HVAC Chillod Water Pipe Size Caloulations

Ghilled Water Flow Formula in Reund Steel Pipe

```
Flow (GPM) = 吕 x 24
Suppose;
Tr = Tonnage = 1
\DeltaT = Temp Diff = 55*'F - 45'F = 10'F
```

Flow $=\underline{1 \times 24}=2.4 \mathrm{gpm},(1$ ton $=2.4 \mathrm{gpm})$
10
Flow $=\underline{2 \times 24}=4.8 \mathrm{gpm},(2$ ton $=4.8 \mathrm{gpm})$
Flow $=\frac{3 \times 24}{10}=7.2 \mathrm{gpm},(3$ ton $=7.2 \mathrm{gpm})$
Flow $=\underline{4 \times 24}=9.6 \mathrm{gpm},(4$ ton $=9.6 \mathrm{gpm})$
10

Note: $\quad 1$ ton $=2.4 \mathrm{gpm}$ according to $\Delta \mathrm{T}$. If ΔT change then 1 ton's flow will be changed.

Find Ehilled Water Pipe Sizes aceording to Flow?

Standard Requirements of Ghilled Water Pipe Sizing

As per ASHRAE Handbook- Application

- Pipe diameter 2" and smaller - Velocity limit 4fps
- Pipe diameter is greater than 2 " - Pressure drop limit $4 \mathrm{ft}-\mathrm{Wg} / 100 \mathrm{ft}$

Table 6 Water Velocities Based on Type of Service

Type of Service	Velacity, fps	Reference
Gieneral service	4 to 10	a, b, c
City water	3 to 7	a, b
	2 to 5	c
Boiler feed	6 to 15	a, c
Pump suction and drain lines	4 to 7	a, b

D- DesignTools PipeSizer Version 6.2

LinkedIn Telegram
 @mechahmedradwan

McQuay

www.mcquay.com

F- DesignTools PipeSizer Version 6.2

Ghilled Water Pipe Sizing

Sch 40 Steel $\quad-$
$11 /{ }^{\prime \prime} \quad \square$

USgpm
$62.411 \mathrm{lb} / \mathrm{ft}^{3}$
$3.1667 \mathrm{lb} / \mathrm{ft}-\mathrm{h}$ 1.002 Btu/lb*F 501.6 Btu/h ${ }^{\text {T }}$-gpm

Fluid velocity	$2.57 \mathrm{ft} / \mathrm{s}$
Reynolds Number	21,002
Friction factor	0.02828
Head Loss	$2.532 \mathrm{ft} / 100 \mathrm{ft}$
Elbow loss	0.113 ft

50 F Water
12

Fluid density	$62.411 \mathrm{lb} / \mathrm{ft}^{3}$
Fluid viscosity	$3.1667 \mathrm{lb} / \mathrm{ft} \cdot \mathrm{h}$
Specific Heat	$1.002 \mathrm{Btu} / \mathrm{lb}^{*} \mathrm{~F}$
Energy factor	$501.6 \mathrm{Btu} / \mathrm{h}^{*} \mathrm{~F}$-gpm
Fluid velocity	$4.45 \mathrm{ft} / \mathrm{s}$
Reynolds Number	27.629
Friction factor	0.02784
Head Loss	$9.823 \mathrm{ft} / 100 \mathrm{ft}$
Elbow loss	0.463 ft

5TR
1.315 in 0.133 in $\begin{array}{ll}\text { Wall Thickness } & 0.133 \mathrm{in} \\ \text { Inside Diameter } & 1.049 \mathrm{in} \\ \text { Inside Area } & 0.864 \mathrm{in}^{2}\end{array}$ $\begin{array}{ll}\text { Wall Thickness } & 0.133 \mathrm{in} \\ \text { Inside Diameter } & 1.049 \mathrm{in} \\ \text { Inside Area } & 0.864 \mathrm{in}^{2}\end{array}$ $0.4936 \mathrm{in}^{2}$ $0.13288 \mathrm{in}^{3}$ $\begin{array}{ll}\text { Section Modulus } & 0.13288 \mathrm{in}^{3} \\ \text { Moment of Inertia } & 0.08737 \mathrm{in}^{\wedge} 4\end{array}$
1.66 in 0.14 in 1.38 in $1.496 \mathrm{in}^{2}$ $0.6682 \mathrm{in}^{2}$ $0.23465 \mathrm{in}^{3}$ $0.19476 \mathrm{in}^{\wedge} 4$ 0.5397 in $2.273 \mathrm{lb} / \mathrm{ft}$ $2.923 \mathrm{lb} / \mathrm{ft}$

DesignTools PipeSizer Version 6.2
Exit Print About

Sch 40 Steel
$1 " \quad-$

Inside Area ertia dius Gyration weight of Pipe Weight Pipe + Fluid
Outside Diameter五

SOFTWARE CALCULATION

McQucy

DesignTools PipeSizer Version 6.2

Ghilled Water Pipe Sizing

Outside Diameter
Wall Thickness
Inside Diameter
Inside Area
Cross Section Area
Section Modulus
Moment of Inertia
Radius Gyration
Weight of Pipe
Weight Pipe + Fluid
2.875 in
0.203 in
2.469 in
$4.788 \mathrm{in}^{2}$
$1.7 \mathrm{in}^{2}$
$1.064 \mathrm{in}^{3}$
$1.53 \mathrm{in}^{\wedge} 4$
0.9474 in
$5.793 \mathrm{lb} / \mathrm{ft}$
$7.874 \mathrm{lb} / \mathrm{ft}$

