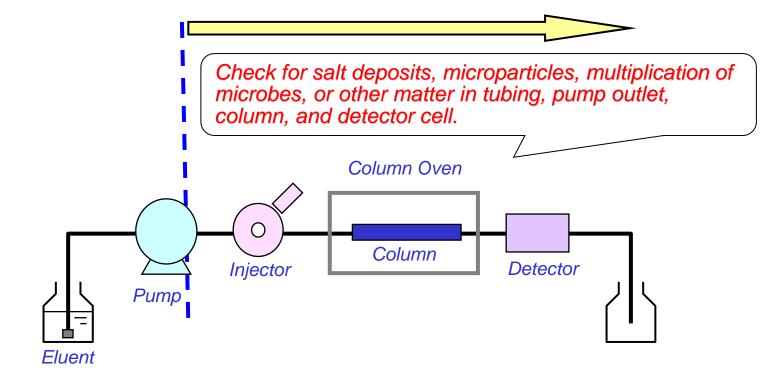


How to Fix Common Problems

Basic Policies for Fixing Problems

Elimination method

- "Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth" - Sherlock Holmes
- Order of problem analysis
 - Items with a high probability of being a cause
 - Items that can be tested easily and cheaply
 - Items able to eliminate a large number of possibilities
 - Such as factors that allow eliminating multiple possibilities by a single verification


Pressure Increase

Pressure Increase ... What to Check First

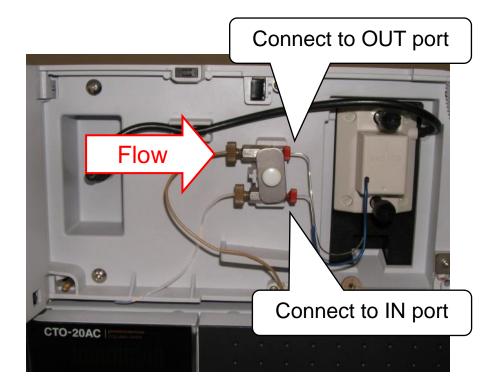
Check where clogging has occurred

 Check the change in pressure downstream from the pump head by disconnecting each section, one at a time, starting at the downstream end.

Clogged Tubing

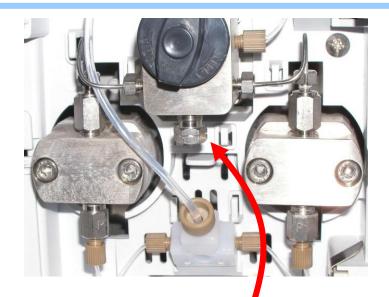
Cause

- High probability it is microparticles
- Countermeasure
 - Connect opposite end of tubing to pump outlet and flush with water
 - If necessary, use a high flow rate



Clogged Flow Cell

Cause


- Just like for tubing, high probability of microparticles
- Countermeasure
 - Connect the inlet and outlet in the opposite direction and flush with water
 - Be especially careful of not exceeding the cell pressure capacity

Clogged In-Line Filter

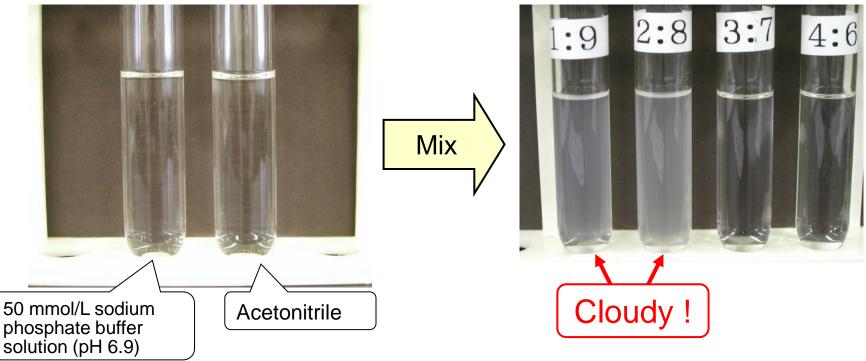
- Filter (flit) at pump outlet
 - Replace if clogged
- Filters at other locations
 - Filters may be located within the gradient mixer, at the column inlet, at the detector inlet, or other locations.

