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Preface

Quantum mechanics has been remarkably successful at accounting for physical
phenomena at very small scales. The area of quantum mechanics has become a
fundamental part of modern physics and hence a very intensive subject for
research. It is applicable to physical situations where matter can be studied on very
small scales from atoms and molecules to physics of the solid state and elementary
particles. It has also generated new areas of physics in its wake that require quantum
mechanics for their understanding, such as Bose Einstein condensation and the
quantum Hall effect.

This book presents 12 solid contributions that illustrate the range and diversity of
topics in quantum mechanics. Of these 12 chapters, three reference solvable models
such as hyperfine structure interactions. Other chapters cover some foundational
issues such as complex space forms of quantum mechanics, entropy in quantum
mechanics, and equations of relativistic quantum mechanics. The final chapters
examine applications of quantum mechanics to more complicated situations. As
illustrated by this book, the scope, influence, and domain of applicability of quan-
tum mechanics have become very widespread.

This book is a result of the hard work of an international group of invited authors. It
is a pleasure to thank them for their efforts and scientific contributions. I am
grateful to acknowledge with many thanks the assistance of Mr Mateo Pulko who
was the publishing coordinator and manager throughout the production process of
this book. It is also a pleasure to thank IntechOpen for the opportunity to work on
this volume, which serves to further study the fascinating subject of quantum
mechanics.

Paul Bracken
Professor,

Department of Mathematics,
University of Texas,

USA
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Chapter 1

Dipolar Interactions: Hyperfine
Structure Interaction and Fine
Structure Interactions
Betül Çalişkan and Ali Cengiz Çalişkan

Abstract

The interaction between the nuclear spin and the electron spin creates a hyperfine
structure. Hyperfine structure interaction occurs in paramagnetic structures with
unpaired electrons. Therefore, hyperfine structure interaction is the most important
of the fundamental parameters investigated by electron paramagnetic resonance
(EPR) spectroscopy. For EPR spectroscopy the two effective Hamiltonian terms are
the hyperfine structure interaction and the electronic Zeeman interaction. The
hyperfine structure interaction has two types as isotropic and anisotropic hyperfine
structure interactions. The zero-field splitting term (electronic quadrupole fine
structure), the nuclear Zeeman term, and the nuclear quadrupole interaction term are
among the Hamiltonian terms used in EPR. However, their effects are not as much as
the term of the hyperfine structure interaction. The zero-field splitting term and the
nuclear quadrupole interaction term are the fine structure terms. The interaction of
two electron spins create a zero-field splitting, the interaction between the two
nucleus spins form the nuclear quadrupole interaction. Hyperfine structure interac-
tion, zero-field interaction, and nuclear quadrupole interaction are subclasses of
dipolar interaction. Interaction tensors are available for all three interactions.

Keywords: dipolar interaction hyperfine structure, isotropic hyperfine structure,
anisotropic hyperfine structure, the zero-field splitting, the nuclear quadrupole
interaction, the electronic Zeeman interaction, the nuclear Zeeman term, EPR

1. Dipolar interactions

Dipolar interaction occurs due to the interaction between the two spins. If one
spin becomes an electron spin and the other spin becomes a nucleus spin, this
interaction is called a hyperfine structure interaction. If two of the spins are electron
spin or both are nucleus spin, this interaction is called fine structure interaction.
The dipolar interaction Hamiltonian is expressed as

ϰ ¼ μ1
!:μ2

!
r3

�
3 μ1

!: r!
� �

μ2
!: r!
� �

r5

2
4

3
5 (1)

where μ1
! and μ2

! are the magnetic dipole moments for each spin (electron spin or
nucleus spin).

3
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1.1 Hyperfine structure interaction

The interaction between the magnetic dipole moment of the nucleus and the
magnetic dipole moment of the electron gives the hyperfine structure interaction.
There are two types of hyperfine structure interaction. These are isotropic
hyperfine interaction and anisotropic hyperfine interaction.

1.1.1 Isotropic hyperfine structure

Isotropic superfine interaction is also known as Fermi contact interaction. The
Hamiltonian term of isotropic hyperfine structure interaction is expressed as

ϰ ¼ gegNβeβN
8π
3

S
!
: I
!
:δ rð Þ

� �
(2)

where ge= g-value of the electron, gN= g-value of the nucleus, βe = Bohr

magneton, βN= nuclear magneton, S
! ¼ electron spin operator, I

!
= nuclear spin

operator, and δ rð Þ = Dirac delta function for the distance between the electron and
the nucleus.

In a shorter way, it is expressed as

ϰ ¼ aS
!
: I
!

(3)

The isotropic hyperfine constant is written as

a ¼ 8π
3
gegNβeβNδ rð Þ (4)

Here a is called the isotropic hyperfine constant, S
!
is the spin angular momen-

tum of the electron, and I
!
is the spin angular momentum of the nucleus.

1.1.2 Anisotropic hyperfine structure

Anisotropic hyperfine interaction is also called dipolar interaction or dipole–
dipole interaction. The Hamiltonian term of anisotropic hyperfine structure
interaction is expressed as

ϰ ¼ gegNβeβN
3 S

!
: r!

� �
I
!
: r!

� �

r5
� S

!
: I
!

r3

2
4

3
5 (5)

More specifically, the expression of the anisotropic hyperfine interaction in the
Cartesian coordinate is written as

ϰ ¼ gegNβeβN
3x2 � r2ð Þ

r5
IxSx þ 3y2 � r2ð Þ

r5
IySy þ 3z2 � r2ð Þ

r5
IzSz þ 3xy

r5
IxSy þ IySx
� ��

þ 3yz
r5

IySz þ IzSy
� �þ 3xz

r5
IxSz þ IzSx

�� �

(6)

4

Quantum Mechanics

In a shorter way, it is expressed as

ϰ ¼ S
!
:A0
�!�!

: I
!

(7)

where A0
�!�!

is called the anisotropic hyperfine coupling tensor. The tensor is
expressed in two ways as diagonal elements and non-diagonal elements.
The diagonal elements of the tensor is expressed as

A0
ii ¼ gegNβeβN

3i2 � r2

r5

� �
, i ¼ x, y, z (8)

The non-diagonal elements of the tensor is expressed as

A0
ij ¼ gegNβeβN

3ij
r5

� �
, i, j ¼ x, y, z (9)

The sum of the isotropic and anisotropic terms fully expresses the hyperfine
structure interaction Hamiltonian and is expressed as

ϰ ¼ aS
!
: I
! þ S

!
:A0
�!�!

: I
! ¼ S

!
:A
!!
: I
!

(10)

where A
!!

is the general hyperfine structure tensor.
Figure 1 shows the formation of the hyperfine structure splittings. Figure 2

shows the formation of an EPR spectrum due to the hyperfine structure splittings.

1.2 Fine structure interaction

The fine structure is seen in two ways. The first is the fine structure interaction
between two electron spins. The second is the fine structure interaction between the
two nucleus spins. The fine structure interaction between two electron spin is also

Figure 1.
The formation of the hyperfine structure splittings.
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referred to as zero-field interaction or zero-field splitting. The interaction between
two nuclear spin is called nuclear quadrupole interaction.

1.2.1 Zero-field splitting (interaction)

This interaction between two electron spins is the dipolar interaction. When
writing Hamiltonian for zero-field interaction, the magnetic dipole moments in
Eq. (1) are arranged for two electron spins. In this case, the Hamiltonian of the
zero-field splitting is written as

ϰ ¼ ge
2βe

2 S1
!
: S2
�!
r3

�
3 S1

!
: r!

� �
S2
!
: r!

� �

r5

2
4

3
5 (11)

More specifically, the expression of the anisotropic hyperfine interaction in the
Cartesian coordinate is written as

ϰ ¼ ge
2βe

2 r2 � 3x2ð Þ
r5

S1xS2x þ r2 � 3y2ð Þ
r5

S1yS2y þ r2 � 3z2ð Þ
r5

S1zS2z

�

� 3xy
r5

S1xS2y þ S1yS2x
� �� 3yz

r5
S1yS2z þ S1zS2y
� �� 3xz

r5
S1zS2x þ S1xS2zð Þ

�
(12)

In a shorter way, it is expressed as

ϰ ¼ S1
!
:D
!!
:S2
!

(13)

In general, the Hamiltonian of the zero-field splitting is written as

ϰ ¼ S
!
:D
!!
:S
!

(14)

where D
!!

is called the zero-field splitting tensor or the spin–spin coupling tensor.
The tensor is expressed in two ways as diagonal elements and non-diagonal
elements. The diagonal elements of the tensor is expressed as

Figure 2.
The formation of an EPR spectrum due to the hyperfine structure splittings.
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Dii ¼ ge
2βe

2 r2 � 3i2

r5

� �
, i ¼ x, y, z (15)

The non-diagonal elements of the tensor is expressed as.

Dij ¼ ge
2βe

2 3ij
r5

� �
, i, j ¼ x, y, z (16)

The zero-field splittings for s = 1/2, s = 1, and s = 3/2 are shown in Figure 3.

1.2.2 Nuclear quadrupole interaction

The interaction between the nucleus spins is known as the nuclear quadrupole
interaction. The effects of nuclear quadrupole interaction can be observed on the
energy levels of the hyperfine structure for a nucleus with I≥ 1. The Hamiltonian of
the nuclear quadrupole interaction is expressed as

ϰ ¼ eQ
6I 2I � 1ð Þ

X
α, β¼x, y, z

Vαβ
3
2

IαIβ þ IβIα
� �� δαβI2

� �
(17)

where Vαβ is the component of the field gradient tensor and eQ is the nuclear
quadrupole moment, and it is a measure of the deviation of charge distribution from
spherical symmetry. The nuclear quadrupole moment is expressed as

eQ ¼
ð
ρN 3z2 � r2
� �

dV (18)

where e is the proton charge, ρN is the distribution function of the nuclear
charge, z is the z-coordinate of the charge element a distance r from the origin. The
integral was taken over the volume of the nucleus.

In general, the nuclear quadrupole interaction Hamiltonian is written as

ϰ ¼ I
!
: P
!!
: I
!

(19)

Figure 3.
The zero-field splittings for (a) s = 1/2, (b) s = 1, and (c) s = 3/2.
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In general, the nuclear quadrupole interaction Hamiltonian is written as

ϰ ¼ I
!
: P
!!
: I
!

(19)

Figure 3.
The zero-field splittings for (a) s = 1/2, (b) s = 1, and (c) s = 3/2.
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where P
!!

is called the nuclear quadrupole coupling tensor.
The nuclear quadrupole splittings are shown in Figure 4.

2. Effective Hamiltonian terms in electron paramagnetic resonance
spectroscopy

The hyperfine structure Hamiltonian term, electron Zeeman Hamiltonian term,
nuclear Zeeman Hamiltonian term, the term of the zero-field splitting, and the term
of the nuclear quadrupole interaction are Hamiltonian terms in EPR Spectroscopy.
However, in EPR spectroscopy, the electron Zeeman term and the hyperfine struc-
ture term are effective Hamiltonian terms. Therefore, the effect of the terms other
than the electron Zeeman term and the hyperfine structure term is not taken into
account, since the effect is minimal compared to these two terms. The electron
Zeeman term and the nuclear Zeeman term have not been mentioned before.
Therefore, it will be explained briefly below.

The electron Zeeman interaction occurs as a result of the interaction of the
magnetic dipole moment caused by the spin of the electron with the applied mag-
netic field:

ϰ ¼ �μs
!:H

!
(20)

ϰ ¼ � γs S
!� �

:H
!

(21)

where γs is the gyromagnetic ratio of electron spin and is written as.

γs ¼ � gsβe
ℏ

¼ �gsβe in the atomic unit system, ℏ ¼ 1
� �

(22)

Figure 4.
The nuclear quadrupole splittings for (a) Hquadrupole 6¼ 0, H = 0 and (b) for HZeeman≫ Hquadrupole.
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where gs is the spectroscopic splitting factor of the electron spin and is written as

gs ¼ 2 (23)

ϰ ¼ � �gsβe S
!� �

:H
!

(24)

ϰ ¼ gsβe S
!
:H
!

(25)

The nuclear Zeeman interaction occurs as a result of the interaction of the mag-
netic dipole moment caused by the spin of the nucleus with the applied magnetic field:

ϰ ¼ �μI
!:H

!
(26)

ϰ ¼ � γI I
!� �

:H
!

(27)

where γI is the nuclear gyromagnetic ratio and is written as.

γI ¼
gIβN
ℏ

¼ gIβN in the atomic unit system, ℏ ¼ 1
� �

(28)

where gI is the spectroscopic splitting factor of the nucleus spin and is written as

gI ¼ 1 (29)

ϰ ¼ � gIβN I
!� �

:H
!

(30)

ϰ ¼ �gIβN I
!
:H
!

(31)

The general spin Hamiltonian for EPR spectroscopy can be written as

ϰ ¼ gsβe S
!
:H
! þ S

!
:A
!!
: I
! � gIβN I

!
: H
�!þ I

!
: P
!!
: I
! þ S

!
:D
!!
:S
!

(32)

The effective spin Hamiltonian for EPR spectroscopy can be written as [1–9].

ϰ ¼ gsβe S
!
:H
! þ S

!
:A
!!
: I
!

(33)

3. Conclusion

Dipolar interaction can be seen in three ways. These are the hyperfine structure
interaction, the zero-field splitting interaction, and the nuclear quadrupole interac-
tion. Each interaction involves the interaction of two spins. The interaction between a
nucleus spin and an electron spin is mentioned in the hyperfine structure interaction.
The interaction of two electron spins is mentioned in the zero-field splitting interac-
tion. The interaction of two nuclear spins is mentioned in the nuclear quadrupole
interaction. The last two interactions are also known as fine structure interactions.

The hyperfine structure interaction is an important interaction for EPR spec-
troscopy. In EPR spectroscopy, the effect of the hyperfine structure interaction is
taken into account together with the electron Zeeman interaction [10–24]. In addi-
tion, nuclear Zeeman interaction, the zero-field interaction, and the nuclear quad-
rupole interaction have an effect on EPR spectroscopy. However, their effects are
negligible.
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Chapter 2

Exactly Solvable Problems in
Quantum Mechanics
Lourdhu Bruno Chandrasekar,
Kanagasabapathi Gnanasekar and Marimuthu Karunakaran

Abstract

Some of the problems in quantum mechanics can be exactly solved without any
approximation. Some of the exactly solvable problems are discussed in this chapter.
Broadly there are two main approaches to solve such problems. They are (i) based
on the solution of the Schrödinger equation and (ii) based on operators. The nor-
malized eigen function, eigen values, and the physical significance of some of the
selected problems are discussed.

Keywords: exactly solvable, Schrödinger equation, eigen function, eigen values

1. Potential well

The potential well is the region where the particle is confined in a small region.
In general, the potential of the confined region is lower than the surroundings
(Figure 1) [1, 2].

The potential of the system is defined as

V ¼ 0, �L< x<L

∞, Otherwise

�

The one dimensional Schrödinger equation in Cartesian coordinate is given as

�ℏ2

2m
Ψ00 þ VΨ ¼ EΨ¼)Ψ00 þ 2m

ℏ2 E� Vð ÞΨ ¼ 0 (1)

In the infinite potential well, the confined particle is present in the well region
(Region-II) for an infinitely long time. So the solution of the Schrödinger equation
in the Region-II and Region-III can be omitted for our discussion right now. The
Schrödinger equation in the Region-II is written as

Ψ00 þ 2m
ℏ2 Eð ÞΨ ¼ 0

Ψ00 þ α2Ψ ¼ 0,where α2 ¼ 2mE
ℏ2 (2)

The solution of the Eq. (2) is

Ψ ¼ A1 sin αxþ A2 cos αx (3)
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At x ¼ �L, and at x ¼ L, the wave function vanishes since the potential is
infinite. Hence, At x ¼ �L,

�A1 sin αLþ A2 cos αL ¼ 0 (4)

Similarly, at x ¼ L

A1 sin αLþ A2 cos αL ¼ 0 (5)

The addition and subtraction of these equations give two different solutions.

i. 2A2 cos αL ¼ 0¼) cos αL ¼ 0¼)αL ¼ nπ=2¼)α2 ¼ n2π2=4L2; n ¼ 1, 3, 5, … … .
Since α2 ¼ 2mE

ℏ2 , 2mE
ℏ2 ¼ n2π2=4L2, the energy eigen value is found as

E ¼ n2π2ℏ2=8mL2 (6)

The eigen function is Ψ ¼ A1 cos αx

¼ A1 cos nπx=2Lð Þ

According to the normalization condition,

ðL

�L

Ψ ∗Ψdx ¼ 0¼)A1 ¼ L�1=2

Hence the normalized eigen function for n ¼ 1, 3, 5, … … is

Ψ ¼ L�1=2 cos nπx=2Lð Þ (7)

ii. 2A1 sin αL ¼ 0¼) sin αL ¼ 0¼)αL ¼ nπ=2¼)α2 ¼ n2π2=4L2; n ¼ 2, 4, 6, … … .
For this case, n ¼ 2, 4, 6, … … , the corresponding energy eigen value is

E ¼ n2π2ℏ2=8mL2 (8)

Figure 1.
Infinite potential well.
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The eigen function is Ψ ¼ A2 cos αx and the normalized eigen function is

Ψ ¼ L�1=2 sin nπx=2Lð Þ (9)

In Summary, the eigen value is E ¼ n2π2ℏ2=8mL2 for all positive integer values
of “n.” The normalized eigen functions are

Ψ ¼ L�1=2 cos nπx=2Lð Þ, n ¼ 1, 3, 5, …

L�1=2 sin nπx=2Lð Þ, n ¼ 2, 4, 6, …

(
(10)

The integer “n” is the quantum number and it denotes the discrete energy states in
the quantumwell. We can extract some physical information from the eigen solutions.

• The minimum energy state can be calculated by setting n ¼ 1, which
corresponds to the ground state. The ground state energy is

E1 ¼ π2ℏ2=8mL2 (11)

This is known as zero-point energy in the case of the potential well. The excited
state energies are E2 ¼ 4π2ℏ2=8mL2, E3 ¼ 9π2ℏ2=8mL2, E4 ¼ 16π2ℏ2=8mL2, and so
on. In general, En ¼ n2 � E1.

• The energy difference between the successive states is simply the difference
between the energy eigen value of the corresponding state. For example,
ΔE12 ¼ E1 � E2 ¼ 3E1 and ΔE23 ¼ E2 � E3 ¼ 5E1. Hence the energy difference
between any two successive states is not the same.

• Though the eigen functions for odd and even values of “n” are different, the
energy eigen value remains the same.

• If the potential well is chosen in the limit 0< x< 2L (width of the well is 2L), the
energy eigen value is the same as given in Eqs.(6) and (8). But if the limit is
chosen as 0< x<L (width of the well is L), the for all positive integers of “n,”
the eigen function is Ψ ¼ 2=Lð Þ1=2 sin nπx=Lð Þ and the energy eigen function is
E ¼ n2π2ℏ2=2mL2.

2. Step potential

Step potential is a problem that has two different finite potentials [3]. Classically,
the tunneling probability is 1 when the energy of the particle is greater than the height
of the barrier. But the result is not true based on wave mechanics (Figure 2).

Figure 2.
Step potential.
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�L
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Figure 1.
Infinite potential well.
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The eigen function is Ψ ¼ A2 cos αx and the normalized eigen function is

Ψ ¼ L�1=2 sin nπx=2Lð Þ (9)

In Summary, the eigen value is E ¼ n2π2ℏ2=8mL2 for all positive integer values
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Ψ ¼ L�1=2 cos nπx=2Lð Þ, n ¼ 1, 3, 5, …

L�1=2 sin nπx=2Lð Þ, n ¼ 2, 4, 6, …

(
(10)

The integer “n” is the quantum number and it denotes the discrete energy states in
the quantumwell. We can extract some physical information from the eigen solutions.

• The minimum energy state can be calculated by setting n ¼ 1, which
corresponds to the ground state. The ground state energy is

E1 ¼ π2ℏ2=8mL2 (11)

This is known as zero-point energy in the case of the potential well. The excited
state energies are E2 ¼ 4π2ℏ2=8mL2, E3 ¼ 9π2ℏ2=8mL2, E4 ¼ 16π2ℏ2=8mL2, and so
on. In general, En ¼ n2 � E1.

• The energy difference between the successive states is simply the difference
between the energy eigen value of the corresponding state. For example,
ΔE12 ¼ E1 � E2 ¼ 3E1 and ΔE23 ¼ E2 � E3 ¼ 5E1. Hence the energy difference
between any two successive states is not the same.

• Though the eigen functions for odd and even values of “n” are different, the
energy eigen value remains the same.

• If the potential well is chosen in the limit 0< x< 2L (width of the well is 2L), the
energy eigen value is the same as given in Eqs.(6) and (8). But if the limit is
chosen as 0< x<L (width of the well is L), the for all positive integers of “n,”
the eigen function is Ψ ¼ 2=Lð Þ1=2 sin nπx=Lð Þ and the energy eigen function is
E ¼ n2π2ℏ2=2mL2.

2. Step potential

Step potential is a problem that has two different finite potentials [3]. Classically,
the tunneling probability is 1 when the energy of the particle is greater than the height
of the barrier. But the result is not true based on wave mechanics (Figure 2).

Figure 2.
Step potential.
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The potential of the system

V ¼ 0, �∞< x<0

V0, 0≤ x<∞

�

The Schrödinger equation in the Region-I and Region-II is given, respectively as,

Ψ00 þ 2m
ℏ2 Eð ÞΨ ¼ 0 (12)

Ψ00 þ 2m
ℏ2 E� Vð ÞΨ ¼ 0 (13)

Case (i): when E<V0, the solutions of the Schrödinger equations in the Region-I
and Region-II, respectively, are given as

Ψ1 ¼ A1 exp iαxð Þ þ B1 exp �iαxð Þ (14)

Ψ2 ¼ A2 exp �βxð Þ þ B2 exp βxð Þ

where α2 ¼ 2mE
ℏ2

and β2 ¼ 2m E�V0ð Þ
ℏ2 . Here, B2 exp βxð Þ represents the exponentially

increasing wave along the x-direction. The wave functionΨ2 must be finite as x ! ∞.
This is possible only by setting B2 ¼ 0. Hence the eigen function in the Region-II is

Ψ2 ¼ A2 exp �βxð Þ (15)

According to admissibility conditions of wave functions, at x ¼ 0, Ψ1 ¼ Ψ2 and
Ψ0

1 ¼ Ψ0
2. It gives us

A1 þ B1 ¼ A2 (16)

A1 � B1 ¼ i
β

α

� �
A2 (17)

From these two equations,

A2 ¼ 2α
αþ iβ

� �
A1

B1 ¼ α� iβ
αþ iβ

� �
A1

The reflection coefficient R is given as

R ¼ B1j j2
A1j j2 ¼

α� iβ
αþ iβ

����
����
2

¼ 1 (18)

It is interesting to note that all the particles that encounter the step potential are
reflected back. This is due to the fact that the width of the step potential is infinite.
The number of particles in the process is conserved, which leads that T ¼ 0, since
T þ R ¼ 1.

Case (ii): when E>V0, the solutions are given as

Ψ1 ¼ A1 exp iαxð Þ þ B1 exp �iαxð Þ
Ψ2 ¼ A2 exp iβxð Þ þ B2 exp �iβxð Þ

16

Quantum Mechanics

where β2 ¼ 2m E�V0ð Þ
ℏ2

. As x ! ∞, the wave function Ψ2 must be finite. Hence
Ψ2 ¼ A2 exp iβxð Þby settingB2 ¼ 0. According to the boundary conditions at x ¼ 0,

A1 þ B1 ¼ A2 (19)

A1 � B1 ¼ β

α

� �
A2 (20)

From these equations,

A2 ¼ 2α
αþ β

� �
A1

B1 ¼ α� β
αþ β

� �
A1

The reflection coefficient R and the transmission coefficient T, respectively, are
given as

R ¼ B1j j2
A1j j2 ¼

α� β

αþ β

� �2

(21)

T ¼ A2j j2
A1j j2 ¼

4αβ

αþ βð Þ2 (22)

From these easily one can show that

T þ R ¼ 4αβ

αþ βð Þ2 þ
α� β

αþ β

� �2

¼ 1 (23)

The results again indicate that the total number of particles which encounters
the step potential is conserved.

