during peak hours. V2G is realizable with the smart grid system. By making use of the
functionalities of smart grid, EVs can be used as dynamic loads or dynamic storage systems. The
power flow in this system can be unidirectional or bidirectional. The unidirectional system is
analogous to the coordinated charging scheme, the vehicles are charged when the load is low, but
the time to charge the vehicles is decided automatically by the system. Vehicles using this scheme
can simply be plugged in anytime and put there; the system will choose a suitable time and charge
it. Smart meters are required for enabling this system. With a driver variable charging scheme, the
peak power demand can be reduced by 56% [117]. Sortomme et al., found this system particularly
attractive as it required little up gradation of the existing infrastructure; creating a communication
system in-between the grid and the EVs is all that is needed [146]. The bidirectional system allows
vehicles to provide power back to the grid. In this scenario, vehicles using this scheme will supply
energy to the grid from their storage when it is required. This method has several appealing
aspects. With ever increasing integration of renewable energy sources (RES) to the grid, energy
storages are becoming essential to overcome their intermittency, but the storages have a very high
price. EVs have energy storages, and in many cases, they are not used for a long time. Example
for this point can be the cars in the parking lots of an office block, where they stay unused till
the office hour is over, or vehicles that are used in a specific time of the year, like a beach buggy.
Studies also revealed that, vehicles stay parked 95% of the time [117]. These potential storages
can be used when there is excess generation or low demand and when the energy is needed, it is
taken back to the grid. The vehicle owners can also get economically beneficial by selling this
energy to the grid. In [147], Clement-Nyns et al., concluded that a combination of PHEVs can
prove beneficial to distributed generation sources by providing storage for the excess generation,
and releasing that to the grid later. Bidirectional charging, however, needs chargers capable of
providing power flow in both directions. It also needs smart meters to keep track of the units
consumed and sold, and advanced metering architecture (AMI) to learn about the unit charges
in real time to get actual cost associated with the charging or discharging at the exact time of
the day. The AMI system can shift 54% of the demand to off-peak periods, and can reduce peak
consumption by 36% [117]. The bidirectional system, in fact, can provide 12.3% more annual
revenue than the unidirectional one. But taking the metering and protections systems required
in the bidirectional method, this revenue is nullified and indicates the unidirectional system is
more practical. Frequent charging and discharging caused by bidirectional charging can also
reduce battery life and increase energy losses from the conversion processes [81,117]. Ina V2G
scenario, operators with a vehicle fleet are likely to reduce their cost of operation by 26.5% [117].
Another concept is produced using the smart grid and the EVs, called virtual power plant (VPP),
where a cluster of vehicles is considered as a power plant and dealt like one in the system. VPP
architecture and control is shown in Figure 62. Table 26 shows the characteristics of unidirectional
and bidirectional V2G.
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Table 26. Unidirectional and bidirectional V2G characteristics. Adapted from [1].

V2G System Description Services Advantages Limitations
Controls EV charging
rate with a e  Maximized profit
o unidir.ectional power: e  Ancillary e Minimized power loss . Limited
Unidirectional ﬂo;—jvvd[l:edgd from grid service—load levelling e Minimized operation cost service range
to ased on inimi issi
e  Minimized emission
incentive systems and
energy scheduling
e Ancillary - 5
service—spinning reserve *  Maximized profit
e Load leveling . Ml:.n%m%zed power.loss
e Peak power shaving . M?n?m?zed ope.ra.tl(m cost o Fast
Bidirectional power e Active power support ° M].mrm%ed emission battery degradation
Bidirectional flow between gridand ¢  Reactive power ° Prevention of . Complex hardware

EV to attain a range of
benefits

support/Power

factor correction
Voltage regulation
Harmonic filtering
Support for integration
of renewable

grid overloading

Failure recovery

Improved load profile
Maximization of renewable
energy generation

High capital cost
Social barriers

e Integration of renewable energy sources: Renewable energy usage becomes more promising with
EVs integrated into the picture. EV owners can use RES to generate power locally to charge their
EVs. Parking lot roofs have high potential for the placement of PV panels which can charge the
vehicles parked underneath as well as supplying the grid in case of excess generation [148-150],
thus serving the increase of commercial RES deployment. The V2G structure is further helpful to
integrate RES for charging of EVs, and to the grid as well, as it enables the selling of energy to
the grid when there is surplus, for example, when vehicles are parked and the system knows the
user will not need the vehicle before a certain time. V2G can also enable increased penetration
of wind energy (41%-59%) in the grid in an isolated system [121]. References [151-154] worked
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with different architectures to observe the integration scenario of wind energy with EV assistance.
Figure 63 demonstrates integration of wind and solar farm with conventional coal and nuclear
power grid with EV charging station employing bidirectional V2G. Table 27 shows the types of
assistance EVs can provide for integrating renewable energy sources to the grid.

Coal-fired Nuclear
power plant power plant
12 TI
TSO
5
DSO

T4
é PCC

} ) A [+

Wind Charging Residential
. Solar farm
Farm Station houses

Figure 63. Wind and solar integration in the grid with the help of EV in V2G system. TSO stands for
transmission system organization; DSO for distribution system organization; T1 to T4 represent the
transformers coupling the generation, transmission, and distribution stages [117].

Table 27. Scopes of assisting renewable energy source (RES) integration using EV. Adapted from [1].

Interaction with RES Field of Application Contribution

e  Implementation of PV and EV in smart home to
reduce emission

e  Development of stand-alone home EV charger based
on solar PV system

e Development of future home with uninterruptable
power by implementing V2G with solar PV

Smart home

e Analysis of EV charging using solar PV at
. parking lots
Solar PV Parking lot e Scheduling of charging and discharging for
intelligent parking lot

e Assessment of power system performance with
integration of grid connected EV and solar PV

e  Development of EV charging control strategy for grid
connected solar PV based charging station

e Development of optimization algorithm to coordinate
V2G services

Grid distribution network

e Development of generation scheduling for micro grid

Micro grid consisting of EV and solar PV

e  Determination of EV interaction potential with wind
energy generation

e Development of V2G systems to overcome wind

Wind turbine intermittency problems

Grid distribution network

e Development of coordinating algorithm for energy

Micro grid dispatching of V2G and wind generation
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Table 27. Cont.

Interaction with RES Field of Application Contribution

e Development of control strategy for smart homes

Smart home with grid-interactive EV and renewable sources

e Design of intelligent optimization framework for

Parking lot integrating renewable sources and EVs
Solar PV and wind e Potential analysis of grid connected EVs for
turbine balancing intermittency of renewable sources

e  Emission analysis of EVs associated with
renewable generation

e Development of optimized algorithm to integrate
EVs and renewable sources to the grid

Grid distribution network

e Development of V2G control for maximized

Micro grid renewable integration in micro grid

8.2. Impact on Environment

One of the main factors that propelled the increase of EVs’ popularity is their contribution to
reduce the greenhouse gas (GHG) emissions. Conventional internal combustion engine (ICE) vehicles
burn fuels directly and thus produce harmful gases, including carbon dioxide and carbon monoxide.
Though HEVs and PHEVs have IC engines, their emissions are less than the conventional vehicles. But
there are also theories that the electrical energy consumed by the EVs can give rise to GHG emission
from the power plants which have to produce more because of the extra load added in form of EVs.
This theory can be justified by the fact that the peak load power plants are likely to be ICE type, or
can use gas or coal for power generation. If EVs add excess load during peak hours, it will lead to
the operation of such plants and will give rise to CO, emission [155]. Reference [156] also stated that
power generation from coal and natural gas will produce more CO; from EV penetration than ICEs.
However, all the power is not generated from such resources. There are many other power generating
technologies that produce less GHG. With those considered, the GHG production from power plants
because of EV penetration is less than the amount produced by equivalent power generation from ICE
vehicles. The power plants also produce energy in bulk, thus minimizing the per unit emission. With
renewable sources integrated properly, which the EVs can support strongly, the emission from both
power generation and transportation sector can be reduced [115]. Over the lifetime, EVs cause less
emission than conventional vehicles. This parameter can be denoted as well-to-wheel emission and it
has a lower value for EVs [157]. In [158], well-to-wheel and production phases are taken into account
to calculate the impact of EVs on the environment. This approach stated the EVs to be the least carbon
intensive among the vehicles. Denmark managed to reduce 85% CO, emission from transportation by
combining EVs and electric power. EVs also produce far less noise, which can highly reduce sound
pollution, mostly in urban areas. The recycling of the batteries raises serious concerns though, as there
are few organizations capable of recycling the lithium-ion batteries fully. However, like the previous
nickel-metal and lead-acid ones, lithium-ion cells are not made of caustic chemicals, and their reuse
can reduce “peak lithium’ or ‘peak o0il” demands [81].

8.3. Impact on Economy

From the perspective of the EV owners, EVs provide less operating cost because of their superior
efficiency [22]; it can be up to 70% where ICE vehicles have efficiencies in the range of 60% to 70% [159].
The current high cost of EVs is likely to come down from mass production and better energy policies [3]
which will further increase the economic gains of the owners. V2G also allows the owners to obtain a
financial benefit from their vehicles by providing service to the grid [160]. The power service providers
benefit from EV integration mainly by implementing coordinated charging and V2G. It allows them to
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adopt better peak shaving strategies as well as to integrate renewable sources. EV fleets can lead to
$200 to $300 savings in cost per vehicle per year [161,162].

8.4. Impacts on Motor Sports

Hybrid technologies are not used extensively in motor sports to enhance the performance of the
vehicles. Electric vehicles now have their own formula racing series named ‘Formula E’ [163] which
started in Beijing in September 2014. Autonomous EVs are also being planned to take part in a segment
of this series called ‘Roborace’.

9. Barriers to EV Adoption

Although electric vehicles offer a lot of promises, they are still not widely adopted, and the reasons
behind that are quite serious as well.

9.1. Technological Problems

The main obstacles that have frustrated EVs’ domination are the drawbacks of the related
technology. Batteries are the main area of concern as their contribution to the weight of the car
is significant. Range and charging period also depend on the battery. These factors, along with a few
others, are demonstrated below:

9.1.1. Limited Range

EVs are held back by the capacity of their batteries [4]. They have a certain amount of energy
stored there, and can travel a distance that the stored energy allows. The range also depends on the
speed of the vehicle, driving style, cargo the vehicle is carrying, the terrain it is being driven on, and
the energy consuming services running in the car, for example air conditioning. This causes ‘range
anxiety” among the users [81], which indicates the concern about finding a charging station before
the battery drains out. People are found to be willing to spend up to $75 extra for an extra range of
one mile [164]. Though even the current BEVs are capable of traversing equivalent or more distance
than a conventional vehicle can travel with a full tank (Tesla Model S 100D has a range of almost
564 km on 19” wheels when the temperature is 70 °C and the air conditioning is off [24], the Chevrolet
Bolt’s range is 238 miles or 383 km [165]), range anxiety remains a major obstacle for EVs to overcome.
This does not affect the use of EVs for urban areas though, as in most cases this range is enough for
daily commutation inside city limits. Range extenders, which produce electricity from fuel, are also
available with models like BMW i3 as an option. Vehicles with such facilities are currently being called
as Extended Range Electric Vehicles (EREV).

9.1.2. Long Charging Period

Another major downside of EVs is the long time they need to get charged. Depending on the
type of charger and battery pack, charging can take from a few minutes to hours; this truly makes EVs
incompetent against the ICE vehicles which only take a few minutes to get refueled. Hidrue et al., found
out that, to have an hour decreased from the charging time; people are willing to pay $425-$3250 [164].
A way to make the charging time faster is to increase the voltage level and employment of better
chargers. Some fast charging facilities are available at present, and more are being studied. There are
also the fuel cell vehicles that do not require charging like other EVs. Filling up the hydrogen tank is
all that has to be done in case of these vehicles, which is as convenient as filling up a fuel tank, but
FCVs need sufficient hydrogen refueling stations and a feasible way to produce the hydrogen in order
to thrive.
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9.1.3. Safety Concerns

The concerns about safety are rising mainly about the FCVs nowadays. There are speculations
that, if hydrogen escapes the tanks it is kept into, can cause serious harm, as it is highly flammable.
It has no color either, making a leak hard to notice. There is also the chance of the tanks to explode
in case of a collision. To counter these problems, the automakers have taken measures to ensure the
integrity of the tanks; they are wrapped with carbon fibers in case of the Toyota Mirai. In this car, the
hydrogen handling parts are placed outside the cabin, allowing the gas to disperse easily in case of
any leak, there are also arrangements to seal the tank outlet in case of high-speed collision [166].

9.2. Social Problems

9.2.1. Social Acceptance

The acceptance of a new and immature technology, along with its consequences, takes some time
in the society as it means change of certain habits [167]. Using an EV instead of a conventional vehicle
means change of driving patters, refueling habits, preparedness to use an alternative transport in case
of low battery, and these are not easy to adopt.

9.2.2. Insufficient Charging Stations

Though public charging stations have increased a lot in number, still they are not enough. Coupled
with the lengthy charging time, this acts as a major deterrent against EV penetration. Not all the public
charging stations are compatible with every car as well; therefore it also becomes a challenge to find a
proper charging point when it is required to replete the battery. There is also the risk of getting a fully
occupied charging station with no room for another car. But, the manufacturers are working on to
mitigate this problem. Tesla and Nissan have been expanding their own charging networks, as it, in
turn means they can sell more of their EVs. Hydrogen refueling stations are not abundant yet as well.
It is necessary as well to increase the adoption of FCVs. In [168], a placement strategy for hydrogen
refueling stations in California is discussed. It stated that a total of sixty-eight such stations will be
sufficient to provide service to FCVs in the area. To get the better out of the remaining stations, there
are different trip planning applications, both web based and manufacturer provided, which helps to
obtain a route so that there are enough charging facilities to reach the destination.

9.3. Economic Problems

High Price

The price of the EVs is quite high compared to their ICE counterparts. This is because of the high
cost of batteries [81] and fuel cells. To make people overlook this factor, governments in different
countries including the UK and Germany, have provided incentives and tax breaks which provide the
buyers of EVs with subsidies. Mass production and technological advancements will lead to a decrease
in the prices of batteries as well as fuel cells. Affordable EVs with a long range like the Chevrolet
Bolt has already appeared in the market, while another vehicle with the same promises (the Tesla
Model 3) is anticipated to arrive soon. Figure 64 shows the limitations of EVs in the three sectors.
Table 29 demonstrates the drawbacks in key factors, while Table 28 suggests some solutions for the
existing limitations.
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Figure 64. Social, technological, and economic problems faced by EVs.

Table 28. Tentative solutions of current limitations of EVs.

Limitation Probable Solution
Limited range Better energy source and energy management technology
Long charging period Better charging technology
Safety problems Advanced manufacturing scheme and build quality

Placement of sufficient stations capable of providing services
to all kinds of vehicles
High price Mass production, advanced technology, government incentives

Insufficient charging stations

10. Optimization Techniques

To make the best out of the available energy, EVs apply various aerodynamics and mass reduction
techniques, lightweight materials are used to decrease the body weight as well. Regenerative braking
is used to restore energy lost in braking. The restored energy can be stored in different ways. It can be
stored directly in the ESS, or it can be stored by compressing air by means of hydraulic motor, springs
can also be employed to store this energy in form of gravitational energy [169].

Table 29. Hurdles in key EV factors. Adapted from [170].

Factor Hurdles
Recharging Weight of charger, durability, cost, recycling, size, charging time
Hybrid EV Battery, durability, weight, cost
Hydrogen fuel cell Cost, hydrogen production, infrastructure, storage, durability, reliability
Auxiliary power unit Size, cost, weight, durability, safety, reliability, cooling, efficiency

Formula One vehicles employ kinetic energy recovery systems (KERSs) to use the energy gathered
during braking to provide extra power during accelerating. The Porsche 911 GT3R hybrid uses a
flywheel energy storage system to store this energy. The energy consuming accessories on a car
include power steering, air conditioning, lights, infotainment systems etc. Operating these in an energy
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efficient way or turning some of these off can increase the range of a vehicle. LEDs can be used for
lighting because of their high efficiency [169]. Table 30 shows different methods of recovering the
energy lost during braking.

Table 30. Different methods of recovering energy during braking [169].

Storage System Energy Converter Recovered Energy Application
Electric storage Electric motor/generator ~50% BEV, HEV
Compressed gas storage Hydraulic motor >70% Heavy-duty vehicles

Flywheel Rotational kinetic energy >70% Formula One (F1) racing
Gravitational energy storage Spring storage system - Train

Aerodynamic techniques are used in vehicles to reduce the drag coefficient, which reduces the
required power. Power needed to overcome the drag force is:

Py = L po?AC, %

Here C; is the drag coefficient, the power to overcome the drag increases if the drag coefficient’s
value increases. The Toyota Prius claims a drag coefficient of 0.24 for the 2017 model, the same as the
Tesla Model S. The 2012 Nissan Leaf SL had this value set at 0.28 [171].

To ensure efficient use of the available energy, different energy management schemes can be
employed [6]. Presented different control strategies for energy management which included systems
using fuzzy logic, deterministic rule and optimization based schemes. Geng et al., worked on a plug-in
series hybrid FCV. The objective of their control system was to consume the minimum amount of
hydrogen while preserving the health of the proton exchange membrane fuel cell (PEMFC) [172]. The
control system was comprised of two stages; the first stage determined the SOC and control references,
whereas the second stage determined the PEMFC health parameters. This method proved to be
capable of reducing the hydrogen consumption while increasing the life-time to the fuel cell. Another
intelligent management system is examined in [173] by Murphey et al., which used machine learning
combined with dynamic programming to determine energy optimization strategies for roadway and
traffic-congestion scenarios for real-time energy flow control of a hybrid EV. Their system is simulated
using a Ford Escape Hybrid model; it revealed the system was effective in finding out congestion
level, optimal battery power and optimal speed. Geng et al., proposed a control mechanism for
energy management for a PHEV employing batteries and a micro turbine in [174]. In this work,
they introduced a new parameter, named the “energy ratio”, to produce the equivalent factor (EF)
which was used in the popular Equivalent Consumption Minimization Strategy (ECMS) to deduce the
minimum driving cost by applying Pontryagin’s minimum principle. This method claimed to reduce
the cost by 7.7-21.6%. In [175], Moura et al., explored efficient ways to split power demand among
different power sources of mid-sized sedan PHEVs. They used a number of drive cycles, rather than a
single one, assessed the potential of depleting charge in a controlled manner, and considered relative
pricing of fuel and electricity for optimal power management of the vehicle.

11. Control Algorithms

Control systems are crucial for proper functioning of EVs and associated systems. Sophisticated
control mechanisms are required for providing a smooth and satisfactory ride quality, for providing
the enough power when required, estimating the energy available from the on-board sources and
using them properly to cover the maximum distance, charging in a satisfactory time without causing
burden on the grid, and associated tasks. Different algorithms are used in these areas, and as the EV
culture is becoming more mainstream, need for better algorithms are on the rise.

Driving control systems are required to assist the driver in keeping the vehicle in control, especially
at high speeds and in adverse conditions such as slippery surfaces caused by rain or snow. Driving
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control systems such as traction control, cruise control, and different driving modes have been being
applied in conventional vehicles for a long time. Application of such systems appeared more efficient
in EVs as the driving forces of EVs can be controlled with more ease, with less conversion required
in-between the mechanical and the electrical domains. In any condition, forces act on a vehicle at
different directions; for a driving control system, if is essential to perfectly perceive these forces,
along with other sensory inputs, and provide torques to the wheels to maintain desired stability.
In Figure 65, the forces in different direction acting on each wheel of a car is shown in a horizontal
plane. In [176], Magallan et al., proposed and simulated a control system to utilize the maximum
torque in a rear-wheel-drive EV without causing the tires to skid. The model they worked on had
independent driving systems for the two rear wheels. A sliding mode system, based on a LuGre
dynamic friction model, was used to estimate the vehicle’s velocity and wheel slip on unknown road
surfaces. Utilizing these data, the control algorithm determined the maximum allowable traction
force, which was applied to the road by torque controlling of the two rear motors. Juyong Kang et al.,
presented an algorithm aimed at driving control systems for four-wheel-drive EVs in [177]. Their
vehicle model had two motors driving the front and the rear shafts. The algorithm had three parts: a
supervisory level for determine the desirable dynamics and control mode, an upper level computing
the yaw moment and traction force inputs, and a lower level determining the motor and braking
commands. This system proved useful for enhancing lateral stability, maneuverability, and reducing
rollover. Figure 66 shows the acting components of this system on a vehicle model while Figure 67
shows a detailed diagram of the system with the inputs, controller levels, and actuators. Tahami et al.,
introduced a stability system for driving assistance for all-wheel drive EVs in [25]. They trained a
neural network to produce a reference yaw rate. A fuzzy logic controller dictated independent wheel
torques; a similar controller was used for controlling wheel slip. This system is shown in Figure 68.
In [178], Wang et al., showed a system to assist steering using differential drive for in-wheel drive
system. A proportional integral (PI) closed loop control system was used here to monitor the reference
steering position. It was achieved by distributing torque at the front wheels. Direct yaw moment
control and traction control were also employed to make the differential drive system better. This
approach maintained the lateral stability of the vehicle, and improved stability at high speeds. The
structure of this system is shown in Figure 69. In a separate study conducted by Nam et al., lateral
stability of an in-wheel drive EV was attained by estimating the sideslip angle of the vehicle employing
sensors to measure lateral tire forces [179]. In this study, a state observer was proposed which was
derived from extended-Kalman-filtering (EKF) method and was evaluated by implementing in an
experimental EV alongside Matlab /Simulink-Carsim simulations.

Energy management is a big issue for EVs. Proper measurement of the available energy is crucial
for calculating the range and plans the driving strategy thereafter. For vehicles with multiple energy
sources (e.g., HEVs), efficient energy management algorithms are required to make proper use of
the energy on-board. Zhou et al.,, proposed a battery state-of-charge (SOC) measuring algorithm
for lithium polymer batteries which made use of a combination of particle filter and multi-model
data fusion technique to produce results real time and is not affected by measurement noise [180].
They used different battery models and presented the tuning strategies for each model as well. Their
multi-model approach proved to be more effective than single model methods for providing real time
results. Working principle of this system is shown in Figure 70. Moura et al., explored efficient ways
to split power demand among different power sources of mid-sized sedan PHEVs in [175], which
can be used for other vehicle configurations as well. Their method made use of different drive cycles,
rather than using a single one; assessed the potential of depleting charge in a controlled manner;
and considered relative pricing of fuel and electricity to optimally manage the power of the vehicle.
In [181], Hui et al., presented a novel hybrid vehicle using parallel hybrid architecture which employed
a hydraulic/electric synergy configuration to mitigate the drawbacks faced by heavy hybrid vehicles
using a single energy source. Transition among the operating modes of such a vehicle is shown in
Figure 71. They developed an algorithm to optimize the key parameters and adopted a logic threshold
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approach to attain desired performance, stable SOC at the rational operating range constantly, and
maximized fuel economy. The operating principle of this system is shown in Figure 72. Chen et al.,
proposed an energy management algorithm in [182] to effectively control battery current, and thus
reduce fuel usage by allowing the engine operate more effectively. Quadratic programming was used
here to calculate the optimum battery current. In [183], Li et al., used fuzzy logic to create a new
quantity: battery working state or BWS which was used in an energy management system run by
fuzzy logic to provide proper power division between the engine and the battery. Simulation results
proved this approach to be effective in making the engine operate in the region of maximum fuel
efficiency while keeping the battery away from excess discharging. Yuan et al., compared Dynamic
Programming and Pontryagin’s Minimum Principle (PMP) for energy management in parallel HEVs
using Automatic Manual Transmission. The PMP method proved better as it was more efficient to
implement, required considerably less computational time, and both of the systems provided almost
similar results [184]. In [185], Bernard et al., proposed a real time control system to reduce hydrogen
consumption in FCEVs by efficiently sharing power between the fuel cell arrangement and the energy
buffer (ultracapacitor or battery). This control system was created from an optimal control theory
based non-causal optimization algorithm. It was eventually implemented in a hardware arrangement
built around a 600 W fuel cell arrangement. In an attempt to create an energy management system
for a still-not-commercialized PHEV employing a micro turbine, Geng et al., used an equivalent
consumption minimization strategy (ECMS) in [174] to estimate the optimum driving cost. Their
system used the battery SOC and the vehicle telemetry to produce the results, which were available in
real time and provided driving cost reductions of up to 21.6%.

Fx2 Fy2

X -

Figure 65. Forces acting on the wheels of a car. Each of the wheels experience forces in all three
directions, marked with the ‘F’ vectors. L; and L, show the distances of front and rear axles from the
center of the vehicle, while T; shows the distance between the wheels of an axle. Adapted from [25].
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Figure 66. Main working components of the driving control system for four-wheel-drive EVs proposed
by Juyong Kang et al. The driving control algorithm takes the driver’s inputs, and then determines the
actions of the brakes and the motors according to the control mode [177].
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Figure 67. Working principle of the control system proposed by Kang et al. The system uses both the
driver’s commands and sensor measurements as inputs, and then drives the actuators as determined
by the three level control algorithms. Adapted from [177].
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Figure 68. Working principle of vehicle stability system proposed by Tahami et al. A neural network
was used in the yaw reference generator [25].
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Figure 69. Independent torque control system proposed by Wang et al., Differential drive assisted
steering (DDAS) subsystem and direct yaw moment control subsystem creates the upper layer. The
traction control subsystem processes the inputs, and the controlling is done through the lower
layer [178].

Importance Calculation
Sampiing and Re-sampiing
Initialization [=»{ Simulation [~ from |—>] Normalization =] and State |—]Output SOC
Proposal of Importance Prediction
Distribution weight

Figure 70. Working principle of the SOC measuring algorithm proposed by Zhou et al. [180].

As pointed out in Section 8, the grid is facing some serious problems with the current rise in
EV penetration. Reducing the charging time of the vehicles while creating minimal pressure on
the grid has become difficult goal to achieve. However, ample research has already been done on
this matter and a number of charging system algorithms have been proposed to attain satisfactory
charging performance.
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Figure 71. Transition of the operating modes of the vehicle used in [181] by Hui et al. From engine
start to shutdown through stops, the vehicle can use either the hydraulic or the electric system, or it
can use both.
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Figure 72. Operating principle of the control system proposed by Hui et al. The control strategy drives
the actuating systems according to the decisions made from the sensor inputs. Adapted from [181].

In [186], Su et al., presented an algorithm (shown in Figure 73) capable of providing charge
intelligently to a large fleet of PHEVs docked at a municipal charging station. This algorithm—which
used the estimation of distribution (EDA) algorithm—considered real-world factors such as remaining
charging time, remaining battery capacity, and energy price. The load management system proposed
by Deilami et al., in [140] considered market energy prices that vary with time, time zones preferred by
EV owners by priority selection, and random plugging-in of EVs—for providing coordinated charging
in a smart grid system. It then used the maximum sensitivities selection (MSS) optimization technique
to enable EVs charge as soon as possible depending on the priority time zones while maintaining
the operation criteria of the grid such as voltage profile, limits of generation, and losses. This system
was simulated using an IEEE 23 kV distribution system modified for this purpose. Mohamed et al.,
designed an energy management algorithm to be applied in EV charging parks incorporating renewable
generation such as PV systems [187]. The system they developed used a fuzzy controller to manage
the charging/discharging times of the connected EVs, power sharing among them, and V2G services.
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The goal of this system was to minimize the charging cost while reducing the impact on the grid as
well as contributing to peak shaving. The flowchart associated to this system is shown in Figure 74.
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Figure 73. Intelligent charging algorithm proposed by Su et al., for a municipal charging station [186].
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Figure 74. Flowchart of the management system proposed by Mohamed et al. [187].
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To alleviate the problems at the distribution stage of the grid—which is highly affected by EV
penetration—Geng et al., proposed a charging strategy comprising of two stages aimed at providing
satisfactory charging for all connected EVs while shifting the loads on the transformers [120]. The first
stage utilized Pontryagin’s minimum principle and was based on the concept of dynamic aggregator;
it derived the optimal charging power for all the EVs in the system. The second stage used fuzzy
logic to distribute the power calculated in the first stage among the EVs. According to the authors,
the system was feasible to be implemented practically [120]. In [116], Richardson et al., employed a
linear programming based technique to calculate the optimal rate of charging for each EV connected
in a distribution network to enable maximized power delivery to the vehicles while maintaining
the network limits. This approach can provide high EV penetration possible in existing residential
power systems with no or a little upgrade. Sortomme et al., developed an algorithm to maximize
profit from EV charging in a unidirectional V2G system where an aggregator is present to manage the

charging [146]. Table 31 summarizes the algorithms presented in this section.

Table 31. Summary of the control algorithms presented.

References

Algorithm Based on

Application

Magallan et al. [176]

LuGre dynamic friction model

Driving control system in rear-wheel-drive EV

Kang et al. [177]

Optimization-based control
allocation strategy

Driving control system in four-wheel-drive EV

Tahami et al. [25]

Fuzzy logic

Driving control system in all-wheel-drive EV

Wang et al. [178]

Proportional-integral (PI) closed loop
control system

Driving control system in in-wheel-drive EV

Nam et al. [179]

Extended Kalman filtering (EKF) method

Driving control system in in-wheel-drive EV

Zhou et al. [180]

Particle filter and multi-model data fusion

SOC measurement for lithium
polymer batteries

Moura et al. [175]

Markov process

Power splitting in mid-sized sedan PHEV

Hui et al. [181]

Torque control strategy

Heavy hybrid vehicles using a single
energy source

Chen et al. [182]

Quadratic programming

Reduction of fuel consumption by effective
battery current control

Lietal. [183]

Fuzzy logic

Attaining maximum fuel efficiency without
excess discharging of battery

Yuan et al. [184]

Dynamic Programming and Pontryagin’s
Minimum Principle

Efficient energy management in parallel HEV
using Automatic Manual Transmission or AMT

Bernard et al. [185]

Non-causal optimization algorithm

Reduction of hydrogen consumption in FCEV

Geng et al. [174]

Equivalent consumption minimization
strategy (ECMS)

Energy management in PHEV employing
microturbine

Su et al. [186]

Estimation of distribution (EDA) algorithm

Intelligent charging of large fleet of PHEVs
docked at a municipal charging station

Deilami et al. [140]

Maximum sensitivities selection (MSS)
optimization

Load management system for intelligent
charging

Mohamed et al. [187]

Fuzzy controller

V2G system for EV charging parks
incorporating renewable generation

Geng et al. [120]

Pontryagin’s minimum principle, fuzzy logic

Load shifting while charging EVs in the
distribution network

Richardson et al. [116]

Linear programming

Enabling high EV penetration in existing
residential power system network

Sortomme et al [146]

Preferred operating point (POP) algorithm

Maximizing profit from EV charging through
an aggregator
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12. Global EV Sales Figures

The electric vehicle market is growing much faster than the conventional vehicle market, and
in some regions EVs are catching up with ICE vehicles in terms of the number of units sold. China
has become the largest market for EVs, its market claiming 35.4% of the worldwide EV scene in 2017,
an exorbitant rise from the mere 6.3% in 2013 [188]. Chinese consumers bought a world-topping
24.38 million passenger electric vehicles in 2016. China has the greatest number of manufacturers, led
by BYD autos, which sold 96,000 EVs in 2016. This drive in China is fueled by government initiatives
adopted to promote EV use to mitigate the country’s serious air pollution. However, the majority of
Chinese vehicles are in the $36,000 range and offers limited range, but high-end vehicles manufacturing
is on the rise in China too. This huge market has attracted major carmakers all over the world—Ford,
Volkswagen, Volvo, and General Motors—who have their own EVs in the Chinese market and are
poised to introduce more models in the coming years [189]. Figure 75 shows the ten highest selling
EVs in China in 2016.
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Figure 75. Top ten EVs in China in 2016 according to the number of units sold. Data from [190].

From a global perspective, sales of EV grew by 36% in the USA; Europe saw a growth of 13%,
while Japan observed a decrease of 11% in the same period. BYD dominated the global market with a
13.2% share, followed by Tesla in second place (9.9%); the other major contributors can be listed as
Volkswagen Group, BMW Group, Nissan, BAIC, and Zoyte. However, the Tesla Model S remained the
best-selling EV in 2016 with 50,935 units sold, followed by the Nissan Leaf EV with 49,818 units [191].
The top ten best-selling vehicles around the globe in shown in Figure 76.
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Figure 76. Top ten best-selling EVs globally in 2016. Data from [191].

The American market was dominated predictably by the Tesla Model S in 2016, 28,821 of these
were sold; Chevrolet Volt EREV sold 24,739 units, thus securing the second place. The third place
was achieved by another Tesla, the Model X; 18,192 of these SUVs were sold in 2016 [192]. The ten
best-selling EVs in the USA in 2016 are shown in Figure 77.
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Figure 77. Top ten best-selling EVs in the USA in 2016. Data from [192].
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The Renault Zoe was the best-selling BEV in Europe in 2016, with 21,338 units sold, followed by
the Nissan Leaf with 18,614 units. In the PHEV segment, the Mitsubishi Outlander PHEV was the
market leader in Europe in 2016, with 21,333 units sold; the Volkswagen Passat GTE held the second
position with 13,330 units [193]. Figures 78 and 79 shows the BEV and PHEV market shares in Europe
in 2016.
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Figure 78. BEV market shares in Europe in 2016. Data from [193].
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Figure 79. PHEV market shares in Europe in 2016. Data from [193].

13. Trends and Future Developments

The adoption of EVs has opened doors for new possibilities and ways to improve both the vehicles
and the systems associated with it, the power system, for example. EVs are being considered as the
future of vehicles, whereas the smart grid appears to be the grid of the future [194,195]. V2G is the
link between these two technologies and both get benefitted from it. With V2G comes other essential
systems required for a sustainable EV scenario—charge scheduling, VPP, smart metering etc. The
existing charging technologies have to improve a lot to make EVs widely accepted. The charging
time has to be decreased extensively for making EVs more flexible. At the same time, chargers and
EVSEs have to able to communicate with the grid for facilitating V2G, smart metering, and if needed,
bidirectional charging [23]. Better batteries are a must to take the EV technology further. There is a
need for batteries that use non-toxic materials and have higher power density, less cost and weight,
more capacity, and needs less time to recharge. Though technologies better than Li-ion have been
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discovered already, they are not being pursued industrially because of the huge costs associated with
creating a working version. Besides, Li-ion technology has the potential to be improved a lot more.
Li-air batteries could be a good option to increase the range of EVs [23]. EVs are likely to move away
from using permanent magnet motors which use rare-earth materials. The motors of choice can be
induction motor, synchronous reluctance motor, and switched reluctance motor [23]. Tesla is using an
induction motor in its models at present. Motors with internal permanent magnet may stay in use [23].
Wireless power transfer systems are likely to replace the current cabled charging system. Concepts
revealed by major automakers adopted this feature to highlight their usefulness and convenience. The
Rolls-Royce 103EX and the Vision Mercedes-Maybach 6 can be taken as example for that. Electric
roads for wireless charging of vehicles may appear as well. Though this is not still viable, the situation
may change in the future. Recent works in this sector includes the work of Electrode, an Israeli startup,
which claims to be able to achieve this feat in an economic way. Vehicles that follow a designated route
along the highway, like trucks, can get their power from overhead lines like trains or trams. It will
allow them to gather energy as long as their route resides with the power lines, then carry on with
energy from on-board sources. Such a system has been tested by Siemens using diesel-hybrid trucks
from Scania on a highway in Sweden [196]. New ways of recovering energy from the vehicle may
appear. Goodyear has demonstrated a tire that can harvest energy from the heat generated there using
thermo-piezoelectric material. There are also chances of solar-powered vehicles. Until now, these have
not appeared useful as installed solar cells only manage to convert up to 20% of the input power [70].
Much research is going on to make the electronics and sensors in EVs more compact, rugged and
cheaper—which in many cases are leading to advanced solid state devices that can achieve these
goals with promises of cheaper products if they can be mass-produced. Some examples can be the
works on gas sensors [197], smart LED drivers [198], smart drivers for automotive alternators [199],
advanced gearboxes [200], and compact and smart power switches to weather harsh conditions [201].
The findings of [202-208] may prove helpful for studies regarding fail-proof on-board power supplies
for EVs. The future research topics will of course, revolve around making the EV technology more
efficient, affordable, and convenient. A great deal of research has already been conducted on making
EVs more affordable and capable of covering more distance: energy management, materials used for
construction, different energy sources etc. More of such researches are likely to go on emphasizing on
better battery technologies, ultracapacitors, fuel cells, flywheels, turbines, and other individual and
hybrid configurations. FCVs may get significant attention in military and utility-based studies, whereas
the in-wheel drive configuration for BEVs may be appealing to researchers focusing on better urban
transport systems. Better charging technologies will remain a crucial research topic in near future. This
is one of the areas the EV technology is lacking very badly; wireless charging technologies are very
likely to attract more researchers’ attention. A lot of research has already been done incorporating EVs
and the grid: the challenges and possibilities that the EVs bring with them to the existing grid and
also to the grid of the future. With more implementation of smart grids, distributed generation, and
renewable energy sources, researches in these fields are likely to increase. And as researches in the
entire aforementioned field’s increase, exploration for better algorithms to run the systems is bound to
rise. Figure 80 shows the major trends and sectors for future developments for EVs.

Major Trends and Future Developments
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Figure 80. Major trends and sectors for future developments for EV.
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14. Outcomes

The goal of this paper is to focus on the key components of EV. Major technologies in different

sections are reviewed and the future trends of these sectors are speculated. The key findings of this
paper can be summarized as follows:

EVs can be classified as BEV, HEV, PHEV, and FCEV. BEVs and PHEVs are the current trends.
FCEVs can become mainstream in future. Low cost fuel cells are the main prerequisite for that
and there is need of more research to make that happen. There are also strong chances for
BEVs to be the market dominators with ample advancement in key technologies; energy storage
and charging systems being two main factors. Currently FCVs appear to have little chance to
become ubiquitous, these may find popularity in niche markets, for example, the military and
utility vehicles.

EVs can be front wheel drive, rear wheel drive, even all-wheel drive. Different configurations
are applied depending on the application of the vehicle. The motor can also be placed inside the
wheel of the vehicle which offers distinct advantages. This configuration is not commercially
abundant now, and has scopes for more study to turn it into a viable product.

The main HEV configurations are classified as series, parallel, and series-parallel. Current vehicles
are using the series-parallel system mainly as it can operate in both battery-only and ICE-only
modes, providing more efficiency and less fuel consumption than the other two systems.
Currently EVs use batteries as the main energy source. Battery technology has gone through
significant changes, the lead-acid technology is long gone, as is the NiMH type. Li-ion batteries
are currently in use, but even they are not capable enough to provide the amount of energy
required to appease the consumers suffering from ‘range anxiety” in most cases. Therefore the
main focus of research in this area has to be creating batteries with more capacity, and also with
better power densities. Metal-air batteries can be the direction where the EV makers will head
towards. Lithium-sulfur battery and advanced rechargeable zinc batteries also have potential
provide better EVs. Nevertheless, low cost energy sources will be sought after always as ESS cost
is one of the major contributors to high EV cost.

Ultracapacitors are considered as auxiliary power sources because of their high power densities.
If coupled with batteries, ultracapacitors produce a hybrid ESS that can satisfy some requirements
demanded from an ideal source. Flywheels are also being used, especially because of their
compact build and capability to store and discharge power on demand. Fuel cells can also be
used more in the future if FCVs gain popularity.

Different types of motors can be employed for EV use. The prominent ones can be listed as
induction motor, permanent magnet synchronous motor, and synchronous reluctance motor.
Induction motors are being extensively these days, they can also dominate in future because of
their independence on rare-earth material permanent magnets.

EVs can be charged with AC or DC supply. There are different voltage levels and they are
designated accordingly. Higher voltage levels provide faster charging. DC supplies negate the
need of rectification from AC, which reduces delay and loss. However, with increased voltage
level, the pressure on the grid increases and can give rise to harmonics as well as voltage imbalance
in an unsupervised system. Therefore, there are ample chances of research in the field of mitigating
the problems associated with high-voltage charging.

Two charger configurations are mainly available now: CCS and CHAdeMO. These two systems
are not compatible with each other and each has a number of automakers supporting them. Tesla
also brought their own ‘supercharger’ system, which provides a faster charging facility. It is
not possible to determine now which one of these will prevail, or if both will co-exist, technical
study is needed to find out the most useful one of these configurations or ways to make them
compatible with each other.
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e  Whatever the charging system is, the charging time is still very long. This is a major disadvantage
that is thwarting the growth of the EV market. Extensive research is needed in this sector to
provide better technologies that can provide much faster charging and can be compatible with
the small time required to refill an ICE vehicle. Wireless charging is also something in need of
research. With all the conveniences it promises, it is still not in a viable form to commercialize.

e  EVimpacts the environment, power system, and economy alongside the transportation sector.
It shows promises to reduce the GHG emissions as well as efficient and economical transport
solutions. At the same time, it can cause serious problems in the power system including voltage
instability, harmonics, and voltage sag, but these shortcomings may be short-lived if smart grid
technologies are employed. There are prospects of research in the areas of V2G, smart metering,
integration of RES, and system stability associated with EV penetration.

e  EVsemploy different techniques to reduce energy loss and increase efficiency. Reducing the drag
coefficient, weight reduction, regenerative braking, and intelligent energy management are some
of these optimization techniques. Further research directions can be better aerodynamic body
designs, new materials with less weight and desired strength, ways to generate and restore the
lost energy.

e Different control algorithms have been developed for driving assist, energy management, and
charging. There is lots of room left for more research into charging and energy management
algorithms. With increased EV penetration in the future, demands for efficient algorithms are
bound to increase.

15. Conclusions

EVs have great potential of becoming the future of transport while saving this planet from
imminent calamities caused by global warming. They are a viable alternative to conventional vehicles
that depend directly on the diminishing fossil fuel reserves. The EV types, configurations, energy
sources, motors, power conversion and charging technologies for EVs have been discussed in detail in
this paper. The key technologies of each section have been reviewed and their characteristics have
been presented. The impacts EVs cause in different sectors have been discussed as well, along with
the huge possibilities they hold to promote a better and greener energy system by collaborating with
smart grid and facilitating the integration of renewable sources. Limitations of current EVs have
been listed along with probable solutions to overcome these shortcomings. The current optimization
techniques and control algorithms have also been included. A brief overview of the current EV market
has been presented. Finally, trends and ways of future developments have been assessed followed by
the outcomes of this paper to summarize the whole text, providing a clear picture of this sector and
the areas in need of further research.
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Abstract: Current logistics and transportation (L&T) systems include heterogeneous fleets consisting
of common internal combustion engine vehicles as well as other types of vehicles using “green”
technologies, e.g., plug-in hybrid electric vehicles and electric vehicles (EVs). However, the
incorporation of EVs in L&T activities also raise some additional challenges from the strategic,
planning, and operational perspectives. For instance, smart cities are required to provide recharge
stations for electric-based vehicles, meaning that investment decisions need to be made about the
number, location, and capacity of these stations. Similarly, the limited driving-range capabilities of
EVs, which are restricted by the amount of electricity stored in their batteries, impose non-trivial
additional constraints when designing efficient distribution routes. Accordingly, this paper identifies
and reviews several open research challenges related to the introduction of EVs in L&T activities,
including: (a) environmental-related issues; and (b) strategic, planning and operational issues
associated with “standard” EVs and with hydrogen-based EVs. The paper also analyzes how the
introduction of EVs in L&T systems generates new variants of the well-known Vehicle Routing
Problem, one of the most studied optimization problems in the L&T field, and proposes the
use of metaheuristics and simheuristics as the most efficient way to deal with these complex
optimization problems.

Keywords: electric vehicles; logistics and transportation; green vehicle routing problems

1. Introduction

Logistics and transportation (L&T) activities represent a key sector in worldwide economies, and
are a significant contributor to social and economic progress in modern societies. The prevalence
of the L&T industry is due to its constant growth and impact in terms of regional Gross Domestic
Product (GDP). In particular, road L&T activities using motorized vehicles have significantly increased
in response to the rise of globalization and commercial interchanges among countries. With the
aim of making them more efficient, L&T systems have been widely studied by the Operations
Research/Computer Science (OR/CS) communities for decades. Due to its potential applications to
real-life operations, one of the most recurrent topics in the L&T literature is that of modeling and
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optimizing tour assignments of vehicles. This is known as the Vehicle Routing Problem (VRP) [1].
Numerous variants of this problem have been addressed over the last years. The basic variant is
the so-called Capacitated VRP (CVRP), where each customer has a given demand that has to be
satisfied without exceeding a maximum vehicle capacity. The VRP with Time Windows extends the
CVRP by adding time windows to the depot and the customers. To account for additional real world
aspects, the classical VRP has been redefined in various manners that are often called Rich VRPs [2]
or Multi-attribute VRPs [3]. Despite the extensive literature in the VRP area, most of the existing
contributions have assumed that the fleet to be managed comprises only internal combustion engine
vehicles (ICEVs), which is not exactly the current picture.

A large percentage of the oil consumed in regions such as Europe or the USA is used in
transport, while road transport accounts for an important percentage of CO, emissions of the
overall transport activity. Furthermore, the whole transport sector causes about 28% of the total
greenhouse gas (GHG) emissions in countries such as the USA. In order to mitigate this situation,
one possibility is to incorporate emission costs as an objective to be minimized in routing models,
thus trading off environmental and economic goals [4,5]. A different approach is the utilization of
less polluting means of transport such as plug-in hybrid electric vehicles and electric vehicles (EVs),
whose specific characteristics have to be included in adequate routing models. In effect, as part of
the initiative to improve the local air quality, modern cities encourage fleets of vehicles to adopt
alternative technologies, such as EVs. Several factors are promoting the use of these technologies,
including: (i) companies receive incentives to reduce their carbon footprint; (ii) high variability of
oil-based products and long-term cost risk associated with dependence on oil-based energy sources;
(iii) availability of government subsidies to reduce acquisition cost; and (iv) advances in alternative
energy technologies (such as EVs), which have potential for a more environmentally sustainable
solutions at a cost that is starting to be competitive. From both an environmental and energy
standpoints, the use of EVs should be a first priority for the reduction of primary energy consumption.
Although higher concerns are the advantages of EVs in terms of efficiency and flexibility in the use
of energy, the EV technology is currently facing several weak points, which can be summarized as
follows: (i) the low energy density of batteries compared to the fuel of ICEVs; (ii) the long recharge
times of EVs batteries compared to the relatively fast process of refueling a tank in ICEVs; and (iii) the
scarcity of public and/or private charging stations for EV batteries. In earlier years, EVs failed because
of excessive battery prices and very short driving ranges. As EVs have become one of the major
research areas in the automotive sector, the magnitude of these problems has been notably diminished.
Although the replacement of conventional ICEVs with EVs is not profitable under most operation
scenarios given the current cost conditions, the availability of increasingly long-lived batteries, the
trends for rising fuel costs, and lower EV purchase costs are likely to change the picture [6]. Figure 1
shows the noticeable increase experienced during the last years in the number of EV-related articles
published in Scopus-indexed journals, which proves the growing interest that the use of EVs is arising
among researchers and practitioners.

Accordingly, this paper identifies and reviews, from an OR/CS perspective, several open research
challenges related to the introduction of EVs in L&T activities, including the following dimensions:
(a) environmental-related issues; (b) strategic and planning challenges associated with “standard”
EVs and with hydrogen-based EVs; and (c) emerging operational issues related to the use of EVs in
VRPs. Table 1 summarizes the different research challenges that have been identified in our study
and that will be conveniently described and reviewed in different sections of this manuscript. For a
better understanding, these research issues have been classified in three dimensions: environmental,
strategic and planning, and operational. The paper also analyzes in detail how the introduction of EVs
in L&T systems generates new VRP variants, i.e., in the context of the Green VRP, this work points out
some of the most promising research lines yet to be fully explored. Finally, the paper also includes
a discussion on which optimization approaches can better contribute to deal with these open and
difficult research challenges.
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Figure 1. Evolution of electric vehicle (EV) related publications in Scopus-indexed journals.

Table 1. Open Operations Research/Computer Science (OR/CS) research challenges associated with

the use of EVs.
Dimension Research challenges
(1) Including the cost of externalities (noise, air pollution, infrastructure wear, etc.)
. in L&T activities.
Environmental

(2) Analyzing how the increasing use of EVs reduces the environmental impact of
L&T activities. Exploring new environmentally-sustainable yet efficient ways of
doing freight deliveries in urban areas. In particular, considering energy cost and
carbon footprint in Vehicle Routing Problems. Studying the environmental cost of
manufacturing EVs as well as producing the energy needed to power them.

(3) Measuring the effect of using small EVs (e.g., electric bikes, drones, efc.) to
perform urban last mile distribution.

(1) Analyzing different EV related technologies and infrastructures (e.g., standard
EV vs. hydrogen vehicles).

(2) Computing the necessary recharging stations, both for standard EVs as well as
for hydrogen vehicles, and analyzing their integration in the transport network,
i.e.,, number and type of stations, location, capacity, efc.

(3) Determining the optimal combination of EVs and internal combustion engine
vehicles (fleet size and mix problem). In particular, developing new optimization
approaches for the Fleet Size and Mix Vehicle Routing Problem.

(4) Exploring potential uses of renewably-generated electricity to power
hydrogen vehicles.

(5) Quantifying the benefits of horizontal cooperation among stakeholders of EV
fleets (e.g., fleet manager, auto manufacturer, electricity supplier, efc.).

Strategic and Planning

(1) Analyzing the impact of EVs recharging times in Vehicle Routing Problems
with time-related constraints.

(2) Comparing battery swapping vs. battery recharging strategies, and proposing
the right combination of both. In particular comparing these strategies in Vehicle
Routing Problems with EVs.

(3) Considering the new issues derived from the driving-range limitations of EVs.
In particular, developing new optimization approaches for the Vehicle Routing
Problem with multiple driving-range constraints.

Operational

The remainder of this paper is structured as follows: Section 2 reviews and analyzes some of
the environmental issues related to the use of EVs. Section 3 builds on Section 2 and identifies the
main strategic and planning challenges related to the introduction of EVs in “green” L&T activities.
Section 4 extends Sections 2 and 3 by focusing on how the introduction of hybrid fleets with both
ICEVs and EVs imposes new operational challenges and exploring opportunities on the popular VRP.
Section 5 points out some new solving approaches that allow facing these challenges in an efficient
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way. Section 6 provides an overview of other related emerging issues, such as lifecycle cost analysis
and the use of EVs in rural areas and to confront natural disasters. Finally, Section 7 summarizes the
main contributions of this paper.

2. Environmental Issues Related to the Use of Electric Vehicles (EVs)

2.1. Environmental Aspects of Transportation

Transportation activities involve the side effects (externalities) of noise pollution, air pollution,
and traffic congestion, which current city planning strategies hardly take into account. Given that
the transport sector accounted for more than a 25% of world energy consumption, and producing
energy increases air contamination, these externalities must be considered to ensure the sustainable
growth of transportation worldwide [7]. A complete description of the problem of externalities
in transportation would involve the introduction of the following sources of external costs: noise,
air pollution, infrastructure wear, visual intrusion, flow congestion, traffic accidents, and so on.
Nonetheless, the main environmental studies are performed on the noise and air pollution caused
by transportation, due to the fact that they are very well-known externalities. Some reports and
studies have tried to assess the economic impact and pricing of these externalities in Europe, but their
results have not been conclusive so far. In effect, there is a great divergence in the cost estimation of
externalities [8]. According to Korzhenevych et al. [9], external costs of transportation activities account
for about 8.5% of the GDP in regions such as the European Union. These activities represent one of the
largest sources of CO; emissions, and there is a strong interest in mitigating their effects.

Nowadays, there is a general agreement on the need to consider these negative externalities
when formulating transportation policies and logistic strategies. For instance, the European Union
has developed an infrastructure-use taxation system based on the “user and polluter pays” tenet.
In extraordinary cases involving infrastructures in mountainous areas, the directives suggested the
rise of toll charges. Some of these directives highlight that particular attention should be devoted
to mountainous regions, such as the Alps or the Pyrenees, with the consequent apportionment of
European Union taxpayers’ money to its related projects. The suitable pricing of all the aforementioned
externalities is essential for the success of any consideration of adequate payments in transportation
policies. As stated before, two main types of traffic-related environmental pollution are considered: air
pollution and noise pollution. The previous discussion about the importance of controlling different
types of contaminating emissions explains the need for searching new technologies that allow reducing
the environmental impact of freight transportation activities. In this sense, the increasing use of EVs
in hybrid fleets constitutes a fundamental step in this direction [10]. Some basic figures will help
to understand the potential contribution of EVs in promoting sustainability of freight-distribution
operations: according to Figliozzi [11], while a diesel van delivering goods in a “standard” city
releases about 1.0375 kgCO, /mile, using an EV instead would produce just about 0.01915 kgCO, /mile
(notice that this number corresponds to the estimated emissions produced by the source of electrical
power necessary to run the EV). In other words, a diesel van (ICEV) covering a mile produces about
54 times the CO, emissions released by an EV to do the same distribution activity. Of course, this
huge advantage has to be considered along with the associated disadvantages, e.g., limited autonomy
of the EVs, reduction of the load to carry per mile, etc. Further, there are different alternatives to the
use of “pure” or “standard” EVs, among them hydraulic hybrid EVs [12] as well as hydrogen-based
EVs [13], which would further reduce CO, emissions. From this simple example, it seems clear that
the contribution of EVs to environmental sustainability can be significant.

2.2. Environmental Impact of Delivering Goods in Urban Areas

During the last decades, a large percentage of the world’s population has moved into cities [14].
Therefore, all L&T issues related to procurement and supply management of cities are critical. City
managers try to identify new strategies to increase the quality of life of their citizens while maintaining
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their economic competitiveness. For that reason, cities around the world are worried about designing
sustainable yet efficient ways of doing freight deliveries in urban areas [15]. In Europe and USA, around
80% of the population lives in urban areas already. Since urban areas usually contain large populations,
extensive commercial establishments, and an increasing demand of services and commodities, there is
a need to increase the frequency of urban deliveries, which requires an intensive use of the existing
infrastructure. According to the US Federal Highway Administration, the total vehicle miles of
travel increased 21% in the urban areas between 1996 and 2006. In fact, according to Feng and
Figliozzi [16], the proportion of freight vehicles crossing urban zones also increased from 4.8% to
5.2%. As discussed before, freight distribution in densly populated cities are related to negative
transportation externalities, such as congestion, pollution (both gas emissions and noise), energy
inefficiencies, decreasing road safety, infrastructures degradation, lack of roadway capacity and
parking space, worse breathing conditions, etc. As pointed out by Russo and Comi [17], urban freight
vehicles account for about 6%—-18% of the total urban travel, for about 19% of the energy use, and for
about 21% of the CO, pollution.

Some of the typical pollutants in urban districts are the following [18]: (i) mono-nitrogen oxides,
which are produced by the combustion of fossil fuels and contribute to generate smog and acid rain;
(if) sulfur oxides; (iii) carbon monoxide; (iv) particulate matter; and (v) volatile organic compounds.
All the previous gases have negative effects on people’s health, as discussed in Bernard et al. [19].
As a consequence, there is a strong impulse at international, national, and local levels to mitigate
them by switching to zero emissions technologies, the shift to EVs being one of the most promising
policies. Also, this shift can be a good solution to relieve other problems related to urban distribution.
Thus, for instance, Niiesch et al. [20] propose a method to minimize the fuel consumption using
hybrid EVs while tracking a given reference trajectory for both emissions and the battery state of
charge. Similarly, Collin et al. [21] design a generic methodology to incorporate environmental and
battery-related constraints into on-line energy management strategies for different types of hybrid
EVs, while Chen et al. [22] introduce an energy management approach to minimize total energy
cost associated with the use of hybrid EVs. Finally, in the context of urban transportation networks,
Hwang et al. [23] propose a stochastic model to minimize the expected total cost of freight truck
activities, where these costs include total delivery time, different types of emissions, and a penalty for
late or early arrival.

Urban transport usually involves vehicles operating with low loading levels, thus resulting in
a non-efficient use of oil-based energy. Moreover, urban delivery vans have a low average driving
speed, and electric engines are more efficient at low speeds. Likewise, the routes covered in urban
distribution are quite similar from one day to another, which can facilitate the design of stable policies
for battery recharging or battery swapping. It is clear then that a shift from a fossil fuel fleet to an
electric-powered fleet is necessary in order to reduce pollutant emissions in cities. A conversion to EVs
would imply the conjoint development of transportation and power generation sectors, and would
shift GHG emissions from conventional vehicle tailpipes to big electric power plants.

On the one hand, EVs using electricity from the public grid will play a critical role in reducing
GHG emissions and in mitigating negative transport externalities. Nevertheless, these reductions
in emissions will be only possible within a scenario of low-carbon electricity production, i.e., the
replacement of ICEVs by EVs is only reasonable if the electricity generation has a low level of carbon
production. Otherwise, one pollutant technology would be swapped by another pollutant technology
(maybe less pollutant, but not really sustainable either). Additionally, EVs are ideal to make the
distribution of light products with a low emission pollutants impact in city centers. That fact is due to:
(i) the lack of gas releases in EVs; and (ii) the usually small size of EVs, which allows them to easily
access high congested streets with limited parking space. Many cities allow EVs to use parking spaces
for free. Thus, EVs are constrained to a lesser degree by the existence of congestion or lack of parking
areas than ICEVs. This implies that the walking distances covered by the drivers of EVs are usually
shorter than the ones performed by ICEVs drivers [24]. In fact, it is common to see conventional

89



Energies 2016, 9, 86

vehicles double-parked or parked in restricted areas to diminish the walking distance delivery, having
to pay in many cases extra costs due to parking fines. Moreover, other advantages of EVs are related to
the lower noise level produced by their use in comparison with the noise level of ICEVs [25]. Many
papers have been published highlighting the good properties and advantages of EVs [26], but little
work has been done so far to evaluate the environmental impact of the EVs production itself and
the electricity power generation. In fact, to the best of our knowledge, there is no published carbon
footprint comparison between companies which use ICEVs and those using EVs [27].

2.3. Decarbonizing the Last-Mile Delivery Process with the Use of EV's

The study and development of the EV Routing Problem, along with the variation in
competitiveness due to the introduction of EVs in hybrid fleets, is a recent study area with many real
applications. As noticed by Afroditi et al. [28], this study is especially interesting in the “last-mile”
delivery process. The distribution process is usually critical in the last mile of the supply chain, where
most of the difficult operational decisions to make are present. In effect, it is in this last mile where
more details can affect the quality of the delivery service, where more routes are formed, and where the
direct contact with the final customer makes a critical mix between L&T and marketing. This situation
involves an exhaustive use of L&T resources to achieve the expecting quality of the delivery process.
An exhaustive use of resources usually causes more negative externalities (congestion, emissions, and
noise, among others). Therefore, the use of EVs in the last-mile activity can help to significantly reduce
the level of the aforementioned externalities. This improvement has been clearly shown in many
European cities such as Paris, London, or Vienna [29]. Thus, the EVs are revealed as a very useful tool
to “decarbonize” the last mile delivery process, although their range limitation could be an important
disadvantage in some cases.

The typical design of an EV is conceived in the shape of a small vehicle to take advantage of
its capacity and its performance according to the electric power of its battery. Nevertheless, it is
also possible to design EVs with the shape of a bike with a small electric engine hybridized with
human power propulsion. These bike EVs are usually presented in the way of tricycles to provide
them with more capacity. Delivery actions in the last-mile range using electric tricycles are becoming
increasingly common, mainly in very congested cities [30]. These vehicles clearly benefit from the
option of recharging batteries with the use of human power propulsion. Some companies showing this
experience in freight deliveries are, among others: Ecopostale (Brussels, Belgium), B-line (Portland, OR,
USA), La Petite Reine (Paris, France), or Txita (San Sebastian, Spain). Some studies performed by these
companies range the savings in CO, emissions from the 8.5 tons per year (Ecopostale) to the 89.125 tons
per year (La Petite Reine) of oil equivalent. Another interesting experience concerning the evaluation
of results in last mile delivery optimization is depicted by Browne et al. [25], who described a trial of
shipped goods from a suburban depot serving customers in London. In their study, the fleet of ICEVs
performing deliveries in London was replaced by EVs and tricycles working in a consolidation center
in the British capital. The normal use of those EVs is not interfered with by any fossil fuel consumption
or greenhouse effect due to the fact that the electricity they use was exclusively generated by renewable
sources. By making a direct comparison between the emissions with conventional ICEVs and with
EVs, it is possible to conclude that CO, emissions fell by 20% if using standard EVs and by 54% if
using tricycles. Moreover, GNewt Cargo, the operator of the micro-consolidation center, certified that
it is possible to cut the CO, emissions by 62%. Similarly, Conway et al. [29] describe two case studies
in New York (USA) where the use of electric cargo cycles involves a savings of 11-13 tons/year of CO,
emissions and 2-2.5 lbs/year of particulate matter for the first case, and 8.3 tons/year and 1.6 lbs/year,
respectively, for the second case.

As discussed in Bektas and Laporte [5], the inclusion of pollutant emissions in vehicle routing
problems has allowed the design of new routing models and the development of new optimization
algorithms. Likewise, it has generated an updated classification of pollution pricing models inside the
VRP framework [31,32].
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3. Strategic and Planning Issues Related to the Use of EVs

Due to the different aspects that distinguish EVs from traditional ICEVs, the L&T problems that
have been addressed so far for conventional vehicles need to be rethought and reformulated to take
into account the new features of EVs. Unlike conventional vehicles, EVs must refuel frequently due to
the short length of their batteries in terms of travel distance, i.e., their limited driving range [10]. Thus,
users must consider how many miles can be covered before a recharge is needed. There is no doubt
that this restricts their use as transport tools. Therefore, the provision of the necessary recharging
stations and their integration in the transport network are important issues to address. The main
issues to determine are: (i) the number and kind of refueling stations to establish; (ii) the location
of these stations; and (iii) their optimal capacity. Moreover, companies need to assess the impact of
the introduction of EVs in their fleet, so that they can choose the best size and mix of vehicles to use.
Hence, the fleet size and mix is another important issue to analyze. The following subsections are
devoted to review and describe the influence of some of these aspects in the L&T arena.

3.1. Different Kinds of Recharging Stations

As EVs are entering the market, there is a rising demand for public refueling stations. Nowadays,
when the EV’s batteries are depleted there are two possibilities: recharge them or exchange them.
Charging stations can be divided into two categories: fast charging and slow charging. A fast refueling
station can quickly recharge an EV in less than five minutes [33], but this kind of charging can
significantly shorten the life of the batteries. Conversely, a slow refueling station needs a longer time
to recharge an EV. At slow recharging stations of Level 1 or 2 (110-240 V), vehicles need to wait from
2 up to 8 h to fully charge their batteries. At recharge stations of Level 3 (480 V), charging a battery
fully takes about 20-40 min. Therefore, recharge time has been a critical factor influencing public
acceptance of EVs. A major solution could be to remove the existing battery that is nearly depleted
and replace the battery with a fully charged one, as proposed by Li [34]. Such a method is called
battery swapping. The main benefit associated with the swapping model is the speed. The whole
operation could take less than 10 min, which is on par with conventional vehicles and much faster
than even some fast recharging stations. Other noted features of battery swap stations include the
following: (i) charging depleted batteries can be left for the night when the charging cost is low; (ii) the
provision of grid-support service in a centralized charging and discharging manner; (iii) the ability for
drivers to resume their journeys in minutes with a full-capacity battery; (iv) the charging of batteries in
slow-charging mode to extend their lifetime; and (v) the savings in cost of EVs by providing batteries
by operators. As pointed out by Yang et al. (2015) [35], a battery swapping model could be considered
more appropriate than a battery recharging model since the former not only improves the productivity
of vehicles but also lowers the charging cost. Due to the battery driving range limitation and the
nature of battery swapping, distribution network optimization with a battery swapping infrastructure
could be an important part of establishing any green L&T policy. However, companies can take this
possibility, since the best battery swapping infrastructure ownership model is the company-owned
business model, which indicates that the L&T companies establish and operate the battery swap
stations for the EVs by themselves. This way, determining the ideal battery swap stations location
strategy and vehicle routing plan for a distribution network is mainly a question of service level and
operational cost for the logistics enterprises.

All in all, the major challenges encountered regarding the kind of EVs recharging stations are
summarized next. On the one hand, EV consumers expect a short charging time just like refueling
their current vehicles. This requirement makes fast charging stations more preferred, but this kind
of charging can shorten the life of the batteries. Moreover, as clearly explained in [36], implementing
centralized charging/discharging control under plug-in mode is very difficult, since EV users present a
stochastic charging profile. In order to avoid uncontrolled charging, which may produce a significantly
increase of the peak load and endanger power system security , some incentive strategies could be
proposed. On the other hand, considering the aforementioned challenges, an alternative strategy based
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on a battery swap station has received increasing attention during recent years [37-39]. However,
battery swap stations have the problem of the lack of unified battery standards for various EVs. As
will be discussed in the next subsection, the majority of papers in the literature tackle transportation
problems using EVs with charging stations. Nevertheless, there is an emerging number of works
considering battery swap stations.

3.2. Recharging Station Location

As mentioned before, one of the main issues to be addressed regarding the EVs success is to
determine the location of recharging stations. Therefore, it is important to develop methods that
allow minimizing the costs of developing an alternative infrastructure. This “station location problem”
can be considered a specific case of Facility Location Problem (FLP). The key questions commonly
faced by facility planners include: (i) the number of facilities; (ii) the locations of these facilities;
and (iii) the types of facilities (in terms of size, product variety and other design aspects). Most location
models focus on either minimizing the average cost of travel (the median problem) or minimizing the
maximum cost of travel (the center problem). In the particular case of optimally locating recharging
stations, several location models have been proposed. These models can be divided in two main
groups, node-based and flow-based, depending on their assumptions of refueling demand type [40].
The p-median model is a well-known node-based model that has been used in many articles to locate
conventional gasoline or alternative-fuel vehicles refueling stations [41]. However, since the demand
for vehicles is generally in the form of traffic flow that passes by the refueling facilities [42], the majority
of papers in the literature are based on flow-based models. Specifically, the locations of recharging
stations for EVs, which presents some peculiarities due to their limited driving range, is usually tacked
using flow-based models. Thus, Hodgson [42] provided a basic theoretical framework for dealing
with the problem of locating stations. However, this approach depends on the assumption that, if one
station is sited on a node of a path, then all the related traffic flows will be captured. Unfortunately,
this assumption cannot be applied to alternative fuel vehicles since these have a limited range and
need a multi-stop system to extend their driving distance and carry out long-distance journeys.

In order to achieve the multi-stops needed for long-distance travel, Kuby and Lim [43] proposed
a flow refueling location model (FRLM). The objective of the FRLM is to maximize the capture of the
traffic flows on each path if a combination of stations sited on the paths can be successfully used to
refuel vehicles, so that they can complete their trips. This model needs to be solved in two stages. The
first stage is to find feasible combinations of candidate locations of stations to refuel the flows on each
path, and the second stage is when these combinations are used as inputs to the model to determine
the station locations. Due to the time-consuming process of generating combinations in first stage, Lim
and Kuby [44] provided some heuristic algorithms to solve larger scale problems. Capar and Kuby [45]
developed a new approach to solve the flow refueling location problem in one stage. Three locating
logics were used to check whether a path could be refueled by the sited refueling stations. The first
is if there is no station built at the origin then there should be at least one station built within half
the vehicle range to the origin node, so that it can be reachable by half a tank of fuel or half a battery
charge. The second is if there is a station built at a location, then the next built facility should be within
the vehicle range, otherwise the vehicle cannot reach the next station. The third is if the vehicle range
is greater than or equal to two times the path length, then a single station at any point can refuel the
entire path. However, these logics are available only when the vehicle has regained its full fuel or
charge level (for maximum range) after each period of refueling at the stations, e.g., via fuel-tank or
battery exchange, which makes the newer approach difficult to apply with regard to multiple types
of stations with different refueling or recharging efficiencies. In addition, this approach cannot solve
the capacitated location problem, whereby each station has a limited number of demands to handle.
Basically, such models do not consider the factors of refueling or recharging efficiency and time, and
are limited to the location of a single kind of station for performing the battery exchange (or very fast
refueling) to refill the vehicles.
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For deploying battery swapping network infrastructure and battery management, Mak et al. [46]
developed two distributionally robust optimization models for the battery swap station location
problem under ambiguous information on demand distribution. A different flow-based model for
economically siting fast-refueling stations, such as battery swapping or hydrogen refilling stations, was
proposed by Wang and Lin [47]. The model was formulated based on vehicle refueling logic which can
ensure the alternative fuel vehicle has sufficient fuel to move between the nodes, and a feasible path can
then be achieved. The model can also be solved in one stage, i.e., it does not need to pre-determine the
feasible combination of stations, like the original FRLM does. Moreover, this approach does not need
the fuel or charge level after each refueling or recharging to be full, and thus has more flexibility with
regard to different situations. Wang and Wang [33] extended the aforementioned model and proposed
a bi-objective model to simultaneously consider intercity (path flow demands) and intra-city travel (the
nodal demands). The flow-based model was also extended to consider battery recharging efficiency and
time to locate sufficient slow-recharging stations for electric scooters traveling in a destination area [48].
However, these previous models still adopt an approach for locating a single kind of refueling stations.
In Wang and Lin [47], the authors extended the previous slow-recharging station location model by
considering facility budget constraints, multiple kinds of recharging stations, and vehicle routing
behavior. These authors also proposed more generalized models to locate multiple kinds of refueling
stations for the (maximal) coverage of battery (or non-battery) powered EV journeys on each path. At
each site along paths, multiple types of charging stations, including slow-recharging, fast-recharging,
and battery exchange stations, would be candidates to locate stations based on consideration of the
station locating cost, recharging efficiency and time, and vehicle routing behavior. Furthermore, the
available refueling time (also the length of stay) at each site can be divided into three categories,
including the sight-seeing or recreational time at attractions, the battery switching time at convenience
stores, and the normal refueling time at common sites (similar to the refueling time at gasoline stations).
This new proposed model was compared to that produced for siting a single type of recharging station.