Clogged Column

Likely causes

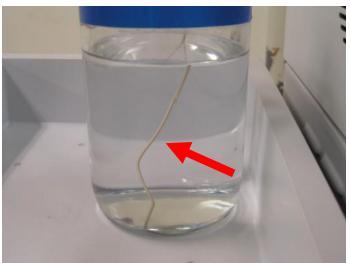
- Insoluble matter in the sample or eluent
- Adsorption of sample components
- Structural changes, dissolution, or crumbling of packing material

Countermeasures


- Flush with rinsing solvent
 - Connect directly to pump outlet
 - To select a rinsing solvent, refer to the column instruction manual
- Other methods described in the column instruction manual
 - Flush in opposite direction as analysis
 - Replace the column inlet filter, etc.

Preventing Clogging (1)

- Avoid precipitation of salts due to mixing buffer solutions and organic solvents
 - Be especially careful when using gradient analysis
 - Test the mixture in advance to ensure it does not precipitate



Preventing Clogging (2)

- Avoid precipitation of salts due to evaporation of solvents
 - Cover bottles (upper photo)
 - Insert the end of the drain tube below the surface of the waste liquid (lower photo).
 - If not operating the HPLC system for more than a few days, purge the flow lines with a salt-free solvent.

Preventing Clogging (3)

Presence of microparticles

- Eliminate insoluble substances contained the solvent
 - Filtration or centrifugal separation
- Eliminate insoluble substances contained the eluent

Filtration

Multiplication of microbes

- Be especially careful using aqueous solutions that do not contain organic solvents.
- Do not store for long periods. Store refrigerated in airtight containers
 - Beware of salt precipitation due to cooling
- Do not simply add more to replenish solvent

Things to Keep in Mind on a Daily Basis

Eluents

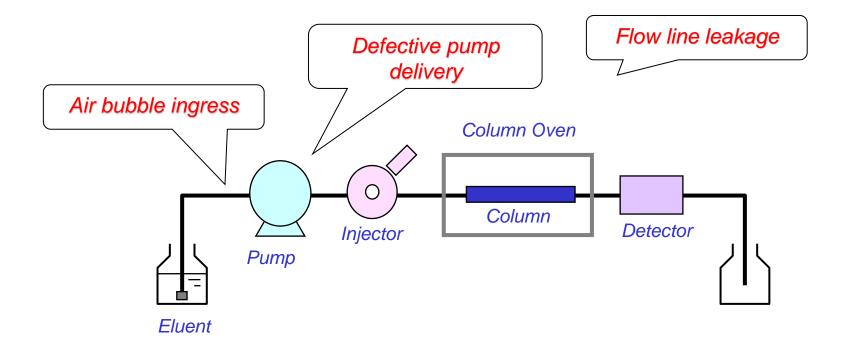
- Filtrate if salt concentration is high
- Do not leave salts within flow lines when the instrument is not in use
- Use up perishable eluents in a short time
- Note the purity of solvents used
 - For water in particular, make sure the water purifying equipment is maintained properly and purified water is controlled properly
- Deliver eluents at a pressure that allows plenty of spare pressure capacity

Samples

- Always filtrate actual samples
 - Separation by centrifuge is also possible
 - If necessary, use cleanup processes as well, such as deproteinization
- Verify compatibility with eluent
- Rinse the injector after injecting samples with high salt concentrations

Instruments

- Always keep replacement filters available
- Keep a record of normal pressures



Pressure Fluctuation

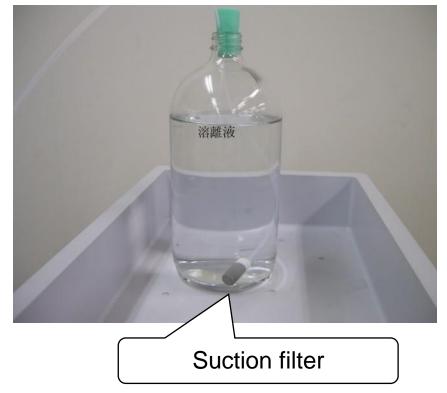
Pressure Fluctuation ... What to Check First

- First suspect air bubbles inside the pump
 - Check also for pump delivery problems