3. Potential barrier

This problem clearly explains the wave-mechanical tunneling [3, 4]. The
potential of the system is given as (Figure 3)

V ¼ V0, 0< x<L

0, Otherwise

�

Figure 3.
Potential barrier.
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V ¼ V0, 0< x<L

0, Otherwise

�

Figure 3.
Potential barrier.
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In the Region-I, the Schrödinger equation is Ψ00 þ α2Ψ ¼ 0. The wave function in
this region is given as

Ψ1 ¼ A1 exp iαxð Þ þ B1 exp �iαxð Þ where α2 ¼ 2mE
ℏ2 (24)

In Region-II, if E<V0, the Schrödinger equation is Ψ00 � β2Ψ ¼ 0. The solution
of the equation is given as

Ψ2 ¼ A2 exp βxð Þ þ B2 exp �βxð Þ where β2 ¼ 2m E� V0ð Þ
ℏ2 (25)

The Schrödinger equation in the Region-III is Ψ00 þ α2Ψ ¼ 0. The corresponding
solution is Ψ3 ¼ A3 exp iαxð Þ þ B3 exp �iαxð Þ. But in the Region-III, the waves can
travel only along positive x-direction and there is no particle coming from the
right, B3 ¼ 0. Hence

Ψ3 ¼ A3 exp iαxð Þ (26)

At x ¼ 0, Ψ1 ¼ Ψ2 and Ψ0
1 ¼ Ψ0

2. These give us two equations

A1 þ B1 ¼ A2 þ B2 (27)

A1 � B1 ¼ β

iα

� �
A2 � B2ð Þ (28)

At x ¼ L, Ψ2 ¼ Ψ3 and Ψ0
2 ¼ Ψ0

3. These conditions give us another two equations

A2 exp βLð Þ þ B2 exp �βLð Þ ¼ A3 exp iαLð Þ (29)

A2 exp βLð Þ � B2 exp �βLð Þ ¼ A3
iα
β

� �
exp iαLð Þ (30)

Solving the equations from (27) to (30), one can find the coefficients in the
equations. The reflection coefficient is R is found as

R ¼ B1j j2
A1j j2 ¼

V2
0

4E V0 � Eð Þ sinh
2 βLð Þ

� �
1þ V2

0

4E V0 � Eð Þ sinh
2 βLð Þ

� ��1

(31)

The transmission coefficient T is found as

T ¼ A2j j2
A1j j2 ¼ 1þ V2

0

4E V0 � Eð Þ sinh
2 βLð Þ

� ��1

(32)

From Eqs. (31) and (32), one can show that T þ R ¼ 1. The following are the
conclusions obtained from the above mathematical analysis.

• When E<V0, though the energy of the incident particles is less than the height
of the barrier, the particle can tunnel into the barrier region. This is in contrast
to the laws of classical physics. This is known as the tunnel effect.

• As V0 ! ∞, the transmission coefficient is zero. Hence the tunneling is not
possible only when V0 ! ∞.
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• When the length of the barrier is an integral multiple of π=β, there is no
reflection from the barrier. This is termed as resonance scattering.

• The tunneling probability depends on the height and width of the barrier.

• Later, Kronig and Penney extended this idea to explain the motion of a charge
carrier in a periodic potential which is nothing but the one-dimensional
lattices.

4. Delta potential

The Dirac delta potential is infinitesimally narrow potential only at some point
(generally at the origin, for convenience) [3]. The potential of the system

V ¼ �λδ xð Þ, x ¼ 0

0, Otherwise

�

Here λ is the positive constant, which is the strength of the delta potential. Here,
we confine ourselves only to the bound states, hence E<0 (Figure 4).

The Schrödinger equation is

Ψ00 þ 2m
ℏ2 E� Vð ÞΨ ¼ 0¼)Ψ00 þ 2m

ℏ2 Eþ λδ xð Þð ÞΨ ¼ 0 (33)

The solution of the Schrödinger equation is given as

Region� I : Ψ1 ¼ A1 exp βxð Þ (34)

Region� II : Ψ2 ¼ A2 exp �βxð Þ (35)

where β2 ¼ �2mE
ℏ2

. At x ¼ 0, Ψ1 ¼ Ψ2. So the coefficients A1 and A2 are equal. But
Ψ0

1 6¼ Ψ0
2, since the first derivative causes the discontinuity. The first derivatives are

related by the following equation

Ψ0
2 �Ψ0

1 ¼ � 2mλ

ℏ2 (36)

This gives us

β ¼ mλ

ℏ2 (37)

Figure 4.
Dirac delta potential.
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Equating the value of β gives the energy eigen value as

E ¼ �mλ2

2ℏ2 (38)

The energy eigen value expression does not have any integer like in the case of
the potential well. Hence there is only one bound state which is available for a
particular value of “m.”

The eigen function can be evaluated as follows: The eigen function is always
continuous. At x ¼ 0 gives us A1 ¼ A2 ¼ A. Hence the eigen function is

Ψ ¼ A exp β xj jð Þ
To normalize Ψ,

ð∞

�∞

Ψj j2dx ¼ 1 ) 2
ð∞

0

Ψj j2dx ¼ 1

This gives us A ¼ ffiffiffi
β

p ¼
ffiffiffiffiffi
mλ

p
ℏ .

5. Linear harmonic oscillator

Simple harmonic oscillator, damped harmonic oscillator, and force harmonic
oscillator are the few famous problems in classical physics. But if one looks into the
atomic world, the atoms are vibrating even at 0 K. Such atomic oscillations need the
tool of quantum physics to understand its nature. In all the previous examples, the
potential is constant in any particular region. But in this case, the potential is a
function of the position coordinate “x.”

5.1 Schrodinger method

The potential of the linear harmonic oscillator as a function of “x” is given as
(Figure 5) [4–6]:

V ¼ mω2x2

2
(39)

Figure 5.
Potential energy of the linear harmonic oscillator.
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The time-independent Schrödinger equation is given as

Ψ00 þ 2m
ℏ2 E�mω2x2

2

� �
Ψ ¼ 0 (40)

The potential is not constant since it is a function of “x”; Eq. (40) cannot solve
directly as the previous problems. Let

α ¼ mω

ℏ

� �1=2
x and β ¼ 2E

ℏω:

Using the new constant β and the variable α, the Schrödinger equation has the
form

d2Ψ
dα2

þ β � α2
� �

Ψ ¼ 0 (41)

The asymptotic Schrödinger equation α ! ∞ð Þ is given as

d2Ψ
dα2

� α2Ψ ¼ 0 (42)

The general solution of the equation is exp �a2=2ð Þ. As α ! ∞, exp þa2=2ð Þ
becomes infinite, hence it cannot be a solution. So the only possible solution is
exp �a2=2ð Þ. Based on the asymptotic solution, the general solution of Eq. (42) is
given as

Ψ ¼ Hn αð Þ exp �a2=2
� �

The normalized eigen function is

Ψ ¼ mω

ℏπ

� �1=2 1
2n � n!

� �� �1=2
Hn αð Þ exp �a2=2

� �
(43)

The solution given in Eq. (43) is valid if the condition 2nþ 1� 2E
ℏω ¼ 0 holds.

This gives the energy eigen value as

E ¼ nþ 1
2

� �
ℏω (44)

The important results are given as follows:

• The integer n ¼ 0 represents the ground state, n ¼ 1 represents the first
excited state, and so on. The ground state energy of the linear harmonic
oscillator is E ¼ ℏω=2. This minimum energy is known as ground state energy.

• The ground state normalized eigen function is

Ψ0 xð Þ ¼ mω

ℏπ

� �1=4
exp �mωx2

2ℏ

� �
(45)
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• The energy difference between any two successive levels is ℏω. Hence the
energy difference between any two successive levels is constant. But this is not
true in the case of real oscillators.

5.2 Operator method

The operator method is also one of the convenient methods to solve the exactly
solvable problem as well as approximation methods in quantum mechanics [5]. The
Hamiltonian of the linear harmonic oscillator is given as,

H ¼ p2

2m
þ 1
2
mω2x2 (46)

Let us define the operator “a,” lowering operator, in such a way that

a ¼ 2mωℏð Þ�1=2 mωxþ ipð Þ (47)

and the corresponding Hermitian adjoint, raising operator, is

aþ ¼ 2mωℏð Þ�1=2 mωx� ipð Þ (48)

aþa ¼ 2mωℏð Þ�1 mωx� ipð Þ mωxþ ipð Þ

¼ 2mωℏð Þ�1 m2ω2x2 þ p2 þ imωxp� imωpx
� �

¼ 2mωℏð Þ�1 m2ω2x2 þ p2 þ imω x, p½ �� �
(49)

Here, x, p½ � represents the commutation between the operators x and p. x, p½ � ¼ iℏ
and Eq. (49) becomes

aþa ¼ 2mωℏð Þ�1 m2ω2x2 þ p2 �mωℏ
� �

¼ 1
ωℏ

1
2
mω2x2 þ p2

2m

� �
� 1
2

¼ H
ℏω

� 1
2

(50)

In the same way, one can find the aaþ and it is given as

aaþ ¼ H
ℏω

þ 1
2

(51)

Adding Eqs. (50) and (51) gives us the Hamiltonian in terms of the operators.

H ¼ ℏω
2

aaþ þ aþað Þ (52)

Subtracting Eq. (50) from (51) gives, aaþ � aþa ¼ 1. This can be simplified as

a, aþ½ � ¼ 1 (53)

The Hamiltonian H acts on any state ∣n⟩ that gives the eigen value En times the
same state ∣n⟩, that is, H ∣n⟩ ¼ En ∣n⟩.
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The expectation value of aþa is

aþah i� ⟨njaþajn⟩ ¼ ⟨njH
ℏω

� 1
2
jn⟩

¼ 1
ℏω

⟨njHjn⟩� ⟨nj 1
2
jn⟩

¼ 1
ℏω

En⟨njn⟩� 1
2
¼ En

ℏω
� 1
2

(54)

Let us consider the ground state ∣0⟩:

⟨0jaþaj0⟩ ¼ E0

ℏω
� 1
2

Since a ∣0⟩ ¼ 0, ⟨0jaþaj0⟩ ¼ 0. Thus,

E0

ℏω
� 1
2
¼ 0 ) E0 ¼ ℏω

2
(55)

Similarly, the energy of the first excited state is found as follows:

⟨1jaþaj1⟩ ¼ E1

ℏω
� 1
2

ffiffiffi
1

p
⟨1jaþj0⟩ ¼ E1

ℏω
� 1
2

ffiffiffi
1

p
:
ffiffiffi
1

p
⟨1j1⟩ ¼ E1

ℏω
� 1
2

1 ¼ E1

ℏω
� 1
2
) E1 ¼ 3

2
ℏω (56)

In the same way, E2 ¼ 5ℏω=2, E3 ¼ 7ℏω=2, and so on. Hence, one can generalize
the result as

En ¼ nþ 1
2

� �
ℏω (57)

The uncertainties in position and momentum, respectively, are given as

Δx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h i � xh i2

q
(58)

Δp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2h i � ph i2

q
(59)

In order to evaluate the uncertainties x2
� �

, xh i2, p2
� �

, and ph i2 have to be
evaluated. From Eqs. (47) and (48) the position and momentum operators are
found as

x ¼ ℏ
2mω

� �1=2

aþ aþð Þ (60)

p ¼ mωℏ
2

� �1=2 a� aþ

i

� �
(61)
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a. The expectation value of ‘x’ is given as,

xh i � ⟨njxjn⟩ ¼ ℏ
2mω

� �1=2

⟨nj aþ aþð Þjn⟩

¼ ℏ
2mω

� �1=2

⟨nj að Þjn⟩þ ⟨nj aþð Þjn⟩ð Þ

¼ ℏ
2mω

� �1=2 ffiffiffi
n

p
⟨njn� 1⟩þ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

⟨njnþ 1⟩
� �

Since the states n� 1, n, nþ 1 are orthogonal to each other, ⟨njn� 1⟩ ¼ 0 and
⟨njnþ 1⟩ ¼ 0. So xh i ¼ 0. The expectation value of the position in any state is
zero.

b. The expectation value of momentum is

ph i � ⟨njpjn⟩ ¼ mωℏ
2

� �1=2 1
i

� �
⟨nja� aþjn⟩¼) ph i ¼ 0:

Not only position, the expectation value of momentum in any state is also zero.

c.

x2
� � � ⟨njx2jn⟩ ¼ ℏ

2mω
⟨nj aþ aþð Þ aþ aþð Þjn⟩

¼ ℏ
2mω

⟨nj a2 þ aþ2 þ aaþ þ aþa
� �

jn⟩

¼ ℏ
2mω

⟨nja2jn⟩þ ⟨njaþ2jn⟩þ ⟨njaaþjn⟩þ ⟨njaþajn⟩
� �

¼ ℏ
2mω

ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
⟨njn� 2⟩þ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p ffiffiffiffiffiffiffiffiffiffiffi

nþ 2
p

⟨njnþ 2⟩þ nþ 1ð Þ⟨njn⟩þ n ⟨njn⟩
� �

¼ ℏ
2mω

2nþ 1ð Þ

d.

p2
� � � ⟨njp2jn⟩ ¼ � mωℏ

2

� �
⟨nj a� aþð Þ a� aþð Þjn⟩

¼ � mωℏ
2

� �
⟨nja2jn⟩þ ⟨njaþ2jn⟩� ⟨njaaþjn⟩� ⟨njaþajn⟩
� �

¼ � mωℏ
2

� � ffiffiffi
n

p ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
⟨njn� 2⟩þ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p ffiffiffiffiffiffiffiffiffiffiffi

nþ 2
p

⟨njnþ 2⟩� nþ 1ð Þ⟨njn⟩� n ⟨njn⟩
� �

¼ mωℏ
2

� �
2nþ 1ð Þ

From Eq. (58) and (59), the uncertainty in position and momentum, respec-
tively are given as,

Δx ¼ ℏ
2mω

2nþ 1ð Þ
� �1=2

(62)
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Δp ¼ mωℏ
2

� �
2nþ 1ð Þ

� �1=2

(63)

Δx:Δp ¼ ℏ
2

2nþ 1ð Þ (64)

6. Conclusions

• The minimum uncertainty state is the ground state. In this state, Δx ¼ ℏ
2mω

� �1=2
and Δp ¼ mωℏ

2

� �1=2.

• Hence the minimum uncertainty product is Δx:Δp ¼ ℏ
2. Since the other states

have higher uncertainty than the ground state, the general uncertainty is
Δx:Δp≥ ℏ

2. This is the mathematical representation of Heisenberg’s uncertainty
relation.

• Since Ψ0 xð Þ corresponds to the low energy state, a Ψ0 xð Þ ¼ 0. This gives us the
ground state eigen function. This can be done as follows:

a Ψ0 xð Þ ¼ 0

2mωℏð Þ�1=2 mωxþ ipð Þ Ψ0 xð Þ ¼ 0

mω

2ℏ

� �1=2
xþ i

�iℏ∂=∂xð Þ
2mωℏð Þ1=2

 !
Ψ0 xð Þ ¼ 0

ℏ
mω

∂ Ψ0 xð Þ
∂x

¼ �x Ψ0 xð Þ

d Ψ0 xð Þ
Ψ0 xð Þ ¼ �mωx

ℏ
dx

Integrating the above equation gives,

ln Ψ0 xð Þ ¼ �mω

ℏ
x2

2

� �
þ lnA

Ψ0 xð Þ ¼ A exp �mωx2

2ℏ

� �

The normalized eigen function is given as

Ψ0 xð Þ ¼ mω

ℏπ

� �1=4
exp �mωx2

2ℏ

� �

One can see that this result is identical to Eq. (45).

• The other eigen states can be evaluated using the equation,
Ψn xð Þ ¼ aþð Þn= ffiffiffiffi

n!
p� �

Ψ0 xð Þ.
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7. Particle in a 3D box

The confinement of a particle in a three-dimensional potential is discussed in
this section [4, 6]. The potential is defined as (Figure 6)

V ¼ 0, 0≤ x< a; 0≤ y<b; 0≤ z< c

∞, Otherwise

�

The three dimensional time-independent Schrödinger equation is given as

∇2Ψ x, y, z
� �� 2m

ℏ2 VΨ x, y, z
� � ¼ �EΨ x, y, z

� �
(65)

Let the eigen function Ψ x, y, z
� �

is taken as the product of Ψx xð Þ, Ψy yð Þ and Ψz zð Þ
according to the technique of separation of variables. i.e., Ψ x, y, z

� � ¼
Ψx xð ÞΨy yð ÞΨz zð Þ.

Ψy yð ÞΨz zð Þ d
2Ψx xð Þ
dx2

þ Ψx xð ÞΨz zð Þ d
2Ψy yð Þ
dy2

þΨx xð ÞΨy yð Þ d
2Ψz zð Þ
dz2

� 2m
ℏ2 VΨ x, y, z

� �

¼ � 2m
ℏ2 EΨ x, y, z

� �

Divide the above equation by Ψ x, y, z
� �

gives us

1
Ψx xð Þ

d2Ψx xð Þ
dx2

þ 1
Ψy yð Þ

d2Ψy yð Þ
dy2

þ 1
Ψz zð Þ

d2Ψz zð Þ
dz2

¼ � 2m
ℏ2 E (66)

Now we can boldly write E as Ex xð Þ þ Ey yð Þ þ Ez zð Þ

1
Ψx xð Þ

d2Ψx xð Þ
dx2

þ 1
Ψy yð Þ

d2Ψy yð Þ
dy2

þ 1
Ψz zð Þ

d2Ψz zð Þ
dz2

¼ � 2m
ℏ2 Ex xð Þ þ Ey yð Þ þ Ez zð Þ� �

(67)

Figure 6.
Three-dimensional potential box.
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Now the equation can be separated as follows:

d2Ψx xð Þ
dx2

þ 2m
ℏ2 Ex xð ÞΨx xð Þ ¼ 0

d2Ψy yð Þ
dy2

þ 2m
ℏ2 Ey yð ÞΨy yð Þ ¼ 0

d2Ψz zð Þ
dz2

þ 2m
ℏ2 Ez zð ÞΨz zð Þ ¼ 0

The normalized eigen function Ψx xð Þ is given as

Ψx xð Þ ¼ 2
a

� �1=2

sin
nxπx
a

� �

In the same way, Ψy yð Þ and Ψz zð Þ are given as

Ψy yð Þ ¼ 2
b

� �1=2

sin
nyπy
b

� �

Ψz zð Þ ¼ 2
c

� �1=2

sin
nzπz
c

� �

Hence, the eigen function Ψ x, y, z
� �

is given as

Ψ x, y, z
� � ¼ Ψx xð ÞΨy yð ÞΨz zð Þ ¼ 8

abc

� �1=2

sin
nxπx
a

� �
sin

nyπy
b

� �
sin

nzπz
c

� �
(68)

The energy given values are given as

Ex xð Þ ¼ n2
xπ2ℏ

2

2ma2

Ey y
� � ¼ n2

yπ2ℏ
2

2mb2

Ez zð Þ ¼ n2
zπ2ℏ

2

2mc2

The total energy E is

E ¼ Ex xð Þ þ Ey yð Þ þ Ez zð Þ ¼ π2ℏ2

2m
n2x
a2

þ n2y
b2

þ n2z
c2

 !
(69)

Some of the results are summarized here:

• In a cubical potential box, a ¼ b ¼ c, then the energy eigen value becomes,

E ¼ π2ℏ2

2ma2
n2x þ n2y þ n2z
� �

:
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� �

Hence, the eigen function Ψ x, y, z
� �

is given as

Ψ x, y, z
� � ¼ Ψx xð ÞΨy yð ÞΨz zð Þ ¼ 8

abc

� �1=2

sin
nxπx
a

� �
sin

nyπy
b

� �
sin

nzπz
c

� �
(68)

The energy given values are given as

Ex xð Þ ¼ n2
xπ2ℏ

2

2ma2

Ey y
� � ¼ n2

yπ2ℏ
2

2mb2

Ez zð Þ ¼ n2
zπ2ℏ

2

2mc2

The total energy E is

E ¼ Ex xð Þ þ Ey yð Þ þ Ez zð Þ ¼ π2ℏ2

2m
n2x
a2

þ n2y
b2

þ n2z
c2

 !
(69)

Some of the results are summarized here:

• In a cubical potential box, a ¼ b ¼ c, then the energy eigen value becomes,

E ¼ π2ℏ2

2ma2
n2x þ n2y þ n2z
� �

:
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• The minimum energy that corresponds to the ground state is E1 ¼ 3π2ℏ2
2ma2 . Here

nx ¼ ny ¼ nz ¼ 1.

• Different states with different quantum numbers may have the same energy.
This phenomenon is known as degeneracy. For example, the states (i) nx ¼
2; ny ¼ nz ¼ 1, (ii) ny ¼ 2; nx ¼ nz ¼ 1; and (iii) nz ¼ 2; nx ¼ ny ¼ 1 have the

same energy of E ¼ 6π2ℏ2

ma2 . So we can say that the energy 6π2ℏ2

ma2 has a 3-fold
degenerate.

• The states (111), (222), (333), (444),… . has no degeneracy.

• In this problem, the state may have zero-fold degeneracy, 3-fold degeneracy or
6-fold degeneracy.
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Chapter 3

Transitions between Stationary
States and the Measurement
Problem
María Esther Burgos

Abstract

Accounting for projections during measurements is the traditional measurement
problem. Transitions between stationary states require measurements, posing a
different measurement problem. Both are compared. Several interpretations of
quantum mechanics attempting to solve the traditional measurement problem are
summarized. A highly desirable aim is to account for both problems. Not every
interpretation of quantum mechanics achieves this goal.

Keywords: quantum measurement problem, transitions between stationary states,
interpretations of quantum theory

1. Introduction and outlook

In 1930 Paul Dirac published The Principles of Quantum Mechanics [1]. Two years
later John von Neumann published Mathematische Grundlagen der Quantenmechanik
[2]. These initial versions of quantum theory share two characteristics, (i) the state
vector ∣ψi (wave function ψ) describes the state of an individual system, and (ii)
they involve two laws of change of the state of the system: spontaneous processes,
governed by the Schrödinger equation, and measurement processes, ruled by the
projection postulate ([3], pp. 5–6).

Many other versions of quantum theory followed. Those where ψ describes the
state of an individual system and where the projection postulate is included among
its axioms are generally called standard, ordinary, or orthodox quantum mechanics
(OQM), sometimes referred to as the Copenhagen interpretation, associated to
Niels Bohr.

The most relevant differences between spontaneous processes (SP) and mea-
surement processes (MP) are as follows [4]: in SP the observer plays no role, in MP
the observer (or the measuring device) plays a paramount role; in SP the state
vector ∣ψ tð Þi is continuous, in MP ∣ψ tð Þi collapses (jumps, is projected, is reduced);
in SP the superposition principle applies, in MP the superposition principle breaks
down; SP are ruled by a deterministic law, MP are ruled by probability laws; in SP
every action is localized, in MP there is a kind of action-at-a-distance [5]; and in SP
conservation laws are strictly valid, in MP conservation laws have only a statistical
sense [6–8].

Since the projection postulate contradicts the fundamental Schrödinger
equation of motion, some authors rushed to the conclusion that it was defective.
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Henry Margenau suggested in a manuscript sent to Albert Einstein on November
13, 1935, that this postulate should be abandoned. Einstein replied that the formal-
ism of quantum mechanics inevitably requires the following postulate: “If a mea-
surement performed upon a system yields a value m, then the same measurement
performed immediately afterwards yields again the value m with certainty” ([3],
p. 228). The projection postulate guarantees compliance with this principle.

The traditional measurement problem in quantum mechanics is how (or
whether) wave function collapse occurs when a measurement is performed.
Although a similar measurement problem is implied in transitions between stationary
states (TBSS) induced by a time-dependent perturbation, it is conspicuously absent
from the specialized literature on the subject.