You and Hsieh [49] developed another model to address the problem which simultaneously
combines the locations and types of recharging stations. In this case, the objective was to find the
optimal origin-destination trips and alternative-fuel vehicle kinds of stations such that the number
of people who can complete round-trip itineraries is maximized. These authors proposed a hybrid
heuristic approach to solve this model.

Regarding hydrogen-based EVs, Melaina [50] performed a preliminary analysis in order to
estimate the number of initial hydrogen stations required by emulating the existing gasoline
infrastructure. Nicholas et al. [51] used geographical information systems (GIS) to map stations
to locations. Nicholas and Ogden [52] based the placement of stations on customer convenience, which
is taken into consideration by the average travel time to the nearest station. Schwoon [53] combined
agent-based trip modeling and GIS to construct various snapshots of the initial hydrogen filling station
network along Germany highways, while Stiller ef al. [54] analyzed hydrogen fueling stations in highly
populated regions and corridors in Europe.

3.3. Capacity of Recharging Stations

The size or capacity of recharging stations for EVs affects the transportation planning. Usually,
the capacity of these stations is limited and during a specified time, a station cannot serve more than
its capacity, especially recharging stations. This means that only a small number of vehicles can be
recharged simultaneously. Changing the departure times of vehicles belonging to a logistic company
may require different times for recharging. Moreover, travelers who start their trips in different times
may also reach a station at different times. In the specified time in which vehicles reach a station, if
the station is occupied, the vehicles must wait in queues. The recharge time, capacity of stations, and
waiting are important problems that have been mostly neglected in the EVs station location literature.
Hosseini and MirHassani [55] is one of the few works in the literature that considers some of these
issues. The objective addressed in their work is to establish a strategic plan in order to build recharging
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stations in such a way that minimize total costs. These total costs include stations-construction cost,
waiting time cost, and refueling cost. Olivella-Rosell et al. [56] propose an agent-based simulation
approach that allows forecasting the EV charging demand in a certain urban area, and they successfully
test the efficiency of their model in the city of Barcelona, Spain.

In the specific case of battery swapping stations, when a vehicle arrives, it requests a fully charged
battery pallet to replace the nearly depleted batteries it currently holds. The request could either be
satisfied by a fully charged battery pallet from the station storage, or by a pallet that is just completing
its charging. If the request is indeed satisfied, the vehicle in turn deposits a fully or partially spent
pallet. If there are idle battery pallet chargers at the station, the spent battery pallet is placed on one of
them and its recharging begins, otherwise it is kept in a queue until a battery pallet charger is available.
If, instead, there is no fully charged battery available at the station, then the vehicle could leave and go
to a different station. Alternatively, it could wait for a battery to fully charge, which may take some
time. The vehicle could even take, if necessary, a replacement battery that is only partially charged
and use that partially charged battery to travel to another battery swap station on its route. In this
case, the vehicle will have to stop earlier than planned, and this influences the routes planning, which
estimated some stops at stations and suddenly the vehicle is forced to perform other not covered stops.
Depending on both the number of battery pallet chargers the station holds and number of battery
pallets the station keeps on hand, the size and attendant cost of the station will change. The availability
of charged battery pallets at any given time depends on the size of the station, the inventory of pallets,
and the demand for charged pallets the station is experiencing. The station incurs an indirect cost
from the unavailability of charged pallets when an EV arrives for an exchange because the driver will
not have to pay for a battery swap, and there may be a loss of goodwill from the unserved customer.
Models to evaluate total direct and indirect costs for possible decisions on station sizing and inventory
holding would be very important in designing the battery swapping infrastructure.

In the literature related to battery-swap station size, Zheng et al. [36] proposed a method for
locating and sizing battery swap stations in distribution systems, which are two determinants keys
in the take-up of EVs as explained before. The problem is modeled as maximizing the net present
value of the battery swap station project, where the battery swap station model, load type, network
reinforcement, and reliability are taken into consideration.

In the case of hydrogen-based EVs, since the price of hydrogen exhibits an inverse feedback
interaction with the adoption rate of fuel cell vehicles and corresponding demand for hydrogen, this
behavior has a compounding cyclical effect [57]. Existing models often fall short with respect to
incorporating this effect into capacity decisions. Further, the capacity decision depends on the demand
that is unknown a priori [58]. Game theory may be required to determine the optimal timing of capacity
investment. Thus, for example, Qin et al. [59] uses an option-based approach to demonstrate the
behavior or optimal capacity decisions considering a variety of factors. Struben and Sterman [60]
discusses requirements of sustained adoption of hydrogen EVs, and Gnann and P16tz [61] provide a
review of integrated market and infrastructure models.

3.4. Fleet Size and Mix

EVs are likely to be used in delivery fleets with other kinds of vehicles. A well-studied branch of
the VRP literature is precisely addressing the problem of heterogeneous fleets in delivery fleets [62].
As noticed in Lebeau et al. (2015) [63], merging the VRP research on electric vehicles with the fleet size
and mix vehicle routing problem is therefore relevant to come with recommendations for logistics
decision makers. One of the first attempts to investigate the specific characteristics of EVs as part of the
fleet of a VRP was achieved by Gongalves et al. [64]. They considered a VRP with pickup and delivery
using a mixed fleet that consists of EVs and vehicles using internal-combustion engines. The objective
is to minimize total costs, which consist of vehicle related fixed and variable costs. They consider time
and capacity constraints and assume a time for recharging the EVs, which were calculated from the
total distance travelled and the range using one battery charge. Vehicles can recharge anywhere during
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the routes, involving a time penalty. This way, several scenarios combining kinds of vehicles were
evaluated, and finally the results showed that using EVs is a more costly alternative due to the high
investment required for acquiring or converting these vehicles. According to Lebeau et al. (2015) [63],
one of the problems of this model is that the locations of charging spots were not considered, meaning
that EVs could virtually refuel anywhere on the delivery round once the battery was empty. Erdogan
and Miller-Hooks [65] improved the previous work by developing the green VRP with the possibility
of refueling vehicles at the existing alternative fueling stations along the routes. The contributions
of these two works were integrated by Schneider et al. [66] in their electric VRP with time windows.
Charging locations and charging times are both considered in their model which approaches well the
problem of EVs. A similar approach was also developed by Conrad and Figliozzi [67]. Based on a
capacitated VRP with time windows constraints, they introduced the limited range and charging times
in order to get the recharging vehicle routing problem. Their main difference is regarding charging
locations, since these authors consider that charging is possible at some customer locations while the
formulation in [66] is more flexible as other possible charging locations are possible in the network.

Bae et al. [68] also considered the EV and internal-combustion engines vehicles fleet size and mix
problem as a two-player two-stage game. They focused on determination of the level of hybrid or
alternative energy delivery fleet for a logistics and transportation company. In order to do that, they
constructed a model of self-selection with heterogeneous consumers who value the firm’s delivery
service along two dimensions: the quality of delivery service and the relative reduction in emissions.
These authors concluded that while subsidies may increase the operator’s profit they may also result
in higher prices for the customers. However, these customers will benefit from a reduction in pollution
if more EVs are used. More recently, Van Duin ef al. [69] dealt with the electrical vehicle fleet size and
mix VRP with time windows. The aim is to determine an optimal fleet of EVs and delivery routes
to offer a desired service level at minimal cost to a set of customers with delivery time windows.
However, as noticed by Lebeau et al. (2015) [63], they approached the problem without considering the
previous work on battery electric vehicles in VRP. As a result, the model involves similar weaknesses
as in [64], i.e., they do not consider the locations of charging points. An EV with a battery swapping
system is modeled so that the range of this EV can be doubled. Nonetheless, the swapping system
is not reflected in the constraints. It is in fact reflected in the range parameter of the vehicle which
is simply doubled, meaning that the battery of the EV can be swapped virtually anywhere on the
road. Hiermann et al. [70] developed that idea further to propose an electrical vehicle fleet size and
mix VRP with time windows that also considers the decisions regarding the fleet composition and the
choice of recharging times and locations. This work can be considered as the state of the art of delivery
optimization with EVs. If vehicles cannot recharge or swap their batteries on the road, then another
different problem can be discussed as in Juan ef al. [10], who dealt with the VRP with multiple driving
ranges, an extension of the classical routing problem where the total distance each vehicle can travel is
limited and is not necessarily the same for all vehicles, i.e., the fleet is heterogeneous with respect to
maximum route lengths.

Regarding hydrogen-based EVs, additional papers highlight the use of fleet vehicles to take
advantage of centralized fueling while hydrogen infrastructure is being developed. Thus, for instance,
Mercuri et al. [71], Joffe et al. [72], O’Garra et al. [73], and Brey et al. [74] present examples in Italy,
United Kingdom, and Spain, respectively. More recently, researchers have begun to include more
complete systems into the scope of their models. For example, infrastructure models have been
developed for China [75], Europe [76], Germany [77], Great Britain [78], South Korea [79], and the
United States [80-82]. For a recent literature review aimed at optimizing hydrogen infrastructure see
Agnolucci and McDowall [83].

4. Emerging Vehicle Routing Problem (VRP) Operational Issues Related to the Use of EVs

Novel emerging routing models for EVs have to include the most important practical constraints
of logistics service providers that use EVs for last-mile deliveries. First, vehicle capacity restrictions

95



Energies 2016, 9, 86

have to be considered for a significant share of delivery operations. Second, many companies, e.g.,
in the small package shipping sector, face a high percentage of time-definite deliveries, which makes
the integration of customer time windows into the routing model a necessity. The second aspect is
especially interesting because recharging times for EVs cannot be assumed to be fixed but depend on
the current battery charge of the vehicle when arriving at the recharging station. Moreover, recharging
operations take a significant amount of time, especially compared to the relatively short customer
service times of, e.g., small package shippers, and thus clearly affect the route planning.

Motivated by the current transportation circumstances, Electric Vehicle Management (EVM)
has recently emerged as a new challenging problem, which is strongly related to the field of green
logistics and has the purpose to expedite the establishment of a customer convenient, cost-effective,
EVs infrastructure. Based on the increasing relevance of the problem in the last years, a number of
research groups in this field have started working on some particular aspects of this new area. The
next subsections analyze some typical strategic, tactical, and operational issues arising in EVM based
on the new features of EVs.

4.1. Economic Issues of EV's

This is a strategic objective that tries to determine if the emerging novel EVs technology is
sustainable for certain transportation activities. Many papers have been devoted to sustainable
operations in the transportation area. However, research on the economic viability of EVs is limited in
the production and operations management literature. In addition, the impact of EVs on the associated
supply chain is yet to be examined. Research on EVs has been mostly focused on: (i) planning
infrastructure deployment [46]; (ii) impact of integrating electric vehicles into the power system [84,85];
and (iii) using incentives to promote EVs [86]. Perspectives and insights on EV adoption are only
recently being developed. Thus, in the Avci et al. [87] model, the interactions between the infrastructure
provider and direct consumers in a principal-agent framework. Kleindorfer et al. [88] develop a
framework to determine and value optimal fleet renewal strategies for the French postal service,
La Poste, under two technology options (EVs and ICEVs), uncertain fuel costs, and uncertain battery
prices. Wang and Lin [89] consider a firm’s capacity adjustments over time given a portfolio of
technology options when the demand and the fuel costs are uncertain. Chocteau ef al. [90] use a game
theory framework to study the value of cooperation between stakeholders such as fleet manager, auto
manufacturer, and electricity supplier under multiple coalition settings. They also present conditions
under which such cooperation can add value.

4.2. Fleet size and Mix Issues of EVs

A critical issue arising when EVs are incorporated into the set of vehicles to be managed gives
place to the so-called VRPs with heterogeneous fleet. Contributions related to fleet size and mix
considering EVs are recent and very limited. A Mixed Fleet or Heterogeneous VRP considers problems
where different types of vehicles are available. It was first introduced in Golden ef al. [91]. Subsequently,
Baldacci ef al. [92] identifies five major subclasses differing in the number of vehicles available (limited
and unlimited), whether a fixed cost per vehicle is considered or not and if the routing cost depends
on the vehicle type. The original formulation in [91] considers an unlimited number of vehicles with
fixed acquisition costs and vehicle type independent routing costs, which can be classified as a Fleet
Size and Mix VRP with Fixed costs (FSMF).

As described in [70], Liu and Shen [93] proposes the fleet size and mix VRP with time windows
reformulating the FSMF to take into account time windows. The routing cost corresponds to the
so-called en route time , which is the time between departing from and returning to the depot menus
de cumulative service time at the customers in the respective route. This approach was tested using a
new benchmark set based on the well-known Solomon instances for the VRP with time windows.
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4.3. Charging Networks Issues of EVs

One major barrier to the success of EVs is the limited number of refueling stations. Due to the
restricted range of batteries, the establishment of an infrastructure to facilitate recharging is a pressing
concern. Two critical factors determine the need for infrastructure services such as battery swapping
and recharging: daily driving distance and battery range. Due to the large capital costs involved
in infrastructure investment, economic factors are very important in determining the number and
location of stations. Therefore, studies must work to provide a theoretical basis for station deployment,
such as with a facility location model, to economically and efficiently serve EV trips [33]. Location
problems in general are spatial resource allocation problems dealing with one or more service facilities
serving a spatially distributed set of demands. The objective is to locate facilities to optimize a spatially
dependent objective such as the minimization of average traveling time or distance between demands
and facilities. The most studied practical problem in this context concerns hydrogen station location.
General criteria are proposed for identifying effective locations for early hydrogen stations: (i) close
to areas with high traffic volume; (ii) in places to provide fuel during long distance trips; (iii) at high
profile locations to increase public awareness; and (iv) in places that are accessible to individuals who
are buying their first fuel-cell vehicle. These criteria are also needed to be taken into account in EVM
in order to ensure consumer confidence in the reliability of the refueling network [33].

4.4. Routing Issues of EV's

Routing of EVs is a critical aspect of EVM, it consists of designing routes for maximizing the
autonomy of vehicles. Efficient EV routing plays a major role for encouraging EV use. The energy
shortest path problem and the energy routing problem and some relationships between these emerge
as new challenges to face in the EVM. Restricted driving distance between battery charges is a
fundamental impediment to increase consumer adoption of EVs. In the small-package shipping
industry, several big companies, such as DHL, UPS and DPD have already started using EVs for
last-mile deliveries, particularly in urban areas. Moreover, governments in all parts of the world
promote the electrification trend and plan to provide the required infrastructure. As mentioned
earlier, a successful transition from conventional vehicles to EVs requires the development of novel
efficient route-planning techniques that take into account the specific features of EVs. Currently,
the maximum driving range of most EVs is estimated to be about 100-150 miles [16], but it can be
decreased significantly by cold temperatures and so-called range anxiety [94,95]. Thus, the available
range is potentially not sufficient to perform the typical delivery tour of a logistics service provider in
one run or to reach customers located far from the depot. Because reducing the number of deliveries
performed by one vehicle is clearly not a profitable option, visits to recharging stations along the routes
are required. These recharging visits have to be explicitly considered in the route planning to avoid
inefficient vehicle routes with long detours, especially if the number of available recharging stations is
scarce. In a recent work, Hung et al. [96] propose a queuing modeling framework to develop efficient
routing strategies for EVs requesting charging at available stations. These authors show that the
proposed routing strategies contribute to improving the throughput of the queuing system and also to
reducing stopover times. In addition, Liu et al. [97] analyze a heterogeneous fleet version of the VRP in
which the goal is to find a routing solution minimizing the carbon footprint. Similarly, Fang et al. [98]
try to minimize the carbon footprint generated by bird watching tourist activities throughout optimal
routing design supported by geographic information systems.

Table 2 summarizes some of the main decision variables, constraints, and objective functions
related to the new VRP variants that emerge when considering heterogeneous fleets of ICEVs and EVs.
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Table 2. Details of some new VRP variants related to EVs.

Variant Decision Variables Constraints Objectives
Srz dEn:Creo?r:ee;\ttfvleszzndards (1) Minimize the acquisition
(1) Determine the number and type of ac u}i)sition of EVs and operating costs of new EVs.
Fleet size EVs to be purchased. (2)quxe dand varia'ble (2) Maximize the satisfaction of
and mix (2) Determine the ideal composition of the charging imes customer needs.
heterogeneous fleet. ®) L(ci’ymi%e d bu(:-lge £ 1o renew (3) Minimize the environmental
the fleet of vehicles. impact.
(1) Determine number and geographical
position of recharging stations. ST .
(2) Determine capacity of (1) Limited budget to install (aln) dN([)meH:;iZ; ttcligsvsfs tcT}I\\:;ltin
Charging recharging stations. new recharging stations. netwtiks 8 g
networks (3) Determine technology of recharging (2) Needs of EVs to recharge or ) Maxirr;ize the level of
stations (low or fast recharge). exchange batteries. service fo customers
(4) Decide between swapping or ’
recharging of batteries.
(1) Determine the number of visits to (1) Minimize routing cost
recharging stations. (1) Geographical position of considering recharging
(2) Determine the timing of visits to recharging stations. operations.
Routing recharging stations. (2) Capacity of recharging (2) Minimize routing times

(3) Allocate available recharging resources
to vehicles in recharging stations.
(4) Select the option of recharging or

stations.
(3) Fixed or variable
recharging /swapping times.

considering recharging
operations.
(3) Minimize recharging and

swapping batteries. swapping costs.

5. Solving Approaches for VRPs with EVs

As discussed in the previous sections, the introduction of EVs in freight fleets imposes a number
of strategic and operational challenges that must be efficiently addressed with the use of novel
methods and approaches. This is particularly true for VRP models, which can be classified into
three levels according to their degree of realism (Figure 2). The classical-basic VRP models are
mainly theoretical models that allow the development of mathematical approaches, either if they use
exact or approximate solving methods. These models are used to test solving methods in controlled
environments, which allows assessing their performance before being used in practical applications.
The classical-advanced VRP models are characterized by a higher level of realism, i.e., large-scale
problems, multi-objective functions, integrated routing and logistics. Examples of the latter are: VRPs
combined with packing [99], allocation, inventory management [100], efc. More advanced and complex
VRP variants are included in this category. Usually, these problems have been solved by metaheuristic
approaches, such as Genetic Algorithms, Iterated Local Search, Ant Colony Optimization, Simulated
Annealing, etc. Most of the existing work in the VRP literature so far deals with these two classical types
of models. Recently, however, and due to both the maturity of existing exact and metaheuristic methods
as well as to new business needs, new Rich VRP models are being considered. The solving methods
for these models combine different exact and metaheuristic approaches (matheuristics) [101] or even
simulation with metaheuristics (simheuristics) [102]. Simheuristics allow considering uncertainty
both in the objective function and the constraints of a VRP model, thus making these models a more
accurate representation of real-life routing distribution systems. These hybrid methods not only can
deal with uncertainty and real-time decision making [103], but they can also consider aspects such
as richer objective functions (including environmental costs), dynamism [104], diversity of vehicle
driving ranges, multi-periodicity in the distribution activity, integration with other supply chain
components, etc.
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Figure 2. Classification of Vehicle Routing Problem (VRP) models according to their degree of realism.

6. Other Related and Emergent Issues

As some experts point out, life cycle cost analysis is a necessary step in order to properly assess
the long-term benefits associated with substituting ICEVs by EVs. Thus, Aguirre ef al. [105] perform a
study to compare the lifecycle environmental costs (energy inputs and CO, emissions) of an ICEV, a
hybrid vehicle, and an EV. According to their results, the hybrid vehicle is the most effective in terms
of CO, emissions and also the one offering the lowest net present cost. However, the EV was the most
efficient in terms of total environmental impact during its lifetime. Gao and Winfield [106] investigate
the lifetime GHG emissions and energy use for different types of fuel-efficient vehicles, showing that
all of them improve, in both dimensions, the values associated with ICEVs. They also conclude that all
these advanced vehicles require more energy for production than ICEVs, mainly due to the additional
power electronics and battery packs. Nevertheless, the energy savings in the fuel cycle for these
advanced vehicles compensates the marginal energy required during the vehicle cycle (production
stage). Li et al. [107] compare the vehicle cycle energy and gas emission impacts of both ICEVs and EVs
in China. According to their analysis, when considering the entire life cycle EVs are the best choice in
terms of energy consumption and gas emissions. However, these authors also remark the importance
of solving some operational and technological challenges, e.g., charging facilities location and capacity,
before massively adopting EVs as the standard solution. Finally, Noori et al. [108] analyze the life cycle
cost and life cycle environmental emissions of ICEVs, hybrid electric vehicles, and three different types
of EVs. According to their results, ICEVs are the most cost effective vehicle type in terms of life cycle
cost. However, they also conclude that shifting towards EVs reduces the environmental damage costs
when considering the vehicle lifetime. At the same time, they also notice that the use of EVs has a high
impact on the water footprint due to upstream electricity generation and to the water consumption
necessary for battery production.

Regarding the use of EVs in rural areas, Aultman-Hall ef al. [109] discuss suitability and charging
requirements in these environments. They conclude that, although hybrid vehicles will still have
substantial utility in these areas, EVs are quickly becoming an attractive alternative for rural mobility
demand, especially in those areas with an acceptable power supply and vehicle charging infrastructure.
Newman et al. [110] support the idea that EVs can be extraordinarily useful in sub-urban and rural
areas, especially as a complement to deficient public transport infrastructures. Nevertheless, they also
notice that, quite often, habitants of rural areas have difficulties buying EVs due to their relatively
low purchasing power. Wappelhorst et al. [111] recognize two of the main obstacles impeding the
expansion of EVs: their cost and their driving range limitations. In order to partially overcome these
problems, they propose the use of intermodal concepts and car-sharing practices. After some empirical
studies, the authors conclude that car-sharing of EVs could have the same positive adoption level in
rural areas as in the urban ones.

Interruption of power supply causes serious problems in civic life, especially during the
evacuation of stricken areas. It impacts medical institutions, interrupts the supply chain, and causes
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serious damage to the economy. Therefore, in disaster cases it is essential to minimize the period of
power failure. Focused in the vehicle industry, Kinomura ef al. [112] describe the development of
Toyota’s electricity supply system, through which vehicles supply power directly to electrical devices,
and may supply power at either a home site or at an evacuation center in the event of a natural disaster.
Yamamura and Miwa [113] consider the design of an effective control method for store-carry-forward
energy distribution after a disaster in which EVs and plug-in hybrid vehicles are mobile units having
power generation and power storage capabilities. Finally, Yamagata et al. [114] propose and extend the
concept of a community-based disaster resilient electricity sharing system. In this system, electricity
generated from widely introduced photovoltaic panels is stored in the not-in-use cars.

7. Conclusions

This paper has reviewed some of the existing literature related to the introduction of electric
vehicles in road transportation, paying special attention to environmental issues; the emerging strategic
and operational challenges; the use of hydrogen electric vehicles as an alternative to other types
of electric vehicles; and the new variants of the popular vehicle routing problem that arise as a
consequence of introducing electric vehicles in the distribution fleets. From this analysis, it becomes
evident that the use of sustainable energy sources in road logistics and transportation is more necessary
than ever, and constitutes a critical factor for the evolution of an economically and environmentally
stable world. The incorporation of electric vehicles in the road distribution activities, especially in
urban areas, shows a promising trend yet to be explored in its full potential. However, the expanded
use of electric vehicles raises a number of concerns and challenges that complicate planning efforts.
From an operational research point of view, the following strategic and operational challenges can
be highlighted: (a) the development of infrastructure networks for battery recharging/swapping,
including the number, location, type, and capacity of the associated stations; (b) the size and mix
composition of hybrid fleets with both traditional vehicles, hybrid electric vehicles, and pure electric
vehicles; (c) the severe feasibility constraints imposed using heterogeneous fleets of vehicles with
different driving ranges; (d) the additional time-window constraints related to short driving ranges;
and (e) the economic impact of the introduction of electric vehicles over the entire supply chain. The
development of new optimization and hybrid optimization-simulation methods to efficiently cope
with these challenges, including dynamic scenarios and scenarios with uncertainty, is a necessary
step to promote the desirable shift towards more sustainable energy sources in the logistics and
transportation arena.
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Abstract: The negative impact of the automotive industry on climate change can be tackled by
changing from fossil driven vehicles towards battery electric vehicles with no tailpipe emissions.
However their adoption mainly depends on the willingness to pay for the extra cost of the traction
battery. The goal of this paper is to predict the cost of a battery pack in 2030 when considering
two aspects: firstly a decade of research will ensure an improvement in material sciences altering
a battery’s chemical composition. Secondly by considering the price erosion due to the production
cost optimization, by maturing of the market and by evolving towards to a mass-manufacturing
situation. The cost of a lithium Nickel Manganese Cobalt Oxide (NMC) battery (Cathode: NMC
6:2:2 ; Anode: graphite) as well as silicon based lithium-ion battery (Cathode: NMC 6:2:2 ; Anode:
silicon alloy), expected to be on the market in 10 years, will be predicted to tackle the first aspect.
The second aspect will be considered by combining process-based cost calculations with learning
curves, which takes the increasing battery market into account. The 100 dollar/kWh sales barrier will
be reached respectively between 2020-2025 for silicon based lithium-ion batteries and 2025-2030 for
NMC batteries, which will give a boost to global electric vehicle adoption.

Keywords: process-based cost modeling; NMC battery; silicon lithium-ion battery; market prediction;
learning curves

1. Introduction

Throughout the last decades, the emission of greenhouse gases have increased dramatically;
however, their negative impact on the climate has been demonstrated [1,2]. To limit these adversary
effects of climate change, several actions are undertaken on a worldwide scale, for example it has been
agreed at COP21 in Paris to keep the temperature rise limited to maximum 2 °C [3]. Additionally, steps
are undertaken by the European Commission to have a cleaner environment by setting new ambitious
environmental targets. For example the EU target is to have a CO; reduction by 20% compared to the
levels of 2008 as stated in their white paper [4]. Improving urban air quality and reducing its impact
on climate change of transport comes down to (1) reducing the total consumption of kilometers by
improving efficiency of the service and (2) providing the remainder of needed transport without fossil
fuels. A technological option to substitute fossil based km is to use battery electric vehicles, powered
by renewable fuels. To ensure a minimum of driving range a large, expensive battery is required for
battery electric vehicles, explaining their high cost which is limiting its mass-adoption. The cost and
performance of the battery, the most expensive component in a vehicle, is directly linked with the
adaption of electric vehicles. The adoption towards battery electric vehicles mainly depends on the
willingness to pay for the extra cost of the traction battery. Therefore will this paper study the price
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evolution of an automotive battery up to 2030 and answer the following questions. What is thus a
reasonable price of a 1 kWh lithium battery in 2030? Can we expect an erosion of the price due to a
production cost optimization in a mass-manufacturing situation?

In an initial phase, the current market of electric and hybrid vehicles is analyzed. Additionally,
its sales up to 2030 are predicted based on historical data. Cost of a battery is inversely linked with
the growth of the market of electric vehicles, since larger production quantities leads to lowers cost
per unit. In this study this effect will not be taken into account, resulting in an underestimation
or a very conservative estimation of the amount of EVs. In a second phase the cost and sales
price of a battery are calculated and predicted up to 2030 based upon an innovative methodology.
This innovative methodology will combine process-based cost modeling with learning curves to cope
with the evolution from an immature to a mature battery market. Another innovative aspect is that
current state of the art battery chemistries will be used alongside with battery chemistries which are
believed to become the state of the art in 2030. A roadmap of future battery technologies will be
presented, out of which a promising battery chemistry will be chosen.

2. Market and Technology Landscape of Electric Vehicles

This section will analyze the current global automotive market as well as the technological split
between internal combustion driven vehicles, hybrid and electric vehicles. The current technological
split is expected to change due to firstly the increased awareness regarding climate change and secondly
the decreasing cost of electric vehicles. Based on historical sales figures a prediction of global sales of
vehicles up to 2030 will be made, including the evolution of the technological split.

2.1. State of the Art—BEV

An overview of the most sold BEVs in the small and medium-large segment of 2016 are shown
in Table 1, adapted from [5]. This is a non-exhaustive list, for example vehicles which do not reach
100 km/h are omitted as well as vehicles sold in low quantities. It can be seen that in the segment of
small cars, which are mainly city cars, rather small batteries are used with an average energy content
of 18.2 kWh and a range of 150 km. The average values are quite coherent since the median gives
comparable results. In this segment rather small batteries are used due to two reasons. Firstly a battery
represents 75% of an EVs powertrain cost [6], which means that implementing a bigger battery would
significantly increase the overall cost. Secondly, because space is often limited in a city car to place a
bigger battery. In the segment of medium to large cars it is clear from Table 1 that bigger batteries are
used, namely on average a battery energy content of 36.2 kWh and of course a larger average range
of 231 km. However, due to the large battery of the Tesla’s the average can be misleading and the
median gives a better representation of the current market, meaning an energy content of 24.2 kWh
and a range of 190 km. This is consistent with the higher cost and size of these vehicles.
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Table 1. Overview of electric vehicles commercially available in 2016, adapted from [5].

Vehicle Segment Brand Model Model Year Battery Energy Content  Range

(kWh) (km)
Smart Fortwo 2014 17,6 160
Toyota iQEV 2012 12 85
Fiat 500e 2015 24 135
Citroen C-Zero 2014 14,5 150
Peugeot iOn 2014 14,5 150
Small Mitsubitshi i-MiEV 2014 16 160
VW e-up! 2013 18,7 160
Chevrolet Spark Ev 2015 18,4 130
Bollore Bluecar 2015 30 250
Mitsubitshi ~ MinicabMiEV 2014 16 150
Average 18.2 153
Median 16.8 150
BMW i3 2014 22 190
Renault Zoe 2015 22 240
Volvo C30 Electric 2015 24 145
A% e-Golf 2016 24,2 190
Nissan Leaf (2016) 2014 30 250
Honda FIT EV 2012 20 130
Renault Fluence Z.E. 2015 22 185
Medium-Large Ford Focus EV 2015 23 162
Kia Soul Electric 2015 27 212
Mercedes B-class E1.Dr. 2015 36 230
BYD eb 2015 61,4 205
Nissan e-NV200 2015 24 170
Toyota RAV 4 EV 2014 41,8 182
Tesla Model S 2015 75 480
Tesla Model X 2015 90 489
Average 36.2 231
Median 24.2 190

2.2. State of the Art—HEV

In Table 2 an overview of the 10 most European sold hybrid electric vehicles (HEV) in 2016 are
given [7]. The list consists solely of high-end vehicles in which the electrical range is quite limited
except the BMW i3. This is due to the current tax reductions for hybrid vehicles in several European
countries, which use the electric power to reduce their average fuel consumption and emissions on
which taxes are generally based. In this table the BMW i3 is also included, which has a high range
and a large battery pack since it is a BEV with a range extender. Therefore it is more representable for
the HEV category to use the median value to get a better insight in the battery energy contents and
driving ranges used in the HEV segment. The average value does not give a good representation due
to the influence of the BMW i3 and its large range and batteries since it is a BEV with a range extender.
Therefore also the median is given. Small battery packs are used which can be seen from their low
median battery energy content of 9 kWh and limited median driving range of 41 km.

The mass-adoption of BEVs and HEVs are somehow limited due to two reasons. Firstly the
high initial cost of HEV and BEV, mainly because of the high purchasing cost of the battery pack [8].
A second problem with electric vehicles is range anxiety, meaning the fear of running out of fuel.
Many research efforts are ongoing to improve both problems of which the first one will be more deeply
discussed in Section 3. In literature [9-15] the range anxiety is identified as mainly a psychological
barrier since most people drive less kilometers a day than the range of current EVs. This problem is
enhanced by the long charging time of an EV as well as the lack of abundantly available charging
stations for electric vehicles. Therefore, increasing the battery energy content to increase its range to
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about 500 km, so having a comparable battery capacity as a Tesla of about 75-90 kWh will significantly
speed up the adoption of EVs. To implement such batteries their energy density has to increase
significantly, since battery with such high energy content are to large to fit in small city cars.

Table 2. Overview of most sold hybrid electric vehicles in 2016 in Europe (10 most popular).

Battery Energy Content Range

Vehicle Segment Brand Model Model Year (KWh) (km)
VW Passat GTE 2015 9,9 50
Mitsubishi Outlander PHEV 2013 12 52
Volvo XC90 PHEV 2015 9,2 40
Mercedes GLC350e 2016 8,7 34
Medium-Large BMW 225xe Active Tourer 2015 7,6 41
Mercedes C350e 2015 6,5 31
BMW 330e 2015 7,6 40
BMW X5 40e 2015 9 31
Audi A3 e-Tron 2014 9 50
BMW i3 range extended 2013 22 320
Average 18.2 153
Median 9 41

2.3. Electric Vehicle Prediction Up to 2030

The following paragraph will make a prediction of the global sales of electric, hybrid, classical
combustion engine vehicles as well as other types of vehicles such as compressed natural gas (CNG),
liquefied petroleum gas (LPG), fuel cells vehicles, which will be combined in the category others.
Based upon a literature review [16-21] a prediction of the technology split is shown in Figure 1. In 2015
the global sales are still dominated (99.3%) by the classical combustion engine(ICE) based vehicles,
even by 2030 more ICE than electric vehicles are sold however its dominance decreases significantly.
Due to the increasing effort of the automotive manufacturers more and more HEV and BEV models
are available on the market, increasing the choice for consumers, which was quite limited up to in
the past. In 2030 25% of all vehicles sold will be either fully electric or hybrid, requiring an enormous
amount of batteries. To get a better idea of the quantities this analysis is expanded by combining
the previous figure with the expected global sales of vehicles predictions worldwide, which can be
seen in Figure 2. Only limited sources are available in literature [22-28] which predict the global
sales up to 2030. Therefore it was opted to make a prediction based upon the sales in the past, more
specifically the global sales between 2010 and 2015 were analyzed [28]. Since only a small period of
time is analyzed a linear approximation is used, predicting in 2020, 2025, 2030 receptively 107, 122 and
138 million vehicles sold yearly. The linear approximation can be clearly seen in the increase of the
total amount of vehicles sold, Figure 2. The peak of ICE vehicles will be reached in 2020 with a sales of
more than 100 millions. By 2030 roughly 10 million BEVs and 20 million HEVs will be sold on a yearly.
When assuming 75-90 kWh is needed for BEV, HEV will require half of the capacity roughly 23 billion
kWh of battery are required yearly which is a very large potential market for battery manufactures.
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PREDICTION TECHNOLOGY SPLIT
0,0%

100,0% 0,4% A% .

’ 0,4% 1,7% 1% 15,5%
90,0% 0,3% 3,1% 1% 7,6%
80,0% 18,8%
70,0%

60,0%
50,0% . .
40.0% 99,3% 94,8% 4,8% 68,1%
,U7%
30,0%
20,0%
0,0%
2015 2020 2025
EICE ®HEV  ®=BEV = Other

Figure 1. Evolution of the technology split between electric vehicles (EV), hybrid electric vehicles
(HEV), internal combustion engines (ICE) and other up to 2030.
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Figure 2. Global vehicles sales predictions up to 2030 including the evolution of the technological split
between EV, HEV, ICE and others.
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3. Battery Discussion

Batteries have become an indispensable product in society; they are being used in a variety of
products ranging from cellphones up to electric vehicles. The most popular battery technologies are
the lithium-ion batteries due to their high energy- and power-density as well as their high lifetime
compared to other types [29].

The electrochemical storage of energy in a lithium-ion battery is achieved through intercalation in
the positive and negative electrode, shown by Equation (1) [30].

Lit+e +60«—Li—6 (1)
With:
0 The insertion material
0 — Li Lithium inserted in material 6
e~ An electron
Lit A lithium-ion

Charge
Electron o—|
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B .
-.
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Figure 3. Schematic illustration of the charge/discharge process in a lithium-ion battery, reproduced
from [31].

The functioning of a lithium-ion battery is summarized below; however, a more extended
explanation can be found in literature, for example [32,33]. The intercalation of lithium-ions in
the electrodes is the main reason for its long lifetime of this type of batteries. However, lithium
undergoes numerous side-reactions, reducing the concentration of lithium available for intercalation,
causing the battery to decrease in capacity over lifetime. A schematic illustration of a lithium-ion
battery’s functioning is shown in Figure 3. A battery consists of four main components: a negative
electrode or often called an anode, a positive electrode or often called a cathode, an electrolyte and
a separator. The variety and properties of several anodes and cathodes will be discussed in the next
sections except the separator and electrolyte since in most case commercially available ones are used.
The main property of the electrolyte is to transport ions from the anode to the cathode or vice-versa,
while ensuring as little as possible side reactions with the Li-ions. Mostly it consists of water with some
dissolved salts, lithium hexafluorophosphate most used, to ensure good ion conductivity. The purpose
of the separator is to stop the transport of electrons while intervening in the rest of the processes as
little as possible.
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3.1. State of the Art—Anode

Twenty years ago graphite (372 mAh/g [34]) was first commercialized [35] as anode material in a
lithium-ion battery and up to now it is still being used in most lithium-ion batteries. Its low cost, good
electrochemical performance, low volume expansion during charging and discharging as well as that
it is abundantly available, explains the widely accepted use of graphite as anode material [33,35,36].
Many research efforts allowed to optimize this material resulting it is almost reaching its maximum
theoretical capacity and only incremental improvements can be expected [29]. However, by adding
small amounts of metals with high theoretical energy densities, such as silicon (4200 mAh/g [37]),
the overall energy density can be increased [38]. Adding high concentrations of these additional
components cause numerous problems such as volume expansions up to 300% as well as reduced
lifetime despite the current numerous research efforts, for example using silicon as nano-particles such
asin [37].

Other often used anodes materials used are lithium alloyed metals with as most popular Lis TisO1,
LTO (175 mAh/g [35]). More noble metals are used resulting in a higher price than graphite. Other
disadvantages are its lower energy capacity and reduced cell voltage compared to graphite. However
its exceptional good stability over its lifetime makes it the ideal anodes in specific cases explaining its
wide usage.

An overview of the two most used anode materials is shown in Table 3 [34,35].

Table 3. Anode materials—Overview including specific energy density, cost and lifetime.

Energy Density

Anode Material (mAh/g) Cost Lifetime
Graphite 372 Medium  Medium
LiyTi5Oq5 (LTO) 175 High High

3.2. State of the Art—Cathode

The selection of the most suited cathode material is strongly dependent on the application itself.
A selection has to be made of which key property is the most important for an application. The key
properties of a battery are: energy density, power density, cost and lifetime. An overview of the most
used cathode materials can be found in Table 4 [29,33,36,38-45].

Table 4. Cathode materials—Overview including energy density cost and lifetime.

Cathode Material Ene:‘glgrh]/Dkegx;suy Cost Lifetime

LiCoO;, (LCO) 546 Medium  Medium
LiMn,0O4 (LMO) 410492 Low Low
LiNiMnCoO, (NMC) 610-650 High High
LiFePOy, (LFP) 518-587 Medium High

LiNiCoAIO, (NCA) 680-760 High Medium

The oldest commercially used electrodes are LiMn, O, (LMO) due to the low cost, however the
lifetime is limited which is considered to be the biggest disadvantage but they are still frequently
used. LiCoO; (LCO) another old electrode, characterized with a medium cost and high energy, has
some safety drawbacks but is still used frequently. LINiMnCoO, (NMC), a combination of LCO, LMO
and nickel, is gaining popularity due to its high lifetime as well as its high energy density. The exact
mixture of Ni, Mn and Co will define the property of the cathode of which a variety exist such as
NMC (1:1:1), NMC (5:3:2), ... The trend is to use Ni rich NMC since this gives an increased energy
density. It is mainly used where cost is less important. LiFePO, (LFP) has excellent lifetime properties
and is frequently used in combination with an LTO anode to get an excellent overall lifetime of the
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battery. LiNiCoAlO, (NCA), a relatively new cathode, has a very high energy density however it is
potentially thermally unstable stability, meaning a reduced safety.

3.3. State of the Art—Roadmap

Demands on lifetime and energy/power density are ever increasing to extend the duration in
which the battery can be used. Hence, there is a continuous need to further improve lithium-ion
batteries [46]. This section will explain which future trends can be expected during the next decades,
an overview is given in Figure 4, which is limited to lithium-ion batteries. Other types, such as
sodium-ion, zinc air, lithium-air are still in a very early phase and thus omitted from this overview.

Lithium- NMC, LMO, LCO, LFP, High Voltage Batteries Li- Magnesium
based NCA, LTO Solid State
Li-Sulfur

Present > 10 Years

Figure 4. Roadmap of Lithium-ion based batteries from present up to >10 years.

The world of batteries is changing very rapidly which is the reason why it is very hard to predict
the most promising battery chemistry. It can be disrupted very easily if a novel type/chemistry is
discovered in material sciences with superior properties. However some trends are already visible
when limiting to lithium-ion based batteries.

The first clear trend is to use different electrodes which have a significant higher theoretical
capacity such as sulfur (1672 mAh/g [47]), silicon (4200 mAh/g [37]) and lithium metal
(3860 mA /g [48]). This will inherently increase the energy density of the cell since the electrodes itself
can store more energy. A second trend is to increase the voltage limit of a single cell to around 5 V since
it is a harmonized voltage value used in the field of electronics. This trend will also increase the cells
energy density due to its definition which can be simply represented as integral of the actual capacity
multiplied with the actual voltage. The third trend is to go towards solid state electrolytes since using
liquid electrolytes can cause safety problems when leaking. In general it can be concluded that in the
near future the energy density and safety are the two key topics, in which significant improvement can
be expected during the next decade [32].

To make predictions further than a decade is extremely difficult but lithium-magnesium is worth
mentioning. It has superior energy density and is abundantly available, but is still in a very early
phase [49].

In this paper, as already mentioned, the goal is to perform a price estimation up to 2030. The best
overall chemistry now in 2015 is NMC (6:2:2) as cathode combined with graphite as anode due to
their high energy density and lifetime. It can be seen in literature many research efforts or ongoing
on silicon based cells. Therefore in 2030 namely a silicon-alloy anode combined a nickel rich cathode
(NMC (6:2:2)) to maximize its energy content will be most likely on the market. An overview of the
two battery chemistries, used this research as well as their pack energy density is shown in Table 5.
Throughout these two battery types will be referred to as battery I and battery II.
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Table 5. Overview of the cell chemistries used for cost calculations. The first one will be referred to as
the NMC battery and the second one as the silicon based lithium-ion battery.

Battery I Battery IT
Positive electrode NMC (6:2:2) NMC (6:2:2)
Negative electrode Graphite Silicon Alloy [50]
Pack energy density 155 Wh/kg 205 Wh/kg

3.4. Battery Cell Manufacturing

Several architectures and designs of battery cells exist such as cylindrical cells, pouch cells, hard
casing with a variety of positions for the tabs [51]. However in all these designs three main processes
can be identified as described in Table 6 [33]. Also in this table the material inputs (+) and outputs (—)
are shown since material cost is the main cost of a battery, which will be demonstrated in Section 3.5.

The first step is electrode manufacturing in which the electrodes themselves are being prepared.
The active material, conductive agents, solvents and binder are mixed to a slurry which is coated onto
a current collector (aluminium for the positive tab and copper for the negative one). After which the
cells are dried, in order to vaporise the solvents. To ensure a good electrical connection between the
slurry and current collector the electrodes are calendared, which consists of pressing the two firmly
together. As a last step in this electrode manufacturing the electrodes are cut to their correct size.

The second step is to make a cells assembly or a multilayer combination of a positive electrode,
separator and negative electrode. These multilayers can be created through stacking or winding to
create respectively pouch and cylindrical cells. Afterwards the cells are packaged (hard casing/soft
casing/...) and temporarily sealed. The cells undergo a drying procedure to ensure no solvents remain
after which they are filled with electrolyte and permanently sealed.

The battery cell is now ready to use, however to ensure stable and good quality of it its has to
undergo some electrical formation cycles. These formation cycles are critical for the lifetime of the
cell since its stabilizes the chemical structure of the cell. The final step is to test the cell’s electrical
performance to maintain a good quality control.

Table 6. Battery cell manufacturing process summary including material in- and outflow.

Manufacturing Process Material

+ Active Material
+ Conductive agent

Slurry Mixing + Solvents
. + Binder
Electrode Manufacturing Coating +Al/Cu foil
Drying — Solvents
Calendaring
Cutting + Remaining al/Cu foil
+ Separator
Stacking/Winding + Adhesive Tape
+ Al/Cu tabs
Cell Assembly Packaging (Poth /Case) + Pouch Foil/casing
Temporary sealing + Solvents
Drying
Filling — Remaining al/Cu foil
Permanent Seal
F G Formation
ormation Cell Testing
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3.5. Process-Based Cost Modeling

This section will focus on cost and sales prices calculations and predictions by using process-based
cost modeling of several battery chemistries. The methodology of process-based cost modeling is to
calculate costs based on detailed process descriptions, which are well defined for batteries [52,53]. This
methodology is being used in several application fields including battery cost calculations [54-58].
Battery production for automotive cells are still in an early phase and not yet in mass production.
This means optimizations in the production process are possible by upscaling and by building more
production plants. Process-based modeling can be combined with learning or dynamic curves,
which are dependent on growth of the production capacity as demonstrated in other application
fields [59]. This study [59] has performed a thorough analysis about the price evaluation of chemical
products during a decade and linking the impact of increasing production capacities to the evolution
of prices. For analysis of the price evolutions up to 2030 process-based cost modeling extended with
learning curves will be used. The main drawbacks of this approach are that the exact process and
composition of the battery chemistry has to be known. This can be overcome by combining recently
published patents, which describe the processes in detail, as well as by performing an extended
literature review.

The cost of two different cell chemistries will be analyzed, namely battery I (NMC(6:2:2) +
Graphite) and battery II (NMC(6:2:2) + silicon alloy). NMC based batteries can be seen as the current
state of the art batteries and silicon based ones as state of the art batteries in 1015 years as shown
by the roadmap in Figure 4. Process-based cost modeling is used in order to calculate the detailed
material cost in dollar/kWh for each battery type. The methodology, including the key equations,
are represented in Figure 5. In the first step the manufacturing procedure is split into logical substeps
of which the material and energy in and outflows are analyzed, which is done in Section 3.4. In this
step also the excess material, used during the manufacturing, should be taken into account. The next
step will calculate the cost of goods sold, which entails the material, energy, labor and overhead
costs. Two additional assumptions are made regarding the labor and overhead cost, which can be
approximated by respectively 15% and 8% as demonstrated in [60]. When comparing with other
calculations done in literature [54,56,61] similar assumptions were used. The sales price including the
manufacturer’s and retailer’s profit are taken into account. A profit margin of 35% for the manufacturer
is used, which is high but it entails novel products requiring a high profit margin [60]. When these
batteries are not directly sold by the manufacturer and additional profit margin of 15% by the retailer
is added. This leads to the final sales price. The prediction of the prices will be detailed in Section 3.6.

Throughout this paper several assumptions are made. Firstly all prices will be expressed in
dollar/kWh in 2015. All prices will be expressed in price in 2015 to make it easier to compare the
evolutions. This will imply that the price of a battery will be higher in 2030 than predicted due to the
inflation, which will occur between 2015 and 2030.

Step 2: Cost calculation Step 3: Calculating profit margin
~ ~

Step 1: Process
breakdown

«Analyze and quantify «Calculate material cost (MC) *Manufacturer profit
material and energy in- based on quantities from step 1 margin =35%
and output for each (MCp)
manufacturing step = ¥ (material cost
+ energy cost)  Retailer profit
« Remark: The extra margin = 15%
waste material during « Overhead (OH,) = 8% of MC,
the manufacturing step
is included «Labor (Ly) = 15% of MC, « Sales price (SPy)
= €0GS, *115%135
* See Table 6 « Cost of goods sold (COGS,):
= MCy + OHy + Lo
«Remark: index O refers to initial
| conditionin 2015
N J .. _

Figure 5. Overview of the used methodology including learning curves.
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3.5.1. Battery I—Cost Calculation

The process of manufacturing of NMC lithium-ion batteries is well known; however, a variety of
types are still possible. A NMC with ratio 6:2:2 will be used as a baseline for this calculations since this
nickel rich type has a high energy density and is considered the current state of the art. It is also suited
to increase the overall cell voltage which was described as one of the future trends. This NMC 6:2:2
cathode will be combined with standards binders, conductive agents and as anode graphite. The cost
price calculations of a battery pack including a simple passive battery managements system (BMS)
and casing are visually represented in Figure 6. The cost of 432 dollar/kWh is dominated by material
cost representing 65% of the overall cost. Similar results can be found in literature [56,62] in which the
material cost varies between 60-80%. The two most costly components are the positive and negative
electrode. These require noble materials and are used in high quantities in a battery pack explaining
their high cost. A detailed breakdown analysis of the negative electrode is also shown in Figure 6
in which it is clear that the active material is the main driver of the cost of the electrode (62% of the
negative electrode cost). A similar trend can be seen in the positive electrode.

When including the profit margins of the producer and middle man a sales price of 670 dollar/kwh
is reached. The breakdown is visualized in Figure 7. Also here the expensive electrodes represent a
significant cost of 28%. Since these prices are valid for low production quantities, it is hard to compare
them with the pricing of an automotive battery pack, however comparisons can be found varying from
700-1300 Dollar/kWh [63-65] of battery packs sold in lower quantities.

COST BREAKDOWN OF BATTERY |

Labor
15% Overhead Anode Active Material
- Graphite
Module 7, . 15%
assembly ’ — 7
Cell
assembly
4% Negative Electrode
Seperato 24%
7%
Electrolyte

6%

Copper foil
4%

Positive electrode
28%

Cost of goods sold: 432$/kWh - Low production quantities - Calculated
300$/kWh - High production quantities - Literature [53,66,67]

Figure 6. Cost breakdown of battery I with a special focus on the anode composition.
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SALES PRICE OF BATTERY |

Middle Man Margin
13% Positive electrode

18%

Electrolyte
4%
Seperator
5%
Cell assembly
2%
Module assembly
5%

Profit Margin
23%

Other
0%

‘. Labor
Anode Active Material verhead 10%

- Graphite Graphite Copper foil 5%
10% 3% 2%
Sales price: 670$/kWh - Low production quantities - Calculated

Figure 7. Sales price of battery 1.

3.5.2. Battery II—Cost Calculation

This section will quantify the impact of using silicon-based batteries, with a higher energy density,
compared to the classical NMC combined with graphite. The difference between the two is mainly in
the negative electrode which uses silicon alloy in stead of graphite. Many varieties of silicon based
lithium-ion batteries are available, however the ones in which silicon is used as an alloy are the most
promising. As a baseline the following patent W0O2016089666 A1 [50] will be used for making a silicon
alloy with high lifetime and high energy density. The exact calculation of the composition of this active
material composed from raw materials is shown in Table 7. The other components such as binder,
conductive agents are kept constant. In reality different materials are required, however in a similar
quantity and at a comparable cost explaining why these cost are kept con.

To calculate the total cost per kWh of battery II the increased energy density of the pack should
be taken into account. For battery I and battery II receptively the following energy densities are
used 155 Wh/kg and 205 Wh/kg. This is an increase of 33% which can be expected from material
calculations. Silicon has a 10 times higher theoretical capacity than graphite, but a mixture is used
as shown by its composition. The cost breakdown is visualized in Figure 8 in which the negative
electrode cost is decreased from 24% for battery I to 19% for battery II. The main impact however
comes from the higher energy density explaining a significantly lower cost of silicon based batteries
compared top NMC. This makes a total sales price of 456 Dollar/kWh compared to 431 dollar/kWh
from NMC, visualized in Figure 9. This is large price reduction of 30%. However it should be stated
that this battery is not yet a commercial product and some extra research should be done to increase
its lifetime.

Table 7. Anode active material battery Il—detailed.

Material Amount Price in 2015

(kg) (Dollar)
Si73F€17C10 0.6 2.76
Graphite 0.128 1.25
Carbon nanotubes 0.16 4.17
Carboxy methyl cellulose 0.032 2.96
LiPAA 0.08 11.25
Total 1 22.39
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COST BREAKDOWN OF BATTERY II

Labor
15% Anode Active Material
Overhead - Graphite
Module assembly 8% 9%

9%

Cell assembly 2
4% %

Seperator

8%

Electrolyte *
6%

Copper foil

. 4%
Positive electrode

31%

Cost of goods sold: 293$/kWh - Low production quantities - Calculated
Not commercially available in 2015

Figure 8. Cost breakdown of battery II with a special focus on the anode composition.

SALES PRICE OF BATTERY Il

Middle Man Margin
13%

Positive electrode
20%

~

Profit Margin

23% Seperator

5%

Cell assembly
3%
Module assembly

5%

Other
0%

Anode Active Material
Labor

- Graphite Copper foil gyerhead 10%

5%
Graphite 3% 5%

4%

Sales price: 4565/kWh - Low production quantities - Calculated
Not commercially available in 2015

Figure 9. Sales price of battery II.

3.6. Evolution of Cost in Time

The prediction of cost up to 2030 for automotive batteries based upon battery I and battery II will
be detailed in this section. The cost and prices calculated in previous sections are only valid for small
production quantities. Therefore the current cost of goods sold for automotive NMC battery packs
will be used as a baseline, which is around 300 dollar/kWh according to literature [54,66,67]. Adding
the assumed profit margin as stipulated in Figure 5 results in a sales price of 466 dollar/kWh. Also
the relative amounts, calculated in the previous sections will be kept constant meaning labor 15%,

overhead 8% and material cost 76% of the costs of goods sold (300 dollar/kWh).
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Step 4: Including learning curves

¢ Recalculate material cost, labor, overhead & profit
margins by applying individual learning curves

. COGS, = (D" *MCqy +
(Do) * OHy + (D3)™ = Ly

n = 0 for initial conditions in 2015
n =n + 1 for each market doubling

Dy=0,765

discount factor for MC
D,=0,757

Discount factor for OH
D;=0,574

discount factor for L

e Sales price (SP,)

\ = C0GS, *1,15% 1,35

/

Figure 10. Overview of the used methodology including its key equations.

As previously mentioned there is a clear link in doubling the production capacity of the industry
and price reductions as shown by [59]. Three different types of cost can be analyzed with their own
learning/discount rate per doubling capacity of the industry. The calculations of the costs of goods
sold and the sales price calculations for predictions up to 2030 are shown in Figure 10. Combining
process based modeling with these learning curves are a new approach to tackle the price predictions of
batteries. Firstly the material cost is analyzed by Lieberman, [59] and a reduction of 23.5% can be found
per doubling production capacity, corresponding to a discount factor of 0.765 of material cost. While for
overhead and labor cost receptively the classical “six-tenths-rule” and “two-tenths-rule” [59] are used.
The six-tenths-rule gives a relationship between size and cost as shown by following formula [68]:

Costy  Scalez g4
Costy ~ “Scale;

This shows that for a size doubling the total cost increases to 151.4% instead of doubling. This can
be achieved by for example building a new plant. When this total cost is redistributed over the two
plants, the cost for each plant reduced to 75.7% of its original cost. This translate thus in a reduction of
24.3% per plant or a discount rate of 0.757 for overhead cost. Labor cost follows the two-tenths-rule
meaning thus in the previous equation 0.6 should be replaced by 0.2. This results in a discount factor
of 0.574 or a reduction by 42.6% for each size doubling for labor costs. For completeness the market
growth for EV and BEV from 2015 up to 2030 are summarized in Table 8, based upon the predictions
made in Section 2.3.

In Figure 11 the prediction of sales cost for battery II is shown. By 2020 a significant price reduction
is expected (more than half of the total sales price) due to the rapid growth of the battery market,
linked to the EVs one. The threshold of 100 dollar/kWh will be reached between 2025 and 2030.

The same approach is used for battery IL. The price in 2015 is calculated using the same proportion
of the sales price between NMC and silicon for the previous sections. After which the profit margins
are added, resulting in a sales price of 317 dollar/kWh. The prediction of its price evolution is shown
in Figure 12. One important remark is that silicon based lithium-ion batteries are not yet on the market
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but will be in 10 years. If comparing battery I this with battery II the threshold of 100 dollar/kWh will
be reached much sooner in 2020-2025.

Table 8. BEV and EV market growth.

Amount of BEV  Amount of HEV

Year " \fillions) (Millions) ~ Market growth
2015 0.4 03 1 (Baseline)
2020 18 34 7

2025 62 111 25

2030 10.5 258 5
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Figure 11. Prediction of sales price of battery I up to 2030.
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Figure 12. Prediction of sales price of battery II up to 2030.
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3.7. Comparison

This section will compare the price predictions available in literature [69-75] of lithium-ion
batteries in 2020, visualized in Figure 13. In this figure it can be seen that the prices are ranked
from low to high, which also coincides with when the price was predicted. The Boston Consulting
Group [71] predicted in 2010 an average price of 300 dollar/kWh, which is the oldest and highest
price in the listed comparison. In 2012 and 2015 receptively Roland and Berger [73,74] and Avicenne
[72] predicted a price of 275 and 250 dollar/kWh. The predictions in 2016 made by P3 Consulting
[75] and GTM Research [69] even shows lower costs of 210 and 217 dollar/kWh. The most recent
prediction made by Tesla [70] even 150 dollar/kWh can be expected in 2015. The predictions made by
this research gives result of 195 and 131 dollar/kWh, which is in the same line as the recent predictions.
However silicon based batteries can have a beneficial impact on the cost it is unlikely that it is already
commercially available in 2020 but most likely by 2025.

SALES PRICE PREDICTION OF LITHIUM-ION

BATTERIES IN 2020 300
—_
s
=
S~
S
© 195
©
[a]
=
(]
5]
‘= 131
Q.
v
2
©
(%]
Battery | Battery Il Tesla-2017 P3-2016 GTM Avicenne - Roland and Boston
prediction - prediction - Research - 2015 Berger - Consulting
2017 2017 2016 2012 group - 2010

Figure 13. Sales price prediction of lithium-ion batteries in 2020.

4. Conclusions

From the previous analysis it is clear that the electric automotive market is still in its
innovators/introduction stage [76]. However in the near future a step towards mass-adoption/
growth is expected. One of the indicators is to analyze the publications and patents about the electric
automotive industry which is currently booming. BEVs still have a small driving range however
a large effort was done by the manufacturers to significantly extend the choice of electric vehicles
during the last years. The most popular HEVs are the higher priced vehicles in which cost plays is less
important. Currently the market is still dominated by classical combustion engine vehicles however its
dominance will decrease from 99% in 2015 to 68% in 2030. The market of electric vehicles (HEVs and
BEVs) will have to increase by a factor of 52, which means a huge investment in battery manufacturing
will be required to cope with this increase. This mass production will be one of the driving forces of
the decreasing cost of battery pack.

The trends deduced from the roadmap of lithium-ion batteries show that within the next decade
improvements regarding energy density and safety can be expected. To anticipate on this trend a
innovative approach is used in which process-based cost calculations are used on two types of battery
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chemistries, one which can be considered as state of the art in 2015, namely NMC and one which
will be considered as state of the art in 2030, namely silicon based lithium-ion batteries. Additionally,
this methodology is combined with learning curves to which will include the maturing of the battery
market. Material costs represent the majority of costs in a battery pack (66%) of which the active
material, responsible for the intercalation of li-ions, is the most costly component. By using silicon
based batteries a cost reduction per kWh of 30%. The limit of 100 Dollar/kWh will be reached in
2020-2025 for silicon based batteries and in 2025-2030 for NMC batteries. This low price will have a
significant impact on the overall price of an electric vehicles since the battery represents the largest
cost. This price reduction will aide in the mass adoption of electric vehicles.
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Abstract: Since the evolution of the electric and hybrid vehicle, the analysis of batteries” characteristics
and influence on driving range has become essential. This fact advocates the necessity of accurate
simulation modeling for batteries. Different models for the Li-ion battery cell are reviewed in this
paper and a group of the highly dynamic models is selected for comparison. A new open circuit
voltage (OCV) model is proposed. The new model can simulate the OCV curves of lithium iron
magnesium phosphate (LiFeMgPO,) battery type at different temperatures. It also considers both
charging and discharging cases. The most remarkable features from different models, in addition
to the proposed OCV model, are integrated in a single hybrid electrical model. A lumped thermal
model is implemented to simulate the temperature development in the battery cell. The synthesized
electro-thermal battery cell model is extended to model a battery pack of an actual electric vehicle.
Experimental tests on the battery, as well as drive tests on the vehicle are performed. The proposed
model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent
models under extreme maneuver drive tests.

Keywords: temperature influence; new OCV model; battery circuit model; synthesized battery model;
thermal model; electric vehicle

1. Introduction

The global climate change, escalation in fuel cost, and the energy consumption, urged the necessity
to replace the fossil fuel with renewable and environment friendly energy sources. Battery electric
vehicles (BEV) are one major application, demonstrating the replacement of fossil fuel by renewable
energy. Li-ion batteries have become the preferable energy storage for the future electric vehicles [1].
They receive greater attention than other battery types, such as lead-acid and nickel-cadmium batteries,
due to their practical physical characteristics. They have a high specific energy, specific power, power
density and a long life cycle. Moreover, their self-discharge rate is lower compared to other types of
batteries [1-3].

Figure 1 demonstrates a typical discharge characteristic curve of a lithium-ion battery. The battery
voltage extends between an upper and lower voltage limits Vi and Vo, respectively. Vyiof
represents the empty state of the battery where the minimum allowable voltage is reached.
This restriction is meant to protect the battery from deep depletion. The section formed between Vi,
Vexp and the correspondences capacity rates (C-rate) 0 and Qexp is identified as the exponential region
of the discharge characteristic curve, at which the discharged voltage changes exponentially regarding
to the battery capacity. The voltage holds an approximately steady value for C-rates beyond Qexp up to
the nominal C-rate Qnom, where the nominal Vom voltage is reached. Not only is the battery voltage
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influenced by the discharge rate, but the battery capacity is also diminished at high discharge rates.
This occurs as a sharp voltage drop at the end of the discharge process, as indicated in Figure 1. At that
rate the discharge terminates at V ¢off [4]-

Viun

<
)
Z
=

<

nom [-——————————-

Cell voltage, V

Veutoft

Capacity, Ah

Figure 1. Typical discharge characteristic curve of Li-ion battery [4,5].

The vehicle under test (VUT) is equipped with battery cells of a cathode type LiFeMgPO;.
Lithium iron phosphate cells are characterized by their flat open circuit voltage curve (OCV).
Hence, the cell voltage stays almost constant over the complete state of charge (SOC) range [2,3,6].
The battery pack of the VUT consists of 19 modules. Each module comprises six cell blocks connected
in series; a single cell block is constructed out of 50 LiFeMgPO,—graphite cells, connected in parallel.
In total, there are 300 cells within the single battery module. Each cell block has a nominal voltage of
3.2V, amounting to a total voltage of 19.2 V. The battery specifications are given in Table 1. A Controller
Area Network (CAN) communication environment is used for the control and management of the
battery modules. More technical information about the VUT is available in the Appendix.

Table 1. Technical data of LiFeMgPO, Battery [7].

Parameter (Unit) Value
Nominal Module Voltage (V) 19.2
Nominal Module Capacity (Ah) 69
Max Continuous Load Current (A) 120
Peak Current for 30 s (A) 200

In this paper, we will investigate the different battery modeling methods to decide which approach
will be the most appropriate for modeling the battery pack of VUT. Then, we will select a group of the
most thorough models for Li-ion batteries. These models will contribute to the development of the
proposed battery model, which will be considered for modeling actual battery pack voltage response
when the VUT undergoes severe driving maneuvers.

The paper is organized as follows. Section 2 presents the different modeling techniques of Li-ion
batteries. Three models are elected from the reviewed models and are discussed in more details in
Section 3. In Section 4 the thermal behavior of the battery is elaborated. The experimental tests are
described in Section 5. The models are evaluated and a new, improved model is developed and
proposed in Section 6. Finally, the conclusions are stated at the end of the paper.
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2. Existing Battery Models

Different modeling approaches are found in the literature. The most prominent battery modeling
techniques are: Electrochemical, analytical, and circuit-based models [8]. Electrochemical models
employ non-linear differential equations to model the chemical and electrical behavior of the cell [4,9].
Detailed knowledge of the battery chemistry, material structure and other physical characteristics
are essential to achieve high accuracy and cover a large number of different operating points.
However, the producers of batteries will rarely reveal the full parameters set of their products.
Another shortcoming of electrochemical models is the high computational effort required to solve the
non-linear partial differential equations [8]. Electrochemical models are better suited for research in
battery’s components fabrication, like electrodes and electrolyte [4,10]. The analytical modeling, on the
other hand, reduces the computational complexity for the battery. However, that would be on the
expense of capturing the circuit physical features of the battery, such as open circuit voltage, output
voltage, internal resistance, and transient response [8].

Lumped electrical circuit models offer low complexity combined with high accuracy and
robustness in simulating batteries dynamics [11-13]. Models with single or double resistor-capacitor
(RC) networks are the best candidates for simulating the battery module [12-14]. RC parameters
employed to model the battery characteristic show a dependency on temperature, charge/discharge
rates and the SOC. Several techniques had been discussed in literature [1,15-19] for SOC estimation.
Lam and Bauer [20] proposed a circuit model for the Li-ion battery with variable open circuit
voltages, resistances and capacitances. The equivalent circuit components were represented as
empirical functions of the current direction, the SOC, the battery temperature and the C-rate.
Tremblay et al. [5,21] proposed an improved version Shepherd’s model [22]. This model considers the
influence of SOC on the OCV by considering the polarization voltage in the discharge-charge model.
Different dynamic models for Li-ion, lead-acid, NiMH and NiCd battery typed were presented in
Reference [5]. However, neither the temperature effect nor the variation of the internal resistance
were considered. Saw et al. [23] investigated the thermal behavior for a LiFePO4-graphite battery
by coupling the empirical equations of the modified Shephard’s battery model with a lumped
thermal model for the battery cell. The temperature development of a complete vehicle battery
pack under different driving cycles was simulated in [23]. Tan et al. [24] have incorporated the thermal
losses to Shephard’s model for Li-ion battery cells by adding temperature dependent correction
terms to the model. Wijewardana et al. [1] proposed a generic electro-thermal model for Li-ion
batteries. The model considers potential correction terms accounting for electrode film formation and
electrolyte electron transfer chemistry. In addition, the constant values in the empirical equations
that represent the equivalent circuit components of the battery were adjusted. These equations were
employed to model the electrical components in dependence of SOC and temperature. Wijewardana
et al. consider the C-rate effect in the estimation of SOC by employing an extended Kalman filter
technique. Computational thermal models and temperature distribution estimations were proposed
in References [25-28]. Additionally, finite element analysis models to estimate the temperature
distribution in the battery were presented in References [25,27-29]. This kind of simulation requires
knowledge of thermal properties of the battery cell materials, such as thermal capacity, density,
mechanical construction and cooling of the battery. For an accurate parameterization intensive and
precise measurements are necessary.

3. Overview of Selected Dynamic Battery Models

The equivalent circuit battery model provides a generic, dynamic way of modeling Li-ion batteries
with moderate complexity. The moderate model complexity supports the integration of the model in
a multiphysical simulation, allowing to analyze dynamic effects of the electric drive train. Three models
are selected from the literature as the best candidates for Li-ion battery modeling, since they are the
most thorough among the reviewed models. These models are:
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e  Tremblay et al. [5] (battery model 1)
e Lam and Bauer [20] (battery model 2)
e  Wijewardana et al. [1] (battery model 3)

3.1. Tremblay Battery Model (Battery Model 1)

Tremblay and Dessaint [5] improved their own model in Reference [21]. The new model is shown
in Figure 2. Only three points on the steady state manufacturer’s discharge curve are required to
parametrize the model, which are the full voltage, the end point of exponential voltage region, and the
nominal voltage. The variation of the OCV from a reference constant voltage (E) is related to SOC
changes by incorporating a polarization constant (K).

s |
it Integrator |

Low-pass
filter

4'> hd
R i

Controlled
Charge/Discharge dynamics voltage
B source

oatt

e -

Figure 2. Tremblay and Dessaint battery discharge model.
In case of discharging the output voltage reads:

Vit — Eo— R - i—K% (it +i%) + Ae Bt (1)

and for charging, the equation becomes:

Q P G A +Ae Bt )

it—01Q Q—it

the variables and constants in Equations (1) and (2) are defined in Table A1 in the Appendix A.1.
Although, the charging and discharging characteristics are extensively modeled, some other

influential factors like the variations in internal resistance (R) and temperature influence are not

considered. The capacity fading effect is not taken into account in this model as well.