Ingress of Air Bubbles into Pump

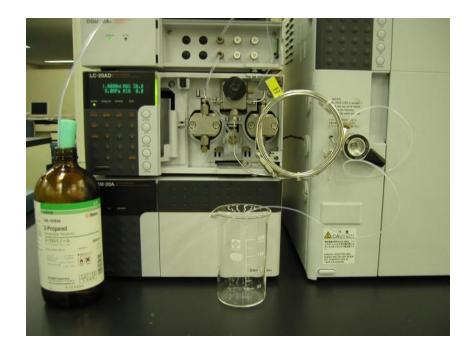
Remove air bubbles

 Attach a syringe to the drain tube and draw out the air bubbles while purging

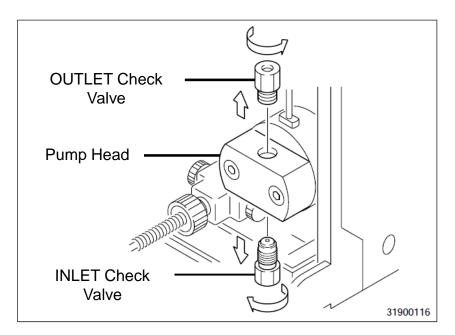


Clogged Suction Filter

What to check

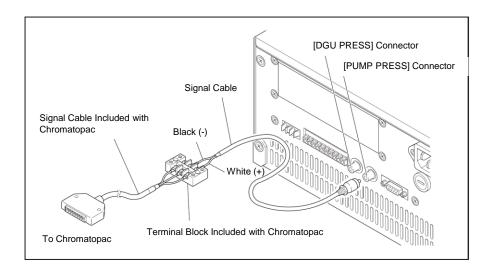

- Use particular caution if air bubbles are found inside the suction tube
- Temporarily remove the filter and verify that solvent can be delivered normally
- Countermeasure
 - Rinse or replace the suction filter
 - To rinse, immerse in appropriate solvent and clean in an ultrasonic cleaner

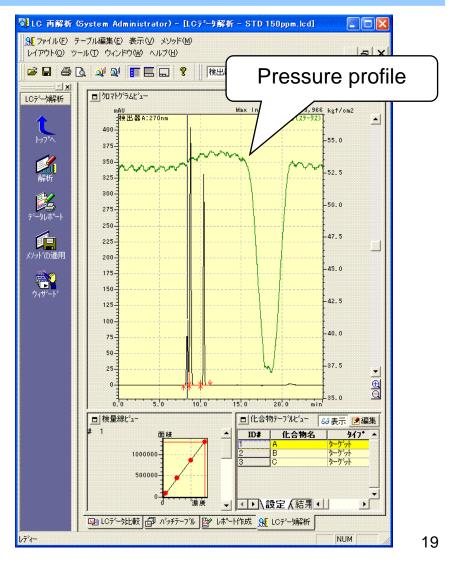
Defective Pump Delivery (1)


- Countermeasure (1) -Rinse inside the pump
 - Rinse by pumping
 2-propanol for a while
 - Deliver solvent by connecting a back pressure tube to the pump outlet

Defective Pump Delivery (2)

- Countermeasure (2) -Rinse or replace parts
 - Rinse or replace check valves
 - If necessary, replace the plunger seal





Check the Pressure Profile

- Output a pressure profile along with the chromatogram
 - If using Workstation, output it in the software window (right)
 - From the pump, output as an analog signal (below)

Things to Keep in Mind on a Daily Basis

Air bubbles

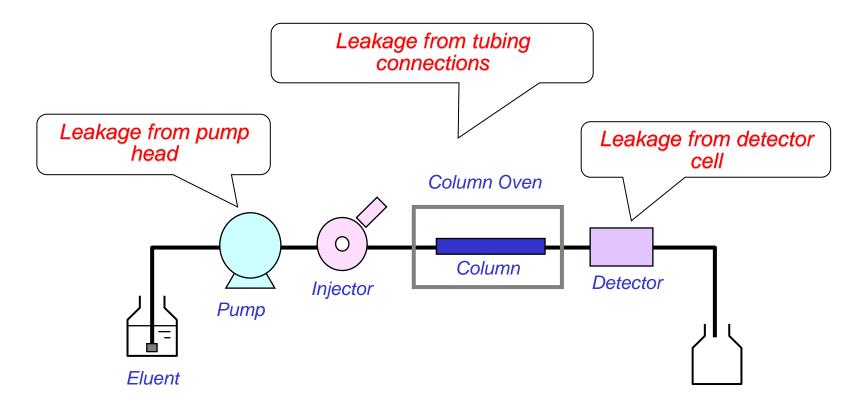
- Degas online
- Place the eluent reservoir higher than the pump
- Keep room temperature as constant as possible
 - Avoid air bubbles generated due to changes in solution temperature

Pump

- Always keep replacement consumable parts available
 - Plunger seals
 - Check valves, etc.
- Keep a record of usage
 - Particularly column back pressure

Eluents

- Displace solvents with miscible solvents
 - Check valves are especially prone to malfunction when displacing aqueous solutions containing inorganic salts with a 100 % organic solvent

