Fundamental Principles of Environmental Engheering

By Dr. Abdelmeguid E. Aboubaraka

Process selection

Contaminant Properties

Source water quality
Removal efficiency

Reliability

Flexibility
Sustainability and Energy Considerations

Cost

Utility Experience

Successful Operating History

Desired finished-water quality

Life-Cycle Assessment of Water Treatment Facilities

Specific energy consumption during pumping

plant
 operation

operating
 the treatment

 facility (80%)decommissioning the plant after its useful life(1 \%)

Chemicals
and
consumable

Waste

Specific energy
 consumption during pumping

$$
P_{W}=\frac{Q_{F} P}{e}
$$

where $\quad P_{W}=$ power, W (or rate of energy consumption, $\mathrm{kWh} / \mathrm{d}$)
$Q_{F}=$ feed water flow rate, $\mathrm{m}^{3} / \mathrm{d}$ or ML/d
$P=$ pressure, Pa
$e=$ efficiency

$$
P=\rho g h
$$

$$
\text { where } \begin{aligned}
& \rho=\text { density of fluid, } \mathrm{kg} / \mathrm{m}^{3} \\
& g=\text { gravitational constant }, 9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& h=\text { head }, \mathrm{m}
\end{aligned}
$$

Specific energy consumption is the energy consumed per unit volume of water produced and can be calculated from

$$
E=\frac{P_{W}}{Q_{P}}
$$

where $\quad E=$ specific energy consumption, $\mathrm{kWh} / \mathrm{m}^{3}$

$$
Q_{P}=\text { product water flow rate }, \mathrm{m}^{3} / \mathrm{d} \text { or } \mathrm{ML} / \mathrm{d}
$$

$$
r=\frac{Q_{P}}{Q_{F}}
$$

where $\quad r=$ is the recovery.

Calculate the specific energy consumption of the following cases

A- Reverse osmosis (RO) system designed to produce $19,000 \mathrm{~m}^{3} / \mathrm{d}\left(\mathrm{Q}_{\mathrm{p}}\right)$ (5 mgd) at 80 percent recovery. The RO feed pumps operate at 16 bar (232 psi) and 87 percent efficiency

B- Distribution pumps operating at $3785 \mathrm{~m}^{3} / \mathrm{d}$ (1 mgd), 90 m head $(295 \mathrm{ft})$, and 85 percent efficiency.

Solution
Part 1

1. Calculate the feed water flow using

$$
r=\frac{\mathbf{Q}_{p}}{\mathbf{Q}_{r}}
$$

$$
\mathrm{Q}_{\mathrm{F}}=\mathrm{Q}_{\mathrm{p}} / \mathrm{r}=\left(19,000 \mathrm{~m}^{3} / \mathrm{d}\right) /(0.80)=23,750 \mathrm{~m}^{3} / \mathrm{d}
$$

Calculate the pump power

$$
\begin{aligned}
& 1 \mathrm{bar}=105 \mathrm{~N} / \mathrm{m}^{2} \\
& 1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}=1 \mathrm{~W} \cdot \mathrm{~s}, \quad P_{\mathrm{w}}=\frac{Q_{F} P}{e}=\frac{\left(23,750 \mathrm{~m}^{3} / \mathrm{d}\right)\left(16 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)}{0.87(86,400 \mathrm{~s} / \mathrm{d})} \\
& \text { so } 1 \mathrm{kWh}=3.6 \times 10^{6} \mathrm{~N} \cdot \mathrm{~m} \quad=5.06 \times 10^{5} \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}=506 \mathrm{~kW}
\end{aligned}
$$

Calculate specific energy consumption

$$
E=\frac{P_{W}}{Q_{P}}=\frac{506 \mathrm{~kW}(24 \mathrm{~h} / \mathrm{d})}{19,000 \mathrm{~m}^{3} / \mathrm{d}}=0.64 \mathrm{kWh} / \mathrm{m}^{3}
$$