Viat =Eo—R - i—K

3.2. Lam and Bauer Battery Model (Battery Model 2)

The Lam and Bauer battery equivalent circuit model is shown in Figure 3. The model demonstrates
the Voc as a function of SOC, a variable ohmic resistance R,, and two variable RC-networks: RsCg
and R,C; for the short and the long time transient responses, respectively. Lam and Bauer also showed
the relation between capacity fading due to aging and different stress influences, which are the cell’s
temperature, C-rate, SOC and intensity of discharge. Lam and Bauer parametrized their equations
through curve fitting of experimental measurements. They employed in their tests the LiFePO, battery
cell. The equivalent circuit resistors and capacitors equations for temperatures from 20 °C and above
are detailed in Equations (7)-(28) in Reference [20]. We refer also to the Vo equation with the corrected
constants as proposed in Reference [20]:

8x10—3

Voc (SOC) = —0.5863 ¢=219 50C 1 3414 + 0.1102 SOC — 0.1718 ¢~ 1-50C 3)
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Figure 3. Lam and Bauer battery circuit model.

3.3. Wijewardana Battery Model

A different perception, than the two previous models, is adopted in this model. The electrical
components, Rg, Cs, Ry, C, are functions of SOC and independent of the temperature. Only the series
internal resistance resistor is a function of SOC and temperature (Rjns(SOC,T)). The temperature
influence is considered by adding potential correction terms, which are voltage due to electrode film
formation (AE) and voltage due to electrolyte electrons transfer formation (AVcpe). The capacity
fading effect is modeled as an additional series resistance Rcyc. The battery output voltage is computed
by subtracting the voltage drop of each circuit element from the Voc value. Figure 4 demonstrates
Wijewardana battery model.

Figure 4. Wijewardana battery circuit model.

The battery output voltage of this model reads [1]:

Voatt = Voc — 1 (Rints + Reye) — Vi = Vo — AE (T) — AVcpe (T) 4)
AE(T) = (14 CaaaT) V2 AT ®)
dT |7,
cell
dVChe

AVehe (T) = pwexp " VIAT + 2| (Cone + CenenAT) (1 + B) AT (6)

T=Teen

The values of the model parameters are listed in the Appendix.

3.4. Assessment of Battery Models Qualities

Three different highly dynamic to model Li-ion batteries have been proposed. Each model has
its dominant features. Table 2 summaries the qualities of each model. The (+) sign implies that
the corresponded feature is considered in the model. Whereas, a (++) sign denotes an extensive
consideration to the related feature. In contrast, the (-) sign means that the related feature was assigned
as a constant or it is not considered at all in the model. Battery model 2 considers more factors than
the other models. However, each model must be evaluated with experimental data to investigate
its accuracy.
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Table 2. Comparison between the battery models.

Feature Battery Model 1 Battery Model 2 Battery Model 3
Charge-Discharge Considered in the Considered in the internal .
. ++ + . . Charge-discharge
hysteresis output voltage resistance (R) equations
Open circuit voltage - Constant value for Eg + Voc(SOC) + Voc(SOC)
Internal resistance (R) - Constant value ++ R(SOC,T,C-rate) + R(SOC,T)
Temperature . Considered in the internal Considered as potential
. - Not considered + . -
influence resistance model correction terms
. . . Considered in the battery’s Consnderrgd in the
Capacity fading - Not considered + . R battery’s internal
used capacity estimation . -
resistance (R) estimation
Total Assessment 2 6 4

4. Battery Thermal Model

A general energy balance is applied to estimate the battery cell temperature. It is assumed that
the thermal distribution inside the cell is uniform and that the conduction resistance inside the battery
cell is negligible compared with the convection and radiation heat transfer [1,23,27,28]. The change in
temperature depends significantly on the battery thermal capacity (C,) and the difference between
the generated heat and the dissipated heat. The dissipation of the heat to the battery surrounding
is performed by convection and radiation. Generated heat comprises two sources, irreversible heat
generation by means of the effective ohmic resistance of the cell’s material, and reversible generated
heat due to the entropy change in both cathode and anode. The total entropy changes in the battery
cell can be considered as zero according to References [1,29,30]. The temperature development inside
the battery cell is described as:

chell _

mC, it

cell — famp

i (Voc — Veat) ~ HAcenAT = €0 Acen (T — Tomp) (72)

where AT is the difference between the battery cell and the ambient temperatures (Tcer — Tamp), 1 is the
natural convection coefficient, m is the cell mass, i is the cell current, A is the surface area of the
single battery cell, o is Stefan-Boltzmann constant, and e is the emissivity of heat. Assuming that the
temperature differences between the cells in the single battery module are small, Equation (7a) can be
generalized for the whole battery module as:

d Tcell _

MC, it

I (Voc — Voart) — HAAT — ecA <T§eu - T;*mp) (7b)
where M is the total cells mass, I is the battery current, A is the surface area of the cells blocks in the
single battery module.

Saw et al. [23] has pointed out to the contribution of the contact resistance in heat generation.
The contact resistance can be neglected in the investigated batteries, since the cells are realizing low
ohmic over wide cell connectors by means of welded connections. Fifty individual cells are connected
in parallel and we have a nominal current about 1.4 A per cell. The resistance of the single contact
is 0.2 mQ). With four welding points per cell connectors, the contact resistance for the single battery
cell became 50 uQ). The power loss in the single cell due to contact resistance is determined as:
Ploss = Icen?Reontact = 0.098 mW /cell, which is a negligible amount, thermally, as well as electrically.

5. Experimental Characterization of the Battery and the Vehicle under the Test

5.1. Battery Measurements

In order to characterize the LiFeMgPOj,-battery, several experimental tests were implemented on
the battery at different conditions. OCV vs. SOC measurements were performed at 10, 20 and 40 °C.
The battery was discharged until the cut-off voltage of 2 V was reached and then recharged up to the
nominal capacity. A Low C-rate of C/10 was used to minimize the dynamic effects and to achieve
a good approximation to an open circuit. Figure 5 demonstrates the charge and discharge OCV curves
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over the SOC for various temperatures. It is noticeable that the lower the operating temperatures,
the higher the difference between charging and discharging.

3.65 A
35

ocvv]

—Discharge at T=10°C|
—Discharge at T=20°C|
—Discharge at T=40°C|
---Charge at T=10°C
---Charge at T=20°C
---Charge at T=40°C

|

40 60 80 100
SOC[%]

Figure 5. Charge and discharge OCV curves over SOC.

5.2. Driving Tests on the Real Vehicle

The objective of a real test is to find a real driving maneuver reference signal to validate the
battery model performance. Nevertheless, the battery model should be able to simulate the actual
system in real operating conditions, not merely charging-discharging cycles. Two driving tests
were performed with the test vehicle for the purpose of investigation the system and collecting the
experimental data. The tests were executed on the testing ground at Karlsruhe Institute of Technology
(KIT). The experimental data attained from the CAN bus are displayed in Figures A1 and A2 in the
Appendix A.2. Then, the data were processed in MATLAB. In the first test, the vehicle was driven
in a counterclockwise circular direction for about 230 s. Then the direction for driving was reversed
and the test was resumed. A variable pedal input was implemented in order to cover a broader range
of data. This test represents an aggressive driving scenario, leading to discharge rate of up to 3.4 C.
The second test was implemented by subjecting the vehicle to a sequence of sudden accelerations
and decelerations. These tests were performed this way to create highly fluctuating signals in the

battery system, which are shown in Figure 6. The dynamic responses of battery voltage can be used to
evaluate the battery models, discussed above.
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Figure 6. CAN bus measurements: (a) Battery pack current for the circular driving test; (b) Battery pack
voltage for the circular driving test; (c) Battery pack current for the rapid acceleration and deceleration
driving test; (d) Battery pack voltage for the rapid acceleration and deceleration driving test.
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6. Battery Models Validation

6.1. Evaluating the Open Circuit Voltage Models (Voc)

Wijewardana et al. [1] have employed a common model for VOC that is widely used and found in
literature. Lam and Bauer [20] have redefined the model equation to suit the LiFeMgPO, cathode type
batteries. They concluded that the OCV is temperature independent. They justified this conclusion
based on small changes of the OCV measurements due to temperature variations, which were in the
range 2-8 mV [20]. An absolute error of 30 mV for LiFeMgPOj, battery cell will lead to an uncertainty of
13% in the SOC estimation at 1 C discharge and 25 °C, according to Blank et al. [31]. The battery of our
vehicle is LiFeMgPOj4-cathode type. Its OCV curves are presented earlier in Figure 6. According to our
measurements, the OCV temperature alteration is from 15 to 90 mV, which is about 10 times higher than
the result presented in Reference [20]. In our study, we use a battery module that contains 6 cellblocks
in series, with 50 cells in parallel for each. Moreover, the vehicle’s battery pack has 19 modules.
With this combination of battery cells, the range of voltage alteration becomes 1.71-10.26 V, which is
a considerable change in the battery pack output voltage.

We validated both Voc models in References [1,20] by comparing the simulation results with our
own measurements, as shown in Figure 7. We selected the charge-discharge curves at T = 20 °C to be
the references for validation. The Voc model utilized in battery model 3 does not fit our measurements.
The Voc of battery model 2 better fits the experimental data. The deviation in an SOC range spanning
from 10% to 90% is about 0.03 V. This deviation increases at low temperature.

The influence of the temperature variation on the OCV curves is defined as dVoc/dT. From the
measurements shown in Figure 6, the value of this term was found to be 1.25 mV in case of discharge
and 0.69 mV for charging. The Voc model 2 model is modified for better fitting of the OCV curve along
the SOC range and the temperature influence is considered. The new Vc is modeled by Equations (8)
and (9) and the constants values of the new Vo are presented in Table 3. The validation results are
shown in Figure 8 and in Table 4.

a,

Voc discharge (SOC, T) = a1 e=259C + a3+ 4, SOC + a5 e~ =50C + T dVoc,q/dT (8)

b,
Voc charge (SOC, T) = by e7725°C + by + by SOC + bs e TS + T dVoc,o/dT 9)

Table 3. Voc parameter values.

Constant Value Constant Value
ay —1.166 by —0.9135
a -35 bz —-35
as 3.344 b3 3.484
ay 0.1102 by 0.1102
as —0.1718 bs —0.1718
ag —2x 1073 be —8 x 1073

dVoc,a/dT 0.00125 dVoc,/dT 0.00069

6.2. Evaluating the Battery Models Output Voltage

The accuracy of each model is yet to be proved. For objective comparison, the thermal model
elaborated in Section 4 is employed for all models. The battery currents in Figure 6a,c are designated
as the inputs for all models and the output voltage of each model is investigated against the voltage
response signal, shown in Figure 6b,d. The V¢ of model 3 [1] showed a large deviation from the
actual curve, as shown in Figure 7. Therefore, the Voc derived from model 2 [20] will be also utilized
in model 3. Figures 9 and 10 demonstrate the responses of the three models for both driving test.
The simulation results gained from model 1 reveal the highest accuracy for the first test. The mean
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squared error between the measured voltage and the simulated voltage by model 1 is less than 1%.
However, it performed the worst in the second test. The good performance of model 1 in the first test
ascribed to the fact that the test conditions were nearly matching the standard condition for defining
the constant voltage (Ey). Ep is equal to the nominal voltage at 20 °C, which is equal to 3.21 V and the
initial voltage of the single battery cell is estimated as 3.25 V. When the test second driving test was
performed at different circumstances, the outcome was not as good as it in the first case. Figure 10a
reveals a relatively large offset error in the response of battery model 1 with a mean square error (MSE)
of about 2.24%. Model 2 performed moderately with percentage errors between 1% and 2%. The offset
errors between the reference signal and initial voltage value of both battery models 2 and 3 were minor,
whereas Equation (3) is employed in both models for the estimation of Voc. The simulation results of
model 3 indicate less dynamic response than the other two models. It could not conduct the drastic
changes in the battery current input signal.

—Discharge measured at T=20°C
25 == =-7""77777777777""|-Charge measured at T=20°C

i i —Voc of battery model 2

I I

I I

—Voc of battery model 3

D 20 40 60 80 100
SOC[%]

Figure 7. Comparing the Voc model with measured experimental results.

Table 4. Accuracy of the proposed Voc model.

Temperature °C ~ MSE in Discharge Model %  MSE in Charge Model %

10 0.5232 0.8914
20 0.5320 0.5719
40 0.5751 0.4522
3.65
as5r
= 3
= g o
[$] (6] I
© 25 —Discharge at T=10°C o 25 —Discharge at T=20°C
. - -Charge at T=10°C - -Charge at T=20°C
—Simulated discharge at T=10°C| —Simulated discharge at T=20°C
2 - -Simulated charge at T=10°C 2 - -Simulated charge at T=20°C
o) 20 40 60 80 100 0 20 40 60 80 100
SOC[%] SOC[%]
(a) (b)

3.65

ocv|V]

—Discharge at T=40°C
- -Charge at T=40°C

—Simulated discharge at T=40°C|
- -Simulated charge at T=40°C

25

0 20 40 60 80 100
SOC[%]

(0

Figure 8. The new Voc model and measured experimental data: (a) T =10 °C; (b) T =20 °C; (c) T =40 °C.
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Figure 9. Battery simulation models and reference voltage signal for circular driving test: (a) Battery
model 1 response; (b) Mean square error of battery model 1; (¢) Battery model 2 response; (d) Mean
square error of battery model 2; (e) Battery model 3 response (f) Mean square error in battery model 3.
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Figure 10. Battery simulation models and reference voltage signal for rapid acceleration and
deceleration driving test: (a) Battery model 1 response; (b) Mean square error of battery model 1;
(c) Battery model 2 response; (d) Mean square error of battery model 2; (e) Battery model 3 response
(f) Mean square error in battery model 3.

6.3. The Proposed Synthesized Battery Model

It is explicable that each model has some flaws, as determined in Table 2. The simulation
results in Figures 9 and 10 prove that even the best performing models need to be further improved.
Accordingly, a synthesized model that holds the best qualities of each model has been developed.
First, the charge-discharge characteristics of model 1 are considered. Additionally, the discharging part
our proposed Voc(SOC,T) is employed instead of constant (Eg) value. Then, the highly detailed internal
resistance model of battery model 2 in case of discharging, which is represented by Equations (7)-(11),
(17)-(19), (21), (27) in Referance [20], is taking the place of the constant internal resistance (R).
The capacity fading effect is considered by adding Rcyc from battery model 3 to the internal resistance.
The empirical equations in case of discharging are implemented because the charging-discharging
hysteresis is properly modeled by model 1. The synthesized model is shown in Figure 11.

i

Low-pass
i* filter

Chargey/Discharge dynamics with
I VOC(S0C,T) Ebatt

Figure 11. The proposed synthesized battery model.

In case of discharging, the output voltage reads:

Q

Voatt = Voc discharge (SOC, T) — (Ro + Reye + Vs + Vi) - i— I<ﬁ C(it+ %)+ AeT B (10)
and for charging, the equation expressed as:
Voatt = Voc discharge (SOC, T) = (Ro + Reye + Vs + Vi) + i = Ky=§qg - % — Koy - it + Ae7B -t (11)
where v ; v
avy, i Vi, (13)

F=C7LiRLCL
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The resistances and capacitors values are determined through Equations (14)—(18):

R« (SOC, 8) = (qe(CZSOC) o3t C4SOC) +c5AD + gSOCAY (14)

C; (SOC, 9) = <C7SOC3 +cgSOC2 + ¢9SOC + cm) +c11SOCAD + c1,A9 (15)
R; (SOC, 8, Ic—rate) = ((6138(”450C> + ¢15 + €1650C) + c17A0(1850C) 1 019A19> x (c20 Ic—rate)® +c22)  (16)
G, (SOC, 9) = (choc6 +02480C5 + 02580CH + €26S0C? + c2780C? + £2550C + czg) tepen/t  (17)

R, (SOC, 9) = (C3250C4 + 03380C3 + £3480C2 + ¢3580C + c%) carecas/(8—cx) (18)

where ¥ is the battery cell temperature in Kelvin (°K) and c;—c39 are constants, which their values are
listed in Table 5.

Table 5. Constants values of Equations (14)—(18).

Constant Value Constant Value Constant Value Constant Value
1 1.080 x 102 o —6.580 o1 —6.919 x 1071 c31 —2.398 x 10°
I —11.03 c12 12.11 2 2902 x 1071 3 1.298 x 1071
3 1.827 x 102 c13 2950 x 101 3 2130 x 10° 33 —2.892 x 107!
cy —6.462 x 1073 c14 —20.00 Cog —6.007 x 10° 34 2273 x 1071
s —3.697 x 10~* 15 4722 x 1072 5 6.271 x 10° 35 —7.216 x 1072
o 2225 x 107* c16 —2.420 x 1072 26 —2.958 x 100 36 8.980 x 102
cy 1.697 x 102 c17 6.718 x 1073 o7 5.998 x 10° c37 7.613 x 1071
cs —1.007 x 10% c18 —20.00 o8 —3.102 x 10* 38 10.14
co 1.408 x 10% 19 —5.967 x 10~* 29 2232 x 10° 39 2.608 x 102
10 3.897 x 102 20 6.993 x 10~1 30 3.128 x 10°

The new model shows a significant improvement in the simulation response, as shown in Figure 12.
The mean square error was reduced to only 0.256%. The new model shows also the best result when it
employed for simulating the rapid acceleration and deceleration driving test, though it had a small
offset error at the beginning of 3.2 V. This error yielded from an absolute voltage error of 0.028 V in
proposed VOC model, represented by Equation (8), at the specified SOC and temperature values.
The battery models are simulated in MATLAB/Simulink environment. Figure 13 shows the Simulink
model for the proposed battery model.

86U
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s I I I I I I I
g 350 9 I I I I I I I
5 o R e
g 5 I | j | A 1 I
= a3 I I I I I I I
g Measured voltag i i et e Tl s
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330y & 100 1s0 20 Lo
\ | | | | | |
Time(s] 1 50 100 150 0 250 300 350
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‘ |
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I I
R | |
o 50 100 150 200 50 100 150 200
Timels] Time[s]

(9 (d)

Figure 12. The proposed synthesized battery model and reference voltage signal: (a) Proposed model
response for the circular driving test; (b) Error of proposed model voltage for the circular driving
test; (c) Proposed model response for the rapid acceleration and deceleration driving test; (d) Error of
proposed model voltage for the rapid acceleration and deceleration driving test.
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Figure 13. The proposed synthesized battery simulation model.

7. Conclusions

A battery is a sophisticated system, which necessitates a detailed model for accurate
simulation. Many factors must be considered in the battery model for accurate simulation results.
Charging-discharging dynamics, battery internal resistance, and open circuit voltage are the most
significant aspects for battery modeling. Temperature is an influential factor for all of these aspects.
The difference between the charging and discharging in the OCV curves increases at low temperatures.
This phenomenon occurs due to the decrement in battery capacity, which in turn appears as a result
of a rise of the internal resistance. Neglecting the effect of temperature will lead to inaccuracy in
simulation. Even the slightest errors in the simulation results of the battery cell model, would grow
significantly when the model is extended to the complete battery pack. Battery model 1 has two flaws.
Firstly, it assumes the initial voltage value to be the nominal battery cell voltage. This assumption led
to large offset from the actual value, when the vehicle was tested at about 30 °C. Secondly, it considers
a constant internal resistance of the battery, which is in fact a very fluctuating quantity that affects the
battery cell current and the voltage response as well. The proposed battery model has compensated for
these shortages and it has accurately simulated the battery pack voltage response on the real vehicle.
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Appendix A
Appendix A.1. Nomenclature

Table Al. Battery models parameters.

Parameter (Unit) Symbol Value
Constant voltage (V) Eyp 3.21[23]
Constant internal resistance (€2) R 0.0833
Polarization constant (V/(Ah)) or polarization resistance (Q2) K 0.0119 [23]
Battery capacity (Ah) Q Variable
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Table A1. Cont.

Parameter (Unit) Symbol Value
Actual battery charge (Ah) it Variable
Exponential zone amplitude (V) A 0.2711 [23]
Exponential zone time constant inverse (Ah) 1 B 152.130 [23]
Battery current (A) i Variable
Filtered current (A) * Variable
Voltage change due to elect'rolyte electrons transfer AVene Variable
formation
the effective voltage gradient dVepe/dT 0.0016 [1]
Constant property of electrolyte Cche 0.07 [1]
Constant property of electrolyte Cchel 0.001 [1]
Constant property of electrolyte b 0.0012 [1]
Constant property of electrolyte w 0.012 [1]
Voltage change due to electrode film formation AE Variable
voltage gradient dv,/dT 0.00003 [1]
Constant property Cg1 0.00011 [1]
Battery module surface area (m?) A 0.283954
Battery cell mass (kg) m 0.04 [23]
Battery module mass (kg) M 12
Specific heat capacity (J- kg~1- K1) Cp 1360 [27]
Stefane-Boltzmann constant (W- m—2. K*) I 5.67 x 1078
Emissivity of heat € 0.95
Natural heat convection constant (W-m~2. K1) h 4

Appendix A.2. Driving Tests
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Figure Al. The measured data of the circular drive test.
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Figure A2. The measured data of the rapid acceleration and deceleration drive test.

Appendix A.3. The Vehicle under the Test

An electric hydrogen front wheel passenger car (Figure A3) was modified by the institute for
“FAhrzeug-SystemTechnik” (FAST) of the Karlsruhe Institute of Technology to a battery electric
vehicle (BEV), [30]. A battery pack was installed in the vehicle. This vehicle is used for research in
different automotive engineering and e-mobility related projects. The propulsion systems comprises
an induction motor with a single gear transmission. The motor specifications are listed in Table A2.

Figure A3. Vehicle under test.

Table A2. Technical data of electric motor.

Parameter Value

Rated Power, PN 45 kW
Peak Power, Pmax 68 KW
Peak Torque, Tmax 210 N-m

Rated Speed, nN 3000 rpm
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The motor shown in Figure A4 is powered by the AC current, delivered from the power

electronics that converts the DC current supplied by the battery. As the driver presses the accelerator
pedal, a corresponding “torque demand” signal is converted by the vehicle control unit (VCU) to
an appropriate signal for the motor control unit (power electronics), which in turn transforms it into
a current frequency signal. The motor control unit (MCU) is incorporated with a thermal derating
system in order to limit the torque demand received by the power electronics and to prevent any

critical operating conditions for the motor. The assigned powertrain can accelerate the vehicle to
a maximum speed of 120 km/h.
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Figure A4. The basic drive train topology of the Mercedes A-Class research vehicle [30].
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Abstract: Lithium-ion battery (LIB) power systems have been commonly used for energy storage in
electric vehicles. However, it is quite challenging to implement a robust real-time fault diagnosis
and protection scheme to ensure battery safety and performance. This paper presents a resilient
framework for real-time fault diagnosis and protection in a battery-power system. Based on the
proposed system structure, the self-initialization scheme for state-of-charge (SOC) estimation and
the fault-diagnosis scheme were tested and implemented in an actual 12-cell series battery-pack
prototype. The experimental results validated that the proposed system can estimate the SOC,
diagnose the fault and provide necessary protection and self-recovery actions under the load profile
for an electric vehicle.

Keywords: lithium-ion; energy-storage system; fault diagnosis; protection; electric vehicle

1. Introduction

As one of many energy storage solutions, lithium-ion batteries (LIBs) are attracting more and
more attention from researchers and users due to their high energy density, high power density,
long lifespan and environmental friendliness [1,2]. The LIBs have been used in energy-storage
applications in solar panel systems from those that use a few kilowatt-hours in residential systems to
multi-megawatt batteries in grid power systems. There are also broad applications in some high-power
applications such as electric vehicles using large numbers of serial or parallel battery cells [3-8].
However, despite being a promising candidate for energy storage solutions, these batteries are facing
some challenges, such as ensuring safe operation of the battery-power system that depends on the
accurate state-of-charge (SOC) estimation [9-11]. The safety of the LIB power system is crucial,
especially when the battery-power system is grouped by a considerable number of battery cells in
serial or parallel topology, or in a battery stack, to give a higher power density. The LIBs can deteriorate
if they are to operate beyond the battery specifications [9,10].

The estimations of SOC in the battery management system (BMS) can improve the system
performance and reliability. However, battery discharge and charge involve complex chemical
and physical processes while in operation. It is therefore not easy to estimate the SOC accurately
under various operational conditions [12-14]. There are several kinds of LIBs in the market, such as
those containing LiFeOy, lithium polymers and LiCoO,. With the different dynamic behavior of the
batteries and their topology, specific SOC algorithms are sometimes required. There have been many
development and research works in recent years to improve SOC estimation accuracy [13,15-18].
Firstly, the standard measurement-based estimation approaches, such as the coulomb-counting or
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ampere-hour (Ah) methods, as well as the open-circuit voltage (OCV) and impedance measurement
methods, give a more intuitive and reliable estimation [19,20]. However, this approach is prone to
errors: errors related to initial SOC determination and the accumulative errors from sensors during
the measurement of current and time. Secondly, the machine learning-based estimation methods
(also called data-driven approaches), such as the artificial neural network—fuzzy logic (FL) [16] and
support vector machine [17] methods. However, machine learning-based methods require a high
computational effort due to large training datasets for training the model, although they consider the
nonlinearities of the battery model. In addition, most machine learning-based SOC estimation models
were established offline. They are not suitable for a practical and low-cost embedded battery-power
system application. Lastly, the state-space model-based estimation methods (such as using the extended
Kalman filter (EKF)) reduce the convergent time but increase the computational load of the BMS [21,22].
The aforementioned literature has its own disadvantages and advantages. However, what is unusual
is that most SOC implementation is only meant for a single battery cell. It is not useful for researchers
who would like to implement it on multi-cell batteries for actual applications.

Due to the characteristics of LIBs, the faults of the battery-power system may lead to serious
safety issues, such as catching fire and explosion. For instance, a lithium-cobalt oxide battery backup
power system caught fire in a Boeing 787 of Japan Airlines in 2013 [23]. Hence, the capabilities of fault
diagnosis and protection are important and necessary in a battery-power system. Fault-diagnosis
technology is an interdisciplinary field that combines control theory, computer network, database,
artificial intelligence and other technologies. In the past few years, there were many researchers
focused on battery-power systems. Bohlen et al. [24] investigated the internal-resistance fault diagnosis
of batteries by a model-based identification method. D.P. Abraham et al. [25] proved that the changes
of battery electrodes are the cause of the sudden increase in the battery internal resistance and
the power degradation mechanism in the power battery pack. X.J. Liu [26] tried to diagnose the
battery faults by using the fuzzy-logic method. Although the research involved different methods
or models that produced good results, most of the authors were focusing on overall theoretical
aspects of fault diagnosis using nonlinear model-based or intelligent approaches, such as fuzzy-logic
and neural network methods, to determine the battery faults. However, these required a higher
computational time and further resources to perform the fault diagnosis. Therefore, in this study,
one of the research objectives is to use a computational, inexpensive and intuitive approach to detect
and diagnose the faults in the battery and provide corresponding remedy actions for the faults.
In addition, the self-recovery scheme is also proposed. Firstly, four types of critical faults [9,10,26-32],
being the over-charged fault, over-discharged fault, over-current fault and external short-circuit fault,
are considered. Secondly, different fault diagnosis algorithms are studied, and the corresponding
solutions are proposed. Lastly, the proposed fault diagnosis and self-recovery schemes are applied to
the 12-cell battery pack prototype and validated experimentally.

In summary, a structure of a smart multi-cell battery-power system is proposed to improve the
safety and its operational intelligence. Hence, the smart battery-power system has the following
features: (1) compatibility and flexibility with different kinds of LIBs and battery pack configurations;
(2) capability for SOC self-initialization and self-adjustment; (3) capability for fault diagnosis and
self-recovery; and (4) ability to provide a human-machine interface for status report and system
configuration, locally or in the cloud. A few designed modules, such as battery data acquisition,
battery pack SOC estimation, fault diagnosis, data communication, user-interface module for data
display and system configuration, and dual-path switching for charging and discharging, are proposed.
In the proposed smart battery-power system, the SOC self-initialization scheme coupled with fault
diagnosis and the self-recovery algorithm were investigated and implemented in a 12-cell series (12S)
battery-pack prototype. The experimental results show that the system can diagnose the faults and
carry out the corresponding protection and recovery actions. In addition, the proposed battery pack
has been shown to estimate the SOC successfully under the actual load profile from an electric vehicle.
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The rest of this paper is organized as follows: Section 2 presents the system design by different
modules. It is followed by Section 3 that deals with the implementation and demonstration of the
proposed system in a 12S battery-pack prototype. Finally, Section 4 concludes the work.

2. Proposed Battery-Power System Design

This section encompasses the design and development of a smart LIB battery-power system
for SOC estimation, intelligent fault diagnosis and protection for a typical energy-storage module
consisting of a 36 V battery pack module with 12-cell series LIBs (ANR26650M1-B) that can be scaled
up to 120 cells in series.

2.1. System Structure Design

The proposed smart LIB system has three main parts: controller hardware that includes
a microcontroller (MCU) with necessary interfaces and peripherals, embedded software for SOC
and fault diagnosis implementation, and a 3.5-inch touchscreen thin-film-transistor liquid-crystal
display (TFT LCD) as a user interface for data display and system configuration. The overall system
structure is shown in Figure 1.
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1 (Status display, system configuration)
1
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Control Board
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o o oo oo oo oo oo s s s om0 e Control Signal

Figure 1. Overall system architecture of proposed smart battery-power system (LCD: liquid-crystal
display, SOC: state-of-charge, CAN BUS: controller area network bus, UART: universal asynchronous
receiver-transmitter).

The power system periodically measures the voltage value of each cell and the battery pack’s
current and voltage using suitable analog-to-digital converters (ADCs) and sensors. The controller
can perform the SOC estimation and fault-diagnosis algorithms in real-time using measured voltages,
current values, temperature values ands the parameters obtained from the touch screen LCD (such as
the battery-cell material, battery-cell capacity, battery-cell maximum discharged current and battery
topology). The SOC estimation and fault diagnosis results will be displayed on the LCD and sent
to the host PC for further processing via a universal asynchronous receiver—transmitter (UART).
If the battery pack is grouped into more than 12 cells in series, the controller area network (CAN
bus) will communicate with other peer systems or the master system. However, the heat generated
from the charging or discharging switches affects the performance of the power system during the
high-current application. A dual-path switching board is designed specially to separate the charging
and discharging paths to decrease the heat generated from the switches. In addition, a phase-change
material (PCM) capable of storing the heat generated will be used. The heat generated is estimated to
be reduced by 50% on the discharging path.
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2.2. Data Acquisition and SOC Estimation with Self-Initialization Capability

During the system running process, many parameters, such as the cell voltage, temperature,
pack voltage and current, must be collected in real-time. The status of the battery pack, such as SOC,
is required for continuous fault diagnosis. Therefore, the accuracy of the SOC estimation is critical to
the system performance. A high-accuracy data-acquisition method using the LTC6804 is selected as
an analog-to-digital converter to monitor the battery pack. It can measure the battery cells with a total
measurement error of less than 1.2 mV. The measurement range from 0 to 5 V makes the LTC6804
suitable for the LIB application, as it does not consume much power. The speed of the data acquisition
is fast enough with the 12-cell voltages that are sampled at 290 ps. However, lower data-acquisition
rates can be used for higher noise reduction. The configuration of this hardware module can be seen in
Figure 2. The precision of the LTC6804 was around 0.3%. However, the overall system accuracy can
be affected by the print circuit board (PCB) design. Nevertheless, the precision target of 6% can be
obtained by continuous calibration for the case of a lower-current application.
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Figure 2. Hardware configuration of data-acquisition module of battery cells (RC: resistor capacitor,
SPI: Serial Peripheral Interface).

The releasable capacity (Cieleasable) Of an operating battery is the released capacity when it is
completely discharged. The SOC is defined as the percentage of the releasable capacity relative to the
battery-rated capacity (C,teq), given as follows:

SOC = Creleaseable/ Crated % 100%. (1)

A fully charged battery has the maximal releasable capacity (Cmax), which can be different from
the rated capacity. In general, Ciax declines as time increases. Hence, the Cpax can be used for
evaluating the state-of-health (SOH) of a battery:

SOH = Cuax/Crated % 100%. @)

When a battery is discharging, the depth of discharge (DOD) can be defined as the percentage of
the capacity that has been discharged (Ciejeased) relative to Cpateq:

DOD = Creleased /Crated x 100%. 3)
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With a measured battery current (I;), the difference of the DOD in an operating period (T) can be
computed by:

j~t0+T Ld

_ Jh i 0,

ADOD = x 100%. @)
rated

By considering the SOH, the SOC is estimated as:
SOC(t) = SOH(t) — DOD(¢). ®)

In order to improve the convergence performance of SOC estimation, an accurate method to
determine the initial status of the batteries will be used. However, unlike the lab environment,
it is hard to know the exact initial SOC and DOD of the battery. Therefore, a self-initialization
method for the battery system is proposed and implemented to provide prior configuration during the
initialization stage.

At the charging stage, the variations of the battery voltage and battery current when the battery
is charged by the constant current-constant voltage (CC-CV) mode are usually specified by the
manufacturer. With the constant charging current, the battery voltage increases gradually and reaches
the threshold. Once the battery has been charged by the constant voltage mode, the charging current
reduces rapidly before it more gradually decreases. Eventually, the current will reach almost zero when
it is fully charged. This charging curve can be converted into the relationship between the charging
voltage and the SOC, during the constant current stage. By using the relationship between the charging
current and the SOC during the constant-voltage stage, the initial SOC value can be obtained.

At the discharging stage, the typical voltage curves at different discharging currents are given
by the manufacturer. A higher current will cause a faster decline in the terminal voltage, and lead to
a shorter operation time. The relationship between the SOC and the discharging voltage at different
currents can be obtained. At the open-circuit stage, the relationship between open-circuit voltage
(OCV) and SOC is needed. The battery is discharged by different currents before disconnecting from
the load. The OCV can be used to estimate SOC if a long period of relaxation is given for the transient
to settle to its steady state. Figure 3 is the flowchart to indicate the self-initialization procedures for
SOC estimation when the system restarts after a long period of relaxation.

Estimate SOC(0) by
0CV~SOC, DOD(0) =0
SOH(0) = 100 %

200 ms delay
Estimate next SOC,
ODD. SOH

Read

EEPROM
Retrieve data: SOC(0), v- Finish charging
DOD(0), SOH(0) or discharging

|
N Y
m Update
ocv EEPROM

Figure 3. Flowchart of SOC self-initialization and updating (DOD: depth of discharge, SOH: state-of-charge,
OCV: open circuit voltage, EEPROM: electrically erasable programmable read-only memory).

2.3. Smart Fault-Diagnosis Strategies

As the LIBs provide a high-energy-density power, the system must be able to detect the
abnormality in real-time to ensure the safety of the users and efficient power supply under unexpected
conditions, such as an external short circuit. The safety of Li-ion batteries depends on the attributes of
system design, such as electronics, estimation algorithms, and thermal and mechanical characteristics,
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regardless of electrochemistry. They should be equipped with the capability to diagnose the faults,
and perform a corresponding corrective action. In addition, they need to carry out a self-recovery
action after the fault conditions are eliminated.

2.3.1. External Short-Circuit Fault Diagnosis of a Battery Pack

The external short-circuit to the power system is a common fault that happens during installation
or uninstallation processes of the battery-power system. Dual diagnosis and protection schemes are
designed and implemented into the system to ensure that the fault can be isolated reliably and timely
without affecting other components. The hardware design for the external short-circuit can be seen
in Figure 4. The dual diagnosis and protection schemes consist of the following analog and digital
diagnosis and protection systems:

(a) Analog diagnosis and protection scheme: this scheme detects the fault by a specially designed
analog circuit. Once the fault is detected, the circuit will inform the actuator (i.e., the switching
board within the control board in Figure 1) to carry out the protection action immediately.
This avoids polling time of the software algorithm. The output signal will reset, and the system
will recover once the fault condition has been eliminated.

(b) Digital diagnosis and protection scheme: this method periodically detects the faults by software
polling. The strategy is as follows: if the discharge current is more than twice the power-pack
maximum current, Imax, the current will vary across the batteries to enable the external
short-circuit fault to be detected. The MCU will give a signal to perform the protection action.
This ensures the fault is isolated effectively when the analog diagnosis and protection scheme
does not work properly. The output signal will reset to its normal state once the fault condition
has been eliminated. A flowchart of the digital diagnosis and protection scheme of the external
fault diagnosis is depicted in Figure 5.
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Figure 4. Dual-protection hardware design for external short-circuit (ESC) to microcontroller (MCU).
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Figure 5. Diagram of the digital diagnosis and protection scheme for external-fault diagnosis.
2.3.2. Fault Diagnosis of Battery Cells

The over-charged, over-discharged, over-current and over-temperature conditions are the four
different fault conditions of the battery cells. They can cause permanent damage to the battery
cells. As these fault conditions are related to the parameters of the battery, they are included in
the fault diagnosis. Battery charge and discharge involve complex chemical and physical processes.
However, the over-charged, over-discharged and over-current states can also lead to fire due to the
explosion of the cells. To circumvent these problems, the battery-charging or discharging voltage needs
to be monitored continuously in real-time. If the upper or lower cut-off voltage or the current reaches
the maximum value, the system controller will use the over-charged/over-discharged/over-current
protection to stop the charging or discharging of the battery cells.

Similarly, over-temperature is another fault to be avoided. In the 12S system prototype,
six thermistors are attached to the gaps between every two battery cells to monitor the inner-cell
temperatures. A two-level reporting and protection scheme, as well as the self-recovery scheme with
a temperature window, are proposed. If the temperature reaches 50 °C, the controller will trigger the
first-level protection action to alert the users without interrupting the charging or discharging processes.
However, if the cell’s temperature reaches 60 °C (i.e., quite high for a cell), the controller will trigger
the second-level protection to stop the charging/discharging process immediately. The controller
will trigger the self-recovery process automatically when all the cell’s temperatures drop to 40 °C.
The flowchart of the fault diagnosis and protection scheme of over-temperature is shown in Figure 6.
The system will detect the faults mentioned above to allow protection to take place immediately.
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Figure 6. Flowchart of the fault diagnosis and protection scheme for high temperature.
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2.3.3. Open-Wire Fault Diagnosis

In the multi-cell LIB pack, the voltage of each cell needs to be monitored in real-time. In addition,
battery-cell balancing is required for the cells that are unbalanced, that is, when the SOC of one or
more cells are unequal. Therefore, there are n + 1 (n is the cell number in the battery pack) wires
from the cells to the balancing board. It is often difficult to ensure that all the wires are always
connected properly during the actual operation. Some of the wires may be loose or disconnected due
to frequency impact or vibration from the mechanical structure that encloses the cells. The floating
voltage of the LTC6804 input pins will be around 0, or higher than 5 V when the open-wire condition
occurs. Based on the floating-voltage sensor, the fault-diagnosis strategy is proposed to diagnose the
open-wire fault. The failure will be displayed via the graphical-user-interface (GUI) to alert the user of
the fault that requires attention. In this case, it is not possible to automatically connect the wire, as it
will require human involvement. The flowchart of the diagnosis strategy can be seen in Figure 7.

Cell#n=0

Collect cell _
voltage: Ven [
Cell#:n=n+1
Report fault
detected for Cell #n

Report normal for
Cell #n
Cell#:n=n+1

Figure 7. Flowchart of open-wire fault diagnosis strategy.

A dual-entrance interface is designed for different users to configure the system for the initial
use. Several default parameters for various batteries have been stored in the system memory for ease
of operation. The ordinary users do not have to worry about the exact values. Instead, they need to
select the types of batteries, the battery-pack grouping information, the battery-cell rated capacity
and the maximum discharging current. The system will automatically initialize the corresponding
parameters according to the information provided. Currently, four lithium battery types, such as
LiFePQy, Li-ion, LiCoO, and lithium polymers, are supported in the proposed system. In addition,
the system has an option to customize the parameter values such as protection-voltage level and
charging- or discharging-current limitation for further analysis. The entrance design for system
parameter configuration is described in Figure 8.

Control Board
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1 modules !
, || System configuration module A 1
advanced user ! E

Figure 8. Entrance design for system parameter configuration.
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3. Experimental Results

The proposed smart LIB system is implemented as a 12-cell series LIB-pack prototype to test
the fault-detection and diagnosis algorithms, as shown earlier. In addition, an actual load profile
for an electric vehicle is used to validate the proposed system after the fault-detection and diagnosis
algorithms. The overall structure and the physical testing system setups are shown in Figure 9.

==

12-cell lithium-ion battery

| Touchscreen
graphical user interface

Figure 9. Test setup for 12-cell series Lithium-ion battery (LIB) and graphical-user-interface (GUI).

In order to increase the flexibility of the power system, the proposed battery-power system
provides a touchscreen LCD interface for users to configure the battery-power system. It consists of
parameters such as battery-cell type, battery-cell rated capacity, maximum discharging current and
battery-pack grouping topology for the battery pack during the first initialization. This open feature
enables the controller to adapt to various types of the battery cell and different topologies. The front
page of the GUI is shown in Figure 10, while the user’s configuration page can be seen in Figure 11.
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Figure 10. Front panel of GUI for proposed battery-power system.
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Figure 11. Configuration page of GUI for proposed battery-power system.
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The front panel in Figure 10 contains information such as the current configuration of the battery pack
and the respective minimum, maximum and mean voltages and SOC value of the battery pack. The other
functional modules that contain the cells” information are shown in Figure 10. In the configuration page,
as shown in Figure 11, four options of the battery-cell types can be selected. The users can choose the
material of the physical cells connected to the control board, the battery-cell capacity and battery-cell
maximum discharging current. The last parameter is the grouping topology of the battery pack that
depends on the physical battery-cell layout, that is, series or parallel. The system can be initialized to
proceed with the proper function and fault diagnosis operation. However, if the series-cell layout is
defined by the actual parallel-cell configuration, the system will not function for safety purposes.

The data-acquisition module of the power system is essential for the SOC estimation and fault
diagnosis. It will affect the overall performance of the system. In this paper, an accurate data-acquisition
module for the battery cell is implemented with a total measurement error of less than 1.2 mV.
The precise data ensure that the accuracy of the SOC estimation and the safety of the system can be
monitored. The cell-monitoring page of the GUI can be seen in Figure 12. For example, the system can
estimate the SOC of each cell. The SOC values are quite close to the values obtained by the extended
Kalman filter (EKF). The proposed SOC estimation exhibits a close match with the EKF under the
regular pulse discharge test (PDT), as seen in Figure 13. Here, the 2 Resistor-Capacitor (RC) equivalent
circuit model (ECM) is applied for the EKF-based SOC estimation. The function of the SOC with
respect to Upc is described as follows [33]:

Uoc = 3.397 — 0.195OC + 0.087 1og SOC — 0.054 log (1 — SOC), (6)

where SOC € (0, 1).
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Figure 12. Cell-monitoring panel of GUI for proposed battery-power system.
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Figure 13. Comparison of Extended Kalman filter (EKF) with proposed SOC estimation under regular
pulse discharge test.
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A detailed battery modeling and EKF-based SOC estimation can be found in the reference [33].
Note that the proposed battery system can also allow different SOC-estimation algorithms to be
programmed and compared.

To further validate the proposed SOC-estimation algorithm under realistic and dynamic situations,
the New European Driving Cycle (NEDC) load profile for a typical electric vehicle was applied to the
12-cell series battery-pack prototype to simulate the electric vehicle applications under the ambient
temperature effect and compared with the standard EKF-estimation approach. The NEDC load profile
is shown in Figure 14a, subjected to the ambient temperature. It is worthy to note that the load profile
had been scaled down to fit the battery pack. The programmable DC electronic load was used to run
the pre-programmed NEDC load profile. Before the experiment, the battery pack was fully charged to
obtain an initial SOC of 100%. The calibrated Ampere-hour (Ah) data reading from the equipment was
used as the reference. As shown in Figure 14b, the SOC estimation of the proposed SOC model can
follow the reference SOC robustly. Despite the load profile changing drastically, the SOC error can
rebound after a short period of drift. On the other hand, the SOC-estimation result from the EKF-based
SOC model drifted away after several test cycles. In summary, under the NEDC test profile, which is
used to simulate the load in reality, the proposed SOC-estimation method performs better than the
EKF-based method.
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Figure 14. (a) New European Driving Cycle (NEDC) current profile; (b) SOC comparison with
EKF-based model.

After the SOC estimation was validated, the dual diagnosis and protection schemes were tested
under different fault conditions. In the 12-cell series battery-pack system, the maximum current of the
battery cell was set to 10 A with a maximum delay of 10 s after the fault is detected. This provides
limitations on the current and the time delay used in the fault diagnosis. Note that these values can be
adjusted. Figure 15 shows the fault-detection and self-recovery curve. Once the external short-circuit
occurred, the analog scheme detected the fault within a very short time and generated a protection
signal to turn off the discharging switch, as shown in Figure 15. It took around 100 ms before the
fault was detected. Thus, the result shows that the external short-circuit fault can be detected and the
system can later recover from the fault.
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Figure 15. External short-circuit fault detection and self-recovery curve.

The over-charged and over-discharged states are another two faults that can cause permanent
damage to the internal structure of batteries. In the prototype system, over-charged and over-discharged
fault-diagnosis schemes are both integrated. The protection and self-recovery processes can be seen
in Figures 16 and 17, respectively. As observed in Figure 16, after the batteries were fully charged,
the over-charged fault was reported, and the charging switch was turned off by the controller to isolate the
charging module from the cells. To trigger the charging function, the charger needs to be removed to allow
the charging module to recover automatically. Similarly, the over-discharged fault was detected when any
cell of the battery pack reached the cut-off voltage, as shown in Figure 17. The discharging switch was
turned off to isolate the battery from the output module or load. Using the self-locking and self-recovery
function, the over-charged and over-discharged faults can be managed effectively to prevent damage to
the batteries and possible injury to the user. Similarly, over-current, over-temperature and broken-wire
fault diagnoses of the battery system were implemented using the proposed schemes in the actual
battery-power system.
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Figure 16. Over-charged fault detection and self-recovery curve.
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Figure 17. Over-discharged fault detection and self-recovery curve.

4. Conclusions

In this paper, an overall structure of a 12-cell series LIB power system integrated with smart
real-time fault-diagnosis and self-recovery schemes was proposed and implemented. Several common
faults, such as the external short-circuit, over-charged, over-discharged, over-current, over-temperature
and open-wire faults, were investigated and validated in the actual implementation. The experimental
results of LIBs under the real load profile confirmed the efficacy of the state-of-charge estimation and
fault diagnosis capabilities for the electric vehicle application. It ensured the safety of the users and,
in particular, prolonged the life of the battery cells in an electric vehicle with human presence. Future
work will include the study of the aging and recycling of cells to improve the battery performance at
a reasonable implementation and operating cost.
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Abstract: This paper presents an improved battery parameter estimation method based on typical
operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the
conventional estimation methods, the proposed method takes both the constant-current charging and
the dynamic driving scenarios into account, and two separate sets of model parameters are estimated
through different parts of the pulse-rest test. The model parameters for the constant-charging
scenario are estimated from the data in the pulse-charging periods, while the model parameters
for the dynamic driving scenario are estimated from the data in the rest periods, and the length
of the fitted dataset is determined by the spectrum analysis of the load current. In addition,
the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed,
and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure
a higher model fidelity. Simulation and experiment results validated the feasibility of the developed
estimation method.

Keywords: lithium-ion battery; operating scenario; equivalent circuit modeling; parameter estimation

1. Introduction

Lithium-ion batteries have been widely used in the energy storage systems of hybrid electric
vehicles (HEVs) and pure electric vehicles (EVs) because of their low self-discharge rate, high energy
and power densities. To ensure the safe and reliable operation of lithium-ion batteries, the battery
management system (BMS) is of significant importance. The main task of a BMS includes monitoring
of critical states, fault diagnosis and thermal management [1-7].

1.1. Review of the Literature

The performance of a BMS is highly dependent on the accurate description of battery
characteristics. Hence, a proper battery model, which can not only correctly characterize the
electrochemical reaction processes, but also be easily implemented in embedded microcontrollers,
is necessary for a high-performance BMS. There are two common forms of battery models available in
the literature: the electrochemical model and the equivalent circuit model (ECM). The electrochemical
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model expresses the fundamental electrochemical reactions by complex nonlinear partial differential
algebraic equations (PDAEs) [8]. It can accurately capture the characteristics of the battery, but requires
extensive computational power to obtain the solutions of the equations. Hence, such models are
suitable for the battery design rather than the system level simulation. In contrast, the ECM abstracts
away the detailed internal electrochemical reactions and characterizes them solely by simple electrical
components; thus, it is ideal for circuit simulation software and implementation in embedded
microcontrollers. The accuracy of the ECM is highly dependent on the model structure and model
parameters. Theoretically, a higher order ECM can represent a wider bandwidth of the battery
application and can generate more accurate voltage estimation results. However, the high order
ECM can not only increase the computational burden, but also reduce the numerical stability for
the further battery states” estimation [9,10]. Hence, considering a tradeoff among the model fidelity,
the computational burden and the numerical stability, the second order ECM is employed in this
paper [11-18]. The common structure of the second order ECM is illustrated in the top subfigure of
Figure 1, where the open circuit voltage (OCV), which is a function of state of charge (SoC), stands
for the open circuit voltage, R;, is the internal resistance, which represents the conduction and charge
transfer processes [19-21], and two resistor-capacitor (RC) networks approximately describe the
diffusion process. Among them, the short-term RC network models the fast dynamics diffusion
process (Part A in the bottom subfigure of Figure 1), and the long-term RC network represents the
slow dynamics diffusion process (Part B in the bottom subfigure of Figure 1). The above model
parameters can be identified either through the time-domain or the frequency-domain parameter
extraction experiments. For the time-domain parameter estimation methods, model parameters are
usually identified through fitting the voltage response from the parameter extraction experiment
with the exponential-based functions. The electrochemical impedance spectroscopy (EIS) test is the
commonly-used frequency-domain parameter extraction experiment. Compared to the time-domain
test process, one limitation of the EIS test is that the amplitude of the current excitation is so low that
the battery can be considered as equalized during the whole test process, which seldom happens
in HEV/EV applications. In order to overcome the above drawback, references [22-24] propose
superimposing the direct current (DC) offset over the EIS signals to determine the current dependency
of impedance parameters. However, since significant time is required for the EIS test, the battery
SoC changes significantly during the test procedure if the amplitude of the superimposed current
is improper. This can reduce the parameter estimation accuracy and make this method practically
not applicable at moderate and high current rates [25,26]. Based on the aforementioned analysis, the
second order ECM with parameters estimated by the time-domain analysis is discussed in this paper.
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Figure 1. The second order equivalent circuit model (ECM). OCV, open circuit voltage.

Generally speaking, batteries usually operate in two scenarios in automotive applications:
The constant-current (CC) charging scenario and the dynamic driving scenario [27]. Usually, the
motions of lithium ions under the continuous external excitation (representing the CC charging
scenario) and the discontinuous external excitation (representing the dynamic driving scenario) show
different characteristics, and this difference is related to the diffusivity of ions. In other words,
the model parameters, especially the RC network parameters, show diverse values under different
operating scenarios [21,28]. Therefore, battery parameters should be identified separately according to
the actual operating scenarios. Abundant research work has been conducted to seek the accurate ECM
for the specific operating scenario. For the charging scenario, a universal model based on a simple
mathematical equation with constant parameters is proposed [29-31]. The mathematical equations
include one polynomial component and one or two exponential functions, and relevant parameters
can be obtained by fitting collected charging profiles. Verification results in related literature show that
the overall model output profiles match well with the experimental data, but there still exists obvious
estimation errors during certain periods (at the beginning of the plateau region and the last charging
region). This is mainly caused by the constant parameters during the whole charging process since
the actual model parameters, such as time constants, may vary greatly at different SoC regions [32].
The works in [32-34] estimate the model parameters through the data in the rest periods of the
pulse-rest test at different SoC points, and the estimated model parameters can be shown as functions
of SoC. However, the charging concentration process under continuous excitation is different from the
charging recovery process under the rest period [19,35]; thus, the estimated model parameters may not
accurately represent the charging characteristics of the battery. For the dynamic driving scenario, many
modeling approaches have been reported on the basis of the pulse discharge analysis. In [36-38], model
parameters are obtained by simple algebraic operations. This is straightforward, but large estimation
errors exist. A more accurate method is to fit the voltage response of the whole rest period with an
exponential function [39-41]. The limitation of this method is its poor dynamic performance. In order
to improve the battery model accuracy, Hu and Wang in [42] propose a two time-scale identification
algorithm to separate the identifications of slow and fast battery dynamics. This method shows better
frequency response matching without increasing computational complexity. Xiong in [17] uses the bias
correction method to ensure the battery model prediction performance. This approach shows excellent
performance and high accuracy against uncertain operating scenarios and battery packs. Instead of the
conventional pulse-rest test, [43,44] propose two types of application-oriented parameter extraction
tests, leading to a fast dynamics battery model with high fidelity. One major limitation of this kind of
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method is that the parameter extraction test corresponds to a specific operating scenario. If the actual
load profiles show obviously different bandwidths under different working conditions, the parameter
extraction test should be re-implemented. One solution to overcome this drawback is to conduct as
many parameter extraction tests as possible to cover the typical load characteristics, but this requires
an extensive amount of time and effort.

1.2. Contributions of This Paper

Based on the battery parameter estimation methods discussed above, it can be concluded that
seldom does work in the previous literature discuss a battery model considering both the CC charging
and dynamic driving scenarios. Hence, the focus of this paper is to propose a battery parameter
estimation method, which is applicable to common operating scenarios in HEV/EV applications.
The main contributions are: (1) both the constant-current charging and the dynamic driving scenarios
are taken into consideration, and two separate sets of model parameters are estimated through different
parts of the pulse-rest test; (2) the model parameters for the constant-current charging scenario are
estimated from the data in the pulse-charging periods; (3) the model parameters for the dynamic
driving scenario are estimated from the data in the rest periods, and the length of the fitted dataset
is determined by the spectrum analysis of the load current; (4) the unsaturated phenomenon caused
by the long-term RC network is analyzed, and the initial voltage expressions of the RC networks
in the fitting functions are improved to ensure a higher model fidelity; (5) both the simulation and
experiment results agree with the analysis and demonstrate the improvement of the proposed battery
parameter estimation method over the existing ones.

2. Parameter Extraction Procedure

2.1. Parameter Extraction Test Design

It can be seen from Figure 1 that the second order ECM contains one OCV-SoC relationship
and five impedance parameters (Rin, Rshorts Cshorts Riong and Ciong), which need to be estimated.
Theoretically, all of the impedance parameters mentioned above should be multivariable functions of
SoC, the C-rate of the load current (C is the amplitude of the current with which the battery can be
fully discharged in 1 h), temperature and cycle numbers [39,45]. These functions not only make the
parameter extraction process complex and time consuming, but also increase the computational burden
of the BMS. Hence, within certain error tolerance, some relationships can be simplified or ignored.
Usually, aging periods are generally in the range of months to years. While for the system-level
simulations of automotive applications, the time periods of interest are typically in the range of
seconds to hours or days in special cases [43,45]. Hence, the long-term aging effect is usually ignored
in the parameter estimation process and handled separately in most cases [39,46].

In this paper, all of the model parameters are estimated through the discharging/charging
pulse-rest test at room temperature (22 °C-25 °C). A lithium-ion polymer battery with nickel-
manganese-cobalt-based cathode and graphite-based anode is under test. Its specifications are given
in Table 1, and the detailed experimental steps are described as follows.

Table 1. Specification of the tested battery.

Charge Capacity 40.99 Ah

Discharge capacity 40.89 Ah
Nominal voltage 3.7V
Charge cutoff voltage 42V
Discharge cutoff voltage 27V

The discharging pulse-rest test starts with a fully-charged battery. In each cycle of the test, the
battery is discharged at a 2% SoC step with C/2 constant current, then followed by a rest period.
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This cycle is repeated until the battery is fully discharged. Data points (including current, voltage,
charging capacity and discharging capacity) are collected with the sampling frequency of 1 Hz.
The relevant voltage and current profiles of the discharging pulse-rest test during the 66%—64% SoC
interval are plotted in the bottom subfigure of Figure 1. The charging pulse-rest test is conducted
similarly, that is it begins with a fully-discharged battery, then charged at a 2% SoC step with C/2
constant current and followed by a rest period. In order to eliminate the polarization voltage, the
OCV values are extracted at the end of each rest period. Too short a rest time leads to a large OCV/
estimation error, whereas too long a rest time makes the whole test time consuming. It has been shown
previously that for the lithium-ion polymer batteries, electrochemical reactions are negligible after a
2-h rest period [47,48]. Therefore, the rest time in this paper is predetermined as 2 h.

2.2. Parameter Estimation Algorithm

The electrical behavior of the ECM is expressed as the following state space formalism:

dVRC,short/ dt _ 71/ Rshortcshort 0 VRC,short l/ Cshort I (1)
dVRC,long /dt 0 -1/ Rlongclong VRC,long 1/ Clong
Vi= OCV(SOC) + IRjn + VRC,short + VRC,lor\g (2)

where Equation (1) is the state equation and Equation (2) is the output equation, Vrc short and VRC,long
represent the voltages across the short-term and the long-term RC networks, respectively, OCV(S0C) is
an eighth-order polynomial equation as a function of SoC, V; is the battery terminal voltage and the
positive current I represents charging. Ri, represents the internal resistance; Rgport and Rjong denote the
diffusion resistances; and Cgport and Cong represent the diffusion capacitances. Among them, Ry, can
be directly obtained from each pulse-rest cycle through Equation (3); the corresponding four variables
(V1, Vo, I and I,) are marked in the bottom subfigure of Figure 1, and the variation of identified R,
with SoC is shown in Figure 2. SoC can be calculated through Equation (4), in which C,, denotes the
capacity of the battery in Ah.

a-n
R — 3
mn Iz _ Il ( )
SoC = SoC L d
= 0 I 4
oC = 50C(0) + g [ 160) @
0 20 40 60 80 100
SoC (%)
Figure 2. R;, variation with different state of charge (SoC).
For the CC operating scenario (I # 0), the analytical solutions of Equation (1) are derived as:
ot ot
VRC,short(t) = VRC,short (O)e T:hm + IRshort(l — e Tshort ) )

__t
VRC,long(t) = VRC,long (0)6 Mlong ] Rlong(1 —e long )
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where VRcshort(0) and Vrc,long(0) are the initial voltages of corresponding RC networks and
Tshort = RshortCshorts Tlong = RiongClong, which represent the short-term and the long-term time
constants, respectively.

Substituting Equation (5) into Equation (2), the output equation is rewritten as:

__t -t ot __t
V;‘(t) = OCV(SDC> + IRj, + VRC,shnrt<O>g Tshort - VRC,shnrt(O)E Flong - IRshnrl<1 —e T’hun) + lRlnng(l —e Tkmg) (6)

During the rest period, where there is no current excitation (I = 0), Equation (6) can be simplified to:

t

__t -
Vf(t) = OCV(SOC) + VRC,Short(O)e Tshort - VRC,long(O)e long (7)

With the knowledge of R, and charging/discharging OCV-SoC relationships, RC network
parameters (Rshorts Cshorts Riong and Clong) can be obtained through fitting the experimental data
with relevant exponential functions, as

__t __t
Y = IRgport(1 — € “hort) + IRpgng (1 —e "oms) 1 #0
t

®)
__t -
y= VRC,short (O)E Tshort - VRC,long(O)e long I=0

where y = Vi — OCV(S0C) — IR;,. Since there only exists 2% SoC variation during each
pulse-charging/discharging period, it is reasonable to make an assumption that the RC network
parameters keep constant during this period. In addition, considering that the battery has converged
to the steady state after a 2-h rest, Vrc short(0) and Vrc jong(0) are set as zero at the beginning of the
pulse-charging /discharging period.

Based on the above analysis, the RC network parameters can be estimated through fitting the
experimental dataset with Equation (8). The cost function of the curve fitting method ] is to minimize
the sum of squared errors between the estimation results and the measured data, subjected to the
following constraints:

n
J=min ¥ [V (t) — Ve (r, T 1)
5T k=1

s.t. Rehorts Tshorts Rlongr Tlong >0

©)

where f; is the input time sequence, 7 is the length of the fitted experimental dataset, r = [Rshort, Riongl,
T = [Tshort Tlongl, Vf is the model estimated voltage and V" is the voltage measurements from the
pulse-rest test.

3. RC Network Parameters Estimation

Based on the Introduction in Section 1, the RC network parameters show diverse values under
different operating scenarios. In HEV/EV applications, batteries usually work in two typical scenarios:
the CC charging scenario and the dynamic driving scenario. In the CC charging scenario, continuous
external charging currents are applied to the batteries, and the transport of ions is mainly driven by the
electric field. While for the dynamical driving scenario, especially for the urban driving condition, the
load current has the characteristics of discontinuous amplitude values and a wide-spread frequency
spectrum. In this case, besides the electric field, the gradient in concentration is also largely responsible
for the transport of ions within batteries [45]. Therefore, the RC network parameters employed in
different operating scenarios should be identified through different identification approaches.

3.1. RC Network Parameters for the CC Charging Scenario

The polarization voltage (Vp) is adopted to illustrate the variation of RC network parameters under
the CC excitation. According to the aforementioned battery output equation, Vp can be obtained as:

VP = VRC/short + VRC/long = Vt - OCV(SOC) - IRin (10)
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The Vp-50C profile during the C/2 rate CC charging process is shown in Figure 3. Since in the
HEV/EV application, batteries seldom work in the extremely low or high SoCs, the voltage profile
from 10%-90% SoC is covered. It can be observed from Figure 3 that the polarization voltage increases
dramatically in Stage I (10%—-18% SoC), then it declines slowly and shows a concave shape curve
in Stage II, with the local minimum value at around 30% SoC. During Stage III (40%—-70% SoC),
the polarization voltage becomes relatively stable. After that (70%-90% SoC), the polarization voltage
rises sharply.

0
10 20 30 40 50 60 70 80 90
SoC (%)

Figure 3. Vp versus SoC under constant-current (CC) charging.

The variation of the polarization voltage during the above SoC range is closely related to the
internal electrochemical reaction process during charging. In the initial SoC region, a relatively
large amount of energy is needed to form the nucleation on the surfaces of the electrodes; thus, the
polarization voltage increases quickly. Once the nuclei are formed, the following lithium ions’ removal
process needs less energy. This explains the concave shape voltage curve occurring from 18% SoC
to 40% SoC. While in the last charging stage, the lithium-ion concentration increases in the negative
materials. Hence, a large amount of energy is needed to insert the lithium ions, which leads to the
obvious growth of the polarization voltage in the high SoC region. The detailed explanation for the
electrochemical reaction mechanism occurring during the CC charging process can be found in [28,32].

As mentioned in Section 2, the model parameters are estimated through fitting the measured data
either from the pulse-charging period or the rest period. In order to select the proper experimental
datasets that can better describe the charging characteristic of the battery, the profiles of the polarization
voltage during the pulse-charging and the following rest periods, which are also calculated from
Equation (10), are compared in Figure 4. Figure 4a shows the polarization voltage under the
pulse-charging excitation, and Figure 4b plots the absolute values of the polarization voltage during
the following rest. It can be seen from both figures that the shape of the polarization voltage curve
strongly depends on the SoC. In Figure 4a, it is obvious that the final value of the polarization voltage
obtained from 26%-28% SoC is the lowest, which is similar to point C in Figure 3. In addition, the final
values of the voltage curves obtained from 18%-20% SoC and 50%-52% SoC are almost coincident
with each other, which approximately matches the corresponding parts (point B and point D) in
Figure 3. Meanwhile, the relations among the final voltage values collected from 14%-16% SoC,
60%—62% SoC and 80%—-82% SoC are also identical to the relations among point A, point E and point
F in Figure 3, respectively. Hence, it can be summarized from Figure 4a that the final values of the
polarization voltage obtained from different pulse-charging periods are approximately consistent
with the corresponding points in Figure 3. While in Figure 4b, the variation trend of the predicted
stable voltage values differs greatly compared to the results in Figure 4a. This is because in the
pulse-charging period, the ion migration is driven by external electric potential. While in the rest
period, the transport of ions is mainly dominated by diffusion, owing to the concentration gradient.
The detailed explanation of the electrochemical reactions occurring under different load current has
been discussed in [21,45].
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Figure 4. (a) The profiles of Vp at different SoC intervals during the pulse-charging period; (b) the
profiles of | Vp | at different SoC points during the rest period.

Consequently, it can be concluded that the voltage response during the pulse-charging period can
better describe the characteristic of the CC charging process because of the similar current excitation.

3.2. RC Network Parameters for the Dynamic Driving Scenario

3.2.1. Typical Dynamic Driving Scenarios

For the dynamic driving scenario, especially for the urban driving scenario, vehicles accelerate
and brake frequently, which cause the long lasting load current to seldom exist. There are two typical
kinds of standard urban driving cycles, namely the urban dynamometer driving schedule (UDDS)
and the worldwide harmonized light vehicles test procedure (WLTP), which are the American and
European certification cycles, respectively. The load current profiles and the load current amplitude
distributions of the two driving cycles are plotted in Figure 5. It can be observed from Figure 5a,b that
both of the dynamic current profiles vary frequently over the test span. Meanwhile, from Figure 5¢,d,
it can be concluded that: (1) the discharging current accounts for a much larger portion, compared
to the charging current during the regenerative process; (2) among the load currents, the low C-rate
discharging current, particularly around zero-value amplitudes, accounts for a larger portion in both
tests. Hence, the voltage response during the rest period can be employed to estimate the RC network
parameters for the dynamic driving scenario.
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Figure 5. (a) The load current profile of the urban dynamometer driving schedule (UDDS) test; (b) the
load current profile of the worldwide harmonized light vehicles test procedure (WLTP) test; (c) the
load current amplitude distribution of the UDDS test; (d) the load current amplitude distribution of
the WLTP test.

3.2.2. Determination of the Length of the Fitted Experimental Dataset

The diffusion process, which is caused by the gradient in concentration, plays a major role in
the low C-rate load current and rest cases. Since the electrochemical reactions occurring during
the diffusion process are very complex, these reactions can be accurately modeled as infinite
series-connected RC networks with a wide range of time constants (11, T2, ... , ). Usually, the values
of time constants depend on the electrode thickness and the structure of the battery to a great extent,
and typical time constants are in the range of seconds to minutes [45]. The second order RC network
can only approximate the diffusion process by two parts: the fast dynamics part (the short-term RC
network with Tghort) and the slow dynamics part (the long-term RC network with Tjong).

In general, the values of the two time constants are closely related to the length of the fitted
experimental data At. When only the initial segment of the voltage response is employed in parameter
estimation, such as Part A in the bottom subfigure of Figure 1, the voltages across the shorter-term
RC networks have a larger degree of variability, which means that the shorter-term RC networks
have a greater impact on the initial segment of the voltage response. This in turn leads to the smaller
estimated time constants and subsequently ignores the slower dynamics diffusion process. On the
contrary, after the initial phase of the rest period, such as Part B in the bottom subfigure of Figure 1,
the voltages across the shorter-term RC networks have converged to zero; thus, the voltage variation
caused by the shorter-term RC networks is negligible. Instead, the voltages across the longer term RC
networks make a remarkable contribution to the total voltage response. Subsequently, it can be inferred
that the measured data show a slower varying characteristic, which represent the slower dynamics
diffusion process and can be modeled by the RC networks with larger time constants. Hence, if the
whole voltage response of the long time rest period is adopted, data with slower varying values will
account for a large portion, which will lead to the relatively larger estimated time constants. However,
too large time constants will make the model output voltage severely lag behind the actual response
and result in a poor dynamic performance.
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In order to further illustrate the above analysis, a third order RC network circuit is simulated in
MATLAB; two equivalent time constants (T'short and T'jong) are estimated from the different value of At.
In the simulation, the resistances of the three RC networks are all set as 1 m(), and the time constants
are predetermined as t; =40 s, T2 = 200 s and 13 = 2000 s (13 >> 12> 71). The applied excitation consists
of a 400-s pulse-discharging current and a 2-h rest period, and the amplitude of the current is 20 A.
Time constants estimated by different lengths of the voltage response are given in Table 2. It can be
clearly seen from Table 2 that both Tsport and T'jong decrease simultaneously with the reduced value of
At, which is consistent with the previous analysis. Hence, to obtain the appropriate values of the time
constants, At should be predetermined properly, which is illustrated in detail as follows.

Table 2. Equivalent time constant estimation results with different values of At.

At (s) 7200 3600 1800 1400 1200 1000 900 850 800
T'short (S) 88.67 67.18 48.53 45.10 43.74 42.59 42.08 41.83 41.63
T']OH% (s) 971.0 484.3 284.4 256.7 245.3 235.3 230.9 228.8 226.8

k 4049 x 10712 4395 x 107> 0.1448 0.8759  2.154 5.299 8.311 10.41 13.03

! k represents the degree of resistor-capacitor (RC) voltage variability; the detailed expression can referred to in
Equation (13).

During At, the derivative of Equation (13) with respect to T; during the rest period is expressed as:

At|Vre,i(0)] —at
= 5 e T
i

‘ dVge,i 1)

dT,‘

T

where Ve is the voltage across the i-th RC network, i € {1,2,3, ..., j}, Vrc,i(0) is the corresponding
initial voltage, R; is the resistance of the i-th RC network and T; is the time constant of the i-th RC
network, which is subject to 1) < Tp <... < T

After the pulse-discharging period, | Vgc(0) | can be expressed as:

Ve (0)] = [T[R;(1 — ¢ ) (12)

where D denotes the length of the pulse-discharging period.
For the two well-separated time constants t; and Tj,,, (T, > 10T; and 0 <m <j — i), the voltage
across the shorter term RC network Vgc; has a larger degree of variability when satisfying the

following requirement:
dViei/dT;
_ldVeei/dul (13)
|[dVRC,itm/ ATigml

where the constant k denotes the degree of variability, and it is subject to k > 1.
Substituting Equations (11) and (12) into Equation (13), the value of At can be derived as:

_D
Af = In Ri(l —e )Tzz+m TiTitm (14)
- __D . ——
kRiy (1 —e orm )Tzz Tigm — T

In Equation (14), since the values of R; and R, are nearly of the same order of
magnitude [39,43,46], the value of R; /R, can be neglected when compared to the value of Tl_z o/ le ;
thus, At can be simplified as:

_D
(1—e ™)7?