The contents of this paper are as follows: time-dependent perturbation theory
(TDPT) is summarized in Section 2. Section 3 shows that according to TDPT,
measurements are required for TBSS to occur. Section 4 highlights the similarities
and differences between the traditional measurement problem and that implied in
TBSS. Section 5 includes several interpretations of quantum mechanics which
attempt to solve the traditional measurement problem: Bohmian mechanics,
decoherence, spontaneous localization, and spontaneous projection approach
(SPA). Section 6 shows that SPA accounts for TBSS, and in cooperation with
decoherence, it also accounts for the traditional measurement problem. Section 7
compiles conclusions.

2. The formulation of TDPT

TDPT was formulated by Dirac in 1930 ([1], Chapter VII). In his words: “In
[TDPT] we do not consider any modification to be made in the states of the
unperturbed system, but we suppose that the perturbed system, instead of
remaining permanently in one of these states, is continually changing from one to
another, or making transitions, under the influence of the perturbation” ([1],
p. 167; emphasis added). The aim of TDPT is, then, to calculate the probability of
TBSS which can be induced by the perturbation during a given time interval.

Dirac points out that “this method must… be used for solving all problems
involving a consideration of time, such as those about the transient phenomena that
occur when the perturbation is suddenly applied, or more generally problems in
which the perturbation varies with the time in any way (i.e. in which the perturbing
energy involves the time explicitly). [It must also] be used in collision problems,
even though the perturbing energy does not here involve the time explicitly, if one
wishes to calculate absorption and emission probabilities, since these probabilities,
unlike a scattering probability, cannot be defined without reference to a state of
affairs that varies with the time” ([1], p. 168; emphasis added).

TDPT is a key ingredient of OQM. It has many applications and is at the basis of
quantum electrodynamics, the extension of OQM accounting for the interactions
between matter and radiation ([1], Chapter X; [9], Chapter 9). Without TDPT,
OQM would hardly be such a powerful and successful theory.

To develop TDPT one starts by splitting in two the total Hamiltonian H(t) acting
on the system:

HðtÞ ¼ EþWðtÞ (1)

E is the Hamiltonian of an unperturbed system, which can be dealt with exactly.
Every dependence on time is included in W(t). Dirac asserts that “the perturbing
energy W(t) can be an arbitrary function of the time” ([1], p. 172).
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The eigenvalue equations of E are

E ∣φni ¼ En ∣φni (2)

where En (n = 1, 2, … , N) are the eigenvalues of E and ∣φni the corresponding
eigenvectors. For simplicity we shall consider the spectrum of E to be entirely
discrete and non-degenerate. All the En and ∣φni are supposed to be known.

Let ∣ψ tð Þi be the state of the system at time t. We assume that at the initial time
t0, the system is in the state ∣ψ t0ð Þi = ∣φ ji, the eigenvector of the non-perturbed
Hamiltonian E corresponding to the eigenvalue E j. If there is no perturbation, i.e., if
the Hamiltonian were E, this state would be stationary. But the perturbation causes
the state to change. At time t the state of the system will be

∣ψ tð Þi ¼ UH t, t0ð Þ ψ t0ð Þi ¼ UH t, t0ð Þj jφ ji (3)

where UH t, t0ð Þ is the evolution operator, a linear operator independent on ∣ψi
and depending only on H, t, and t0 ([1], p. 109).

The probability of a transition taking place from the initial stationary state ∣φ ji to
the final stationary state ∣φki (respectively corresponding to the eigenvalues E j and
Ek of E) induced by the perturbation W(t) during the time interval (t0, t) is then

Pjk t0, tð Þ ¼ ∣⟨φk∣UH t, t0ð Þ∣φ ji∣2 (4)

See, for instance, [1], Chapter VII; [9], Chapter 9; [10], Chapter XIII; [11],
Chapter IV; [12], Chapter 19; and [13], Chapter XVII. Note: symbols used by these
authors may have been changed for homogeneity.

3. TBSS require measurements

TDPT includes two clearly different stages. The first governed by the Schrödinger
equation and the second ruled by probability laws [14]. Concerning this issue Dirac
points out: “When one makes an observation on the dynamical system, the state of the
system gets changed in an unpredictable way, but in between observations causality
applies, in quantum mechanics as in classical mechanics, and the system is governed
by equations of motion which make the state at one time determine the state at a later
time. These equations of motion… will apply so long as the dynamical system is left
undisturbed by any observation or similar process… Let us consider a particular state
of motion through the time during which the system is left undisturbed.We shall have
the state at any time t corresponding to a certain ket which depends on t and which
may be written ∣ψ tð Þi… The requirement that the state at one time [t0] determines the
state at another time [t] means that ∣ψ t0ð Þi determines ∣ψ tð Þi…” ([1], p. 108).

During the first stage of TDPT the process is ruled by the Schrödinger equation:

iℏ
d
dt

∣ψ tð Þi ¼ H tð Þ ∣ψ tð Þi (5)

where H tð Þ is the total Hamiltonian of the system and ℏ is Planck’s constant
divided by 2π. The solution of Eq. (5) corresponding to the initial condition
∣ψ t0ð Þi ¼ ∣φ ji is unique; ∣ψ tð Þi is completely determined by the initial state ∣ψ t0ð Þi
and H(t), which includes the perturbation W(t). Since ∣ψ tð Þi depends only on the
initial state ∣φ ji and on H(t), or if preferred on the perturbation W(t), then
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∣ψ tð Þi � ∣ψj,H tð Þi ¼ UH t, t0ð Þ ψ t0ð Þi ¼ UH t, t0ð Þj jφ ji (6)

The evolution from ∣φ ji to ∣ψj,H tð Þi given by Eq. (6) is automatic. No transition
from the initial state ∣φ ji to a stationary state ∣φki results until time t.

In the second stage of TDPT, it is assumed that at a time tf , a measurement is
performed. As a consequence, a projection from ∣ψ j,H tf

� �i to ∣φki takes place. In the
words of Albert Messiah: “We suppose that at the initial time t0 the system is in an
eigenstate of E, the state ∣φ ji say. We wish to calculate the probability that if a
measurement is made at a later time tf , the system will be found to be in a different
eigenstate of E, the state ∣φki say. This quantity, by definition the probability of
transition from ∣φ ji to ∣φki, will be denoted by Pjk t0, tf

� �
” ([13], p. 725; emphases

added). Clearly

Pjk t0, tf
� � ¼ ∣⟨φk∣UH tf , t0

� �
∣φ ji∣ 2 (7)

Dirac does not explicitly mention measurements. He supposes that at the initial
time t0, the system is in a state for which E has the value E j with certainty. The ket
corresponding to this state is ∣φ ji. At time tf the corresponding ket will be
UH t f , t0
� �

∣φ ji ([1], p. 172). The probability of E then having the value Ek is given by
Eq. (7). For Ek 6¼ E j, Pjk t0, t f

� �
is the probability of a transition taking place from ∣φ ji

to ∣φki during the time interval (t0, t f ), while Pjj t0, t f
� �

is the probability of no
transition taking place at all. The sum of Pjk t0, t f

� �
for all k is unity ([1], pp. 172–173).

Note that where Messiah says “the probability that if a measurement [of E] is
made… the system will be found to be in… the state ∣φki… ” Dirac says “the
probability of E then having the value Ek …” Dirac’s assertion, however, has exactly
the same meaning as Messiah’s, as shown in the following quote from Dirac’s book
The Principles of Quantum Mechanics: “The expression that an observable ‘has a
particular value’ for a particular state is permissible in quantum mechanics in the
special case when a measurement of the observable is certain to lead to the partic-
ular value, so that the state is an eigenstate of the observable… In the general case
we cannot speak of an observable having a value for a particular state… [but] we
can go further and speak of the probability of its having any specified value for the
state, meaning the probability of this specified value being obtained when one makes a
measurement of the observable” ([1], pp. 46–47; emphases added). Hence Dirac’s
statement “the probability of E then having the value Ek is given by Eq. (7)” should
be understood as “the probability of Ek being obtained when one makes a measure-
ment of E is given by Eq. (7).” Both Dirac (the author of TDPT) and Messiah place
measurements at the very heart of TDPT.

The following diagram illustrates the complete process leading the system from
the initial state ∣φ ji to the final state ∣φki:

First stage: during the interval (t0, t f ) the evolution of the
state is ruled by the Schrödinger equation

Second stage: ∣ψj,H t f
� �i jumps to ∣φki

with probability Pjk t0, t f
� �

Let ε be the non-perturbed energy represented by the operator E. Everything
happens as if at time t f a measurement of ε is performed [14]. If no measurement
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of ε is performed, OQM states that the system continues to evolve in
compliance with Schrödinger’s equation.

4. Two kinds of measurement problems: similarities and differences

It is often overlooked that TDPT requires a measurement of ε in order to
obtain the collapse ∣ψj,H t f

� �i ! ∣φki, suggesting that TBSS are simply the result of
perturbations [14]. A perturbation is something completely different from a
measurement. When the perturbation W(t) is applied, the Hamiltonian changes
from E to E + W(t), but the Schrödinger evolution is not suspended. By contrast,
a measurement interrupts the Schrödinger evolution. According to TDPT the
perturbation W(t) applied during the interval (t0, t f) as well as the measurement of
ε at t f are necessary for the transition ∣φ ji ! ∣φki to occur.

There are, then, two kinds of measurement problems: (i) the traditional mea-
surement problem and (ii) the measurement problem related to TBSS. Both of them
are measurement problems for in both the Schrödinger evolution is interrupted and
the state of the system instantaneously collapses as established by the projection
postulate.

i. In the traditional measurement problem, the experimenter chooses the
physical quantity to be measured. This quantity can be, in principle, any
physical quantity such as the position, a component of the angular
momentum, the energy, etc. Measurements of these quantities have been
performed many times, with different methods, by different people, and in
different circumstances.

ii. In TBSS the system jumps to an eigenstate of E, the operator representing ε.
The experimenter has no choice; the only physical quantity susceptible to be
“measured” is the non-perturbed energy ε. We say “measured” because it
seems difficult to admit that TBSS involve measurements of any physical
quantity. It seems even more difficult to admit that ε is measured every time a
photon is either emitted or absorbed by an atom, as TDPT requires. TBSS
could be considered “measurements”without observers or measuring devices.

“In most cases, the wave function evolves gently, in a perfectly predictable and
continuous way, according to the Schrödinger equation; in some cases only (as soon
as a measurement is performed), unpredictable changes take place, according to the
postulate of wave packet reduction” [15]. TBSS, which are happening everywhere
all the time, must also be included in some of the cases where unpredictable changes
take place according to the projection postulate.

In previous papers we have pointed out the following contradiction: On the one
hand, according to OQM there is no room for the projection postulate as long as we are
dealing with spontaneous processes. On the other hand, to account for spontaneous
processes involving a consideration of time OQM requires, through TDPT, the
application of the projection postulate. This is a flagrant incoherence absent from the
literature [14, 16].

Quantum weirdness has been associated with the traditional measurement
problem. To solve it, several interpretations of quantum mechanics have been
proposed. In the following section, we shall address a few of them. For a critical
review of the most popular interpretations of quantum theory, see the interesting
study of Franck Laloë Do we really understand quantum mechanics? [15].
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� �
∣φ ji∣ 2 (7)
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� �
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� �
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� �
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Let ε be the non-perturbed energy represented by the operator E. Everything
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of ε is performed, OQM states that the system continues to evolve in
compliance with Schrödinger’s equation.

4. Two kinds of measurement problems: similarities and differences
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� �i ! ∣φki, suggesting that TBSS are simply the result of
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dealing with spontaneous processes. On the other hand, to account for spontaneous
processes involving a consideration of time OQM requires, through TDPT, the
application of the projection postulate. This is a flagrant incoherence absent from the
literature [14, 16].

Quantum weirdness has been associated with the traditional measurement
problem. To solve it, several interpretations of quantum mechanics have been
proposed. In the following section, we shall address a few of them. For a critical
review of the most popular interpretations of quantum theory, see the interesting
study of Franck Laloë Do we really understand quantum mechanics? [15].
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5. Some alternative interpretations to OQM

5.1 Bohmian mechanics (BM)

It is also called the causal interpretation of quantum mechanics and the pilot-
wave model. Its first version was proposed by Louis de Broglie in 1927, rapidly
abandoned and forgotten, and reformulated by David Bohm in 1952 [17].

In BM it is assumed that particles are point-like. They have well-defined posi-
tions at each instant and thus describe trajectories. A system of N particles with
masses mk and actual positions Qk(t) (k = 1, … , N) can be described by the couple
(Q(t), ψ(t)), where Q(t) = (Q1(t), … , QN(t)) is the actual configuration of the
system. The wave function of the system is ψ = ψ (q, t) = ψ (q1, … , qN; t), a function
on the space of possible configurations q of the system. The wave function evolves
according to the Schrödinger equation:

iℏ
∂

∂t
ψ ¼ H ψ (8)

where H is the nonrelativistic Hamiltonian. The actual positions of the particles
evolve according to the guiding equation:

d
dt

Q k tð Þ ¼ ℏ
mk

Im
ψ ∗

∂kψ

ψ ∗ ψ

� �
(9)

where Im [] is the imaginary part of [] and ∂k = (∂/∂xk, ∂/∂yk, ∂/∂zk) is the
gradient with respect to the generic coordinates qk = (xk, yk, zk) of the kth particle.
For a system of N particles, Eqs. (8) and (9) completely define BM [18]. It is worth
stressing that (i) BM is a nonlocal theory and (ii) BM is a deterministic theory: the
initial couple (Q(t0), ψ(t0)) determines the couple at any time t > t0.

BM accounts for all of the phenomena governed by nonrelativistic quantum
mechanics, from spectral lines and scattering theory to superconductivity, the
quantum Hall effect and quantum computing [18]. A proposed extension of BM
describes creation and annihilation events: the world lines for the particles can
begin and end [19]. For any experiment the deterministic Bohmian model yields the
usual quantum predictions [18].

In BM the usual measurement postulates of quantum theory emerge from an
analysis of the Eqs. (8) and (9). In the collapse of the wave function, the interaction
of the quantum system with the environment (air molecules, cosmic rays, internal
microscopic degrees of freedom, etc.) plays a significant role. Even if the
Schrödinger evolution is not interrupted, replacing the original wave function for
its “collapsed” derivative is justified as a pragmatic affair [18]. In this regard BM
appeals for processes of decoherence.

5.2 Decoherence

Decoherence is an interesting physical phenomenon entirely contained in the
linear Schrödinger equation and does not imply any particular conceptual problem
[15]. It is a consequence of the unavoidable coupling of the quantum system with
the surrounding medium which “looks and smells as a collapse” [20].

Decoherence is currently the subject of a great deal of research. To grasp how it
works, let us consider the following case, taken from Daniel Bes’ Quantum Mechanics
([9], pp. 247–248).

A quantum system in the state Φij ⟩ (i = 1, 2) interacts with the environment,
initially in the state η0j ⟩, resulting in
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Φij ⟩ η0j ⟩ ! Φij ⟩ ηij ⟩ (10)

If the initial state of the system is Φ�j ⟩ = 1ffiffi
2

p
� �

Φ1j ⟩� Φ2j ⟩ð Þ, the linearity of the

Schrödinger equation yields entangled states:

Φ�j ⟩ η0j ⟩ ! 1ffiffiffi
2

p
� �

Φ1j ⟩ η1j ⟩� Φ2j ⟩ η2j ⟩ð Þ (11)

The corresponding pure state density matrix is

ρ ¼ 1
2

Φ1j ⟩ ⟨Φ1∣ η1j ⟩ ⟨η1∣�
1
2

Φ1j ⟩ ⟨Φ2∣ η1j ⟩ ⟨η2∣

� 1
2

Φ2j ⟩ ⟨Φ1∣ η2j ⟩ ⟨η1∣þ
1
2

Φ2j ⟩ ⟨Φ2∣ η2j ⟩ ⟨η2∣

(12)

Assuming that the environment states are almost orthogonal to each other, i.e.,
⟨η1 η2j ⟩ ≈ 0 ([9], p. 248), the reduced density matrix becomes

ρ0≈
1
2

Φ1j ⟩ ⟨Φ1∣þ 1
2

Φ2j ⟩ ⟨Φ2∣ (13)

“Eq. (13) does not imply that the system is in a mixture of states Φ1j ⟩ and Φ2j ⟩.
Since these two states are simultaneously present in Eqs. (11) and (12), the com-
posite system + environment displays superposition and associated interferences.
However, Eq. (13) says that such quantum manifestations will not appear as long as
experiments are performed only on the system” ([9], p. 248).

It has been proven that for large classical objects, decoherence would be virtually
instantaneous because of the high probability of interaction of such systems with
some environmental quantum. Several models illustrate the gradual cancelation of
the off-diagonal elements with decoherence over time. Experiments also show that,
due to the interaction with the environment, superposition states become
unobservable ([9], p. 251). “These experiments provide impressive direct evidence
for how the interaction with the environment gradually delocalizes the quantum
coherence required for the interference effects to be observed… We find our
observations to be in excellent agreement with theoretical predictions” ([21],
p. 265).

5.3 Spontaneous localization

The key assumption is that each elementary constituent of any physical system is
subject, at random times, to spontaneous localization processes (called hittings)
around random positions. The best known mathematical model stating which mod-
ifications of the wave function are induced by localizations, where and when they
occur, is usually referred to as the Ghirardi-Rimini-Weber (GRW) theory [22, 23].
It holds as follows [24]:

Let ψ q1, … , qN
� �

be the wave function of a system of N particles. “If a hitting
occurs for the ith particle at point x, the wave function is instantaneously multiplied
by a Gaussian function (appropriately normalized)” [24]:

G qi, x
� � ¼ K exp � 1

2d2

� �
qi � x
� �2� �

(14)
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coherence required for the interference effects to be observed… We find our
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The key assumption is that each elementary constituent of any physical system is
subject, at random times, to spontaneous localization processes (called hittings)
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ifications of the wave function are induced by localizations, where and when they
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be the wave function of a system of N particles. “If a hitting
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where d and K are constants. Let

Φi q1, … , qN; x
� � ¼ ψ q1, … , qN

� �
G qi, x
� �

(15)

be the unnormalized wave function immediately after the localization and P xð Þ
the density probability of the hitting taking place at x. Assuming that P xð Þ equals
the integral of Φij j2 over the 3N-dimensional space implies that hittings occur with
higher probability at those places where, in the standard quantum description, there
is a higher probability of finding the particle. The constant K appearing in Eq. (14)
is chosen in such a way that the integral of P xð Þ over the whole space equals unity.
Finally, it is assumed that the hittings occur at randomly distributed times,
according to a Poisson distribution, with mean frequency f. The parameters chosen
in the GRW-model are f = 10�16 s�1 and d = 10�5 cm [24].

GRW aims to a unification of all kinds of physical evolution, including wave
function reduction. On the one hand, the theory succeeds in proposing a real physical
mechanism for the emergence of a single result in a single experiment, which is
attractive from a physical point of view, and solves the “preferred basis problem,” since
the basis is that of localized states. The occurrence of superposition of far-away states is
destroyed by the additional process of localization [15]. On the other hand, it fails to
account for TBSS referred to in TDPT. Similar theories to GRW, like the continuous
spontaneous localization, confront the same problem. The reason is simple: localiza-
tions localize (see Eqs. (14) and (15)). They do not yield the system to a stationary state.

5.4 Spontaneous projection approach (SPA)

Two kinds of processes irreducible to one another occur in nature: those strictly
continuous and causal, governed by a deterministic law, and those implying dis-
continuities, ruled by probability laws. This is the main hypothesis of SPA [25].
Continuous and causal processes are Schrödinger’s evolutions. Processes implying
discontinuities are jumps to the preferential states ∣φ ji j ¼ 1, … ,Nð Þ belonging to
the preferential set Nφ

� �
(= ∣φ1i, … , ∣φNiÞ of the system in a given state [26, 27].

In SPA conservation laws play a paramount role. The system has the tendency to
jump to the eigenstates of every constant of the motion, while the jumps must
respect the statistical sense of every conservation law [25].

The preferential set may or may not exist. If the system in the state ∣ψ tð Þi has the
preferential set Nφ

� �
, we can write

∣ψ tð Þi ¼
X
j

γ j tð Þ ∣φ ji (16)

where γ j tð Þ = ⟨φ j ψ tð Þj ⟩ 6¼ 0 for every j = 1, … ,N and N ≥ 2.
Let us stress the following characteristics of the preferential set [26, 27]:

i. It depends on the state ∣ψ tð Þi.

ii. If it exists, the preferential set is unique. A system in the state ∣ψ tð Þi cannot
have more than one preferential set.

iii. Even if in the general case the Hamiltonian of the system can be
written H(t) = E + W(t), the preferential set does not depend on W(t).

iv. At least N � 1ð Þ members of Nφ

� �
are eigenstates of E. The exception, i.e.,

the case where a preferential state is not a stationary state, has been
referred to elsewhere [28].
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v. The relation

⟨ψ tð ÞjAjψ tð Þ⟩ ¼
X
j

∣γ j tð Þ∣ 2 ⟨φ j∣A∣φ ji (17)

must be fulfilled for every operator A representing a conserved quantity α when
W(t) = 0. The validity of this relation ensures the statistical sense of the conserva-
tion of α [25].

If the system in the state ∣ψ tð Þi does not have a preferential set, the Schrödinger
evolution follows. By contrast, if it has the preferential set Nφ

� �
, in the small time

interval t, tþ dtð Þ, the system can either remain in the Schrödinger channel or jump
to one of its preferential states. The probability that it jumps to the preferential state
jφki is

dPk tð Þ ¼ γk tð Þj j2 dt
τ tð Þ ¼ ⟨φk ψ tð Þj ⟩j j2 dt

τ tð Þ (18)

where τ tð ÞΔE tð Þ ¼ ℏ=2 and ΔE tð Þ½ �2 ¼ ⟨ψ tð ÞjE2jψ tð Þ⟩� ⟨ψ tð ÞjEjψ tð Þ⟩½ �2 [26, 27].
It is easily shown that in the interval t, tþ dtð Þ, the probability that the system

abandons the Schrödinger channel is dt=τ tð Þ and the probability that it remains in
the Schrödinger channel is

dPS tð Þ ¼ 1� dt
τ tð Þ (19)

So the dominant process in a small time interval t, tþ dtð Þ is always the
Schrödinger evolution [25–27].

In cases where the system remains in the Schrödinger channel, the transforma-
tion of the state yielded by SPA exactly coincides with that yielded by OQM. It
could be wrongly assumed that there is a complete correspondence (i) between
OQM spontaneous processes and SPA processes where the preferential set is absent;
and (ii) between OQMmeasurement processes and SPA processes where the system
has its preferential set.

Certainly SPA processes where the preferential set is absent as well as OQM
spontaneous processes are forcible Schrödinger evolutions. And unless the system is
an eigenstate of the operator representing the quantity to be measured, OQM
measurements entail projections. But if the system has its preferential set, according
to SPA it can either be projected to a preferential state or remain in the Schrödinger
channel [26, 27]. Differing from OQM, in SPA there is always room for Schrödinger
evolutions.

In sum, SPA states that in general the wave function evolves gently, in a per-
fectly predictable and continuous way, in agreement with the Schrödinger equation;
in some cases only, when the system jumps to one of its preferential states,
unpredictable changes take place, according to the projection postulate. Assuming
that projections are a law of nature, SPA succeeds in proposing a real physical
mechanism for the emergence of a single result in a single experiment.

6. Facing both measurement problems

Measurement is a complicated and theory-laden business ([29], p. 208). When
one talks about the measurement problem in quantum mechanics, one is not refer-
ring to a real and theory-laden process but just to the problem of accounting in
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iv. At least N � 1ð Þ members of Nφ

� �
are eigenstates of E. The exception, i.e.,

the case where a preferential state is not a stationary state, has been
referred to elsewhere [28].
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v. The relation

⟨ψ tð ÞjAjψ tð Þ⟩ ¼
X
j

∣γ j tð Þ∣ 2 ⟨φ j∣A∣φ ji (17)

must be fulfilled for every operator A representing a conserved quantity α when
W(t) = 0. The validity of this relation ensures the statistical sense of the conserva-
tion of α [25].