Part Calculate the pressure produced by the pump $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
2

$$
P=\rho g h=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{\mathrm{z}}\right)(90
$$

$$
\mathrm{m})=8.83 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
$$

Calculate specific energy consumption Note that QF = QP so the flow cancels out

$$
E=\frac{P}{e}=\frac{8.83 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}{0.85}\left(\frac{1 \mathrm{kWh}}{3.6 \times 10^{6} \mathrm{~N} \cdot \mathrm{~m}}\right)=0.29 \mathrm{kWh} / \mathrm{m}^{3}
$$

Fundamental Principles of Environmental Engineering

A-Units of Expression for

 Chemical Concentrations
Mass concentration

is expressed as units of mass of a component per volume of solution.

$$
88 \mathrm{~kg}=88 \mathrm{~kg}\left(1000 \frac{\mathrm{~g}}{\mathrm{~kg}}\right)\left(1000 \frac{\mathrm{mg}}{\mathrm{~g}}\right)\left(1000 \frac{\mu \mathrm{~g}}{\mathrm{mg}}\right)=88,000,000,000 \mu \mathrm{~g}
$$

kg to $\mu \mathrm{g}$, the sequence might be any one of the following:

$$
\begin{gathered}
\mathrm{kg} \Rightarrow \mathrm{~g} \Rightarrow \mathrm{mg} \Rightarrow \mu \mathrm{~g} \\
\mathrm{~kg} \Rightarrow \mu \mathrm{~g}
\end{gathered}
$$

A-Units of Expression for Chemical Concentrations

- Molar concentration is preferred, particularly when working with chemical stoichiometry or when the basis for the mass is not clear.
- can be converted to mass concentrations if the molecular weight is known:

$$
[\mathrm{A}](\mathrm{MW})=C_{\mathrm{A}}
$$

Molar concentration

(gram moles per liter)
(gmmols/L).
or molarity [A] Molarity is the number of gram moles of solute per liter of solution

Gram moles = the mass in grams/
the molecular mass
where $\quad[\mathrm{A}]=$ molar concentration of component $\mathrm{A}, \mathrm{mol} / \mathrm{L}$ MW $=$ molecular weight of component $\mathrm{A}, \mathrm{g} / \mathrm{mol}$
$C_{A}=$ mass concentration of component $\mathrm{A}, \mathrm{g} / \mathrm{L}$

Consider calcium carbonate. This substance has a mass density equals $2.6 \mathrm{~g} / \mathrm{cc}$. Suppose, 35 mg is dissolved in a liter of water, find the corresponding molarity.

- The answer
- The mass of 35 mg is 0.035 g .
- Calcium carbonate has a molecular weight of $100 \mathrm{~g} / \mathrm{mol}$;
- thus, 0.035 g is $0.035 / 100=0.00035$ gmol.
- The volume corresponding to 0.35 g is $0.035 / 2.6=0.0135 \mathrm{cc}=0.0000135 \mathrm{~L}$
- the total volume of the mixture is 1.0000135 L .
- the corresponding molarity of 35 mg dissolved in one liter of water is
$\Rightarrow \quad 0.00035 / 1.0000135=0.00035 \mathrm{M}$.

A-Units of Expression for Chemical Concentrations

Mole fraction or mass fraction

- is the ratio of the amount or mass of a given component to the total amount or mass of all components
- are most suitable for concentrated solutions.

$$
X_{A}=\frac{n_{\mathrm{A}}}{\sum_{i=1}^{N} n_{i}}
$$

$$
C_{\mathrm{A}}=\frac{m_{\mathrm{A}}}{\sum_{i=1}^{N} m_{i}}
$$

where
$X_{A}=$ mole fraction of component A
$n_{A}, n_{i}=$ amounts of component A and component i,
$C_{A}=$ mass fraction of component A
$m_{A}, m_{i}=$ mass of component A and component $i, \mathrm{~kg}$
$N=$ number of components

Example

The results of an analysis in a sample of water are shown in the table below. Calculate the mole fractions of the respective species.

lons	Conc (mg/L)
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$	150
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$	12.0
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	216.0

lons	Conc $(\mathbf{m g} / \mathbf{L})$	Molecular Mass	Moles/Liter	Mole Fraction
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$	150	$40.1(2)+2\{1+12+3(16)\}=202.2$	0.74^{a}	0.32^{b}
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$	12.0	$24.3(2)+2\{1+12+3(16)\}=170.6$	0.07	0.03
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	216.0	$23(2)+32.1+4(16)=142.1$	1.52	0.65
		Sum $=\Sigma$	2.33	1.00

a $\frac{150}{202.2}=0.74$
b $\frac{0.74}{2.33}=0.32$

A-Units of Expression for Chemical Concentrations

Mass concentration

Stoichiometric Factors
" X " is a common method of expressing concentration in environmental engineering because water quality parameters are often composed of multiple constituents.