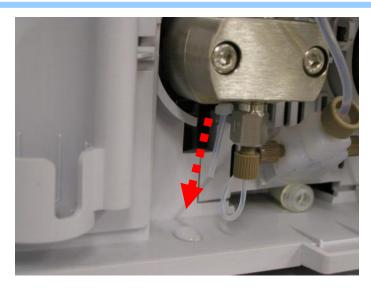


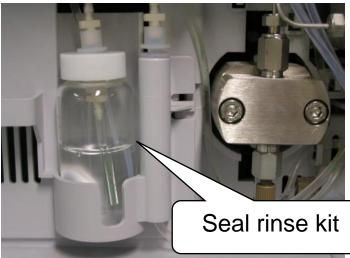
Flow Line Leakage

Flow Line Leakage ... What to Do First

- Verify the leak location
 - Wipe up any leakage and also check for seeping

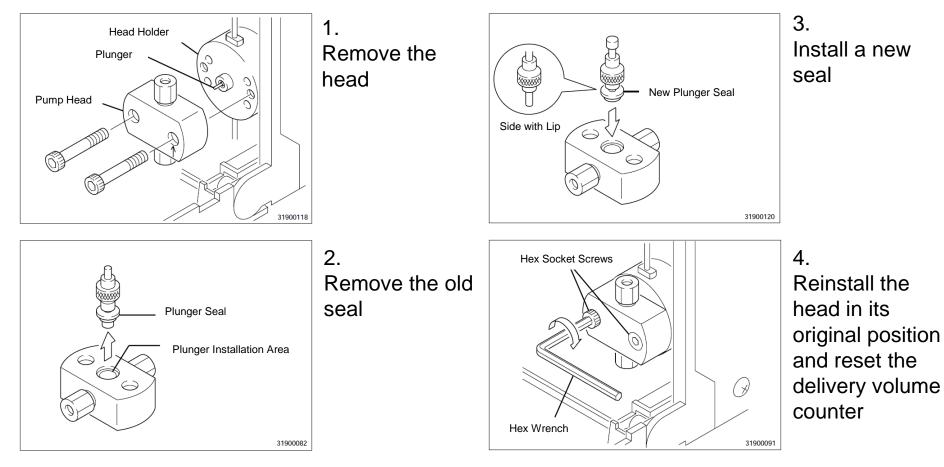
Leakage from Pump Head (1)


Phenomena

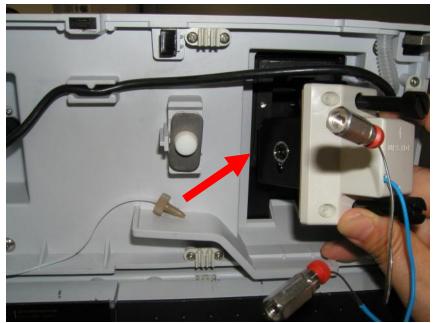

- Leakage from base area where the head is attached
- Increased water content in seal rinse kit

Cause

- Deterioration of plunger seal
 - In rare cases, the plunger itself can be damaged



Leakage from Pump Head (2)

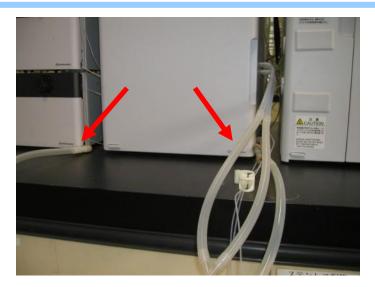

Replacing the plunger seal

Leakage Inside the Detector

- Absorbance detector and fluorescence detector
 - Remove the flow cell and replace part causing the leak
 - Be very careful not to break the lens or cell
- Other detectors
 - Follow instructions in the instruction manual

Leakage from Tubing Connections

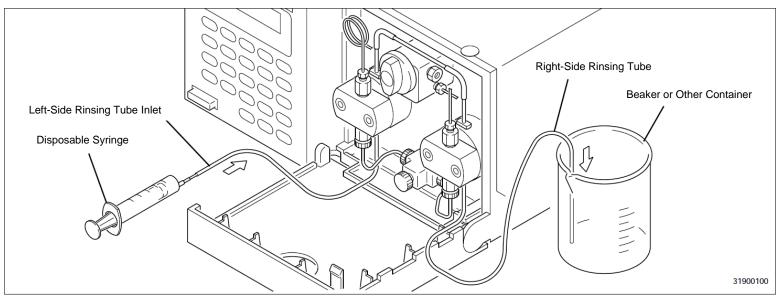
Countermeasures


- Further tighten connections slightly
- If that fails, replace the joint
 - Joint parts gradually deform, regardless of the material