If the system in the state ∣ψ tð Þi does not have a preferential set, the Schrödinger
evolution follows. By contrast, if it has the preferential set Nφ

� �
, in the small time

interval t, tþ dtð Þ, the system can either remain in the Schrödinger channel or jump
to one of its preferential states. The probability that it jumps to the preferential state
jφki is

dPk tð Þ ¼ γk tð Þj j2 dt
τ tð Þ ¼ ⟨φk ψ tð Þj ⟩j j2 dt

τ tð Þ (18)

where τ tð ÞΔE tð Þ ¼ ℏ=2 and ΔE tð Þ½ �2 ¼ ⟨ψ tð ÞjE2jψ tð Þ⟩� ⟨ψ tð ÞjEjψ tð Þ⟩½ �2 [26, 27].
It is easily shown that in the interval t, tþ dtð Þ, the probability that the system

abandons the Schrödinger channel is dt=τ tð Þ and the probability that it remains in
the Schrödinger channel is

dPS tð Þ ¼ 1� dt
τ tð Þ (19)

So the dominant process in a small time interval t, tþ dtð Þ is always the
Schrödinger evolution [25–27].

In cases where the system remains in the Schrödinger channel, the transforma-
tion of the state yielded by SPA exactly coincides with that yielded by OQM. It
could be wrongly assumed that there is a complete correspondence (i) between
OQM spontaneous processes and SPA processes where the preferential set is absent;
and (ii) between OQMmeasurement processes and SPA processes where the system
has its preferential set.

Certainly SPA processes where the preferential set is absent as well as OQM
spontaneous processes are forcible Schrödinger evolutions. And unless the system is
an eigenstate of the operator representing the quantity to be measured, OQM
measurements entail projections. But if the system has its preferential set, according
to SPA it can either be projected to a preferential state or remain in the Schrödinger
channel [26, 27]. Differing from OQM, in SPA there is always room for Schrödinger
evolutions.

In sum, SPA states that in general the wave function evolves gently, in a per-
fectly predictable and continuous way, in agreement with the Schrödinger equation;
in some cases only, when the system jumps to one of its preferential states,
unpredictable changes take place, according to the projection postulate. Assuming
that projections are a law of nature, SPA succeeds in proposing a real physical
mechanism for the emergence of a single result in a single experiment.

6. Facing both measurement problems

Measurement is a complicated and theory-laden business ([29], p. 208). When
one talks about the measurement problem in quantum mechanics, one is not refer-
ring to a real and theory-laden process but just to the problem of accounting in
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principle for projections resulting from measurements, i.e., to the fact that the
Schrödinger evolution is suspended when a measurement is performed.

SPA justifies Dirac’s assertion: “in [TDPT] we do not consider any modification
to be made in the states of the unperturbed system, but we suppose that the
perturbed system, instead of remaining permanently in one of these states, is
continually changing from one to another, or making transitions, under the
influence of the perturbation” ([1], p. 167).

On the one hand, in general the preferential states of the system are the
eigenstates of E, which do not depend on the perturbation W(t). Hence no modifi-
cation of these states should be considered. On the other hand, if the initial state of
the system is ∣ψ t0ð Þi ¼ ∣φ ji, an eigenstate of E, the effect of the perturbation is to
gently remove the state ∣ψ t0ð Þi from ∣φ ji, and yield it to the linear superposition
∣ψ tð Þi given by Eq. (16). Once the system is in this linear superposition, it can either
suddenly jump to a stationary state or remain in the Schrödinger channel. If it
jumps, it can either go to a state ∣φki (where k 6¼ j) or come back to its initial state
∣φ ji. The result can be described as a system continually changing from one to
another stationary state or making transitions, as Dirac asserts.

In principle SPA accounts for TBSS. By contrast, decoherence has little to con-
tribute concerning this matter.

Assuming as valid the ideal measurement scheme, in previous papers we have
addressed the traditional measurement problem as follows [4, 25].

Let A be the operator representing the physical quantity α referred to the system
S. We shall denote by ∣a ji the eigenvector of A corresponding to the eigenvalue
a j (j ¼ 1, 2, … Þ; for simplicity we shall refer to the discrete non-degenerate case. If
the initial state of S is ∣a ji and the initial state of the measuring device M is ∣m0i, the
initial state of the total system S + M (before the measurement takes place) will be
denoted by ∣a ji ∣m0i. The final state of the total system (when the measurement is
over) will be denoted by ∣Φi.

According to the ideal measurement scheme the Schrödinger evolution results

∣a ji ∣m0i ! ∣Φi ¼ ∣Φ ji (20)

This scheme is supposed to be valid in cases where the measured physical
quantity is compatible with every conserved quantity referred to S + M [30].

If the initial state of S is
P

jγ j∣a ji (where γ j 6¼ 0 for every j = 1, … ,N), the
linearity of the Schrödinger equation yields entangled states:

X
j

γ j ja ji
 !

∣m0i ! ∣Φi ¼
X
j

γ j ∣Φ ji (21)

The set NΦf g = {∣Φ1i, … , ∣ΦNi} can be considered the preferential set of S + M
in the state ∣Φi (as a matter of fact, NΦf g clearly fulfills several of the requirements
imposed to such a set). Hence, projections like ∣Φi ! ∣Φ1i, … . or ∣Φi ! ∣ΦNi may
result. This is SPA proposed solution to the traditional measurement problem.

Decoherence invokes an alternative solution to the traditional measurement
problem. Once the expansion (21) is obtained, the density matrix corresponding to
the state ∣Φi is replaced by the reduced density matrix as previously done in Section
5.2 (see Eqs. (12) and (13)). It is claim that “there has been a leakage of coherence
from the system to the composite entity (system + environment). Since we are not
able to control this entity, the decoherence has been completed to all practical purposes”
([9], p. 248; emphases added).
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Laloë points out that “decoherence is not to be confused with the measurement
process itself; it is just the process which takes place just before: during
decoherence, the off-diagonal elements of the density matrix vanish…” [15]. In his
view “the crux of most of our difficulties with quantum mechanics is the question:
what is exactly the process that forces Nature… to make its choice among the
various possibilities for the results of experiments?” [15]. SPA answers: spontaneous
projections to the preferential states.

SPA and decoherence are not opposed theories competing for “an explanation”
to the measurement problem but cooperating theories. Projections break down the
Schrödinger evolution, but they are not frequent. If the system has its preferential
set, projections can take place at the very beginning of the process or not (in SPA
there is always room for Schrödinger evolutions). As long as projections do not take
place, decoherence can make its work entangling the system with the environment.
But nothing prevents the total, entangled system, to have its preferential set. This
may be why a spontaneous projection finally breaks down the superposition of
states of the total system. Nature makes its choice, and it is only then that
decoherence is completed.

7. Conclusions

Carlton Caves declares: “Mention collapse of the wave function, and you are
likely to encounter vague uneasiness or, in extreme cases, real discomfort. This
uneasiness can usually be traced to a feeling that wave-function collapse lies ‘out-
side’ quantum mechanics: The real quantum mechanics is said to be the unitary
Schrödinger evolution; wave-function collapse is regarded as an ugly duckling of
questionable status, dragged in to interrupt the beautiful flow of Schrödinger
evolution” [31].

If collapses implied in traditional measurement are regarded as an ugly duckling
of questionable status, collapses implied in TBSS could result definitively unbear-
able. Neither observers nor measuring devices could be invoked to excuse their
occurrence, but they are there, happening all the time, more or less everywhere,
e.g., every time a photon is either emitted or absorbed by an atom.

The search for a solution to the traditional measurement problem is at the basis
of most interpretations of quantum mechanics. In this paper we have summed up
four of these interpretations which succeed in avoiding the quantum superposition
of macroscopically distinct states, an important element of the traditional measure-
ment problem. Every particular interpretation provides a particular point of view
on the traditional measurement problem: (1) in Bohmian mechanics Schrödinger’s
evolution is not interrupted; replacing the original wave function for its “collapsed”
derivative is just a pragmatic affair; (2) in decoherence the linear Schrödinger
equation yields an unavoidable coupling of the quantum system with the surround-
ing medium, which is not a collapse but looks and smells as if it were; (3) in GRW
collapses result from localizations; and (4) in SPA collapses result from jumps to
preferential states.

By contrast, no different interpretations of quantum mechanics are invoked to
account for TBSS, as if the corresponding measurement problem were immune to
the different interpretations of the theory. We have shown, however, that at least
one interpretation of quantum mechanics does not account for TBSS.

Every proposed solution to the measurement problem should apply to both
measurement problems: the traditional and that implied in TBSS. A solution to just
one of them is not good enough.
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Chapter 4

Uncertainty Relations
Kenjiro Yanagi

Abstract

Uncertainty relations are inequalities representing the impossibility of
simultaneous measurement in quantum mechanics. The most well-known
uncertainty relations were presented by Heisenberg and Schrödinger. In this
chapter, we generalize and extend them to produce several types of uncertainty
relations.

Keywords: trace inequality, variance, covariance, skew information, metric
adjusted skew information, noncommutativity, observable, operator inequality

1. Introduction

Let Mn ð Þ (resp. Mn,sa ð Þ) be the set of all n� n complex matrices (resp. all
n� n self-adjoint matrices), endowed with the Hilbert-Schmidt scalar product
A,Bh i ¼ Tr A ∗B½ �. Let Mn,þ ð Þ be the set of strictly positive elements of Mn ð Þ and
Mn,þ,1 ð Þ⊂Mn,þ ð Þ be the set of strictly positive density matrices, that is
Mn,þ,1 ð Þ ¼ ρ∈Mn ð ÞjTr ρ½ � ¼ 1, ρ>0f g. If not otherwise specified, hereafter, we
address the case of faithful states, that is ρ>0. It is known that the expectation of an
observable A∈Mn,sa ð Þ in state ρ∈Mn,þ,1 ð Þ is defined by

Eρ Að Þ ¼ Tr ρA½ �,

and the variance of an observable A∈Mn,sa ð Þ in state ρ∈Mn,þ,1 ð Þ is
defined by

Vρ Að Þ ¼ Tr ρ A� Eρ Að ÞI� �2h i
¼ Tr ρA2� �� Eρ Að Þ2 ¼ Tr ρA2

0

� �
,

where A0 ¼ A� Eρ Að ÞI.
In Section 2, we introduce the Heisenberg and Schrödinger uncertainty relations.

In Section 3, we present uncertainty relations with respect to the Wigner-Yanase
and Wigner-Yanase-Dyson skew information. To represent the degree of
noncommutativity between ρ∈Mn,þ,1 ð Þ and A∈Mn,sa ð Þ, the Wigner-Yanase
skew information Iρ Að Þ is defined by

Iρ Að Þ ¼ 1
2
Tr i ρ1=2,A

h i� �2� �
¼ Tr ρA2� �� Tr ρ1=2Aρ1=2A

h i
,

where X,Y½ � ¼ XY � YX. Furthermore, the Wigner-Yanase-Dyson skew
information Iρ,α Að Þ is defined by
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Abstract

Uncertainty relations are inequalities representing the impossibility of
simultaneous measurement in quantum mechanics. The most well-known
uncertainty relations were presented by Heisenberg and Schrödinger. In this
chapter, we generalize and extend them to produce several types of uncertainty
relations.

Keywords: trace inequality, variance, covariance, skew information, metric
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1. Introduction
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Mn,þ,1 ð Þ⊂Mn,þ ð Þ be the set of strictly positive density matrices, that is
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and the variance of an observable A∈Mn,sa ð Þ in state ρ∈Mn,þ,1 ð Þ is
defined by

Vρ Að Þ ¼ Tr ρ A� Eρ Að ÞI� �2h i
¼ Tr ρA2� �� Eρ Að Þ2 ¼ Tr ρA2

0

� �
,

where A0 ¼ A� Eρ Að ÞI.
In Section 2, we introduce the Heisenberg and Schrödinger uncertainty relations.

In Section 3, we present uncertainty relations with respect to the Wigner-Yanase
and Wigner-Yanase-Dyson skew information. To represent the degree of
noncommutativity between ρ∈Mn,þ,1 ð Þ and A∈Mn,sa ð Þ, the Wigner-Yanase
skew information Iρ Að Þ is defined by

Iρ Að Þ ¼ 1
2
Tr i ρ1=2,A

h i� �2� �
¼ Tr ρA2� �� Tr ρ1=2Aρ1=2A

h i
,

where X,Y½ � ¼ XY � YX. Furthermore, the Wigner-Yanase-Dyson skew
information Iρ,α Að Þ is defined by
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Iρ,α Að Þ ¼ 1
2
Tr i ρα,A½ �ð Þ i ρ1�α,A

� �� �� � ¼ Tr ρA2� �� Tr ραAρ1�αA
� �

, α∈ 0, 1½ �ð Þ:

The convexity of Iρ,α Að Þ with respect to ρ was famously demonstrated by Lieb
[1], and the relationship between the Wigner-Yanase skew information and the
uncertainty relation was originally developed by Luo and Zhang [2]. Subsequently,
the relationship between the Wigner-Yanase-Dyson skew information and the
uncertainty relation was provided by Kosaki [3] and Yanagi-Furuichi-Kuriyama
[4]. In Section 4, we discuss the metric adjusted skew information defined by
Hansen [5], which is an extension of the Wigner-Yanase-Dyson skew information.
The relationship between metric adjusted skew information and the uncertainty
relation was provided by Yanagi [6] and generalized by Yanagi-Furuichi-Kuriyama
[7] for generalized metric adjusted skew information and the generalized metric
adjusted correlation measure. In Sections 5 and 6, we provide non-Hermitian
extensions of Heisenberg-type and Schrödinger-type uncertainty relations related
to generalized quasi-metric adjusted skew information and the generalized quasi-
metric adjusted correlation measure. As a result, we obtain results for non-
Hermitian uncertainty relations provided by Dou and Du as corollaries of our
results. Finally, in Section 7, we present the sum types of uncertainty relations.

2. Heisenberg and Schrödinger uncertainty relations

Theorem 1.1 (Heisenberg uncertainty relation). For A,B∈Mn,sa ð Þ,
ρ∈Mn,þ,1 ð Þ,

Vρ Að ÞVρ Bð Þ≥ 1
4

Tr ρ A,B��½ j2,
h��� (1)

where A,B½ � ¼ AB� BA is the commutator.
Theorem 1.2 (Schrödinger uncertainty relation). For A,B∈Mn,sa ð Þ,

ρ∈Mn,þ,1 ð Þ,

Vρ Að ÞVρ Bð Þ � ∣Re Tr ρA0B0½ �f g 2 ≥
1
4
Tr ρ A,B��½ j2:
h����

Proof of Theorem 1.2. By the Schwarz inequality

Tr ρA0B0½ �j j2 ¼ Tr ρ1=2B0

� � ∗
ρ1=2A0

� �h i���
���
2

≤Tr ρ1=2B0

� � ∗
ρ1=2B0

� �h i
� Tr ρ1=2A0

� � ∗
ρ1=2A0

� �h i

¼ Tr ρA2
0

� � � Tr ρB2
0

� � ¼ Vρ Að Þ � Vρ Bð Þ:

Since

Tr ρ A0,B0½ �½ � ¼ Tr ρA0B0½ � � Tr ρB0A0½ � ¼ Tr ρA0B0½ � � Tr A0B0ρ½ �
¼ Tr ρA0B0½ � � Tr ρA0B0½ � ¼ 2iIm Tr ρA0B0½ �f g,

we have

Tr ρA0B0½ �j j2 ¼ Re Tr ρA0B0½ �f gð Þ2 þ Im Tr ρA0B0½ �f gð Þ2

¼ Re Tr ρA0B0½ �f gð Þ2 þ 1
4
Tr ρ A0,B0½ �½ �j j2:
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Since Tr ρ A0,B0½ �½ � ¼ Tr ρ A,B½ �½ �, we obtain

Vρ Að Þ � Vρ Bð Þ � ∣Re Tr ρA0B0½ �f g 2 ≥
1
4
Tr ρ A,B��½ j2: □
h����

3. Uncertainty relation for Wigner-Yanase-Dyson skew information

3.1 Wigner-Yanase skew information

To represent the degree of noncommutativity between ρ∈Mn,þ,1 ð Þ and
A∈Mn,sa ð Þ, the Wigner-Yanase skew information Iρ Að Þ and related quantity Jρ Að Þ
are defined as

Iρ Að Þ ¼ 1
2
Tr i ρ1=2,A0

h i� �2� �
¼ Tr ρA2

0

� �� Tr ρ1=2A0ρ
1=2A0

h i
:

Jρ Að Þ ¼ 1
2
Tr ρ A0,B0f g2
h i

¼ Tr ρA2
0

� �þ Tr ρ1=2A0ρ
1=2A0

h i
,

where A,Bf g ¼ ABþ BA. The quantity Uρ Að Þ representing a quantum
uncertainty excluding the classical mixture is defined as

Uρ Að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iρ Að Þ � Jρ Að Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vρ Að Þ2 � Vρ Að Þ � Iρ Að Þ� �2q

:

We note the following relation:

0≤ Iρ Að Þ≤Uρ Að Þ≤Vρ Að Þ: (2)

Luo [8] then derived the uncertainty relation of Uρ Að Þ.
Theorem 1.3. For A,B∈Mn,sa ð Þ, ρ∈Mn,þ,1 ð Þ,

Uρ Að Þ �Uρ Bð Þ≥ 1
4

Tr ρ A,B��½ j2:
h��� (3)

Inequality (3) is a refinement of (1) in terms of (2).

3.2 Wigner-Yanase-Dyson skew information

Here, we introduce a one-parameter inequality extended from (3). For
0≤ α≤ 1,A,B∈Mn,sa ð Þ and ρ∈Mn,þ,1 ð Þ, we define the Wigner-Yanase-Dyson
skew information as follows:

Iρ,α Að Þ ¼ 1
2
Tr i ρα,A0½ �ð Þ i ρ1�α,A0

� �� �� � ¼ Tr ρA2
0

� �� Tr ραA0ρ
1�αA0

� �
:

We also define

Jρ,α Að Þ ¼ 1
2
Tr ρα,A0f g ρ1�α,A0

� �� � ¼ Tr ρA2½ � þ Tr ραA0ρ
1�αA0

� �
:

We note that

1
2
Tr i ρα,A0½ �½ Þ i ρ1�α,A0

� �� �� ¼ 1
2
Re i ρα,A½ �ð Þ i ρ1�α,A

� �� �� �
;
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Iρ,α Að Þ ¼ 1
2
Tr i ρα,A½ �ð Þ i ρ1�α,A

� �� �� � ¼ Tr ρA2� �� Tr ραAρ1�αA
� �

, α∈ 0, 1½ �ð Þ:

The convexity of Iρ,α Að Þ with respect to ρ was famously demonstrated by Lieb
[1], and the relationship between the Wigner-Yanase skew information and the
uncertainty relation was originally developed by Luo and Zhang [2]. Subsequently,
the relationship between the Wigner-Yanase-Dyson skew information and the
uncertainty relation was provided by Kosaki [3] and Yanagi-Furuichi-Kuriyama
[4]. In Section 4, we discuss the metric adjusted skew information defined by
Hansen [5], which is an extension of the Wigner-Yanase-Dyson skew information.
The relationship between metric adjusted skew information and the uncertainty
relation was provided by Yanagi [6] and generalized by Yanagi-Furuichi-Kuriyama
[7] for generalized metric adjusted skew information and the generalized metric
adjusted correlation measure. In Sections 5 and 6, we provide non-Hermitian
extensions of Heisenberg-type and Schrödinger-type uncertainty relations related
to generalized quasi-metric adjusted skew information and the generalized quasi-
metric adjusted correlation measure. As a result, we obtain results for non-
Hermitian uncertainty relations provided by Dou and Du as corollaries of our
results. Finally, in Section 7, we present the sum types of uncertainty relations.

2. Heisenberg and Schrödinger uncertainty relations

Theorem 1.1 (Heisenberg uncertainty relation). For A,B∈Mn,sa ð Þ,
ρ∈Mn,þ,1 ð Þ,

Vρ Að ÞVρ Bð Þ≥ 1
4

Tr ρ A,B��½ j2,
h��� (1)

where A,B½ � ¼ AB� BA is the commutator.
Theorem 1.2 (Schrödinger uncertainty relation). For A,B∈Mn,sa ð Þ,

ρ∈Mn,þ,1 ð Þ,

Vρ Að ÞVρ Bð Þ � ∣Re Tr ρA0B0½ �f g 2 ≥
1
4
Tr ρ A,B��½ j2:
h����

Proof of Theorem 1.2. By the Schwarz inequality

Tr ρA0B0½ �j j2 ¼ Tr ρ1=2B0

� � ∗
ρ1=2A0

� �h i���
���
2

≤Tr ρ1=2B0

� � ∗
ρ1=2B0

� �h i
� Tr ρ1=2A0

� � ∗
ρ1=2A0

� �h i

¼ Tr ρA2
0

� � � Tr ρB2
0

� � ¼ Vρ Að Þ � Vρ Bð Þ:

Since

Tr ρ A0,B0½ �½ � ¼ Tr ρA0B0½ � � Tr ρB0A0½ � ¼ Tr ρA0B0½ � � Tr A0B0ρ½ �
¼ Tr ρA0B0½ � � Tr ρA0B0½ � ¼ 2iIm Tr ρA0B0½ �f g,

we have

Tr ρA0B0½ �j j2 ¼ Re Tr ρA0B0½ �f gð Þ2 þ Im Tr ρA0B0½ �f gð Þ2

¼ Re Tr ρA0B0½ �f gð Þ2 þ 1
4
Tr ρ A0,B0½ �½ �j j2:
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Since Tr ρ A0,B0½ �½ � ¼ Tr ρ A,B½ �½ �, we obtain

Vρ Að Þ � Vρ Bð Þ � ∣Re Tr ρA0B0½ �f g 2 ≥
1
4
Tr ρ A,B��½ j2: □
h����

3. Uncertainty relation for Wigner-Yanase-Dyson skew information

3.1 Wigner-Yanase skew information

To represent the degree of noncommutativity between ρ∈Mn,þ,1 ð Þ and
A∈Mn,sa ð Þ, the Wigner-Yanase skew information Iρ Að Þ and related quantity Jρ Að Þ
are defined as

Iρ Að Þ ¼ 1
2
Tr i ρ1=2,A0

h i� �2� �
¼ Tr ρA2

0

� �� Tr ρ1=2A0ρ
1=2A0

h i
:

Jρ Að Þ ¼ 1
2
Tr ρ A0,B0f g2
h i

¼ Tr ρA2
0

� �þ Tr ρ1=2A0ρ
1=2A0

h i
,

where A,Bf g ¼ ABþ BA. The quantity Uρ Að Þ representing a quantum
uncertainty excluding the classical mixture is defined as

Uρ Að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iρ Að Þ � Jρ Að Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vρ Að Þ2 � Vρ Að Þ � Iρ Að Þ� �2q

:

We note the following relation:

0≤ Iρ Að Þ≤Uρ Að Þ≤Vρ Að Þ: (2)

Luo [8] then derived the uncertainty relation of Uρ Að Þ.
Theorem 1.3. For A,B∈Mn,sa ð Þ, ρ∈Mn,þ,1 ð Þ,

Uρ Að Þ �Uρ Bð Þ≥ 1
4

Tr ρ A,B��½ j2:
h��� (3)

Inequality (3) is a refinement of (1) in terms of (2).