- nitrogen can be present in water as $\mathrm{NH}_{3}, \mathrm{NH}^{+}, \mathrm{NO}^{3-}$, or NO^{2-}, each of which has a different molecular weight
- The concentration of hardness, alkalinity
mg/L chloride as $\mathrm{NaCl}=\frac{\mathrm{mg} \mathrm{Cl}^{-}}{\mathrm{L}} \times \frac{\text { formula weight of sodium chloride }}{\text { formula weight of chlorine }}$

A- Units of Expression for Chemical Concentrations

Normality (N) or equivalents/volume (eq/L)
of analyte dissolved and diluted to a 1-L volume, designated by

$$
N=\frac{m_{\mathrm{A}}}{(\mathrm{EW}) V}
$$

where $\quad N=$ normality of component A, eq/L
$m_{\mathrm{A}}=$ mass of component A, g
$\mathrm{EW}=$ equivalent weight of component $\mathrm{A}, \mathrm{g} / \mathrm{eq}$
$V=$ volume of solution, L

The equivalent weight is expressed as

$$
\mathrm{EW}=\frac{\mathrm{MW}}{z}
$$

where z is the equivalents per mole of the component.
For ionic species in water,
z is equal to the valence; for oxidation-reduction reactions,
z is equal to the number of electrons transferred; and for acid/base reactions,
z is equal to the number of replaceable hydrogen atoms or their equivalent.

Equivalent mass based on ionic charge $\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{CaCO}_{3}$ $+2 \mathrm{H}_{2} \mathrm{O}$ the equivalent mass $\mathrm{OF} \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}$ is MW of $\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2} / 2$

Equivalent mass based on acid-base reactions
$\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{HPO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}$
The equivalent mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is MW of $\mathrm{H}_{3} \mathrm{PO}_{4} / 2$
equivalent mass of NaOH is $\mathrm{MW} \mathrm{NaOH} / 1$

- Equivalent mass based on oxidationreduction reactions

$4 \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}$

- The ferrous is oxidized to the ferric form from an oxidation state of +2 to +3.
- equivalent mass of $\mathrm{Fe}(\mathrm{OH})_{2}$ is then $4 \mathrm{MW} \mathrm{Fe}(\mathrm{OH})_{2} / 4$.
- the equivalent mass of oxygen is MW $\mathrm{O}_{2} / 4$

Equivalent concentration and normality.

- first convert the molar concentration to mass concentration by multiplying it by the molecular mass (MM).
- the equivalent concentration, [C] eq, is
- The concentration expressed as geq/L is the normality.
- Example : The concentration of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ is $0.74 \mathrm{gmol} / \mathrm{L}$. Convert this concentration to geq/L.

$$
\begin{aligned}
{[C]_{\mathrm{eq}} } & =\frac{[C](M M)}{\mathrm{eq} \cdot \mathrm{mass}} \\
{[C] } & =0.74 \mathrm{gmol} / \mathrm{L} \\
M M & =40.1(2)+2\{1+12+3(16)\}=202.2
\end{aligned}
$$

Therefore, eq. mass $=\frac{\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}}{2}=\frac{202.2}{2}$
$[C]_{\text {eq }}=\frac{0.74(202.2)}{\frac{202.2}{2}}=1.48 \mathrm{geq} / \mathrm{L}$

A- Units of Expression for Chemical Concentrations

Log molar concentrations

are used because concentrations often vary
by many orders of magnitude, making
logarithms convenient.
$[\mathrm{C}]=2 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$,
then $\log [C]=-4.7$ and
$[C]=10^{-4.7} \mathrm{~mol} / \mathrm{L}$.