🕀 SHIMADZU

Things to Keep in Mind on a Daily Basis (1)

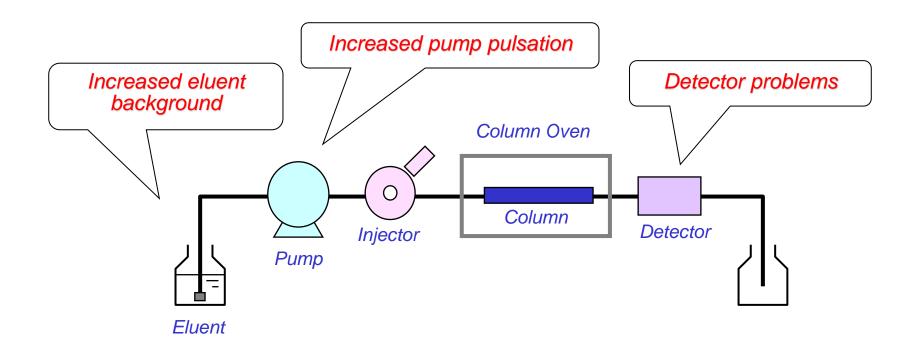
- Install a drain tube and tray for leakage
 - Many HPLC systems now include an internal leakage sensor
 - Always keep replacement parts available, such as plunger seals
 - Some pumps use a delivery volume counter to indicate when to replace parts



Things to Keep in Mind on a Daily Basis (2)

Rinse plunger seals regularly

 Automatic rinsing kits are also commercially available



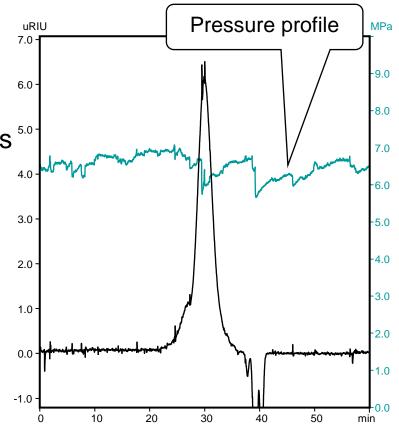
Noise Increase

Noise Increase ... What to Do First

- First, verify whether or not the noise cycle matches the pump stroke
 - Also verify how the eluent was prepared and the detector status

Narrow Down Possible Causes

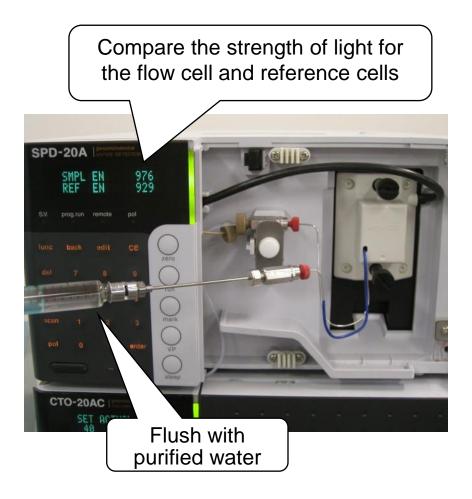
If the noise cycle matches the pump stroke ...


- Pump pulsation
- Increased eluent background
- If the noise cycle does not match the pump stroke ...
 - Cause is probably the detector

Pump Pulsation

Phenomena

- Generally corresponds with fluctuations in pressure
- Countermeasure
 - Implement same measures as described in 2. Pressure Fluctuation

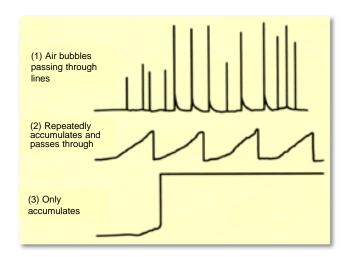


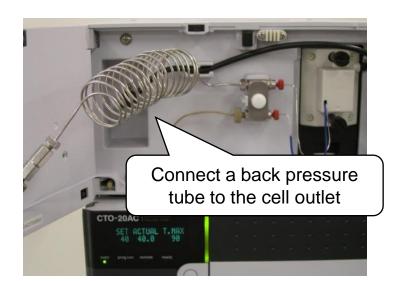
Increased Eluent Background

What to check

- For absorbance detectors or electroconductivity detectors, check the background level while bypassing the column
- Countermeasures
 - Prepare new eluent and replace reagents
 - Rinse flow lines and eluent reservoir