3.2 Wigner-Yanase-Dyson skew information

Here, we introduce a one-parameter inequality extended from (3). For
0≤ α≤ 1,A,B∈Mn,sa ð Þ and ρ∈Mn,þ,1 ð Þ, we define the Wigner-Yanase-Dyson
skew information as follows:

Iρ,α Að Þ ¼ 1
2
Tr i ρα,A0½ �ð Þ i ρ1�α,A0

� �� �� � ¼ Tr ρA2
0

� �� Tr ραA0ρ
1�αA0

� �
:

We also define

Jρ,α Að Þ ¼ 1
2
Tr ρα,A0f g ρ1�α,A0

� �� � ¼ Tr ρA2½ � þ Tr ραA0ρ
1�αA0

� �
:

We note that

1
2
Tr i ρα,A0½ �½ Þ i ρ1�α,A0

� �� �� ¼ 1
2
Re i ρα,A½ �ð Þ i ρ1�α,A

� �� �� �
;
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however, we have

1
2
Tr ρα,A0f g ρ1�α,A0

� �� � 6¼ 1
2
Tr ρα,Af g ρ1�α,A

� �� �
:

We then have the following inequalities:

Iρ,α Að Þ≤ Iρ Að Þ≤ Jρ Að Þ≤ Jρ,α Að Þ, (4)

because Tr ρ1=2Aρ1=2A
� �

≤Tr ραAρ1�αA½ �. We define

Uρ,α Að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iρ,α Að Þ � Jρ,α Að Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vρ Að Þ2 � Vρ Að Þ � Iρ,α Að Þ:�q

(5)

From (2), (4), and (5), we have

0≤ Iρ,α Að Þ≤ Iρ Að Þ≤Uρ Að Þ

and

0≤ Iρ,α Að Þ≤Uρ,α Að Þ≤Uρ Að Þ:

We provide the following uncertainty relation with respect to Uρ,α Að Þ as a direct
generalization of (3).

Theorem 1.4 ([9]). For A,B∈Mn,sa ð Þ, ρ∈Mn,þ,1 ð Þ,

Uρ,α Að Þ � Uρ,α Bð Þ≥ α 1� αð Þ Tr ρ A,B��½ j2:
h��� (6)

Proof of Theorem 1.4. By spectral decomposition, there exists an orthonormal
basis jϕ1i, jϕ2i, … , jϕnif g consisting of eigenvectors of ρ. Let λ1, λ2, … , λn be the
corresponding eigenvalues, where

Pn
i¼1λi ¼ 1 and λi ≥0. Thus ρ has a spectral

representation ρ ¼Pn
i¼1λi∣ϕiihϕi∣. We can obtain the following representations of

Iρ,α Að Þ and Jρ,α Að Þ:

Iρ,α Að Þ ¼
X
i< j

λi þ λ j � λαi λ
1�α
j � λ1�α

i λαj

� �
∣hϕi∣A0 ϕ ji

���
���
2
:

Jρ,α Að Þ≥
X
i< j

λi þ λ j þ λαi λ
1�α
j þ λ1�α

i λαj

� �
∣hϕi∣A0 ϕ ji

���
���
2
:

Since 1� 2αð Þ2 t� 1ð Þ2 � tα � t1�αð Þ2 ≥0 for any t>0 and 0≤ α≤ 1, we define
t ¼ λi

λ j
and have

1� 2αð Þ2 λi
λ j

� 1
� �2

� λi
λ j

� �α

� λi
λ j

� �1�α
 !2

≥0:

Then,

λi þ λ j
� �2 � λαi λ

1�α
j þ λ1�α

i λαj

� �2
≥4α 1� αð Þ λi � λ j

� �2
: (7)

Since
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Tr ρ A,B½ �½ � ¼ Tr ρ A0,B0½ �½ � ¼ 2iImTr ρA0B0½ � ¼ 2iIm
X
i< j

λi � λ j
� �

ϕijA0jϕ j

D E
ϕ jjB0jϕi

D E

¼ 2i
X
i< j

λi � λ j
� �

Im ϕijA0jϕ j

D E
ϕ jjB0jϕi

D E
,

∣Tr ρ A,B½ �½ �∣ ¼ 2∣
X
i< j

λi � λ j
� �

Im ϕijA0jϕ j

D E
ϕ jjB0jϕi

D E
∣ ≤ 2

X
i< j

∣λi

� λ jkIm ϕijA0jϕ j

D E
ϕ jjB0jϕi

D E
∣:

We then have

Tr ρ A,B½ �½ �j j2 ≤ 4
X
i< j

jλi � λ jkIm ϕijA0jϕ j

D E
hϕ jjB0jϕiij

( )2

:

By (7) and the Schwarz inequality,

α 1� αð Þ Tr½ρ½A,B��j j2 ≤ 4α 1� αð Þ
X
i< j

jλi � λ jkIm ϕijA0jϕ j

D E
hϕ jjB0jϕiij

( )2

¼
X
i< j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1� αð Þ

p
jλi � λ jkIm ϕijA0jϕ j

D E
hϕ jjB0jϕii

( )2

≤
X
i< j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1� αð Þ

p
jλi � λ jk ϕijA0jϕ j

D E
hϕ jjB0jϕiij

( )2

≤
X
i< j

λi þ λ j
� �2 � λαi λ

1�α
j þ λ1�α

i λαj

� �2� �1=2

jhϕijA0jϕ jikhϕ jjB0jϕiij
( )2

≤
X
i< j

λi þ λ j � λαi λ
1�α
j � λ1�α

i λαj

� �
∣hϕi∣A0 ϕ ji

���
���
2

�
X
i< j

λi þ λ j þ λαi λ
1�α
j þ λ1�α

i λαj

� �
∣hϕi∣B0 ϕ ji

���
���
2
:

Then, we have

Iρ,α Að ÞJρ,α Bð Þ≥ α 1� αð Þ Tr½ρ½A,B��j j2:

We also have

Iρ,α Bð ÞJρ,α Að Þ≥ α 1� αð Þ Tr½ρ A,B��½ j2:��

Thus, we have the final result, (6). □
When α ¼ 1

2, we obtain the result in Theorem 1.3.

4. Metric adjusted skew information and metric adjusted correlation
measure

4.1 Operator monotone function

A function f : 0,þ∞ð Þ !  is considered operator monotone if, for any n∈ℕ,
and A,B∈Mn such that 0≤A≤B, the inequalities 0≤ f Að Þ≤ f Bð Þ hold. An operator
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however, we have

1
2
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� �� � 6¼ 1
2
Tr ρα,Af g ρ1�α,A

� �� �
:

We then have the following inequalities:

Iρ,α Að Þ≤ Iρ Að Þ≤ Jρ Að Þ≤ Jρ,α Að Þ, (4)

because Tr ρ1=2Aρ1=2A
� �

≤Tr ραAρ1�αA½ �. We define
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q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(5)

From (2), (4), and (5), we have

0≤ Iρ,α Að Þ≤ Iρ Að Þ≤Uρ Að Þ

and

0≤ Iρ,α Að Þ≤Uρ,α Að Þ≤Uρ Að Þ:

We provide the following uncertainty relation with respect to Uρ,α Að Þ as a direct
generalization of (3).

Theorem 1.4 ([9]). For A,B∈Mn,sa ð Þ, ρ∈Mn,þ,1 ð Þ,

Uρ,α Að Þ � Uρ,α Bð Þ≥ α 1� αð Þ Tr ρ A,B��½ j2:
h��� (6)

Proof of Theorem 1.4. By spectral decomposition, there exists an orthonormal
basis jϕ1i, jϕ2i, … , jϕnif g consisting of eigenvectors of ρ. Let λ1, λ2, … , λn be the
corresponding eigenvalues, where

Pn
i¼1λi ¼ 1 and λi ≥0. Thus ρ has a spectral

representation ρ ¼Pn
i¼1λi∣ϕiihϕi∣. We can obtain the following representations of

Iρ,α Að Þ and Jρ,α Að Þ:

Iρ,α Að Þ ¼
X
i< j

λi þ λ j � λαi λ
1�α
j � λ1�α

i λαj

� �
∣hϕi∣A0 ϕ ji

���
���
2
:

Jρ,α Að Þ≥
X
i< j

λi þ λ j þ λαi λ
1�α
j þ λ1�α

i λαj

� �
∣hϕi∣A0 ϕ ji

���
���
2
:

Since 1� 2αð Þ2 t� 1ð Þ2 � tα � t1�αð Þ2 ≥0 for any t>0 and 0≤ α≤ 1, we define
t ¼ λi

λ j
and have

1� 2αð Þ2 λi
λ j

� 1
� �2

� λi
λ j

� �α

� λi
λ j

� �1�α
 !2

≥0:

Then,

λi þ λ j
� �2 � λαi λ

1�α
j þ λ1�α

i λαj

� �2
≥4α 1� αð Þ λi � λ j

� �2
: (7)

Since
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Tr ρ A,B½ �½ � ¼ Tr ρ A0,B0½ �½ � ¼ 2iImTr ρA0B0½ � ¼ 2iIm
X
i< j

λi � λ j
� �

ϕijA0jϕ j

D E
ϕ jjB0jϕi

D E

¼ 2i
X
i< j

λi � λ j
� �

Im ϕijA0jϕ j

D E
ϕ jjB0jϕi

D E
,

∣Tr ρ A,B½ �½ �∣ ¼ 2∣
X
i< j

λi � λ j
� �

Im ϕijA0jϕ j

D E
ϕ jjB0jϕi

D E
∣ ≤ 2

X
i< j

∣λi

� λ jkIm ϕijA0jϕ j

D E
ϕ jjB0jϕi

D E
∣:

We then have

Tr ρ A,B½ �½ �j j2 ≤ 4
X
i< j

jλi � λ jkIm ϕijA0jϕ j

D E
hϕ jjB0jϕiij

( )2

:

By (7) and the Schwarz inequality,

α 1� αð Þ Tr½ρ½A,B��j j2 ≤ 4α 1� αð Þ
X
i< j

jλi � λ jkIm ϕijA0jϕ j

D E
hϕ jjB0jϕiij

( )2

¼
X
i< j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1� αð Þ

p
jλi � λ jkIm ϕijA0jϕ j

D E
hϕ jjB0jϕii

( )2

≤
X
i< j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1� αð Þ

p
jλi � λ jk ϕijA0jϕ j

D E
hϕ jjB0jϕiij

( )2

≤
X
i< j

λi þ λ j
� �2 � λαi λ

1�α
j þ λ1�α

i λαj

� �2� �1=2

jhϕijA0jϕ jikhϕ jjB0jϕiij
( )2

≤
X
i< j

λi þ λ j � λαi λ
1�α
j � λ1�α

i λαj

� �
∣hϕi∣A0 ϕ ji

���
���
2

�
X
i< j

λi þ λ j þ λαi λ
1�α
j þ λ1�α

i λαj

� �
∣hϕi∣B0 ϕ ji

���
���
2
:

Then, we have

Iρ,α Að ÞJρ,α Bð Þ≥ α 1� αð Þ Tr½ρ½A,B��j j2:

We also have

Iρ,α Bð ÞJρ,α Að Þ≥ α 1� αð Þ Tr½ρ A,B��½ j2:��

Thus, we have the final result, (6). □
When α ¼ 1

2, we obtain the result in Theorem 1.3.

4. Metric adjusted skew information and metric adjusted correlation
measure

4.1 Operator monotone function

A function f : 0,þ∞ð Þ !  is considered operator monotone if, for any n∈ℕ,
and A,B∈Mn such that 0≤A≤B, the inequalities 0≤ f Að Þ≤ f Bð Þ hold. An operator

51

Uncertainty Relations
DOI: http://dx.doi.org/10.5772/intechopen.92137



monotone function is said to be symmetric if f xð Þ ¼ xf x�1ð Þ and normalized if
f 1ð Þ ¼ 1.

Definition 1 F op is the class of functions f : 0,þ∞ð Þ ! 0,þ∞ð Þ such that:

1. f 1ð Þ ¼ 1.

2. tf t�1ð Þ ¼ f tð Þ.

3. f is operator monotone.

Example 1. Examples of elements of F op are given by the following:

fRLD xð Þ ¼ 2x
xþ 1

, fWY xð Þ ¼
ffiffiffi
x

p þ 1
2

� �2

, fBKM xð Þ ¼ x� 1
log x

,

fSLD xð Þ ¼ xþ 1
2

, fWYD xð Þ ¼ α 1� αð Þ x� 1ð Þ2
xα � 1ð Þ x1�α � 1ð Þ , α∈ 0, 1ð Þ:

Remark 1. Any f ∈F op satisfies

2x
xþ 1

≤ f xð Þ≤ xþ 1
2

, x>0:

For f ∈F op, we define f 0ð Þ ¼ lim x!0f xð Þ. We introduce the sets of regular and
non-regular functions

F r
op ¼ f ∈F opj f 0ð Þ 6¼ 0

� �
, F n

op f ∈F opj f 0ð Þ ¼ 0
� �

and notice that trivially F op ¼ F r
op ∪F n

op.
Definition 2. For f ∈F r

op, we set

~f xð Þ ¼ 1
2

xþ 1ð Þ � x� 1ð Þ2 f 0ð Þ
f xð Þ

� �
, x>0:

Theorem 1.5 ([10]). The correspondence f ! ~f is a bijection between F r
op and F n

op.

4.2 Metric adjusted skew information

In the Kubo-Ando theory [11] of matrix means, a mean is associated with each
operator monotone function f ∈F op by the following formula:

mf A,Bð Þ ¼ A1=2f A�1=2BA�1=2
� �

A1=2,

where A,B∈Mn,þ ð Þ. Using the notion of matrix means, the class of monotone
metrics can be defined by the following formula:

A,Bh iρ,f ¼ Tr A �mf Lρ,Rρ

� ��1 Bð Þ
h i

,

where Lρ Að Þ ¼ ρA,Rρ Að Þ ¼ Aρ.
Definition 3. For A∈Mn,sa ð Þ, we define as follows:
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I fρ Að Þ ¼ f 0ð Þ
2

i ρ,A½ �, i ρ,A½ �h iρ,f ,

C f
ρ Að Þ ¼ Tr m f Lρ,Rρ

� �
Að Þ � A� �

,

U f
ρ Að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vρ Að Þ2 � Vρ Að Þ � I fρ Að Þ

� �2r
:

Quantity I fρ Að Þ is referred to as the metric adjusted skew information, and
A,Bh iρ,f is referred to as the metric adjusted correlation measure.

Proposition 1. The following holds:

1.I fρ Að Þ ¼ I fρ A0ð Þ ¼ Tr ρA2
0

� �� Tr m~f Lρ,Rρ

� �
A0ð Þ � A0

� �
¼ Vρ Að Þ � C

~f
ρ A0ð Þ.

2. J fρ Að Þ ¼ Tr ρA2
0

� �þ Tr m~f Lρ,Rρ

� �
A0ð Þ � A0

� �
¼ Vρ Að Þ þ C

~f
ρ A0ð Þ.

3.0≤ I fρ Að Þ≤U f
ρ Að Þ≤Vρ Að Þ.

4.U f
ρ Að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I fρ Að Þ � J fρ Að Þ

q
.

Theorem 1.6 ([6]). For f ∈Fr
op, if

xþ 1
2

þ ~f xð Þ≥ 2f xð Þ, (8)

then it holds that

U f
ρ Að Þ �U f

ρ Bð Þ≥ f 0ð Þ Trðρ A,B�Þ½ j2,�� (9)

where A,B∈Mn,sa ð Þ.
To prove Theorem 1.6, several lemmas are used.
Lemma 1. If (8) holds, then the following inequality is satisfied:

xþ y
2

� �2
�m~f x, yð Þ2 ≥ f 0ð Þ x� yð Þ2:

Proof of Lemma 1. By (8), we have

xþ y
2

þm~f x, yð Þ≥ 2mf x, yð Þ: (10)

Since

m~f x, yð Þ ¼ y~f
x
y

� �
¼ y

2
x
y
þ 1� x

y
� 1

� �2 f 0ð Þ
f x=yð Þ

( )
¼ xþ y

2
� f 0ð Þ x� yð Þ2

2mf x, yð Þ ,

we have

xþ y
2

� �2
�m~f x, yð Þ2 ¼ xþ y

2
�m~f x, yð Þ

n o xþ y
2

þm~f x, yð Þ
n o

¼ f 0ð Þ x� yð Þ2
2mf x, yð Þ

xþ y
2

þm~f x, yð Þ
n o

≥ f 0ð Þ x� yð Þ2: by 10ð Þð Þ
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monotone function is said to be symmetric if f xð Þ ¼ xf x�1ð Þ and normalized if
f 1ð Þ ¼ 1.

Definition 1 F op is the class of functions f : 0,þ∞ð Þ ! 0,þ∞ð Þ such that:

1. f 1ð Þ ¼ 1.

2. tf t�1ð Þ ¼ f tð Þ.

3. f is operator monotone.

Example 1. Examples of elements of F op are given by the following:

fRLD xð Þ ¼ 2x
xþ 1

, fWY xð Þ ¼
ffiffiffi
x

p þ 1
2

� �2

, fBKM xð Þ ¼ x� 1
log x

,

fSLD xð Þ ¼ xþ 1
2

, fWYD xð Þ ¼ α 1� αð Þ x� 1ð Þ2
xα � 1ð Þ x1�α � 1ð Þ , α∈ 0, 1ð Þ:

Remark 1. Any f ∈F op satisfies

2x
xþ 1

≤ f xð Þ≤ xþ 1
2

, x>0:

For f ∈F op, we define f 0ð Þ ¼ lim x!0f xð Þ. We introduce the sets of regular and
non-regular functions

F r
op ¼ f ∈F opj f 0ð Þ 6¼ 0

� �
, F n

op f ∈F opj f 0ð Þ ¼ 0
� �

and notice that trivially F op ¼ F r
op ∪F n

op.
Definition 2. For f ∈F r

op, we set

~f xð Þ ¼ 1
2

xþ 1ð Þ � x� 1ð Þ2 f 0ð Þ
f xð Þ

� �
, x>0:

Theorem 1.5 ([10]). The correspondence f ! ~f is a bijection between F r
op and F n

op.

4.2 Metric adjusted skew information

In the Kubo-Ando theory [11] of matrix means, a mean is associated with each
operator monotone function f ∈F op by the following formula:

mf A,Bð Þ ¼ A1=2f A�1=2BA�1=2
� �

A1=2,

where A,B∈Mn,þ ð Þ. Using the notion of matrix means, the class of monotone
metrics can be defined by the following formula:

A,Bh iρ,f ¼ Tr A �mf Lρ,Rρ

� ��1 Bð Þ
h i

,

where Lρ Að Þ ¼ ρA,Rρ Að Þ ¼ Aρ.
Definition 3. For A∈Mn,sa ð Þ, we define as follows:
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I fρ Að Þ ¼ f 0ð Þ
2

i ρ,A½ �, i ρ,A½ �h iρ,f ,

C f
ρ Að Þ ¼ Tr m f Lρ,Rρ

� �
Að Þ � A� �

,

U f
ρ Að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vρ Að Þ2 � Vρ Að Þ � I fρ Að Þ

� �2r
:

Quantity I fρ Að Þ is referred to as the metric adjusted skew information, and
A,Bh iρ,f is referred to as the metric adjusted correlation measure.

Proposition 1. The following holds:

1.I fρ Að Þ ¼ I fρ A0ð Þ ¼ Tr ρA2
0

� �� Tr m~f Lρ,Rρ

� �
A0ð Þ � A0

� �
¼ Vρ Að Þ � C

~f
ρ A0ð Þ.

2. J fρ Að Þ ¼ Tr ρA2
0

� �þ Tr m~f Lρ,Rρ

� �
A0ð Þ � A0

� �
¼ Vρ Að Þ þ C

~f
ρ A0ð Þ.

3.0≤ I fρ Að Þ≤U f
ρ Að Þ≤Vρ Að Þ.

4.U f
ρ Að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I fρ Að Þ � J fρ Að Þ

q
.

Theorem 1.6 ([6]). For f ∈Fr
op, if

xþ 1
2

þ ~f xð Þ≥ 2f xð Þ, (8)

then it holds that

U f
ρ Að Þ �U f

ρ Bð Þ≥ f 0ð Þ Trðρ A,B�Þ½ j2,�� (9)

where A,B∈Mn,sa ð Þ.
To prove Theorem 1.6, several lemmas are used.
Lemma 1. If (8) holds, then the following inequality is satisfied:

xþ y
2

� �2
�m~f x, yð Þ2 ≥ f 0ð Þ x� yð Þ2:

Proof of Lemma 1. By (8), we have

xþ y
2

þm~f x, yð Þ≥ 2mf x, yð Þ: (10)

Since

m~f x, yð Þ ¼ y~f
x
y

� �
¼ y

2
x
y
þ 1� x

y
� 1

� �2 f 0ð Þ
f x=yð Þ

( )
¼ xþ y

2
� f 0ð Þ x� yð Þ2

2mf x, yð Þ ,

we have

xþ y
2

� �2
�m~f x, yð Þ2 ¼ xþ y

2
�m~f x, yð Þ

n o xþ y
2

þm~f x, yð Þ
n o

¼ f 0ð Þ x� yð Þ2
2mf x, yð Þ

xþ y
2

þm~f x, yð Þ
n o

≥ f 0ð Þ x� yð Þ2: by 10ð Þð Þ
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Lemma 2. Let jϕ1i, jϕ2i,⋯, jϕnif g be a basis of eigenvectors of ρ, corresponding

to the eigenvalues λ1, λ2,⋯, λnf g. We set ajk ¼ ϕ jjA0jϕk

D E
, bjk ¼ ϕ jjB0jϕk

D E
. Then,

we have

I fρ Að Þ ¼ 1
2

X
j, k

λ j þ λk
� �

ajkakj �
X
j, k

m~f λ j, λk
� �

ajkakj,

J fρ Að Þ ¼ 1
2

X
j, k

λ j þ λk
� �

ajkakj þ
X
j, k

m~f λ j, λk
� �

ajkakj,

U f
ρ Að Þ

� �2
¼ 1

4

X
j, k

λ j þ λk
� �

ajk
�� ��2

0
@

1
A

2

�
X
j, k

m~f λ j, λk
� �

ajk
�� ��2

0
@

1
A

2

:

Proof of Theorem 1.6. Since

Tr ρ A,B½ �ð Þ ¼ Tr ρ A0,B0½ �ð Þ ¼
X
j, k

λ j � λk
� �

ajkbkj,

we have

f 0ð Þ Trðρ½A,B�Þj j2 ≤
X
j, k

f 0ð Þ1=2jλ j � λkkajkkbkjj
0
@

1
A

2

≤
X
j, k

λ j þ λk
2

� �2

�m~f λ j, λk
� �2

( )1=2

jajkkbkjj
0
@

1
A

2

≤
X
j, k

λ j þ λk
2

�m~f λ j, λk
� �� �

ajk
�� ��2

0
@

1
A

�
X
j, k

λ j þ λk
2

þm~f λ j, λk
� �� �

bkj
�� ��2

0
@

1
A ¼ I fρ Að ÞJ fρ Bð Þ:

We also have

I fρ Bð ÞJ fρ Að Þ≥ f 0ð Þ Trðρ½A,B�Þj j2:

Thus, we have the final result (9). □

5. Generalized metric adjusted skew information

We assume that f ∈F r
op satisfies the following condition (A):

g xð Þ≥ k
x� 1ð Þ2
f xð Þ , for some k>0:

Let

Δ f
g xð Þ ¼ g xð Þ � k

x� 1ð Þ2
f xð Þ ∈Fop:
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Definition 4. For A,B∈Mn,sa ð Þ, ρ∈Mn,þ,1 ð Þ we define the following:

Corr g,fð Þ
ρ A,Bð Þ ¼ k i ρ,A0½ �, i ρ,B0½ �h i f

¼ Tr A0mg Lρ,Rρ

� �
B0

� �� Tr A0mΔ f
g
Lρ,Rρ

� �
B0

h i
:

I g,fð Þ
ρ Að Þ ¼ Corr g,fð Þ

ρ A,Að Þ

¼ Tr A0mg Lρ,Rρ

� �
A0

� �� Tr A0mΔ f
g
Lρ,Rρ

� �
A0

h i
� Tr A0mΔ f

g
Lρ,Rρ

� �
A0

h i
:

J g,fð Þ
ρ Að Þ ¼ Tr A0mg Lρ,Rρ

� �
A0

� �� Tr A0mΔ f
g
Lρ,Rρ

� �
A0

h i
þ Tr A0mΔ f

g
Lρ,Rρ

� �
A0

h i
:

U g,fð Þ
ρ Að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
ρ Að Þ � J g,fð Þ

ρ Að Þ
q

:

I g,fð Þ
ρ Að Þ is referred to as the generalized metric adjusted skew information, and

Corr g,fð Þ
ρ A,Bð Þ is referred to as the generalized metric adjusted correlation measure.