The p notation

the negative of the base-10 log of the value:

$$
p C=-\log (C)
$$

$C=$ is the concentration of a constituent in solution (in mol/L).

The pH of a solution is defined as
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
The p notation can be used for any value, not just concentrations.

Ghendcel

The most important reaction:

- acids and bases,
- precipitation of solids,

Chemical reactions

- complexation of metals,
- oxidation of reduced species
used in water treatment to change the physical, chemical, and biological nature of water to accomplish water quality objectives.

$$
\mathrm{C}+\mathrm{D} \rightarrow \mathrm{~A}+\mathrm{B}
$$

Irreversible reactions consume reactants and form products until one of the reactants is totally consumed. Oxidationreduction reactions
$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$
At equilibrium, both bicarbonate and carbonate can be present in solution and the relative concentration of each will depend on the solution pH

$\mathrm{HCO}_{3}{ }^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$

Reversible reactions are those that proceed until an equilibrium condition is reached; at this equilibrium, both reactants and products may be present.

Symbol	Description	Comments
\rightarrow	Irreversible reaction	Single arrow points from the reactants to the products, e.g., $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$.
\rightleftarrows	Reversible reaction	Double arrows used to show that the reaction can proceed in the forward or reverse direction, depending on the solution characteristics.
[]	Brackets	Concentration of a chemical species in standard units ($\mathrm{mol} / \mathrm{L}$ for aqueous phase).
\{\}	Braces	Activity of a chemical constituent.
(s)	Solid phase	Designates a chemical species present in solid phase, e.g., calcium carbonate, $\mathrm{CaCO}_{3}(\mathrm{~s})$.
(I)	Liquid phase	Designates a chemical species present in liquid phase, e.g., liquid benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$ (I).
(aq)	Aqueous (dissolved)	Designates a chemical species dissolved in water, e.g., ammonia in water, $\mathrm{NH}_{3}(\mathrm{aq})$.
(g)	Gas	Designates a chemical species present in gas phase, e.g., chlorine gas, $\mathrm{Cl}_{2}(\mathrm{~g})$.
$\xrightarrow{\text { x }}$	Catalysis	Chemical species, represented by x, catalyzes reaction, e.g, cobalt (Co) is the catalyst in the reaction $\mathrm{SO}_{3}{ }^{2-}+0.5 \mathrm{O}_{2} \xrightarrow{\mathrm{CO}} \mathrm{SO}_{4}{ }^{2-}$.
\uparrow	Volatilization	Arrow directed up following a component is used to show volatilization of given component, e.g., $\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightleftarrows \mathrm{CO}_{2}$ (g) $\uparrow+\mathrm{H}_{2} \mathrm{O}$.
\downarrow	Precipitation	Arrow directed down following a component is used to show precipitation of given component, e.g., $\mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2-} \rightleftarrows \mathrm{CaCO}_{3}(\mathrm{~s}) \downarrow$.

Example

A groundwater used as a drinking water supply contains $2.6 \mathrm{mg} / \mathrm{L}$ of Fe^{2+}

Calculate the amount of O_{2} that will be needed to oxidize it and the amount of $\mathrm{Fe}(\mathrm{OH})_{3}$ that will be produced.

Assume that the reaction proceeds to completion.

- The answer

> removing Fe^{2+} from water is to oxidize it with oxygen to produce insoluble ferric hydroxide $\left[\mathrm{Fe}(\mathrm{OH})_{3}\right.$] according to the following reaction:

$$
4 \mathrm{Fe}^{2+}+\mathrm{O}_{2}+10 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}+8 \mathrm{H}^{+}
$$

- 1 mol of O_{2} is capable of oxidizing 4 mol of $\mathrm{Fe}^{2}+$;
- it will form 4 mol of $\mathrm{Fe}(\mathrm{OH})_{3}$ and 8 mol of $\mathrm{H}+$.
- Using reaction stoichiometry and the molecular weight of the chemical species to calculate the mass of reactants and products participating in a reaction

The answer

- Determine the molecular weight of each species from the atomic weights
- MW of $\mathrm{Fe}^{2+}=55.8 \mathrm{~g} / \mathrm{mol}$