At = In i+m TiTitm (15)

__D . T
k(1—-e rtAm)le Titm — T
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Equation (15) shows that k and T; should be determined before calculating At. In the
aforementioned simulation, the value of k for T, and 13 can be obtained directly from Equation (13),
as shown in Table 2. This indicates that when k is larger than one, the estimated T’short and 'jong are
closer to T; and T1y. This is because the voltage across the RC network with T3 has a lower degree of
variability, compared to those with T and 5. It can be observed from Table 2 that T’y and Tlong are
nearly stable when k is larger than 10. Hence, k is selected as 10 throughout the paper.

In order to set a proper T; in Equation (15), the discrete Fourier analysis of the load current is
employed to determine the lower bandwidth limitation of the ECM. The current spectrums of UDDS
and WLTP tests are shown in Figure 6. It can be observed in Figure 6a,b that there exists a large DC
component (Points A and C) due to the nonzero mean value of the two current profiles. Since the
characteristics of the DC component cannot be modeled by the RC circuit, they are neglected when
determining the length of the fitted dataset. The major low frequency components for the two profiles
are around 0.00146 Hz (point B) and 0.00138 Hz (the mean value from point D to point E), respectively.
Hence, the mean value of the long-term time constant is selected as 704 s. In order to exclude the
voltage variation caused by the larger time constants (larger than 101;), the prior 1-h measured battery
voltage dataset is employed to estimate the RC parameters.
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Figure 6. The spectral analysis of the load current: (a) the urban dynamometer driving schedule
(UDDS) test; (b) the worldwide harmonized light vehicles test procedure (WLTP) test.

3.2.3. Improved Fitting Function

From Equations (6) and (7), it can be observed that only the initial values Vrc short(0), VRC,long(0)
and time constants Tshort, Tiong can be obtained directly from the fitting results; thus, we should do the
further computations to obtain the resistances and capacitances of RC networks.

In [37,39-41], two initial voltages across the RC networks are predetermined as IRgport and IRjong
respectively, from which the resistances of the RC networks can be derived under the knowledge of the
current value. In [49], the capacitances of the RC networks are firstly obtained from the initial voltage
values. Both of the above two methods have an assumption that the capacitors of the RC networks
have already converged to the steady state at the end of the pulse-discharging period.

Usually, in the parameter extraction test, in order to obtain as much data as possible at different
SoC intervals, the length of the pulse-charging/discharging period is usually set as several minutes
(resulting in 2% SoC variation in this paper), while the rest time is usually set as one or more hours
(such as 2 h in this paper) to get an accurate OCV value. For the short-term RC network, the voltage
can easily converge to the equilibrium state during the pulse-discharging process, which is shown in
Figure 7. In other words, there is no current flowing through the capacitor branch of the short-term RC
network during the last stage of the pulse-discharging period; thus, Vrc short(0) at the beginning of the
rest period can be expressed as:

VRC,short (0) = IRshort (16)
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However, for the long-term RC network, the voltage varies continuously due to a relatively
large time constant, as illustrated in Figure 7. The voltage across the long-term RC network has not
reached the equilibrium state at the end of the pulse-discharging period; thus, there always exists a
significant proportion of the load current I(1 — e b/ Tong ) flowing through the corresponding capacitor.
Consequently, VRC,long(O) at the beginning of the rest period should be written as:

__Db_
VRC,long (0) = IRlong(l —e Tong ) 17)

where [ is the value of the pulse-discharging current. Since the SoC variation in each test cycle
is set as 2% in this paper, it can be assumed that the model parameters keep constant during the
pulse-discharging period.
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Figure 7. The voltage curve of RC networks during one cycle of the discharging pulse-rest test.

4. Experimental Results and Discussions

4.1. RC Network Parameter Estimation Results

Based on the aforementioned analysis in Section 3.1, for the case of the CC charging scenario,
the charging pulse-rest test is implemented firstly. The parameters are estimated from the voltage
response of the pulse-charging period, and the estimation results are shown in Figure 8. Figure 8a
plots two estimated time constants; it can be seen that the general order of the magnitude of the
short-term time constant is 10 s; it fluctuates greatly when the SoC changes, especially in the middle
SoC region, while the order of the magnitude of the long-term time constant is 100 s; it is relatively flat
during the whole SoC region. Figure 8b plots two estimated resistances; it can be observed that in the
middle SoC range, the short-term resistance has a larger value, which means that the voltage across the
short-term RC network accounts for more weight during this period. Hence, it can be observed from
Figures 3 and 8b that the variation tendencies of the polarization voltage and the short-term resistance
are similar during the middle SoC range. At the end of the charging process, the short-term resistance
decreases and stabilizes around a very small value, while the long-term resistance increases almost
linearly after 60% SoC, leading to a similar variation tendency of the polarization voltage, compared to
the corresponding part in Figure 3. Hence, it can be concluded that the long-term diffusion process
plays a major role in this stage.
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Figure 8. Parameter estimation results for the constant-current (CC) charging scenario: (a) time
constant; (b) resistance.

For the case of the dynamic driving scenario, the discharging pulse-rest test is implemented, and
the data from the rest periods are adopted in the parameter estimation. According to the analysis
in Section 3.2.2, different time constants will be obtained from the fitted experimental datasets in
different lengths. Firstly, in order to compare the best fit performances for the measured datasets in
different lengths, the measured battery terminal voltage response at 60% SoC during a 2-h rest period
is adopted, and the curve fitting results are shown in Figure 9. It can be observed from Figure 9a that
the fitting result of the whole measured voltage response shows a better performance during most of
the rest period, especially in the equilibrium state. Whereas for the performance of the first 200 s, the
fitting result through the prior 0.5-h measured voltage response yields less errors, which is illustrated
in Figure 9b. Parameter estimation results in Figure 10 show the time constants estimated from the
measured voltage dataset in different lengths, ranging from 30 min-2 h with a 30-min interval. It can
be observed that the time constants, both for the long term and the short term, increase simultaneously
when the length of the fitted dataset increases. In addition, by comparing Figure 10 with Figure 8a,
it can be concluded that the time constants applied in the CC charging scenario and the dynamic
driving scenario show different variation tendencies. Hence, it is essential to adopt different sets of
model parameters for different operating scenarios.
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Figure 9. Curve fitting results of Vp during the rest period of the discharging pulse-rest test at 60%
SoC: (a) the overall result; (b) a close look at the transient part at the beginning.
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Figure 10. Time constant estimation results with different lengths of the experimental dataset: (a) Tsport;
(b) Tlong*

After determining the length of the fitted experimental dataset, we can subsequently obtain the
resistances. Figure 11 shows the Rjo,g estimation results by the conventional fitting function and
the improved fitting function. It can be concluded from Figure 11 that the Rjong estimated by the
conventional fitting function is generally less than the one estimated by the improved fitting function,
because it neglects the (1 — ¢~ P /long) part. In order to demonstrate the advantage of the improved
fitting function, data from the 20th cycle of the discharging pulse-rest test are adopted. In this cycle,
SoC changes from 62% to 60% during the pulse-discharging period, then keeps the value of 60% during
the following rest period. The current profile of the 20th discharging pulse-rest test is applied on the
ECM MATLAB/SIMULINK model as an excitation. Figure 12a,b shows the model output voltage
responses with two sets of estimated model parameters. It can be seen that the model with parameters
estimated by the proposed fitting function outputs better estimation results. The lower voltage error is
mainly contributed by the higher voltage drop across the long-term RC network, as plotted in Figure 12c.
In addition, the root mean square errors (RMSEs) between the measured voltage and the model output
voltage at different SoCs are given in Table 3. It can also be seen that the model parameters estimated by
the proposed fitting function show a better performance for a wide range of SoC.

8

—¢—— conventional fitting function
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Figure 11. Rjo,g estimation results.

Table 3. Comparison of RMSE at different SoC.

SoC (%) 10 20 30 40 50 60 70 80 90

Conventional fitting function 1.802 1.714 2.167 1.540 1.268 2.803 2416 1.558 1.444
Improved fitting function 0.7658  0.7582  0.9707  0.7643  0.5000 1.202 1.242 0.7104  0.6482

RMSE (mV)
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Figure 12. Voltage curves of one cycle of the discharging pulse-rest test (62%-60%): (a) the overview;
(b) a close look; (c) the voltage across the long-term RC network.

4.2. Model Verification

In this paper, the CC charging test and the consecutive UDDS test, which respectively represent
two typical operating scenarios in HEV/EV applications, are conducted separately to verify the
effectiveness of the model. For the charging condition, the battery is charged from 10%-90% SoC.
The typical charging current in practice varies from C/8 to 2C [50], and a C/2 rate current is employed
in the charging test. The consecutive UDDS test starts from 90% SoC to 20% SoC, with a 10-min rest
period in between to simulate a short parking time. In the real application, a specific set of parameters
can be selected by the characteristics of the measured load current. For example, if the values of the
current are approximately constant over a certain time interval, parameters estimated from the data in
the pulse-charging periods are employed. On the other hand, parameters estimated from the data in
the rest periods are employed when the load current shows the characteristics of high dynamics over a
certain time interval.

Firstly, for the CC charging scenario, three model outputs and measured battery terminal voltage
curves are plotted in Figure 13, and the corresponding RMSEs are given in Table 4. It can be observed
that during the whole charging process, the model with parameters estimated from the data in
pulse-charging periods outputs a voltage curve matching the measured curve better because of
considering the continuous external electric driving forces. However, parameters estimated from the
data in the rest periods result in relatively larger errors, especially in the high SoC region. In addition,
during most part of the charging period, the model with parameters used in the dynamic driving
scenarios outputs a voltage higher than the experimental voltage. Comparing the corresponding
curves in Figures 8b and 11, it can be deduced that the higher estimated voltage is mainly caused by
the larger value of estimated Rjong, especially during the middle range of the SoC region.

Table 4. RMSE of model voltage estimation under the CC charging test.

Rest-Period

Pulse-Period

Modeling Methods

Dynamic Condition

RMSE (mV)

18.41 19.76

5.448
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Figure 13. Verification results of different parameter estimation methods under the CC charging test.

In order to verify the robustness of the proposed parameter estimation method, the CC charging
voltage profiles at different initial SoC are plotted in Figure 14. This shows that the estimated voltage
curves match well with the measurement voltage curves, despite the different initial SoC.
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Figure 14. CC charging voltage profiles at different initial SoC: (a) initial SoC = 20%; (b) initial SoC = 40%.
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Secondly, in order to demonstrate the improvement of the proposed battery modelling approach
during the dynamic driving scenario, the model and experimental voltage outputs in the consecutive
UDDS validation are plotted in Figure 15a, the corresponding calculated SoC profile is shown in
Figure 15b, and the detailed figure from 10,000 s to 12,000 s is plotted in Figure 15c. The RMSE of the
aforementioned estimation methods during the whole consecutive UDDS test are also shown in Table 5.
Figure 15b shows that the consecutive UDDS test is started from 90% SoC, and terminated when the
value of SoC drops below 20%. It can be observed from Figure 15c that parameters estimated by the
improved fitting function generally demonstrate a better performance, especially during the dynamic
period (ranging from 10,000 s to 11,400 s), because considering the unsaturated phenomenon of the
long-term RC network. It can also be concluded that the model containing parameters estimated by
the prior 1-h experimental data from the rest period gives voltage output with the least error, especially
during the short-time rest period. In addition, it can be seen from Figure 5a that there exists a relatively
long-time and high C-rate discharging current in the UDDS cycle approximately ranging from 150 s to
300 s. Since larger time constants are obtained from the data of the whole rest period, this causes the
corresponding voltage output not to recover fast after a relatively long-time discharging current, which
leads to an offset of voltage errors in comparison to the voltage error caused by the proposed approach.
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Figure 15. Cont.
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Table 5. RMSE of the model voltage estimation under the urban dynamometer driving schedule
(UDDS) test.

Modeling Methods Conventional = Improved-2h  Improved-1h
RMSE (mV) 8.504 6.329 4.244

5. Conclusions

In this paper, an advanced battery parameter estimation method based on two general operating
scenarios in HEV/EV applications is proposed. Firstly, the second order ECM is employed, and the
model parameter extraction process is described in detail. Considering the typical operating scenarios
in HEV/EV applications, namely the CC charging scenario and the dynamic driving scenario, two
sets of model parameters are extracted from the charging/discharging pulse-rest tests. Specifically,
voltage responses of the pulse-charging phases are selected to estimate model parameters applied
in the CC charging scenario. For the dynamic driving scenario, the model parameters are identified
through the measured data from the rest period. Instead of employing the data from the whole rest
period, only the prior portion of the collected data is selected, and the length of the fitted data is
determined by the frequency spectrum analysis of the load current under two typical urban driving
conditions. In addition, an unsaturated phenomenon caused by the long-term RC network is analyzed
in detail, and subsequently, an improved fitting equation with more accurate initial voltage expression
of the RC network is adopted. Finally, verification tests simulating the CC charging scenario and the
dynamic driving scenario are conducted, respectively, and comparisons between the conventional
and the proposed battery parameter estimation methods are given. Experimental results show that in
both cases, the voltage profiles predicted from the proposed model show a better conformity to the
experimental data.

It is important to note that the proposed battery parameter estimation method for the dynamic
driving scenario only considers the typical urban driving conditions at room temperature. However, the
characteristics of the load current under the other special conditions (such as the highway driving
condition and the extremely cold condition) will be obviously different. For the future work, the
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influence caused by different C-rates of the current profiles, bandwidths of the current profiles and
temperature effects will be considered, and the parameter extraction test will be modified accordingly.
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Abstract: Optimal siting of electric vehicle charging stations (EVCSs) is crucial to the sustainable
development of electric vehicle systems. Considering the defects of previous heuristic optimization
models in tackling subjective factors, this paper employs a multi-criteria decision-making (MCDM)
framework to address the issue of EVCS siting. The initial criteria for optimal EVCS siting are selected
from extended sustainability theory, and the vital sub-criteria are further determined by using a fuzzy
Delphi method (FDM), which consists of four pillars: economy, society, environment and technology
perspectives. To tolerate vagueness and ambiguity of subjective factors and human judgment, a
fuzzy Grey relation analysis (GRA)-VIKOR method is employed to determine the optimal EVCS site,
which also improves the conventional aggregating function of fuzzy Vlsekriterijumska Optimizacijia
I Kompromisno Resenje (VIKOR). Moreover, to integrate the subjective opinions as well as objective
information, experts’ ratings and Shannon entropy method are employed to determine combination
weights. Then, the applicability of proposed framework is demonstrated by an empirical study
of five EVCS site alternatives in Tianjin. The results show that A3 is selected as the optimal site
for EVCS, and sub-criteria affiliated with environment obtain much more attentions than that of
other sub-criteria. Moreover, sensitivity analysis indicates the selection results remains stable no
matter how sub-criteria weights are changed, which verifies the robustness and effectiveness of
proposed model and evaluation results. This study provides a comprehensive and effective method
for optimal siting of EVCS and also innovates the weights determination and distance calculation for
conventional fuzzy VIKOR.

Keywords: electric vehicle charging station; optimal siting; fuzzy Delphi method; combination
weights; fuzzy Grey relation analysis-Vlsekriterijumska Optimizacijia I Kompromisno Resenje (fuzzy
GRA-VIKOR); sustainability; sensitivity analysis

1. Introduction

With the rapid economic development and depletion of natural resources, energy shortages and
climate change have become severe issues for the sustainable development of the present world. China,
as the largest greenhouse gas (GHG) emitter and energy consumer, has proposed the corresponding
strategies for energy utilization. In past a few years, urbanization development and an explosive
demand for automobiles have stimulated an increase in energy consumption and carbon emissions
in the transportation sector. The Chinese transportation sector accounted for about 21% of the total
national energy consumption, as well as 7% of China’s gross carbon emissions [1]. Electric vehicles
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(EVs), as a kind of new environmentally-friendly means of transportation, are an effective way to
tackle the problems related to environment pollution and fossil resource utilization [2]. Therefore, the
Chinese government has devoted considerable resources to promote the adoption of electric vehicles,
and has set up a target of putting five million EVs on the road by 2020 [3]. Meanwhile, a significant
amount of investment has been made to subsidize EV manufacturers and buyers, build charging
stations and posts, and offer tax breaks and other non-monetary incentives.

Charging infrastructure, as the energy provider of electric vehicles, is critical to the development of
an electric vehicle system. The availability of efficient, convenient and economic EVCSs could enhance
the willingness to buy of consumers and promote the development of the sector. Low availability of
charging infrastructure could hinder EV adoption, which could then in turn reduce incentives to invest
in charging infrastructure development [4]. EVCS siting is the preliminary stage of EVCS construction,
and has a significant impact on the service quality and operation efficiency of EVCSs during their
whole life cycle. Therefore, it is essential to establish a proper framework to determine the optimal
sites for EVCSs.

Sustainability in the scope of energy management aims to meet present demand without
compromising the energy utilization by future generations. Sustainable development can be realized
by renewable resources, cleaner production and more efficient technologies. The “sustainability” in
energy management is described as a long-term development integrating three pillars: economic
growth, social development and environment protection [5]. To promote the sustainable development
of the EV industry, optimal EVCS siting should be performed from a sustainability perspective.
Moreover, concerning the diversity of advanced science and technical constraints, technology is
another important perspective to determine the optimal site of EVCSs. Therefore, integrating the issues
of technology, an extended concept of sustainability is proposed to determine the optimal EVCS site,
which has not been addressed in previous studies. In this study, extended sustainability is employed
to determine the initial evaluation criteria for optimal siting of EVCSs, which covers four perspectives,
such as “economy”, “society”, “environment” and “technology”. On this basis, 13 final sub-criteria are
determined by a fuzzy Delphi method (FDM) through a series of intensive questionnaires.

Considering that optimal siting of EVCSs includes multiple factors, a Multiple Criteria Decision
Making model is employed to evaluate the performance of all alternatives under conflicting criteria
in this study. Vlsekriterijumska Optimizacijia I Kompromisno Resenje (VIKOR) is a compensatory
aggregation MCDM method, which has been used to appraise performance in many fields [6-8].
VIKOR has a simple and logical computation procedure that simultaneously considers the closeness
to positive ideal as well as negative ideal solutions [9]. Due to the increasing complexity of
decision-making, more and more qualitative, uncertain and imprecise factors are involved in MCDM
problems [10,11], and thus a fuzzy VIKOR method is constructed to determine the fuzzy compromise
solutions for multiple criteria, which can efficiently grasp ambiguous information as well as the
essential fuzziness of human judgment [12-14]. Moreover, Grey relation analysis (GRA) is used to
modify the conventional aggregating function of fuzzy VIKOR, which can better measure the distance
between fuzzy numbers as well as give a ranking order of alternatives with precise numbers [15-18].
On the other hand, in the application of VIKOR for optimal siting of EVCSs, weighting determination
turns out to be crucial for the final ranking of alternatives. To obtain a better weights determining
system for fuzzy VIKOR, a combination weights system based on subjective judgment and objective
information are introduced in this study. The subjective weights are determined by experts” opinions,
and the objective weights are obtained by the Shannon entropy method. Therefore, in our research, a
hybrid framework on the basis of FDM, combination weights and fuzzy GRA-VIKOR methods will be
employed to determine the optimal sites for EVCSs.

The remainder of this paper is organized as follows: a review of the literature related to the EV
industry, optimal EVCS site determination, and the main contributions of this research can be found
in Section 2. In Section 3, the basic theories of related methods are elaborated. Section 4 presents the
proposed framework for optimal siting of electric vehicle station. The evaluation index system for
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optimal siting of EVCSs is established by FDM in Section 5. Section 6 performs the EVCS siting by
employing combination weighting and a fuzzy GRA-VIKOR model. Results discussion and sensitivity
analysis are performed to check the rationality and robustness of the proposed model and results in
Section 7. Conclusions are drawn in Section 8.

2. Literature Review

The construction of electric vehicle charging stations is important in the whole life cycle of the
electric vehicle industry. Meanwhile, an appropriate site and capacity for EVCS can not only benefit
the related stakeholders, but also promote the sustainable development of the EV industry. Over the
last decade, many studies related to the economic and environmental benefit, influence and technology
in the EV industry have been conducted. Simpson [19] presented a comparison of the costs (vehicle
purchase costs and energy costs) and benefits (reduced petroleum consumption) of PHEVs related
to hybrid-electric and conventional vehicles. By 2011 little was known about the economic rationale
for public fast chargers for electric vehicles, Schroeder et al. [20] aimed to provide an insight into the
business case for this technology in a case study for Germany. Hawkins et al. [21] developed and
provided a transparent life cycle inventory of conventional vehicles and electric vehicles, which verified
that EVs have decreased global warming potential (GWP) relative to conventional diesel or gasoline
vehicles. Matsuhashi et al. [22] developed a process-relational model to estimate lifecycle CO, emissions
from electric vehicles (EVs) and gasoline vehicles (GVs), which indicated that the manufacture and
driving of EVs produces less CO, emissions than that of GVs. Putrus ef al. [23] analyzed the impact of
electric vehicles on existing power distribution networks, including supply /demand matching and
potential violations of statutory voltage limits, power quality and imbalance. Clement-Nyns et al. [24]
pointed out that uncoordinated power consumption on a local scale would lead to grid problems, and
computed the optimal charging profile of plug-in hybrid electric vehicles by minimizing the power
losses and maximizing the main grid load. Mets ef al. [25] presented smart energy control strategies
based on quadratic programming for charging PHEVSs, aiming to minimize the peak load and flatten
the overall load profile. Rivera ef al. [26] proposes a novel architecture for PEV DC charging stations
by using a grid-tied neutral point clamped converter.

Research focused on siting and sizing of EVCSs has received much more attention in recent years.
Liu et al. [27] presented a modified primal-dual interior point algorithm to solve the optimal sizing of
EV charging stations, in which environmental factors and the service radius of EV charging stations
were considered. Wirges ef al. [28] presented a dynamic spatial model of a charging infrastructure
development for electric vehicles in the German metropolitan region of Stuttgart, and generated several
scenarios of a charging infrastructure development until 2020. Jia et al. [29] introduced an optimization
process for the sizing and siting of electric vehicle charging stations with minimized integrated
cost of charging stations and consumers’ costs, in which the charging demand and road network
structure were variables. Aiming at minimizing users’ losses on the way to the charging station,
Ge et al. [30] determines the best location by using a Genetic Algorithm (GA) considering
the traffic density and the charging station’s capacity constraints. Xi et al. [31] developed a
simulation-optimization model to determine the location of electric vehicle chargers, and explored the
interactions between the optimization criterion and the available budget. Sathaye ef al. [32] utilized
a continuous facility location model for optimally siting electric vehicle infrastructure in highway
corridors, and carefully dealt with the influence of demand uncertainty. Pashajavid et al. [33] proposed
a scenario optimization based on a particle swarm optimization (PSO) algorithm to allocate charging
stations for plug-in electric vehicles (PEVs), and a multivariate stochastic modeling methodology based
on the notion of copula is provided in order to develop a probabilistic model of the load demand due
to PEVs. Zi et al. [34] presented an adaptive particle swarm optimization (APSO) algorithm to optimize
the siting and sizing of electric vehicle charging stations, which considered geographic information,
construction costs and running costs. In order to install alternative fuel charging stations at suitable
locations for alternative-fuel vehicles (AFVs), You et al. [35] developed a mixed-integer programming

181



Energies 2016, 9, 270

model to address budget limitations and to maximize the number of people who can complete
round-trip itineraries. Yao et al. [36] developed a multi-objective collaborative planning strategy to
address the optimal planning issue in integrated power distribution and EV charging systems, in
which the overall annual cost of investment and energy losses are minimized simultaneously with
maximization of the annual traffic flow captured by fast charging stations (FCSs). An equilibrium-based
traffic assignment model and decomposition-based multi-objective evolutionary algorithm were
developed for obtaining the optimal solution. Sadeghi ef al. [37] presented a Mixed-Integer Non-Linear
(MINLP) optimization approach for the optimal placement and sizing of fast charging stations, which
considered the station development cost, EV energy loss, and electric gird loss as well as the location of
electric substations and urban roads. Chung et al. [38] formulated a multi-period optimization model
based on a flow-refueling location model for strategic charging station location planning, and then
developed a case study based on the real traffic flow data of the Korean Expressway network in 2011.

After analyzing the literature, it can be concluded that the majority of existing studies related to
the optimal siting of EVCSs are concentrated on Multi-Objective Decision Making (MODM) methods,
such as linear /nonlinear programming, stochastic programming, mixed-integer programming and
multilayer programming. In most cases, heuristic algorithms such as GA and PSO were applied to
tackle the optimal solution. However, there are two major critiques with such MODM approaches.
First, although the aforementioned optimization models are remarkable it is less likely they can be
implemented in practice due to the complexity of modeling real-world problems. Second, optimization
models can only account for quantitative variables such as construction cost and running cost, electric
grid loss, EV energy loss and so on, but are not capable of modeling important qualitative variables
such as ecological environment (e.g., deterioration on soil and vegetation), efc.

In view of this, herein another kind of decision-making method, i.e., the Multiple-Criteria
Decision-Making method will be employed to determine the optimal site of electric vehicle charging
stations from an extended sustainability perspective. The MCDM method can comprehensively capture
the quantitative and qualitative criteria that both play important roles in EVCS site selection. The main
contributions of this paper are as follows:

(1) This is the first study that involves both quantitative and qualitative criteria for EVCS siting from
an extended sustainability perspective, which overcomes the defects of traditional mathematical
programming in addressing qualitative but nevertheless important factors.

(2) The conventional concept of sustainability is improved through integrating the issues of
technology, namely economy, society, environment and technology perspectives, which have
not been considered in previous studies. In this study, the initial criteria are established based
on extended sustainability. Furthermore, to obtain the most reliable consensus among a group
of experts in a shorter time, FDM is employed to determine the final sub-criteria for EVCS
site selection.

(3)  The fuzzy VIKOR method, which shows good performance in the decision-making of alternatives
selection, has been applied in many fields. To the best of our knowledge, this is a novel hybrid
MCDM technique based on combination weights and fuzzy GRA-VIKOR for the optimal siting of
EVCSs, which also extends the application domains of the fuzzy VIKOR method. The proposed
model addresses the fuzziness and uncertainty of subjective factors and human judgment, and
additionally it considers subjective and objective information within the weights calculation
process. Moreover, GRA are used to measure the distances of fuzzy numbers between alternatives
to ideal solutions in this study, which can better measure the distance between fuzzy numbers as
well as provide a ranking order of alternatives with precise numbers.

(4) Since experts with various knowledge backgrounds may have different priorities as their main
objective, it is essential to probe the impacts of sub-criteria weights on the final results. This study
is the first paper to research the economy, society, environment and technology perspectives for
optimal siting of EVCSs by changing the sub-criteria weights.
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3. Research Method

3.1. Fuzzy Logic

Fuzzy theory, proposed by Zadeh in 1965, is used to map linguistic terms to numerical terms
within human decisions. The fuzzy set is often defined to solve the uncertainty and vagueness in
criteria weighting and alternatives ratings of multi-criteria decision making problems [39]. A fuzzy set,
featured by a membership function, assigns each criterion a membership rating among (0, 1), reflects
criteria grades belonging to a set. In addition, linguistic terms such as “good”, “fair” and “bad” are
put forward to define numerical intervals [40].

A triangular fuzzy number M, denoted by (a,b,c), is the most popular fuzzy number in fuzzy
applications [41]. The membership function is defined as follows:

x—a
b a a<x<b
i (0) =1 7Y pex<e 1)
c—D
0, otherwise

and -0 <a<x<b<ow.
In concrete terms, the membership function py, (x) = 1 indicates that variable x fully belongs to
the fuzzy set M. Conversely, if the variable x does not belong to the fuzzy set M, then pag (x) = 0[42].
Let Ml = (I3, my,r) and 1\72 = (I, my, r7) be two triangular fuzzy numbers, the operation laws
are shown as below:

Mi@®M, = (I + b, my + mo, 11 +12) ()
Ny O M, ~ (Ll mymy, rr2) ®)
AM; = (Mg, Ay, Ar), A > 0 )

My~ (1/h,1/my, 1/r) (@)

And the distance of IVE = (I1,mq,r1) and Mz = (I, my, r2) can be defined as follows [43]:
~ o~ 1!
d (M1,Mz) = EL [+ (m —h)o+r—(r1—m)x—Il— (my—bL)a—ry+ (ra —my) x]dex  (6)

In most MCDM processes, decision makers often provide uncertain answers rather than precise
values. Linguistic values and fuzzy set theory are recommended to rate preference instead of traditional
numerical method. Therefore, the fuzzy set theory has been integrated into various MCDM methods,
such as fuzzy AHP, fuzzy TOPSIS, fuzzy VIKOR, and so on, which should be more appropriate and
effective than conventional ones in real problems involving uncertainty and vagueness [44—46].

3.2. Fuzzy Delphi Method

The Delphi method (DM) is a technique used to obtain the most reliable consensus among a
group of experts. It was proposed by Dalky and Helmer in 1963 and has been widely used in decision
and prediction making. This technique offers experts opportunities to receive feedback and modify
previous opinions through several rounds of consulting. Furthermore, owning to its deficiency in
handling ambiguity and uncertainty within expert surveys, fuzzy Delphi method (FDM) was proposed
to solve these defects combing DM with fuzzy logic theory. Experts can provide their opinions through
triangular fuzzy numbers (TFNs), and are not required to modify them again and again. Moreover,
no useful information would be lost, because all opinions can be effectively taken into account by the
membership degrees. Due to its advantages in evoking group decisions, FDM is embraced in various
studies to construct evaluation. To recognize the vital criteria for the optimal siting of EVCS, the FDM
is introduced in this paper. Essential steps of the FDM are listed as follows:
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Step 1: Administer questionnaires and determine the most conservative value and the most
optimistic value ranging from 0 to 10 for each criterion among a group of experts.
Step 2: Gather the minimum and maximum values and calculate the geometric mean for each

criterion. Then, compute the conservative TEN (C’L, Cjw, C{]) and optimistic TEN (Oi, Oiw OL) in terms
of each criterion. C] and O] represent the minimum remaining conservative value and minimum
remaining optimistic value, respectively; C;, and O;, represent the maximum remaining conservative
value and maximum remaining optimistic value, respectively; and C and O], represent the geometric
mean of the remaining conservative value and the geometric mean of the remaining optimistic
value, respectively.

Step 3: Check that the consistency of expert opinions, and compute the consensus significance G;
for each criterion.

(1) If Cb < Oi, the criterion 7 holds consensus, and the value of the consensus significance G; is
computed by Equation (7):

Gi + O}
G — M7 =M )
2
2) If Cb > OZ, and the gray zone interval value zt = C{J — OiL) is smaller than the interval
value M' = O, — C},, correspondingly, the value of the consensus significance is computed by

Equation (2):
[(Cl; x Oly) = (Of, x Ciy)]
G = Lux % L*Cu 8
[[(Cly— Chy) + O — O] ®

When Ci; > O}, however, the gray zone interval value (Z' = Ci; — O}) is greater than the interval
value (M’ = Oi; — C ), which means that the expert opinions are inconsistent. Thus, Steps 1-3 should
be repeated until each criterion converges and the value of the consensus significance can be calculated.

3.3. Fuzzy GRA-VIKOR Method

The Vlsekriterijumska Optimizacijia I Kompromisno Resenje (VIKOR) method, put forward by
Opricovic in 1998, was developed for multi-criteria optimization of complex systems. This model
focuses on ranking different alternatives against various even conflicting decision criteria. It relies on
an aggregating function that can reflect distance to both positive and negative ideal points [47]. In
order to handle the imprecision and subjectivity of decision makers, linguistic values are introduced
into the conventional VIKOR. The fuzzy VIKOR combines the advantages of the conventional VIKOR
and fuzzy set theory, which is much more sufficient to model problems in the real world than precise
values [12-14,48,49].

In fuzzy VIKOR, the multi-criteria measurement process for ranking alternatives is developed
from an aggregating function, which represents the distance of each alternative from positive ideal
point and negative ideal point. As mentioned in the introduction, in order to better examine the extent
of the connection between alternative and ideal points, grey relation analysis is used to modify the
conventional aggregating function, which can better identify relationships among fuzzy numbers in
a system [15,16]. Moreover, the fuzzy VIKOR based on GRA method can efficiently overcome the
deficiencies of fuzzy results and the inconsistent ranking of alternatives [17,18]. More details of this
approach are shown as below:

Here, the ratings of criteria are expressed in linguistic terms (the triangular fuzzy numbers), as
in Table 1.
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Table 1. Fuzzy evaluation scores for the alternatives.

Linguistic Terms Fuzzy Score

Very poor 0,0, 1)
Poor 0,1,3)
Medium poor (1,3,5)
Fair (3,5,7)
Medium good (5,7,9)
Good (7,9,10)

Very good (9, 10, 10)

Step 1. Calculate the aggregated fuzzy linguistic ratings for criteria performance of alternatives.
Suppose that there are m alternatives A = {A1,A, ... Ay} to be evaluated. The performance of n
criteria are by linguistic terms which are obtained from r decision makers.

Let Xjj = (xfk,xf)f, lfk) 0< xiﬁk < xi‘f < x% <1,i=12-mj=12--nk=12- rbe

the linguistic rating on the performance criteria C; respect to alternative A; by expert Ey. Then the

aggregated fuzzy linguistic rating X;; = (x xM u) can be obtained as follows:

J?z’]’*(XS,XM u) <Zr: i Zi:

Step 2. Assemble the initial fuzzy decision matrix.

According to Equation (9), the initial fuzzy decision matrix D can be obtained, as shown in
Equation (10). A MCDM problem can be expressed concisely in the form of triangular fuzzy number,
as follows:

Erj ) )

¥ X¥a oo X (e ) (g, 2l x) ey, el X
~ ~ > L M U L M U L .M .U
5 ( 3 Xo1 X220 ot Xy B (le’ Xy 1 Xy ) (xzz,xzz X 2) T <x2n’ Xon7 xZn) (10)
- ’/)mxn o : : : : N : : :
~ ~ ~ L M U L M U L M U
Xm1  Xm2 - Xmn (x,,ﬂlx”] ,X”]> (x,,,zl m2’ mz) T ( mn’ " mn’ nm)

Step 3. Normalize the initial fuzzy decision matrix using linear scale transformation.
To ensure the compatibility among evaluation criteria, the initial fuzzy decision matrix should be
transformed into a comparable scale. The normalized fuzzy decision matrix is denoted by R [50]:

R = [rij]mxn
For the benefit criteria:
L M U
7ii = (i ity 2y and uf = max;x¥ (1)
oA+ ij i
M M M

For the cost criteria:

u.. u.. Uu..

Foo—= (U = — min.xl

Tij = (xL M xu) and Uy = mingx; (12)
ij ij ij

Step 4. Define the referential sequences of fuzzy positive ideal solution and negative ideal solution.
The referential sequences of positive ideal solution A* and negative ideal solution A~ can be
determined as follows:
AT =[5 70 Toul AT = [or P+ Tl (13)
+

where FOj = max (7,']-), 70_]. = min (7,']'),]’ =12,...n
1 1
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Step 5: Compute the distances of each alternative from the positive ideal solution and negative

ideal solution [51].
ST
G- (L0 T0 14
=20 | (14)

=t \Toj Ty
ST
To: — T
~ oj —Tij
R; =max |w; | =L —— (15)
j ] FE_F
/ oj ~"oj

where w; represents the weight of criteria C;, gi denotes the distance rate of A; to the positive ideal
solution A*, and R; denotes the distance rate of A; to the negative ideal solution A™.

In order to better reflect distance of each alternative to the positive and negative ideal points,
the fuzzy grey relation coefficient (FGRC) is introduced to modify the conventional formula of fuzzy
VIKOR, which are shown as follows [16]:

Y (%’ﬂij) JU =+, =

y <;14 F~> B miniminjdf} + Emaximaxjd};. B min;min;d (716j/7z‘]‘) + Emax;max;d (%]'/71‘]') (16)
ojTij) = =~ ~ = YA 7
d;} + imax,-maxjd}} d (76‘]., rij> + Emax;max;d (73/., rf]-)
- n
Si= Z w;y (rg;.,r,'j> 17)
j=1
Ri = maijy <707]’711) (18)

Step 6: Compute the value of Q; for each alternative as below:

S;—S*
Qi:\/isi_s+ +(1=v)

R; — R+

R-—R* ()

where §* = max;S;, S~ = min;S;, Rt = max;R;, R™ = min;R;, and v is the weight of the strategy of “the
maximum group utility”, whereas (1-v) represents the weight of the individual regret.

Step 7: Rank the alternatives according to the value of Q; in Step 5.

On the basis of the concepts of GRA and fuzzy VIKOR method, all alternatives can be ranked by
the value of Q;. Obviously, for the alternative A; which is closer to the positive ideal point and farther
from the negative ideal point, the value of Q; is zero.

In addition, only when the alternative which is the best ranked by the value of Q; satisfies the
following conditions, it can be selected as the optimal solution.

(I)  Acceptable advantage:
0 (A<2> f A<1>) > DQ

where A® is the second in the list of priorities by Q;; DQ = 1/(N-1), N is the number of
alternatives [51].
(I)  Acceptable stability in decision-making:

The alternative A() must also be the best ranked by S; or R;. This compromise solution is stable
within the decision-making process, which could be the strategy of maximum group utility (when
v > 0.5 is needed), or “by consensus” (v ~ 0.5), or “with veto” (v < 0.5). If one of the conditions is not
satisfied, then the set of solutions is proposed [16], which consists of:

AM and A@, if only the condition (II) is not satisfied, or
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AD AP A, AM) if the condition (IT) is not satisfied; AM is determined by the relation
QAM — AMy < DQ, for maximum M (the positions of these alternatives are “in closeness”).

3.4. The Combination Weights

The weighted sum of the “distances” from an alternative to corresponding ideal points over
all criteria is essential for performance comparison among all designated alternatives. From the
previous literature on MCDM, the weights of criteria are usually subjective weights determined by
decision makers. However, critiques of human errors and inconsistency are often associated with
subjective weights for such weighting processes in MCDM. With this regard, to improve the weighting
accuracy, some objective weighting models are applied by mathematical techniques. To obtain a better
weight determining system for fuzzy VIKOR, combination weights based on subjective methods and
objective methods are introduced in this study, which can composite subjective judgment and objective
information. On the one hand, the subjective weights are determined by experts’” opinions. On the
other hand, the objective weights are obtained by the Shannon entropy method.

3.4.1. The Subjective Weights

On the one hand, the subjective weights could be obtained from experts’ opinions. Here, the
ratings of criteria are expressed in linguistic terms (the triangular fuzzy numbers), as in Table 2.

Table 2. Fuzzy evaluation scores for criteria weights.

Linguistic Terms Membership Function
Of little importance (0,0,0.3)
Moderately important (0,0.3,0.5)
Important (0.2,0.5,0.8)
Very important (0.5,0.7, 1)
Absolutely important 0.7,1,1)

v (L M U L M u s _ ..
Let Sk = (s]_k,sjk ,s/k), 0 < S5 < Sy < S5 <1,j=12--nk =12, rbe the superiority

linguistic rating on criteria weight assigned to criteria C; by expert Dy can be calculated by:

r . r r :
- (hattt) - (R 2555 2) e

In order to maintain the consistency between objective weights and subjective weights, the criteria
weights based on triangular fuzzy numbers should be also defuzzied based on Equation (21). In this
paper, the graded mean integration approach is employed to transform a triangular fuzzy number
M = (I,m,u) into a precise number:

l+4m+u

P (1\71’) =M= == @1)

3.4.2. Shannon Entropy and Objective Weights

The entropy concept proposed by Shannon in 1948 is a measure of uncertainty in formulated
information, which has been widely used in many fields such as management, engineering and so on.
According to the ideal of entropy theory, the number or quality of information from decision-making
process is determined by the accuracy and reliability of the decision-making problem [52]. Therefore,
entropy can be applied to the assessment problem in different decision-making processes. Moreover,
entropy can also be used to analyze the quantity of information provided by data [53]. The basic theory
and specific steps of Shannon entropy weighting method are shown as below:
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Shannon entropy is capable of evaluating the decision making units and being employed as a
weighting decision method. Assume that a MCDM problem contains m alternatives and # criteria,
thus the decision making matrix is defined as below:

X1 X12 X1n
X1 X220 vt Xpp )
Xml Xm2  Xmn

Then, the criteria weights can be determined based on the entropy concept through the
following steps:
Step 1: Normalize the evaluation criteria as below:

X,‘j

P =
Y 2 %ij
i

(23)

Specially, for the fuzzy MCDM problem, the fuzzy decision making matrix should be defuzzyed
firstly, according to Equation (21).
Step 2: Calculate the entropy measure of each criterion as [51]:

n
EJ' = 7k2 PLIII'I(P,/) (24)
j=1

where k = (In(m))~!.

Step 3: Define the divergence of each criterion through:
d,'U]' =1- €j (25)

The more the d;v; is, the more important the jth criterion is.
Step 4: Determined the normalized weights of all criteria through [54]:

dl"()]‘

w; =
J Zdi?]]'
j

(26)

Finally, the combination weights of all criteria are equal to the average of subjective and
objective weights.

4. The Framework of the Integrated MCDM Model

The proposed framework for optimal siting of electric vehicle station based on FDM, combination
weighting and fuzzy GRA-VIKOR methods involves the following three phases (Figure 1).

188



Energies 2016, 9, 270

‘ Establish the expert decision groups ‘

. L B . Gather the minimum and maximum
Identify the initial sva]uallpn c.n.(ena values of each expert for each
based on extended sustainability criterion and calculate geometric
Phase I # mean

Determine the

B n " Check whether the expert opinions

evaluation sub- DetermI.nE t.:he vital evaluation are consistent and compute the value
criteria by fuzzy sub-criteria based on FDM of consensus significance for each

Delphi method L criterion.

Assign linguistic Determine the alternatives
ratings (table 2) to all
sub-criteria

Assign linguistic ratings
(table 1) to all alternatives
with respect to sub-criteria

A %
Aggregate fuzzy
evaluation ratings for Aggregate initial fuzzy
sub-criteria evaluation matrix for all
alternatives
Phase 11 v
Determine Y

Determine objective
weights for sub-criteria by
entropy method.

Calculate the combination
weights of evaluation sub-

criteria.

combination weights | Determine subjective
by experts opinions welght.s 10}’ sub-
and entropy method criteria

Normalize the initial fuzzy
evaluation matrix for all
alternatives

Define the referential sequences
of fuzzy positive ideal solution
and fuzzy negative ideal solution.

Compute the weighted distances
of each alternative from the
positive ideal solution and
negative ideal solution by using
GRA.

Phase 111
Ranking with fuzzy
GRA-VIKOR method

Compute the value of Qi and
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Final ranking of alternative
locations in decreasing order

Figure 1. The framework of the proposed model for optimal siting of charging stations for
electric vehicles.

Phase 1: Identify the vital evaluation sub-criteria based on extended sustainability and FDM

In the first phase, professors, scholars, residents, governors, EV users and producers, as well as
the project management personnel in the field of electric power system, electric vehicle industry,
transportation system and sustainability are selected to establish three expert decision groups.
According to the extended sustainability concept and industry background, the initial evaluation
criteria are determined, which are associated with economy, society, environment and technology
perspectives. Further, the vital (final) sub-criteria for optimal siting of EVCS are determined based on
FDM technique.
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Phase 2: Determine the combination weights of the evaluation sub-criteria based on the fuzzy experts’ ratings
and entropy approach

In this step, the vital (final) evaluation sub-criteria are weighted by integrating the subjective
weights and objective weights. For the subjective weights, three groups of experts firstly assign
linguistic ratings to all sub-criteria by using the rating scales given in Table 2. Then, the fuzzy
evaluations for sub-criteria are aggregated and the subjective weights for sub-criteria can be computed.
On the other side, for the objective weights based on entropy method, linguistic ratings to all
alternatives with respect to sub-criteria are firstly allocated by using rating scales in Table 1, and
then are transformed to triangular fuzzy numbers. After aggregating the initial fuzzy evaluation
matrix for all alternatives, the objective weights for all sub-criteria are determined by using entropy
method. Based on above results, the combination weights for all sub-criteria are eventually aggregated
by combining subjective weights and objective weights simultaneously.

Phase 3: Rank all alternatives for EVCS and determine the optimal site using the fuzzy GRA-VIKOR

In this step, the normalized fuzzy decision matrix is assembled based on the aggregated initial
fuzzy evaluation matrix in phase 2. Next, define the referential sequences of fuzzy positive ideal
solution and negative solution. Then, the GRA method is employed to compute the weighted distances
of each alternative from ideal solutions. Finally, all EVCS site alternatives are ranked in a descending
order of performance based on the values of Q;.

5. Evaluation Index System for Optimal Siting of Vehicle Charging Station

Evaluation criteria are very important to the optimal EVCS siting. It is important to establish
an evaluation index system to comprehensively reflect the inherent characteristics of EVCS siting.
However, the electric-vehicle industry is still in the early stages of management and technological
exploration, so there is no consistent list of criteria for EVCS site selection in China. Since electric
vehicles are a sustainable way of energy development, the evaluation index system for optimal EVCS
siting is built from the perspective of extended sustainability. The conventional sustainability theory
put forward a new development way which can achieve economic growth and social development
without environmental damage, and sustainability is designed as economy sustainability, society
sustainability and environment sustainability. Moreover, since EVCS construction involves large
numbers of technical conditions, the technology sustainability is introduced to improve the classical
idea of sustainability. Therefore, the evaluation index system for optimal EVCS siting includes economy
criteria, society criteria, environment criteria and technology criteria. Further, the sub-criteria that are
affiliated with above four criteria are determined by fuzzy Delphi method as follows.

First of all, based on the extended sustainability theory, academic literatures and feasibility
reports of EVCS, 37 initial sub-criteria are collected according to relative industry standards and expert
consultation, in which economy, society, environment and technology are covered. Furthermore, the
vital sub-criteria are selected as the final evaluation sub-criteria based on the FDM.

Experts firstly express their opinions on the sub-criteria importance through conservative and
optimistic values. And the scores of sub-criteria lies on the scale from 0 to 10. Subsequently, according
to Equations (1) and (2), the conservative TFN (Ci, C;A, C{;) and optimistic TFN (Oi, OiA, OL) of each
expert respect to each criterion are calculated (Table 3). Then, the consistency of the experts” opinions
are verified by calculating the values of Z' and M'. Finally, the vital sub-criteria are determined
based on the consensus value G'. Particularly, the threshold value of G' in is set to 6.0, which has
been accepted by more than 92% of experts [15]. Therefore, 13 evaluation sub-criteria are selected to
realize the optimal site selection of vehicle charging station (Table 3). The evaluation index system is
summarized in the flowchart shown in Figure 2.
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Table 3. Calculation results of evaluation sub-criteria based on FDM.

Pessimistic ~Optimistic Geometric M’ = Consensus
Perspectives Initial Sub-Criteria Value Value Mean 7z Value
c ¢ o o «c o G;
Investment pay-back period 1 3 5 8 354 698 3.02 526 < 6.0
Total construction cost 1 4 7 9 497 754 446 6.26 > 6.0
Annual economic benefit 2 7 5 9 511 6.16 0.84 598 < 6.0
Internal rate of return 2 6 7 10 531 765 335 6.48 > 6.0
Economy Land acquisition costs 2 8 6 9 336 607 093 3.86 < 6.0
Annual operatiocrcl) :tnd maintenance 1 6 s 9 436 869 231 653 6.0
Removal cost 2 6 7 10 355 599 5.01 4.77 <6.0
Causeway construction costs 3 7 6 9 267 654 146 3.63> 6.0
EV ownership in the service area 2 8 6 10 584 734 0.66 547 <6.0
Service area population 2 5 7 9 375 568 532 4.72<6.0
Service radius 1 6 5 9 259 765 035 3.89<6.0
Service capacity 1 5 7 10 459 849 351 6.54 > 6.0
Society Residents professional habit 1 6 7 8 405 627 273 516 <6.0
Residents consumption habits 3 4 7 10 356 524 759 4.40<6.0
Traffic convenience 1 6 7 9 435 784 216 6.10> 6.0
Impact on living level of resident 1 6 5 10 458 765 135 512<6.0
i?ﬁi‘ffﬁitfeﬁi}iiﬁﬁiﬁfﬁ;h 3 6 7 9 506 764 236 635560
Level of public facilities 2 7 6 9 452 768 032 4.72<6.0
Deterioration on water resource 1 6 5 9 354 724 076 4.18<6.0
Deterioration on soil and vegetation 2 7 8 10 524 735 3.65 6.30 > 6.0
Waste discharge 2 6 5 10 375 826 074 4.56 < 6.0
Noise pollution 2 6 7 9 364 684 316 5.24 <6.0
Environment Atmospheric partigulates emission 1 6 7 9 459 806 194 633> 6.0
reduction
Industrial electromagnetic field 2 5 7 10 3.68 564 6.36 4.66 < 6.0
Radio interference 3 8 7 10 516 859 041 520<6.0
GHG emission reduction 4 6 8 9 496 885 215 6.91> 6.0
Ecological influence 1 5 7 9 436 684 416 5.60 < 6.0
Substation capacity permits 1 5 7 10 416 864 336 6.40> 6.0
Distance from the substation 1 5 7 10 435 689 511 5.62 < 6.0
Power quality influence 3 7 6 10 589 768 132 6.35> 6.0
Power balance level 3 7 6 10 3.64 804 096 444 <6.0
Technology Power grid security implications 4 7 8 10 568 654 446 6.11>6.0
Transformer capacity-load ratio 2 5 6 9 464 687 313 5.76 <6.0
Interface flow margin 3 8 7 10 374 894 0.06 479 <6.0
Voltage fluctuation 1 8 7 9 566 598 202 3.09 < 6.0
Power grid frequency deviation 2 7 5 9 421 764 —0.64 521<6.0
Harmonic pollution 2 6 7 7 395 468 332 432<6.0
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Figure 2. Evaluation index system for optimal siting of charging stations for electric vehicles.

6. Empirical Analysis

Tianjin is one of the most famous modern cities in China, which has been devoted to developing
the electric-vehicle industry. In order to promote the sustainable development and management of the
EV industry in Tianjin city, it is necessary to select the optimal sites for EVCSs. After reviewing the
project feasibility research reports, the expert groups finally determine five EVCS site alternatives. The
geographical locations of these five alternatives are shown in Figure 3. Five alternatives A;(1,2, ... 5)
are located in the Beichen district, Dongli district, Nankai district, Jinnan district and Tanggu district
in Tianjin, respectively.

The MCDM problem related to optimal siting of EVCS includes four criteria (economy, society,
environment and technology) and thirteen sub-criteria. After reviewing the literatures and research
reports related to all alternatives, each experts group give the linguistic ratings judgments for

sub-criteria weights and sub-criteria performance of all alternatives. The rating results are listed
in Tables 4 and 5.

Table 4. Linguistic ratings for sub-criteria weights.

C1 Cc2 C3 C4 C5 Coé Cc7 (&) c9 C10 C11 C12 C13

E1l I I MI MI I I MI MI VI VI I MI MI
E2 I VI I I VI VI LI I Al VI LI I I
E3 I VI I I LI MI MI I I Al MI LI I
E4 VI Al MI I VI MI I VI VI Al I MI VI
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Figure 3. The geographical locations of five EVCS site alternatives
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Table 5. Linguistic ratings for sub-criteria performances of five EVCS site alternatives.

C1 C2 C3 C4 C5 Cé6 Cc7 c8 c9 Cio Ci1 C12 C13
Al MG F MG MP F MG F F MP G MP F MG
A2 F MG MP MP MP F MP  MP F F MP F F
El A3 MP F MG F F MG MP F vP  MP F MG MG
A4 VG F MG F F MG F MG VP MP MP MG F
A5 P F F MG MP MG P MP F G F P P
Al F MG G F MG MP F MG F F P F G
A2 MG MP F F F F MG MP F MP F F MG
E2 A3 F F F MG MP MP MP MG P F MP MG F
A4 F F F MG MP MP F F MP F F G MG
A5 MP MP MG F F F MP MG F MG MG P MP
Al MP F MP  MP F F G F F F MP VG F
A2 F MpP F MG F MP F MG MG MG F MG MP
E3 A3 MG F G MP F F P MP F vG VP G VG
A4 MG F G MP F F MP MP MG MG P MG G
A5 MG F F MG G G P F MG G G MP F
Al F F F F p P F MP  MP MG P MG G
A2 F F MP F F F F F MG MG MG F MP
E4 A3 VG P MG MP MP MP P F MP MP MP VG MG
A4 G MP MG MP MP MP MP MG MP MP MP VG MG
A5 P G MG MG MG F G MG G MG MG MP MP
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Then, according to Table 4 and Equations (9) and (10), the initial fuzzy decision matrix D can be
obtained, as below:

C1 Cc2 Cc3 C4 C5
0.50 0.30 0.21 0.38 0.59 0.81 0.29 0.18 0.14 0.23 0.46 0.69 0.33 0.55 0.79
043 0.27 0.20 0.27 0.49 0.70 0.50 0.25 0.17 0.34 0.57 0.80 0.30 0.55 0.79
0.75 0.38 0.25 0.70 0.89 1.00 1.00 0.40 0.22 0.57 0.80 1.00 0.55 0.79 1.00
0.25 0.19 0.17 0.24 0.43 0.65 0.20 0.14 0.11 0.29 0.51 0.74 0.24 0.48 0.73
1.00 0.50 0.30 0.38 0.59 0.78 0.25 0.17 0.13 0.51 0.74 0.97 0.48 0.73 0.94
Cc6 c7 c8 c9 C10
0.26 0.46 0.69 0.44 0.67 0.86 0.17 0.10 0.07 0.21 0.42 0.63 0.51 0.72 0.90
B 0.29 0.51 0.74 0.33 0.56 0.78 0.20 0.11 0.08 0.42 0.63 0.84 0.36 0.56 0.77
0.63 0.83 1.00 0.61 0.83 1.00 1.00 0.29 0.14 0.68 0.87 1.00 0.67 0.87 1.00
0.29 0.51 0.74 0.11 0.28 0.50 0.14 0.09 0.07 0.11 0.24 0.42 0.26 0.46 0.67
0.51 0.74 0.94 0.36 0.56 0.75 0.20 0.11 0.08 0.47 0.68 0.87 0.62 0.82 0.97
C11 C12 C13
0.06 0.23 0.46 0.11 0.08 0.06 0.23 0.17 0.14
0.34 0.57 0.80 0.14 0.09 0.07 0.50 0.28 0.19
0.63 0.83 0.97 1.00 0.25 0.13 1.00 0.42 0.25
0.14 0.34 0.57 0.08 0.06 0.05 0.25 0.18 0.14
L 0.57 0.80 1.00 1.00 0.25 0.13 1.00 0.42 0.25

According to Table 4, Equations (20) and (21), the subjective weights of sub-criteria can be obtained.
On the other side, the objective weights of sub-criteria can also be obtained by fuzzy decision matrix D
and Equations (21)-(26). Finally, the combination weights of all sub-criteria equal to the average of
subjective and objective sub-criteria weights, which are shown in Table 6, can be obtained that C2, C4,
C5, C6, C7,C10, C11 are benefit sub-criteria and C1, C3, C8, C9, C12, C13 are cost sub-criteria.

Table 6. Combination weights of evaluation criteria.

C1 C2 C3 C4 C5 Ce6 Cc7 c8 C9 Cilo Ci1 Ci2 C13

Wsybjective 0.0853  0.1109  0.0603 0.0686 0.0763 0.0686 0.0429 0.0769 0.1109 0.1282 0.0513 0.0429 0.0769
Wobjective 0.0832 0.0845 0.0764 0.0769 0.0787 0.0795 0.0798 0.0681 0.0787 0.0728 0.0689 0.0781 0.0743
w; 0.0842 0.0977 0.0683 0.0727 0.0775 0.0741 0.0614 0.0725 0.0948 0.1005 0.0601 0.0605 0.0756

The normalized fuzzy decision matrix can be obtained based on Equations (11) and (12). Then
the distances of alternatives from the positive ideal solutions and negative ideal solutions can be
calculated according to Equations (6) and (16)—(18). Finally, compute the values of Q; for five EVCS
site alternatives according to Equation (13). And thus rank and determine the optimal site for EVCS
based on the principle of VIKOR. The results are shown in Table 7.

Table 7. The values of S;, R; and Q; for each alternative.

Al A2 A3 A4 A5
S; 0.512 0.532 0.972 0.443 0.759
R; 0.070 0.066 0.049 0.084 0.064
Q; 0.733 0.655 0.000 1.000 0.408
Rank 4 3 1 5 2

Obviously, EVCS site alternative A3 outranks other four alternatives. Therefore, A3, namely the
EVCS site in Nankai district of Tianjin should be selected as the optimal EVCS site.

7. Discussion

The EVCS site alternatives are ranked by using FDM, combination weights and fuzzy GRA-VIKOR
methods. Based on the Q;, the ranking of all EVCS selections in descending order are A3, A5, A2,
A1l and A4. The best alternative is found to be A3, and the second best alternative is A5. Based on
above results, this proposed model can easily evaluate and select a best alternative. In this section, to
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examine the rationality and stability of the proposed framework and analysis results, the sensitivity
analysis of v value and sub-criteria weights are presented.

Table 6 shows that the sub-criteria C9 and C10 affiliated with the environmental aspect obtain
much more attention from the expert group, which reflects the strategy and energy saving and
environment protection goals of the Chinese government. Meanwhile, the sub-criteria affiliated with
economic development are not so important as before, which is consistent with the development
goals of China. As we all know, in recent years, transportation and electricity industry has suffered
pressures and challenges from the “twelfth five-year” plan and the environmental protection law of
China, which indicates the responsibility and target of these industries for environment protection.
Moreover, the severe environment and resource issues have posed undesirable conditions to humans
for living. Therefore, the environmental aspect has been given more consideration by experts for the
optimal siting for EVCSs in China.

As mentioned above, this study uses the variation of v values to demonstrate that all of them do
not affect the analysis results (Figure 4). The v values are postulated to change from 0.1 to 0.9, while
the ranking orders of five EVCSs are same, namely A3 > A5 > A2 > A1 > A4. And thus, this study can
confirm that the results obtained by using the proposed model are reliable and effective.

1.2

1
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0.8 A2
0.6 A3
0a | " % % . ) ) « w | Al
—k=AS5

02

[
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9

Figure 4. Sensitivity analysis of v value for each alternative.

Next, a sensitivity analysis on the impacts of sub-criteria weights for optimal EVCS siting is
presented, so as to obtain better insight of evaluation results and verify the robustness of evaluation
results. According to the criteria, thirteen sub-criteria are divided into four analysis aspects, namely
economy, society, environment and technology. All sub-criteria have 10%, 20% and 30% less weight
than the base weight and 10%, 20% and 30% more weight than the base weight (all base weights are
shown in Table 6).

It can be seen that in Figure 5, the Q; of A5 and A1 decrease when the sub-criterion C1 becomes
less important. The Q; of A2 increases when the weight of C1 becomes more important, and it ranks
fourth, surpassed by Al. However, no matter how the C1 weight changes, the Q; of A3 always has the
lowest score, indicating the best alternative. As C2 is given more importance, only the Q; of A2 shows
a small rising tendency, while the scores of other alternatives remain relatively stable although C2
carries large weight in the optimal EVCS siting. In the case of C3, the Q; of Al and A5 dramatically rise
along with weight increase, which gets closer to that of A4 and A2, respectively. A3 and A4 are still the
optimal and worst sites the same as in the base case. Apparently, C1 and C3 are sensible sub-criteria
which dramatically affect the optimal EVCS siting results. However, no matter how the weights in the
economy group change, A3 is always the best choice in the optimal siting of EVCS in Tianjin.
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Figure 5. Sensitivity analysis results of sub-criteria in the economy group.

The case where the society sub-criteria have 10%, 20% and 30% more or less weight than the base
weight are shown in Figure 6. The Q; scores of the five EVCSs have tiny variations, no matter how the
sub-criteria C4, C5, C6 and C7 change. Therefore, the sub-criteria in the society group are not sensitive
factors, and A3 and A4 are the optimal and worst site in the optimal siting for EVCSs, no matter how
the sub-criteria weights in the society group change.
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Figure 6. Sensitivity analysis results of the sub-criteria in the society group.

For the sub-criteria in the environment group, the Q; of A1, A2 and A5 increase when the
sub-criteria C8 becomes more important, and A2 ranks third, surpassed by Al(Figure 7). Meanwhile,
the score of A3 and A4 remain stable with the weight variation of C8. For the weight changes of C9,
scores of A1, A2 and A5 show a decreasing tendency along with increase of weights, while the rank of
all alternatives keep consistent with the base situation. In the case of C10, the Q; of the five alternatives
remain stable with increasing weight. Therefore, C8 in the sensitive sub-criterion which obviously
affects the EVCS site selection results. No matter how the weights in the economy group change, A3 is
always the best choice in the optimal EVCS siting.

For the sub-criteria in the technology group, the Q; of the five alternatives remain stable when
the sub-criteria C11 and C12 become more important (Figure 8). Moreover, when the weight of C13
becomes more important, the Q; of Al and A2 present a rising tendency, while the Q; of A5 shows
a decreasing tendency. However, no matter how the sub-criteria weights in the technology group
change, the ranking order of the five EVCSs remains relatively stable, and A3 is always the top choice
in the EVCS site selection.
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Figure 7. Sensitivity analysis results of the sub-criteria in the environment group.
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Figure 8. Sensitivity analysis results of the sub-criteria in the technology group.

Above all, electric vehicle charging station A3 always secures its best ranking, no matter how the
sub-criteria weights change. It can be verified that the optimal EVCS siting results using GRA-VIKOR
and combination weighting techniques is robust and effective. This study can distinguish the priorities
of alternatives more easily, and thus help decision makers evaluate and identify the best alternative
and more improvement items.

8. Conclusions

A comprehensive framework for selecting the optimal site for EVCSs is studied in this paper.
Considering the concept of extended sustainability, experts” opinions, and industry background, the
final evaluation sub-criteria for optimal EVCS siting are determined based on FDM, which consists of
four pillars: economy, society, environment and technology. To address the fuzziness and uncertainty
of subjective factor and human judgment, a fuzzy GRA-VIKOR method is employed to determine the
optimal EVCS site. It is worth mentioning that GRA is used to measure the distances of fuzzy numbers
between alternatives to ideal solutions in this study, which can efficiently avoid the priority result of
fuzzy numbers, as well as ensure a consistent ranking list for all alternatives. Moreover, in order to
provide a scientific weighting system, the sub-criteria weights are determined combining the subjective
weights of experts’ opinions as well as the objective weights of the entropy method, which updates the
weighting process of conventional fuzzy VIKOR. The evaluation results shows that the sub-criteria C9
and C10 affiliated with the environment obtain much more attention from the experts group, and the
alternative A3 in Tianjin Nankai district is determined as the optimal EVCS site. Last but not least,
to test the robustness and effectiveness of decision results, a sensitivity analysis is presented, which
showed that the siting results remain stable no matter how the v value and sub-criteria weights change.
Moreover, it can also be found that C1, C3 and C8 are the sensitive sub-criteria which dramatically
affect the optimal EVCS siting result.

Although this study realized the optimal siting of EVCSs by using FDM, combination weighting
and fuzzy GRA-VIKOR techniques, limitations may still exist due to the fact the evaluation criteria
will change along with objective conditions. Moreover, from a methodological perspective, it would
be helpful to test the proposed framework with other approaches. The results from these approaches
could be compared with the results in this paper, which is an outline for the future research.
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Abstract: Demand Side Management (DSM) is a popular approach for grid-aware peak-shaving.
The most commonly used DSM methods either have no look ahead feature and risk deploying
flexibility too early, or they plan ahead using predictions, which are in general not very reliable.
To counter this, a DSM approach is presented that does not rely on detailed power predictions,
but only uses a few easy to predict characteristics. By using these characteristics alone, near optimal
results can be achieved for electric vehicle (EV) charging, and a bound on the maximal relative
deviation is given. This result is extended to an algorithm that controls a group of EVs such that
a transformer peak is avoided, while simultaneously keeping the individual house profiles as flat as
possible to avoid cable overloading and for improved power quality. This approach is evaluated using
different data sets to compare the results with the state-of-the-art research. The evaluation shows that
the presented approach is capable of peak-shaving at the transformer level, while keeping the voltages
well within legal bounds, keeping the cable load low and obtaining low losses. Further advantages
of the methodology are a low communication overhead, low computational requirements and ease
of implementation.

Keywords: adaptive scheduling; demand side management; electric vehicles; optimal scheduling;
smart grids

1. Introduction

In the future, we expect an increasing penetration of electric vehicles, photovoltaic panels,
heat pumps and wind turbines. As especially heat pumps and electric vehicles create relatively large
and synchronized peaks, often at times when there is little renewable energy available, the balance
between production and consumption of electricity becomes more and more an urgent issue.

To counter the problems that arise due to this trend (for a survey, see [1]), Demand Side
Management (DSM) techniques can be deployed to prevent peaks. Here, DSM is the collective
term for a set of techniques that control the production or consumption within the customers’ premises.
A central entity (e.g., the network operator) requests customers, via a steering signal, to adapt their
production or consumption in order to shape the load profile of a certain subgroup of the grid
(e.g., a group of houses). These customers can either adapt their behavior manually, or install a device
that is referred to as a Home Energy Management System (HEMS), which makes such decisions on
their behalf. In the latter situation, the HEMS should start appliances (referred to as smart appliances)
when the consumption should be increased, or should advance or delay the use of such an appliance
when the consumption should be decreased. In addition, energy storage (e.g., batteries) can be used to
mitigate a surplus of renewable energy by charging, and a peak in the consumption by discharging.
In this article, we focus on electric vehicles as they introduce both a significant load, and provide a lot
of flexibility.
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There are several types of DSM approaches described in the literature. In this article, we consider
two important classes of such approaches. The first class, called control-based DSM, makes control
decisions for appliances for the next time period based on available data at the given time such as
consumption, flexibility, priorities, etc. The second class, called planning-based DSM, plans control
decisions for a longer period in the future (e.g., one day ahead). Because control-based DSM does not
plan ahead, it risks using the available flexibility too early, such that no flexibility is left when later on,
e.g., a large peak occurs. Planning-based DSM does take this into account, but requires predictions of
future production/consumption. For example, the planning-based DSM approaches in [2,3] require
such predictions at a house level. In Section 2, we discuss control and planning-based DSM in more
detail, and argue that both approaches have serious disadvantages.

In Section 3, we describe how a HEMS can be used to control the charging of a single electric
vehicle (EV) at the house level to follow some desired load profile. In contrast to the related work
(e.g., [4]), no prediction of a load profile is required. We show that a prediction of a single parameter
characterizing the optimal solution and a prediction of the load for the upcoming interval is sufficient
to make a near-optimal planning of an electric vehicle. We provide an analysis that studies how the
results of our online approach approximates the optimal solution, and give a bound on the maximal
relative deviation. This bound shows that, under reasonable circumstances, the costs for the achieved
solution are only a few percent more than that of the optimal solution.

Section 4 generalizes these results to the case of a neighborhood with multiple EVs. The presented
solution is a peak-shaving approach that keeps the overall load of the neighborhood below a certain
level, and simultaneously keeps the load profiles of each individual house as flat as possible. By this,
also the risk that the voltage exceeds the legal bounds (e.g., 207 V-253V in The Netherlands [5]) is
minimized, the cable load is kept low and thereby unnecessary losses are avoided. Note, that a DSM
approach that does not take these aspects into account may cause more problems than it solves, as was
shown by Hoogsteen et al. [6].

Since Sections 3 and 4 depend on predictions of a few characterizing values, we study how these
predictions are obtained. Section 5 uses measured data and discusses how the required predictions of
the characteristics can be easily obtained.

The potential of our approach is evaluated in Section 6 and compared to the state-of-the-art research.
We show that the few parameters we need can be predicted accurately and are sufficient for near
optimal operation of a group of houses. Section 7 concludes this article.

Summarizing, the contribution of this article is a demand side management methodology with
the following properties:

e Itonly uses a prediction of a single parameter that characterizes the optimal solution, together with
a power prediction of the house for the upcoming interval to plan the charging of an electric
vehicle in a house.

e  Apeak at the transformer can be counteracted with low communication overhead using a decision
making process that also requires predictions of characteristics that aid at making trade-offs at the
neighborhood level.

e A prediction scheme for the required parameters, combined with a sensitivity study that shows
that the results do not suffer much from prediction errors.

2. Related Work

There are several classes of DSM approaches in the literature. In Section 2.1, we discuss
control-based DSM approaches, and in Section 2.2 planning-based DSM approaches. As we use
electric vehicles as a proof of concept, we treat DSM applied for a group of electric vehicles specifically
in Section 2.3.
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2.1. Control-Based DSM

The first class of approaches is control-based DSM. These approaches use an estimation of the
current state of the system, and make online control decisions based on this state. As these approaches
do not take future decisions into account, they may deploy flexibility at an early stage, while this
flexibility might be of more use at a later time. As a result, it can occur that a large peak cannot be
prevented because the system has already used most of its flexibility.