Theorem 1.7 ([7]). Under condition (A), the following holds:

1. (Schrödinger type) For A,B∈Mn,sa ð Þ, ρ∈Mn,þ,1 ð Þ,

I g,fð Þ
ρ Að Þ � I g,fð Þ

ρ Bð Þ≥ Corr g,fð Þ
ρ A,BÞð j2:

���

2. (Heisenberg type) For A,B∈Mn,sa ð Þ, ρ∈Mn,þ,1 ð Þ, we assume the
following condition (B):

g xð Þ þ Δ f
g xð Þ≥ℓf xð Þ for some ℓ>0:

Then,

U g,fð Þ
ρ Að Þ � U g,fð Þ

ρ Bð Þ≥ kℓ Tr ρ A,B��½ j2:
h���

6. Generalized quasi-metric adjusted skew information

In this section, we present general uncertainty relations for non-Hermitian
observables X,Y ∈Mn ð Þ.

Definition 5. For X,Y ∈Mn ð Þ,A,B∈Mn,þ ð Þ we define the following:

Γ g,fð Þ
A,B X,Yð Þ ¼ k LA � RBð ÞX, LA � RBð ÞYh i f

¼ kTr X ∗ LA � RBð Þm f LA,RBð Þ�1 LA � RBð ÞY
h i

¼ Tr X ∗mg LA,RBð ÞY� �� Tr X ∗mΔ f
b
LA,RBð ÞY

h i
,

Ψ g,fð Þ
A,B X,Yð Þ ¼ Tr X ∗mg LA,RBð ÞY� �þ Tr X ∗mΔ f

g
LA,RBð ÞY

h i
,

I g,fð Þ
A,B Xð Þ ¼ Γ g,fð Þ

A,B X,Xð Þ, J g,fð Þ
A,B Xð Þ ¼ Ψ g,fð Þ

A,B X,Xð Þ, U g,fð Þ
A,B Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Xð Þ � J g,fð Þ

A,B Xð Þ
q

:

I g,fð Þ
A,B Xð Þ is referred to as the generalized quasi-metric adjusted skew information,

and Γ g,fð Þ
A,B X,Yð Þ is referred to as the generalized quasi-metric adjusted correlation

measure.
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Lemma 2. Let jϕ1i, jϕ2i,⋯, jϕnif g be a basis of eigenvectors of ρ, corresponding

to the eigenvalues λ1, λ2,⋯, λnf g. We set ajk ¼ ϕ jjA0jϕk

D E
, bjk ¼ ϕ jjB0jϕk

D E
. Then,

we have

I fρ Að Þ ¼ 1
2

X
j, k

λ j þ λk
� �

ajkakj �
X
j, k

m~f λ j, λk
� �

ajkakj,

J fρ Að Þ ¼ 1
2

X
j, k

λ j þ λk
� �

ajkakj þ
X
j, k

m~f λ j, λk
� �

ajkakj,

U f
ρ Að Þ

� �2
¼ 1

4

X
j, k

λ j þ λk
� �

ajk
�� ��2

0
@

1
A

2

�
X
j, k

m~f λ j, λk
� �

ajk
�� ��2

0
@

1
A

2

:

Proof of Theorem 1.6. Since

Tr ρ A,B½ �ð Þ ¼ Tr ρ A0,B0½ �ð Þ ¼
X
j, k

λ j � λk
� �

ajkbkj,

we have

f 0ð Þ Trðρ½A,B�Þj j2 ≤
X
j, k

f 0ð Þ1=2jλ j � λkkajkkbkjj
0
@

1
A

2

≤
X
j, k

λ j þ λk
2

� �2

�m~f λ j, λk
� �2

( )1=2

jajkkbkjj
0
@

1
A

2

≤
X
j, k

λ j þ λk
2

�m~f λ j, λk
� �� �

ajk
�� ��2

0
@

1
A

�
X
j, k

λ j þ λk
2

þm~f λ j, λk
� �� �

bkj
�� ��2

0
@

1
A ¼ I fρ Að ÞJ fρ Bð Þ:

We also have

I fρ Bð ÞJ fρ Að Þ≥ f 0ð Þ Trðρ½A,B�Þj j2:

Thus, we have the final result (9). □

5. Generalized metric adjusted skew information

We assume that f ∈F r
op satisfies the following condition (A):

g xð Þ≥ k
x� 1ð Þ2
f xð Þ , for some k>0:

Let

Δ f
g xð Þ ¼ g xð Þ � k

x� 1ð Þ2
f xð Þ ∈Fop:
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Definition 4. For A,B∈Mn,sa ð Þ, ρ∈Mn,þ,1 ð Þ we define the following:

Corr g,fð Þ
ρ A,Bð Þ ¼ k i ρ,A0½ �, i ρ,B0½ �h i f

¼ Tr A0mg Lρ,Rρ

� �
B0

� �� Tr A0mΔ f
g
Lρ,Rρ

� �
B0

h i
:

I g,fð Þ
ρ Að Þ ¼ Corr g,fð Þ

ρ A,Að Þ

¼ Tr A0mg Lρ,Rρ

� �
A0

� �� Tr A0mΔ f
g
Lρ,Rρ

� �
A0

h i
� Tr A0mΔ f

g
Lρ,Rρ

� �
A0

h i
:

J g,fð Þ
ρ Að Þ ¼ Tr A0mg Lρ,Rρ

� �
A0

� �� Tr A0mΔ f
g
Lρ,Rρ

� �
A0

h i
þ Tr A0mΔ f

g
Lρ,Rρ

� �
A0

h i
:

U g,fð Þ
ρ Að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
ρ Að Þ � J g,fð Þ

ρ Að Þ
q

:

I g,fð Þ
ρ Að Þ is referred to as the generalized metric adjusted skew information, and

Corr g,fð Þ
ρ A,Bð Þ is referred to as the generalized metric adjusted correlation measure.

Theorem 1.7 ([7]). Under condition (A), the following holds:

1. (Schrödinger type) For A,B∈Mn,sa ð Þ, ρ∈Mn,þ,1 ð Þ,

I g,fð Þ
ρ Að Þ � I g,fð Þ

ρ Bð Þ≥ Corr g,fð Þ
ρ A,BÞð j2:

���

2. (Heisenberg type) For A,B∈Mn,sa ð Þ, ρ∈Mn,þ,1 ð Þ, we assume the
following condition (B):

g xð Þ þ Δ f
g xð Þ≥ℓf xð Þ for some ℓ>0:

Then,

U g,fð Þ
ρ Að Þ �U g,fð Þ

ρ Bð Þ≥ kℓ Tr ρ A,B��½ j2:
h���

6. Generalized quasi-metric adjusted skew information

In this section, we present general uncertainty relations for non-Hermitian
observables X,Y ∈Mn ð Þ.

Definition 5. For X,Y ∈Mn ð Þ,A,B∈Mn,þ ð Þ we define the following:

Γ g,fð Þ
A,B X,Yð Þ ¼ k LA � RBð ÞX, LA � RBð ÞYh i f

¼ kTr X ∗ LA � RBð Þm f LA,RBð Þ�1 LA � RBð ÞY
h i

¼ Tr X ∗mg LA,RBð ÞY� �� Tr X ∗mΔ f
b
LA,RBð ÞY

h i
,

Ψ g,fð Þ
A,B X,Yð Þ ¼ Tr X ∗mg LA,RBð ÞY� �þ Tr X ∗mΔ f

g
LA,RBð ÞY

h i
,

I g,fð Þ
A,B Xð Þ ¼ Γ g,fð Þ

A,B X,Xð Þ, J g,fð Þ
A,B Xð Þ ¼ Ψ g,fð Þ

A,B X,Xð Þ, U g,fð Þ
A,B Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Xð Þ � J g,fð Þ

A,B Xð Þ
q

:

I g,fð Þ
A,B Xð Þ is referred to as the generalized quasi-metric adjusted skew information,

and Γ g,fð Þ
A,B X,Yð Þ is referred to as the generalized quasi-metric adjusted correlation

measure.
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Theorem 1.8 ([12]). Under condition (A), the following holds:

1. (Schrödinger type) For X,Y ∈Mn ð Þ,A,B∈Mn,þ ð Þ,

I g,fð Þ
A,B Xð Þ � I g,fð Þ

A,B Yð Þ≥ Γ g,fð Þ
A,B X,YÞð j2 ≥ 1

16
I g,fð Þ
A,B X þ Yð Þ � I g,fð Þ

A,B X � Yð Þ
� �2

:

����

2. (Heisenberg type) For X,Y ∈Mn ð Þ,A,B∈Mn,þ ð Þ, we assume condition
(B). Then,

U g,fð Þ
A,B Xð Þ �U g,fð Þ

A,B Yð Þ≥ kℓ∣Tr X ∗ ∣LA � RB Y�j j2:
h

In particular,

kℓ Tr X ∗ jLA � RBjX½ �j j2 ≤Tr X ∗ mg LA,RBð Þ �mΔ f
g
LA,RBð Þ

� �
X

h i

�Tr X ∗ mg LA,RBð Þ þmΔ f
g
LA,RBð Þ

� �
X

h i
,

(11)

where X ∈Mn ð Þ and A,B∈Mn,þ ð Þ.
Proof of 1 in Theorem 1.8. By the Schwarz inequality, we have

I g,fð Þ
A,B Xð Þ � I g,fð Þ

A,B Yð Þ ¼ Γ g,fð Þ
A,B X,Xð Þ � Γ g,fð Þ

A,B Y,Yð Þ≥ Γ g,fð Þ
A,B X,YÞð j2:

���

Now, we prove the second inequality. Since

I g,fð Þ
A,B X þ Yð Þ ¼ Tr X ∗ þ Y ∗ð Þmg LA,RBð Þ X þ Yð Þ� �

� Tr X ∗ þ Y ∗ð ÞmΔ f
g
LA,RBð Þ X þ Yð Þ

h i
,

I g,fð Þ
A,B X � Yð Þ ¼ Tr X ∗ � Y ∗ð Þmg LA,RBð Þ X � Yð Þ� �

� Tr X ∗ � Y ∗ð ÞmΔ f
g
LA,RBð Þ X � Yð Þ

h i
,

we have

I g,fð Þ
A,B X þ Yð Þ � I g,fð Þ

A,B X � Yð Þ

¼ 2Tr X ∗mg LA,RBð ÞY� �þ 2TrY ∗mg LA,RBð ÞX� � 2Tr X ∗mΔ f
g
LA,RBð ÞY

h i

�2Tr Y ∗mΔ f
g
LA,RBð ÞX

h i
¼ 2Γ g,fð Þ

A,B X,Yð Þ þ 2Γ g,fð Þ
A,B Y,Xð Þ ¼ 4Re Γ g,fð Þ

A,B X,Yð Þ
n o

:

Similarly, we have

I g,fð Þ
A,B X þ Yð Þ þ I g,fð Þ

A,B X � Yð Þ ¼ 2 I g,fð Þ
A,B Xð Þ þ I g,fð Þ

A,B Yð Þ
� �

:

Then,

Γg,f Þ
A,B X,Yð Þ ¼ Re Γ g,fð Þ

A,B X,Yð Þ
n o

þ iIm Γ g,fð Þ
A,B X,Yð Þ

n o
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¼ 1
4

I g,fð Þ
A,B X þ Yð Þ � I g,fð Þ

A,B X � Yð Þ
� �

þ iImfΓ g,fð Þ
A,B X,Yð Þ:

Thus,

Γ g,fð Þ
A,B X,Yð Þ

���
���
2
¼ 1

16
I g,fð Þ
A,B X þ Yð Þ � I g,fð Þ

A,B X � Yð Þ
� �2

þ Im Γ g,fð Þ
A,B X,Yð Þ

n o� �2

≥
1
16

I g,fð Þ
A,B X þ Yð Þ � I g,fð Þ

A,B X � Yð Þ
� �2

:

□

We use the following lemma to prove 2:
Lemma 3

mg x, yð Þ2 �mΔ f
g
x, yð Þ2 ≥ kℓ x� yð Þ2:

Proof of Lemma 3. By conditions (A) and (B), we have

mΔ f
g
x, yð Þ ¼ mg x, yð Þ � k

x� yð Þ2
mf x, yð Þ ,

mg x, yð Þ þmΔg f x, yð Þ≥ℓmf x, yð Þ:

We then have

mg x, yð Þ2 �mΔ f
g
x, yð Þ2 ¼ mg x, yð Þ �mΔ f

g
x, yð Þ

n o
mg x, yð Þ þmΔ f

g
x, yð Þ

n o

≥
k x� yð Þ2
mf x, yð Þ ℓm f x, yð Þ ¼ kℓ x� yð Þ2:

□

Proof of 2 in Theorem 1.8. Let

A ¼
Xn
i¼1

λi∣ϕii ϕij, B ¼
Xn
i¼1

μijψ i

* +
hψ i∣

be the spectral decompositions of A and B, respectively. Then, we have

I g,fð Þ
A,B Xð Þ ¼

X
i, j

mg λi, μ j

� �
�mΔ f

g
λi, μ j

� �n o
∣hϕi∣X ψ ji

���
���
2
,

J g,fð Þ
A,B Yð Þ ¼

X
i, j

mg λi, μ j

� �
þmΔ f

g
λi, μ j

� �n o
∣hϕi∣Y ψ ji

���
���
2
,

Since

∣LA � RB∣ ¼
Xn
i¼1

Xn
j¼1

∣λi � μ j∣L∣ϕiihϕi∣R∣ψ jihψ j∣,

we have
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Theorem 1.8 ([12]). Under condition (A), the following holds:

1. (Schrödinger type) For X,Y ∈Mn ð Þ,A,B∈Mn,þ ð Þ,

I g,fð Þ
A,B Xð Þ � I g,fð Þ

A,B Yð Þ≥ Γ g,fð Þ
A,B X,YÞð j2 ≥ 1

16
I g,fð Þ
A,B X þ Yð Þ � I g,fð Þ

A,B X � Yð Þ
� �2

:

����

2. (Heisenberg type) For X,Y ∈Mn ð Þ,A,B∈Mn,þ ð Þ, we assume condition
(B). Then,

U g,fð Þ
A,B Xð Þ �U g,fð Þ

A,B Yð Þ≥ kℓ∣Tr X ∗ ∣LA � RB Y�j j2:
h

In particular,

kℓ Tr X ∗ jLA � RBjX½ �j j2 ≤Tr X ∗ mg LA,RBð Þ �mΔ f
g
LA,RBð Þ

� �
X

h i

�Tr X ∗ mg LA,RBð Þ þmΔ f
g
LA,RBð Þ

� �
X

h i
,

(11)

where X ∈Mn ð Þ and A,B∈Mn,þ ð Þ.
Proof of 1 in Theorem 1.8. By the Schwarz inequality, we have

I g,fð Þ
A,B Xð Þ � I g,fð Þ

A,B Yð Þ ¼ Γ g,fð Þ
A,B X,Xð Þ � Γ g,fð Þ

A,B Y,Yð Þ≥ Γ g,fð Þ
A,B X,YÞð j2:

���

Now, we prove the second inequality. Since

I g,fð Þ
A,B X þ Yð Þ ¼ Tr X ∗ þ Y ∗ð Þmg LA,RBð Þ X þ Yð Þ� �

� Tr X ∗ þ Y ∗ð ÞmΔ f
g
LA,RBð Þ X þ Yð Þ

h i
,

I g,fð Þ
A,B X � Yð Þ ¼ Tr X ∗ � Y ∗ð Þmg LA,RBð Þ X � Yð Þ� �

� Tr X ∗ � Y ∗ð ÞmΔ f
g
LA,RBð Þ X � Yð Þ

h i
,

we have

I g,fð Þ
A,B X þ Yð Þ � I g,fð Þ

A,B X � Yð Þ

¼ 2Tr X ∗mg LA,RBð ÞY� �þ 2TrY ∗mg LA,RBð ÞX� � 2Tr X ∗mΔ f
g
LA,RBð ÞY

h i

�2Tr Y ∗mΔ f
g
LA,RBð ÞX

h i
¼ 2Γ g,fð Þ

A,B X,Yð Þ þ 2Γ g,fð Þ
A,B Y,Xð Þ ¼ 4Re Γ g,fð Þ

A,B X,Yð Þ
n o

:

Similarly, we have

I g,fð Þ
A,B X þ Yð Þ þ I g,fð Þ

A,B X � Yð Þ ¼ 2 I g,fð Þ
A,B Xð Þ þ I g,fð Þ

A,B Yð Þ
� �

:

Then,

Γg,f Þ
A,B X,Yð Þ ¼ Re Γ g,fð Þ

A,B X,Yð Þ
n o

þ iIm Γ g,fð Þ
A,B X,Yð Þ

n o
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¼ 1
4

I g,fð Þ
A,B X þ Yð Þ � I g,fð Þ

A,B X � Yð Þ
� �

þ iImfΓ g,fð Þ
A,B X,Yð Þ:

Thus,

Γ g,fð Þ
A,B X,Yð Þ

���
���
2
¼ 1

16
I g,fð Þ
A,B X þ Yð Þ � I g,fð Þ

A,B X � Yð Þ
� �2

þ Im Γ g,fð Þ
A,B X,Yð Þ

n o� �2

≥
1
16

I g,fð Þ
A,B X þ Yð Þ � I g,fð Þ

A,B X � Yð Þ
� �2

:

□

We use the following lemma to prove 2:
Lemma 3

mg x, yð Þ2 �mΔ f
g
x, yð Þ2 ≥ kℓ x� yð Þ2:

Proof of Lemma 3. By conditions (A) and (B), we have

mΔ f
g
x, yð Þ ¼ mg x, yð Þ � k

x� yð Þ2
mf x, yð Þ ,

mg x, yð Þ þmΔg f x, yð Þ≥ℓmf x, yð Þ:

We then have

mg x, yð Þ2 �mΔ f
g
x, yð Þ2 ¼ mg x, yð Þ �mΔ f

g
x, yð Þ

n o
mg x, yð Þ þmΔ f

g
x, yð Þ

n o

≥
k x� yð Þ2
mf x, yð Þ ℓm f x, yð Þ ¼ kℓ x� yð Þ2:

□

Proof of 2 in Theorem 1.8. Let

A ¼
Xn
i¼1

λi∣ϕii ϕij, B ¼
Xn
i¼1

μijψ i

* +
hψ i∣

be the spectral decompositions of A and B, respectively. Then, we have

I g,fð Þ
A,B Xð Þ ¼

X
i, j

mg λi, μ j

� �
�mΔ f

g
λi, μ j

� �n o
∣hϕi∣X ψ ji

���
���
2
,

J g,fð Þ
A,B Yð Þ ¼

X
i, j

mg λi, μ j

� �
þmΔ f

g
λi, μ j

� �n o
∣hϕi∣Y ψ ji

���
���
2
,

Since

∣LA � RB∣ ¼
Xn
i¼1

Xn
j¼1

∣λi � μ j∣L∣ϕiihϕi∣R∣ψ jihψ j∣,

we have
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Tr X ∗ jLA � RBjY½ � ¼
Xn
i¼1

Xn
j¼1

∣λi � μ j∣ ϕijXjψ j

D E
ϕijYjψ j

D E
:

Then, by Lemma 3, we have

kℓ Tr X ∗ jLA � RBjY½ �j j2 ≤
Xn
i¼1

Xn
j¼1

ffiffiffiffiffiffi
kℓ

p
jλi � μ jk ϕijXjψ j

D E
khϕ jjYjψ iij

( )2

≤
Xn
i¼1

Xn
j¼1

ðmg λi, μ j

� �2
�mΔ f

g
ðλi, μ jÞ2ÞjhϕijXjψ jikhϕ jjYjψ iij

( )2

≤
Xn
i¼1

Xn
j¼1

ðmg λi, μ j

� �
�mΔ f

g
ðλi, μ jÞÞjhϕijX ϕ ji

���
���
2

( )

Xn
i¼1

Xn
j¼1

ðmg λi, μ j

� �
þmΔ f

g
ðλi, μ jÞÞjhϕ jjY ψ iij j2

( )

¼ I g,fð Þ
A,B Xð Þ � J g,fð Þ

A,B Yð Þ:

Similarly, we have kℓ Tr X ∗ jLA � RBjY½ �j j2 ≤ I g,fð Þ
A,B Yð Þ � J g,fð Þ

A,B Xð Þ. Therefore,

U g,fð Þ
A,B Xð Þ �U g,fð Þ

A,B Yð Þ≥ kℓ∣Tr X ∗ ∣LA � RB Y�j j2: □
h

When A ¼ B ¼ ρ∈Mn,þ,1 ð Þ,X ¼ A∈Mn ð ÞÞ, and Y ¼ B∈Mn ð Þ, we obtain
the result in Theorem 1.7.

We assume that

g xð Þ ¼ xþ 1
2

, f xð Þ ¼ α 1� αð Þ x� 1ð Þ2
xα � 1ð Þ x1�α � 1ð Þ , k ¼ f 0ð Þ

2
, ℓ ¼ 2:

We then obtain the following trace inequality by substituting X ¼ I in (11).

α 1� αð Þ Tr jLA � RBjI½ �ð Þ2 ≤ 1
2
Tr Aþ B½ �

� �2

� 1
2
Tr AαB1�α þ A1�αBα
� �� �2

: (12)

This is a generalization of the trace inequality provided in [13]. In addition, we
produce the following new inequality by combining a Chernoff-type inequality
with Theorem 1.8.

Theorem 1.9 ([14]). We have the following:

1
2
Tr Aþ B�jLA � RBjI½ �≤ inf

0≤α≤ 1
Tr A1�αBα
� �

≤Tr A1=2B1=2
h i

≤
1
2
Tr AαB1�α þ A1�αBα
� �

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
Tr Aþ B½ �

� �2

� α 1� αð Þ Tr ∣LA � RB∣I½ Þ2:ð
s

The following lemma is necessary to prove Theorem 1.9.
Lemma 4. Let f sð Þ ¼ Tr A1�sBs� �

for A,B∈Mn ð Þ and 0≤ s≤ 1. Then f sð Þ is
convex in s.

Proof of Lemma 4. f 0 sð Þ ¼ Tr �A1�s logABs þ A1�sBs logB
� �

. And then
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f 00 sð Þ ¼ Tr A1�s logAð Þ2Bs � A1�s logABs logB
h i

� Tr A1s logABs logB� A1�sBs logBð Þ2
h i

¼ Tr A1�s logAð Þ2Bs
h i

� Tr A1�s logA logBBs� �� Tr logB logAA1�sBs� �þ Tr A1�s logBð Þ2Bs
h i

¼ Tr A1�s logA logA� logBð ÞBs� �� Tr A1�s logA� logBð Þ logBBs� �

¼ Tr A1�s logA� logBð ÞBs logA
� �� Tr A1�s logA� logBð Þ logBBs� �

¼ Tr A1�s logA� logBð ÞBs logA� logBð Þ� �

¼ Tr A 1�sð Þ=2 logA� logBð ÞBs logA� logBð ÞA 1�sð Þ=2
h i

≥0:

f sð Þ is convex in s. □
Proof of Theorem 1.9. The third and fourth inequalities follow from Lemma 4

and (12), respectively. Thus, we only prove the following inequality:

Tr Aþ B�jLA � RBjI½ �≤ 2Tr A1�αBα
� �

0≤ α≤ 1ð Þ:

Let

A ¼
X
i

λi∣ϕii ϕij¼
X
i, j

λijϕi

* +
ϕijψ j

D E
hψ j∣,

B ¼
X
j

μ j∣ψ ji ψ jj¼
X
i, j

μ jjϕi

* +
ϕijψ j

D E
hψ j∣:

Then, we have

Tr A½ � ¼
X
i, j

λi∣hϕi ψ ji
���

���
2
, Tr B½ � ¼

X
i, j

μ j∣hϕi ψ ji
���

���
2
:

And since

∣LA � RB∣ ¼
X
i, j

∣λi � μ j∣L∣ϕiihϕi∣R∣ψ jihψ j∣,

we have

∣LA � RB∣I ¼
X
i, j

∣λi � μ jkϕii ϕijψ j

D E
hψ j∣:

Then, we have

Tr jLA � RBjI½ � ¼
X
i, j

∣λi � μ jkhϕi ψ ji
���

���
2
:

Therefore,

Tr Aþ B�jLA � RBjI½ � ¼
X
i, j

λi þ μ j�jλi � μ jj
� �

∣hϕi ψ ji
���

���
2
:
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Tr X ∗ jLA � RBjY½ � ¼
Xn
i¼1

Xn
j¼1

∣λi � μ j∣ ϕijXjψ j

D E
ϕijYjψ j

D E
:

Then, by Lemma 3, we have

kℓ Tr X ∗ jLA � RBjY½ �j j2 ≤
Xn
i¼1

Xn
j¼1

ffiffiffiffiffiffi
kℓ

p
jλi � μ jk ϕijXjψ j

D E
khϕ jjYjψ iij

( )2

≤
Xn
i¼1

Xn
j¼1

ðmg λi, μ j

� �2
�mΔ f

g
ðλi, μ jÞ2ÞjhϕijXjψ jikhϕ jjYjψ iij

( )2

≤
Xn
i¼1

Xn
j¼1

ðmg λi, μ j

� �
�mΔ f

g
ðλi, μ jÞÞjhϕijX ϕ ji

���
���
2

( )

Xn
i¼1

Xn
j¼1

ðmg λi, μ j

� �
þmΔ f

g
ðλi, μ jÞÞjhϕ jjY ψ iij j2

( )

¼ I g,fð Þ
A,B Xð Þ � J g,fð Þ

A,B Yð Þ:

Similarly, we have kℓ Tr X ∗ jLA � RBjY½ �j j2 ≤ I g,fð Þ
A,B Yð Þ � J g,fð Þ

A,B Xð Þ. Therefore,

U g,fð Þ
A,B Xð Þ �U g,fð Þ

A,B Yð Þ≥ kℓ∣Tr X ∗ ∣LA � RB Y�j j2: □
h

When A ¼ B ¼ ρ∈Mn,þ,1 ð Þ,X ¼ A∈Mn ð ÞÞ, and Y ¼ B∈Mn ð Þ, we obtain
the result in Theorem 1.7.