MW of $\mathrm{O}_{2}=(2) 16.0 \mathrm{~g} / \mathrm{mol}=32.0 \mathrm{~g} / \mathrm{mol}$ MW of $\mathrm{Fe}(\mathrm{OH})_{3}=55.8+(3)(1.0)+$ (3) $(16.0)=106.8 \mathrm{~g} / \mathrm{mol}$

- Calculate the concentration of oxygen required to oxidize the iron.

$$
=(32 * 2.6) /(56 * 4)=0.37 \mathrm{mg} / \mathrm{L} 02
$$

- Therefore, $0.37 \mathrm{mg} / \mathrm{L}$ of O_{2} is capable of oxidizing $2.6 \mathrm{mg} / \mathrm{L}$ of Fe^{2+}
- Calculate the concentration $\mathrm{Fe}(\mathrm{OH})_{3}$ that will be produced. $=2.6^{*} 106.8 / 56=4.98 \mathrm{mg} / \mathrm{L} \mathrm{Fe}(\mathrm{OH})_{3}$
- Therefore, $4.98 \mathrm{mg} / \mathrm{L}$ of $\mathrm{Fe}(\mathrm{OH})_{3}$ will be produced when $2.6 \mathrm{mg} / \mathrm{L}$ of Fe^{2+} is oxidized

Concentration and Activity

The ability of a
species to participate in chemical reactions
depends on its chemical activity
At equilibrium, the amounts of reactants and
products present will depend
on the activity of each species
The activity of a species is related to its
concentration by an activity coefficient:
$\{A\}=\gamma[A]$
where $\{A\}=$ activity of species A
$Y=$ activity coefficient for species A
$[A]=$ concentration of species A

\rightarrow The activity coefficient for ionic species depends on the overall ionic content of the solution, which is characterized by the ionic strength.

The ionic strength is calculated using the equation

$$
I=\frac{1}{2} \sum_{i} C_{i} z_{i}^{2}
$$

where $\quad I=$ ionic strength of solution, $\mathrm{mol} / \mathrm{L}$
$C_{i}=$ concentration of species $i, \mathrm{~mol} / \mathrm{L}$
$z_{i}=$ charge (valence) on species i, unitless

$$
\begin{aligned}
& I=\left(2.5 \times 10^{-5}\right)(\mathrm{TDS}) \\
& I=\left(1.6 \times 10^{-5}\right)(\mathrm{EC})
\end{aligned}
$$

where TDS $=$ total dissolved solids, mg / L $\mathrm{EC}=$ electrical conductivity,$\mu \mathrm{S} / \mathrm{cm}$

Example

For water with an ionic strength of 5 mM (corresponding to TDS of about $200 \mathrm{mg} / \mathrm{L}$), calculate the activity coefficients of $\mathrm{Na}+$ and Ca^{2+} at $25^{\circ} \mathrm{C}$.

For solutions up to $\mathrm{I} \leq 0.5 \mathrm{M}$, Davies equation

$$
\log (\gamma)=-A z^{2}\left(\frac{\sqrt{I}}{1+\sqrt{I}}-0.3 I\right)
$$

where $A=$ constant (for water at $25^{\circ} \mathrm{C}, A=0.50$)

- the activity coefficients for $\mathrm{Na}+$

$$
5 \mathrm{mM}=0.005 \mathrm{M}
$$

$$
\begin{aligned}
\log \left(\gamma_{\mathrm{Na}^{+}}\right) & =-0.50(1)^{2}\left[\frac{\sqrt{0.005}}{1+\sqrt{0.005}}-0.3(0.005)\right]=-0.0323 \\
\gamma_{\mathrm{Na}^{+}} & =10^{-0.0323}=0.93
\end{aligned}
$$

- the activity coefficient for Ca^{2+}

$$
\begin{aligned}
\log \left(\gamma_{\mathrm{Ca}^{2+}}\right) & =-0.50(2)^{2}\left[\frac{\sqrt{0.005}}{1+\sqrt{0.005}}-0.3(0.005)\right]=-0.129 \\
\gamma_{\mathrm{Ca}^{2+}} & =10^{-0.129}=0.74
\end{aligned}
$$

The charge on the species has a large influence on the value of the activity coefficient.