Example 1. A typical example for this is the control of a battery in combination with photovoltaic (PV) panels
in a house. A control-based DSM approach would charge the battery starting at the time more energy is produced
by the PV than is consumed inside the house. On a sunny summer day, this generally leads to a full battery
before noon. As a consequence, the high PV peak cannot be reduced by the battery and the local distribution grid
may get capacity problems. In Germany, this is nowadays already a serious problem (see, e.g., [7]).

An example of control-based DSM is the PowerMatcher (see, e.g., [8,9]). Recently, some of these
control-based approaches have been adapted to incorporate some form of predictions to mitigate to
some extent the mentioned disadvantages (see, e.g., [10]).

2.2. Planning-Based DSM

The second class of approaches, planning-based DSM, makes a more detailed prediction of the
future power production/consumption (e.g., one day ahead in time) and uses this information to
plan the control decisions for smart appliances (a planning) to attain a given goal (e.g., peak-shaving).
The strength of this approach, compared to control-based DSM, is that flexibility can be preserved for
when it is required the most. A disadvantage may be that to make the needed plannings, specialized
algorithms are required at device level (e.g., [4]) and/or for groups of appliances or houses (e.g., [2]).

In the approaches described in [2,3], each house makes a prediction of its average power
consumption for each 15 min interval within the upcoming day (i.e., 96 intervals). These predictions
are sent to a neighborhood controller, and summed up to obtain the predicted neighborhood profile.
This predicted neighborhood profile indicates when peaks occur, and gives also hints on how the house
profiles could be adopted to counter these peaks. Based on this, the neighborhood controller requests
some or all houses to follow a new desired (or difference) profile [2], or it sends incentives to houses
to adapt their profile [3]. Each house on its turn uses both the information sent by the neighborhood
controller and its previous predictions and planning to make a new planning for all its controllable
appliances. This procedure is repeated iteratively until the neighborhood controller is satisfied with
the resulting planned neighborhood profile.

The drawback of these type of approaches is that they are sensitive to poor predictions. When the
predictions are not accurate, the derived planning may be of a low quality or even not valid.
Although some information is relatively easy to predict at the neighborhood level [11,12], it is often
hard to predict the same information at the household level [11]. Furthermore, the error made due to
poor predictions at the household level may accumulate at the neighborhood level. This effect can be
explained the best by a simple artificial example:

Example 2. Household power prediction problem. Consider a group of 100 houses, where each house contains a
television and where each of the television is used with a 90% probability at 8 p.m. When a house controller has
to decide if it incorporates the TV within its planning at 8 p.m., it should do this since the probability is close to
1. Within the planning at the neighborhood level, this implies that all 100 televisions are likely to be switched
on at 8 p.m. However, when one would estimate, on a neighborhood level, how many televisions are turned on
at 8 p.m., the best estimator is the expected value, which is 90 TVs. This shows that if predictions are based on
probabilities, prediction errors may accumulate at the neighborhood level.
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The example indicates that summing up local predictions of events may cause prediction errors
that would not have been made at a more global level. Furthermore, predictions based on statistics
alone work in general only for large groups, e.g., for neighborhoods instead of houses [11]. When this
observation is used as a work-around in the planning-based DSM approach, details about user behavior
and measurements are accumulated at the neighborhood controller level such that decisions may be
made there based on probabilities over large groups (instead of within the house). However, such an
approach would no longer be (decentralized) DSM, but is, e.g., closer to demand response [1] and no
longer distributed. Furthermore, it would require sharing of privacy sensitive information. The goal
of this article is to avoid the mentioned restrictions. Summarizing, we may state that robust demand
side management should only rely on house level predictions if this methodology is robust against
prediction errors.

2.3. Groups of Electric Vehicles

For the application of EV charging, the state-of-the-art research on DSM (see, e.g., [13-17])
requires EV owners to share information (e.g., EV arrival) with a centralized controller. The approach
presented in this article does not require such sharing of privacy sensitive information and has a low
communication footprint.

The approach ORCHARD presented in [14] also flattens the load profile for a group of EVs without
requiring knowledge of future EV arrivals. It has a time complexity of O(N?) for N EVs and is similar
to our work in the sense that we also do not know about EV arrivals beforehand. Contrary to [14],
our work requires O(M log M) time (for M time intervals) when an EV arrives (within each house).
Furthermore, our research flattens the load both at the house level and at the neighborhood level.

3. Online Electric Vehicle Planning

This section describes for the case of charging an Electric Vehicle (EV) how a house can follow
some profile, for example to make the load profile as flat as possible, by using proper charging settings.
Section 3.1 introduces the corresponding EV planning problem. Section 3.2 presents our approach,
which is inspired by online optimization, rolling horizon planning, and model predictive control: at the
start of every time interval, we use a prediction of the power for this interval together with a prediction
of a single value that characterizes the requirements for the future intervals to determine the charging
power for the next time interval.

By delaying the decision for the amount of charging done in an interval until the very start of this
interval, we can hope that more accurate predictions are possible. Furthermore, we can compensate
for errors made in previous time intervals. Finally, Section 3.3 discusses the influence of prediction
errors on this algorithm.

3.1. The EV Charging Problem

We first introduce some notation before we give a formal definition of the EV planning problem.
Let a,, be the time interval at which the electric vehicle arrives at house n € {1,..., N} and is ready
to be charged, let d;, be the the interval at which the charging has to be completed, and let C;, be the
energy that needs to be charged in the intervals ay,, . .., d,. The EV charging decisions can be described
by a vector X, = (X,,1, ..., Xn,Mm), Where x;,, is the amount of electricity charged for vehicle n during
time interval m. The maximum charging power is given by ¥ (in watts), and the vector ¥, is feasible
if xy;m = 0form < ay,and m > d,,0 < x;,; < ¥ in the remaining intervals, and Zi,z;‘:an Txnm = Cn,
where 7 is the length of a time interval. To ease the notation, we use 7 = 1.

Let the desired power profile for the house and EV load together be §,,. The goal is to determine
a charging vector ¥, such that the uncontrollable house power consumption (p,) together with the
charging ¥,, matches this desired power profile g, as well as possible. More precisely, we look for
a vector X, that minimizes the Euclidean distance between the vectors §,, and (7, + X,). To express the
difference between the actual and desired load, we define zy, » := pum + Xnm — Gum, m € {1,..., M}.
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Note that the aim of the objective is to bring the values of z, ;; as close as possible to zero, where large
values are addressed first in order to minimize the Euclidean distance (i.e., due to quadratic terms).

To ease the discussion and notation further, we omit the index n (we consider a single house),
and we may assume w.lo.g. thata := a, = 1 and d := d, = M. This leads to the following
optimization problem:

Problem 1.
M
min, | Y 22, )
* m=1
M
subject to 2 Xy =C, )
m=1
Zm = Pm+ Xm — qm, form e {1,..., M}, 3)
0<x, <% forme{l,... M} 4)

One commonly considered objective is to create a power profile that is as flat as possible, i.e., to set
all elements of the vector 7 to a constant (e.g., the average of the loads). A well-known property of
Problem 1 is that all constant vectors § = (4,4, .. .,q) lead to the same optimal result ¥, hence, we may
use § = 0 (and thus Z = § + X, which is the total load) to ease the notation.

Several papers study algorithms that can solve this problem optimally. An intuitive approach
is the so-called valley filling approach [16]. This approach is demonstrated graphically in Figure 1,
wherein an EV (arriving at 18:00, to be fully charged at 07:00) is charged with the goal to obtain a flat
profile (i.e., § = 0 as mentioned before). The optimal solution ¥ flattens the total house profile by
charging in such a way that the “valleys” are filled up to a certain fill level Z. This optimal fill level Z
depends on the shapes of the “valleys” and the amount C to be charged. In Figure 1, C corresponds
to the gray area. Note that Z can also be interpreted as the optimal minimal mismatch between the
obtained and desired profile that we have to accept. If we have a lower mismatch in some other
interval ¢ (i.e., z,, < Z), this needs to be compensated in some other interval ¢ by a mismatch even
greater than Z (i.e., zy > Z), which is, in terms of Problem 1, less flat and thus suboptimal. Charging up
to the level Z (i.e., z;; > Z) makes sure that the EV battery is fully charged exactly at the deadline

without introducing peaks.

[ INoEV () [__] House+EV (5 + )
600

s L .
i .

18:00 07:00

Power (W)

Time

Figure 1. Optimal EV planning.

In [16], a line search to find the value Z is proposed. A different approach is taken by van der
Klauw et al. [4]. They determine the intervals in which no charging should take place, after which they
can straightforwardly calculate Z. Their algorithm finds the optimal planning in O(Mlog M) time.

The EV charging problem falls in a more general class of problems that are referred to as “resource
allocation problems” [18]. Hochbaum and Hong [19] study several resource allocation problems,
and they present an algorithm for a generalized version of Problem 1, which also can take into account
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integer restrictions for the values of ¥ and has an asymptotic time complexity of O(M). However,
this algorithm has a large constant since it relies on median finding [20]. Therefore, the algorithm is in
practice only fast for a relatively large M.

3.2. Online Optimization

When the power consumption in future intervals is known beforehand, the aforementioned
algorithms can be used to calculate the optimal charging power for each future interval. However,
in most cases, these future values are not known and must be predicted. Obviously, prediction errors
may lead to non-optimal decisions, and the impact of such errors at a house level is rarely considered
in the literature. Furthermore, it is in general difficult to predict the power consumption for all future
charging intervals at the beginning of the planning. Therefore, we take a different approach that does
not need this detailed information.

Central in our approach is the observation that for the aforementioned algorithms, a single value
Z uniquely characterizes the optimal solution. For all feasible instances of Problem 1, there exists a Z
such that the optimal solution x1, ..., x); can be constructed by setting

X = max (0, min (Z — py + G, X)) . )

Note that this calculation, for time interval m, can be delayed until the beginning of the time
interval, and, thus we can delay the prediction of p,;, to this time.

The sketched approach is in principle interval based; however, it can easily be adapted to
an event based approach that recalculates the charging power whenever the power consumption of
the household changes and all results in this section are also valid for the event based approach.

As a consequence of the above, the main challenge of our approach is that we do not know Z
and, therefore, this value must be predicted. However, compared to approaches that predicts power
for each interval, this approach has two advantages, namely, that only a single value Z is predicted
(instead of the complete vector fj), and that the resulting error due to an incorrect prediction can be
bounded as we discuss in the next section.

3.3. Predictions

As we, in general, do not know Z, we use a prediction of Z, which we denote by Z.WhenZ < Z,
Equation (5) chooses charging powers that are not sufficient to charge the car up to the desired level.
This can be resolved by charging at the maximum power ¥ (or some other pre-set charging power)
starting from the interval where this becomes the minimum charging power that is needed to charge
the EV within the remaining intervals. Note that this may result in large peaks and high costs (i.e.,
high objective values) at the end of the charging period, as we discuss later on. On the contrary, in the
situation where Z > Z, the algorithm charges faster than required resulting in some time intervals at
the end of the planning period with low or zero charging power values.

Algorithm 1 takes these two cases into account and guarantees that the SoC target is reached in
both situations. Note that Algorithm 1 produces the same (optimal) solution as Equation (5) when
7 = Z. Before the first invocation of the algorithm, the variable T, which expresses the amount of
energy already charged, is initialized to zero. Then, iteratively before each interval m, this algorithm is
used to calculate the charging power x;, for this interval. Hence, at the beginning of the m-th interval,
T = Y./" | xm expresses the amount already charged up to this interval of the total C to be charged.

Figure 2 illustrates an instance with Z = 1.1Z and § = 0, which shows that the prediction error
is spread out evenly over all intervals where charging takes place, but the charging stops before the
deadline. The ratio between the objective value of the optimal solution and of the online algorithm
using Z is 1.008 in this example. On the website [21], an interactive demonstration of Algorithm 1 can
be found.
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Algorithm 1 Online EV planning for time interval m.

Xy = max (0, min (Z — P+ Gm, X))

X = min(xy,, C — T) {needed for Z < Z)

if T+ x, 4+ (M — m)x < C then {needed for Z > Z}
Xy :=min{C — T, x}

end if

T=T+xy

[ NoEV (p) [ House+EV (7 + %) [ House+EV (prediction)
600

g —L|
= 7
% 400 —l_.—"’_ = B
£~
a L_I_LI‘IJ
18:00 07:00

Time

Figure 2. Optimal EV planning and EV planning using the prediction Z.

In the following, we consider the case that 7 > Z. For this case, we derive a bound on the ratio
between the objective value of the optimal solution and the objective value of the solution that uses
the prediction Z, which only depends on Z and Z.

To ease the discussion, we use C(Z) and C(Z) to denote the objective value of the optimal solution
and the objective value of the solution that uses the prediction Z, respectively. To derive bounds on the
ratio C(Z2)/C(Z), we need the following lemma.

Lemma 1. Let X be an optimal solution to an instance where x,, < % (for all m), and let Zy, = Z%Zl Zm-
Then, we have:
C(Z) > \/ZZs.

Proof. Assume that in the optimal solution we have a z;,;, < Z for some m. This implies that p,, — g, < Z
and the algorithm tried to fill this interval up to Z, but did not succeed. The only reason for this is that
the maximum amount of charging was not sufficient to reach Z. As a consequence, the algorithm will
charge ¥ in this interval, which is a contradiction to x;, < ¥ for all m.

Hence, we have

M
C(z)=\| ¥z

v
S
N

N

|

This lemma is used to derive a bound on the ratio between the objective value of the optimal
solution, and the objective value of the solution based on the prediction Z.
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Theorem 1. When Z < Z, the ratio between the objective value of the optimal solution and that based on the
prediction 7, is given by

7
(z

S

N

<

Q

Proof. Note that when 2,, > Z for an interval m, we have 2,, = z,, because Z > Z, i.e., both solutions
are the same for such intervals m. As a consequence, if the instance has an interval m with 2, > Z,

replacing this instance by an instance with p,; — g = Z leads to an increase of the ratio CEZ; as

C(z ) > C(Z), and both Z,, and z,, decrease by the same amount; i.e., we may assume for this proof
w.lo.g. that £,, < Z for all intervals m. Similarly, we may assume w.l.o.g. that x,, < %, since otherwise
Z <z, < Z and the ratio only improves. Because of this latter assumption, the instance meets the
requirements for Lemma 1.

Let Zy = Y M | z,. First, we show that C(Z) < \/ZZs. For this, consider a solution of
Algorithm 1, which is characterized by £, = % — gm + pm. Since the obtained result is feasible,
we have

M
Z 2 =7
m=1

Now, we have

A M M A~
C2) =\ L& <.\ X Zn
m=1 m=1
R M
=2y tu=1/2Zs
m=1

Combining this inequality with C(Z) > \/ZZs, (due to Lemma 1), we get:

‘

@

Q

(Z )
which proves the theorem. [

This theorem gives a bound on the relative deviation of the objective value of the solution of
Algorithm 1 compared to the objective value of the optimal solution. Note that this bound depends
only on the relative deviation of the used estimate for the fill level compared to the optimal fill level,
and that this dependency on this relative deviation is dampened by the square root function.

4. Fleet Planning

This section extends the results from the previous section to charging multiple EVs. In a domestic
situation, cars are typically charged when their owners arrive at home, which commonly is in the
evening and coincides with a domestic consumption peak. Especially when multiple EVs are charging
simultaneously within a neighborhood, there is a risk of high peaks and therefore of overloading
the transformer. As we argued in the previous sections, predicting a load profile is difficult, while
controlling an individual EV with only few predictions can be done. We extend this approach to
multiple EVs by adding another method that shaves load peaks at the neighborhood level at the
moment they are noticed (e.g., in an online setting). For this, we propose the following solution:

1. The charging of EVs is planned locally within the houses such that the total household
consumption power profile (including the EV) becomes as flat as possible.
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2. When the total power P of a group of houses is above a given threshold of X watts, the EVs are
requested to decrease their total charging in the next time interval by A = P — X in a way that
keeps the individual local power profiles as flat as possible for their remaining charging window.

3. When the total power P of a group of houses is below a given threshold of Y watts (e.g.,
PV production peak), the EVs are requested to increase their total charging in the next time
interval by A = Y — P in a way that keeps the individual local power profiles as flat as possible
for their remaining charging window.

This approach, which is detailed below, has several important advantages. By starting with
flat profiles on house level in the first step, the individual peak loads, and with it the probability of
overloading the network, decreases. Furthermore, flattening the house load increases self-consumption
of locally generated electricity (e.g., PV), has a positive impact on the voltage, avoids overloading the
grid, and decreases losses (as is demonstrated in Section 6).

When there is still a peak consumption for the group of houses (e.g., in the evening), the second
step of the proposed approach coordinates the charging while avoiding new local peaks. To quantify
these local peaks, we use a cost function C,, () that expresses how much changing the power for the
upcoming interval from x;, ,; to Xy, + 0 influences the flatness of the entire power profile for house
n (i.e., also considering impact on the future). This function aids us with finding the EVs that can
contribute to obtaining a total power difference with minimal impact to the local flatness, and thus
preventing problems in the future. More specifically, our objective is to obtain a total power difference
A for the group of houses in the next time interval, while retaining the flatness of the power profiles of
individual houses as much as possible. This is expressed mathematically as:

Problem 2.

N
min f(5) =Y Cu(bn),
E— =

M=

subject to g(8) = Y 6, = A,

—_

n=

where f and g are introduced for reference in the later results. To ease the presentation,
maximal charging powers are not considered in this formulation. However, to solve Problem 2
with additional maximal charging power constraints, we just can solve Problem 2 (without these
constraints) and fix any violations using a Pegging Method; see [22] for a discussion of such methods.

Before we can solve this problem, we first need a formal description of én(én). These costs
depend on the charging level to be attained in the charging intervals (i.e., the fill level Z;), and the
uncontrollable loads in the other intervals. The subset of intervals where charging up to Z takes place
is denoted by Z,, C {1,..., M}, i.e., Z, contains the intervals where pum — qum < Zn. Let I, = |Z,|
denote the number of such intervals (excluding the first interval). Using this notation, the costs for
house 1 can be determined as function of Z, (note that C(Z) now received a subscript to indicate
the house):

Cn(Zn) = Z Z% + Z (Pn,m - q;i,m)z

mely me{l,...M}\Z,
= Inzrzz + Z (Pmm - ‘111,m)2-
me {1, MM\

Intuitively, this means that the incurred costs are the costs of charging up to Z, in the active
intervals Z,, (first term), and the costs of the intervals where no charging takes place (second term).
We notice that, for practical data, (see the discussion in the next section) I, rarely changes with ¢ and
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may be estimated to be constant, and therefore the last term of the equation above does not have to be
considered for optimization. This means that we can approximate G, (8) by:

2
Col8) = (Zn+0)2 + In (zn— Iﬁ) , ®)

where the first term gives the costs of changing the first interval and the second term expresses the
costs of the other active charging intervals. To study the influence of J, on the costs, we need the
derivative of C,(,), given by

é/(&):z(zw&)—z(zn—]ﬁ) :25(1+ 1>.

n I,
The following lemma provides a sufficient condition of optimality for Problem 2, which is later
used to find an optimal solution.

Lemma 2. Let C,(8,) be given by (6). If we have a solution & = (8y,...,0x) to Problem 2 that satisfies
1 1 ..
5; (1 + 7> =9 (] + ) , foralli,j, 7)
I; I;

N
Z O =4, (8)

and

this solution is optimal.

Proof. Using the method of Lagrange multipliers (i.e., Vf 4+ AVg = 0), we obtain a set of equations
that give sufficient conditions for optimality:

R 1
<ng+A:2&<y+T>+A:o
1

1
Cywm+A:2M<1+T>+A:0
N
N
Y su=n,
n=1
with A being the Lagrange multiplier. It can be readily checked that Equations (7) and (8) solve this set

of equations. [

The intuition behind this lemma is that when C/(5;) < C}(ﬁj), the costs can be decreased by
slightly increasing J; and decreasing ; by the same amount.
Using this lemma, we can derive the following theorem that provides the optimal values J,,.

Theorem 2. Let Cy,(8) be given by (6). Then, the optimal solution to Problem 2 is for all n:

A

= ST 2/my, ©)
where
Noooq
S=Yoaron

i=1
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Proof. As the optimal solution is unique (the problem is strictly convex), finding one optimal solution
proves this theorem. It can be readily verified that Equation (9) satisfies both Equations (7) and (8).
Hence, by Lemma 2, the theorem is proven. [

A consequence of this theorem is that only the number of charging intervals I,, determines the
change J, in charging power.

5. Predictions

The methods presented in the previous two sections are based on proper predictions of the fill
level Z,, and the number of active charging intervals I, for each house n. To validate that these values
are relatively easy to predict, we analyzed these values using 90 consecutive days of measurements
from a Dutch house, and used this to calculate the optimal charging profile for each of the days between
18:00 and 24:00, subdivided into 24 intervals of 15 min.

The results for different charging amounts C, (in kWh) are presented in Table 1. This table
shows that the values for Z, are in a small band for all 90 days. See also Figure 3, where the four
graphs correspond to the different C,, values from this table are given. When we take the maximum
encountered Z, as prediction 7, and use this prediction for all 90 days, the last column shows that
highest realized costs increase by at most 16%, although the median is significantly lower (7% additional

costs). The column \/; gives the bound of the costs as estimated by Theorem 1 and shows that this
theorem provides a reasonable bound of the costs.

Table 1. Analysis of Z, and C;, for 90 days for charging between 18:00 and 24:00.

Cy Z, I, Max. Power 2 %
(kWh) - - - z
Min Med Max Min Med Max Min Med Max Min Med Max

6 1188 1463 1713 21 22 24 1118 1361 1584 120 1.00 107 1.16
12 2188 2492 2776 22 24 24 2118 2385 2643 1.13 100 1.05 1.11
18 3188 3492 3798 24 24 24 3118 3388 3643 1.09 100 1.04 1.09
24 4188 4492 4798 24 24 24 4118 4388 4643 1.07 100 1.03 1.07

Day

Figure 3. Fill levels Z;, corresponding to Table 1.

These results suggest an efficient way of predicting Z,;: use measurements from the previous days
to calculate the Z, for each of these days, and use the highest encountered value as Z,. To calculate
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Zy, the deterministic EV planning algorithm from [4] can be used, and, as indicated in this paper, this
algorithm can calculate the result in order of milliseconds and has a time complexity of O(Mlog M).
Since we use this approach for each EV that arrives, our approach has a complexity of O(KMlog M),
for K EVs.

Charging the EV within a relatively short interval, such as the interval between 18:00 and
24:00 above, results in a relatively high charging power, especially if the charging amount C, is
also relatively high. This results in a profile wherein most intervals are used for charging (i.e.,
I, is close to the total number of intervals) and the profile itself is flat (i.e., it precisely reaches Z;).
When a longer charging interval is taken with multiple higher peaks (e.g., during the day and/or
evening), the charging is spread out and done at lower power. To illustrate this, we repeat the
experiment with a charging between 14:00 and 24:00 (when consumption is highest). The achieved
results are as presented in Table 2. Note that, in this table, the values I;; are more diverse since the
house consumption plays a larger role. Note that I, can be interpreted as the number of intervals
with low house consumption compared to the fill level Z,,. Since even with a long charging horizon,
the variation in I, is small, this is an additional indication that our assumption from the last section
that I,; is (almost) constant is reasonable. The results also indicate that I, is easy to predict, and this
can be done similar to (and simultaneously with) obtaining Zn, as was described above.

To make this overview complete, we considered the highest charging power (Max. power) within
each day, and present the minimum, median and maximum of this value over the 90 days in Tables 1
and 2, and the results show that these values grow approximately linearly with C,.

Table 2. Analysis of Z, and C;, for 90 days for charging between 14:00 and 24:00.

Cy Z, I, Max. Power \/; 522
(kWh) " : - z
Min Med Max Min Med Max Min Med Max Min Med Max
6 809 1057 1268 31 35 40 749 969 1184 125 1.00 1.06 1.18

12 1409 1721 1962 35 38 40 1349 1627 1851 1.18 1.00 106 1.15
18 2009 2340 2603 37 39 40 1949 2253 2468 114 1.00 105 1.12
24 2609 2943 3221 39 40 40 2549 2859 3079 1.11 1.00 1.04 110

6. Evaluation

In this section, we compare our work with the state-of-the-art research and several other charging
strategies. The basic variant of our approach aims to make the house load as flat as possible without
coordination between the houses and is denoted by NOCOORD. The extension of this technique that
shaves the neighborhood peak by adding coordination is referred to by COORD. For both of our
approaches, we make predictions upon arrival of the EVs using the approach from the previous section
with ten days of historical data as input. We compare our approaches with the state-of-the-art research
on Profile Steering (PS) from [2]. The profile steering algorithm is a heuristic that predicts the load
of each house, makes a plan that is as flat as possible, and coordinates between houses to further
flatten the load peak. In order to compare with the best possible behavior of PS, we assume perfect
predictions for profile steering, which gives this approach a significant advantage. For completeness,
we also compare to no control (NC), where EVs charge at full power at arrival, and with a grid unaware
peak-shaving (PEAKS), which is a simple approach that iteratively selects EVs and decreases their
charging as much as possible until the desired load at the transformer is accomplished.

To effectively compare all approaches with the state-of-the-art research, we reproduce the case
used in [2]. It considers 121 houses, all equipped with identical electric vehicles that charge 12 kWh
between 18:00 and 07:00 and have a maximum charging power of 3.8 kW. We used the same data set
and network files as used in [2] to calculate the load flows to obtain the active power at the transformer
(incl. losses), the lowest observed voltage in the grid and the highest observed voltage in the grid. For
COORD and PEAKS, we need to set a limit for the peak-shaving by the neighborhood controller, and
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we set this limit to X = 165 kW. The results are summarized in Table 3 and further detailed in Figure 4
(power) and Figure 5.

Table 3. Comparison between DSM approaches and no control.

COORD NOCOORD

PEAKS NC Ps (This Paper) (This Paper)
Total losses (kWh) 61.31 89.22 33.90 34.36 35.95
Lowest voltage (V) 209.92  199.77 219.15 219.11 218.88
Highest voltage (V) 23228 23228 231.51 231.51 231.51
Max. peak (kW) 171.04 575.09 175.70 170.82 195.28
Max. cable load (%) 106.87  143.35 57.41 57.41 57.41

300 NOCOORD (this paper) - - = COORD (this paper)
J— o J— NC

200

Power (kW)

100

12:00 18:00 00:00 07:00 12:00

Time

Figure 4. Power at transformer (incl. losses).
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Figure 5. Lowest and highest observed voltages.

When no control would be applied, a large peak occurs at the transformer (see Figure 4),
cables are overloaded and the voltage does not stay within the legal bounds that are required in
the Netherlands (i.e., NEN-EN 50160:2010 [5], 207 V-253 V). The transformer load is reduced with
PEAKS; however, Table 3 shows that this approach still overloads cables.

In contrast to NC and PEAKS, PS reduces the load peak significantly and keeps the voltage
within legal bounds (Figure ??). Although it performs well, this algorithm depends on hard to
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make predictions (namely, a power value for each interval, for each house) and requires a lot of
communication due to exchanging power profiles.

When no coordination controller is used (NOCOORD), the resulting profile is already rather flat
(Figure 4) and the voltages are well within legal bounds, and, at the end of the charging intervals, this
approach is on par with PS (Figure ??). By using the coordination controller (COORD), the profile is
further flattened and the voltages are similar to the no coordination controller for this specific case.

Table 3 gives the exact losses, voltage bounds, maximum peak load and the highest overloading
of a cable within the grid. Note that several scenarios share the maximum cable load of 57.41%,
and the reason for this is that this cable load occurs before the EVs arrive and cannot be influenced.
The table shows that the developed approaches perform similar to profile steering, while, for profile
steering, knowledge about the future was used (in the real world, profile steering has to predict these
values, whereas, in our experiments, we used the actual values).

7. Conclusions

Existing demand side management approaches either do not plan ahead, and thereby often may
not deploy the flexibility of smart appliances when it is needed the most, or they do make a plan but
this planning is based on often hard to predict (inaccurate) household power consumption.

To plan the appliances within a house, we propose using online planning. As a proof of concept,
we presented an online electric vehicle planning algorithm that only requires a prediction of the
fill level characteristic and a prediction of load in the next time interval as an input. The algorithm
distributes the prediction error evenly over all charging intervals. This makes the algorithm very
robust against incorrect predictions, especially if the predictions are higher than the actual realization.
Furthermore, we presented a bound that quantifies the sensitivity of our approach to prediction errors.

We extended the house control mechanism by a neighborhood control mechanism, which initially
asks the houses to make a flat profile. When the load exceeds a certain threshold, this coordination
controller requests less charging from houses for the next time period in such a way that the house
profiles remain as flat as possible. This method only requires a prediction of the number of active
charging intervals within a house to make the required trade-off.

Both the house and neighborhood approaches require only few predictions, and we showed that
these predictions are easy to obtain. In the evaluation, we studied the combination of predictions with
our approach, and demonstrated that it works effectively for peak-shaving. The evaluation furthermore
shows that this approach is very robust against prediction errors, and performs adequately even when
the predictions are very imprecise. Compared to a naive approach, it leads to lower transportation
losses, keeps the voltage within required bounds and keeps cable loads low. Furthermore, it is on par
with the state-of-the-art research, which—in contrast to our work—requires predictions of flexibility
and predictions of a load profile (24 hours ahead) for each house.

In future work, we aim to extend the online planning within a house to cope with appliances
other than electric vehicles.
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Abstract: The main objective of this paper was to study a bidirectional direct current to direct current
converter (BDC) topology with a high voltage conversion ratio for electric vehicle (EV) batteries
connected to a dc-microgrid system. In this study, an unregulated level converter (ULC) cascaded
with a two-phase interleaved buck-boost charge-pump converter (IBCPC) is introduced to achieve
a high conversion ratio with a simpler control circuit. In discharge state, the topology acts as a
two-stage voltage-doubler boost converter to achieve high step-up conversion ratio (48 V to 385 V).
In charge state, the converter acts as two cascaded voltage-divider buck converters to achieve high
voltage step-down conversion ratio (385 V to 48 V). The features, operation principles, steady-state
analysis, simulation and experimental results are made to verify the performance of the studied
novel BDC. Finally, a 500 W rating prototype system is constructed for verifying the validity of
the operation principle. Experimental results show that highest efficiencies of 96% and 95% can be
achieved, respectively, in charge and discharge states.

Keywords: bidirectional dc/dc converter (BDC); electric vehicle (EV); dc-microgrid; high voltage
conversion ratio

1. Introduction

In recent years, to reduce fossil energy consumption, the development of environmentally
friendly de-microgrid technologies have gradually received attention [1-7]. As shown in Figure 1,
a typical de-microgrid structure includes a lot of power electronics interfaces such as bidirectional
grid-connected converters (GCCs), PV /wind distributed generations (DGs), battery energy systems
(BES), electric vehicles (EVs), and so on [4]. They connect together with a high-voltage dc-bus, so that
dc home appliances can draw power directly from the dc-bus. In this system, the main function of
GCCs is to maintain the dc-bus voltage constant, while in order to ensure the reliability of operation for
dc-microgrids, a mass of BES can usually be accessed into the system. Electric vehicles (EVs) can also
provide auxiliary power services for de-microgrids, which makes clean and efficient battery-powered
conveyance possible by allowing EVs to power and be powered by the electric utility. Usually,
in de-microgrid systems, when the voltage difference between the EV battery, BES and the dc-bus
is large, a bidirectional dc/dc converter (BDC) with a high voltage conversion ratio for both buck
and boost operations is required [4,7]. In the previous literatures, BDCs circuit topologies of the
isolated [8-10] and non-isolated type [11-23] have been described for a variety of system applications.
Isolated BDCs use the transformer to implement the galvanic isolation and to comply with the different
standards. Personnel safety, noise reduction and correct operation of protection systems are the main
reasons behind galvanic isolation. In contrast with isolated BDCs, non-isolated BDCs lack the galvanic
isolation between two sides, however, they offer the benefits of smaller volume, high reliability, etc.,
so they have been widely used for hybrid power system [24,25].
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Figure 1. A typical de-microgrid structure [4].

Compared with isolated types, BDCs with coupled-inductors for non-isolated applications possess
simpler winding structures and lower conduction losses [12-17]. Furthermore, the coupled-inductor
techniques can achieve easily the high voltage conversion ratio by adjusting the turn ratio of the
coupled-inductor. However, the energy stored in the leakage inductor of the coupled inductor
causes a high voltage spike in the power devices. Wai et al. [12,13] investigated a high-efficiency
BDC, which utilizes only three switches to achieve the objective of bidirectional power flow. Also,
the voltage-clamped technique was adopted to recycle the leakage energy so that the low-voltage
stress on power switches can be ensured. To reduce the switching losses, Hsieh et al. proposed a high
efficiency BDC with coupled inductor and active-clamping circuit [16]. In this reference, a low-power
prototype was built to verify the feasibly.

As shown in Figure 2, Liang et al. [17] proposed a bidirectional double-boost cascaded topology
for a renewable energy hybrid supply system, in which the energy is transferred from one stage to
another stage to obtain a high voltage gain. Hence their conduction losses are high and it requires a
large number of components.

Chen et al. [18] proposed a reflex-based BDC to achieve the energy recovery function for batteries
connected to a low-voltage micro dec-bus system. In [18], a traditional buck-boost BDC was adopted,
however, the voltage conversion ratio is limited because of the equivalent series resistance (ESR) of the
inductors and capacitors and effect of the active switches [19].

il il
+ Ny 'ng Ns '_Ss +
vi =C Stgal +C pA Cux vy

Charge State = Discharge State

Figure 2. Circuit structure of the bidirectional double-boost cascaded topology [17].
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To increase the voltage gain of the converter, the capacitors are switched and it will act as a
charge-pump. The main advantage of the switched capacitor-based boost converter is that there
is no need of a transformer or inductors. The main drawbacks of this topology are the complexity
of the topology, high cost, low power level and high pulsating current in the input side [11,21].
In order to increase the conversion efficiency and voltage conversion ratio, multilevel combined the
switched-capacitor techniques have been proposed to achieve lower stress on power devices [20-23].
As shown in Figure 3, in [22,23] two converters regulated the reasonable voltage conversion ratio with
a simple pulse-width_modulation (PWM) control. However, if a high voltage conversion ratio must
be provided, more power switches and capacitors are indeed required. Furthermore, although the
extreme duty cycle can be avoided, the input current ripple is large due to their single-phase operation
which renders these BDCs unsuitable for high current and low ripple applications.

+ L1 S S +

v. FC —HhR—1
Sifsl

~Crn vy

Yl
7

Charge State <=3 Discharge State Charge State <=3 Discharge State
(a) (b)

Figure 3. Two multilevel combined the switched-capacitor topologies: (a) circuit structure in [22];
(b) circuit structure in [23].

The objective of this paper is to study and develop a novel BDC for applications involving
EVs connected to dc-microgrids. To meet the high current, low current ripple, and high voltage
conversion ratio demands, the studied topology consists of an unregulated level converter (ULC)
cascaded with a two-phase interleaved buck-boost charge-pump converter (IBCPC). In discharge state,
the topology acts as a two-stage cascaded two-phase boosting converter to achieve a high step-up ratio.
In charge state, the topology acts as two-stage cascaded two-phase bucking converter to achieve a high
step-down ratio. The extreme duty cycle of power devices will not occur for bidirectional power flow
conditions, thus not only can the output voltage regulation range be further extended but also the
conduction losses can be reduced. In addition, the two-stage structure benefits reducing the voltage
stress of active switches, which enables one to adopt the low-voltage rating and high performance
devices, thus the conversion efficiency can be improved. The remainder of this paper is organized as
follows: first, the converter topology and the operation principles of the studied BDC are illustrated in
Section 2. Then, steady-state characteristic analyzes are presented in Section 3. A 500 W laboratory
prototype is also constructed, and the corresponding simulation results, as well as experimental results,
are provided to verify the feasibility of the studied BDC in Section 4. Finally, some conclusions are
offered in the last section.

2. Proposed BDC Topology and Operation Principles

The system configuration for the studied BDC topology is depicted in Figure 4. The system
contains two parts, including a ULC and a two-phase IBCPC. The major symbol representations are
summarized as follows: Vi and V denote the high-side voltage and low-side voltage, respectively.
L1 and L, represent two-phase inductors of IBCPC. Cp denotes the charge-pump capacitor. Cyy and Cp,
are the high-side and low-side capacitors, respectively. The symbols, Q1~Qy, and S;~54, respectively,
are the power switches of the IBCPC and ULC.
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Figure 4. System configuration of the novel BDC topology.

In this study, as the low-side stage, a high efficiency magnetic-less ULC with bidirectional power
flow is adopted to output a fixed voltage for a given input voltage. Because only a small sized high
frequency line filter (L,, Ly) is required, it can substantially boost the power density of the low-side
stage. Furthermore, by leaving the voltage regulation to another high-side stage, the studied BDC for
the low-side stage with fixed 2:1 under charge state operation or 1:2 conversion ratio under discharge
state operation, can achieve high efficiency with a relatively low-side voltage in whole load range.
As to the high-side stage, the structure of two-phase IBCPC is similar to a conventional buck-boost
converter except two active switches in series and a charge-pump capacitor (Cg) employed in the
power path. The circuit structure is simple and it can reach the high voltage conversion ratio with a
reasonable duty cycle. Therefore, it can reduce the conduction loss of the switch, to further upgrade
the efficiency of the whole bidirectional converter.

The studied BDC topology can deliver energy in both directions. When the energy flows from
Vy to V1, it operates in charge state (i.e., buck operation); Q; and Q, are controlled to regulate the
output. Thus, Q; and Q; are defined as the active switches, while Q3 and Qy are the passive switches.
The passive switches work as synchronous rectification (SR). When the energy flows from V; to Vy,
it operates in discharge state (i.e., boost operation); Q3 and Q4 are controlled to regulate the output.
Thus, Q3 and Q4 are defined as the active switches, while Q; and Q, are the passive switches.

In this study, the following assumptions are made to simplify the converter analyzes as follows:
(1) the converter is operated in continuous conduction mode (CCM); (2) capacitors Cy and Cy, is large
enough to be considered as a voltage source; (3) the middle-link voltage Vi = V1 + Vo is treated
as a pure dc and considered as constant; (4) the two inductor L; and L, have the same inductor Ls;
(5) all power semiconductors are ideal; (6) the charge-pump voltage Vg is treated as a pure dc and
considered as constant.

2.1. Charge State Operation

Figures 5 and 6 show the circuit configuration and characteristic waveforms of the studied BDC
in charge state, respectively. It can be seen that switches Q; and Q, are driven with the phase shift
angle of 180°; Q3 and Q4 work as synchronous rectification. In charge state, when Sy, S3 are turned on
and Sy, S4 are turned off; or else S, S4 are turned on and Sy, S3 are turned off. The low-side voltage V},
is half the middle-link voltage V}y, i.e., Vi = 0.5V). In this state, one can see that, when duty ratio of
Q1 and Q; are smaller than 50%, there are four operating modes according to the on/off status of the
active switches.
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Figure 5. Circuit configuration of the studied BDC in charge state.
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Referring to the equivalent circuits shown in Figure 7, the operating principle of the studied BDC
can be explained briefly as follows.
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Figure 7. Equivalent circuits of the modes during different intervals in charge state: (a) Mode 1;
(b) Mode 2, Mode 4; (c) Mode 3.

2.1.1. Mode 1 [ty <t < t1]

The interval time is D; Ty, in this mode, switches Q1, Q3 turned on and switches Q,, Q4 are all
off. The voltage across L1 is the negative middle-link voltage, and hence i decreases linearly from the
initial value. Also, the voltage across L, is the difference of the high-side voltage Vp, the charge-pump
voltage Vg, and the middle-link voltage V), and its level is positive. The voltages across inductances
L1 and L, can be represented as:

di

Lt = Vi =21, (1)
y

2*{2&2 =Vu—Veg—Vu ()
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2.1.2. Mode 2 [t <t < b]

For this operation mode, the interval time is (0.5 — D;)Tsw, switches Q3, Q4 are turned on and
switches Qy, Q; are all off. Both voltages across inductors L and L are the negative middle-link
voltage V), hence i1 and ij, decrease linearly. The voltages across inductances L and L, can be
represented as:

dipy . dipy B
LR — 82y -y, 3)

2.1.3. Mode 3 [t <t < t3]

For this operation mode, the interval time is DT, switches Qp, Q4 are turned on and switches

Q1 and Qs are all off. The voltage across L; is the difference between the charge-pump voltage Vg

with the middle-link voltage V), and L, is keeping the negative middle-link voltage, the voltages
across inductances L1 and L, can be represented as follows:

Ly — vy ®

274 =-Vym (5)

2.1.4. Mode 4 [t3 <t < t4]

From this operation mode, the interval time is (0.5 — D) Ts. Switches Q3, Q4 are turned on and
switches Q1, Q» are all off, and its operation is the same with that of Mode 2.

2.2. Discharge State Operation

Figures 8 and 9 show the circuit configuration and characteristic waveforms of the studied BDC
in discharge state, respectively. As can be seen these figures, switches Q3, Q4 are driven with the phase
shift angle of 180°; Q, Q» are used for the synchronous rectifier. In discharge state, when Sq, S are
turned on and S,, Sy are turned off; or else S,, S4 are turned on and Sy, S3 are turned off. The low
voltage V; will charge the Cy;; and Cyyp to make V11 and Vi, equal to Vi, the middle-link voltage
V) is then twice the low-side voltage Vi, i.e., Vj =2V},

Referring to the equivalent circuits shown in Figure 10, the operating principle of the studied
BDC can be explained briefly as follows:

2.2.1. Mode 1 [to <t< tl]

The interval time is (D, — 0.5)Tg,, switches Q3 and Qy are turned on; switches Q1 and Q; are all
off. For the high-side stage, the middle-link voltage V) stays between inductance L; and L,, making
the inductance current increase linearly, and begins to deposit energy. The voltages across inductances
Ly and L, can be represented as:

dipq o dip, - B
Ly T Ly T Vm =2V, (6)

2.2.2. Mode 2 [t] <t < ty]

In this operation mode, the interval time is (1 — Dj,)Ts,. Switch Q1, Q3 remains conducting and
2, Q4 are turned off. The voltages across inductances L; and L, can be represented as:

L1— =Vy =2V, 7

14 M L @)
di

Lz% =Vm—Vy+Vep =2V, — Vg + Vg (8)
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Figure 8. Circuit configuration of the studied BDC in discharge state.
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Figure 10. Equivalent circuits of the modes during different intervals in discharge state: (a) Mode 1,
Mode 3; (b) Mode 2; (c) Mode 4.

2.2.3. Mode 3 [tz <t< t3]

In this operation mode, the circuit operation is same as Mode 1.

2.2.4. Mode 4 [t3 <t<ty4]

In this operation mode, the interval time is (1 — Dp)Ts,. For the low-side stage, switches Q1, Qs
are turned off and Q,, Q4 are turned on. The energy stored in inductor L; is now released energy to
charge-pump capacitor Cp for compensating the lost charges in previous modes. The output power is
supplied from the capacitor Cy. The voltages across inductances L1 and L, can be represented as:

Vg = Vm — Ve ©)

diro
Lr—== =V 1
27 M (10)
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3. Steady-State Analysis

3.1. Voltage Conversion Ratio

In charge state, Vi is the input and V7, is the output. According to Equations (1)—(5) and based on
the voltage-second balance principle in L1 and Ly, the voltage conversion ratio M, in charge state can
be derived as:

Vi Dy
- L _"d 11
7 1)

In Equation (11), D, is the duty cycle of the active switches Q; and Qy. As can be seen, the voltage
conversion ratio in charge state is one-fourth of that of the conventional buck converter. Similarly,
in discharge state, V| is the input and V; is the output. According to Equations (6)—(10) and based on
the voltage-second balance principle in L; and L, the voltage conversion ratio M, in discharge state
can be derived as:

My

Vg 4

Mb:ﬁ_lbe

12)

where Dj, is the duty cycle of the active switches Q3 and Q4. As can be seen, the voltage conversion
ratio in discharge state is four times of that of the conventional boost converter.

Figure 11 shows that the studied BDC demands a smaller duty cycle for the active switches
to produce the same voltage conversion ratio, or can produce a higher voltage conversion ratio at
the same duty cycle when compared with the traditional BDC [18] and the previous BDC in [22].
Furthermore, the voltage conversion ratio of studied BDC is higher than that of the BDC proposed
in [23], under a reasonable range of 25%~75% duty cycles.
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Figure 11. Comparison of voltage conversion ratios produced by the studied BDC, the converters
introduced in [18,22,23].

3.2. Voltage Stress of the Switches

Whenever the ULC works as a back or front-end stage, the open circuit voltage stress on the
switches 51~S4 of ULC is equal to the low-side input voltage V', as follows:

VSl,max = VSZ,max = VSS,max = VS4,max = VL (13)

The particular inherent feature of the ULC benefits the low conduction losses can be achieved by
adopting the low-voltage MOSFETs.

As to the high-side stage of the studied BDC, based on the aforementioned operation analyzes in
Section 2, the open circuit voltage stress of switches Q;~Qy can be obtained directly as:
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Vi
VQl,maX = VQ3,max = VQ4,max = TH (14)

VQZ,max = VH (15)
3.3. Inductor Current Ripple

The studied BDC can operate not only in charge state but also in discharge state. Thus, the
inductor can be calculated in either charge or discharge state. According to Equations (1)—(5), the total
ripple current of the inductor of the studied BDC in charge state can be expressed as:

VH Tsw

AlLl"Charge = Lq

(0.5—Dy)Dy (16)

Similarly, in discharge state, according to Equations (6)—(10), the total ripple current of the inductor
of the studied BDC in discharge state can be expressed as:

_ ViTsw (Dy — 0.5)(1 — Dy) 17)

Aipy |discharge - L

Figure 12 shows the normalized ripple current of the inductor of the studied BDC, the traditional
BDC [18], and previous BDCs in [22,23], where the inductor and the switching frequency of these three
BDCs are equal, respectively. The ripple current of the traditional BDC at 50% duty cycle is normalized
as one.
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Figure 12. Comparison of the normalized ripple current of the inductor among the studied BDC,
the converters introduced in [18,22,23].

It can be seen that from Figure 12, the maximum ripple current of the inductor of studied BDC
is only one-fourth of that of a traditional BDC. On the other and, if the ripple currents are equal,
the inductor of the studied BDC is only one-fourth of that of traditional BDC [18], which means
that the studied BDC has a better dynamic response. From Figure 12, the ripple current of studied
BDC is smaller than that of the converter in [22], under a reasonable range of 35%~65% duty cycles.
Furthermore, the ripple current of the previous BDC proposed in [23] is higher than that of the one
proposed in this study, under a reasonable range of 30%~70% duty cycles.
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3.4. Boundary Conduction Mode

The boundary normalized inductor time constant 77, g can be defined as:

Ls f sw
— 850 1
B = —p (18)
where R is low-side input equivalent resistance.
During boundary conduction mode (BCM), the input current BDC can be derived as:
4V,
I = 1-D, 19
LT T (1-Dqg) (19)

Substituting Equation (19) into (18), the boundary normalized time constant in charge state can
be expressed as:

T4, = 4(1 - Dy) (20)
Similarly, in discharge state, the input current of the studied BDC can be obtained as:

A
Lsfsw

The boundary normalized time constant in discharge state can be expressed as:

I

Dy (21)

Trp,8 = 4Dy (22)

Figure 13 shows the plots of boundary normalized inductor time constant curves 7y, and 77 p
in charge and discharge states. The BDC in charge state operates in CCM when 74 is designed to be
higher than the boundary curve of 77, 5. The studied BDC in discharge state operates in discontinuous
conduction mode (DCM) when 7y is selected to be lower than the boundary curve of Ty, 5.

== Discharge state i
= Charge state

10 Charge state
CCM operation

10 —————— Discharge state
CCM operation

Normalized Time Constant

Charge state
DCM operation

Discharge DCM
state operation 1

D, "o,
Figure 13. Normalized boundary inductances time constant in charge and discharge states.

Figure 14 shows the boundary inductances curve of the studied BDC in charge and discharge
states. If the inductance is selected to be larger than the boundary inductance, the studied BDC will
operate in CCM. The studied BDC can operate not only in charge state but also in discharge state,
the boundary inductance can be derived as below from Equations (19) and (21), respectively.

L. _4(0-DJ %
4,8 fsw Pout
_ 4Dy VP

b5 fsw Pout

(23)

(24)

where P,y is the output power.
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Figure 14. Boundary inductances in various power conditions.

3.5. Selection Considerations of Charge-Pump Capacitor

For the proposed BDC in charge state operation, the ripple voltage of the charge-pump capacitor
Cp can be obtained as follows:

1 (h, 11Dy 11Dy
AVeg = — | icp(t)dt = >~ 25
=l cB(t) 2Cafow = iCsfon (25)
where:
. Iy Airipple 0.5Vy -2V,
f =" t—t 2
ics(t) = 5 7T I fom (t—to) (26)
. 0.5Vy — 2V
Adrippre = #(tl —to),t1 = DyTsw + to 27)

From Equation (25), it is known that although a capacitor with low capacitance is used for
charge-pump capacitor Cg, the voltage ripple can be reduced by increasing the switching frequency.
The root mean square (RMS) value of the current through the charge-pump capacitor is

2 (b, I
Icp(rRMs) = *j Zp(t)dt = —£/2Dy (28)
fsw to 4
3.6. Summaries of Component Stress and Loss

For stress and loss analysis, it is assumed that the studied BDC operates with D; < 0.5 and Dj, > 0.5
for charge and discharge modes, respectively. The results of component stress can be summarized
as in Table 1. Furthermore, equations for loss analysis can be summarized as in Table 2, where Qg
represents the MOSFET total gate charge; ¢, is rise time, it’s the period after the vgs reaches threshold
voltage vGs (i) to complete the transient MOSFET gate charge; # is fall time, it’s the time where the
gate voltage reaches the threshold voltage vgs after MOSFET turn-off delay time [26].
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Table 1. Stress analysis results at steady-state.

Items Charge State Discharge State
Voltage Stress of Q1, Q3, Q4 (vo1, vQ3, VQ4) 0.5Vy 0.5Vy
Voltage Stress of Q, (vg2) Vy Vy
Voltage Stress of S1~S4 (vs1~vs4) %7 %3
RMS Current Stress of Q1 (ig1) I12rms) v/ Da Iiarms)v/1 — Dy
RMS Current Stress of Q3 (ig2) I11rRvs) v/ Da I11rRms)v/1 — Dy
RMS Current Stress of Q3 (ig3) Ir1rms)v/1 — Dy Ir1rms)v/ Dy
2 21—
RMS Current Stress of Qy (ig4) (IU(RMS))Z(Dd)+ (IU(RMS))ZU Dy)+
(Ia(rmsy) (0.5 — Dy) (Ia(rmsy) ™ (Dp — 0.5)
RMS Current Stress of S1~Sy (ig1~ig4) Lyrms)/V2 Ini(rms)/V?2

RMS Current Stress of Ly (i;1)

Y2+ () a2+ (33)
Y22+ (33) 22 + (33)

RMS Current Stress of Ly (i1 »)

23
RMS Current Stress of L, (ira) I + (ZA\’% I2 + (ZA\I%)

RMS Current Stress of Ly, (ipp)

:

Iy + (5 Iy + (5%)
) /4 (1“/2(1 - Dh)) /4
\/Uoirms))* — I /Ugirms))? = In

i 4Aip, 4Ai,? Aigg? 4Aig, | 4Ai,? Aigg?
RMS Current Stress of Cy, (icr.) \/ILZ e \/ILZ — fhinl | 4ALE ) A

RMS Current Stress of Car1, Carz (icm1, icm2) Liyrms)? = Is1(rms)?

Table 2. Loss equations at steady-state.

RMS Current Stress of Cg (icp)

=
N

a
al

RMS Current Stress of Cy (icy)

Irerms)? = Isa(rms)?

Items Equations

Conduction loss of Q1~Q4 Rpscau) % ligirms))% Rosiz) * lioarms) % Ros(os) % liga(rus) 1% Ros(as) % lioarms)]*
Rps(sty * [is1(rms) % Rpscs2) % lisarms)y ] Roscsa) * lissrms) 1% Rpsesay = [isa(ras) ]
(Vbso1) % i1on) * Tr)/6Tsw; (Vpso1) X io1(orr) * T¢)/6Tsw

(Vbs(gz) * igacony * Tr)/6Tsw; (Vbs(oz) * iga(orr) % Tr)/6Tsw

( ( )
Switching loss of Q3 (Vbs(3) % igaony * Tr)/6Tsw; (Vps(os) % iga(orr) % Tf)/6Tsw
Switching loss of Qy (Vbs(os) % igaony % Tr)/6Tsw; (Vps(oay % igacorr) % Tf)/6Tsw

Conduction loss of S1~S4
Switching loss of Q;
Switching loss of Q,

Switching loss of S Vps(s1) X is1(on) % T,) /6Tsw; (Vps(s1y * is1(orF) % Tf)/6Tsw

Switching loss of S, (Vbs(s2) * isaiony x Tr)/6T; (VDS(SZ) % isyorF) * Tr ) /6T
Switching loss of S3 (Vbs(say * is3ony * Tr)/6Tsw; (Vps(say * is3orr) * Tf)/6Tsw
Switching loss of 54 (VDs(say * issony * Tr)/6Tsw; (Vps(say X isaorr) * Tf)/6Tsw

Conduction loss of Li~Ly Ry x [iLl(RMS)]Z; Rpa % [iLz(RMS)]z

Conduction loss of L,~L;, Ripg x [iLa(RMS)]Z; Rpp x [iLh(RMs)]Z

Conduction loss of Cp, Cy, Cp,
Conduction loss of Cpg1~ Cao
Gate driving loss of Q1~Q4
Gate driving loss of S1~Sy4

Rep % [icarms))% Rem * [icrrms) ) Rer % licrms))®
Rem * [icwnras)1 Remz % licmarms)

Qq(@1~04) * Ves(Qi~qe) X fiw

Qq(s1~58) X VGs(s1~58) * fsw

4. Simulation and Experimental Results

In order to illustrate the performance of the studied BDC, a laboratory prototype circuit is
simulated and experimented. To avoid all elements suffer from high-current stress at DCM operation,
resulting in high conduction and core losses. The studied BDC operates at CCM, and its parameters
and specifications of the constructed hardware prototype are given as below:

(1) high-side voltage Vy: 385 V;
(2) low-side voltage V1:48V;
(8) rated power P,: 500 W;
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(4) switching frequency fs;,: 20 kHz;

(5) capacitors CH = CL =33 }LF, CMl = CMZ =33 LLF, CB =10 HF; (ESR of CH, RCH =0.064 Q,’ ESR of CL,
RCL =0.062 Q, ESR of CMl/ RCMl =0.16 Q; ESR of CMZ/ RCMZ =0.16 Q; ESR of CB/ RCB =0.062 Q);

(6) inductors L =Ly = Ls = 800 uH; L, = L, = 1.5 uH (IHLP-6767GZ-A1); (ESR of L;, R;; = 0.18 Q,
ESR of Ly, Ry = 0.18 ), ESR of L,, Ry, = 13.6 m); ESR of Ly, Ry, = 13.6 mQ);

(7) power switches S1~S4: IXFH160N15T2, 150 V/160 A/Rps(on) = 9 mQ), TO-247AC; Q1, Qs, Qq:
FDAS59N30, 300 V/59 A/Rps(ny = 56 mQ), TO-247AC; Qo: W25NM60, 650 V/21 A/Rpsony =
160 mQ), TO-247AC.

Figure 15 show the simulated low-side filter currents (ir,, ir;), gate signals of active switches
(Q1, Q2) and two-phase inductor currents (i1, i12) in charge state at full load condition. Also the
corresponding experimental results are shown in Figure 16. One can observe that both results are in
very close agreement as well. From Figures 15a and 16a, as can be seen, the low-side filter (L,, L;)
can effectively limit the switching current spike and shape the current to a nearly rectified sinusoidal
waveform. Also, from the figures it is observed that by interleaved controlling the duty cycles of 0.48
for the switches (Q1, Qy), the two-phase currents (i1, ir») are in complementary relation and in CCM.
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Figure 15. Simulated waveforms of the studied BDC in charge state at full load: (a) low-side filter
currents ip,, irp; (b) gate signals of Q1, Q, and two-phase inductor currents 7y 1, if 5.
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Figure 16. Measured waveforms of the studied BDC in charge state at full load: (a) low-side filter
currents i1, i1p; (b) gate signals of Q1, Q, and two-phase inductor currents i1 1, if .

Figures 17 and 18 show the simulated and measured waveforms of charge-pump capacitor voltage
(Vcp), middle-link voltage (V)), middle-link capacitor voltages (Vp1, Vma), low-side voltage (V1),
and low-side switch voltages (Vs1, Vsa, Vg3, Vsa). From Figures 17 and 18 with the ULC of studied
BDC, the low-voltage side (V) is well regulated at 48 V. The middle-link voltage is 96 V, it does quite
reach twice of the regulated low-side voltage (V1) of 48 V. The charge-pump capacitor voltage (Vcp)
of 192 V can be achieved easily and indeed can share one-half of the high-side voltage to reduce the
voltage stress of active switches. It is observed that the steady-state voltage stresses of low-side active
switches (Vs1, Vsa, Vs3, Vsa) are only about 48 V, which means that lower on-resistance MOSFETs can
be used to achieve the improved conversion efficiency. Also, both the simulated results are in close
agreement with the corresponding experimental results.
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Figure 17. Simulated waveforms of the studied BDC in charge state at full load: (a) charge-pump
capacitor voltage Vg, middle-link voltage V); (b) middle-link capacitor voltages V1, Vi, and
low-side voltage V; (c) switch voltages of S, Sy, S3, S4.
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Figure 18. Measured waveforms of the studied BDC in charge state at full load: (a) charge-pump
capacitor voltage Vcp and middle-link voltage V); (b) middle-link capacitor voltages Vi1, Vo,
and low-side voltage V7 ; (¢) switch voltages of Slzﬁz, S3, S4.
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Figure 19 shows the simulated waveforms of gate signals of Q3, Q4, the two-phase inductor
currents (i1, irp) and the switch voltages of (Vg3, V4) in charge state at full load condition.
The corresponding experimental results are also shown in Figure 20. One can observe that both
results are in very close agreement as well. From the figures it is observed that by interleaved
controlling the duty cycles of 0.52 for the switches (Qs, Q4), the two-phase currents (i11, ir2) are in
complementary relation and in CCM. Also, from Figures 19b and 20b, the charge-pump capacitor
voltage (Vp) is about 192.5 'V, it can clamp the switch voltages of active switches (Qs, Q4) to be nearly
one-half of the regulated high-side voltage V of 385 V.
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Figure 19. Simulated waveforms of the studied BDC in discharge state at full load: (a) gate signals of
Q3, Q4, two-phase inductor currents iy 1, ir; (b) switch voltages of Qs, Q4; (c) charge-pump capacitor
voltage Vg and high-side voltage V.
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Figure 20. Measured waveforms of the studied BDC in discharge state at full load: (a) gate signals of
Q3, Q4, two-phase inductor currents i1 1, i»; (b) switches voltages of Q3, Qy; (c) charge-pump capacitor

voltage Vg and high-side voltage Vi;.
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Figure 21 summarizes the measured conversion efficiency of the studied BDC in charge and
discharge states. On the experimental porotype system, the conversion efficiency is measured via
precise digital power meter WT310 equipment, manufactured by the Yokogawa Electric Corporation
(Tokyo, Japan). The accuracy of the measured power is within +/—0.1%. It can be seen that from
Figure 21, the measured highest conversion efficiency is 95% in discharge state and is around 96%
in charge state. In order to clarify the actual measured conversion efficiency further, based on the
equations in Table 2, the calculated power loss distribution at the rated load condition is listed in
Table 3, and furthermore, the calculated losses breakdown diagrams of the studied BDC are depicted
in Figure 22. From Table 3 and Figure 22, one can see that the power losses mainly occur in the copper
loss of the inductors, switching loss and conduction loss of the MOSFETs. The total power losses in
charge and discharge states are 28.5 W and 28.6 W, accounting for 5.70% and 5.73%, in rated load
condition, respectively. These match well the measured conversion efficiency of the studied BDC in
charge (94.29%) and discharge (94.25%) states.
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80
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Figure 21. Measured conversion efficiency of the studied BDC for low-side voltage V; = 48 V and
high-side voltage Vi = 385 V under different loads.

(b)

Figure 22. Calculated losses breakdown diagrams at rated load condition: (a) in charge state;
(b) in discharge state.
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Table 3. Power loss distribution (500 W rated load condition).

Charge State

Discharge State

Items
Calculated Results Calculated Results
Conduction loss of Q1 0.62W 0.62W
Conduction loss of Q» 1.58 W 1.58 W
Conduction loss of Q3 0.67 W 0.67 W
Conduction loss of Q4 1.29 W 1.29 W
Conduction loss of Sq 0.58 W 0.58 W
Conduction loss of S 058 W 058 W
Conduction loss of S3 0.58 W 0.58 W
Conduction loss of Sy 058 W 0.58 W
Switching loss of Q; (turn on/off transition) on: 0.09 W; off: 0.52W  on: 0.10 W; off: 0.72 W
Switching loss of Q, (turn on/off transition)  on: 0.19 W; off: 1.01W  on: 0.17 W; off: 0.87 W
Switching loss of Qs (turn on/off transition)  on: 0.09 W; off: 0.62W  on: 0.09 W; off: 0.52 W
Switching loss of Q4 (turn on/off transition) on: 0.10 W; off: 0.69 W on: 0.09 W; off: 0.54 W
Switching loss of Sq (turn on/off transition) on: 0.07 W; off: 044 W  on: 0.05 W; off: 0.55 W
Switching loss of Sy (turn on/off transition) on: 0.05 W; off: 0.60 W on: 0.06 W; off: 0.35 W
Switching loss of S3 (turn on/off transition) on: 0.05 W; off: 0.47W  on: 0.05 W; off: 0.29 W
Switching loss of S4 (turn on/off transition) on: 0.06 W; off: 0.34 W on: 0.05 W; off: 0.46 W
Conduction loss of L 494 W 494 W
Conduction loss of Ly 494 W 494 W
Conduction loss of L, 1.80 W 1.80 W
Conduction loss of L, 1.80 W 1.80 W
Conduction loss of Cg 1.61W 1.61W
Conduction loss of Cy 1.67W 1.67W
Conduction loss of Cy, 0.02W 0.02W
Conduction loss of Cyq 0.01W 0.01W
Conduction loss of Cyp 0.01W 0.01W
Gate driving loss of Q1~Qy 0.02W 0.02W
Gate driving loss of S1~S4 0.08 W 0.08 W
Total losses 285 W 28.64 W
% in rated load condition 5.70% 5.73%
Calculated Efficiency 94.30% 94.27%
Measured Efficiency 94.29% 94.25%

The performance comparisons between the studied BDC and a variety of published research
results are summarized in Table 4. As can be seen from the comparative data, though the amounts
of components in the proposed converter are more than the requirement in the other previous BDCs.
The studied two-phase BDC indeed performs the higher conversion efficiency, bidirectional power
flow, lower output ripples under 500 W power rating than other announced works [17,22,23]. Finally,
the practical photograph of the realized BDC prototype and the test bench system are depicted in

Figure 23.
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Table 4. Performance comparisons with other published converters.

Items Topology
This Work [17] [22] [23]
Switching control structure two-phase single-phase single-phase  single-phase
Output ripple Low High Medium Medium
Step-up conversion ratio 4/(1 — Dy) n/(1 — Dy) 2/(1 — Dy) 1/(1 — Dy)?
Step-down conversion ratio Dy/4 Dy/(1 +n —nDy) Dy/2 (Dg)?
High-side voltage 385V 400V 200V 625V
Low-side voltage 48V 48V 24V 10V
Realized prototype power rating 500 W 200 W 200 W 100 W
Number of main switches 8 4 4 4
Number of storage components 7 5 5 5
Maximum efficiency (charge state) 96% 91.6% 94.8% 91.5%
Maximum efficiency (discharge state) 95% 94.3% 94.1% 92.5%

n: the turns ratio of coupled inductor [17].

Figure 23. Photograph of the realized BDC prototype and the test bench system.

5. Conclusions

A novel BDC topology with high voltage conversion ratio is developed and a 500 W rating
prototype system with 48 V battery input is constructed. Applying the developed BDC topology
to the 48 V mini-hybrid powertrain system is also expected in the future [27]. In this study, thanks
to the ULC located at the low-side stage, high power density and efficiency in all load range make
the studied BDC a promising two-stage power architecture. Furthermore, the IBCPC located at the
high-side stage can achieve a much higher voltage conversion ratio under a reasonable duty cycle.
In summary, the proposed novel BDC offers the following improvements: (1) high voltage conversion
ratio; (2) low ripple current; (3) it is simpler to design, implement and control. Finally, a 500 W rating
low-power prototype system is given as an example for verifying the validity of the operation principle.
Experimental results show that a highest efficiency of 96% and 95% can be achieved, respectively,
in charge and discharge states. Certainly, by making a suitable printed circuit board (PCB) layout,
and with good component placement and good heat dissipation transfer process, the novel BDC can
be implemented for higher power conversion applications.
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Abstract: An open-end winding permanent magnet synchronous motor (PMSM) has a larger range
of speed regulation than normal PMSM with the same DC voltage, and the control method is more
flexible. It can also manage energy distribution between two power sources without a DC/DC
converter. This paper aims at an electric vehicle equipped with OW-PMSM drive system with dual
power sources and dual inverters; based on analyzing the external characteristics of each winding
mode, we propose a winding mode switching strategy whose torque saturation judgmental algorithm,
which is insensitive to motor’s parameters, could automatically realize upswitching of the winding
mode. The proposed multi-level current hysteresis modulation algorithm could set the major power
source and switch it at any time in independent mode, which accomplishes energy distribution
between two power sources; its two control methods, low switching frequency method and high
power difference method, could achieve different energy distribution effects. Simulation results
confirm the validity and effectiveness of the winding mode switching strategy and current modulation
method. They also show that an electric vehicle under the proposed control methods has better
efficiency than one equipped with a traditional OW-PMSM drive system under traditional control.

Keywords: energy management; electric vehicle; open-end winding permanent magnet synchronous
motor (OW-PMSM); multi-level current hysteresis modulation; winding mode switch

1. Introduction

With more rigorous demands for energy savings and environmental protection in industry and
the vigorous development of electric vehicles driven by electric motors nowadays, PMSM has become
the typical electric motor in electric vehicles because of its advantages such as high-power density and
a simple control scheme. In recent years, a drive system constituting an OW-PMSM (open-end winding
permanent magnet synchronous motor) and dual inverters has received extensive application [1-5].
This system is actuated via attaching both ends of OW-PMSM’s stator windings with an inverter.
Compared to the traditional Y-connection PMSM drive system, it has an expanded speed range and a
more flexible control method [6-13]; the speed range is larger with the same DC bus voltage, or the
DC bus voltage reduces by half with the same speed range. Moreover, it allows dual inverters to
use electricity from different electric sources and, when working in a dual electric sources condition,
it could manage energy distribution between the two sources without a DC/DC converter [14-16].
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Control strategies of OW-PMSM and dual inverters have always been a research focus. Winding
topology and configurations are widely discussed in order to optimize the motor’s working range
and efficiency [17-19]. Fault-tolerant operation [20-22] and zero-sequence voltage elimination
method [23,24] are also under extensive research. Loncarski, J. et al. compared the output current
ripple in single and dual inverter motor drives for electric vehicles, concluding that the dual-2L inverter
can act as a 3L inverter and offers a significant ripple reduction [2], which can also be observed in this
paper. AnQun-tao, Sun Li et al. proposed a dual inverters SVPWM modulation method for current
control and in this way voltage vector synthesized in the range of a hexagon and when the bus voltage
remains constant, the base speed of the electric motor could be 1.7 times that in Y-connection without
generating zero-sequence voltage [7,8]. Zhan H., Heng N. et al. studied a common DC bus-based
dual inverters SVPWM modulation strategy. In this way, the amplitude of the voltage vector could
be maximized and at the same time a zero-sequence current could be suppressed [23,24]. Welchko
studied dual sources-based dual inverters’ voltage vectors distribution, and proposed three types of
voltage distribution methods to adapt to different working conditions of hybrid vehicles to achieve
energy management functions between two power sources [16]. However, the two inverters work
independently without coordination, and thus the switching frequency of inverter devices has also
doubled, which increases the inverter switching loss. All the studies discussed above have proposed
current control methods of dual inverters but division of OW-PMSM winding modes and winding
modes switching are not involved. Nguyen N.K. et al. studied dual inverters-five-phase OW-PMSM’s
winding modes, divided into three types, star mode, pentagon mode, and pentacle mode, and analyzed
the external motor characteristics of each mode [18]. However, the winding modes are only decided
based on rotational speed. A detailed winding modes switching method has not been proposed, nor
has there been an analysis of the energy distribution issue between dual sources. Therefore, it is
necessary to propose a control method that could manage energy distributions between power sources,
and make full use of each winding mode’s working range to reduce inverter loss and increase system
efficiency for electric vehicles.