We assume that

g xð Þ ¼ xþ 1
2

, f xð Þ ¼ α 1� αð Þ x� 1ð Þ2
xα � 1ð Þ x1�α � 1ð Þ , k ¼ f 0ð Þ

2
, ℓ ¼ 2:

We then obtain the following trace inequality by substituting X ¼ I in (11).

α 1� αð Þ Tr jLA � RBjI½ �ð Þ2 ≤ 1
2
Tr Aþ B½ �

� �2

� 1
2
Tr AαB1�α þ A1�αBα
� �� �2

: (12)

This is a generalization of the trace inequality provided in [13]. In addition, we
produce the following new inequality by combining a Chernoff-type inequality
with Theorem 1.8.

Theorem 1.9 ([14]). We have the following:

1
2
Tr Aþ B�jLA � RBjI½ �≤ inf

0≤α≤ 1
Tr A1�αBα
� �

≤Tr A1=2B1=2
h i

≤
1
2
Tr AαB1�α þ A1�αBα
� �

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
Tr Aþ B½ �

� �2

� α 1� αð Þ Tr ∣LA � RB∣I½ Þ2:ð
s

The following lemma is necessary to prove Theorem 1.9.
Lemma 4. Let f sð Þ ¼ Tr A1�sBs� �

for A,B∈Mn ð Þ and 0≤ s≤ 1. Then f sð Þ is
convex in s.

Proof of Lemma 4. f 0 sð Þ ¼ Tr �A1�s logABs þ A1�sBs logB
� �

. And then
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f 00 sð Þ ¼ Tr A1�s logAð Þ2Bs � A1�s logABs logB
h i

� Tr A1s logABs logB� A1�sBs logBð Þ2
h i

¼ Tr A1�s logAð Þ2Bs
h i

� Tr A1�s logA logBBs� �� Tr logB logAA1�sBs� �þ Tr A1�s logBð Þ2Bs
h i

¼ Tr A1�s logA logA� logBð ÞBs� �� Tr A1�s logA� logBð Þ logBBs� �

¼ Tr A1�s logA� logBð ÞBs logA
� �� Tr A1�s logA� logBð Þ logBBs� �

¼ Tr A1�s logA� logBð ÞBs logA� logBð Þ� �

¼ Tr A 1�sð Þ=2 logA� logBð ÞBs logA� logBð ÞA 1�sð Þ=2
h i

≥0:

f sð Þ is convex in s. □
Proof of Theorem 1.9. The third and fourth inequalities follow from Lemma 4

and (12), respectively. Thus, we only prove the following inequality:

Tr Aþ B�jLA � RBjI½ �≤ 2Tr A1�αBα
� �

0≤ α≤ 1ð Þ:

Let

A ¼
X
i

λi∣ϕii ϕij¼
X
i, j

λijϕi

* +
ϕijψ j

D E
hψ j∣,

B ¼
X
j

μ j∣ψ ji ψ jj¼
X
i, j

μ jjϕi

* +
ϕijψ j

D E
hψ j∣:

Then, we have

Tr A½ � ¼
X
i, j

λi∣hϕi ψ ji
���

���
2
, Tr B½ � ¼

X
i, j

μ j∣hϕi ψ ji
���

���
2
:

And since

∣LA � RB∣ ¼
X
i, j

∣λi � μ j∣L∣ϕiihϕi∣R∣ψ jihψ j∣,

we have

∣LA � RB∣I ¼
X
i, j

∣λi � μ jkϕii ϕijψ j

D E
hψ j∣:

Then, we have

Tr jLA � RBjI½ � ¼
X
i, j

∣λi � μ jkhϕi ψ ji
���

���
2
:

Therefore,

Tr Aþ B�jLA � RBjI½ � ¼
X
i, j

λi þ μ j�jλi � μ jj
� �

∣hϕi ψ ji
���

���
2
:
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However, since we have

Aα ¼
X
i

λαi ∣ϕii ϕij¼
X
i, j

λαi jϕi

* +
ϕijψ j

D E
hψ j∣,

B1�α ¼
X
j

μ1�α
j ∣ψ ji ψ jj¼

X
i, j

μ1�α
j jϕi

* +
ϕijψ j

D E
hψ j∣,

AαB1�α ¼
X
i, j

λαi μ
1�α
j ∣ϕii ϕijψ j

D E
hψ j∣:

Then,

Tr AαB1�α
� � ¼

X
i, j

λαi μ
1�α
j ∣hϕi ψ ji

���
���
2
:

Thus,

2Tr AαB1�α
� �� Tr Aþ B�jLA � RBjI½ � ¼

X
i, j

2λαi μ
1�α
j � λi þ μ j�jλi � μ jj

� �n o
∣hϕi ψ ji
���

���
2
:

Since 2xαy1�α � xþ y�jx� yjð Þ≥0 for x, y>0, 0≤ α≤ 1 in general, we can
obtain Theorem 1.9. □

Remark 2. We note the following 1, 2:

1. 12Tr Aþ B�jA� Bj½ �≤ inf
0≤ α≤ 1

Tr A1�αBα
� �

≤Tr A1=2B1=2
h i

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
Tr Aþ B½ �

� �2

� 1
4

Tr jA� Bj½ �ð Þ2
s

:

2. There is no relationship between Tr jLA � RBjI½ � and Tr jA� Bj½ �. When

A ¼
3
2

1
2

1
2

3
2

0
B@

1
CA, B ¼ 4 0

0 1

� �
,

we have Tr jLA � RBjI½ � ¼ 3, Tr jA� Bj½ � ¼ ffiffiffiffiffiffi
10

p
. When

A ¼
13
2

7
2

7
2

13
2

0
B@

1
CA, B ¼ 2 0

0 5

� �
,

we have Tr jLA � RBjI½ � ¼ 8, Tr jA� Bj½ � ¼ ffiffiffiffiffi
58

p
.

7. Sum type of uncertainty relations

Let A,B∈Mn,sa ð Þ have the following spectral decompositions:

A ¼
Xn
i¼1

λi∣ϕii ϕij, B ¼
Xn
i¼1

μijψ i

* +
hψ i∣:
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For any quantum state ∣ϕi, we define the two probability distributions

P ¼ p1, p2,⋯, pn
� �

, Q ¼ qi, q2,⋯, qn
� �

,

where pi ¼ ϕijϕh ij j2, q j ¼ ∣hψ j ϕij j2. Let

H Pð Þ ¼ �
Xn
i¼1

pi log pi, H Qð Þ ¼ �
Xn
j¼1

q j log q j

be the Shannon entropies of P and Q, respectively.
Theorem 1.10. The following uncertainty relation holds:

H Pð Þ þH Qð Þ≥ � 2 log c,

where c ¼ max i,j∣ ϕijψ j

D E
∣.

For details, see [15, 16].
Definition 6. The Fourier transformation of ψ ∈L2 ð Þ is defined as

ψ̂ ωð Þ ¼
ð∞
�∞

ψ tð Þe�2πiωtdt:

We also define

Q ð Þ ¼ f ∈L2 ð Þ;
ð∞
�∞

t2 f tð Þj j2dt<∞
� �

:

Proposition 2. If ψ ∈L2 ð Þ, ∥ψ∥2 ¼ 1 satisfies ψ , ψ̂ ∈Q ð Þ, then

S ψð Þ þ S ψ̂ð Þ≥ log
e
2
,

where

S ψð Þ ¼ �
ð∞
�∞

ψ tð Þj j2 log ψ tð Þj j2dt, S ψ̂ð Þ ¼ �
ð∞
�∞

ψ̂ tð Þj j2 log ψ̂ tð Þj j2dt:

For details, see [17].
Theorem 1.11 ([18]). For any X,Y ∈Mn ð Þ,A,B∈Mn,þ ð Þ, the following holds:

1.I g,fð Þ
A,B X,Yð Þ þ I g,fð Þ

A,B Yð Þ≥ 1
2 max I g,fð Þ

A,B X þ Yð Þ, I g,fð Þ
A,B X � Yð Þ

n o
:

2.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Xð Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Yð Þ

q
≥ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B X þ Yð Þ

q
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B X � Yð Þ

q� �
:

3.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Xð Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Yð Þ

q
≤ 2max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B X þ Yð Þ

q
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A:B X � Yð Þ

q� �
.

Proof 1. The Hilbert-Schmidt norm ∥ � ∥ satisfies

∥X∥2 þ ∥Y∥2 ¼ 1
2

∥X þ Y∥2 þ ∥X � Y∥2
� �

≥
1
2
max ∥X þ Y∥2, ∥X � Y∥2

� �
: (13)
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However, since we have
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X
i

λαi ∣ϕii ϕij¼
X
i, j

λαi jϕi

* +
ϕijψ j

D E
hψ j∣,

B1�α ¼
X
j

μ1�α
j ∣ψ ji ψ jj¼

X
i, j

μ1�α
j jϕi

* +
ϕijψ j

D E
hψ j∣,

AαB1�α ¼
X
i, j

λαi μ
1�α
j ∣ϕii ϕijψ j

D E
hψ j∣:

Then,

Tr AαB1�α
� � ¼

X
i, j

λαi μ
1�α
j ∣hϕi ψ ji

���
���
2
:

Thus,

2Tr AαB1�α
� �� Tr Aþ B�jLA � RBjI½ � ¼

X
i, j

2λαi μ
1�α
j � λi þ μ j�jλi � μ jj

� �n o
∣hϕi ψ ji
���

���
2
:

Since 2xαy1�α � xþ y�jx� yjð Þ≥0 for x, y>0, 0≤ α≤ 1 in general, we can
obtain Theorem 1.9. □

Remark 2. We note the following 1, 2:

1. 12Tr Aþ B�jA� Bj½ �≤ inf
0≤ α≤ 1

Tr A1�αBα
� �

≤Tr A1=2B1=2
h i

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
Tr Aþ B½ �

� �2

� 1
4

Tr jA� Bj½ �ð Þ2
s

:

2. There is no relationship between Tr jLA � RBjI½ � and Tr jA� Bj½ �. When

A ¼
3
2

1
2

1
2

3
2

0
B@

1
CA, B ¼ 4 0

0 1

� �
,

we have Tr jLA � RBjI½ � ¼ 3, Tr jA� Bj½ � ¼ ffiffiffiffiffiffi
10

p
. When

A ¼
13
2

7
2

7
2

13
2

0
B@

1
CA, B ¼ 2 0

0 5

� �
,

we have Tr jLA � RBjI½ � ¼ 8, Tr jA� Bj½ � ¼ ffiffiffiffiffi
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p
.

7. Sum type of uncertainty relations

Let A,B∈Mn,sa ð Þ have the following spectral decompositions:

A ¼
Xn
i¼1

λi∣ϕii ϕij, B ¼
Xn
i¼1

μijψ i

* +
hψ i∣:
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For any quantum state ∣ϕi, we define the two probability distributions

P ¼ p1, p2,⋯, pn
� �

, Q ¼ qi, q2,⋯, qn
� �

,

where pi ¼ ϕijϕh ij j2, q j ¼ ∣hψ j ϕij j2. Let

H Pð Þ ¼ �
Xn
i¼1

pi log pi, H Qð Þ ¼ �
Xn
j¼1

q j log q j

be the Shannon entropies of P and Q, respectively.
Theorem 1.10. The following uncertainty relation holds:

H Pð Þ þH Qð Þ≥ � 2 log c,

where c ¼ max i,j∣ ϕijψ j

D E
∣.

For details, see [15, 16].
Definition 6. The Fourier transformation of ψ ∈L2 ð Þ is defined as

ψ̂ ωð Þ ¼
ð∞
�∞

ψ tð Þe�2πiωtdt:

We also define

Q ð Þ ¼ f ∈L2 ð Þ;
ð∞
�∞

t2 f tð Þj j2dt<∞
� �

:

Proposition 2. If ψ ∈L2 ð Þ, ∥ψ∥2 ¼ 1 satisfies ψ , ψ̂ ∈Q ð Þ, then

S ψð Þ þ S ψ̂ð Þ≥ log
e
2
,

where

S ψð Þ ¼ �
ð∞
�∞

ψ tð Þj j2 log ψ tð Þj j2dt, S ψ̂ð Þ ¼ �
ð∞
�∞

ψ̂ tð Þj j2 log ψ̂ tð Þj j2dt:

For details, see [17].
Theorem 1.11 ([18]). For any X,Y ∈Mn ð Þ,A,B∈Mn,þ ð Þ, the following holds:

1.I g,fð Þ
A,B X,Yð Þ þ I g,fð Þ

A,B Yð Þ≥ 1
2 max I g,fð Þ

A,B X þ Yð Þ, I g,fð Þ
A,B X � Yð Þ

n o
:

2.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Xð Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Yð Þ

q
≥ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B X þ Yð Þ

q
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B X � Yð Þ

q� �
:

3.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Xð Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Yð Þ

q
≤ 2max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B X þ Yð Þ

q
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A:B X � Yð Þ

q� �
.

Proof 1. The Hilbert-Schmidt norm ∥ � ∥ satisfies

∥X∥2 þ ∥Y∥2 ¼ 1
2

∥X þ Y∥2 þ ∥X � Y∥2
� �

≥
1
2
max ∥X þ Y∥2, ∥X � Y∥2

� �
: (13)
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Since I g,fð Þ
A,B X,Xð Þ is the second power of the Hilbert-Schmidt norm, ∥X∥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I g,fð Þ
A,B Xð Þ

q
. We then obtain the result by substituting (13),

2. By the triangle inequality of a general norm, we apply the triangle inequality

for ∥X∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I g,fð Þ
A,B Xð Þ

q
.

3. We prove the following norm inequality:

∥X∥þ ∥Y∥≤∥X þ Y∥þ ∥X � Y∥: (14)

Since

∥X∥ ¼ ∥
1
2

X þ Yð Þ þ 1
2

X � Yð Þ∥≤ 1
2
∥X þ Y∥þ 1

2
∥X � Y∥

and

∥Y∥ ¼ ∥
1
2

Y þ Xð Þ þ 1
2

Y � Xð Þ∥≤ 1
2
∥Y þ X∥þ 1

2
∥Y � X∥,

we add two inequalities and obtain (14). □
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Chapter 5

Complex Space Nature of the
Quantum World: Return Causality
to Quantum Mechanics
Ciann-Dong Yang and Shiang-Yi Han

Abstract

As one chapter, we about to begin a journey with exploring the limitation of the
causality that rules the whole universe. Quantum mechanics is established on the
basis of the phenomenology and the lack of ontology builds the wall which blocks
the causality. It is very difficult to reconcile the probability and the causality in
such a platform. A higher dimension consideration may leverage this dilemma by
expanding the vision. Information may seem to be discontinuous or even so weird
if only be viewed from a part of the degree of freedoms. Based on this premise,
we reexamined the microscopic world within a complex space. Significantly, some
knowledge beyond the empirical findings is revealed and paves the way for a more
detailed exploration of the quantum world. The random quantum motion is essen-
tial for atomic particle and exhibits a wave-related property with a bulk of trajecto-
ries. It seems we can break down the wall which forbids the causality entering the
quantum kingdom and connect quantum mechanics with classical mechanics.
The causality returns to the quantum world without any assumption in terms of
the quantum random motion under the optimal guidance law in complex space.
Thereby hangs a tale, we briefly introduce this new formulation from the
fundamental theoretical description to the practical technology applications.
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It took scientists nearly two centuries from first observation of flower powder’s
Brownian motion to propose a mathematical qualitative description [1]. Time is an
arrow launched from the past to the future, every event happens for a reason. “The
world is woven from billions of lives, every strand crossing every other. What we
call premonition is just movement of the web. If you could attenuate to every strand
of quivering data, the future would be entirely calculable. As inevitable as mathe-
matics [2].” All physical phenomena are connected to the same web. As long as we
can see through the quivering data and cut into the very core, we can glimpse the
most elegant beauty of nature. As precise as physics.

It took nearly 30 years for physicists to establish quantum mechanics but nearly
100 years to seek for its essence. Quantum mechanics is the most precise theory to
describe the microscopic world but also is the most obscure one among all theories.
It collects lots data but not all. Just like what we can observed is the shadow on the
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ground not the actual object in the air. It is impossible to see the whole appearance
of the object by observing its shadow. The development of the quantum era seems
started in such circumstances and missed something we call the essence of nature.
In this chapter, we hope to recover the missing part by considering a higher dimen-
sion to capture the actual appearance of nature. At the end, we will find out that
nature dominates the web where we live as well as the theories we develop. Every-
thing should follow the law of the nature, and there is no exception.

Trajectory is a typical classical feature of the macroscopic object solved by the
equation of motion. The trajectory of the microscopic particle is supposed to be
observed if the law of nature remains consistent all the way down to the atomic
scale. However, such an observation cannot be made till 2011. Kocsis and his
coworkers propose an observation of the average trajectories of single photons in a
two-slit interferometer on the basis of weak measurement [3]. Since then quantum
trajectories are observed for many quantum systems, such as superconducting
quantum bit, mechanical resonator, and so on [4–6]. Weak measurement provides
the weak value which is a measurable quantity definable to any quantum observable
under the weak coupling between the system and the measurement apparatus [7].
The significant characteristic of the weak value does not lie within the range of
eigenvalues and is complex. It is pointed out that the real part of the complex weak
value represents the average quantum value [8], and the imaginary part is related to
the rate of variation in the interference observation [9].

The trajectory interpretation of quantum mechanics is developed on the basis of
de Broglie’s matter wave and Bohm’s guidance law. In recent years, the importance
of the quantum trajectory in theoretical treatment and experimental test has been
discussed in complex space [10–21]. All these research indirectly or directly show
that the complex space extension is more than a mathematical tool, it implies a
causal essence of the quantum world.

On the other hand, it is found out that the real part of momentum’s weak value is
the Bohmian momentum representing the average momentum conditioned on a
position detection; while its imaginary part is proportional to the osmotic velocity
that describes the logarithmic derivative of the probability density for measuring the
particular position directed along the flow generated by the momentum [22]. This
not only implies the existence of randomness in a quantum system, but also discloses
that the random motion occurs in complex space. Numerous studies with the com-
plex initial condition and the random property have been discussed [23–25]. A
stochastic interpretation of quantum mechanics is proposed which regards the ran-
dommotion as a nature property of the quantumworld not the interference made by
the measurement devices [26, 27]. These investigations suggest that a complex space
and the random motion are two important features of the quantum world.

Based on the complex space structure, we propose a new perspective of quan-
tum mechanics that allows one to reexamine quantum phenomena in a classical
way. We will see in this chapter how the quantum motion can provide the classical
description for the quantum kingdom and is in line with the probability distribu-
tion. One thing particular needed to be emphasized is that the stochastic Hamilton
Jacobi Bellman equation can reduce to the Schrödinger equation under some spe-
cific conditions. In other words, the Schrödinger equation is one special case of all
kinds of random motions in complex space. A further discussion of the relationship
between the trajectory interpretation and probability interpretation is presented in
Section 2. In particular, the solvable nodal issue is put into discussion, and the
continuity equation for the complex probability density function is proposed. In
Section 3, we demonstrate how the quantum force could play the crucial role in the
force balanced condition within the hydrogen atom and how the quantum potential
forms the shell structure where the orbits are quantized. A practical application to
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the Nano-scale is demonstrated in Section 4. We consider the quantum potential
relation to the electronic channel in a 2D Nano-structure. In addition, the conduc-
tance quantization is realized in terms of the quantum potential which shows that
the lower potential region is where the most electrons pass through the channel.
And then, concluding remarks are presented in Section 5.

2. Random quantum motion in the complex plane

In the macroscopic world, it is natural to see an object moving along with a
specific path which is determined by the resultant optimal action function. How-
ever, in the microscopic world, we cannot repetitively carry out this observation
since there is no definition of the trajectory for a quantum particle. With the limit
on the observation, only a part of trajectory, more precisely, the trajectory in the
real part of complex space can be detected. As particle passing or staying in the
imaginary part of complex space it disappears from our visible world and becomes
untraceable. The particle randomly transits in and out of the real part and imaginary
part of complex space, causes a discontinuous trajectory viewed from the observ-
able space. Therefore, it can only be empirically described by the probability in
quantum mechanics.

In this section, we briefly introduce how particle’s motion can be fully described
by the optimal guidance law in the complex plane [28]. Then we will discuss under
what condition the statistical distribution of an ensemble of trajectories in the
complex plane will be compatible with the quantum mechanical and classical
results. In the following, we consider a complex plane for the purpose of simplicity;
however, there should be no problem to implement the optimal guidance law in
complex space. Let us consider a particle with random motion in the complex plane
whose dynamic evolution reads

dx ¼ f t, x, uð Þdtþ g x, uð Þdw, x ¼ xR þ ixI ∈, (1)

where x represents a vector, u is the guidance law needed to be determined, w is
Wiener process with properties dwh i ¼ 0 and dw2

� � ¼ dt, f t, x, uð Þ is the drift
velocity, and g x, uð Þ is the diffusion velocity. The cost function for x tð Þ with
randomness property reads

J t, x, uð Þ ¼ Et,x

ðtf
t
L τ, x τð Þ, u τð Þð Þdτ

� �
, (2)

where Et,x represents the expectation of the cost function over all infinite trajec-
tories launched from the single initial condition, x tð Þ ¼ x in time interval t, tf

� �
. To

find the minimum cost function, we define the value function,

V t, xð Þ ¼ min
u t, tf½ �

J t, x, uð Þ: (3)

Instead of using the variational method, we apply the dynamic programming
method to Eq. (3) for the random motion. We then have the following expression
after having the Taylor expansion:

� ∂V t, xð Þ
∂t

¼ min
u t, tf½ �

Lþ ∂V t, xð Þ
∂x

f þ 1
2
tr gT x, uð Þ ∂

2V t, xð Þ
∂x2

g x, uð Þ
� �� �

, (4)
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which is recognized as the Hamilton-Jacobi-Bellman (HJB) equation and
∂
2V t, xð Þ=∂x2 is Jacobi matrix. Finding the minimum of the cost function leads to the
momentum for the optimal path,

p ¼ ∂L t, x, uð Þ
∂u

¼ ∂L t, x, _xð Þ
∂ _x

¼ �∇V t, xð Þ, (5)

and determines the optimal guidance law,

u ¼ u t, x, pð Þjp¼�∇V : (6)

If one replaces Lagrange L by Hamiltonian H t, x, pð Þ ¼ pTu� L t, x, uð Þ, defines
the action function as S t, xð Þ ¼ �V t, xð Þ and let g x, uð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�iℏ=m

p
, Eq. (4) can be

transferred to the quantum Hamilton-Jacobi (HJ) equation,

∂S
∂t

þH t, x, pð Þjp¼∇S þ
iℏ
2m

∇2S ¼ 0: (7)

Please notice that the last term in Eq. (7) is what makes the quantum HJ equation
differs from its classical counterpart. It is called the quantum potential,

Q ¼ iℏ
2m

∇2S (8)

in dBB theory, Bohmian mechanics, and quantum Hamilton mechanics [29–33].
Even the quantum potential we derive here has the same expression appeared in
Bohmian mechanics, its relation to the random motion should be noticed. However,
it is not yet suitable to claim that the random motion attributes to the quantum
potential or vice versa. It is worthwhile to bring into discussion. Before inspecting
this question more deeply, we still can take advantage of the quantum potential to
describe or even explain some quantum phenomena.