Equilibrium Constants

$$
a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}
$$

where $a, b, c, d=$ stoichiometric coefficients of species A, B, C, D, respectively, unitless

$$
K=\frac{\{\mathrm{C}\}^{c}\{\mathrm{D}\}^{d}}{\{\mathrm{~A}\}^{a}\{\mathrm{~B}\}^{b}}
$$

where
$K=$ equilibrium constant
$\}=$ activity of species
$a, b, c, d=$ stoichiometric coefficients of species A, B, C, D, respectively

$$
K=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}
$$

$$
\mathrm{p} K=-\log (K)
$$

- Example

Calculating concentrations using equilibrium constants

- Sodium hypochlorite (NaOCl) is added to water as a disinfectant.

Upon addition, it immediately dissociates according to the following reaction:

$$
\mathrm{NaOCl} \rightarrow \mathrm{Na}++\mathrm{OCl}-
$$

The hypochlorite then participates in the following reversible acidbase reaction:
$\mathrm{HOCl} \rightleftarrows \mathrm{H}++\mathrm{OCl}-\quad \mathrm{pKa}=7.6$
The strength of hypochlorite as a disinfectant depends on which species is present; thus, it is important to know how much is present as HOCl and how much as OCl - at equilibrium.

- If $2 \mathrm{mg} / \mathrm{L}$ of NaOCl is added,
- Determine how much is present as each species at pH 7.0.

Solution

Calculate the molar concentration of NaOCl
the MW of NaOCl can be determined to be $74.5 \mathrm{~g} / \mathrm{mol}$

Total OCl- $=[\mathrm{NaOCl}]=2 \mathrm{mg} / \mathrm{L} /(74.5$ $\mathrm{g} / \mathrm{mol})\left(10^{3} \mathrm{mg} / \mathrm{g}\right)=2.68 \times 10^{-5} \mathrm{M}$
pKa $=7.6=-\log 7.6=10-7.6$
$\mathrm{Ka}=\frac{[\mathrm{H}+]\left[\mathrm{OCl}^{-}\right]}{[\mathrm{HOCl}]}=10-7.6$

- Determine the ratio of [$\mathrm{OCl}-$] to [HOCl] at $\mathrm{pH}=7.0$.
at $\mathrm{pH} 7=-\log 7=10-7$
- hydrogen ion concentration $[\mathrm{H}+$] at pH 7.0 is equal to $10^{-7} .0 \mathrm{M}$
$\frac{[\mathrm{OCl}-]}{[\mathrm{HOCl}]}=\frac{\mathrm{Ka}}{[\mathrm{H}+]}=\frac{10^{-76}}{10^{-7}}=10^{-.06}=0.25$
- At $\mathrm{pH}=7.0,25$ percent of the total hypochlorite added is present as $\mathrm{OCl}-$ and the rest is present as HOCl .
- $[\mathrm{OCl}-]=0.25\left(2.68 \times 10^{-5} \mathrm{M}\right)=6.71 \times$ $10^{-6} \mathrm{M}=6.71 \mu \mathrm{M}$
- $[\mathrm{HOCl}]=0.75\left(2.68 \times 10^{-5} \mathrm{M}\right)=2.01 \times$ $10^{-5} \mathrm{M}=20.1 \mu \mathrm{M}$

Chemical Kinetics

Chemical kinetics is the study of the rate at which chemical reactions take place, that is, the speed at which reactants are consumed and products are formed.

$$
a \mathrm{~A}+b \mathrm{~B} \rightarrow \text { products }
$$

The rate equation for the reaction in Eq. $4-25$ is

$$
r_{\mathrm{A}}=-k\{\mathrm{~A}\}^{m}\{\mathrm{~B}\}^{n}
$$

where $\quad k=$ reaction rate constant, units vary (see below) $m, n=$ reaction order constants, unitless

Two common forms of rate equations :