This paper first analyzes the three-phase OW-PMSM winding modes division method and the
external motor characteristics of each winding mode. On that basis, we propose a torque saturation
winding modes switching strategy, which is insensitive to motor parameters, to accomplish automatic
winding modes switching according to different working conditions. Then, a multi-level current
hysteresis modulation algorithm used in independent mode is put forward. This algorithm could
set the major power source and achieve real-time major power source switching to distribute energy
between two power sources. In addition, we design two control methods: a low switching frequency
method and a high power difference method for different energy distribution purposes. At the end
of this paper, the feasibility and effectiveness of the proposed winding modes switching strategy
and multi-level current hysteresis modulation are verified through simulations. Vehicle economy
performance simulation also showed that the electric vehicle under the proposed control method has
better efficiency.

In particular, coordination transformations between the three-phase stator and two-phase rotator
in this paper were equivalent power conversions.

2. Winding Mode Features Analysis and Switching Strategy

The dual sources OW-PMSM drive system structure is shown in Figure 1.

According to different winding connections, three-phase OW-PMSM can be divided into three
types: star mode, triangle mode, and independent mode. Star mode’s winding connection copies
traditional PMSMs. It requires heads or tails of three-phase stator windings connected at one point.
If it is a dual inverters configuration, it could be completed by making each bridge’s lower arm turned
on simultaneously in the idle inverter. Triangle mode is accomplished through connecting the heads
and tails of three-phase stator windings in a circle. In dual inverters configuration, it could be achieved
by shutting down one power source and turning on a triangle circuit switch. Independent mode,
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controlled by both sides” inverter bridges of each winding, is a specific one that only OW-PMSM has.
It is independent because every winding directly connects with two sides’ inverter bridges and there
is no direct connection between windings. Independent mode requires both sides” power sources to
supply voltage and can accomplish energy flow between power sources through windings.

inverterl inverter2

OW-PMSM
\ [ \J
power | power
sourcel source2

triangle circuit switch

[

[

Figure 1. Structure of OW-PMSM drive system.

2.1. Winding Mode Features Analysis

First, we will discuss power source limitations on winding modes. In different winding modes,
the maximum amplitude of each winding’s phase voltage is different and the connection between
each phase is different too, which leads to a difference in basic voltage vectors” amplitude. When
the winding mode is star or independent, a certain phase voltage cannot be determined according to
the corresponding inverter bridge’s switching status and will be influenced by inverter bridges’
switching status of other phases due to the load neutral point in star mode and the mid-point
potential difference in independent mode floating. For instance, in star mode, when inverter switch
statuses are (110) (phase A and B upper bridge arm on, phase C lower bridge arm on), phase voltage
relations: uy = up = V;./3, uc = —2V,./3; when switch statuses are (100), phase voltage relations:
up = 2V /3, up = uc = —V;./3. It can be seen that, although phase A’s corresponding inverter
bridge’s switch statuses are the same in both situations, owing to the load neutral point’s fluctuation
in star mode, phase voltages u 4 in both situations are different. Using the schematic diagram of
mid-point voltage in Figure 2, we can analyze voltage vectors. We first equally divide power source
1 and power source 2 into two parts according to voltage to determine virtual mid-points m and n.
The voltage difference between each inverter bridge’s output and the corresponding mid-point is the
mid-point voltage and is unaffected by floating neutral potential or mid-point voltage difference. Each
inverter bridge’s switching status and mid-point voltage has a one-to-one correspondence. The results
are identical when using mid-point voltage and phase voltage for voltage vector synthesis.

Star and triangle modes are powered via a single power source and the motor’s three-phase stator
windings are connected in a specific topology structure. Switching statuses of three-phase inverter
bridges can form a voltage vector in the motor space plane. Given that DC bus voltage is V., when
switching statuses are (110), synthesizing voltage vector in star and triangle modes are shown in
Figure 3a,b. Independent mode is powered by dual sources. Supposed that the voltage of power
source 1is V1 and the voltage of power source 2 is V., when left switch statuses are (110) and right
switch statuses are (001), voltage vector synthesis in independent mode is shown in Figure 3c.
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Figure 3. Synthesizing voltage vector of each winding mode.

The amplitudes of basic voltage vector in star, triangle, and independent modes ugy, 154 and
ugp can be obtained from Figure 3 as v/2/3V,., v/2/3 x v/3V,., and v/2/3(Vye1 + Vyep), respectively.
In these equations, v/2/3 is the equal-power conversion coefficient. We can see that when the bus
voltage is V., the amplitude of the basic voltage vector in triangle mode is v/3 times that in star mode.
In independent mode, when bus voltage V1 = Vo = Vj., the amplitude of its basic voltage vector is
twice that in star mode and 2/+/3 times that in triangle mode. It has to be noted that the above basic
voltage vectors are distributed with an 71/3 angle interval, and in each winding mode there are six
equal-amplitude basic voltage vectors forming a voltage vector hexagon in the motor vector plane.
It is likely that voltage vector may not equal the amplitude of a hexagon vertex’s voltage vector in any
angle. Hence, the amplitude of the voltage vector in the motor’s appropriate linear range is supposed
to be the radius of the inscribed circle of a hexagon 1/3/2 times the amplitude of basic voltage vectors
when the switch status are as above. Then, the maximum amplitude of the voltage vector at any
angle in star, triangle, and independent modes tsmaxy, Usmaxa, and Usmaxp are: V. / V2,6V /2, and
(Vg1 + Vigea) /2, respectively.

Now we will discuss the stator current’s limitations on winding modes. Because of windings’
inductance characteristics, the phase current of the motor has inertia and cannot abruptly change like
voltage. Therefore, in steady state, the waveforms of the three-phase current in the time domain are
equal-amplitude sinusoid with 277/3 phase difference. Three-phase current vectors are demonstrated
in Equation (1):

ig = icos(wst + ¢y)el
ip = icos(wst + 1 — 27”)61‘27”
ic = icos(wst+ ¢ — %")ef%n

M
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The synthesized current vector is shown in Equation (2):

. 2. . . 2 3.
is = \/;(IA +ip+ic) = \/;x Ezef(“’s”"’l). )

It can be observed that the amplitude of the synthesized stator current vector is v/3/2 times
that of the phase current. If we take axis A as a referential axis, the space angle of the current vector
corresponds with the phase A current in the time domain. In star and independent modes, the line
current of the inverter is the phase current and the current capacity imax is the maximum of the
phase current. In triangle mode, line currents iy, i, and i3 and phase currents iy, ig, and ic have
the relationship:

i1 =ip—ic,ip =ip—ia, iz =ic —ip. (3)

According to this relationship, when motors are in steady state, the vector diagrams of line and

phase currents in the time domain are as shown in Figure 4.

Figure 4. Time domain vector of line current and phase current.

This indicates that, in triangle mode, the amplitude of the line current is v/3 times that of the phase
current in steady state. Consequently, when the current capacity of the inverter is imax, the maximum
of the phase current in triangle mode and the maximum amplitude of the synthesized stator current
vector is 1/+/3 times that in star and independent modes. In star, independent, and triangle modes,
the relationships between maximum amplitude of current vector ismaxy, ismaxD, and ismaxa are as
shown in Equations (4) and (5):

. . Ve,
IsmaxY = IsmaxD = TImax (4)
ismaxa = ? X ljag = ?imax- (5)

Limitations on voltage and current vectors determine the working ranges of each winding mode.
In star and triangle modes, flux-weakening regions are not set. In independent mode, there are
non-flux-weakening and flux-weakening regions. In non-flux-weakening regions, if the stator voltage
increases to the saturation threshold, the motor starts working in the flux-weakening region to expand
the speed regulation range. In the non-flux-weakening region of each winding mode, the motor is
controlled by the MTPA (maximum torque per ampere) method [25]. In flux-weakening regions,
the motor is controlled by the direct flux control method. Based on the present motor’s angular velocity
ws, the algorithm calculates the specific stator’s maximum flux, ;. Then, on the basis of requested
torque T;, axis d and q's expected current i}, iy are worked out [26].

The OW-PMSM drive system’s parameters are shown in Table 1; the external characteristic curves
controlled by the above current strategy are demonstrated in Figure 5.
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Table 1. Parameters of OW-PMSM drive system.

Items Parameters
Motor type Interior open-end winding PMSM
Number of pole pairs pg 4
Stator resistance R;/Q) 0.3
Equivalent iron loss resistance R./Q) 90

Fundamental amplitude and third harmonic amplitude of

permanent magnet flux linkage [¢¢, ¥r3]/Wb [0.2,0.01]

d-axis inductance L;/F 0.0012

g-axis inductance Lq/F 0.0015

Zero sequence inductance Ly /F 0.0003

Rotational inertia of rotor [,/ kgm’2 0.011
Cullen resistance coefficient and viscous resistance coefficient [0.001, 0.0005]

DC bus voltage of power source 1 V.1 /V 240
DC bus voltage of power source 2 V., /V 230
Current capacity of inverter device imax/A 160

180 T T T T
star mode
160 ; ,
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S 120 J
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2
£ 100 4
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2 80
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Figure 5. External characteristic curves of each winding mode.

We can tell from Figure 5 that the speed regulation range of triangle mode is about /3 times that
in star mode but the maximum torque is 1/ /3 times that in star mode; the speed regulation range in
the non- flux-weakening region in independent mode is approximately twice that in star mode and its
maximum torque is equal to that in star mode.

2.2. Winding Modes Switching Strategy

We first determine general winding modes switching strategies. When the motor is in star or
triangle mode, only one inverter is working with on-state losses and switching losses. When another
inverter has lower bridge arms on, there is only on-state loss. In triangle mode, it is different than
when the triangle circuit switch is turned on; there are on-state losses on triangle circuit. What is
more, the topology of stator winding in triangle mode determines probable zero-sequence current in
the motor, which may contribute to wastage of the inverter’s current capacity and losses on electric
resistance and electronic devices due to the current’s heating effect. In independent mode, both sides’
inverters are working and have on-state losses and switching losses. In conclusion, in terms of losses in
electronic devices, star mode has the least and independent mode has the most, with triangle mode in
the middle. In order to reduce those losses in electronic devices, the general winding modes switching
strategy might be that if working conditions are appropriate, star mode is the first choice, then triangle
mode; try not to use independent mode.
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Under most circumstances, the differences between both sides” DC bus voltage are small and
the highest rotary speeds of the motor in the non-flux-weakening region, triangle and independent
mode increase in the order 1,,y < 1,4 < n,,p. In accordance with this inequality, we define switching
from star mode to triangle mode, from triangle mode to independent mode, and from star mode to
independent mode as upswitching; switching from independent mode to triangle mode, from triangle
mode to star mode, and from independent mode to star mode are downswitching.

We will begin with the upswitching strategy. During motor working period, parameters such
as magnet flux and inductance fluctuate because of rising temperature, followed by fluctuations of
working ranges of each winding mode. To avoid frequent switching when the working point of the
motor fluctuates, this paper proposes an algorithm to judge the saturation state of torque. When
judged as positive, upswitching is triggered to ensure the accuracy of the switching boundary.

This algorithm functions during the process of torque increasing from zero to the maximum.
It calculates when the expected torque is at a maximum, the time period fi; during which torque
increases from zero to the maximum at this specific rotary speed in the current winding mode (star or
triangle) as integration time and integration of absolute torque error AT (the difference between actual
torque T; and expected torque T,") as threshold Iy, in this process. Then, it calculates integration I of
absolute actual torque error AT from t;y; to the present and compares it with integration threshold
Iy, If I > Iy, then the motor’s torque is almost saturated and does not match the expected torque.
This algorithm is based on whether the output torque agrees with the expected torque in a particular
period to eliminate uncertainties in the winding modes’ working range because of fluctuations in the
motor’s parameters.

Voltage equations of motor in dq coordination are expressed in Equations (6) and (7):

. di .
uy = Reig + de—f — wyLgig 6)

iy .
u; = Rslq+LqE +w,(Ldzd+lpf). (7)

Electromagnetic torque is shown in Equation (8):

T. = pOiq[le + (Lg— Lq)id]< ()

From the above equations, we can tell that electromagnetic torque T, is mainly determined by axis
q’s current ig; the smaller the inductance difference between axis d and g, the bigger the share that i,
determines. When L; = L; = Ls the motor is surface-mounted; MTPA control is iy = 0 control. For the
sake of simplifying calculations, the integration time of torque ti,; is derived as i; = 0 control, and
when the difference between L, and L, is small, MTPA control is still accurate using tin;. In addition,
because L; > L, the inertia of i; is higher and the change rate of i; is smaller if applied with the
same voltage, which makes the calculated integration time tj; is bigger and the threshold of torque
saturation is higher.

When using iy = 0 control, due to the current of axis d being 0, voltage equations and torque
expression of motor in dq coordination have changed to:

ug = —wrLyiy ©)
1y = Reig + Lq% + Wy (10)
Te = poyrig- 1)
Voltage vectors have the relationship:
di g
ui = uj+up = (—wyLgig)? + (Rsig + quff +wrpg) (12)
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When the voltage vector is at its maximum usmax, We can get the change rate of axis q’s current
from Equation (13):

diq . Z'tgmax - (wVLqiL])z - wfl/]f - Rsiq
- L, . (13)
In Equation (13), because of the mechanical inertia being greater than the electronic inertia, we can
assume that w; is constant during torque integration time tj,¢, but during this time i; increases from 0
to the maximum of stator current vector amplitude, ismax. In order to simplify the torque following
process into a linear process, di;/dt must be a constant. By maximizing i; to ismax, We can get the
minimum of diy /dt for an increased integration time and thus a higher torque saturation threshold.
If we neglect stator electric resistance Rs, then we get diy /dt as:

dﬁ B \/ugmax - (Wquismax)z - erpf
dt Ly ’

(14)

It is obvious that with motor rotary velocity w, increasing, the partial voltage of electromotive
force increases, voltage of stator gets almost saturated, and the voltage allowance used to control
motor cuttent decreases, which in turn results in diminishing di; /dt. When w, approaches the right
boundary of the non-flux-weakening region’s external characteristics in current winding mode, di, /dt
slips to 0, implying that the drive system is losing control of the motor’s current. In order to guarantee
a certain amount of voltage margin used to control the motor’s current, we, in accordance with base
speed ratio, can get the motor angular velocity w;s used to calculate di; /dt in each winding mode by
Equation (15):

Wrs = ksWp. (15)

In Equation (15), w,;, is the rotator’s base angular velocity of the motor in current winding mode.
When ignoring R; in i; = 0 control strategy, we can get:

Usmax Usmax
Wrp = = (16)

Yo SR (Lyjeman)®

Because the approximation of di,/dt is constant, the integration time f;,; of this process is:

JAY} Lgi Lji
q qlsmax qlsmax
[P — — . 17
int dlq/dt \/ ( )

: 2 n . 2
Uax — ((Urqulsmax) — wisyPy \/”gmax - (kswrqulsmax) - kswrbwf

In Equation (17), ks is the rotator speed sensitivity coefficient and ks € (0,1); the bigger k; is,
the closer the motor’s angular velocity ksw,;, used to calculate integration time t;,; is to the current
winding mode’s base angular velocity, and the smaller voltage margin and di; /dt are, which leads to
bigger tint and vice versa. k; reflects tolerance of torque following speed. The bigger ks is, the lower
the requirements for torque following speed, which leads to a slower response of the torque saturation
judgmental algorithm. In the above two expressions, ismax is the maximum of the stator current vector
in the present winding mode and t/smax is the maximum of any angle voltage vector in the present
winding mode.

Because the approximation of di;/dt is constant, the torque following process is simplified to
a linear process. The integration of torque error of this process is:

Eint tint 1
L, = /0 ATdt| = /0 ITi = T df = 5 Temaxine (18)
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For practical application, we define an integration threshold sensitivity coefficient so that the
actual integration threshold is:

1 1 .
Iiw = Kilim = ki Temaxtine = 5k1Poyfismaxtint. (19)

In Equation (19), Temax is the maximum electromagnetic torque in the current winding mode.
For integration threshold sensitivity coefficient k; € (0,1), the bigger k; is, the bigger integration
threshold Iy, is and the less sensitive the judgment of torque saturation, which can reduce the possibility
of improper switching but will also increase delays in winding mode switching; the smaller kj is,
the smaller integration threshold Iy, is and the more sensitive the judgment of torque saturation,
which can make torque switching swift but may lead to improper switching when working conditions
change unexpectedly. By changing ks and kj, we can modulate the sensitivity and stability of the
torque saturation judgmental algorithm.

It is important to note that if the current mode is triangle mode, upswitching’s goal is only
independent mode; when the torque saturation threshold is reached, the current mode is switched to
independent mode. However, if the current mode is star mode, there are two options: triangle and
independent mode; when the torque saturation threshold is reached, terminals are decided by the
degree of saturation of stator current vector. When the amplitude of stator current vector is > igmaxa,
it indicates that the amplitude of the stator current vector in the current mode exceeds the capacity of
adjustment of triangle mode and upswitching’s goal is independent mode; when is < ismaxa, the goal
is triangle mode.

Downswitching is determined by the rotary speed threshold, which is the base speed of
each winding mode. When the motor’s rotary speed decreases to the star or triangle mode’s base
speed, downswitching is triggered. This strategy staggers the working points of upswitching and
downswitching to avoid frequent switching. Switching is not only decided by the motor’s speed,
like upswitching, but also by the degree of saturation of the stator current vector. Whether the current
mode is triangle or independent, as long as the motor’s speed has the relationship n, < n,y the
motor’s speed is lower than the star mode’s base speed, and the current mode is switched to star
mode. However, if the current mode is independent and the motor’s speed has the relationship
npy < 1y < nyy, it has to be decided whether to switch to triangle mode or not. When the amplitude
of stator current vector is > ismaxa, this indicates that the amplitude of the stator current vector has
exceeded the capacity of adjustment of triangle mode and current winding should stay in independent
mode. If i < ismaxa, the current mode is switched to triangle mode.

Switching principles among the three winding modes are summarized in Table 2.

Table 2. Switching algorithm of each winding mode.

itching Goal Star .
W Mode Triangle Mode Independent Mode

Positive torque saturation Positive torque saturation decision
Star mode NA - S S,

decision and is < igmaxa and is > igmaxa
Triangle mode ny < npy NA Positive torque saturation decision
Independent mode ny < nyy npy < 1y < npp and is < igmaxa NA

3. Dual Inverters’ Current Modulation Method

This paper adopts a hysteresis control-based current control method. In single-sourced star and
triangle modes, inverters could only provide two potentials for each winding. Thus, the traditional
hysteresis current control method was adopted. In dual-sourced independent mode, dual inverters,
when controlled coordinately, could provide three or four potentials. Hence, a multi-level hysteresis
current control method was employed.
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3.1. Current Modulation Method in Star and Triangle Modes

Star mode required ends of three-phase stator windings connected to one point, which could be
accomplished by making all lower arms of the idle inverter’s bridges turned on at the same time in
dual inverters configuration while the other inverter was working to control the three-phase current.
Based on expected torque T}, we could get control variables 7; and i through the abovementioned
MTPA and flux-weakening strategy. Then, with dq0 to ABC coordination transformation, expected
phase currents 7%, iz and i were obtained; meanwhile, actual phase currents i4, ig, and ic were
acquired via the current sensor. Phase current error represented the difference between each phase
expected current and the actual current, which is demonstrated by following formula:

Aig =iy —i%, Aig = ip — i, Aic = ic — it (20)

From each phase current’s error, we could control the three-phase current. Given the half-width
of the current’s hysteresis band, the acceptable current error is . When one phase current error Ai > h,
the upper arm of this phase’s inverter bridge was turned off and the lower arm was turned on, making
the midpoint voltage of this phase —V,./2, a lower voltage, and the phase current error Ai of this
phase decreasing. When phase current error Ai < —h, the upper arm of this phase’s inverter bridge
was turned on and the lower arm was turned off, making the midpoint voltage of this phase V;./2,
a lower voltage, and the phase current error Ai of this phase increasing.

Triangle mode requires the heads and tails of three-phase stator windings to be connected in
a circle, which is completed by shutting down one power source and turning on triangle circuit
switch. The other side’s inverter was working to control the motor’s current. What was different
from star mode was that triangle mode, instead of controlling the motor’s phase current i, ig, and
ic directly, controlled motor’s line current iy, i, and i3 to control motor’s phase current indirectly.
The relationship of triangle mode’s phase current and line current is shown in Equation (3). With
Equation (3), we can transform phase current’s expected value 7, i, and ii: to line current’s expected
value ij, i3, and i3, then determine line current’s error Aij, Aip, and Aiz to have each line current
hysteresis controlled respectively.

If ignoring zero-sequence current in triangle circuit, we gotig + ip 4 ic = 0, and then we could
get the phase current expression, represented by the line current as Equation (21) via Equation (3):

in = (iy —i2)/3,ip = (ia —i3)/3,ic = (i3 — i1) /3. 1)

If the acceptable line current error was /;, the half-width of the hysteresis band of i1, i was hy,
and the acceptable error of i1 — i was 2/, then we could calculate the acceptable error of phase current
ip = (i1 —ip)/3 as 2h; /3. Thus, it was clear that if the acceptable error of phase current stayed at
h, the line current hysteresis comparator’s acceptable current error was required to be set at 31/2,
so we had:

hy = 3h/2. (22)

At this point, if ignoring the zero-sequence current, the tracking error of the phase current in
triangle mode was the same as that in star mode. However, note that the topology of triangle mode
is different from that of star mode and DC bus voltage was directly loaded on the phase current.
In every combination of inverter switching states, there are five possible phase voltages in star mode:
=2V /3, =V /3,0, V4. /3, 2V4. /3. In triangle mode, there are three possible phase voltages with
higher amplitude: —V, 0, V.. Therefore, if the half-width of the hysteresis band was determined
according to Equation (22), even though the acceptable tracking error of the current in triangle mode
was the same as that in star mode, the current saw tooth fluctuation in triangle mode is more drastic
than that in star mode and the switching frequency of inverters, along with the core loss of motor,
would be greater than those in star mode.
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3.2. Current Modulation Method in Independent Mode

Different from star and triangle modes, independent mode is powered by two sources and
controlled by two inverters, which means each winding'’s electric potential is controlled by both of the
two inverters’ bridges and has four statuses: (10), (01), (11), and (00).

The first number of switching status stands for the electric potential of inverter 1’s bridge.
The second number of switching status stands for the electric potential of inverter 2’s bridge. The status
of the inverter bridge upper arm (on) and lower arm (off) obtained high potential, which was
substituted with number “1”. The status of the inverter bridge upper arm (off) and lower arm
(on) obtained low potential, which was substituted with number “0”. Because the two sources were
insulated, the mid-point voltage difference of the two sources u;,; varied with different inverter
switching statuses, which brought about diverse phase voltages in different switching statuses,
especially when V.1 # V. When the mid-point voltage of the two sources was 1, = 0, the phase
voltage was the mid-point phase voltage. When the switching statuses were (10), (01), (11), and (00),
the corresponding mid-point phase voltages were (V1 + Vi) /2, —(Vier + Viaea) /2, (Viaer — Viaea) /2,
and — (V1 — Vi) /2. Hence, when Vyq # Vjp, we could get four mid-point voltages via dual
inverters” control. When V4 = V., we could get three mid-point voltages and the mid-point
voltages with switching statuses (11) and (00) were both zero.

The traditional hysteresis current modulation algorithm has two potentials and corresponding
two trigger areas: Ai > hand Ai < —h. When V4 # V0, there are four potentials in independent
mode of the hysteresis current modulation algorithm. Apart from two trigger areas used for activating
switching statuses (01) and (10), two intermediate trigger lines were needed for activating switching
statuses (00) and (11)—two intermediate potentials. Provided the two intermediate trigger lines
were Ai = d and Ai = —d, with d as the linear current deviation of the intermediate line, we could
get Equation (23) based on the principle that mid-point voltage is proportional to current error Ai
when triggered:

e Vdcl + Vch —d- Vdcl — Vdc2 ) (23)
2 2
Equation (23) could be transformed to:
Vi = Ve
d= 1), (24)
Vdcl + Vch

It was obvious that when V. > Vo, d > 0; when V. < Vyo,d < 0; when Vo = Vyp,d =0,
and at this time, two intermediate trigger lines coincided at Ai = 0. It has to be pointed out that in
each winding’s four potentials in independent mode, two boundary potentials are triggered by Ai
being in the corresponding area to ensure that Ai can depart from that triggered area swiftly in the
relatively greater phase voltage generated by boundary potentials as long as Ai is in the corresponding
area and restricted to hysteresis band [—h, h]. Two intermediate potentials were triggered by crossing
the corresponding intermediate trigger lines without considering the crossing direction; this control
logic mainly mattered in slowing fluctuations of Ai down to load smaller voltage. A rather small phase
voltage would be loaded if Ai is close to the center line (Ai = 0) to avoid drastic fluctuations frequently
hitting the hysteresis boundary if constantly loaded with large phase voltage. When applied with
this modulation method, the changing rate would decrease after Ai crosses the control line Ai = d
or Ai = —d until it hits the boundary again. Two additional potentials would effectively retard the
fluctuation speed of Ai to make current changes milder and reduce the inverters” switching frequency.

Two improved multi-level hysteresis modulation methods were proposed on the foundation of
the above multi-level hysteresis current modulation strategy. They were the low switching frequency
method and high power difference method. These two methods were achieved by adding the trigger
conditions of inverter bridges” switching statuses (00) and (11) in independent mode.

Due to independent mode being powered by two sources, power distribution between two
sources was involved. Thus, a major power source was proposed and was expected to have greater
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power output than the other source in independent mode. Low switching frequency and high power
difference methods could determine which one was the major power source and switch over it at
any time to accomplish power distribution. When the load is low, the major power source can even
charge another source. Table 3 indicates the relationships between inverter bridges” switching statuses,
direction of phase current i, and current flow. Given that phase current flowing from left to right is
positive in Figure 1, we could tell that energy flow between the two sources could only be accomplished
when the inverter bridges” switching statuses were at two intermediate potentials (00) and (11).

Table 3. Relationship between inverter bridge’s switching states and power flow direction.

Direction of
Phase Current

Inverter <0 >0
Switching States
Boundary (01) Both power sources discharging Both power sources charging
potentials (10) Both power sources charging Both power sources discharging
00) Power source 1 discharging Power source 1 charging
Intermediate Power source 2 charging Power source 2 discharging
potentials an Power source 1 charging Power source 1 discharging

Power source 2 discharging Power source 2 charging

The trigger regulation of inverter bridges” switching statuses in low switching frequency and the
high power difference method is displayed in Table 4.

Table 4. Dual inverter trigger rules of two different current modulation methods.

Modulation

P
attern Low Switching Frequency Method High Power Difference Method

Inverter
Switching States

Boundary (01)
potentials (10)

Ai isin the area of ai>#n
Ai isin the area of Ai>#h

Ai isin the area of ai>#n
Ai isin the area of Ai>#h

(00)

Intermediate

Ai crossed control line Ai=4 and
switching state of inverter bridge on
major power source’s side is 0

ai crossed control line Ai=d and
when power source 1 is major power
source: phrase current i<0;

when power source 2 is major power
source: phrase current i>0

potentials

(11

Ai crossed control line Ai=-¢ and
switching state of inverter bridge on
major power source’s side is 1

Ai crossed control line Ai=-4 and
when power source 1 is major power
source: phrase current i>0;

when power source 2 is major power

source: phrase current i<0

These two improved methods added trigger conditions of two intermediate potentials, which
made two potentials, instead of being triggered when Ai crossing control lines Ai = +d, triggered at
other specific conditions. Normally only one intermediate potential was triggered in one hysteresis
period. The low switching frequency method, needed to confirm the switching status of inverter
bridge on major power source’s side, remains unchanged after switching when Ai crossing control
lines Ai = £d. In this case, the switching statuses of both two inverters’ bridges would not be changed
simultaneously when Ai crosses the control lines and the switching frequency of inverter devices could
be lowered to a minimum. In the high power difference method, when Ai crosses the control lines
Ai = +d, we need to decide whether to switch based on the present phase current i’s direction to
ensure the major power source could charge the other source when the switching status of inverter
bridge is at two intermediate potentials. This method increases the difference between two sources’
power outputs as much as possible.
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4. Results of Simulations of OW-PMSM Drive System

We ran simulation models of the OW-PMSM drive system on the Matlab/Simulink platform.
The basic parameters of OW-PMSM are shown in Table 1 and controller parameters are shown in
Table 5. A PI speed controller was used to generate the expected torque to make the motor speed
follow the preset value.

Table 5. Parameters of simulation setting and controller.

Module Affiliation Item Parameters
Model as a whole Time step Ts/s 5x 1077
On-resistance Ry, /) 0.01
Forward voltage drop of IGBT Vf/V 0.8
Inverter devices Forward voltage drop of diode V;/V 0.8
Current fall time Ty /s 1x107°
Current tailing time T; /s 1.5 x 10~°
Sampling time Ty js/s 1x107*
Winding mode controller Sensitivity coefficient of rotor speed [kgy, ksa] [0.9,0.9]
Sensitivity coefficient of integral threshold [k;y, k;a] [0.35,0.75]
Sampling time T; sc/s 1x107*
PI controller of motor speed Proportionality coefficient P 04
Integral coefficient I 4
. . —4
MTPA and flux weakening controller Sampling t}me TLC‘C'/S 110
Voltage saturation coefficient k; 0.95
Sampling time T; cgr/s 1x107°
Current hysteresis controller Half width of hysteresis band 1/ A 3
Maximum switching frequency of devices fmax/Hz 1 x 10%

This simulation’s duration was 0.9 s. In this process, the expected motor rotary speed linearly
increased to 5500 r/min in 0-0.3 s and stayed at 5500 r/min till 0.6 s. Then speed linearly dropped
to 0in 0.6-0.9 s; loaded torque jumped from 0 to 50 N-m at 0.05 s and remained 50 N-m until the
simulation finished. In order to monitor the results of power distribution, we shifted the current
modulation method from low switching frequency to high power difference at 0.4 s and switched the
major power source from power source 1 to power source 2 at 0.5 s. Another OW-PMSM drive system
under traditional two-level current hysteresis modulation without winding mode switching function
was also simulated for comparison.

Curves of expected torque T, electromagnetic torque T, of proposed and contrast model, and
rotary speed 1,, are demonstrated in Figure 6a—c.

100 T T

90 - electromagnetic torque
expected motor torque

0 I I I I I I I I

0 0.1 0.2 03 0.5 06 0.7 08 0.9

04
time (s)

(a) Expected torque and electromagnetic torque of motor

Figure 6. Cont.
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(b) Electromagnetic torque of motor in contrast model
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(c) Rotary speed of motor

Figure 6. Curves of expected motor torque, electromagnetic torque, and motor speed.

We understand from Figure 6 that the motor rotary speed could smoothly and swiftly follow the
preset value and only had a slight fluctuation at 0.05 s when the loaded torque jumped. Switching of
modes had no impact on rotary speed. Electromagnetic torque T, could also follow expected torque T,
well. In the present current following accuracy (i = 3 A), the amplitude of electromagnetic torque’s
fluctuation was limited within 5 N-m or so, but after switching to lower voltage power source 2
as major power source, the fluctuation was more drastic, which indicated that setting the higher
voltage power source as the major power source is preferable. We also found that the motor under the
proposed multi-level current hysteresis modulation had about 30% less torque fluctuation than the
motor under traditional two-level current hysteresis modulation.

Winding mode, torque saturation judgmental threshold I;;,, and actual integration I curves are
displayed in Figure 7a,b.

In Figure 7a, the mode signals are demonstrated: 1 is star mode, 2 stands for triangle mode, 3 and
4 are the low switching frequency and high power difference methods, respectively, in independent
mode, and 3.5 and 4.5 represented the flux-weakening region of the two methods, respectively,
in independent mode. In Figure 6a,b, two peaks of expected torque curve at 0.12 s and 0.17 s indicate
that with increasing speed, voltage is almost saturated and electromagnetic torque cannot follow
expected torque, leading to the speed controller further increasing the expected torque; from the
electromagnetic torque curve, it is evident that the actual electromagnetic torque will gradually decline
because of voltage saturation before the expected torque peak; when torque error accumulates enough
to satisfy torque saturation conditions, upswitching is triggered and electromagnetic torque rapidly
follows the expected torque after switching; From electromagnetic torque being unable to follow
to the upswitching point, it only took 0.02 s. From Figure 7b, we understand that 0.02 s before
upswitching, with the voltage almost saturated, the switching integration of torque error rose sharply
to the threshold and upswitching was triggered. After winding mode switching to triangle mode from
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star mode, the integration threshold and integration of torque error declined due to the integration
time being smaller.

winding mode
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(a) Winding mode (b) Curves of integral value and integral threshold

Figure 7. Curves of winding mode, integral value, and threshold of torque saturation decision.

Phase A’s voltage curves at star and triangle, and triangle and independent mode switching

points are shown in Figure 8a,b. Phase A’s current and its local curves are shown in Figure 8c,d.
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Figure 8. Curves and partial waves of phase A’s voltage and current. (a) Partial wave of phase—A
voltage at switching point 1; (b) partial wave of phase—A voltage at switching point 2; (c) curve of
Phase—A current; (d) partial wave of phase—A current at switching point 1.
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It is clear that the phase voltage of motor changes follows a sinusoidal waveform; amplitudes of
phase voltage in star, triangle and independent modes increased in sequence. From the local curve of
phase A’s voltage, there were five phase voltage values, —2V;./3, —V;./3,0, V;./3, and 2V, /3, when
the motor was in star mode. There were only three phase voltage values, —V;, 0, and V., when the
motor was in triangle mode; if we ignore the voltage difference between the two sides” power sources,
there were nine phase voltage values, —4V;./3, =V, —=2V./3, —V;3./3,0, V4. /3, 2V /3, V4, and
4V, /3 when the motor was in independent mode, which made the current control more smooth. The
phase current of the motor changed according to the sinusoidal rule; because of the zero-sequence
current effect, the amplitude of the phase current in triangle mode was slightly greater than those in
star and independent modes with the same amplitude of stator’s current. From Figure 8d, we can see
that after switching from star mode to triangle mode, the waveform of phase current changed and was
no longer a standard sinusoidal waveform due to the zero-sequence current, which led to occupation
of the inverter’s extra capacity and increasing switching frequency of devices. At the same time, the
phase current was restricted in the hysteresis band and the current followed accordingly.

Total switching frequency of inverter devices (sum of all IGBT devices” switching frequencies)
of both the proposed and the contrasting model is shown in Figure 9a. Inverters’ loss is shown in
Figure 9b.
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Figure 9. Curves of total switching frequency of inverter devices and inverter loss.

From Figure 9a, we see that the switching frequencies of inverter devices in triangle mode are
higher than those in star mode because the phase voltage values in triangle mode are lower and their
amplitudes were greater, leading to a higher changing rate of phase current and more frequently hitting
the hysteresis boundary; the total switching frequency of inverter devices in independent mode is
also high due to the two inverters working together in independent mode. However, there were more
phase voltage values in independent mode and the control of the phase current could be more smooth
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and flexible, which might reduce the switching frequencies of inverter devices. The total switching
frequency of devices increased after shifting from the low switching frequency method to the high
power difference method at 0.4 s; the total switching frequency increased even more after switching
the major power source from power source 1 to power source 2, a lower voltage power source, at 0.5 s,
which indicated that setting a higher voltage power source as the major power source could reduce the
switching frequencies of devices. In addition, the total switching frequency of devices in steady state
was lower than that in transient state and it was higher when the motor speed was decreasing than
when motor speed was increasing. Under the proposed control method, total switching frequency is
far lower than in the contrasting model, especially in the period of star and triangle mode. In Figure 9b,
the switching loss of inverters was proportional to the total switching frequency of devices and in
most circumstances the share of switching losses of inverters was under 30%, which was ideal.

Input power curves of both inverters are shown in Figure 10.

It was evident that before 0.5 s, power source 1 was the major power source; in this period, star
mode and triangle mode were all powered by power source 1 and all input power was generated
by inverter 1; after 0.5 s, power source 2 was the major power source. In this period, star mode and
triangle mode were supplied by power source 2 and all input power was generated by inverter 2. When
in independent mode, both power sources provided power. After shifting from the low switching
frequency method to the high power difference method at 0.4 s, the power difference between two
inverters increased; after switching the major power source from power source 1 to power source 2
at 0.5 s, inverter 2's power was higher than inverter 1’s, becoming the major power output inverter;
nevertheless, because of the voltage of power source 2 being lower than that of power source 1, after
switching the major power source to power source 2, the power difference between two inverters
decreased, which indicated that the power difference of the inverters was affected by the voltage
difference of the power sources.
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Figure 10. Curves of input power of both inverters.

An efficiency MAP of the drive system with switched winding modes and multi-level current
hysteresis modulation is shown in Figure 11a; that of the contrasting drive system is shown in
Figure 11b.
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It is clear that the peak efficiency of the drive system under the proposed multi-level current
hysteresis modulation is 3% higher than that of the contrasting drive system, because multi-level
current hysteresis modulation reaches a lower switching frequency of inverter devices and then reduces
inverter switching loss. We could also see that the high-efficiency area of the drive system is larger than
in the contrasting system, extending to low speed and low torque areas, because in the region of star
mode and triangle mode there is only one inverter working and producing switching loss. The iron
loss caused by the stator voltage vector in the unsteady state is less than that in independent mode

1000 2000 3000 4000 5000 6000 . 7000
motor speed (r/min)

8000

9000 10000

(b) Efficiency MAP for contrast

Figure 11. Efficiency MAP of drive system.

because the stator voltage amplitude in star and triangle mode is lower.

We also conducted a simulation of a small electric vehicle for economic performance. The drive
system under the proposed control method was equipped, and the drive system under the traditional
two-level current hysteresis modulation without winding mode switching function was also used for

contrast. The basic parameters of the vehicle are shown in Table 6.

Table 6. Parameters of vehicle.

11000

Items Parameters
Vehicle weight mg/kg 950
Drag coefficient C; 0.30
Windward area A/m? 211
Reduction gear ratio iy 8.4
Rolling radius rg/m 0.307
Rotational mass conversion factor ¢ 1.1
Rolling resistance coefficient f 0.015
Transmission efficiency 77, 0.95
Rate of braking energy regeneration R, 0.6

259



Energies 2017, 10, 616

We simulated four different type of driving cycles, NEDC (New European Driving Cycle), UDDS
(Urban Dynamometer Driving Schedule), JC08 (Made by Japanese 2005 emission regulation), and
HWPEFET (Highway Fuel Economy Test Cycle), representing a standard driving situation, an urban
driving situation, a frequent acceleration and deceleration situation, and a highway driving situation
respectively. The motor operating point distributions of the different driving cycles are shown in

Figure 12.
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Figure 12. Motor operating points in four driving cycles.

The efficiency distribution and power consumption of the proposed drive system and the
contrasting drive system are shown in Table 7. The average efficiency distributions of the four

driving cycles are shown in Figure 13.

Table 7. Efficiency distribution and power consumption.

. Efficiency Distribution/% Power

Driving Cycles Consumption/
>0.85 0.8-0.85 0.7-0.8 0.5-0.7 <0.5 KkWh 100 km—1

NEDC 32.55 38.20 2.57 2.11 24.57 11.33

Proposed UDDS 44.21 14.97 9.71 7.08 24.02 10.26

drive JCo08 46.62 9.71 6.31 5.52 31.84 15.17

system HWEET 28.41 4252 19.33 5.36 4.38 12.52

Average 37.95 26.35 9.48 5.02 21.20 12.32

NEDC 9.79 12.92 43.18 8.15 25.96 12.18

Contrast UDDS 17.49 19.75 22.86 10.37 29.54 11.17

drive JCo08 24.66 17.14 13.74 9.55 34.91 16.23

system HWEFET 6.14 24.30 52.51 10.45 6.60 13.27

Average 14.52 18.53 33.07 9.63 24.25 13.21
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Figure 13. Average efficiency distribution of four driving cycles.

It is evident that the proportion of high-efficiency working points of the proposed drive system is
larger than that of the contrasting system, thus the power consumption is on average 6.75% lower than
that of the contrasting system.

5. Conclusions

This paper, aimed at an electric vehicle equipped with an OW-PMSM drive system with dual
power sources and dual inverters; based on analyzing the external characteristics of each winding
mode, we produced a winding mode switching strategy whose torque saturation judgmental algorithm,
insensitive to a motor’s parameters, could automatically realize upswitching of winding mode.
The proposed multi-level current hysteresis modulation algorithm can set the major power source and
switch it at any time in independent mode, accomplishing energy distribution between two power
sources; its two control methods, the low switching frequency method and the high power difference
method, could achieve different energy distribution effects. From the simulation results, compared
with an OW-PMSM drive system with traditional two-level current hysteresis modulation, under the
same conditions the proposed system has 30% lower torque ripple and a lower switching frequency of
inverter devices. Thus the proposed system has 3% higher peak efficiency and a larger high-efficiency
area than a traditional OW-PMSM system. By applying it to electric vehicles, the power consumption
is 6.75% lower on average under the proposed control methods. Moreover, through its two different
control methods in independent mode, energy distribution between the two power sources can be
realized, thus the DC/DC converter between them can be cancelled.

Finally, the proposed winding mode switching strategy and multi-level current hysteresis
modulation method take full advantage of each winding mode’s working range, reduce inverter
switching loss, increase system efficiency, and realize energy distribution between two power sources.
It provides a theoretical basis and implementation scheme a for dual-power OW-PMSM drive system
in electric vehicles. Future research will be directed towards finding an energy distribution method
matched with this system for electric vehicles to maximize the overall efficiency and driving range.
After solving the existing practical issues, an experimental verification of the proposed system will
also be conducted in an electric vehicle.
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Abstract: This paper proposes a design methodology for a power split type plug-in hybrid electric
vehicle (PHEV) by considering drivetrain losses. Selecting the input split type PHEV with a single
planetary gear as the reference topology, the locations of the engine, motor and generators (MGs),
on the speed lever were determined by using the mechanical point considering the system efficiency.
Based on the reference topology, feasible candidates were selected by considering the operation
conditions of the engine, MG1, and a redundant element. To evaluate the fuel economy of the selected
candidates, the loss models of the power electronic system and drivetrain components were obtained
from the mathematical governing equation and the experimental results. Based on the component
loss model, a comparative analysis was performed using a dynamic programming approach under
the presence or absence of the drivetrain losses. It was found that the selection of the operating
mode and the operation time of each mode vary since the drivetrain loss affects the system efficiency.
In addition, even if the additional modes provide the flexibility of selecting the operating mode that
results in a higher system efficiency for the given driving condition, additional drivetrain elements
for realizing the modes can deteriorate the fuel economy due to their various losses.

Keywords: design methodology; power split type; plug-in hybrid electric vehicle (PHEV); drivetrain
losses; dynamic programming

1. Introduction

To meet the regulations for reducing CO, emissions and increasing the fuel economy,
the development of electric drive vehicles such as the battery electric vehicle (BEV) and hybrid
electric vehicle (HEV) are an inevitable necessity.

The plug-in hybrid electric vehicle (PHEV) has emerged as a viable solution to meet these
regulations, while overcoming the disadvantage of the relatively short travel distance of the BEV [1].
PHEV can be driven only using electric energy until the battery state of charge (SOC) decreases to
the lower limit, which is called the “All Electric Range’ (AER) or the ‘charge depleting (CD) mode’.
After AER, PHEV has to run using the internal combustion engine and motor(s) to sustain the battery
SOC, which is called the ‘charge sustaining (CS) mode’. In CS mode, various operating modes such
as series, parallel, etc. are used depending on the PHEV configuration. When the PHEV is operated
in CS mode, the fuel economy is directly related to the operating modes, which are determined from
its configuration. The PHEV configuration can be classified into series, parallel, and power-split
type configurations [2]. The Toyota hybrid system (THS) is a typical example of the input split type
configuration in which the engine power is split at the input side. The THS enables the engine to
operate on the optimal operating line (OOL) via the electrically continuous variable transmission
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function. In addition, the THS has a relatively simple structure without using the clutch and brake
to change the mode [3]. However, the power circulation that occurs when the vehicle runs at high
speed has been mentioned as a major drawback that deteriorates the fuel economy [4,5]. The THS uses
two operating modes; the EV and HEV modes. The number of modes that the PHEV can realize is
directly related to the fuel economy because, with a greater number of PHEV modes, more flexibility
can be provided for the given driving conditions [6]. On the other hand, additional drivetrain elements,
such as the clutch or brake, which are required to implement an additional mode, can cause parasitic
loss in the drivetrain.

To develop the PHEV configuration with a high system efficiency, design methodologies or new
system configurations have been investigated [7]. To reduce the power circulation, an optimal gear ratio
design for the planetary gear and the final reduction gear was proposed [8], and the speed ratio control
was investigated to drive the vehicle near the mechanical point [9]. A topology optimization was
performed for HEV with transmission to improve CO, emission and fuel economy [10]. To implement
multi-mode operation in the input split type PHEV, a design methodology to find a feasible design from
the possible combinations, using the clutches and brakes, was investigated. For all possible candidates,
the fuel economy and driving performance were evaluated using a backward simulator [8,11].
In addition, a comprehensive design methodology was suggested to find the optimal configuration of
the input and output-split type HEV in terms of the fuel economy and driving performance, using the
clutch topology and gear ratio [12,13].

In the aforementioned studies, there are some limitations; (1) parasitic losses of the drivetrain
components, such as the clutch and brake, which are required to realize the new configuration, were
neglected and (2) the unloaded loss of the power electronic systems, such as motor and generators
(MGs), were not considered. For PHEVs that have relatively short AER, the above factors influence the
fuel economy when the vehicle is operated in CS mode.

In this study, a design methodology for a new PHEV configuration was proposed using the input
split type as a design reference. Based on the reference topology, feasible candidates were selected by
considering the infeasible and redundant conditions. For each candidate, the improvement ratio of the
fuel economy was evaluated by dynamic programming, and a comparative study was performed in
terms of the positive aspects of the additional mode and negative aspects of the drivetrain loss.

2. Topology Design Based on the Input Power Split Type PHEV

Search for Feasible Topology to Realize the Multi-Mode PHEV

Since power split type PHEV has the advantage of both series and parallel type configurations [4],
power split type was selected as a reference topology in design of a new PHEV configuration. In general,
the power split type PHEV is designed by combining one engine, two motor-generators (MGs), and
multiple planetary gears. In addition, clutches and/or brakes are used to realize the demanded
operating modes [8,11]. When we design a new PHEV using multiple planetary gear sets, numerous
configurations can be constructed by connecting the power source (engine, MGs) to each shaft of the
planetary gears [14,15]. Since it is unrealistic to evaluate all the possible configurations, it is necessary
to narrow the variety of choices. In this study, the following constraints were introduced:

(1) Single planetary gear system:

Even if multiple planetary gears can provide more freedom than a single planetary gear, additional
drivetrain elements such as the clutch and brake are required to connect the planetary gears, and
it is difficult to avoid a complicated system structure compared with the single planetary gear
system. Also, we can easily deduce that the transmission efficiency of the multiple planetary
gear system is lower than that of the single planetary gear system [16]. Furthermore, additional
drivetrain elements such as the planetary gear, clutch, and brake may exacerbate the packaging
problem, as well as incur increased costs. Therefore, a single planetary gear was selected.
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(2) Input split type:

In the power split transmission (PST) using the single planetary gear (PG), the power is split at
the input side or output side of the PST depending on the location of PG [4,17]. The split power
flows to the mechanical path and electrical path. Since the efficiency of the electrical path, which
consists of the power electronic (PE) system including MG1, MG2, and the inverter, is much lower
than that of the mechanical path, the PST efficiency increases as the power ratio of the electrical
path decreases. When all the power flows through the mechanical path, the PST efficiency shows
the highest value, and this is called the ‘mechanical point” (MP) [18].

In the input split type PHEYV, the PST efficiency decreases rapidly when the vehicle speed becomes
higher than the speed of the mechanical point. This is because power circulation occurs along the
electrical path, which causes decreased PST efficiency. In contrast, in the output split type, the power
circulation occurs when the vehicle speed is lower than the mechanical point. Therefore, if the vehicle
drives mostly in the city (urban dynamometer driving schedule cycle), in other words, at a low to
medium speed, it is desirable to use the input split type that has a relatively high efficiency in the low
to medium speed region without the power circulation when the mechanical point is positioned at
high speed [18].

Considering the above two constraints, the input split configuration using a single planetary gear
was selected as a reference topology in development of a new PHEV.

A power split structure can be represented as a generalized single lever model [19]. Figure 1
shows a lever model of the input split type, which involves one engine and two MGs using the single
planetary gear. Since the single PG is used, there are three nodes in the lever. Now, we can find a
feasible PST configuration as follows:

(a) If we use MG2 as a main driving motor, it should be connected to the output node. This is because
MG?2 needs to be operated to propel the vehicle directly in the electric vehicle (EV) mode, as can
be observed in most PHEVs.

(b) In the single PG, the node of the speed lever should be positioned in the order of the sun (S),
carrier (C), and ring gear (R), or vice versa from the lever analogy.

(c) The mechanical point needs to be located at a high vehicle speed to achieve high PST efficiency
in the low to medium speed range.

Therefore, we have two possible configurations, as shown in Figure 1. In Figure 1, i is the lever
distance from the output to the engine and a and b are the lever distances from the output to MG1 and
to MG2, respectively. It is seen from Figure 1 that b is equal to zero because MG2 needs to be located at
the output from the above condition (a).

Since the electrical power becomes zero at the mechanical point, we can find the speed ratio of
the mechanical point under the condition that the speed of MG1 or MG2 is zero. We define the speed

ratio (SR) as,
We

’
Wout

SR = )
where w, is the engine speed and wy; is the output speed (vehicle speed). From the speed lever in
Figure 1, when the speed of MG1 or MG2 is zero, the speed ratio at the mechanical point is obtained as

a—i _ (a/i)—1

SR = a  (a/i)

at mechanical point. 2)

In Figure 2, the speed ratio at the mechanical point is shown with respect to a/i for an input
split type transmission [20]. To meet condition (c) above, the speed ratio at the mechanical point
should be the overdrive ratio (region F) for which the output speed of the PST is higher than the input
(engine) speed. This implies that the lever distances a and i need to be in the same direction and that
a/iis larger than one. It is found that lever A satisfies the aforementioned requirements, while lever
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B does not meet the requirements. In addition, it is found that the engine needs to be located at the
center node of lever A, i.e., at carrier C, since the order of the PG node should be S, C,RorR,C, S
(from condition (b)).

A+
Woyt
Output
WpG1 Engine MG2
MG1[@ [o) )
— [ +
a b=0
@ (b)

Figure 1. A generalized single lever model for the input split plug-in hybrid electric vehicle (PHEV).
(a) Lever A; (b) Lever B.
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Figure 2. Speed ratio at the mechanical point [20].

Now, we determine the position of MG2 (output). MG2 can be located at the sun gear, S (Figure 3a),
or the ring gear, R (Figure 3b). From the speed lever analogy, it is found that MG2 is positioned at the
ring gear when a/i is greater than 2; meanwhile it is positioned at the sun gear for 1 <a/i <2.

From the lever analogy of the speed and torque, we can obtain the power of each node using a/i.
Defining the power ratio PR as the ratio of the MG1 power (electrical power) to the engine (input)
power, the power ratio is represented as

Pycr — wout 1
PR = — - 1
P, We ((a/i)71>Jr ®)

In Figure 4, the power ratio is shown for a/i between 1 and 3.5 when the engine speed is 1500 rpm,
the engine torque is 100 Nm, and the output speed is 2000 rpm. It is seen from Figure 4 that the power
ratio decreases as a/i increases. Since the PST efficiency increases as the power ratio decreases, in other
words, the power through MG1 (electrical path) decreases, we find that MG2 needs to be positioned at
the ring gear.
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Figure 3. Lever analysis for the input split type by a/i. (a) a/i is larger than 2; (b) a/i is smaller than 2.
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Figure 4. Speed, torque, and power ratio versus a/i when w, = 1500 rpm, T, = 100 Nm,

woyt = 2000 rpm.

In Figure 5, a schematic diagram of the input split type PST using the single PG is shown, which
is selected from the design procedure. The PST in Figure 5 consists of one engine at the carrier (C),
MG?2 at the ring gear (R), and MG1 at the sun gear (S). The PST in Figure 5a provides two operating
modes when driving; (1) electric vehicle (EV) and (2) power split mode. In the EV mode, the vehicle
is propelled by MG2 using electric energy (Figure 5b). In the power split mode, the engine power is
split at the PG and transmitted to MG1 and to the output (Figure 5¢c). At this moment, the power may
circulate through the closed path, depending on the vehicle speed.

Using the PST in Figure 5 as a reference topology, a design methodology of the PHEV that can
realize more operating modes with high efficiency is investigated.

To realize more than two operating modes, the degree of freedom of the single PG needs to be
changed using the clutch and brake. In Figure 6a, the possible positions where the clutch and brake can
be added are shown. Since the PG has three nodes (sun, carrier, and ring gear), the clutches, CL1, CL2,
CL3, and the brakes, BK1, BK2, and BK3, can be added at each node, as shown in Figure 6a [11,15].
Mathematically, the number of combinations that can be constructed from three clutches and three
brakes is 2°. However, infeasible combinations can be eliminated by considering the real driving
environment. In the power split mode, in other words, in the hybrid electric vehicle (HEV) mode in
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which the engine and MG2 work together, the engine and MG1 should always operate together due to
the following reasons:

(1) The engine needs to supply the power to propel the vehicle and to generate MG1.
(2) When the engine works, MGl is required to control the engine operation on the OOL.

From the above constraints, it is seen that clutches CL2 and CL3 should always be engaged, which
means that CL2 and CL3 are not necessary, as shown Figure 6b. Therefore, the number of combinations
becomes 24(=16) by eliminating CL2 and CL3.

pG Output

@)

Battery

pG Output pG Output
(b) (0

Figure 5. Reference power split transmission. (a) Input split power split transmission (PST); (b) electric
vehicle (EV) mode; (c) Power split mode.
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Figure 6. Schematic diagram for the reference topology. (a) All possible locations for adding the clutch
and brake [11]; (b) Feasible locations for adding the clutch and brake.

By adding CL1, BK1, BK2, and BK3 to the reference topology, the following modes can be realized:

EV#1:

Power split:

EV#2:

Parallel:

Series:

The vehicle is propelled only by MG2. MG1 and the engine are off. No clutch or brake
is required.

This mode can be implemented as explained in Figure 5c. No additional clutch or
brake is needed from the reference topology.

MG2 and MGI propel the vehicle together. Since the engine does not work,

the reaction force acting on the carrier must exist to transmit the MG1 torque through
the PG. Therefore, the carrier is fixed by activating BK2.

The engine and MG2 propel the vehicle using the parallel path. MG1 does not function,
which requires BK3 to make the MG1 speed zero. The engine power is transmitted to
the output through the mechanical path without using the electrical path. MG2 works
using the battery energy.

To implement this mode, the engine needs to be separated from the output, which
requires CL1 to disengage the power from the engine and BK1 to ground the ring gear.
The engine only drives MGl to generate the electrical power, which is transmitted to
the output through the electrical path.
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In Table 1, the operation of the clutch and brake, the lever analogy, and the speed and torque
equation for each mode are shown. It is seen from Table 1 that EV#1 and power split mode are
implemented as a basic operating mode without any additional elements. For the EV#2 mode, BK2 is
required; meanwhile BK3 is required for the parallel mode. Finally, it is noted that BK1 and CL1 are
needed for the series mode.

Table 1. Possible operating modes with the speed and torque equation.

Operating Mode Lever Analogy Speed and Torque Equation (Npg = Z,/Zs)
[ Wout
—s —| :::
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B N El"p-"( z, vy Tmect
1 mez) nane Tul=[0 0 1]| T
PG Tpc2
pG Output WG
[ Wout
~sH{(me1 ]
H wmet | _ | =Npg 1+ Npg Wout
Power —c Battery wme | 1 0 W,
‘“"T@ Tl =[1 1 1 T,
PG T
pG Output MG2
[ Wout
s
BK2[— [ wWMG1 ] _ [ Npc 0 H Wout }
EV#2 @ —@ Battery MG1 o»:‘pm WMG2 1 0 . wWe
N nput 7 § ma2 MG1
_R—_r@ T, Engine 75V M¢ [Towt) = [ Nog 0 1] T,
PG Tmc2
pg Output omet
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G T, 2, e Zs  MG2 Tyca
pG Output MG1 ngine

In Table 2, sixteen candidates are shown with the operating mode and additional element(s). It is
seen from Table 2 that some of the candidates have a redundant element when realizing the target
operating modes. For example, candidate #14 can realize the EV#1, power split, EV#2, and parallel
mode only by using BK2 and BK3 without CL1. Therefore, CL1 is a redundant element, and it is
found that candidate #14 is equivalent to candidate #11. Similarly, candidate #15 is equivalent to #11,
#2 and #3 are equivalent to #1, etc. After eliminating the candidates that have a redundant element
(gray rows), eight candidates were selected, as shown in Figure 7.
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Table 2. All feasible candidates to realize multi-mode PHEV.

. cps . Redundant  Equivalent
Candidate No. Additional Element Operating Mode Element Candidate
#1 Reference Basic (EV#1, Power split) - -
#2 CL1 Basic CL1 #1
#3 BK1 Basic BK1 #1
#4 BK2 Basic + EV#2 - -
#5 BK3 Basic + Parallel - -
#6 CL1, BK1 Basic + Series - -
#7 CL1, BK2 Basic + EV#2 CL1 #4
#8 CL1, BK3 Basic + Parallel CL1 #5
#9 BK1, BK2 Basic + EV#2 BK1 #4
#10 BK1, BK3 Basic + Parallel BK1 #5
#11 BK2, BK3 Basic + EV#2, Parallel - -
#12 CL1, BK1, BK2 Basic + EV#2, Series - -
#13 CL1, BK1, BK3 Basic + Parallel, Series - -
#14 CL1, BK2, BK3 Basic + EV#2, Parallel CL1 #11
#15 BK1, BK2, BK3 Basic + EV#2, Parallel BK1 #11
#16 CL1, BK1, BK2, BK3 Basic + EV#2, Parallel, Series - -
Reference
. #4: #5: #6:
#L: Basms(lfl\i,t tl’ Power Basic + EV#2 Basic + Parallel Basic + Series

Battery

PG Output pG Output pG Output PG Output
#16:
#11: #12: #13:
. ) ) ) . Basic + EV#2, Parallel,
Basic + EV#2, Parallel Basic + EV#2, Series Basic + Parallel, Series aste Series aralle
e FsHwer
BK2

Battery

pG Output

Battery

pG Output

BK1| CL1
MG2

pG Output

H{ENG ) o

Battery

pG Output

Figure 7. Eight candidates with operating modes.

3. Component Loss Model

As shown in Figure 7, eight candidates for new PHEV configurations were obtained using the
additional clutch and brake. In general, it is expected that, as the number of the operating modes
increases, the fuel economy increases, since the PHEV can be operated with high efficiency by selecting
the proper operating mode for the given wheel torque and speed. However, additional drivetrain
components such as the clutch and brake cause parasitic power loss. Therefore, the pros and cons of

the multi-mode operation need to be evaluated when adding the operating mode.

In this study, to evaluate the effect of the power electronic (PE) loss and drivetrain loss on the fuel
economy, the component loss models were obtained based on the mathematical governing equation

and experimental results.
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3.1. PE Loss

The MG1 and MG2 losses were calculated from the efficiency map. The efficiency of MG1
or MG2 can be determined from the operation point for the given torque and speed (Figure 8a,b).
The high-voltage DC/DC converter (HDC) boosts the battery voltage in consideration of the operating
conditions of MG1 or MG2. When the HDC boosts the battery voltage, a boost loss occurs. The HDC
loss was determined from the HDC efficiency with respect to the battery power (Figure 8c). In addition,
the battery loss was obtained from the charge (discharge) efficiency. In this study, the battery charge
(discharge) efficiency was assumed to be 98.5% [21].

X

£ - -
£ E & l ﬁt §98
r ¢ s — \ /[ T
2 2 = S 96
5 8 % |
5 g 8%
= = ;\ 4 b T 50 0 50

MG1 speed, rpm MG2 speed, rpm Battery power, kW

(a) (b) (0)

Figure 8. The efficiency map derived from the experimental result for: (a) motor generator 1 (MG1);
(b) MG2; (c) high-voltage DC/DC converter (HDC).

3.2. Drivetrain Loss
The drivetrain losses have been described in detail in the literature [22]. A short summary of the

drivetrain losses is as follows:
Gear loss: Gear loss was assumed to be 1% of the transmitted torque [23], which is widely used

in the automotive industry.
Planetary gear loss: When the sun, pinion, and ring gear are meshing, the planetary gear loss

occurs due to the gear teeth friction. The planetary gear loss is represented as [24,25]:

kpc % Ty, _pg, when the carrier is fixed

Z . s
Tioss PG = kpg x ( z%7 ) * Tin_rg, when the ring gear is fixed 4)
Z. s g
kpg X 757 ) X Tin_pc, when the sun gear is fixed,

where T} is the torque loss, T;, is the input torque, and k is the coefficient of friction for PG.
Bearing loss: There are loaded and unloaded losses in the bearing. Loaded loss is proportional to
the bearing load. The loaded loss is calculated as follows [26,27]:

TlosszRGloud = fl X Pla X dmh X 1073/ (5)

where g, b, and f are the coefficients according to the bearing type, P; is the equivalent bearing load
and is determined from the axial and radial bearing reaction force, and d,, is the bearing mean diameter.

Bearing unloaded loss is caused by the slip between the rotating surface and the lubrication oil
film. The bearing unloaded loss is represented as

. 2

1.6 x 1078 x fo x dn®, if (Vgir X 1) < 2039,"1’11_1;1'1 6
10-10 ) 9 d 3 if (v > 2000 mm? ©)
X fo X (Vg5 X 1)3 X dy?, if (Vo5 X 1) > smin/

TlusszRGunload = {

where f is the coefficient for the bearing unloaded loss, vy is the kinematic viscosity, and 7 is the

bearing rotational speed.
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Churning loss: To reduce friction between the gear teeth, the final reduction gear rotates in
lubrication oil. During the gear rotation, the churning loss occurs in proportion to the rotational speed.
Churning loss is calculated as follows [28]:

1
Tloss_churning = EPWZRpSSmCm, (7)

where w is the rotational speed, p is the lubricant density, R, is the gear pitch effective radius, Sy, is
the contact surface coefficient, and C,;, is the dimensionless churning torque loss.

Brake and clutch loss: The brake and clutch unloaded losses are the drag losses between the
friction surface and lubricant in the disengaged state. The brake and clutch unloaded losses were
modeled using the experimental results (Figure 9a).

MGT1 unloaded loss: MG1 unloaded loss is caused by the mechanical and electrical components
when MG rotates freely [29]. For the input split type, MG1 does not produce the power to propel
the vehicle in the EV#1 mode and is freely rotating because it is connected to the vehicle through the
planetary gear. MG1 unloaded loss was modeled using the experimental results (Figure 9b).

Oil pump loss: The oil pump provides a flow rate for the lubrication, cooling, and the control of
the clutch and brake. Since a mechanical oil pump, which is driven by the driveshaft via a gear was
used in this study, the oil flow is supplied in proportion to the vehicle speed. While the clutch or brake
is engaged, additional oil flow is needed to generate the control pressure. Therefore, the oil pump loss
depends on the vehicle speed and control pressure. In this study, the oil pump loss was obtained from
Prius THS experimental results, shown in Figure 9¢ [16].
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Figure 9. The torque loss map derived from the experimental result for: (a) Brake/clutch; (b) MG1
unloaded; (c) Oil pump.

To calculate the drivetrain loss, the design specification and location of each element are required.
In Figure 10, a schematic diagram of the reference PHEV, using the design concept described in
Figure 6b, is shown. The installation positions of the bearings were determined referring to the 3rd
generation Toyota Prius. The bearing losses inside the MG1 and MG2 were considered in the motor
efficiency map. MG2 was connected to the output through two reduction gears, G1-G2 and G3-G4.
The friction face area of the brake and clutch and the number of clutch friction faces were determined
by considering the transmitted torque [30].

The magnitude of the PE loss and drivetrain loss vary depending on the power flow path, which
is determined by the operating mode. In Table 3, the components of the PE loss and drivetrain loss are
shown for each operating mode.

In EV#1 and parallel mode, the PE losses occur from the battery charge/discharge, MG2, and
HDC operation. The MG loss needs to be considered in the EV#2 mode, power split, and series
mode, in addition to the battery, MG2, and HDC losses. The drivetrain losses come from the gear,
planetary gear, and bearings. The unloaded losses occur due to the drag when the clutch or brake is
freely rotating. The churning loss always exists at the final reduction gear. In addition, the oil pump
loss needs to be considered when the clutch or brake is engaged.
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Vehicle specification

Battery HDC . Max power 115 kW
Engine Max torque 185 Nm
MG1 Max power 70 kW
MGI Max torque 50 Nm
G1 Max power 90 kW
Engi MG2 —:E p
nome G _|_ MGz Max torque 270 Nm
Tc B2R
G3 G2 Max power 50 kW
B
& J- attery Capacity 25Ah
B3L T Vehicle . Mass. 1800 kg
— Tire radius 0.32m
1 Output G e
4 Gear ratio G1-G2 2478
G3-G4 1.0

Figure 10. Reference topology and specifications with drivetrain elements and additional clutch and
brakes. MG: motor and generator, CL#: clutch, PG#: planetary gear, B#L: bearing on left side, B#R:
bearing on right side, HDC: high voltage DC/DC converter, BK#: brake, G#: gear.

Table 3. Power electronics (PE) and drivetrain loss for each operating mode.

Operating Mode EVi#l EV#2 Power Split Parallel Series
Battery, Battery,
Battery, HDC, Battery, Battery, HDC,
PE loss HDC,MG2, HDC, MG2,
MG2 MG1 MG1 HDC, MG2 MG2, MG1
Gear, BRG, Gear, BRG, Gear, BRG,

Loaded Gear, BRG PG PG PG Gear, BRG, PG
Drivetrain BRG, Churning, BRG, BRG, BRQ, BRG, Churning,

loss Un-loaded MGT1 unloaded, Churning, Churning, Churning, BK# CL1. Pum
BK# BK#, Pump BK# BK#, Pump ! ! P

4. Backward Simulator Using Dynamic Programming

To evaluate the maximum potential in the fuel economy of the eight candidates in Figure 7,
a backward simulator was developed using dynamic programming (DP). Since DP is able to find the
optimal SOC trajectory regardless of the control strategy, which guarantees minimum fuel consumption
for the given PHEV configuration [31,32], it was used for the comparative analysis of the candidates
for the presence or absence of the drivetrain losses.

The PHEV system in Figure 7 has two control variables, engine speed and torque, and one state
variable, battery SOC [33]. For each time step, k — 1, the instantaneous optimal operating point of the
engine is determined for the specific battery power. When the operating point of the engine is given,
the PE loss and drivetrain loss are calculated [22]. Considering the component loss, the optimal fuel
consumption rate, gx_1, is obtained through the instantaneous optimization process.

After the process is completed, global optimization is performed to find the minimum fuel
consumption over the whole driving cycle. The global optimization process can be represented as a
recursive equation [33,34]. The recursive equation and constraint are represented as

Recursive equation : Ji*(SOCy) = {gx—1(w%—1, T%-1) + Jx—1"(SOCx_1)}

8
Constraint : SOCjitial — SOCfinal =0, ®

where k is the discrete time step, J;* is the minimum fuel consumption from 1 to k step, J,_1* is the
minimum fuel consumption from 1 to k — 1 step, w,_1 and T%_; are respectively the speed and
torque of the engine that has the minimum fuel consumption rate at the k — 1 step, and gi_ is the fuel
consumption rate at the k — 1 step.
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Using the recursive equation, we can find the minimum fuel consumption, J;*; in other words,
the maximum potential in the fuel economy over the whole driving schedule [35,36].

5. Comparative Analysis Using Dynamic Programming

PE Loss and Drivetrain Loss

To evaluate the influence of the drivetrain losses on the fuel economy, simulation was performed
for candidate #16 using the backward simulator, in which the target PHEV undergoes the highway
fuel economy test (HWFET) cycle. In the simulation, the final battery SOC was assumed to be equal to
the initial SOC. As described in Section 4, the operation points of the engine, MG1, and MG2 were
determined, which guarantee the minimum fuel consumption by the dynamic programming results.
In addition, the operating mode that provides the minimum fuel consumption was selected.

In Figure 11, the simulation results are shown. The engine torque (b) and speed (c) were almost
maintained at the optimal operating point at 80 Nm and 1600 rpm, where the engine has the highest
thermal efficiency for the demanded engine power. The MG2 torque (b) showed a negative value
when regenerative braking was performed. The battery SOC (d) decreased from the initial value when
the vehicle accelerated and increased during the regenerative braking. The vehicle started in the EV#1
mode and used the EV#2, power split, parallel, and regenerative braking modes (e) during the driving.
It is seen that the parallel mode was mostly used for the HWFET cycle, while the series mode was

never used.

e
< 100
E3
> 80
3
3 60
&
) 40|
[Z]
:E 20|
> 0
150
£ 100p
Z b
g
o 0|
S
~ -50
-100
1
£
E o5
5
T 0
[}
2 o5
S
El
305
2 30
3
2951 V\/\M ! \/\A.\ ]
| ,a\/v \J\J\"‘\_
20 ' B

o

N

=2

Figure 11. Backward simulation result for candidate #16 considering PE and drivetrain loss (highway
fuel economy test (HWFET) cycle). (a) Vehicle speed; (b) Torque; (c) Speed; (d) Battery SOC;
(e) Operating mode.