🕀 SHIMADZU


Ingress of Air Bubbles into the Detector Cell


What to check

 If a baseline like the one to the right is obtained, suspect air bubbles inside the flow cell

Countermeasures

- Rinse the cell with organic solvent (such as 2-propanol)
- Connect a tube to the cell outlet and apply back pressure
 - Use caution, as the cell pressure capacity differs depending on the detector

🕀 SHIMADZU

Noise Increase from the Detector Itself

What to check

 If the noise cycle does not match the pump stroke, suspect the detector

Countermeasures

- Rinse the flow cell using the prescribed method (upper photo)
 - For evaporative light scattering detectors, rinse the nebulizer
- For photometric detectors (such as absorbance, fluorescence, or evaporative light scattering detectors), replace the light source lamp (lower photo)

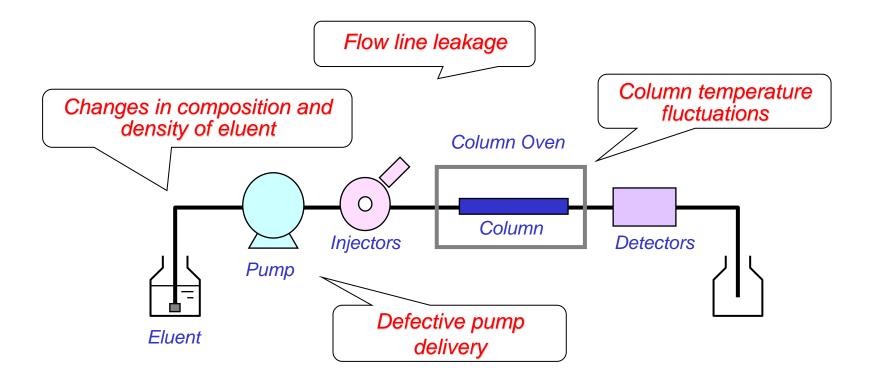
Things to Keep in Mind on a Daily Basis

Eluents

- Establish methods for controlling and storing reagents
- Keep water purifier systems maintained
- Always have extra reagent available
- Keep a record of normal background value

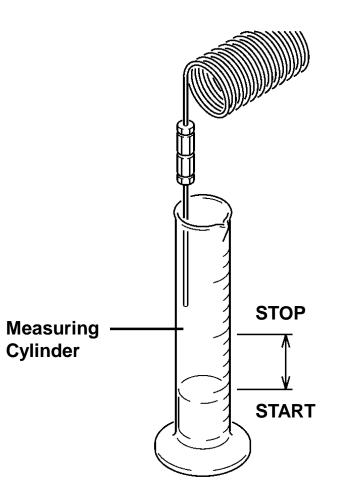
Detectors

- Keep a record of usage status for consumables and keep an extra supply available
 - For optical detectors, be aware of the cumulative usage hours for light source lamps
- Keep a record of normal background values and baselines
 - For absorbance detectors, verify the light strength for sample cells and reference cells

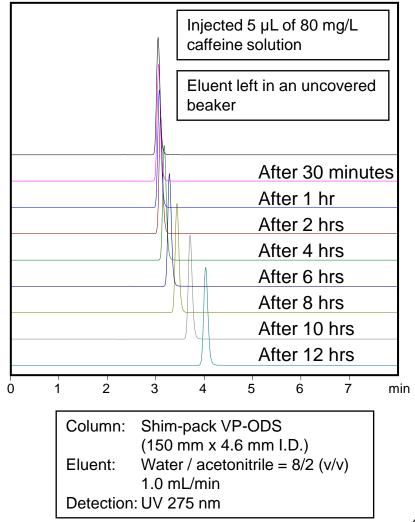


Retention Time Fluctuation

Retention Time Fluctuation ... What to Do First


- First, check for pump pressure fluctuations and flow rate
 - Also check for room temperature fluctuations and eluent temperature changes

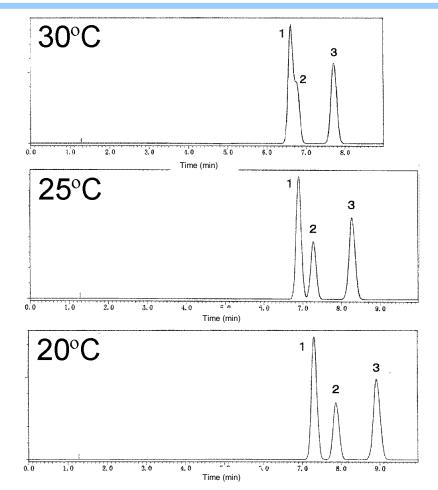
Flow Rate Is Not Correct


- If pump is not delivering solvent properly
 - To verify flow rate, use a measuring cylinder and stopwatch to measure flow rate
 - For countermeasures, see 2.
 Pressure Fluctuation
- If flow lines are leaking
 - For countermeasures, see 3. Flow Line Leakage