First-order reactions depend on the activity of only one species and have the rate equation

$$
r A=-k\{A\}
$$

where $k=$ first-order reaction rate constant, s^{-1}
Second-order reactions depend on collisions of two molecules of the same species or on collisions between molecules of two different species

$$
\begin{aligned}
& r_{\mathrm{A}}=-k\{\mathrm{~A}\}^{2} \\
& r_{\mathrm{A}}=-k\{\mathrm{~A}\}\{\mathrm{B}\}
\end{aligned}
$$

where $k=$ second-order reaction rate constant, $\mathrm{L} / \mathrm{mol} \cdot \mathrm{s}$

Reactions Used in Water Treatment

Acid-base reactions

- Acid-base reactions involve the transfer of a hydrogen ion, or proton, between two species.

$$
\mathrm{HA} \rightleftarrows \mathrm{H}^{+}+\mathrm{A}^{-}
$$

where $\mathrm{HA}=$ acid species
$\mathrm{H}^{+}=$hydrogen ion (hydrated proton, i.e., $\mathrm{H}_{3} \mathrm{O}^{+}$)
$\mathrm{A}^{-}=$conjugate base species
-
the carbonate system is one of the most important acid-base systems in natural waters and loses two protons

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \\
& \mathrm{HCO}_{3}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}
\end{aligned}
$$

- Acid-base reactions are very fast (reaching equilibrium in less than a second), reversible reactions.
- The acid species and the conjugate base can exist simultaneously, depending on the pH of the solution.
- The equilibrium constant for an acid-base reaction is known as the acid dissociation constant, Ka

Precipitation= Dissolution Reactions

- In water treatment processes, dissolved contaminants can be removed by causing them to precipitate and the removing the solids from water
- The equilibrium constant between a solid and its ions in solution is known as the solubility product.
- EX: Water containing calcium bicarbonate and calcium sulfate is softened using lime and soda ash

$$
\begin{aligned}
& \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CaSO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

- The equilibrium constant between a solid and its ions in solution is known as the solubility product.

$$
A_{a} B_{b} \rightleftharpoons a A+b B
$$

$$
K=\frac{\{A\}^{a}\{B\}^{b}}{\left\{A_{a} B_{b}\right\}}
$$

$$
K_{s p}=\{A\}^{a}\{B\}^{b}
$$

At equilibrium, neither reactants nor products increase or decrease with time. Thus, Ksp's, being constants, can be used as indicators whether or not a given solid will form or dissolve in solution.

- For example,
- CaCO_{3} has a Ksp of $4.8\left(10^{-9}\right)$ at $25^{\circ} \mathrm{C}$. This value decreases to $2.84\left(10^{-9}\right)$ at $60^{\circ} \mathrm{C}$. The equilibrium reaction for this solid is

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{Ca}^{2+}+\mathrm{CO}_{3}^{2-}
$$

$$
\begin{aligned}
K_{s p} & =\left\{\mathrm{Ca}^{2+}\right)\left(\mathrm{CO}_{3}^{2-}\right\}=4.8\left(10^{-9}\right) \text { at } 25^{\circ} \mathrm{C} \\
& =\left\{\mathrm{Ca}^{2+}\right)\left(\mathrm{CO}_{3}^{2-}\right\}=2.84\left(10^{-9}\right) \text { at } 60^{\circ} \mathrm{C}
\end{aligned}
$$

- This means that there are fewer particles of the ions existing than required to maintain equilibrium at this higher temperature.
- As a consequence, some of the particles will combine to form a precipitate, the CaCO_{3} solid.
- The general expression
- OxA + ne- \rightarrow RedA
- where $O x_{A}=$ oxidized species A
- $\mathrm{n}=$ number of electrons transferred $\mathrm{e}-=$ electron Red
- Oxidized species A is called an oxidant (or electron acceptor)
- The half reaction for the oxidation of a species
- Redв \rightarrow Охв + ne-
- Oxв $=$ oxidized species B
- RedB = reduced species B
- Reduced species B is called a reductant (or electron donor)
- overall oxidation-reduction reaction

$$
\begin{gathered}
\mathrm{OXA}+\mathrm{RedB}_{\mathrm{Cl}} \rightarrow \mathrm{OXB}+\mathrm{Red}_{\mathrm{A}} \\
4 \mathrm{Fe}^{2+}+\mathrm{O}_{2}+10 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}+8 \mathrm{H}^{+}
\end{gathered}
$$