275



Energies 2017, 10, 437

In Figure 12, the drivetrain loss and PE loss in region P (t = 665695 s) of Figure 11 are shown.
The gear (9-150 W), bearing (150-200 W), and PG losses (3-210 W) (Figure 12a) always occur when the
vehicle drives. The gear and PG losses showed an almost zero value at an instant when the transmitted
torque is very small during regenerative braking. An MG1 unloaded loss of 400 W occurred when
MG1 was freely rotating, such as in the EV#1 and regenerative braking mode. When MG1 works, the
MG1 unloaded loss does not appear. Instead, the PE loss of MG1 occurs (c). The drag losses of BK1,
BK2, and BK3 (b) were 2045 W when they were disengaged. In region P, since the series mode was
not used (e), BK1 was disengaged and CL1 was engaged, causing a drag loss of BK1 of 30 W and a
zero drag loss of CL1. The BK2 loss was zero in the EV#2 mode when it was engaged but showed a
20 W loss in the parallel mode when it was disengaged. It is seen that a drag loss of 45 W occurred in
BK3 when BK3 was disengaged. In addition, a pump loss (b) of 45 W occurred, supplying the pressure
for the engagement of BK and CL1. In Figure 12¢, the PE losses are shown. The MG2 loss of 400-900 W
occurred because MG2 always works when the vehicle drives. The MG1 loss (500-700 W) occurred in
the EV#2 mode. The HDC loss showed a range of 0-50 W. In Figure 12d, the total drivetrain loss is
shown with the PE loss. It is seen that the total drivetrain loss (300-900 W) was almost the same as the
PE loss (385-1260 W), which demonstrates that drivetrain loss should be considered when evaluating
the fuel economy for a new PHEV configurations.
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Figure 12. PE and drivetrain loss for candidate # 16 when driving the HWFET cycle (665-695 s).

(a,b) Drivetrain loss; (c) PE loss; (d) Power loss; (e) Operating mode.

In Figure 13a,b, the operating modes are plotted, which provide the minimum fuel consumption
for the demanded wheel power and vehicle speed. The operating mode was selected from the global
optimization using dynamic programming. It is seen from the dynamic programming results that the
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PHEV (candidate #16) does not use the EV#2 and series mode without consideration of the drivetrain
loss, even if it can implement the EV#2 and series mode. This is because these two operating modes
cannot provide the minimum fuel consumption for the given driving condition. Instead, the EV#1,
power split and parallel mode were used with the operation times of 283 s, 27 s, and 365 s, respectively,
across the total driving time of 765 s (Figure 13c). On the other hand, when the drivetrain loss is
considered, as can be seen from Figure 13b,c, the EV#2 mode is used at low wheel power (less than
8 kW) and high vehicle speed (72-95 kph). The operation time of the EV#2 mode is 79 s, while the
EV#1, power split, and parallel modes are used for 110 s, 30 s, and 456 s, respectively. It is noted that
the series mode was not used, even when drivetrain loss was considered.

From the comparative analysis, it was found that the mode selection and operation time of each
mode varies depending on the presence or absence of drivetrain loss. This is because the drivetrain
loss affects the system efficiency for the given driving conditions. As a result, a different operating
mode was selected and a different mode operation time was obtained, which leads to a different fuel
economy. When the drivetrain loss is not considered, the fuel economy was obtained as 28.76 km/L,
and when the drivetrain loss is taken into consideration, the fuel economy is decreased by as much as
8.1% to 26.43 km/L. It is seen from the comparative analysis for candidate #16 that the drivetrain loss
has a significant impact on the fuel economy, which demonstrates that the drivetrain loss should be
considered in fuel economy evaluations.
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Candidate #16 P Fuel Economy
(HWFET) EV#1  EV#2 g’;‘l’;‘ Parallel ~ Series (km/L)
without drivetrain loss 283 0 27 365 0 28.76
with drivetrain loss 110 79 30 456 0 26.43 (-8.1%)

(0

Figure 13. Comparison of optimal operating mode for candidate #16 in the presence or absence of
drivetrain losses (HWFET). (a) Without drivetrain loss; (b) With drivetrain loss; (c) Operation time and
fuel economy.

Now, considering the drivetrain loss, the fuel economies of the eight candidates in Figure 7 were
evaluated. In Table 4, simulation results of the operation time, fuel economy, PE loss, and drivetrain
loss are compared for the HWFET cycle when the vehicle is operated in CS mode.

It is seen from Table 4 that the fuel economies of candidates #6 and #12 were decreased compared
with the reference (candidate #1) in spite of the additional modes. This is because brake drag and pump
loss occurred from the additional elements, BK1, BK2, and CL1. The fuel economies of candidates #5,
#11, #13, and #16 were improved by 3.65%—4.04%, and we found that all these candidates have the
parallel mode in common. It is seen that the operation time of the parallel mode is 437-456 s, which
replaced most of the power split mode operation. The reason why the fuel economy was improved
when adding the parallel mode can be explained by the reduced PE loss. In the parallel mode, MG1 is
turned off and there is no power flow through the electrical path, which provides a smaller PE loss
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than that of the power split mode. As a result, candidates #5, #11, #13, and #16, which can implement
the parallel mode, have smaller PE loss (524.3-540.1 k]) than the other candidates (935-950 kJ). It is
also noted that the fuel economy improvement (3.77%) of candidate #16 is less than that of candidate
#11 (4.04%), even if it can implement one more operating mode than candidate #11; this is because the
drivetrain loss was increased due to the additional elements, BK1 and CL1.

From Table 4, we can select candidate #11 as a new PHEV configuration that provides the best
fuel economy using the EV#1, EV#2, power split, and parallel modes.

As shown in the design procedure, which considers the speed and torque lever analogy, drivetrain
loss, and PE loss, it is seen that the design methodology proposed in this study can be used effectively
for the development of a new PHEV configuration and that the drivetrain losses must be included in
the fuel economy evaluation.

Table 4. Fuel economy and component losses of eight candidates for HWFET when the vehicle is
operated in charge sustaining (CS) mode.

#1 #16
Basic #4 #5 #6 B#l.l . B#l.z + B#I‘S N Basic +
Candidate (EV#1, Basic + Basic + Basic asic asic asic EV#2,
N EV#2, EV#2, Parallel
Power EVi#2 Parallel +Series . . Parallel,
. Parallel Series Series .
Split) Series
BK1,
Additional element - BK2 BK3 BK1,CL1 BK2, BK3 BK1, BK1, BK2,
BK2,CL1 BK3, CL1
BK3, CL1
No. of modes 2 3 3 3 4 4 4 5
EV#1 89 64 169 89 118 60 172 110
. EV#2 X 45 X X 69 47 X 79
Operation
time (s)  Power split 586 566 69 586 33 568 61 30
Parallel X X 437 X 455 X 442 456
Series X X X 0 X 0 0 0
26.47 25.37 26.5 25.36 26.4 26.43
FE (/L) 2547 2547 (+3.92%) (—0.39%) (+4.04%) (—0.43%) (+3.65%) (+3.77%)
MG2 658.2 645.5 486.1 658.1 463 645.1 485.7 460.3
PE loss (k]) MG1 264.1 290.4 15.2 265.9 494 292.7 133 55
HDC 12.6 115 25.3 123 25.2 117 25.3 24.8
Total PE loss (kJ) 934.9 947.4 526.6 936.3 537.6 949.5 524.3 540.1
MG1-unload 49.7 41.1 80.6 50 60.4 39.7 81.5 57.3
PG 182.6 175.7 129 182.1 122.4 1754 128.1 121.6
Drivetrain Gear 182.3 182.3 182.3 182.3 182.3 182.3 182.3 182.3
loss (kJ) Bearing 1331 1331 133.1 133.1 133.1 133.1 133.1 133.1
CL1 & BK# 0 10.6 25.1 20.4 34.7 31 33.3 425
Pump 18.3 19 25.5 30.9 27 30.9 30.9 30.9
Total drivetrain loss (kJ) 566 561.8 575.6 598.8 559.9 592.4 589.2 567.7

6. Conclusions

A design methodology of a power split type PHEV was proposed by considering the drivetrain
losses. As a design reference, an input split type PHEV using a single planetary gear was selected.
First, to determine the engine position on the speed lever of the single planetary gear, the mechanical
point (MP) at which the power split transmission (PST) has the highest efficiency was investigated
with respect to the speed ratio, and it was found that the engine should be located at the carrier
to have the MP at high speeds, which provided a higher PST efficiency in the main driving range.
In addition, the positions of MG1 and MG2 on the speed lever were determined, which provides
a better PST efficiency by reducing the power that flows through the electrical path. Based on the
reference topology, feasible locations of the additional clutch and brake were investigated to realize the
multi-mode in addition to the basic operating mode of the reference PST. Among the mathematically
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possible combinations of 2° candidates, sixteen candidates were selected by considering the operation
condition of the engine and MGl in a real driving environment, and, finally, eight candidates were
obtained by eliminating the candidates that had a redundant element. To evaluate the fuel economy
of the selected candidates, the loss models of the power electronic system (MG1, MG2, HDC) and
drivetrain components (gear, planetary gear, clutch, brake, bearing, MG1 unloaded loss, etc.) were
obtained based on the mathematical governing equation and experimental results. Based on the
component loss model, a backward simulator was developed using dynamic programming to find the
maximum potential for the fuel economy of the PHEV candidates for the given driving duty cycle.
Using the backward simulation, a comparative analysis was performed under the presence or absence
of the drivetrain losses, and it was found that the selection of the operating mode and the operation
time of each mode vary, since the drivetrain losses affect the system efficiency. The fuel economy also
decreased by as much as 8.1% for the HWFET cycle.

In addition, it was found from the comparative analysis that, even if the additional modes result in
flexibility when selecting the operating mode, thus providing a higher system efficiency for the given
wheel power and vehicle speed, additional drivetrain elements to realize the modes can deteriorate
the fuel economy due to the losses of the additional elements. It is also noted that the series mode was
never used due to its low system efficiency. On the other hand, the parallel mode can improve the
system efficiency since the PE loss is reduced compared with the other modes.

It is expected that the design methodology proposed in this study, which considers the drivetrain
losses, can be used in development of new PHEV configurations.
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Abstract: The rule-based logic threshold control strategy has been frequently used in energy
management strategies for hybrid electric vehicles (HEVs) owing to its convenience in adjusting
parameters, real-time performance, stability, and robustness. However, the logic threshold control
parameters cannot usually ensure the best vehicle performance at different driving cycles and
conditions. For this reason, the optimization of key parameters is important to improve the fuel
economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear
optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV
is comprehensively analyzed and developed in this study. Seven key parameters to be optimized
are extracted. The optimization model of key parameters is proposed from the perspective of
fuel economy. The global optimization method, DIRECT algorithm, which has good real-time
performance, low computational burden, rapid convergence, is selected to optimize the extracted
key parameters globally. The results show that with the optimized parameters, the engine operates
more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized
parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle
energy management strategy from the perspective of fuel economy.

Keywords: fuel economy; hybrid electric vehicle; energy management strategy; logic threshold value;
DIRECT; parameters optimization

1. Introduction

The main factors affecting the fuel consumption and emission performance of a hybrid electric
vehicle (HEV) include the performance parameters of various powertrain components and vehicle
control strategy parameters. Optimizing the parameters of the powertrain and control strategy will
not only result in a reasonable match for the powertrain, but also reduce the vehicle fuel consumption
and emissions.

At this stage, the energy management strategy based on logic threshold is mainly used in HEVs [1,2].
The focus is to predetermine a number of threshold parameters that make the engine and battery work
in the high efficiency area. The battery charging and discharging efficiency are also considered in
order to properly distribute the driver’s required torque to the engine and motor, thereby attaining a
good vehicle fuel economy and emission performance.

In vehicle tests, the predefined parameter values of the logic threshold control strategy are usually
obtained by trial and error based on engineering experience. This method requires considerable
debugging time to acquire satisfactory results both in simulation and vehicle transfer hub test for
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the defined typical driving cycle. In addition, this method cannot ensure optimal global parameters.
Therefore, it is necessary to adopt an optimization method that can automatically search the globally
optimized threshold parameters for the energy management strategy.

The optimization of key parameters for logic threshold energy management strategies is a
mathematical nonlinear problem with many variable constraints. The genetic algorithm was applied
in optimizing various governing parameters of hybrid electric vehicles (HEVs) and the fuel economy
was improved significantly [3-6]. The multi-objective genetic algorithm was adopted to optimize
the control parameters of the HEV for improving the fuel economy and emission performance [7,8].
Li et al. utilized a modified non-dominated sorting genetic algorithm-II to effectively optimize the logic
threshold control strategy parameters of the HEV to minimize the equivalent fuel consumption [9].
Li et al. applied a hybrid genetic algorithm (HGA), which combines an enhanced genetic algorithm
with simulated annealing, in optimizing the powertrain and control parameters of plug-in hybrid
electric bus simultaneously. Simulation results show that HGA has a better convergence speed
and global searching ability [10]. The particle swarm optimization (PSO) algorithm was applied to
search the optimal value of the power system and control parameters of HEV to improve the fuel
economy [11-13]. In order to achieve a better fuel economy and emission performance, Deng et al.
presented an optimization method for logic threshold control strategy parameters of a parallel HEV
using the simulated annealing particle swarm optimization [14]. Wang et al. utilized evolutionary
algorithm in conjunction with an instantaneous optimal energy management strategy to optimize
the propulsion system parameters as well as the energy control parameters for plug-in HEV [15].
Zhang et al. used differential evolution algorithm to globally optimize the plug-in HEV control
parameters [16]. Long et al. optimized the key component and control parameters by using the
bees algorithm [17]. Chris et al. showed that the DIvided RECTangle (DIRECT) algorithm has a better
optimal effect compared with the genetic algorithm, simulated annealing, PSO and other algorithms by
test, because it can cover the global space for parameter optimization without missing any optimization
value [18].

The DIRECT algorithm [19] does not require a clear expression of the objective function equation
as well as derivative information, but decides on the next searching area based on the estimated value
of the function at the sampling points of each iteration and the division of a hyper-rectangle. Thus, it is
ideal for simulation of the black-box function optimization [20]. However, it requires a large number
of samples in the region to ensure the final global optimum. Besides, the number of estimated function
is relatively larger than that of the gradient-based optimization method. In practical engineering
optimization, the meta-model optimization is often very complex and the simulation time is relatively
long [21]. Instead of the complex meta-model, an approximate model built by the sampling points of
each DIRECT algorithm iteration is utilized, thereby reducing the number of simulations, improving
the convergence speed, shortening the optimization time, and saving computing resources.

As mentioned above, the advantage of DIRECT algorithm is to obtain the global optimization
result compared with other optimization algorithm. Besides, it also has low computational burden,
rapid convergence. So it is meaningful to utilize the DIRECT algorithm to acquire the global optimized
value of the parameters of HEV energy management strategy. However, a few works have been found
to optimize the control strategy parameters of hybrid electric vehicle utilizing the DIRECT algorithm.
Rousseau et al. and He et al. established a power component parameter optimization model for a
HEV to minimize the fuel consumption. The constraints are the dynamic design specifications and
variables, namely the engine power, battery power, battery capacity, battery bus voltage, etc. The
DIRECT algorithm is utilized to optimize these parameters. Whereas, the logic threshold control
strategy parameters have not been analyzed and optimized [22,23]. Panday et al. utilized DIRECT
algorithm to optimize partial parameters of HEV control strategy, such as state of charge in the battery,
engine idle speed, engine on duration and power demand [24].

The general comparison of different algorithms is presented in Table 1. The research works which
optimize the parameters of HEV energy management strategy utilizing GA, PSO, etc. may lead to local
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optimization. The DIRECT algorithm based optimization method can ensure the global optimized
parameters of HEV energy management strategy. However, the literatures which optimized hybrid
electric vehicle parameters based on DIRECT algorithm merely optimized the parameters of powertrain
configuration or partial parameters of control strategy to improve energy efficiency. Few research
works have comprehensively analyzed and optimized the influencing parameters of logic threshold
control strategy for HEV, especially for all-wheel-drive HEV. The logic threshold control strategy of
all-wheel-drive HEV is more complicated, for the all-wheel-drive HEV has more freedom of power
sources. And the optimization of the logic threshold control strategy parameters for all-wheel-drive
HEV comprehensively is more challenging and more meaningful to improve the fuel economy.

Table 1. General comparison of different algorithms.

Algorithm Convergence Computation Burden Global Optimization
Genetic algorithm good general bad
Hybrid genetic algorithm good general general
Particle swarm optimization good good bad
Simulated annealing bad good general
Bees algorithm good bad general
DIRECT algorithm good general good

In this paper, the logic threshold parameters of the all-wheel-drive HEV energy management
strategy are comprehensively analyzed, and the seven energy efficiency influencing parameters to
be optimized are extracted. Then, the minimized equivalent fuel consumption per 100 km is set as
the target, and the DIRECT algorithm is implemented to optimize the proposed parameters globally.
Finally, the effectiveness of the algorithm to solve the problem is analyzed by simulation.

2. HEV Powertrain Model

The research object in this study is an all-wheel-drive full HEV, and its powertrain structure is
shown in Figure 1 [25]. Its front axle adopts the driving structure including the engine, integrated
starter and generator (ISG) motor, and automated mechanical transmission (AMT) gearbox. Its rear
axle is driven by two in-wheel motors. The ISG motor shares the same axle with the engine; therefore,
it can function as a cranking motor to start the engine quickly. Besides, the output torque of the
in-wheel motor can be directly transmitted to the wheel and is capable of driving the vehicle alone at
low speed. At the same time, the ISG and in-wheel motors can be used both as driving motors for the
vehicle and function as generators to regenerate the excess kinetic energy.

Figure 1 shows that the key parts of the HEV powertrain include the engine, ISG motor, AMT
gearbox, in-wheel motor, and power battery. The main technical parameters of these components
are shown in Tables 2-7. In consideration of the complexity for acquiring the model parameters and
control accuracy, the static model with dynamic correction for main power components is adopted.

Table 2. Vehicle parameters of four-wheel drive HEV.

Vehicle Tire Frontal Corr.e.ctlon Coefficient of Coefﬁa.ent of
. Coefficient of . . Rolling
Curb Mass  Radius Area . Air Resistance .
Rotating Mass Resistance
1650 kg 0.308 m 2£25 1.05 0.293 0.0137

Table 3. Engine parameters of four-wheel drive HEV.

Engine Capacity Peak Torque Peak Power Maximum Rotational Speed

1.8L 250 N-m 150 kW 6500 rpm
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Table 4. ISG motor parameters of four-wheel drive HEV.

Rated Power Peak Torque Peak Power Maximum Rotational Speed

10 kW 72 N-m 15 kW 6500 rpm

Table 5. In-wheel motor parameters of four-wheel drive HEV.

Rated Power Peak Torque Peak Power Maximum Rotational Speed

6 kW 200 N-m 16 kW 2000 rpm

Table 6. Gear ratio of AMT gearbox.

Gear 1st 2nd 3rd 4th 5th 6th
Gear Ratio of AMT gearbox 3.615 2.042 1.257 0.909 0.902 0.0137

Table 7. Transmission parameters of four-wheel drive HEV.

Gear Ratio of Main Reducer Reverse Gear Ratio Transmission Efficiency
3.894 4.293 0.92
° .
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Figure 1. Powertrain structure of hybrid electric vehicle (HEV).
2.1. Engine Model

Since the engine output torque in steady-state condition is a function of its speed and throttle
opening, the numerical model of the engine can be established by polynomial fitting based on the
engine test data. Considering that the throttle opening changes quickly under the condition of starting
or speed-changing, a dynamic process is needed for the engine to be steady. For this reason, a first-order
inertia link is used to amend the engine torque representing its dynamic property [26].
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L= —f(wn), )

where T, is the engine output torque; w, is the engine speed; « is the throttle opening; 7. is the time
constant of the engine torque response; f is a function of the engine torque characteristic.

The data regarding the external characteristic, fuel consumption, and emissions are acquired from
the existing engine test. Then, the working characteristic of the engine is obtained by a lookup table or
fitting. The current maximum torque and fuel consumption rate of the engine can be acquired by a
lookup table according to the current engine speed and torque in the Simulink model. Figure 2 shows
the engine fuel consumption rate curve and external characteristic curve used in the model.

The Engine’s External Characteristic Curve
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Figure 2. Engine fuel consumption rate curve and external characteristic curve.

2.2. Motor Model

Both the ISG and in-wheel motors are permanent magnet synchronous motors. The motor model
is established according to the data of motor efficiency. The dynamic correction is done via a first-order
inertia link [26].

ﬁmin(Tmh Tdismax(WE)) Tor >0

T = (2)

Tmslﬁmax(Tmrl Tchmax(we)) TMT <0

where T}, is the output torque of the motor; T;,;, is the required torque of the motor; T, is the time

constant of the motor; Tismax (we) is the maximum output torque of the motor at the speed w, when

discharging; Tepmax (we) is the minimum output torque of the motor at the speed w, when charging.
The motor power can be calculated based on the following equation:

T
550y Tm =0

Tnwellm ’
9550 + 1m <0

Py = LUy, = 3

where [, is the motor current; U, is the bus voltage; 1, refers to the motor efficiency; P is the
motor power.

The working efficiency and external characteristic curves of the ISG and in-wheel motors,
which are shown below in Figures 3 and 4, respectively, are obtained from the experiment.
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The Efficiency Map of ISG Motor The External Characteristic Curve of 1SG Motor
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Figure 3. Working efficiency curve and external characteristic curve of integrated starter generator

(ISG) motor.
The Efficiency Map of In-wheel Motor The External Characteristic Curve of In-wheel Motor
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Figure 4. Working efficiency curve and external characteristic curve of in-wheel motor.

2.3. Powertrain Model

The powertrain components in this research include the clutch, AMT gearbox, and main reducer.
The powertrain model diagram is shown in Figure 5. The combination and separation of the clutch
is determined by the transmission control unit. The vehicle management system controls the clutch
state only in the starting process. The transmission and reducer output the powertrain speed and
torque according to the throttle percentage, current gear, state of clutch, output torque of clutch, and
vehicle velocity.

Considering the practical needs of the control strategy when modeling, we simplify the clutch
model using 0 and 1 to represent the complete separation and combination of the clutch. The function
of the AMT gearbox and main reducer is to slow down the speed and increase the torque. In particular,
when the AMT gearbox is running, the gear changes with shifting control strategy, which directly
influences the dynamic performance, fuel economy, and comfort in the vehicle. Therefore, it is
necessary to introduce a gear shifting control strategy in the model. Figure 6 shows the gear shift
curve calculation module and gear shift control module in the Simulink/Stateflow. The gear ratio is
determined by the engine throttle position and vehicle velocity, which can be attained by the lookup
table based on the current gear.
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Figure 5. The powertrain model diagram.
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2.4. Battery Model

The battery functions as an auxiliary power supply for HEVs to provide energy for the motor as
well as recycle the excess kinetic energy when braking. The recovery of braking energy is important for
improving the vehicle efficiency and saving energy. Although the chemical reaction inside the battery
is relatively complex, only the external characteristic of the battery is used in the model. The commonly
used battery models include the equivalent circuit model and neural network model. The equivalent
circuit model can accurately reflect the battery characteristics using the circuit components such as
resistors, capacitors, and voltage to simulate the dynamic performance of the battery. The equivalent
circuit models mainly used are the Rint, Thevenin, and PNGV models [27]. The Rint model, which is

shown in Figure 7, is selected in this study [28].

288



Energies 2016, 9, 997
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V (SOC,T)
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Figure 7. Battery equivalent circuit of the Rint model.

In the diagram, Ry;s and R are the internal resistance of the battery when charging and
discharging, and Vj. is the open circuit voltage of the battery. Ry;s, Reg, and Voc are functions of
the battery state of charge (SOC) and temperature T. When the battery power demand is known, the
terminal voltage of the battery, V,, and current, I,, can be calculated based on the mathematical models
described below.

Pema = Volo, 4)

Vo = Voc — Rintlo, (5)

By combining Equations (4) and (5), Equation (6) can be obtained.

I, = Vioc _ ( Vioc )2 _ Pcmd/ (6)
2Rir\t 2Rir\t Rir\t

Here, Rint is the internal resistance of the battery when charging or discharging; and P,,,,; is the
battery demand power when charging or discharging.

The current battery SOC value can be calculated by the ampere hour algorithm [26] method with
the specific formula shown as follows:

t
Tpdt
SOC(t) = SOCstart — fé ’ , 7)

max

where SOCsty¢ is the initial battery SOC value, and Qmax is the maximum battery capacity.
The working state and related parameters of the battery are related to the temperature, so the
change of the internal battery temperature should be considered. The specific calculation formula is

presented as follows:
dT(t
ey ™ Re2(0) — neAT() - ), ®)
where A is the total heat dissipation area of the battery, c; is the specific heat capacity of the battery, k.
is the heat transfer coefficient of the battery cooling system, and T, refers to the ambient temperature.
Based on the above equations, the battery model is established in Simulink. The input and output
signals, as well as the calculation module of battery model, are shown in Figure 8. The battery model
mainly includes the current, internal resistance, terminal voltage, output power, SOC, and temperature
calculation modules. The main characteristic parameters of the battery are shown in Table 8.
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Figure 8. The battery model diagram.
Table 8. Main characteristic parameters of the battery.
Characteristic Parameter Value Characteristic Parameter Value
Capacity 8 Ah Total heat dissipation area 1.6 m?
Voltage 312V Specific heat capacity 800 ]/ (kg-K)
Mass 70 kg Heat transfer coefficient 24 W/(m?-K)

2.5. Longitudinal Dynamics Model of Vehicle

This research focuses on the fuel economy of the HEV, thus only the longitudinal dynamics is
considered in the vehicle model, regardless of the vertical vibration and handling stability. According
to the vehicle kinematics equation [29], we have:

CpA

2 .
21_1514 -+ mgsina + omu, )

Fy = mgfcosx +

where F; is the driving force, m is the total mass of the vehicle, f is the rolling resistance coefficient, a is
the slope angle, A is the vehicle frontal area, Cp is the air drag coefficient, u is the vehicle speed, and ¢
refers to the correction coefficient of rotating mass.

2.6. Driver Model

The function of the driver model is to simulate the real driver’s controllability. And the driver
model diagram is shown in Figure 9. The driver controls the accelerator or the braking pedal opening
based on the difference between the real velocity and driving cycle velocity. The proportional-integral
(PT) controller is selected for the driver model [30].

The driver model can be described as follows:

= kp(Utarget - U) + k,/ (Ufurgg[ — Zl)dt, (10)
where a is the pedal opening, with positive and negative values representing the accelerator pedal

opening and brake pedal opening, respectively; sarget is the target velocity; v is the current actual
speed; k;, and k; refer to the proportional and integral coefficients of the PI controller, respectively.
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Figure 9. Driver model diagram.

3. Parameters to Be Optimized for HEV Logic Threshold Energy Management Strategy

3.1. Hybrid Electric Vehicle Energy Management Strategy

The all-wheel drive full-HEV has two power sources—the engine and power battery. According
to the steady-state efficiency map diagram, the working efficiency differs at different working sections.
Based on the power battery charging and discharging resistance characteristics, its internal resistance
under various charged states is different, thus the working efficiency is also different. The energy
management strategy based on the logic threshold aims to make the engine operate in the high
efficiency range and keep the battery SOC within a specific range [1]. The working area of the engine
is shown in Figure 10. The engine is set to work within the area between the upper limit and lower
limit. The working area of motor is presented in Figure 11. The motor works when the battery SOC
is between 0.3 and 0.8. When the SOC is high, the motor provides driving torque. On the contrary,
the motor works as a generator. The parsing of the driver’s intention and torque distribution are the
main focus of the energy management strategy.
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Figure 10. Engine working area division.
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Figure 11. Working area division for nickel-metal hydride battery pack.

3.1.1. Parsing of Driver’s Intention

In the process of driving, the driver shows his or her acceleration or deceleration demand by
manipulating the accelerator pedal or braking pedal. Therefore, to parse the driver’s demand, it is
necessary to transfer the pedal signal into vehicle demand torques, which can be divided into driving
demand torque and braking demand torque. In order to identify the demand torque, the pedal signal
is normalized, and is expressed as &, within (—1, 1). The positive value represents the accelerator
pedal opening while the negative value is for the braking pedal opening. In order to maintain the
driver’s reaction when operating the pedal and obtain the same dynamic properties as the prototype,
we consider the engine external characteristic curve as the driver’s maximum demand torque curve
for HEVs.

Therefore, when the driver controls the accelerator pedal, the demand driving torque can be
represented as

Temg = «Temax, 11)

where T4 is the demand driving torque, « is the accelerator pedal opening, and Temax is the engine
maximum torque.
When the driver controls the braking pedal, the demand braking torque can be represented as

Temd = &(ThaxGen + ThiaxMechBrake)s (12)

where T, is the demand braking torque, « is the braking pedal opening, Tp1sxGen is the maximum
regenerative braking torque, and T,y MechBrake Tefers to the highest mechanical braking torque.

For the all-wheel drive full-HEV, the energy management strategy distributes the driver’s demand
braking torque to the engine, ISG motor, in-wheel motor, and mechanical braking system.

The demand driving torque is as follows:

Tema = Te + Tisg + Thubmntor/ivig/ (13)
The demand braking torque is presented as follows:

Tema = TISGGeniGig + Thubmothen + ThMechBrake (14)

where Te, Tisg, and Tyypyotor are the driving torques provided by the engine, ISG motor, and in-wheel
motor, respectively; TiscGens ThubmotorGens @A Tgechprake Tefer to the braking torques provided by ISG
motor, in-wheel motor, and mechanical braking system, respectively; i, and iy are the gear ratios of the
main reducer and AMT gearbox, respectively.
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3.1.2. Torque Distribution Strategy for Different Driving Modes

When the vehicle is running, the engine working points can be controlled to stay in the high
efficiency area, and the battery can be controlled to work in the range within the low internal resistance
by adjusting the output torques of the ISG and in-wheel motors. Many driving modes can be obtained
by various combinations of the engine, ISG motor, and in-wheel motor.

(1) Pure electric driving mode

When starting, if the vehicle is at low load condition and the battery capacity is sufficient, the
vehicle is driven only by the in-wheel motor, in order to avoid the engine from working in the low
efficiency area. When the maximum speed of pure electric driving is exceeded, the vehicle switches
into pure engine driving mode.

(2) Pure engine driving mode

When the vehicle works at medium load condition, the demand torque is provided by the engine
only if it can work in the area of high efficiency. If the demand torque is greater than the maximum
torque at the high efficiency area or the battery needs charging, the ISG motor or in-wheel motor starts
to work, and the vehicle switches into hybrid driving mode.

(3) Hybrid driving mode

When the vehicle is at high load conditions such as climbing or accelerating, and the engine
output maximum torque cannot meet the demand torque, the ISG and in-wheel motors provide power,
if the battery capacity is sufficient. Then, the vehicle switches into hybrid driving mode. The hybrid
driving mode can be subdivided into engine driving + ISG motor charging mode, engine driving +
in-wheel motor driving mode, and engine driving + ISG motor driving + in-wheel motor driving mode.

The judgment condition and control logic for the different driving modes mentioned above can
be displayed in Figure 12.
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Figure 12. Control logic flow for various driving modes.
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In the diagram, T,,,; is the driver demand torque; Assist;scotor is the power-assisting mark of
ISG motor; Assist gjjpiot0r is the power-assisting mark of all motors; v is the vehicle velocity; vp1,xE/ec 1S
the maximum speed of pure electric driving; SOCyy, and SOCy;g), refer to the lower and upper limit of
the battery working SOC, respectively; Engjo, and Engygp, refer to the lower and upper limit of the
engine working area, respectively.

3.1.3. Torque Distribution Strategy in Braking Mode

For HEVs, there are two sets of braking system: the conventional mechanical braking system, and
motor regenerative braking system. When braking, the mechanical braking system should coordinate
with the motors to provide the demanded braking torque for braking safety, recover the excess kinetic
energy, and improve the vehicle efficiency as well. The braking control strategy, which is shown in
Figure 13, is formulated based on the battery SOC and the braking pedal opening.
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partial mechanical braking braking signal
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mechanical
braking

50%<the opening 10%<the opening
of the brake of the braking
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No No
No » pure mechanical
braking
Yes

ISG motor regenerative
braking + partial mechanical
braking

Figure 13. Control logic flow diagram of braking mode.

3.2. Key Parameters of HEV Logic Threshold Energy Management Strategy

According to the optimal working area division of the engine and motor, the driver’s intention
parsing, and the torque distribution strategy in different working modes, the energy management
strategy based on a logic threshold is established in the MATLAB/Simulink. After studying the energy
control strategy, the influencing parameters, which are presented in Table 9, can be obtained. These
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parameters, which have a direct effect on the vehicle performance especially the fuel economy, are the
focus of the control strategy.

Table 9. Key parameters of logic threshold energy management strategy.

Name Definition Parameter Simplified Version
Maximum torque The ratio of the maximum torque and
coefficient of the engine engine peak torque for the engine Engnign xq
high-efficiency area high-efficiency area
Minimum torque The ratio of the minimum torque and
coefficient of the engine engine peak torque for the engine Engion X2
high-efficiency area high-efficiency area
Power battery SOC The upper limit of the working
u limi SOC;”-S;, X3
pper limit SOC for power battery
Power battery SOC The lower limit of the working soc x
lower limit SOC for power battery low 4
threzlﬁf)(;:it lfeoi)ﬁ}seglrrfotor The minimum throttle Assist x
o opening when the ISG motor assists [SGMotor 5
assisting
Throttle opening The minimum throttle .
threshold for all motors . . AsSist A1 Motor X6
- opening when all motors assist
assisting
Maximum speed in pure The maximum speed
UMaxElec X7

electric driving mode in pure electric driving mode

4. Validation and Analysis of the Simulation Model of HEV and Energy Management Strategy

In order to verify the accuracy of the HEV simulation model and validity of the energy
management strategy, a comparative analysis between the output data of the components from
offline simulation and the real drum bench experiment was performed. It was ensured that the
parameters of the offline simulation model were consistent with those of the real vehicle. In addition,
the control strategy and parameters threshold were the same for both the simulation and real vehicle.
The tests are carried out in the new European driving cycle (NEDC). The comparison between the
offline simulation and drum test results during the driving cycle of NEDC are shown in Figures 14
and 15. As observed, there is a small difference between the output results of components from the
simulation and bench test. The transient characteristic has not been accurately reflected in modeling,
which contributed to the difference. However, the difference is within the acceptable range.
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Figure 14. Driving cycle tracking and engine speed comparison of offline simulation and drum bench
test in NEDC.
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Figure 15. Output torques of components from offline simulation and drum bench test in NEDC.

This study focused on the HEV fuel economy. Table 10 shows the equivalent fuel consumption
per 100 km and SOC values of the offline simulation and drum bench test. Comparing the values of
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the simulation and bench test, the error of the equivalent fuel consumption is 4.5%, which is within the
generally allowed range of 5%. It is necessary to verify the accuracy of the vehicle simulation model
and the effectiveness of the energy management strategy, which can provide assurance of the key
parameters optimization for the HEV energy management strategy based on offline simulation.

Table 10. Comparison of results from offline simulation and drum bench test.

Parameter Offline Result Drum Bench Test Result Error
SOC 0.7~0.52 0.7~0.56 —
Equivalent fuel consumption 7.69 L/100 km 7.36 L/100 km 4.5%

5. Optimization of HEV Control Parameters Using DIRECT Algorithm Based on Fuel Economy

5.1. Implementation of DIRECT Algorithm

The DIRECT algorithm is a deterministic global optimization algorithm proposed by Jones et al.
in 1993 [19]. It is especially suitable for optimizing a multivariable function with specific variables and
space [31]. Take the optimization problem with three-dimensional space as an example; it supposes
that c is the center point of the hypercube and calculates the value of a function f(x) at point ¢ & Je;
with ¢ equal to 1/3 of the hypercube length; ¢; is a unit vector. The parameter, w; is defined as follows:

w; = min(f(c + b¢;), f(c — be;)), (15)

It splits the hypercube in the order of w;. First, it cuts the hypercube in the direction perpendicular
to the minimum value of w;. Second, it cuts the hypercube in the direction perpendicular to weak
minimal value of w;. Then, it repeats the above steps until the hypercube is cut in all directions.
Figure 16 shows an example of the hypercube division.
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Figure 16. Division and selection of potential optimal hyper-rectangle in DIRECT algorithm.

It is supposed that w; = min(5,8) = 5, and wp = min(6,2) = 2. First, the hypercube is cut in
the direction perpendicular to x,. Then, the hypercube is cut in the direction perpendicular to x;.
The method of cutting the longest side of the hypercube can ensure decreasing the length of the longest
side. In DIRECT algorithm, the side length of the hypercube is at most two values after each division.
The hypercube, with a function value at the center point equal to 2 in Figure 16, is the potential optimal
hyper-rectangle after two divisions.

Based on the above result, Figure 17 can be obtained by setting the function value at the center
point as y-axis, and the distance between the center point and vertex as x-axis. In the figure, (1)-(3) are
the potential optimal hyper-rectangle from the first to third iteration, respectively. In the first iteration,
there is only one list of selectable points. The hypercube, with a function value at the center point
equal to 2, is the potential optimal hyper-rectangle. We need to divide the cube further. Similarly, in
the second iteration, we can get two hyper-cubes with the smallest value, to be divided in the third
iteration. The process continues until it satisfies the stopping condition.

298



Energies 2016, 9, 997

£ 9 - ° 9 ] 9 + .
28 - 8 . g .
TE 7k T+ T+ .
26 F ° 6 + [} 6 + o
25+ 5+ e 50 o
Sk 4+ 1 e

g3+ 3 - . 3 e

E 2 ° 2+ 2 */
1k 1+ 1 =

0 » 0 > 0 »
distance between center and top distance between center and top distance between center and top
1 ) (3)

Figure 17. The potential optimal hyper-rectangle of each iteration.

For multidimensional space optimization problems, the DIRECT algorithm takes similar steps to
select the best potential optimal hyper-rectangle.

5.2. Optimization of Key Parameters for Logic Threshold Energy Management Strategy Using DIRECT
Algorithm Based on Fuel Economy

Based on the discussions in the third section, the key parameters of the logic threshold energy
management strategy for the HEV are presented in Table 3. In this research, the purpose of the energy
management strategy is to achieve the best fuel economy for a given driving cycle. Therefore, the
target function is

FC = minf(x), (16)

where f(x) is the equivalent fuel consumption per 100 km, which includes the engine fuel consumption
and equivalent fuel consumption of the electric energy from the power battery. The unit is L /100 km.
The calculation for f(x) is shown as below.

[ kyuldt T
— ko fr(Te, we) gesedt
-1 q 1 J 95502 ) 17
f(x) 00 g 100 o o n (17)

where p is the gasoline density in g/L; f+(Te, we) is the current engine fuel consumption rate, which
is a lookup function of the engine torque and speed, with the unit g/kWh; T, and w, are the current
engine torque and speed, with the units N - m and rpm, respectively; k; and k are the gasoline-electric
conversion constant coefficients; U and I are the present battery voltage and current, with the units V
and A, respectively; g refers to the gasoline calorific value in ] /kg; v is the current speed in km /h.

The engine torque and speed, battery voltage and current, and average speed are related to the
seven parameters to be optimized as shown in Table 3.

Therefore, the optimization of key parameters for the HEV energy management strategy is
converted to the optimization of seven dimensional parameters. The DIRECT algorithm is selected
to solve this problem. The process is shown in Figure 18. First, we normalized n-dimensional space
into n-dimensional unit hyper-cube and calculate the equivalent fuel consumption per 100 km at
the center point as the initial minimum fuel consumption. The hyper-cube is the potential optimal
hyper-rectangle when iteration starts. Then, we choose a potential optimal hyper-rectangle and divide
it. Afterwards, we calculate the equivalent fuel consumption per 100 km at the center point of each
rectangle. After that, we compare it with the minimal value collected in the last iteration. If this
value is smaller than the previous minimum fuel consumption, we update and store the minimum
fuel consumption. In addition, we update the potential optimal hyper-rectangle. The optimization of
DIRECT algorithm will stop until the defined maximum number of iterations or the potential optimal
hyper-rectangle is empty.
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Figure 18. Optimization procedure of key parameters for HEV energy management using
DIRECT algorithm.

5.3. Optimization Result and Analysis

Figure 19 shows the optimization model for the HEV energy management key parameters, which
includes the previously established HEV closed-loop simulation model, target to minimize the fuel
consumption per 100 km, and code of the DIRECT algorithm. The optimization model is established
in MATLAB/Simulink. Besides, the constraint of vehicle’s dynamic performance should also be taken
into account. The 0 to 60 time for the all-wheel drive full-HEV studied should not be more than 10 s.
The driving cycle of NEDC is selected, and the initial SOC is set to 55%. The key parameters of the
DIRECT algorithm are set as shown in Table 11.
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Figure 19. Optimization model for the HEV energy management key parameters.

Table 11. Key parameters of DIRECT algorithm.

Key Parameters Value
Maximum number of iterations 20
Maximum number of function calculation 1000
Maximum division time per side of hyper-rectangle 100
Global/local weighting coefficient 0.0001
Relative error 0.01%

X1, X2, X3, X1, X5, Xp, X7 are the parameters that need to be optimized. The meaning of these
parameters are described in Table 3. The initial value, range, and optimized value of these parameters
are shown in Table 12.

Table 12. Optimized result of key parameters based on DIRECT algorithm.

Parameters Initial Value Lower Limit Upper Limit Optimized Value
X1 0.4 0.2 0.6 0.3889
X2 0.3 0.1 0.5 0.3556
x3 70 50 70 53.333
X4 40 30 50 47.963
X5 20 15 25 22.222
X6 50 40 60 50.667
x7 15 10 20 18.333

Changes to the parameters to be optimized have a big impact on the fuel economy. In the
optimization process of DIRECT algorithm, the equivalent fuel consumption per 100 km for different
iteration function evaluations is shown in Figures 20 and 21, respectively.

301



Energies 2016, 9,997

equivalent fuel consumption value (L/100km)

iteration result
B2peeer
4 function evaluation
: : : : +  local optimal value for each iteration | !
3 ) 3 : lobal optimal value ;
op!
— f f f f f s #
;A : & ) 3 4 3
e P s 1 1 i
4 . : 4 a4 : A A s &
. ; ay, B ; ;
L L 'y & x i
D s s B I 1
| | N S S | i |
& . & : A R S A A 4
; ) A A : A 3 A 4 :
[£] : : i : oo i :
'y ' i\ 4 : : :
R R | ‘ g |
4 i S A % e ¢ 3
o “b o p b e BT
il i 3 g d i1 4 i : | P
1 : SRR
. i $ g : : : 4
Y : 1 3 :
T | ; :
[ L ; ‘ i 1 ;
I A . . N I .
7 I i I I i \ I I i \
0 2 4 6 8 10 12 14 16 18 20
iterations
Figure 20. Equivalent fuel consumption of different iterations using DIRECT algorithm.
& iteration result
r L 1 L L L L
4 function evaluation
—g—local optimal value for each iteration|
—e— global optimal value
ry
I la
= A &
= i a 'y la A A Y
A
% 1oL a | | N " "y
RN . Lokp gk
A r'y A 'y
g paa B A u 'Y & 'y i “ 4
& A b
E " : & & 4 y ¢ Al
ey A A h
% A A““ 4 i ‘|'-l‘ e i » & 4 A | A
g il y : e ‘l“ IIA 4aa o 4 44 iy 444 I VY » r 3 A
i ”\n N s A‘:‘ Ya = ‘:‘ aa, :inA A444h 4 :2 ‘1‘ :“ }3‘:
e T4r 4| & A4 A a 4 A A, 4 ssd 2
5 A la| a A A aall Aol L aSBAE L A A g At
< AA) 1| Mala| o) safassidion 453 D s anty
g "‘Q Al 4 A A A Ad a
g e = a 44 (g, |22 4
721 -\\ 4 B
e F'y & %
7 ! | | I | |
0 50 100 150 200 250 300 350 400 450
number of function evaluation

Figure 21. Equivalent fuel consumption per 100 km with different function evaluations using

DIRECT algorithm.

302



Energies 2016, 9, 997

As can be observed from the beginning, the equivalent fuel consumption per 100 km decreases
rapidly with the increase of iterations and function evaluations in the driving cycle of NEDC. Then,
it stabilizes after 9 iterations or 150 function evaluations. This stabilized value is the minimum
equivalent fuel consumption per 100 km. The corresponding parameters are the globally optimized
results using the DIRECT algorithm, which meet the minimum equivalent fuel consumption. It shows
that the proposed optimization method using the DIRECT algorithm has good convergence and
effectiveness to optimize the key parameters of energy management strategy from the perspective of
fuel economy.

The simulation of the all-wheel-drive HEV is implemented in the driving cycle of NEDC, utilizing
the optimized logic threshold control strategy parameters. The simulation results are shown in
Figure 22. As can be seen, frequently gear change is avoided. And in the driving condition, the
in-wheel motors output more torques than engine and ISG motor. During the braking cycle, both
in-wheel motors and ISG motor work as generators to charge the battery. And the battery SOC changes
from the initial value 0.55 to the terminal value 0.7. The instantaneous fuel consumption is controlled
within low range in most of the time.
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Figure 22. Simulation results of all-wheel drive HEV model utilizing the optimized parameters.
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In the driving cycle of NEDC, the equivalent fuel consumption per 100 km decreases from 7.691 L/

100 km using the initial parameters to 7.148 L/100 km utilizing the optimized parameters. Therefore,
the equivalent fuel consumption using the optimized results decreases by 7.06% compared to the
previous fuel consumption. Figure 23 shows the engine operating points before and after optimization.
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Figure 23. Engine working points distribution before and after optimization.

As shown in Figure 23, the engine operating points scattering in the area with low torque

(0-60 N-m) and high fuel consumption have decreased. Furthermore, the engine operating points
scattering in the zone with low speed (1000-1500 rpm) and high fuel consumption have also decreased.
Hence, the energy management strategy using the optimized parameters makes the engine operate
more in the area with high torque and low fuel consumption.

By comparing the equivalent fuel consumption per 100 km and the distribution of engine

operating points before and after optimization, it can be concluded that the DIRECT algorithm
can be applied to optimize the key parameters of the energy management strategy for the HEV with a
positive effect. The optimized results obtained by the offline simulation can provide a reference for
debugging the real vehicle.

6. Conclusions

)

@

®G)

In this study, the closed-loop simulation model of the all-wheel-drive HEV powertrain is built in
Matlab /Simulink with the power component model established based on the experimental test.
The logic threshold energy management strategy is comprehensively analyzed and formulated.
On this basis, the seven key parameters that influence the fuel economy of the HEV, which need
to be optimized, are extracted. The accuracy of the simulation model and validity of the proposed
logic threshold energy management strategy are verified by comparing the simulation test and
real drum bench experiment.

The optimization model of the key parameters based on the fuel economy is proposed.
The implementation of the DIRECT algorithm is analyzed. Then, it is applied to solve this
nonlinear multiparameter optimization problem with the objective of minimizing the equivalent
fuel consumption.

The optimization result shows that the logic threshold energy management strategy using the
optimized parameters reduces the equivalent fuel consumption per 100 km by 7% and makes
engine operate more in the high efficiency area. The simulation result validates the effectiveness of
the DIRECT algorithm in solving the multiparameter energy consumption optimization problem.
It will play a guiding role in calibrating the control strategy parameters for a real vehicle. Next,
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we will verify the optimization method of the key parameters for the HEV energy management
strategy based on logical threshold by testing a real vehicle.
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Abstract: This paper aims to study a 3 kW wireless power transfer system for electric vehicles.
First, the LCL-LCL topology and LC-LC series topology are analyzed, and their transfer efficiencies
under the same transfer power are compared. The LC-LC series topology is validated to be more
efficient than the LCL-LCL topology and thus is more suitable for the system design. Then a novel
q-Zsource-based online power regulation method which employs a unique impedance network (two
pairs of inductors and capacitors) to couple the cascaded H Bridge to the power source is proposed.
By controlling the shoot-through state of the H Bridge, the charging current can be adjusted, and
hence, transfer power. Finally, a prototype is implemented, which can transfer 3 kW wirelessly with
~95% efficiency over a 20 cm transfer distance.

Keywords: wireless power transfer (WPT); topology analysis; power regulation; electric vehicle

1. Introduction

Research on wireless power transfer began soon thereafter the famous Tesla coils were invented
by Nikola Tesla in 1889 [1,2], and many good results have been achieved [3—6]. In 2007, researchers at
MIT proposed strongly coupled magnetic resonances (SCMR), by which they were able to transfer
60 watts wirelessly with ~40% efficiency over distances in excess of 2 m [7]. Various research hot
spots, including system architectures, optimization design, frequency splitting, impedance matching
and special applications, have been investigated [8-14]. Wireless power transfer is very suitable
for charging electric vehicles [15-17], as it can avoid the troublesome plug-in process, provide an
inherent electrical isolation and adapt to harsh environments. However, SCMR is not appropriate for
automotive applications, as its operating frequency is very high, which goes beyond the limitation
of SAE ]J2954 (work in progress). As another kind of wireless power transfer techniques, inductive
power transfer (IPT) has developed for more than twenty years [5], and it mainly focuses on the
high power level applications, where the issues of concern normally include power conversion and
control [18,19], magnetic structure design [20], control algorithm and strategy [21,22] as well as circuit
topology [23]. Basically, both SCMR and IPT conforms to Faraday’s and Ampere’s laws, and their
differences primarily include the design approaches, system architectures, parameter selection and
transfer characteristics [6,24].

This paper aims to study a 3 kW vehicle-mounted wireless power transfer system, on which
two key parts, the resonant topology analysis and comparison, and the online power regulation, are
elaborated. Many resonant topologies are available for wireless power transfer system, but the most
basic ones are only series-series, series-parallel, parallel-series and parallel-parallel [23], and the others
are all derived from these ones. A wireless power transfer system for electric vehicles requires a

Energies 2016, 9, 10; doi:10.3390/en9010010 307 www.mdpi.com/journal/energies
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resonant topology that should have a unity-power-factor and a current source characteristic [18], no
matter whether the distance or angle between the chassis and the ground changes or not. In this paper
the characteristics of the LC-LC series and LCL-LCL topologies are analyzed first, and we prove that
they both have the required unity-power-factor and current source characteristics. Then the transfer
efficiencies of the LC-LC series and LCL-LCL topologies are compared under the same transfer power
conditions, and the comparison results validate that the LC-LC series topology is more suitable for
the system design due to its higher transfer efficiency. In practice, the distance or angle between
vehicle chassis and ground often changes [25], as drivers cannot park their cars at the same location
every time, and naturally, online power regulation is indispensable in the battery charging process.
Traditional power regulation methods include cascade DC/DC, dead time modulation and phase
shifting control [26]. However, the cascade DC/DC may increase the number of devices, decrease the
power density and lower the transfer efficiency, while dead time modulation may distort the output
waves produced by the H Bridge, and the phase shifting control cannot boost the transfer power, so a
novel q-Zsource-based power regulation method is proposed in this paper, which employs two pairs
of inductors and capacitors as a unique boost network. The power regulation is realized by controlling
the shoot-through state of the H Bridge, and there are no extra power switch devices. By combining
the phase shifting control and shoot-through state control, the square-wave voltage produced by the H
Bridge can be adjusted arbitrarily, and hence, the transfer power.

2. Comparative Analysis of Resonant Topologies

2.1. LC-LC Series Topology

Wireless power transfer systems normally consist of a power source, a H Bridge, a resonant
topology, a rectifier as well as a load. With the classical frequency-domain analysis, we can easily
get the amplitude-frequency characteristics of resonant topologies, which are steep spikes, and the
maximal point just emerges at the resonant frequency. For example, the LC-LC series topology has a
four order transfer function, and the LCL-LCL topology has a six order transfer function. These two
resonant topologies only allow the fundamental components of the square-wave voltages produced
by the H Bridge to pass through, thus the resonant topology input can be substituted by a quasi-sine
voltage source. As the power batteries have strong voltage source characteristics, the rectifier and
battery pack can be also simplified into a quasi-sine voltage source, the amplitude of which depends
on the battery pack voltage multiplied by 4/m. The simplified LC-LC topology [27,28] is shown in
Figure 1.

Cs Rs  Magnetic Coupling Rbp Co

I—wW—y N\ —wW—|

Vs @ is Ls Lo Io @ Vs

Primary Coil Secondary Coil

Figure 1. LC-LC series topology.
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In Figure 1, Ls and Lp represent the magnetic coils, Cs and Cp represent the resonant capacitors,
Rs and Rp represent the parasitic resistances, and M is the mutual inductance between Lg and Lp.
When the system works in the resonant state, one has:
V5 = isRs 7]'w,AMl'D (1)
ja]rMis =ipRp +jVB

where ig and ip are the resonant currents in the primary and secondary coils, and w;, is the system
resonant frequency. By solving Equation (1), we have:

(UrMVB

Vs +

Wy MVs )

Equation (2) shows that the charging current ip depends on w;, M, Rg, Rp, Vs and V. Normally,
V' may change while charging, as it increases with the state of charge (SOC) of the battery. Because
wy = 2mf, is up to 100 kHz, M is from 20 pH to 100 uH, R is in the milliohm level, and Vg is usually
larger than Vg, we have:
(UrM Vs
R
By substituting Equation (3) into Equation (2), we can find that ip remains unchanged during the
whole charging process, which realizes a constant-current charging function. As the product of Rg and
Rp is smaller than either of them, Equation (2) is further simplified into:

> Vg 3

lis| =
oV
i \—W@A @
b oM

It is worth mentioning that the current source characteristic of LC-LC series topology is tenable
only when the charging objects are batteries or some other capacitive load. Based on Equation (2), the
transfer power can be expressed as:

w,,MVS - VBRS

WIS T UBTS 5
RpRs + w,2M2 B ©®)

Prc—rc = lip -V =
2.2. LCL-LCL Topology
Similarly, the simplified LCL-LCL topology [18,29-31] is shown in Figure 2.

Ri Li Magnetic Coupling L4 R4

|__NY\’\_I\N\,_

_.>
m Cot il
Ls Lo Tip = C» @VB

Rs Rn

Figure 2. LCL-LCL topology.
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In this figure, Ly and Ly are the matching inductors of Ls and Lp, Ry and Ry are their parasitic
resistances. For high power applications, Ls and Lp are normally bulky, which make L; and
Ly bulky, and this is not beneficial for the objectives of miniaturization and lightness. Thus the
compensating capacitors Cg; and Cp1 are introduced to decrease L1 and L. Still, they should satisfy

the following equations:
1 1

-  Cpj=—5———
w?(Ls— L) "'~ w(Lp — La)
11

VLiCs VLo

Actually, LCL is a transformation of the LC parallel topology [18]. It is well-known that the
reflected impedance of the LC parallel topology contains an imaginary part [23], especially when the
mutual inductance and the load change online, which makes the tuning process very cumbersome.
The additional inductor of the LCL topology can just eliminate this imaginary part whether the mutual
inductance and the load change or not. Using a method similar to that in Section 2.1, we can conclude
that the LCL-LCL topology also has constant-current charging characteristics. The parasitic resistances
are usually small due to the use of Litz wires, thus neglecting the parasitic resistances will not affect
the system efficiency sharply, and in practice that loss is very small compared with the loss caused by
the H Bridge and rectifier, so we can get the simplified calculation formulas of the LCL-LCL topology
as follows:

Cs1 = (6)

@)

wy =

. s . . s . 1% . MVp
ig = - , iy = ,ID = = s = 8
s ]erl 4 ]er1L4 b ]er4 1 ]er1L4 ( )
The transfer power can be written as:
MVsVp
Pici_rcr = —22
LCL-LCL = 20T T, ©)

Equation (9) shows that the charging power can be adjusted by V. Unlike Equation (5), there are
two additional power regulation freedoms L; and Ly.

2.3. Comparison between the LC-LC Series Topology and LCL-LCL Topology

The LC-LC series topology and LCL-LCL topology are widely used in practice, as both can
realize the constant-current charging characteristics, the unity-power-factor characteristics and even
bidirectional power transfer characteristics. Their transfer power characteristics are however different,
for instance, the transfer power of the LC-LC series topology increases with the increasing transfer
distances according to Equation (5), and the transfer power of the LCL-LCL topology decreases with the
increasing transfer distance according to Equation (9). However, their transfer efficiency characteristics
have not been compared before, thus this section aims to compare them to provide some suggestions
for practical engineering design. The charging power and magnetic coils of the two topologies must
be identical, as only then can the efficiency comparison be meaningful. The charging power of the
LC-LC series topology equals to that of LCL-LCL topology, if their charging currents are designed to
be the same, as they both have the constant-current characteristic. Based on Equations (4) and (8), we

can write:
Vs MV

oM wyLiLy

(10)

From Equation (10), one has M? = L1 L4. This means that the charging power of the two topologies
are the same if the product of two compensating inductors in the LCL-LCL topology equals the
mutual inductance M. When the transfer distances are 10, 15, 20, 25 and 30 cm, the measured mutual
inductances between two magnetic coils (Lg and Lp) are 107.155 uH, 66.66 uH, 42.538 uH, 28.125 uH,
18.888 uH, respectively. Normally, the distance between the chassis and ground is around 20 cm, thus
the corresponding mutual inductance M is around 42.538 uH. Assuming that L equals L4, one has
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Ly = Ly = 42.538 uH. Because the magnetic coils of the LCL-LCL topology are the same as those of the
LC-LC series topology, the electric parameters of the LC-LC series topology and LCL-LCL topology
can be summarized as shown in Table 1.

Table 1. Detailed parameters of the LC-LC series topology and LCL-LCL topology.

LC-LC Series Topology

LCL-LCL Topology

Electric parameters Value Electric parameters Value
Primary inductor Lg 290.18 uH Compensating inductor L; 43.2 uH
Parasitic resistance Rg 193 mQ) Parasitic resistance Ry 53 mQ)
Primary capacitor Cg 34.83 nF Primary resonant capacitor Cg 234.75 nF
Secondary inductor Lp 329.4 uH Primary inductor Lg 290.18 uH
Parasitic resistance Rp 213 mQ) Parasitic resistance Rg 193 mQ)
Secondary capacitor Cp ~ 30.89 nF Compensating capacitor Cgq 40.68 nF
Secondary inductor Lp 329.4 uH
Parasitic resistance Rp 213 mQ)
Compensating capacitor Cp1 35.07 nF
Compensating inductor Ly 42.5 uH
Parasitic resistance Ry 42.5 mQ)
Secondary resonant capacitor Cp ~ 238.63 nF

The detailed efficiency expressions of LC-LC topology and LCL-LCL topology are given by
references [27,30-32], and can be also deduced using Maple. Then we substitute the data of Table 1 into
the power and efficiency expressions of the LC-LC series and LCL-LCL topologies, and their resulting
transfer characteristics are as shown in Figure 3.

Figure 3a shows that the charging power of these two topologies are the same, despite the different
battery voltages, and Figure 3b shows that the efficiency of the LC-LC series topology is higher than
that of the LCL-LCL topology. Note that the theoretical results ignore the losses caused by the H Bridge
and rectifier, so the efficiency losses are mainly due to the parasitic resistances of the inductors and
capacitors. The parasitic resistances of compensating capacitors are usually ignored, for they are far
smaller than those of magnetic coils. Compared with the LC-LC series topology, the LCL-LCL topology
has another two compensating inductors, the parasitic resistances of which further cause a drop in the
transfer efficiency. In order to verify the correctness of theoretical calculations, the experiments are
performed, and the results are shown in Figure 4.

0.99
— P, (V,=100V)
1000 ree Uy
ooy ___. P,y 1 (V,=100V)
— P, (V=T5V)
g 800+ ---- P, . (V=75V) o
t — P, (V=50V) %
£ 6001 " P (/750V) =) R
Z 70961,  —— 4 o ¥s100V) ~.
S £ = M aaa (VT100V) T~
5 4004 £ 0.95 — Niae $TTV)
5 = =T M eaa VTSY)
2004 0.94 — e V750V)
= qaa (VS0Y)
0 0.93 + + +
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Figure 3. Theoretical transfer power (a) and efficiencies (b) of the LC-LC series and LCL-LCL topologies.
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Figure 4. Experimental transfer power (a) and efficiencies (b) of the LC-LC series and LCL-LCL topologies.

The results in Figure 4a show a good agreement with those in Figure 3a. However, the
experimental transfer efficiencies decline sharply compared with those in Figure 3b, which is mainly
because the H Bridge and rectifier introduce additional losses. Still, it is obvious that the efficiency of
the LC-LC series topology is superior to that of the LCL-LCL topology, so this paper adopts the LC-LC
series topology as the power transfer carrier.

3. Online Power Regulation
3.1. Principles of q-Zsource

Z-source is a unique impedance network with two pairs of inductors and capacitors connected in
an X shape [33] as shown in Figure 5a, and it was initially used for stabilizing the widely changing
voltage produced by fuel cell stacks. Compared with the Z-source, the q-Zsource shown in Figure 5b
has better performance [34]. The most obvious two virtues are as follows: first, there is an input
inductor Lj, which enables the input current to be continuous and thus limits the transient peak
loss. Second, the withstand voltage for C; is lowered, for C; always combines with power source to

charge or discharge L. This allows the volume and weight of C; to be reduced, and improves system
power density.
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Figure 5. Topologies of Z-source (a) and g-Zsource (b).
This paper introduces the q-Zsource, not for stabilizing the output, but to produce a changeable

output voltage, which can adjust the charging current, and hence, the charging power. The overall
system schematic is depicted in Figure 6.
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Figure 6. Overall schematic of the wireless power transfer system.
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It clearly shows that the whole system consists of the power source, the q-Zsource, the H Bridge,
the primary and secondary resonators, the rectifier, the filter and the battery pack. Unlike other system
structures, the q-Zsource between the power source and H Bridge is first employed to boost the
wireless charging power. By controlling the shoot-through state of the H Bridge, the input voltage to
the H Bridge can be boosted through the q-Zsource, so the transmitter current can be adjusted, and
hence, the charging current and power for the battery pack. Compared with some typical primary unit
current control methods [35], the proposed method has two major merits: first, the digital control of the
g-Zsource can be integrated into the primary microprocessor, and there are no active power switches in
the proposed method, which can lower the system cost. Secondly, all the current or power regulation
devices are included in the primary unit, and this design is beneficial to the vehicle miniaturization and
lightness, as the secondary unit can be small and light. There is an additional MOSFET, Ss, connected
in parallel with D; in Figure 6, and it is used to avoid discontinuous operation conditions when the
load is light. To further demonstrate it, assume that there is a light load and the g-Zsource only consists
of Dq. The diode D; will turn off when the current flowing through it decreases to zero, thus the
connection between the g-Zsource and power source is disconnected, and the relationship between
them will not be tenable. This abnormal state makes the output voltage of g-Zsource change freely,
and further induces a decline of the system transfer characteristics. This unwanted phenomenon will
disappear if S5 is turned on or off actively. S5 can be also removed if the system always works at the
rated state. The g-Zsource has two typical operating states, and the equivalent circuits are depicted in
Figure 7.
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Figure 7. Equivalent circuits of q-Zsource in shoot-through state (a) and non-shoot-through state (b).

The operating mode of the gq-Zsource is controlled by the cascade H Bridge. When the H Bridge
works in the traditional phase shifting state, no voltage boosting phenomenon happens, but when the
system charging power needs to be increased, making either of the bridge arms to be shoot-through,
the voltage boosting phenomenon happens. The output of the q-Zsource is shorted by the H Bridge in
the shoot-through state, and L, is charged by C,, L is charged by C; and Vg, whereas the H Bridge
becomes an equivalent current source in the non-shoot-through state as shown in Figure 7b, C; and
L, provide the output voltage together, Cy, L1 and Vs provide the output voltage together. This also
explains why the withstand voltage across C; reduces. By controlling the ratio between shoot-through
time and non-shoot-through time, the output voltage of the q-Zsource can be adjusted. From Figure 7a,
we have:

Vs +Ver =V, Voo = Vi (11)

Similarly, from Figure 7b, we have:
Vs + Vi + Ve = Vo, Vs + Vi = Ve, Vo1 = Vip, Vo1 + Ve = Vo (12)
Normally, L; equals Ly, and the currents flowing through them are the same, thus one has:
Vi1 = Vo (13)
Since the volt-seconds of the inductor should be identical in the steady state, we can get:
(Ver+Vs) Ts = (Vo= Va1 — Vs) - T (14)

Ts represents the shoot-through time and Ty represents the non-shoot-through time, the sum of
those is the whole cycle time T. Then substituting Equations (11)—-(13) into Equation (14), we have:

T

Vo= o Vo=
OTTy-Ts ° " 1-2D

Vs = BF - Vg (15)

D =Tg/T is the duty cycle, BF is the boost factor produced by the shoot-through state, and it is
always greater than or equal to 1. Additionally, we can also obtain the voltages across the capacitor C;
and Cy:

CVo-Vs  Ts D
Ver=—>5 = Ty Ts Vs=1—p Vs (16)
7VO+V57 N o 1-D
Voo = T Ty-T. VS*l—ZD Vs (17)
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3.2. Control Method

Unlike the traditional buck or boost converter, the duty cycle D of the g-Zsource cannot reach 50%
according to Equation (15). The voltage gain curve of the q-Zsource is shown in Figure 8, and it clearly
shows that there are two operating regions.

Voltage Gain

02 04 06 08 1
Duty Cycle(Dz)

Figure 8. Voltage gain of the q-Zsource.

When D is greater than 0.5, the q-Zsource enters the negative gain region, and produces a negative
output voltage, which is hardly used in practice. When D is less than 0.5, it produces a positive output
voltage, thus we should limit the duty cycle D to below 0.5. All the traditional control strategies [26]
can be used to control the g-Zsource and their theoretical input-output relationships still hold, the only
difference is that the shoot-through time is added. The traditional phase shifting control is widely used
to produce the square-wave voltages and realize the soft-switching conditions. However, it will not
be discussed in this paper, as this control method has already been explained before [36]. It is worth
mentioning that the q-Zsource has no effect on the output waves of the H Bridge in this mode, and
only acts as a kind of filter.

When the charging power needs to be boosted, the H Bridge enters the new operating mode
shown in Figure 9, which supplies the shoot-through state for the gq-Zsource to boost the output
voltage. Unlike the traditional phase shifting control, an additional shoot-through time Tspoot—trough
is added into the control sequences, The dead time T4, shifting time Tgy;f4ing and shoot-through
time Tpoor—througn influence the output waves together. The shoot-through state in Figure 9 is realized
by turning on S3 and S4 simultaneously, or it can be also realized by simultaneously turning on S;
and Sy, which depends on the practical situations. The interval between ty and t7 is the whole control
cycle, as it is symmetrical, only the operating mode among ty~t3 needs to be demonstrated. S; is
turned off at fy, while Iy is still positive, thus it is forced to flow through the free-wheeling diode of
Sy. Before I changes, S should be turned on at t;, which can realize its soft switching. These two
steps are similar to the control of a phase-shift-full-bridge, but not exactly the same, as the cascade
loads are different. Before S3 is turned off, Sy is turned on at t,, and this state is forbidden in the
traditional control. However, precisely because of that, the shoot-through state is provided, which
allows the g-Zsource to boost voltage, and different boost factors can be achieved by adjusting the
interval between t; and t3. It is noticeable here that the equivalent switching frequency viewed from
the g-Zsource is two times the operating frequency of the H Bridge, which greatly reduces the volume
and weight of the inductors and capacitors existed in q-Zsource. In addition, the lagging leg (S3, S4) is
turned off with soft switching, but turned on with hard switching, which lowers the efficiency and
needs to be further studied.
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Figure 9. g-Zsource based voltage boost control sequences.

The transmitter and receiver in Figure 6 are high order resonant filters, which only allow the
power signals at resonant frequency to pass through. Thus we should evaluate the fundamental
components of the waves produced by the H Bridge. The FFT series of square waves depicted in
Figure 10 is given as:

Tnon—effec[tve

_ 1—
cosn( T

L N7 Ty -
v Z 2A [COS non—ef fective )| sinneo,t (18)

n=1,2.3... T
where A, 1, Tyou—cffective and T represent the amplitude of the square wave, harmonic order,
non-effective time and cycle time, respectively, and w, = 27/T is the system angular frequency.
According to Equation (15), A is actually determined by BF, and T',o,—f fective 1S determined by Tyeqq,
Tshifting and Tspoot—througn- Thus the output voltage produced by the H Bridge can be regulated by
controlling these parameters appropriately, whereas the voltage stress across the power switches needs
to be considered before designing the BF parameter.

The degree of approximation between the square wave shown in Figure 10 and a quasi-sinusoidal
wave can be quantified by THD, and the lower the THD, the less the harmonic loss. The THD of the
square wave consisted of different non-effective times can be calculated according to Equation (19),
where V), represents the different harmonic amplitudes:

0
> Vi
THD n=234.. (19)
= Vi
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Figure 10. Typical square wave produced by the H Bridge.
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The corresponding THD calculation results at different frequencies are shown in Figure 11, which
clearly indicates that the lowest THD happens around 2 us~3 us non-effective times at 50 kHz and 1
us~2 us non-effective times at 80 kHz, rather than 0 ps non-effective time. The optimal non-effective
time is where THD has the smallest decrease with the increasing frequencies. Because we adopt 80
kHz as the system operating frequency, the non-effective time should be designed around 1 ps~2 us to
reduce THD as well as harmonic loss.