- DesignTools PipeSizer Version 6.2

Exit Print About

Sch 40 Steel
$2 "$

Outside Diameter Wall Thickness Inside Diameter Inside Area Cross Section Area Section Modulus Moment of Inertia Radius Gyration Weight of Pipe Weight Pipe + Fluid
2.375 in 0.154 in 2.067 in $3.356 \mathrm{in}^{2}$ $1.07 \mathrm{in}^{2}$ $0.56077 \mathrm{in}^{3}$ 0.66592 in $^{\wedge} 4$ 0.7871 in $3.653 \mathrm{lb} / \mathrm{ft}$ $5.111 \mathrm{lb} / \mathrm{ft}$
$50^{\circ} \mathrm{F}$ Water
64.8 USgp

Fluid density	$62.411 \mathrm{lb} / \mathrm{ft}^{3}$
Fluid viscosity	$3.1667 \mathrm{lb} / \mathrm{ft} \cdot \mathrm{h}$
Specific Heat	$1.002 \mathrm{Btu} / \mathrm{lb}^{+} \mathrm{F}$
Energy factor	$501.6 \mathrm{Btu} / \mathrm{h}^{*} \mathrm{~F}$-gpm
Fluid velocity	$4.34 \mathrm{ft} / \mathrm{s}$
Reynolds Number	63,390
Friction factor	0.02246
Head Loss	$3.199 \mathrm{ft} / 100 \mathrm{ft}$
Elbow loss	0.108 ft

50.F Water
64.8 USgpm

Fluid density $\quad 62.411 \mathrm{lb} / \mathrm{ft}^{3}$ Fluid viscosity $\quad 3.1667 \mathrm{lb} / \mathrm{ft}-\mathrm{h}$ Specific Heat $\quad 1.002$ Btu/lb ${ }^{*}$ F $\begin{array}{ll}\text { Energy factor } & 501.6 \mathrm{Btu} / \mathrm{h}^{*} \mathrm{~F} \text {-gpm }\end{array}$

Fluid velocity	$6.2 \mathrm{ft} / \mathrm{s}$
Reynolds Number	75,718
Friction factor	0.02241
Head Loss	$7.76 \mathrm{ft} / 100 \mathrm{ft}$
Elbow loss	0.567 ft

McQuay

www.mcquay.com

DesignTools PipeSizer Version 6.2

Chilled Water Pipe Sizing

Ф3"
$76.8 \mathrm{gpm}(12 \mathrm{gpm}+64.8 \mathrm{gpm})$

LinkedIn Telegram
 @mechahmedradwan

Sch 40 Steel $\quad-$

$50^{\circ} \mathrm{F}$ Wate
76.8 USgpm

Fluid densit

Fluid density
Fluid viscosity
Specific Heat Energy factor
$62.411 \mathrm{lb} / \mathrm{ft}^{3}$
$3.1667 \mathrm{lb} / \mathrm{ft} \cdot \mathrm{h}$
1.002 Btu/lb ${ }^{*} \mathrm{~F}$
501.6 Btu/h'F-gpm

Sch 40 Steel
$21 / \Sigma^{\prime \prime} \quad-$

Outside Diameter Wall Thickness Inside Diameter Inside Area Cross Section Area Section Modulus Moment of Inertia
Radius Gyration
Weight of Pipe
Weight Pipe + Fluid
 7.874 lb/ft

$50^{\circ} \mathrm{F}$ W/ater	
76.8	

Air condifioning

Note: Pipe diameter is greater than $2^{\prime \prime}$ then Pressure drop (Head Loss) limit $4 \mathrm{ft}-\mathrm{Wg} / 100 \mathrm{ft}$

D- DesignTools PipeSizer Version 6.2

Ghilled Water Pipe Sizing

Outside Diameter
Wall Thickness
Inside Diameter Inside Area Cross Section Area Section Modulus Moment of Inertia Radius Gyration Weight of Pipe Weight of Pipe
Weight Pipe + Fluid $\begin{array}{lr}\text { Weight Pipe + Fluid } & 7.576 \mathrm{lb} / \mathrm{ft} \\ 10.788 \mathrm{lb} / \mathrm{ft}\end{array}$

DesignTools PipeSizer Version 6.2
Exit Print About

Sch 40 Steel
$21 / 2^{\prime \prime}$

Outside Diameter Wall Thickness Inside Diameter Inside Area
Cross Section Area Section Modulus Moment of Inertia Radius Gyration Weight of Pipe Weight Pipe + Flui
\qquad USgpm

Fluid density Fluid viscosity Specific Heat Energy factor
$62.411 \mathrm{lb} / \mathrm{ft}^{3}$
$3.1667 \mathrm{lb} / \mathrm{ft} \cdot \mathrm{h}$ 1.002 Btu/lb*F 501.6 Btu/h*F-gpm
 Reynolds Number 66,129 Friction factor 0.02186
Head Loss $1.766 \mathrm{ft} / 100 \mathrm{ft}$
Elbow loss $\quad 0.072 \mathrm{ft}$

Fluid density Fluid viscosity Specific Heat Energy factor
$62.411 \mathrm{lb} / \mathrm{ft}^{3}$ $3.1667 \mathrm{lb} / \mathrm{ft} \cdot \mathrm{h}$ 1.002 Btu/lb*F 501.6 Btu/h*F•gpm

Fluid velocity	$5.63 \mathrm{ft} / \mathrm{s}$
Reynolds Number	82,172
Friction factor	0.02171
Head Loss	$5.196 \mathrm{ft} / 100 \mathrm{ft}$
Elbow loss	0.182 ft

Final HVAG Ghilled Water Pipe Sizes