Changes in Eluent Composition or Density

Phenomena

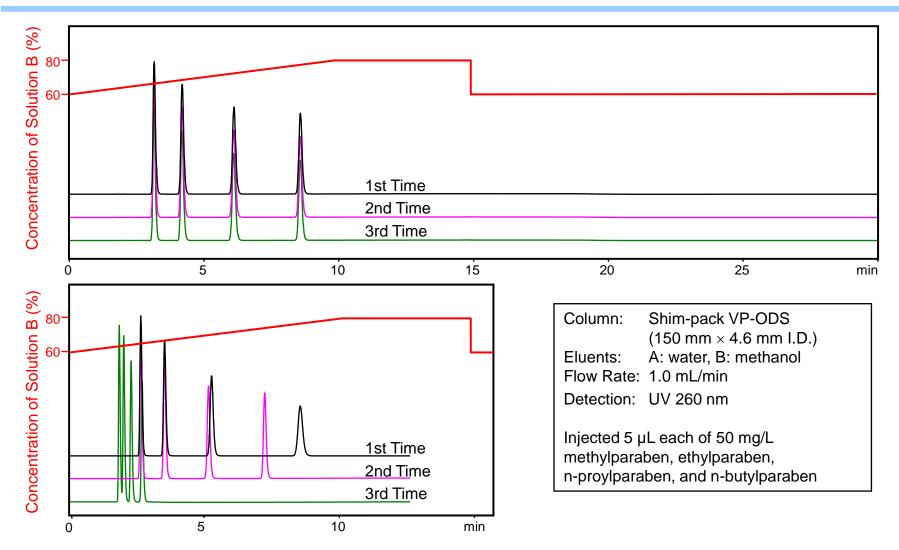
- Retention time gradually changes due to change in composition by solvent evaporation (right)
- Retention time changes could also be due to changes in eluent problem resulting from room temperature changes
- Countermeasures
 - See 5. Baseline Fluctuation Eluent Problem
 - Prepare new eluent
 - Cover eluent reservoirs
 - Maintain a constant room temperature



Effect of Column Temperature

Phenomena

- Retention and separation vary due to changes in column temperature
- Countermeasures
 - Use a column oven
 - Change the temperature setting
 - Connect a preheating tube to the column inlet port
 - If column temperature and room temperature are different
 - If eluent flow rate is large



Effects of Column Temperature in Reverse Phase Mode

1: Sorbic acid, 2: Benzoic acid, 3: Methylparaben

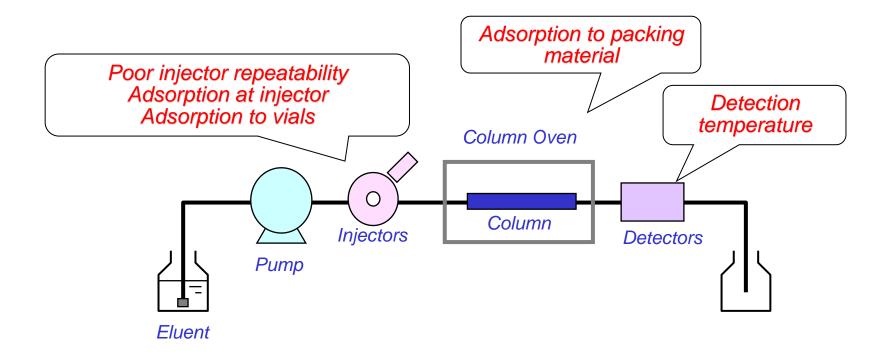
Inadequate Reequilibration in Gradient

🕀 SHIMADZU

Problem with Analytical Conditions Themselves

- Parameters prone to variation in retention strength of packing material
 - Reverse phase eluent is 100 % water
 - Extremely acidic or alkaline eluents in silica columns
- Parameter that require extra time for equilibration
 - Normal phase
 - Reverse phase ion pair, etc.