70+ 801
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<504 v
E £ 50
40+ =
40+
30+ \-—. 30- —
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Non-Effective Time (us) Non-Effective Time (us)
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Figure 11. THDs of square waves with different non-effective times at 50 kHz (a) and 80 kHz (b).

4. Experiments

A prototype was implemented to validate our research results, as shown in Figure 12, and
the magnetic coils are designed based on the nested three-layer optimization method, which will be
discussed in our other papers. The prototype is fabricated according to the schematic shown in Figure 6,
where the power source adopts a 62100H-600 high-voltage DC power supply (Chroma, Taoyuan,
Taiwan), the H Bridge employs four SPW47N60C3 MOSFETs (Infineon, Neubiberg, Germany), the
resonant capacitors adopt B32672L thin-film series (TDK-EPCOS, Tokyo, Japan) ,the rectifier consists of
four IDW30E65D1 fast recovery diodes (Infineon, Neubiberg, Germany) and the battery pack consists
of 24 lead-acid battery units.

Figure 13 shows the transfer characteristics of the wireless power transfer system at 20 cm transfer
distance, and it is worth mentioning that the q-Zsource does not work, and is only present as a filter. In
Figure 13a, the transfer power increases with rising input voltages or battery pack voltages. In practice,
the power factor correction (PFC) with 400 V output voltage is employed to enhance AC power quality,
and the 300 V battery pack is widely used for many production-ready vehicles, like Toyota Prius,
Chevrolet Volt, Mitsubishi i-MiEV as well as Nissan Leaf, thus we define this situation as the system
rated operating state. In the rated state, the charging power is 3220 W as shown in Figure 13a, which
is a little bigger than 3 kW, since the battery pack voltage increases from 300 V to 309.7 V when the
charging current (RMS value is 10.4 A as shown in Figure 14) flows through the battery resistance,
causing an extra voltage drop. Figure 13b shows that the transfer efficiencies are nearly unchanged
despite the increasing input voltages or battery pack voltages, and the rated efficiency where the input
voltage equals 400 V and the battery pack voltage equals 300 V is around 95%.
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(b)

Figure 12. Prototype of wireless power transfer system. (a) 300V lead-acid battery pack. (b) Transmitter
and receiver of wireless power transfer system. The magnetic coil is placed on the top of a perspex

plate and fixed by eight perspex bars.
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Figure 13. Wireless transfer power (a) and efficiency (b) at different input voltages and battery pack
voltages at 20 cm transfer distance.
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Figure 14 shows some critical waveforms of the wireless power transfer system, where the cyan
curve shows the output voltage produced by the H Bridge, the green curve shows the voltage across
the resonant capacitor in the transmitter and the purple curve shows the charging current for the
battery pack. Because the reduction scale of high voltage probe is 200, the measured voltages need to
be multiplied by 200. The amplitude of the square-wave voltage produced by the H Bridge is 400 V.
The RMS value of the charging current is 10.4 A, and there are some ripple waves, the amplitude of
which depends on the filter capacitors. The bigger the filter capacitors, the smaller the ripple waves.
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Figure 14. Purple curve: the charging current for the battery pack; cyan curve: the output
voltage produced by the H Bridge; green curve: the voltage across the resonant capacitor in the
transmitter. They are measured when the system works in the rated state (V;,, =400V, Vg =309.7 V,
Peharging = 3220 W, Diyans fer = 20 cm).

The following experimental results are measured when the g-Zsource works, and two different
shoot-through times are shown to clearly demonstrate the g-Zsource principle. Figure 15 indicates that
different shoot-through times determine different boost factors. Although the input voltages (green
curve) of both Figure 15a,b are identical (200 V), their output voltages (cyan curve) are different. When
the shoot-through time is 1 us, the boost factor is around 1.5, thus the output voltage is around 300 V,
and the charging current is 8.26 A. When the shoot-through time is 1.5 us, the boost factor is around 2,
thus the output voltage is around 400 V, and the charging current is 10.2 A. Summarily, the charging
currents can be adjusted by controlling the shoot-through times.
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Figure 15. Purple curve: the charging currents for the battery pack; green curve: the input voltage
of the g-Zsource; cyan curve: the output voltage produced by the H Bridge measured (a) at the 1 us
shoot-through time; and (b) at the 1.5 us shoot-through time.

In Figure 16a,b the g-Zsource input voltages (green curve) are the same, but their output voltages
(cyan curve) are different due to the different boost factors. Unlike the square-wave voltages produced
by the H Bridge, the g-Zsource output voltages are pulsatile and always positive. In the shoot-through
state, where the q-Zsource output voltage equals zero, the q-Zsource input current (purple curve)
increases with a positive slope. However, it decreases with a negative slope when the g-Zsource enters
into the non-shoot-through state.

Figure 17 shows the output currents (purple curve) and voltages (cyan curve) produced by the H
Bridge, which validate that the system is basically in the resonant state. However, the quasi-resonant
state is not beneficial for soft-switching, and hence, efficiency improvement. In practice, the current
produced by the H Bridge should lag the voltage to a certain degree, thus an additional 1 nF capacitor
is added into the transmitter capacitor array in this paper. The green curve represents the voltage
across the g-Zsource capacitor (C; in Figure 6), and it is smaller than the output voltage produced by
the H Bridge, but it is bigger than the input voltage of the q-Zsource shown in Figure 16.
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Figure 16. Purple curve: the input current of g-Zsource, green curve shows the input voltage of
g-Zsource, cyan curve shows the output voltage of q-Zsource measured (a) at the 1 ps shoot-through
time; and (b) at the 1.5 us shoot-through time.
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Figure 17. Purple curve: the currents produced by the H Bridge; cyan curve: the output voltages
produced by the H Bridge; green curve: the capacitor voltages of the g-Zsource measured (a) at the 1
us shoot-through time; and (b) at the 1.5 us shoot-through time.
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Figure 18a indicates that the charging power or current can be adjusted by changing the
shoot-through times. Take the 200 V input voltage as an example, the charging current is 5.26 A
when there is no shoot-through time, and it is increased to 8.26 A with 1 ps shoot-through time, and it
is further increased to 10.2 A when the shoot-through time is 1.5 pis. Because the boost factor is close to
2 at 1.5 us shoot-through time, the input voltages above 200 V are not allowed, which may damage the
resonate capacitors. In Figure 18b, the efficiencies decline with the increasing shoot-through times, for
the shoot-through state makes the MOSFETs of latter bridge arm lost their soft-switching conditions.
Additionally, the operating frequency (160 kHz) of g-Zsource doubles that (80 kHz) of wireless power
transfer system, which further causes the decline in the transfer efficiency. This phenomenon can be
suppressed by reducing the operating frequency of q-Zsouce. If it is decreased to 40 kHz, the loss
can be theoretically reduced as much as four times. However, the reduction of the frequency requires
bigger inductors and capacitors than before, thus the q-Zsource parameters need to be re-optimized,
which is our future work.
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Figure 18. Wireless transfer power (a) and efficiency (b) characteristics based on the q-Zsource voltage
boosting method at 20 cm transfer distance.

5. Conclusions

This paper studies a 3 kW vehicle-mounted wireless power transfer system. First, the efficiency
of the LC-LC series topology is verified to be higher than that of the LCL-LCL topology when their
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transfer power are the same. Then a q-Zsource-based power regulation method is proposed to adjust
the charging current online. At last, a 3 kW prototype with ~95% efficiency over a 20 cm transfer
distance is implemented to validate our research results. Different shoot-through time durations
determine different charging currents despite the same input voltage. When the input voltage is set to
be 200V, a 1 us shoot-through time can boost the charging current from 5.26 A to 8.26 A, and a 1.5 us
shoot-through time can boost the charging current from 5.26 A to 10.2 A. We hope the work presented
in this paper is beneficial to the development of wireless power transfer systems.
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Abstract: This paper proposes an autonomous coil alignment system (ACAS) for electric vehicles
(EVs) with dynamic wireless charging (DWC) to mitigate the reduction in received power caused by
lateral misalignment between the source and load coils. The key component of the ACAS is a novel
sensor coil design, which can detect the load coil’s left or right position relative to the source coil by
observing the change in voltage phase. This allows the lateral misalignment to be estimated through
the wireless power transfer (WPT) system alone, which is a novel tracking method for vehicular
applications. Once misalignment is detected, the vehicle’s lateral position is self-adjusted by an
autonomous steering function. The feasibility of the overall operation of the ACAS was verified
through simulation and experiments. In addition, an analysis based on experimental results was
conducted, demonstrating that 26% more energy can be transferred during DWC with the ACAS,
just by keeping the vehicle’s load coil aligned with the source coil.

Keywords: electric vehicle (EV); dynamic wireless charging (DWC); wireless power transfer (WPT);
power degradation; coil misalignment; magnetic sensing

1. Introduction

With the realization of electric vehicles (EVs) to reduce greenhouse gases, significant research
and development directed towards improving EVs’ feaatures has been conducted during recent years.
However, one main disadvantage of EVs is their battery technology due to its high cost and limited
driving range. To overcome the mentioned issues and minimize dependency on battery systems,
many have looked into the utilization of infrastructure such as vehicle to grid (V2G) [1], or residential
distribution grid systems [2]. Dynamic wireless charging (DWC) for EVs is another promising method
of utilizing infrastructure to overcome battery issues in EVs. DWC is a wireless power transfer (WPT)
system that allows EVs to be charged wirelessly while in motion. With DWC, EVs are less dependent
on battery systems because they receive power from the road. As a result, EVs with DWC offer several
advantages over conventional EVs such as lower vehicle cost and reduced charging time due to their
smaller battery systems [3-5]. In light of the many benefits it can provide, extensive research on WPT
and DWC has been conducted at various institutions around the globe. Further benefits can be realized
when DWC is implemented as an EV charging lane on highways [6]. If a DWC lane is installed at
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strategic locations along the highway, the EV driving range can be extended, allowing owners to drive
longer distances without the anxiety of having to worry about EV range [7].

However, the one main disadvantage of this DWC scheme is the reduction in received power and
efficiency that occurs when there is a lateral misalignment of the vehicle’s load coil and the source
coil embedded under the road. The vehicle must be aligned within a certain range of the source coil
to achieve high power in the load coil [8], which also maximizes the driving distance of the vehicle.
Keeping the load coil of a vehicle aligned at all times with the source coil while in motion is very
difficult, even for an experienced driver. In addition, attempting to keep the vehicle aligned with the
source coil may distract the driver from oncoming traffic or obstacles and eventually lead to serious
traffic accidents.

To minimize the problem with transferring power to the load coil due to lateral misalignment
in WPT, many methods have been proposed to maximize lateral misalignment tolerance. Some
proposed methods include changing the geometry of the coil [9], placing multiple coils in an orthogonal
configuration [10] or an overlapping configuration [11], and even combining multiple coils of different
geometry into one unit [12]. Another popular method is the utilization of ferromagnetic materials,
where E-shape or U-shape ferrite cores [13,14] are utilized at the load /source coils. Other methods also
include active coil resonance frequency tuning circuits to maximize lateral tolerance [15,16]. All the
proposed methods described above are constructive, but their implementation in vehicular applications
can be very limited, due to the vehicle’s limited installation space, weight constraints, as well as the
dynamic driving environment. Even assuming that the proposed methods were implemented in
the vehicle, misalignment would still be unavoidable as long as a person is controlling the vehicle.
In addition, even a DWC-equipped EV with a high lateral misalignment tolerance (45 cm) will still
have regions on a highway lane without wireless power delivery, as shown in Figure 1. And within the
tolerance range, loss of power will still inevitably occur whenever the lateral misalignment increases.
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Figure 1. Power transfer coverage area on a 3.6 m width highway lane (based on FHWA standards [17])
for a WPT system with a 45 cm lateral misalignment tolerance. Equipped on a standard sized vehicle
with a 2 m track width.

A vehicle tracking and autonomous guidance system using magnetic sensing can also be applied
to reduce the DWC power transfer problem. The system concept is shown in Figure 2.

2. Misalignment Correction Through
Steering Guid

Power Transfer Area
m @
( I—V

1. Misalignment Position
Tracked

Figure 2. Concept of autonomous vehicle tracking and guidance to reduce degraded power transfer in
a DWC system.
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The misalignment between the coils is detected using sensors and the vehicle’s position is then
adjusted by appropriate autonomous steering until the degraded power transfer in the DWC is restored
to an optimum level.

Many vehicle tracking methods have been previously proposed where one popular method is
using global positioning system (GPS) sensors and /or magnetic markers [18]. Other tracking methods
specific for DWC applications are also proposed in [19-21], where a radio-frequency identification
(RFID) tag and reader were implemented. However, one disadvantage of magnetic markers or RFID
tags is the rapid decay in the strength of the magnetic field with distance, as the detector moves
away from the marker/tag range. Therefore, the magnetic markers or RFID tags have to be placed
close to each other in order to achieve high tracking resolution, which increases overall construction
costs. To reduce construction costs, magnetic sensing hardware with a wider detection range has been
proposed as shown in [22] or using a Gaussian function-based algorithm to have higher detection
accuracy [23]. However, this leads to bulkier sensor hardware which is not desirable, especially when
vehicle space is very limited with the DWC system installed.

Another method of magnetic tracking is the autonomous coil alignment system (ACAS), which
has been proposed by the authors of this paper in [24]. ACAS is a novel method of tracking a vehicle’s
misalignment position by only measuring the voltage in the vehicle’s load coil. Since this method only
utilizes the existing DWC system, the use of external magnetic or RFID markers is eliminated, which
leads to a significant reduction in implementation costs for the magnetic tracking functions. One main
challenge of this approach is how to determine whether the load coil was misaligned to the left or
the right side relative to the center of the source coil. This is because the voltage readings are nearly
identical on both sides. The proposed two-sensor coil unit design in [24] detected the left/right side
position by calculating the difference in the voltage readings of the two sensor coils. Even though
the operational feasibility of the ACAS was verified, it was only compatible with a specific DWC
system, and its algorithm was very complex. If any significant changes were made to the DWC system,
the accuracy of position tracking could be affected.

The ACAS proposed in this paper is a significant improvement over the previous design described
in [24]. It is a single-sensor coil unit, and detects change in voltage phase to identify the left/right
side position rather than the voltage difference between two sensor coils. With the new ACAS
design, the complexity of the algorithm and hardware can be significantly reduced, providing a more
reliable system. This also allows wider application compatibility with other DWC systems with
varying specifications.

The paper is organized as follows: an analysis of power loss due to lateral misalignment,
as well as the reasons for proposing the ACAS system, are discussed in Section 2. In Section 3,
the main components of the ACAS are discussed and its concept feasibility is verified by simulation.
The operational feasibility of the ACAS is further verified by experiments in Section 4. Conclusions are
presented in Section 5.

2. Analysis of Power Loss Due to Lateral Misalignment in Dynamic Wireless Charging
(DWC) Systems

DWC can be viewed as a general WPT system circuit model, shown in Figure 3, which consists of
a source coil and a load coil section. The efficiency of the WPT system is defined by the ratio of the
power delivered from the source coil, Ps, and the load coil, Py, as follows:

Pr
=L 1
1=, )
From Equation (1), Ps and Py can be defined as:
Ry + - +jwL;
Po=LVe=|—J9 * "LV 2
s =DIVs ( jwM > | Vs )
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where Rg, Cs, Ls represent the resistor, capacitor, or inductor components of the source coil,
respectively, and Ry, Cp, L represent the resistor, capacitor, or inductor components of the load
coil, respectively. w represents the frequency, and I, I, represent the currents flowing in the source
coil and load coil, respectively. M is the mutual inductance between the source coil and load coil,

which is expressed as follows:
M =ky/LsLy )

where k is a coupling coefficient.

Vs @ . é R,

Figure 3. General circuit model for wireless power transfer (WPT).

The mutual inductance between the source coil and the load coil greatly affects the received power
at the load coil as well as the overall efficiency of the WPT system, as noted in previous works [10,25].
Therefore, it is important for any WPT system to maintain the highest mutual inductance to maximize
the received power and efficiency to the load coil. Based on the Neumann formula, the mutual
inductance shown in (4) can also be described as the number of flux linkages in the load coil resulting
from the current flowing from the source coil [10]:

] T st
where 19, dls and dl}, represent the permeability of free-space, and the infinitesimal segments of the
source coil and load coil, respectively, while |rg; | represents the distance between the source coil and

the load coil segments, which can also be seen as misalignment. Assuming that a constant current is
applied, the only variable that will affect M is |rgy |. Therefore, from (1) to (5), it can be determined that

increased misalignment reduces M, thus reducing the magnitude of received power at the load coil
and the overall WPT efficiency.

Based on (5), there are several factors that will change the magnitude of |rgy|: vertical, lateral,
and angular misalignment. However, not all of these factors are likely to be observed in practice, for
the following reasons: because the load coil is fixed to the underbody of a vehicle, the misalignment
between the source coil and load coil is highly dependent on vehicle movement. When a vehicle is
operating on highways or on roads that are flat, it can be assumed that the vertical misalignment and
angular misalignment relative to the x and y axes will have small variations.

The two factors that remain are the lateral, and angular misalignment relative to the z axis.
Between these two factors, the dominant factor that will affect M is the lateral misalignment. To prove
this statement, a 3-D electromagnetic (3-D EM) simulation was conducted. A general rectangular
shaped load coil placed on top of the source coil lines was designed to replicate the DWC system
shown in Figure 4. Its electrical parameters are presented in Table 1 as well.
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Figure 4. 3-D EM simulation model of the source coil and load coil and their dimensional parameters

(in cm).
Table 1. Parameter setup for the 3-D EM simulation.
Parameter Source Coil Load Coil Sensor Coil
# of turns 8 50 10
Inductance 116 uH 2.35 mH 732 nH
Operating frequency 20 kHz
Current through source coil 200 A

The simulation was conducted to observe the changes in M, k and the load coil’s received power
resulting from a lateral misalignment of —50 c¢m to 50 cm, and also an angular misalignment of 0, 10,
and 20 degrees relative to the z axis. The simulation only considered an angular misalignment up
to 20 degrees, because an angular misalignment greater than the stated value can be considered an
extreme steering angle for a vehicle moving at high speeds.

The changes in M, and k from the lateral and angular misalignments are shown in Figure 5. There
are slight variations with increased angular misalignment, but it can be seen that lateral misalignment
is the dominant factor in reducing M. Therefore, the proposed ACAS was designed to minimize lateral
misalignment to allow higher M so that higher power will be received at the load coil, increasing
overall efficiency.

0° angular
misalignment

10° angular
misalignment

-50 25 0 25 50 20° angular
Lateral Misalignment (cm) misalignment

Mutual Inductance (uH)
Coupling Coefficient (k)

Figure 5. 3-D EM simulation result showing the change in the mutual inductance and coupling
coefficient due to lateral misalignment and angular misalignment.

3. Concept of the Autonomous Coil Alignment System (ACAS)

Figure 6 shows a general block diagram of the proposed ACAS. It is divided into three parts:
the ACAS sensor coil unit, the lateral position detection unit, and the fuzzy steering controller.
The lateral misalignment position is estimated by the sensor coil unit and further processed by
the lateral misalignment detection unit. Based on the detected lateral misalignment, the fuzzy steering
controller will send steering commands to the electronic power steering system (EPS), after which the
vehicle is steered autonomously to correct the misalignment. EPS is already used in most EVs and
is being equipped in most newly manufactured commercial vehicles as well. In case an obstacle is
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present which obstructs the path of maximum charging, the user must have the ability to interrupt
the operation of the ACAS. Therefore, the ACAS is designed so that the user can enable or disable the
operation of the ACAS at any time, as shown in Figure 6.

ACAS enabled

T ACAS
IAutonomous Coil Alignment

1 Y
1 1 disabled
1 System (ACAS) 1
1 . Lateral Fuzzy 1
1 se"lsj"’""c"" —>{ Positon [——» Steering Vehicle EPS
1 Detection Unit Controller 1
o I

Figure 6. Block diagram of the ACAS.

3.1. ACAS Sensor Coil Unit

In the ACAS, the range of lateral misalignment is estimated based on voltage readings alone.
Based on (3), the voltage on the load coil can be expressed as follows:

jwM

=——75 ——h
Rp + ey +]wLL

Vi Ry (6)

When a constant current source is being supplied to the source coil, the dominant parameter that
will change the load coil voltage is M. To prove this statement, a 3-D FEM simulation was conducted
again using the same model shown in Figure 4 and Table 1, to measure the induced voltage in the
load coil. The results are shown in Figure 7. It can be seen in the graphed trends that the peaks of the
mutual inductance and the induced voltage in the load coil are nearly identical; thus, it shows that the
lateral misalignment can be identified through the load coil voltage alone.

20 500
Mutual Inductance

- = -Induced Voltage
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-50 =25 0 25 50
Lateral Misalignment (cm)

Figure 7. 3-D FEM simulation result showing a waveform comparison of the mutual inductance and
the induced voltage on the load coil.

As mentioned in the introduction, the main challenge is to determine whether the load coil is
misaligned to the left or the right side. To solve this problem, a sensor coil unit is proposed, which
is composed of a single coil unit wound around the middle of the leading section of the load coil,
as illustrated in Figure 8.

With this configuration, the load coil’s left/right position can be determined based on the source
coil’s reference. The sensor coil does not occupy much space, and the number of turns for the coil is
sufficient to induce a signal strong enough for the ACAS main controller to recognize, while small
enough to not disrupt the power transfer between the source coil and the load coil.
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Figure 8. Configuration of the sensor coil within the load coil. Shown from a top view perspective.

Figure 9a shows how the load coil /sensor coil unit is implemented under the vehicle body when
the load coil and source coil are in perfect alignment. In addition, it shows a cross section along the x-y

plane of the source coil as well.
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Figure 9. The resulting voltage waveform of the sensor coil in different positions (a) when the load coil
is aligned with the source coil (origin point); (b) when the load coil is misaligned towards the left, and

(c) when the load coil is misaligned to the right.

As shown in Figures 8 and 9, the sensor coil is placed in a specific location, where the loop of
the sensor coil is facing in the y-axis direction. Viewing the source coil in Figure 9, the magnetic field
generated on the source coil, Bg, can be expressed in vector form as follows:

Bs = B;+B,
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where B and B; are the right and left magnetic fields, respectively, as shown in Figure 9. When viewed
from the y-axis direction, from the direction the loop of the sensor coil is facing, Bg can be expressed in
vector form as follows:

_pl  p2_ Mol poly .
B; =By +By = e sin 6 + 2ty sin 6, 8)

In(8), I1, I, 01 and 6, are the current flow and the angle needed to generate By and By, respectively.
It should be noted that I; and I, have the same magnitudes but flow in opposite directions. pj is
the free-space permeability and 71, 7, are the reference point distances of By and B;, respectively.
In Figure 9a, the magnetic field sensed by the sensor coil is near zero because By and B, cancel each
other out. As the sensor coil moves towards the left, as shown in Figure 9b, the sensor coil is relatively
more exposed to the B, magnetic field, thus the magnitude of B, will be more dominant than By. The
opposite phenomenon will occur when the sensor coil moves towards the right, where the magnitude
of By will be more dominant than B, as shown in Figure 9c.

The induced voltage in the sensor coil, Vs, can be expressed as follows:

dd _ dBsA

Vse:—ﬁ— dt (9)

where the equation is based on Faraday’s law. ®, t and A represent the magnetic flux, time, and cross
sectional area of the sensor coil, respectively. When the load coil is misaligned to the left or right, the
phase angle difference between the sensor coil will always have a £90 degree difference, respectively.
The phase difference will only change when the load coil is shifted from the right region to the left
region, or vice versa. Under these conditions, the difference in phase when the coil is misaligned to the
left (shown in Figure 9b) and right (shown in Figure 9c) will be around 180 degrees.

Verification of the ACAS Sensor Coil Unit through Simulation

3-D EM simulations were conducted to verify that the placement of the sensor coil does not have
much influence on the power transfer between the source coil and load coil, and also to verify the
concept shown in Figure 9. The sensor coil was added to the simulation model shown in Figure 4
to match the configuration shown in Figure 8. The sensor coil parameters were as listed in Table 1.
Figures 10 and 11 show comparisons of the induced voltage and magnetic flux density of the load coil
with the sensor coil, and the load coil without the sensor coil, respectively, when a lateral misalignment
occurs from —50 cm to 50 cm.
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=
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o
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£ 200
°
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Figure 10. Simulation results showing induced voltage vs. lateral misalignment. A comparison of load
coils with and without the sensor coil.

Based on Figure 10, the two output waveforms are nearly identical, and the magnetic flux density
comparison in Figure 11 shows that the existence of the sensor coil unit creates almost no interference
with the magnetic flow between the load coil and sensor coil. This verifies that the placement of the
sensor coil has little effect on the performance of the overall WPT system.
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Figure 11. Simulation results showing the magnetic flux density for the load coil (a) with the sensor
coil unit and (b) without the sensor coil unit.

The output voltage waveforms generated from the sensor coil when it is misaligned to the left
or right side are shown in Figure 12. The results show that the resulting voltage for the left side and
right side maintains a 90 degree phase difference, thus validating the theory shown in Figure 9, and
clearly distinguishing the left/right side regions regardless of position. It can also be observed that
the relationship between the sensor coil’s induced voltage and lateral misalignment is non-linear.
However, this information can be neglected because the left/right directions can be clearly identified
by the sensor coil. With the left/right information, the exact lateral misalignment position can be
identified by measuring the voltage through the load coil, which is further processed in the ACAS
lateral position detection unit.
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Figure 12. Simulated sensor coil voltage output vs. time, showing the left side and right side positions
can be clearly identified.

3.2. ACAS Lateral Position Detection Unit

As mentioned in Section 3.1, the left and right sides can be detected based on the phase difference.
The ACAS lateral position detection unit is responsible for converting those values into information
that can be processed by the ACAS fuzzy steering controller. The block diagram of the ACAS lateral
position detection unit is shown in Figure 13.

Lateral Position Conversion Unit

1
1
1
1
Vg 1
Sensor Coil ——>| Voltage —p XOR | LP |
Comparator| V,' | Gate || Lateral :y Steeri
Load Coil ——»| =L Position [4=| Steering
Estimator | | Controller
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‘ Rectifier }-—>| Digital Voltmeter I—L> !
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Figure 13. Block diagram showing the ACAS lateral position detection unit.
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It consists of a voltage comparator, exclusive OR (XOR) gate, and digital voltmeter. The load coil
waveform and the sensor coil waveform are each converted into logic square waveforms through the
voltage comparators as shown in the block diagram in Figure 13. From here, the converted sensor
coil logic signal, Vi.', and the converted load coil logic signal, V;/ are sent into the XOR gate, where
the two signals are compared with each other to determine the left or right lateral position. Since the
phase of the load coil remains unchanged, the load coil voltage (in AC form) can be used as a reference
to determine the phase change in the sensor coil, as shown in Figure 9. The logic flow of the XOR gate
output used to determine the left and right position is shown in Figure 14. Two input signals Vi', and
V' are sent as input into the XOR gate. Based on the nature of operation of the XOR gate, the output
at the XOR gate, expressed as LP, is either a 5 V output (logic HI) or a 0 V (logic LO) signal to indicate
left or right, respectively.

ZORINEUT XOR OUTPUT

Converted Load Coil Logic Converted Sensor Coil Logic XOR Output = HI
Signal Through Comparator ~Signal through Comparator
(7% Wse")
5V V_l 5V "_I 2 =
o OV
ov . G t
Converted Load Coil Logic Converted Sensor Coil Logic
Signal Through Comparator = Signal through Comparator XOR Output = LO
(%) W) o v
5V v sv v
e B
oV oV t
t t

Figure 14. The XOR gate output from the converted load coil and the sensor coil logic signal inputs
based on left or right side lateral misalignment.

With the left or right side detected, the location of the lateral misalignment, y, can be determined
as follows:
—f(V) if LP=HI
= 1
y { F(V) if LP = LO (10)

where f (V) is a function that represents the relationship between the load coil voltage and the lateral
position, y. With the known left/right position, the lateral misalignment y is estimated and directly
fed as input into the ACAS fuzzy steering controller.

3.3. ACAS Fuzzy Steering Controller

The lateral misalignment is estimated based on the voltage measurement alone, but irregularities
can occur in the reading of the angular misalignment of the load coil, or even because of the non-linear
characteristics of the DWC system. In addition, the source coil used in DWC systems is typically
installed in segments to maximize efficiency, as described in [12,26]. Thus, it can be expected that
the voltages generated in each segment will not be entirely identical. To tolerate such characteristics,
a fuzzy logic based steering control method is used in the ACAS, because it can provide better dynamic
response compared to other conventional controllers [27,28]. The fuzzy logic steering controller used
for the ACAS in this paper was previously introduced by the authors. In the present study, only
experiments to verify the performance of the fuzzy steering controller were conducted. The design
process and simulation results can be obtained in [24].

4. Experimental Validation

To observe and validate the overall performance of the ACAS, a smaller scale DWC system and
experimental vehicle were constructed, and two experiments were conducted. In the first experiment,
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the main purpose was to validate the power loss due to lateral misalignment, and also to validate
the operating concept of the proposed sensor coil. Because the first experiment operated near a 90 W
power level, a static load (10 ) resistor) was used instead of the experimental vehicle because the
stated power level exceeded the recommended operation settings used in the experimental vehicle.
For the second experiment, the main purpose was to validate the overall operating concept of the
ACAS. The same DWC system from the first experiment were used, but the power level was reduced
to 10 W, so that the experimental vehicle could be used. The operation of the experimental vehicle can
be viewed in the video shown in S1.

4.1. Experimental Setup

A DWC system was constructed in laboratory scale to validate the operation of the ACAS system.
The source coil unit and the load coil/sensor coil unit are shown in Figure 15. The electrical and
dimension parameters of the coil units are shown in Table 2.

(b)

Figure 15. Coil construction of the (a) source coil unit and (b) load coil/sensor coil unit.

Table 2. Dimensions and electrical parameters of the coils used in the experiment.

Parameter Source Coil Load Coil Sensor Coil
Dimensions (W x L x H) 19.0cm x 54.0 cm x 1.5 cm 80cm x 16.0cm x 2.0cm  2.0cm x 25cm x 2.5 cm

# of turns 20 42 10

inductance 590.00 uH 186.15 uH 2.45 uH

The source coil unit and the load coil each consist of ferrite core assemblies as shown in Figure 16.
In case of the source coil ferrite core assembly, it consists of ferrite blocks of two different types, which
has been identified as ferrite block type A and type B, respectively. The difference between the two
ferrite blocks are its dimensions, while the other specifications are identical, as shown in Table 3.

[ Ferrite Block Type A z I Ferrite Block Type A
4

Ferrite Block Type B

@ (b)

Figure 16. Ferrite core assemblies for the (a) source coil and (b) load coil unit.
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Table 3. Material characteristics of ferrite blocks types A and B identified in Figure 16.

Parameter Ferrite Block Type A Ferrite Block Type B
Dimensions (W x L x H) 10.0cm x 10.0 cm x 1.0 cm 10.0cm x 4.0 cm x 1.0 cm
Material Manganese-Zinc (Mn-Zn)
Permeability (i) 3200
Saturation flux density (Bg) 520 mT

The laboratory scale vehicle is shown in Figure 17. The lateral position detection unit as well
as the fuzzy steering controller unit described in [24] were programmed into the microcontroller as
shown in Figure 17a, and the constructed load coil/sensor coil unit was mounted underneath the
vehicle as shown in Figure 17b. The complete experimental setup is shown in Figure 18, where a
20 kHz inverter was used as the main source for delivering power wirelessly from the source coil to
the load coil. It can also be observed that an acrylic plate has been placed between the source coil and
load coil. The mentioned acrylic plate was moved laterally left and right to generate misalignment
between the source coil and load coil.

(b)

Figure 17. Experimental vehicle. (a) Top view, showing the microcontroller unit; (b) Bottom view,
showing the load coil/sensor coil unit.

Acrylic
Plate

Figure 18. Experimental setup of the experimental vehicle with the ACAS unit.

Figure 19 shows the schematic of the overall experiment, and the values of parameters shown are
listed in Table 4. The Vs is the main voltage source generated from the 20 kHz inverter unit, and it
was adjusted to generate 90 W and 10 W at the load for the first experiment and second experiment,
respectively. During the construction phase of the experimental vehicle, it was observed that a lot
of noise was generated which affected the sensor coil’s measurement accuracy. Therefore, an active
non-inverting (NI) low-pass filter (LPF) was constructed using an instrumentation amplifier, and
placed between the sensor coil and the voltage comparator as shown in Figure 19. The R, C values
for the LPF, assigned as Ry pr, and Cp pr, respectively, was assigned to match the cut-off frequency of
20 kHz as close as possible, which is also listed in Table 4.
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Figure 19. Overall circuit schematic for the experiment.

Table 4. Measured value of each components for the circuit schematic shown in Figure 19.

Component Symbol Value
Ls 590.00 uH
Source/load coil components to Rs 170mQ
match resonance @ 20 kHz Cs 107.33 nF
Ly 186.15 uH
Ry, 103 mQ)
Cr 328.11 nF
Rectifier smoothing capacitor Camooth 3200 uF
Low-pass filter (LPF) components Rier o aQ
CrpF 9.8 nF
Load resmta(r;izégrl é;rdsg experiment R, 100
Load resistance for second experiment R, 2~3Q)

(experimental vehicle load) (varying load due to motor operation)

In the first experiment (static load), the load coil was moved from —8 cm (left) to 8 cm (right) in
1 cm increments. The change in voltage and current was monitored through the voltmeter and current
meter, respectively, and recorded. Also, the changes in the load coil and sensor coil voltage waveforms
were monitored through the oscilloscope as well. Because the power was reduced to 10W in the second
experiment (experimental vehicle load), the load coil was moved less; —5 cm (left) to 5 cm (right) in
1 cm increments, unlike £8 cm in the first experiment. The sensor coil voltage waveform as well as
its converted logic signals were monitored through the oscilloscope, and the detected voltage and
steering position data were recorded through the microcontroller in the experimental vehicle.

4.2. Experimental Results from the First Experiment (Static Load: 10 Ohm Resistor)

Figure 20 shows the measured voltage and current as the load coil was moved from —8 cm (left)
to 8 cm (right) in 1 cm increments. Based on Figure 20, it can be seen that the power is significantly
reduced when the lateral misalignment increases, both from the right side and left side. Half of the load
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coil’s power was lost at +-4 cm, and nearly all of its power was lost at -8 cm. The results in Figure 20
verify the theory explained in Section 2, and thus, justify the need for the proposed ACAS system.
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Figure 20. Voltage and current measured at the load, and its calculated power (first experiment:
static load).

Figure 21 shows the voltage waveforms of the load coil and the sensor coil measured from
the oscilloscope. Figure 21a,b represent when the load coil has a left misalignment, and a right
misalignment, respectively. The captured results indicate that significant noise is present in the sensor
coil waveform. These are filtered out through a low-pass filter before being converted into a logic
signal as shown in the circuit schematic in Figure 19. Based on the results shown in Figure 21a,
the phase difference between the load coil and sensor coil is 118.9 degrees (left misalignment), while
the phase difference in Figure 21b is —57.3 degrees (right misalignment). The difference between the
two recorded phase values is 176.2 degrees, which is near the 180 phase angle difference described in
the last paragraph in Section 3.1.
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Figure 21. Oscilloscope readings from the first experiment showing the voltage waveform of the load
coil and the sensor coil unit at (a) left misalignment; and (b) right misalignment.

4.3. Experimental Results from the Second Experiment (Load: Experimental Vehicle)

The recorded load coil and sensor coil waveforms for the second experiment are shown in
Figure 22. These results show characteristics similar to the results shown in Figure 21, except there
is a lower voltage amplitude, because the source coil was operating at a 10 W power level. Based on
the recorded data, the phase of the sensor coil relative to the load coil for the left side (Figure 22a)
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and the right side (Figure 22b) are 139.5 degrees and —58.7 degrees, respectively, which makes the
phase difference between left and right side 198.2 degrees. This slightly exceeds the theoretical
180 degree phase difference, but the difference between the left region and right region can still be

clearly distinguished.
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Figure 22. Oscilloscope readings from the second experiment showing the voltage waveform of the

(b)

load coil and sensor coil unit at (a) left misalignment; and (b) right misalignment.

The waveforms (1) and (2) shown in Figure 23 show the converted square waveforms of the
load coil and sensor coil outputs from Figure 22, respectively. These converted square waveforms are
fed into the XOR gate, and the output signals are shown as waveform (3) in Figure 23. Figure 23a,b
represent the left misalignment case and the right misalignment case, respectively. As can be seen from
Figure 21, a phase difference between the load coil and sensor coil exists, thus the output generated
by the XOR gate is an “unclean” HIGH or LOW logic output. However, it still verifies the concept

illustrated in Figure 14.
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Figure 23. Oscilloscope readings from the second experiment showing the converted logic waveform
of the (1) load coil; (2) sensor coil; and (3) the XOR gate output for (a) left misalignment; and

(b) right misalignment.

To compensate the “unclean” signal from the two signals shown in waveform (3) in Figure 21a,b,
a moving average filter was implemented in the main controller as follows:

1 N-1 ) )
LPiota = N 2 LP[i +j]
=0

n

where LPy, is the filtered lateral position output based on the number of samples, N. From this,
the LP described in Equation (10) can finally be identified, as follows:
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_ { left, if LPyy > threshold 12

right, if LPy, < threshold

where threshold is a certain fixed value used as a reference to compare with LP;,;,. The left or right
position of the vehicle can be clearly distinguished when LP;,,; is greater or lower than the threshold,
respectively. Figure 24 illustrates the recorded DC voltage and current values as the vehicle was moved
from left to right. These values have a trend similar to the data shown in Figure 20, where power
decreased significantly with increasing misalignment. The data from Figure 24 were used to determine
the relationship between voltage and misalignment distance, f(V7), shown in Equation (10), which
cameoutasy = —0.1834x?> — 0.055x + 6.7756. In the equation, x is the measured voltage, and y is
the determined misalignment range output.
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Figure 24. Voltage and current measured at the load, and its calculated power, and its calculated power
(second experiment: experimental vehicle load).

Figure 25 shows the data acquired from the experimental vehicle from the second experiment,
indicating the estimated lateral misalignment based on voltage readings from the digital voltmeter,
and the determined left/right region from the sensor coil. The negative values and positive values on
the misalignment range axis are the left and right lateral misalignment location values, respectively.
It can be observed that the vehicle’s position is always above or below the origin point (0 cm). This is
because a tolerance range has been assigned in the fuzzy steering controller, which is £1.7 cm at the
origin point. If the desired position was set at the origin point (0 cm), it can be expected that continuous
steering oscillations will occur, which is undesirable for both the vehicle’s safety and comfort.

Misalignment
Range (cm)

i i i i
0 5 10 15 20 25 30
Time(sec)

Figure 25. Estimated misalignment range from the ACAS controller based on voltage readings and the
left/right position given by the sensor coil.
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Based on the estimated lateral misalignment values, the steering can be controlled, as shown in
the experimental vehicle’s recorded data in Figure 26. It should be noted that the experimental setup
differs greatly from a real driving environment, because the vehicle’s lateral position was forcibly
changed using the acrylic plate. However, the test demonstrates that the fuzzy controller designed
in [24] outputs a steering value corresponding to the lateral misalignment position, thus verifying the
feasibility of the operating concept of the autonomous steering control.

20 T T T T T

Steering(deg)

i i i i
5 10 15 20 25 30
Time(sec)

Figure 26. Steering angle output generated by the Fuzzy steering controller designed in [24] based on
the estimated lateral misalignment shown in Figure 22.

Figure 27 shows the estimated power received in the load coil of the experimental vehicle.
The estimated power is the product of voltage and current. The voltage was measured by a digital
voltmeter installed in the vehicle. The current can be calculated by finding the relationship function
between voltage and current based on Figure 24. The figure shows that when the vehicle’s load coil is
aligned with the source coil, roughly 11 W of power is received, and when the vehicle is at a =5 cm
lateral misalignment, the received power falls to roughly 4 W. This indicates that the received power is
reduced by more than two thirds of its maximum level, which can result in a significant loss in the
vehicle’s driving range.

Estimated
Power(W)

i i i i
0 5 10 15 20 25 30
Time(sec)

Figure 27. Estimated power received by the load coil of the experimental vehicle during the
second experiment.

To show the significance of the ACAS, an analysis comparing the generated energy of a vehicle
with ACAS and without ACAS was conducted. Here, two assumptions are made:

1. For the vehicle without ACAS, the estimated power shown in Figure 27 was assumed to be the
level of power that would actually be received by the DWC vehicle while in operation.

2. For the vehicle with ACAS, it was assumed that a constant 11W of power is generated, as the
vehicle’s load coil is kept in constant alignment with the source coil on the road.
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Based on these two assumptions, an analysis comparing the energy accumulated by the vehicle
with ACAS and the vehicle without ACAS was conducted, and the results are shown in Figure 28.
The recorded accumulated energy at the 30 second mark (shown in Figure 28) is 0.067 Wh for the
vehicle without ACAS, and 0.091 Wh for the vehicle with ACAS, respectively. Assuming that the
experiment continued at this rate for an hour, the total accumulated energies would be 8.04 Wh and
10.92 Wh for the vehicle without ACAS and the vehicle with ACAS, respectively. Based on these
values, the vehicle with the ACAS received 26% more accumulated energy than the vehicle without

the ACAS.
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Figure 28. Comparison of estimated energy accumulated by a vehicle with ACAS and a vehicle without
ACAS (based on generated power in the load coil shown in Figure 24).

5. Conclusions

This paper has proposed an ACAS for EVs with DWC to maximize the power delivered to the
load coil, by keeping the vehicle aligned with the source coil as much as possible. The proposed ACAS
system was verified through simulations and experiments. Two separate experiments were conducted
at different power levels. One was conducted at ~90 W, and the other at ~10 W. The experiments
verified the operating concept of the sensor coil, which is the key component used to determine the
left/right side misalignment. In addition, an analysis based on the results of the second experiment
demonstrated the advantage of the proposed ACAS in the vehicle, where 26% more energy could
be accumulated by keeping the vehicle’s load coil aligned with the source coil. By incorporating an
improved steering controller which has a faster response to the vehicle’s characteristics, it can be
expected that more energy could be saved. The ACAS provides a solution to resolve the reduction
in power received in the load coil during DWC due to misalignment, and ultimately provide higher
efficiency and longer driving ranges for EVs with DWC.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1073/10/3/315/s1,
Video S1: video showing the overall operation of the autonomous coil alignment system (ACAS). It can be
seen that the vehicle’s steering position is autonomously adjusted once significant misalignment is detected.
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Abstract: Electric vehicles have become increasingly popular in recent years due to our limited
natural resources. As a result, interest in climate control systems for electric vehicles is rising rapidly.
According to a variety of research sources, the heat pump air conditioning system seems to be a
potential climate control system for electric vehicles. In this paper, an extensive literature review
has been performed on the progress in heat pump air conditioning systems for electric vehicles.
First, a review of applications of alternative environmentally friendly refrigerants in electric vehicles
is introduced. This is followed by a review of other advanced technologies, such as the inverter
technology, innovative components and the system structure of the heat pump air conditioning
system for electric vehicles. Lastly, recent developments in multiple source heat pump systems are
presented. The use of these advanced technologies can provide not only sufficient refrigerating
capacity for the electric vehicle, but also higher climate control system efficiency. We believe that
ideal practical air conditioning for electric vehicles can be attained in the near future as the mentioned
technical problems are gradually resolved.

Keywords: air conditioning; heat pump; electric vehicle; heat source

1. Introduction

Due to pollution reduction and greenhouse gas emission reduction policies, fully electric vehicles
(EVs) are being strongly promoted. In both EVs and internal combustion engine vehicles, a comfortable
cabin environment is essential for passengers. However, in consideration of the absence of heat from
the engine coolant in EVs, an innovative air conditioning (AC) system design must be provided.
In recent years, solutions for the AC system in fully EVs have been studied extensively.

Some authors have presented the thermoelectric AC, whereby the vehicle cabin can be cooled and
heated by thermoelectric modules, which have the advantage of having no moving parts, no noise,
long life, small size and precise temperature control [1,2], but this technology has not been accepted
due to poor efficiency. Currently, it is used only in seat heating and cooling in some luxury cars.
In addition, this technology is applied to short-distance small EVs in view of limited resources and the
low figure of merit of thermoelectric materials [3].

The simplest solution is to use an electric compressor instead of a mechanical compressor for
cooling, meanwhile a positive temperature coefficient (PTC) heater is adapted to provide heating in
place of the engine coolant heater core [4-6]. A 42V electric AC system was proposed. The system
consisted of a compressor, a blower, an integrated PTC heater, an inverter, pipes and some heat
exchangers [5]. The cabin temperature would initially decline quickly and then change more
consistently. The results showed the 42 V electric AC system could maintain a stable and comfortable
interior environment under hot weather conditions. Moreover, it could achieve a relatively better
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thermal environment than the AC system used in conventional vehicles under very cold weather
conditions. Although the PTC heater could provide sufficient heat energy to warm up the cabin,
its energy was derived from battery electricity. It resulted in 24% losses of the driving range for
fully EVs due to the low energy efficiency of PTC heaters [7]. A fuel fired heater was another option
proposed for heating without electricity consumption, but it did not meet environmental demands.

Much research has focused on the heat pump AC system. It is based on the vapor compression
cycle, which provides both cooling and heating capacity by adopting a 4-way valve that reverses the
direction of refrigerant flow. Lee [8] declared that the power consumption of a heat pump system was
about one third that of the electric PTC heating system for the same heating capacity. Moreover, the
coefficient of performance (COP) of a heat pump AC system is larger than 1, so the heat pump AC
system seems to be a more reasonable solution than other climate control systems proposed for EVs [9].

Various studies have been performed to enhance the heat pump AC system efficiency, especially
the heating performance when faced with low outdoor temperatures. Besides the single air source
heat pump AC system, multiple source heat pump AC systems have been developed for EVs. These
systems can supply sufficient cooling or heating capacity while minimizing the influence of the AC
system on driving ranges.

It is the intent of this paper to review the most recent progress concerning heat pump AC
technologies for EVs. This review is broadly divided into two key categories and will be systematically
organized. First, single source heat pump AC systems for EV applications are introduced. In this
section, several advanced technologies and strategies concerning single air source heat pump AC
systems are comprehensively reviewed. Second, multiple source heat pump AC systems are analyzed.
These systems are applied for all possible heat sources in EVs to enhance the heating capacity under
very low outdoor temperature conditions, as well as to achieve high energy efficiency. Finally,
conclusions are drawn based on the various reviews and analyses.

2. Single Source Heat Pump AC Systems

Considering its convenient replacement, low cost and easy maintenance, the single source heat
pump AC system is still dominant in EVs, especially in mild climate areas. However, the heat pump AC
system, which only involves the necessary modifications based on conventional vehicle AC systems,
has low system efficiency [10]. Therefore many scholars have presented innovative technologies in
various aspects.

2.1. Alternative Refrigerants

At present, the refrigerant R134a, which has a global warming potential (GWP) of 1300, is still
dominant in automotive AC systems, but for future environmental considerations, the Kyoto and
Montreal protocols have banned or limited the use of chemical refrigerants [11]. Similarly, the European
Union has passed regulations to restrict the use of refrigerants with a GWP higher than 150 in mobile
AC systems [12]. A directive for the gradual phase-out of high GWP refrigerants in mobile AC systems
was ratified in 2007 and went into effect at the beginning of 2008 [13]. In light of this situation,
automotive AC systems using other potential substitute refrigerants have been studied [14]. CO; is one
of the most studied options since it has adequate thermophysical properties with no ozone depletion
potential (ODP) and a GWP =1[15,16]. As a result, more and more authors are devoted to investigating
automotive AC systems using CO; as a refrigerant. Prototype CO, automotive AC systems were
presented in [17,18]. They concluded that, in the heat pump mode, high capacity and COP can also
be achieved at low ambient temperature and with high air supply temperature to the passenger
compartment [19]. Furthermore, the system performance was equal or superior to that of the current
R134a system [20]. The cooling COP ratio to R134a system was 1, while the heating/dehumidifying
COP ratio was 1.31. Kim et al. [21] studied the effects of operating parameters on the performance of a
CO, AC system for vehicles with various operating conditions, which include different gas cooler inlet
pressures, compressor speeds and frontal air temperatures/flow rates passing through the evaporator
and the gas cooler. They also proposed an algorithm for optimum high pressure control for the

transcritical CO; cycle to achieve a maximum COP.
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Although CO, AC systems have special benefits, they have some disadvantages, such as low
critical temperature and high operating pressure [22]. Other problems in defrosting of exterior heat
exchangers and performance deterioration under cold ambient temperature conditions exist in CO,
automotive heat pump systems as well as R134a heat pump systems. By re-arranging the radiator
and outdoor heat exchangers of the CO; heat pump system in electric cars, the heating capacity and
COP were increased by 54% and 22%, respectively [23]. To enhance cooling performance, Lee et al. [24]
presented an electrical AC system with CO, that used an inverter-driven compressor. The cooling
capacity and COP of this tested system were increased by 36.8% up to 6.4 kW and by 30.3% up to
2.5 kW, respectively. Ma et al. [25] conducted a thorough review of the CO, heat pump and refrigeration
cycle. They concluded that some modifications, such as using an internal heat exchanger, two-stage
compression, and expansion work recovery as well as enhancing heat transfer, could improve the CO,
transcritical cycle performance to a level similar to that of a conventional heat pump system.

In addition to using CO,, other possible refrigerants in the heat pump AC system include R1234yf,
R152a, R290, R245fa and water [26-29]. The performance of the R1234yf “drop-in” automotive AC
system was analyzed and compared with that of systems with CO, and R32 by experimentation
and simulation [30]. The COP and capacity of R1234yf system were up to 2.7% and 4.0% lower than
those of R134a system, respectively, while the compressor discharge temperature and amount of
refrigerant charge were 6.5 °C and 10% lower than those of R134a system [31]. Consequently, the
R1234yf “drop-in” AC system was the most feasible candidate for automobiles from the standpoint of
system performance and operating conditions. However, more work must be completed before the
R1234yf system can be widely accepted in EVs [31-33]. Ghodbane [34,35] presented the secondary
loop system using R152a as the working fluid in mobile climate control systems. This system showed
a very good cooling and heating performance, but had a slower response to load changes, complex
system connections and a high cost.

2.2. Application of Inverter Technology

Frequency variation technology, a common way to save energy, is also widely used in AC systems.
An R134a automotive AC system capable of operating as an air-to-air heat pump is described in
Figure 1 [36].
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Figure 1. Schematic diagram of the experimental automotive air conditioning/heat pump system [36].
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This system was tested by varying the compressor speed. The conclusions showed that both the
heating and the cooling capacities of the system increased with the rise of compressor speed, whereas
the COPs in both cases decreased. Jabardo et al. [37] also reported an automotive AC system equipped
with a variable capacity compressor run by an electric motor controlled by a frequency converter. The
impact on system performance of operational parameters such as compressor speed, return air in the
evaporator and condensing air temperatures, was experimentally evaluated and simulated by means
of the developed model. To better develop the inverter AC system, all factors which influence the
performance of the variable frequency AC system have been discussed in [38]. Effects of compressor
frequency on the performance and parameters are shown in Figure 2. At a fixed ambient temperature
and heat transfer area of heat exchangers, the cooling capacity and power consumption increased as
the compressor frequency increased. In contract, the energy efficiency ratio (EER) initially increased
but subsequently decreased, so the compressor frequency should be increased in order to improve the
cooling capacity, while it should be decreased in order to reduce power consumption. These results
are very useful for optimizing the design, and automatically controlling and diagnosing exceptions in
the operation of variable frequency AC systems.

11000 —&— 100*Condensing temperature (°C)
—e— [00*Evaporating temperature (°C)
9000 —a— Cooling capacity (W)
—— Power consumption (W)
7000 ¢ 1000%EER

Parameters
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Compressor frequency(Hz)

Figure 2. Effects of compressor frequency on the performance and parameters [38].

In addition to variable-speed compressors, adjusting the fan speed can lead to further performance
and efficiency improvements. Lee et al. [39] focused on the effect of outdoor coil fan speed on the
performance variation of the heat pump system adopting the hot gas bypass method. The integrated
heating capacity with hot gas bypass was highest at 60% (780 rpm) fan speed. This value was
4.4% higher than that of the constant speed fan. On the other hand, the averaged COP of the heat
pump in this case was higher by 2.8% than the constant speed fan. As mentioned in [40], three
frequency converters were equipped to control the speeds of the compressor, the evaporator fans
and the condenser fans, respectively. The analysis showed that the three speeds could be adjusted
simultaneously according to both actual working conditions and operation mode so that the AC system
could operate in an optimum state, but in practical applications only one fan speed and compressor
speed need to be modulated in real-time, considering hardware costs and system complexity.

Advanced control algorithms have also been studied by many authors. Yeh et al. [41] proposed
two control algorithms. The first algorithm, which modulated the outdoor fan speed, could enhance
the steady-state power efficiency. The second algorithm, which added one more degree of freedom to
control by modulating the indoor fan speed, could improve the transient response. The performance
of the AC system could be improved if both algorithms were simultaneously implemented in the way
that the second algorithm was responsible for the control action during the startup/transient phase
of operation, and the first algorithm took over at steady state. Shi et al. [42] described three control
algorithms for the inverter AC system: the matrix control, the system-relative commands control
and the fuzzy control. Moreover, to realize comfort and system energy efficiency, they explained
the mechanism to regulate the running speed of the compressor, indoor and outdoor fans, and the

opening of the expansion valve. As shown in Figure 3, an artificial neural network-based controller
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was developed to simultaneously control the indoor air temperature and humidity by varying the
compressor speed and supply fan speed [43]. The controllability tests including command following
test and disturbance rejection test showed that the artificial neural network-based was able to track
changes in setpoints and to resist disturbances with an adequate control accuracy. Although these
control algorithms are mainly applied in building AC systems, in theory, they are also suitable for the
AC systems of EVs.

Refrigerant flow
Condenser
Variable speed
COmpressor, ( ‘ o)
‘ VSDf = == -emmmmmnn -- EEV
Variable speed
supply fan
Evaporator il
=== =1 ANN-based
A v controller
)
E E Conditioned space
L :
Tao Two LGU Air flow

Figure 3. Schematic diagram of the artificial neural network-based controller arrangement [43].

2.3. Novel Components

Many scholars have focused on improving the performance of diverse components and parts
of the heat pump AC, especially the compressor and heat exchangers. The electric scroll compressor
is the most common type used in the AC systems of EVs. It has been widely accepted automakers
like Toyota, BYD, Denso and so on [44—47]. Makino et al. [48] developed an electric compressor with
various technologies as shown in Figure 4. This compressor had high reliability, low vibration and
noise, small size and light weight, and high efficiency. At the same time, it showed superior comfort
and cooling performance, equivalent to that of current engine-driven compressors. To further enhance
the electric compressor performance and efficiency, the drive motor was included in [49-51]. Besides of
the electric scroll compressor, other types of compressors were also proposed for the EV heat pump AC
system. Wei et al. [52] presented experimental investigations of an EV heat pump AC system separately
integrated with a swash plate variable displacement compressor, a scroll compressor and an electric
scroll compressor. For the ambient temperature of —10 °C, the average vehicle cabin temperatures were
12 °C, 10 °C and 5 °C, respectively. The conclusions showed that, when the ambient temperature was
below —10 °C, the average vehicle cabin temperature using the swash plate based system was higher
than using the other two options. That is to say, the swash plate variable displacement compressor
is a good choice for an EV heat pump AC system in low temperature environments. A type of vane
compressor with double working cavities that was driven by a frequency modulated electric motor
was designed in [53]. There was no obvious difference in performance between the new compressor
and the electric scroll compressor, while the former compressor was distinctive in simple structure,
manufacture and assembly. Therefore, it can be applied to EV heat pump AC systems instead of the
electric scroll compressor. In [54], a miniature electrically driven turbocompressor was presented.
The measurements showed that the heating, ventilation, and AC system with this turbocompressor had
an ultra-compact size and high efficiency. Sakai et al. [55] developed a 2-way driven compressor, but
this compressor can only be used in hybrid EVs. Although these novel compressors were developed,
there are more tasks that must be completed before they can be widely applied in EVs, except for the
electric scroll compressor.
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Figure 4. Main element technologies of the electric compressor [48].

In addition to compressors, heat exchangers also have research highlights. Cummings et al. [56]
performed a comprehensive review of testing of AC heat exchangers in vehicles. They evaluated the
actual performance of condensers and evaporators of AC systems through wind tunnel testing and
road tests. Huang et al. [57] investigated the frosting characteristics of an air-source heat pump by
varying the fin type of the outdoor heat exchanger. Under frosting conditions, the decreasing orders
of both the average and the maximum values of the heating capacity, COP and input power were
flat, wavy and wavy/slit fins. The average values of heating capacity, COP and input power for the
wavy/slit fins, compared with the flat fins, were decreased by 14.57%, 8.26% and 7.11%, respectively.
This conclusion provides a basis for selecting the fin type for outdoor heat exchangers. AC systems
with micro-channel heat exchangers were proposed in [58-60]. The representative micro-channel
evaporator is shown in Figure 5 [60].

a Refrigerant OUT - * Refrigerant IN

Alr Flow >
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Figure 5. Schematic diagram of the microchannel evaporator: (a) Front view (left) and side view (right)
of the microchannel evaporator; (b) Louver fin used in the microchannel evaporator; (c) Microchannel
tube [60].
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Compared with the use of fin-tube heat exchangers, the cooling and heating efficiencies of heat
pump AC systems were increased by at least 20% with the use of micro-channel heat exchangers over
a constant heat transfer area [58]. Besides higher-efficiency, the micro-channel heat exchangers have
other advantages such as a neeed for less refrigerant charge, compactness and low cost. The heat
pump AC system (using micro-channel heat exchangers) was applied to EVs by Wu et al. [61]. They
concluded that the size of the indoor and outdoor heat exchangers decreased by 57.6% and 62.5%,
respectively, so the AC weight was effectively reduced, which contributed to an increase in the mileage
of the EV. At the same time, this system could cut the refrigerant charge by 26.5%, which reduced the
greenhouse effect. The disadvantages of this system were also presented in this paper. The AC system
frequently worked on the defrosting cycle in cold weather conditions, which immensely affected the
heating capacity and the heating performance coefficient. Denso developed an ejector integrated
evaporator, as shown in Figure 6, to reduce the power consumption of vehicle cabin AC systems [62].
The ejector system was introduced into the market May 2009. However, the noise and the temperature
distribution were two main challenges in developing an evaporator with integrated ejector.

Connecting

Capillary Tube

Downwind
Evaporator Air flow
% Direction
Upwind
Evaporator

Refrigerant flow

Figure 6. Ejector evaporator structure [62].

2.4. Innovative System Structure

Reforming the integral structure of the heat pump AC system for the EV is also a widely popular
approach. Wang et al. [63] adopted three heat exchangers instead of a four-way valve to achieve
cooling and heating for an EV cabin. They concluded that the heat pump AC system with three heat
exchangers had advantages in demisting and dehumidifying, but the capacity and COP of this system
were slightly lower than that of the heat pump AC system with a four-way valve. Suzuki ef al. [47]
proposed a representative system structure of the AC system for EVs. The construction and mechanism
are shown in Figure 7.
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Figure 7. Air conditioning system structure and operation for electric vehicles [47].

With the two heat exchangers in the interior unit, the system could not only provide cooling,
heating and demisting/dehumidifying, but also ensure safe driving when the operation mode was
switched from cooling to heating. Subsequently, Xie and Min et al. measured the performance of
this representative heat pump AC system [64,65]. In [66], an internal heat exchanger was installed in
an automobile AC system to improve system performance. In [67,68], a suction line heat exchanger
was added to a car AC system. The results showed that both the capacity and the COP could
be improved by up to 25%, while the compressor discharge temperatures were also increased.
Furthermore, Ahn et al. [69] compared the performance of the AC, heat pump and dual-evaporator
heat pump systems, which were all combined with a heater. The experimental results showed
that the dual-evaporator heat pump system as shown in Figure 8, had a superior performance
in the dehumidifying and heating operation compared with the other two systems. The specific
moisture extraction rate and COP of the dual-evaporator heat pump system were 53% and 62% higher,
respectively, than those of the heat pump system at the indoor air wet bulb temperature of 13 °C.
Moreover, the specific moisture extraction rate and COP of the heat pump system were 154% and
180% higher, respectively, than the AC system at the indoor air wet bulb temperature of 15 °C.
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Figure 8. Schematic diagram of the dual-evaporator heat pump system for electric vehicles [69].
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A dual-loop cooling and heating system for automotive applications was designed and
fabricated [70,71]. The structure and flow diagram of the dual-loop system in cooling mode are
shown in Figure 9 [70]. In addition to the main refrigeration loop, the system had two separate
secondary fluid loops using a 50% glycol-water mixture to exchange energy with the refrigeration
loop. The experimental results showed that the COP of this system varied from 0.9 to 1.8 in cooling
mode, while for the heating mode it varied from 2 to 5, depending on the outdoor air conditions.
A heat pump cycle with an economizer and a modified reciprocating was introduced [72]. For mobile
application, the heat pump with Voorhees economizer demonstrated better performance compared
to the conventional heat pump without economizer when the evaporating temperature is lower
than —20 °C. It could increase the capacity at low ambient temperatures of more than two times.
Wang [73] took the two-stage cycle technology and applied it in a rail vehicle AC. Li et al. [74,75]
presented a low temperature heat pump AC system for fully EVs based on the two-stage compression
refrigeration cycle as shown in Figure 10. They studied the characteristics of this system by simulation
and experimentation. The results revealed that, when the environment temperature was —20 °C,
the system could still run normally with a COP of 1.5. At the same time, it also possessed good
performance under standard cooling and heating condition [75]. That is to say, this system could
steadily and efficiently extend its operating range.
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Figure 9. Ejector evaporator structure [70].
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Figure 10. Schematic of gas-mixing heat pump system for fully EVs [74].

The improvement of defrosting method in addition to using the two-stage cycle technology to
increase the heating performance, was another research hotspot. As described in [76,77], defrosting
the heat supply and energy consumption adversely impacted the heating performance. To decrease
this influence, Qu et al. [78] reported two control strategies for the electronic expansion valve. They
investigated the two control strategies effects on reverse-cycle defrosting performance of an air source
heat pump. Zhang et al. [79] compared the three defrosting methods, i.e., reverse cycle defrosting, hot
gas bypass defrosting and phase change thermal energy storage defrosting. The experimental results
indicated that the defrosting method, which used phase change thermal energy storage, could shorten
defrosting time and reduce energy consumption [80].

3. Multiple Source Heat Pump AC Systems

The single source heat pump AC system can be qualified to heat and cool for EVs in most weather
conditions by the abovementioned methods. However the heating capacity and heating COP drop
sharply with decreasing outdoor temperature. The heating capacity is insufficient in extremely cold
weather. To solve these problems, many authors have proposed multiple source heat pump systems.

3.1. Additional Waste Heat Source

Waste heat discharged from electric devices, such as motors, batteries and inverters of fully EVs,
is available. However, it is greatly insufficient for heating the cabin directly. To maximize the use
of the waste heat, an integrated climate control system was developed by Groupe Enerstat Inc. [81].
The test results showed that the use of a dual source heat pump, which uses both air and waste heat,
was one of the best methods for EVs. Promme [82] proposed a reversible heat pump system with an
additional heat source which could utilize the waste heat of the battery, driven electric motor and
electronic control unit. Ahn and Woo [83,84] investigated a dual source heat pump (using both air and
waste heat) in EVs, which is shown in Figure 11.
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Figure 11. Schematic diagram of the dual heat source heat pump [83].

They compared the heating performance of the dual source heat pump in various operation modes:
air source-only, waste heat-only and dual heat sources. The experimental results indicated that the
heating capacity and COP in the dual source heat pump were increased by 20.9% and 8.6%, respectively,
compared to those of the air source-only heat pump system, while it became very close to the waste
heat-only mode at low outdoor temperature. Cho et al. [85] measured the heating performance of a
coolant source heat pump, which used waste heat from electric devices on an electric bus. As shown
in Figure 12, the test setup was composed of a refrigerant loop, an air circulation loop, and a coolant
loop. Both an evaporator and a condenser, with plate heat exchangers, were installed for the purpose
of exchanging heat between the refrigerant and the coolant source using the waste heat from the
electric devices. The same heat transfer mechanism was adopted in [86,87]. Besides of the feasibility of
integrating a heat pump into the AC system of the EV, both cooling and heating performances under
various experimental conditions, including variations in outdoor and indoor temperatures, the water
flow rate for the condenser and the evaporator sides, were investigated [86]. The system was also
optimized by varying the refrigerant charge and the compressor frequency as well as using a control
algorithm for operational energy management. The proposed heat pump AC system could meet target
power capacities which had been set as 28 kW of cooling and 26 kW of heating with COPs of more than
1.6 for cooling and 2.6 for heating, which were required for system energy efficiency and customer
comfort [87]. The target energy consumption by cooling and heating had been met at less than 20%
and 25% of the total electrical energy consumption of the electric bus, respectively. Zou et al. [88] also
presented a heat pump AC system coupled with the battery cooling system. The authors declared that
the battery dissipation heat was not only a useful heat source for the heat pump AC system, especially
at low outdoor temperature, but also an additional cooling load since the ambient temperature was
too high to dissipate the battery heat to the ambient air directly.
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Figure 12. Heat transfer mechanism of the heat pump system using waste heat from electric devices [85].
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Kim and Lee focused on heating performance enhancement of the CO; heat pump system using
waste heat from the stacks in fuel cell EVs [89,90]. In [89], a heater core that used stack coolant was
placed upstream of a cabin heater to preheat incoming air into the cabin heater. The performance of
this heat pump system with heater core was compared with that of a conventional heating system with
heater core and that of a heat pump system without heater core. The heating capacity of the heat pump
system with heater core, which used recovered heat from the stack coolant, was improved by 100%
over the heat pump system without heater core and by 70% over the conventional heating system
with heater core. Furthermore, the coolant to the air heat pump system with heater core showed a
significantly better performance than the air to air heat pump system with heater core. Lee et al. [90]
concluded that when the waste heat from the stack coolant was used as the evaporating heat source,
the heat pump using R744 could provide sufficient heating capacity and heating COP under cold
weather conditions.

3.2. Supplemental External Heat Source

In addition to the waste heat discharged from interior electric devices in EVs, as an assisted heat
source, there are other heat pump combined systems with external heat. Solar-assisted heat pump AC
systems are one interesting option for EV climate control systems since solar cells can not only provide
a heat insulating layer, but also recharge the battery. This concept was also applied to motor train
units by Yin [91]. In [92], a solar controller and an AC controller were designed. The solar controller
managed the battery fatures, such as charging and over-discharging protection, and communicated
with the vehicle control system. The experimental results showed that the solar-assisted heat pump
AC system could operate stably in the heating mode as well as in the cooling mode. In [93], solar cells
covered the roof of a compact car, and could generate about 225 W of power. The solar-assisted heat
pump AC system could improve the refrigerating capacity by about 8%, which significantly reduced
the peak cooling load and the driving mileage losses of the EV. Zhao [94] declared that two hours of
generating electricity capacity by a solar panel could keep the solar-assisted system running for half
an hour.

In [95], a heat pump system with integrated thermoelectric modules was proposed. The authors
discussed the application of this technique to provide supplemental heating for EVs. At an ambient
temperature of —17.8 °C, the integrated automotive AC system could achieve an additional 2 kW of
heating capacity with almost the same COP compared to the heat pump system without thermoelectric
modules. The test results showed that this integrated system could increase the heating capacity in an
energy-efficient way, especially for cold climate operation.

The PTC heater is another additional heat source. Kim et al. [96] investigated a combined system
consisting of a heat pump and a PTC heater as a heating unit in EVs. Compared to the standard of
the PTC heater at an indoor temperature of 20 °C, the heating capacity was increased by 59% for the
combined system, and the COP was increased by 100% for the heat pump system. The conclusions
showed that the heat pump cycle should be always operated for better efficiency, and the PTC heater
should be controlled for better performance. Therefore the PTC heater and heat pump combined
system is an optional AC system for EVs, especially in extremely cold weather conditions.

4. Conclusions

The heat pump AC system seems to be the most reasonable solution to control the climate of EVs,
although there are currently many other solutions used in EVs. In this paper, an extensive literature
review has been performed on the progress of heat pump AC systems for the EV.

Not only single air source heat pump systems, which have been widely considered by many
researchers, have been comprehensively analyzed, but also multiple source heat pump systems have
been included. In single air source heat pump AC systems, many advanced technologies and strategies
were described, such as alternative refrigerants, the inverter technology, novel components, as well as
innovative system structures. These advanced technologies can improve the AC system efficiency and
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vehicle mileage as verified in the cited reports. Furthermore, the multiple source heat pump system is
also a useful method to enhance the cooling/heating capacity and the COP of the AC system in EV,
especially in cold weather conditions. The heat sources include air, waste heat, solar heat, water and
SO on.

Considering the tremendous development in the heat pump AC system field, it is worthwhile to
be mindful that there is no one single technology that can obtain ideal results to control the climate in
an EV all year round. A combination of several of these technologies is still necessary more often than
not. Although some of the innovative technologies described in this paper are still part of on-going
research, we believe the real practical application in EVs is imminent. The integrated heat pump AC
system based on the two-stage CO, cycle, which is equipped with a variable capacity compressor and
uses the waste heat from electric devices as an additional heat source, should be considered for EVs in
the coming research.
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