- Countermeasures
 - Change analytical conditions, beginning with eluent composition
 - Evaluate robustness as part of parameter evaluation process
 - Use a longer equilibration time
 - Rinse or replace column


Peak Area Fluctuation

Peak Area Fluctuation ... What to Do First

Check that samples are injected with good repeatability

Focus especially on injectors

Variability of Injection Amount

What to check

- Assess by repeated injections under identical conditions (right)
 - Compare to specifications in autosampler catalog
- Countermeasures
 - Rinse needle
 - Remove bubbles from or replace the rinsing solvent
 - Check settings for suction speed, needle depth, etc.
 - Inspect and maintain injector

	Without Rinsing	With Rinsing
1st	43031	48228
2nd	42935	48293
3rd	43637	48434
4th	43864	48060
5th	43679	47951
Average	43429	48193
%RSD	0.96	0.40

Example of Area Repeatability Test of Thiamin Hydrochloride

Sample Solvent:	Water
Rinsing Solvent:	100 mmol/L aqueous perchlorate solution
Sample Concentration:	10 µmol/L
Injection Volume:	10 μL

Adsorption at Injector

What to check

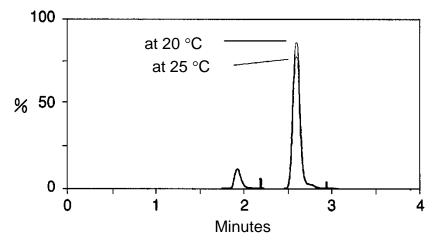
- Add an adsorption resistant internal standard and compare repeatability with target compounds (right)
 - For reverse phase, choose a difficult to ionize substance as the internal standard
- Countermeasure
 - See 6. Sensitivity Reduction

	Caffeine	Thiamin
1st	50327	48228
2nd	50372	48293
3rd	50479	48434
4th	50259	48060
5th	50224	47951
Average	50332	48193
%RSD	0.20	0.40

Example of Area Repeatability Test of Caffeine and Thiamine Hydrochloride

Sample Solvent:	Water
Rinsing Solvent:	100 mmol/L aqueous perchlorate solution
Sample Concentration:	10 µmol/L each
Injection Volume:	10 μL

🕀 SHIMADZU

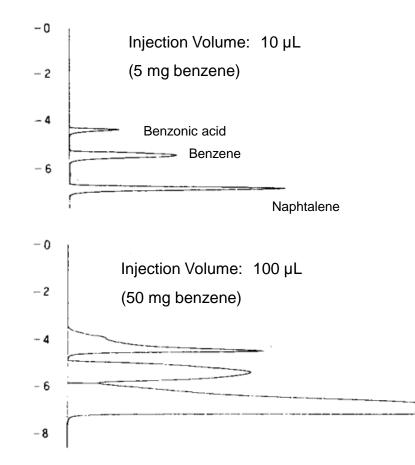

Detector Temperature Fluctuations

What to check

- If detector includes temperature control function, monitor cell temperature
 - Refractive index detectors and electroconductivity detectors, etc.
 - Even absorbance and fluorescence detectors are commercially available with a temperature control capability

Countermeasure

- Keep room temperature constant
 - Especially for fluorescence detectors, the higher the temperature, in general, the lower the sensitivity


Effect of Cell Temperature on Fluorescence Detection of Acridine

🕀 SHIMADZU

Poor Peak Shape and Separation

Countermeasures

- Reduce the injection volume (right)
 - Reduce the effects of the sample solvent by reducing the injection volume
 - Reduce the load level on the stationary phase by reducing the sample quantity
- Rinse or replace column
- Optimize the peak processing
 - Check whether different peak processing is used for each peak

Things to Keep in Mind on a Daily Basis

General

- Perform system suitability tests regularly
 - Analyze a standard solution 5 or 6 times
 - Record the retention times, area values, number of theoretical plates, resolution, etc.

- HPLC system and column
 - Keep a record of usage
 - Keep an instrument record of users, usage time, replacement of consumables, etc.
 - For columns, back pressure must be recorded as well
 - Inspect regularly
- Laboratory environment
 - Provide an environment with minimal room temperature variations
 - Make sure air conditioners or heaters do not blow directly on the HPLC system

Summary

- Key considerations for routine analysis
 - Existence of pitfalls that cannot be escaped without know-how
 - Practical training of basic know-how and techniques is important
- Examples of common problems and how to fix them
 - For each phenomenon, check the possible sources of the problem
 - Identify likely causes
 - Implement countermeasures for each cause and verify results

THANK YOU!

A.Narayana Murthy Spincotech Pvt Ltd Hyderabad 9346333100, 8790987543 narayanamurthy@spincotech.com anm.vizag@gmail.com