We can transfer the quantum HJ equation (7) to the Schrödinger equation,

iℏ
∂Ψ t, xð Þ

∂t
¼ � ℏ2

2m
∇2Ψ t, xð Þ þ UΨ t, xð Þ (9)

via the relation between the action function and wave function,

S t, xð Þ ¼ �iℏlnΨ t, xð Þ, (10)

where U represents the external potential. This simple relation reveals a con-
nection between the trajectory and the wave description. In classical mechanics, a
particle follows the principle of least action; while the wave picture took place in
quantum mechanics. Eq. (10) implies that if we collect all action functions deter-
mined by different initial conditions which satisfy the initial probability distribu-
tion, a collection of corresponding wave patterns arise and eventually forms the
solution wave function of the Schrödinger equation. This process is the same as
what Schrödinger attempted to cope with the observable wave and tried to deduce
the suitable wave equation based on the classical wave theory. The only difference is
that Schrödinger started his deduction from the wave perspective; however, we
start from the particle perspective. Even the wave-particle duality troubles
physicists to inspect advanced about the essence of nature, the recent experiment
confirms relation (10) by observing an ensemble of quantum trajectories [3].
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This becomes a solid evidence to support the deduction that the matter wave is
formed by a huge number of trajectories.

To fully understand the property of these trajectories under the influence of the
guidance law, we consider a particle experiencing a randomness,

dx ¼ u t, x, pð Þdtþ
ffiffiffiffiffiffiffiffi
�iℏ
m

r
dw, (11)

where we have replaced f t, x, uð Þ by the optimal guidance law u t, x, pð Þ, and
assigned g x, uð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�iℏ=m

p
into Eq. (1). Combining Eqs. (6) and (10), the optimal

guidance law can be expressed in terms of the wave function,

u t, x, pð Þ ¼ �iℏ
m

∇Ψ t, xð Þ
Ψ t, xð Þ : (12)

Therefore, Eq. (11) can be recast into the following expression:

dx ¼ �iℏ
m

∇Ψ t, xð Þ
Ψ t, xð Þ dtþ

ffiffiffiffiffiffiffiffi
�iℏ
m

r
dw: (13)

Eq. (13) will reduce to the equation of motion given by the quantum HJ equation
(7) if we take the average of both sides,

_x ¼ �iℏ
m

∇Ψ t, xð Þ
Ψ t, xð Þ , (14)

since the random motion in Eq. (13) has zero mean. This result shows that the
quantum HJ equation represents the mean motion of the particle. The trajectory in
the complex plane solved from Eq. (13) is random and will become the mean
trajectory solved from Eq. (14) after being averaged out. Figure 1 illustrates this
property by demonstrating the quantum motion of the Gaussian wave packet [28].

The first question we would like to answer by the complex random trajectory
(CRT) interpretation is its connection to the probability interpretation. In quantum
mechanics, the amplitude square of the wave function gives the probability density
of physical quantities as shown in Figure 2(a), in which the solid line stands for the
quantum harmonic oscillator in n ¼ 1 state. The trajectory interpretation is
supported by the excellent agreement of the statistical spatial distribution made by
collecting all crossovers on the real axis of an ensemble of CRTs as the dots
displayed in Figure 2(a). It shows a good agreement of the statistical spatial distri-
bution and the quantum mechanical probability distribution [36].

In most text book of quantum mechanics, the nodes of the probability of har-
monic oscillator either be ignored or be regarded as the quantum characteristic.
Only the classical-like curve of the averaged probability has been mentioned. The
other significant finding brought out by the CRT interpretation is the nodal
vanished condition given by the statistical distribution of the collection of all
pointes be projected onto the real axis as Figure 2(b) shows. It starts to approach
the classical probability distribution for high quantum number as Figure 2(c) pre-
sents. The leverage of complex space structure deals with the probability nodes, and
even further to reach the classical region dominated by Newtonian mechanics
(more detail refers to [36]). After the matter wave can be interpreted by an ensem-
ble of trajectories in both theoretical and experimental results [3, 18, 34, 35], the
CRT interpretation shows both quantum mechanical and classical compatible
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results under two kinds of point collections. In other words, Bohr’s correspondence
principle can be interpreted by the CRT interpretation without loss of generality [36].

The second question we try to cope with by means of the CRT interpretation is
the conservation of the complex probability. In quantum mechanics, the continuity
equation for the probability density function is given by Bohr’s law ρQM ¼ Ψj j2, and
the current density J,

∂ρQM
∂t

¼ �∇ � J: (15)

The probability density function of the CRT interpretation satisfies the
Fokker-Planck equation,

∂ρ t, xð Þ
∂t

¼ �∇ � _x t, xð Þρ t, xð Þ� �� iℏ
2m

∇2ρ t, xð Þ, (16)

and has the complex value. Multiplying Eq. (16) and its complex conjugate then
dividing by 2, we obtain the continuity equation for complex probability density,

∂ρ t, xð Þ
∂t

¼ �∇ � _xρ t, xð Þ� �
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Figure 1.
100,000 trajectories solved from Eq. (13) with the same initial condition of the Gaussian wave packet in the
complex plane: (a) the time evolution on the real axis for which the mean is denoted by the blue line; (b) the
time evolution on the imaginary axis with zero mean represented by the blue line. The complex trajectory solved
from Eq. (14) with one initial condition: (c) the time evolution on the real axis; (d) the time imaginary part of
the motion. This figure reveals that the mean of the CRT is the trajectory solved from the quantum Hamilton
equations of motion [28].

70

Quantum Mechanics

where x denotes the mean of valuable x. From Eq. (17) we can see that the
complex probability density is conserved in the complex plane, neither on the real
axis nor imaginary axis. Figure 2(d) illustrates the good agreement between the
solution solved from Eq. (17) (blue dotted line) and the statistical spatial distribu-
tion (black solid line) contributed by all points collected by the projections onto the
real axis. This result verifies that the analytical solution coheres with the statistical
distribution made by CRT. It shows that the same results obtained from two differ-
ent ways stand from the equal footing of the classical concept.

3. Shell structure in hydrogen atom

In quantum mechanics, the quantized orbits of the electron in the hydrogen
atom is determined by solving the Schrödinger equation for different eigen states.
There is no further description of these orbits, especially no explanation about the
force balanced condition under the influence of the Coulomb force. Less study
reports the role that the quantum potential plays in atomic analysis. In this section,
a quest for describing the hydrogen atom is stretching underlying the quantum
potential in complex space. We show our most equations in dimensionless form for
the purposes of simplifying the question.

Let us consider the quantum Hamiltonian with Coulomb potential in complex
space [37],

Figure 2.
(a) The quantum mechanical compatible outcome proposed by point collections of an ensemble of CRTs crossing
the real axis for quantum harmonic oscillator in n ¼ 1 state with coefficient correlation, Γ ¼ 0:995. (b) The
dismissed nodal condition is given by the same trajectory ensemble but is composed of all projected points onto the
real axis. (c) The classical-like probability distribution is presented by collecting all projection points on the real
axis for n ¼ 70 state with coefficient correlation, Γ ¼ 0:9412. (d) The analytical solution of the complex
probability density function solved from the Fokker-Planck equation shows good agreement with the spatial
distribution composed of all projection points on the real axis with coefficient correlation, Γ ¼ 0:9975 [36].
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where S is the action function. Hamiltonian (18) is state dependent if we apply
the simple relation (9) to it. We can therefore have the dimensionless total potential
in terms of the wave function,

Vnlml ¼ � 2
r
þ 1

4r2
4þ cot 2θ
� �� d2 lnRnl rð Þ

dr2
� 1
r2
d2 lnΘlml θð Þ

dθ2

" #
, (19)

where n, l, and ml denote the principle quantum number, azimuthal quantum
number, and magnetic quantum number, respectively. The first term in Eq. (19) is
recognized as the Coulomb potential; while the remaining terms are the compo-
nents of the quantum potential. Figure 3(a) illustrates the three potentials varying
in radial direction of n, l,mlð Þ ¼ 1, 0, 0ð Þ state; they are the total potential, Coulomb
potential, and quantum potential. The quantum potential yields the opposite spatial
distribution to the Coulomb potential, therefore, the total potential performs a
neutral situation. When the electron is too close (less than the Bohr radius) to the
nucleus, the total potential forms a solid wall that forbids the electron getting closer.
The total potential holds an appropriate distribution such that the electron is subject
to an attractive force when it is too far away from the nucleus. From the perspective
of the electron, it is quantum potential maintains the orbit stable and stop the
disaster of crashing on the nucleus.

From Eq. (19) we can obtain the total forces for n, l,mlð Þ ¼ 1, 0, 0ð Þ state:

f r
100 ¼ � 2

r2
þ 1
2r3

4þ cot 2θ
� �

, f θ100 ¼ 1
2r2

cos θ
sin 3θ

, f ϕ100 ¼ 0: (20)

Under a specific condition f r100 ¼ f θ100 ¼ 0, the electron stays stationary at the
equilibrium position r, θð Þ ¼ 1, π=2ð Þ for which r ¼ 1 corresponds to the Bohr
radius. The motion of electron at the equilibrium point is determined by

f r
100 r, π=2ð Þ ¼ f r

Q þ f r
V ¼ 2

r3
� 2
r2
, (21)

where the first and the second term represent the repulsive quantum force and
the attractive Coulomb force with lower label Q and V, respectively. As the distance
between the electron and the nucleus changes, the two forces take the lead in turn
as Figure 3(b) illustrates. It is clear to see that the zero force location happens at
r ¼ 1 (Bohr radius) owing to the force balancing formed by the Coulomb force and
quantum force.

In quantum mechanics, the maximum probability of finding the electron is at
the Bohr radius according to

d
dr

P10 rð Þ ¼ d
dr

4πr2e�2r� � ¼ 0: (22)

The balanced force and the probability are totally different concepts; however,
present the same description of the hydrogen atom. This may reflect the equivalent
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meaning between the classical shell layers and the quantum probability. Further-
more, it may help us to realize the probabilistic electron cloud in a classical
standpoint.

Let us consider n, l,mlð Þ ¼ 2, 0, 0ð Þ state, which has the total potential as

V200 ¼ V þ Q ¼ � 2
r
þ 1

2� rð Þ2 þ
1
4r2

4þ cot 2θ
� �" #

, (23)

Figure 3.
(a) The variations of three potentials in radial direction for the ground state. (b) The total radial force in the
ground state which is composed of the coulomb force and quantum force with zero value at the Bohr radius [37].

Figure 4.
(a) The shell structure of n, l,mlð Þ ¼ 2, 0, 0ð Þ state in radial direction. (b) The dynamic equilibrium points
locate where the total force equals to zero. (c) Electron’s motion in r� θ plane, and (d) illustrated in the shell
plane [37].
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and the force distributions in three directions:

f r200 ¼ � 2
r2

þ � 1

2� rð Þ3 þ
1
2r3

4þ cot 2θ
� �" #

, f θ200 ¼ 1
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cos θ
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, f ϕ200 ¼ 0, (24)

which indicates the same equilibrium point location req, θeq
� � ¼ 3� ffiffiffi

5
p

, π=2
� �

given by the equations of motion from Eq. (14):

dr
dt

¼ 4i
r2 � 6rþ 4
r r� 2ð Þ ,

d cos θð Þ
dt

¼ i
cos θ
r2

,
dϕ
dt

¼ 0, (25)

under the zero resultant force condition and the electron dynamic equilibrium
condition. Figure 4(a) presents the shell structures in radial direction according to
Eq. (24). The range of the layers are constrained by the total potential and divided
into two different parts. The two equilibrium points individually correspond to the
zero force locations in the two shells as Figure 4(b) indicates. Eq. (25) offers how
electron move in this state. Figure 4(c) illustrates electron’s trajectory in the r� θ
plane; while Figure 4(d) embodies trajectory in the shell structure.

4. Channelized quantum potential and conductance quantization in 2D
Nano-channels

The practical technology usage of the proposed formalism is applied to 2D Nano-
channels in this section. Instead of the probability density function offered by the
conventional quantum mechanics, we stay in line with causalism to perceive what
role played by the quantum potential. Consider a 2D straight channel made by
GaAs-GaAlAs and is surrounded by infinite potential barrier except the two reser-
voirs and the channel. The schematic plot of the channel refers to Figure 5. The
dynamic evolution of the wave function ψ x, yð Þ in the channel is described by the
Schrödinger equation,

� ℏ2

2m ∗
∂
2

∂x2
þ ∂

2

∂y2

� �
ψ x, yð Þ ¼ Eψ x, yð Þ, (26)

Figure 5.
(a) A single quantum wire and an expanded view showing schematically the single degree of freedom in the x
direction. (b) 2D straight channel made up of quantum wire with length 2d and width w connects the left
reservoir to the right reservoir.
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where m ∗ ¼ 0:067me is the effective mass of the electron, and E is the total
energy of the incident electron. The general solution of Eq. (26) has the form as

ψC
k x, yð Þ ¼

XN
n¼1

Bneiknx þ Cne�iknx
� �

ϕn yð Þ,ϕn yð Þ ¼ sin
nπ
w

yþw
2

� �h i
, (27)

where N is the number of mode, w is the width of the channel, and kn is the
wave number which satisfies the energy conservation law:

Ex þ Ey ¼ knℏð Þ2
2m ∗ þ En ¼ E, (28)

in which Ex ¼ p2x= 2m ∗ð Þ ¼ knℏð Þ2= 2m ∗ð Þ is the free particle energy in the x
direction, and Ey ¼ En ¼ n2ℏ2π2= 2m ∗w2ð Þ, n ¼ 1, 2,⋯, is quantized energy in the y
direction due to the presence of the infinite square well. From Eq. (28), we have the
wave number read

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m ∗ E� Enð Þ=ℏ2

q
: (29)

The function Bneiknx þ Cne�iknx in Eq. (27) is the free-particle wave function in
the x direction, and ϕn yð Þ is an eigen function for the infinite well in the y direction
satisfying the boundary condition ϕn yð Þ w=2ð Þ ¼ ϕn yð Þ �w=2ð Þ ¼ 0. The coefficients
Bn and Cn are uniquely determined by the incident energy E and incident angle ϕ .
(More detail refers to [38].) The quantum potential in the channel can be obtained
by combing Eqs. (8), (10) and the wave function (27) (in dimensionless form),

Q x, yð Þ ¼ � ∂
2

∂x2
þ ∂

2

∂y2

� �
lnψC

k x, yð Þ: (30)

The quantum potential provides fully information of electron’s motion, its char-
acteristic of inverse proportional to the probability density displays more knowl-
edge in the channel. The inverse proportional relation reads

Q x, yð Þj j ¼ 1
P x, yð Þ

∂ψC
k

∂x

� �2

þ ∂ψC
k

∂y

� �2
" #

, (31)

which represents that the high quantum potential region corresponds to the low
probability of electrons passing through as Figure 6 displays; and Figure 7 illus-
trates how the quantum potential gradually form the quantized channels as the
incident angle increases, which shows the state dependent characteristic of the
quantum potential.

The other quantum feature originating from the quantum potential is the quan-
tization of conductance in the channel as Figure 8 presents. We will show that the
high conductance region is where the most electrons gather. To simplify the system,
we firstly replace the motion in 2D channel by a motion in 1D square barriers [39].
Therefore, we consider the wave function ψn xð Þ satisfying the following
Schrödinger equation,

d2ψn xð Þ
dx2

þ 2m ∗

ℏ2
E� Vnð Þψn xð Þ ¼ 0, (32)
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which represents that the high quantum potential region corresponds to the low
probability of electrons passing through as Figure 6 displays; and Figure 7 illus-
trates how the quantum potential gradually form the quantized channels as the
incident angle increases, which shows the state dependent characteristic of the
quantum potential.

The other quantum feature originating from the quantum potential is the quan-
tization of conductance in the channel as Figure 8 presents. We will show that the
high conductance region is where the most electrons gather. To simplify the system,
we firstly replace the motion in 2D channel by a motion in 1D square barriers [39].
Therefore, we consider the wave function ψn xð Þ satisfying the following
Schrödinger equation,
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Figure 6.
The incident energy E ¼ 11 and the incident angle ϕ ¼ 40° for: (a) the probability density function; (b) the
corresponding quantum potential of the cross-section in the channel. The bright regions of the quantum potential
in (b) represent the lower potential barriers which are in accord with the bright regions in (a) where are the
locations with higher probability of finding electrons [38].

Figure 7.
The variation of the quantum potential with respect to the incident angle ϕ for a fixed incident energy
E ¼ 11. It is seen that the channelized structure becomes more and more apparent with the increasing incident
angle ϕ [38].
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where Vn is the equivalent square barrier,

Vn ¼
n2ℏ2π2

2m ∗w2 , xj j≤ d

0, xj j> d

8<
: : (33)

Please notice that potential Vn depends on the eigen state, hence, the electron
will encounter different heights of the potential barrier in different eigen states.
Furthermore, it makes electron with different energy either transmitting or going
through the barrier by tunneling. When electrons transmit the channel, the con-
ductance will be changed and is expected to have the quantized value.

Let us express the transmission coefficient in dimensionless form as

Tn ξð Þ ¼ 1þ
n4 sin 2 πd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � n2

p� �

4ξ2 ξ2 � n2
� �

2
4

3
5
�1

, (34)

where ξ ¼ ffiffiffi
E

p
, d ¼ 2d=w is the aspect ratio of the channel. To display the

quantization of the conductance, we conduct a combination consisting of all trans-
mission coefficients which represents all electrons transmitting through all potential
barriers. This combination is expressed in terms of the total transmission coefficients,

T Nð Þ
Total ξð Þ ¼

XN
n¼1

Tn ξð Þ ¼
XN
n¼1

1þ
n4 sin 2 πd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 � n2
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4ξ2 ξ2 � n2
� �

2
4

3
5
�1

: (35)

Figure 9 illustrates the quantization of the total transmission coefficient. Take

N ¼ 2 as an example, T Nð Þ
Total ξð Þ is composed of T1 ξð Þ andT2 ξð Þ:

T 2ð Þ
Total ξð Þ≈

0, ξ< 1

1, 1≤ ξ< 2

2, ξ≥ 2

8><
>:

, (36)

Figure 8.
The conductance G of a narrow channel shows plateaus at integer multiples of 2e2=h as the electron’s energy
ξ ¼ ffiffiffi

E
p

increases [39].
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Figure 6.
The incident energy E ¼ 11 and the incident angle ϕ ¼ 40° for: (a) the probability density function; (b) the
corresponding quantum potential of the cross-section in the channel. The bright regions of the quantum potential
in (b) represent the lower potential barriers which are in accord with the bright regions in (a) where are the
locations with higher probability of finding electrons [38].

Figure 7.
The variation of the quantum potential with respect to the incident angle ϕ for a fixed incident energy
E ¼ 11. It is seen that the channelized structure becomes more and more apparent with the increasing incident
angle ϕ [38].
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where Vn is the equivalent square barrier,

Vn ¼
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Please notice that potential Vn depends on the eigen state, hence, the electron
will encounter different heights of the potential barrier in different eigen states.
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where ξ ¼ ffiffiffi
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, d ¼ 2d=w is the aspect ratio of the channel. To display the
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where we have ignored the rapid oscillations parts in the transmission coeffi-
cient (more detail refers to [39]). Eq. (36) shows the step structure illustrated in
Figure 9, which has the same steps shape of the conductance shown in Figure 8.
We have demonstrated that the total transmission coefficient is proportional to the
total number of electrons passing the channel and it is relevant to the conductance
in the channel.

5. Concluding remarks

Looking for the unifying theory of quantum and classical mechanics lasts for
decades. Several approaches have been proposed, they share some viewpoints and
contributions. We have learned that the quantum potential plays a switch role
between the quantum and classical world. When the mass is getting larger and
larger, the quantum potential will become smaller and smaller, and eventually
becomes ignorable. Causality exists everywhere in the universe but hides itself in
the microscopic world. What makes physicists miss the link that connects the two
scale worlds is the statistical expression of the quantum world. It is impossible to
extract the fundamental law from the probability interpretation. As the higher
dimension is demanded, there are more evidences of causality emerging from the
backbone of quantum mechanics. The complex weak measurement proposes the
solid evidence of the complex space structure nature of the quantum world, and
evokes the ontology return to the quantum kingdom. All quantum motions happen
in complex space. All we can observe is a part of the whole appearance.

In Bohmian mechanics, the quantum potential is a product given by the trans-
formation process which starts from the Schrödinger equation to the quantum HJ
equation. In optimal guidance quantum motion formulation, the quantum potential

Figure 9.
The total transmission coefficients T Nð Þ

Total ξð Þ display the step shape with the increasing of incident energy ξ for
N ¼ 1, 2, 3, 4 with d ¼ 10. [39].
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naturally arises in the process of finding the minimum cost function. From the view
point of the space geometry, the quantum potential exposits the geometric variation
for the particle to lead its motion. This is what makes the quantum world quite
different to the classical world as many quantum phenomena reveal. The quantum
potential is so charming and plays the most important part that bridges the gap
between the quantum and classical world.

Probability is a prescription to deal with the empirical data not to represent the
essence of nature in such a small scale. We have demonstrated how to emerge the
trajectory from the probability by expanding the dimensions to complex space. As
meanwhile, we have pointed out how to reach the classical limit with increasing
quantum numbers from the same ensemble of trajectories by adopting different
statistical collection method. Take the advantage of the quantum potential, we are
allowed to explain the force balanced condition in the hydrogen atom, moreover,
we illustrate the formation of the shell structures which cohere with the shape of the
electron clouds. The channels in 2D Nano-structure are shown to be related to the
quantum potential and so does the conductance. We confirm that the quantized
conductance is originated from the electron’s transmission behavior. The ontology
renders the reality of the identity to the quantum object. It cannot be done without
the complex space structure. Complex space is essential for the quantum world and
becomes the most crucial part of solving the quantum puzzle. It may proper to say
that the causality returns to the quantum world and throughout the whole universe.
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Chapter 6

Entropy in Quantum Mechanics
and Applications to
Nonequilibrium Thermodynamics
Paul Bracken

Abstract

Classical formulations of the entropy concept and its interpretation are intro-
duced. This is to motivate the definition of the quantum von Neumann entropy.
Some general properties of quantum entropy are developed, such as the quantum
entropy which always increases. The current state of the area that includes ther-
modynamics and quantum mechanics is reviewed. This interaction shall be critical
for the development of nonequilibrium thermodynamics. The Jarzynski inequality
is developed in two separate but related ways. The nature of irreversibility and its
role in physics are considered as well. Finally, a specific quantum spin model is
defined and is studied in such a way as to illustrate many of the subjects that have
appeared.

Keywords: classical, quantum, partition function, temperatures, entropy,
irreversible

1. Introduction

The laws of thermodynamics are fundamental to the present understanding of
nature [1, 2]. It is not surprising then to find they have a very wide range of
applications beyond their original scope, such as to gravitation. The analogy
between properties of black holes and thermodynamics could be extended to a
complete correspondence, since a black hole in free space had been shown to radiate
thermally with a temperature T ¼ κ=2π, where κ is the surface gravity. One should
be able to assign an entropy to a black hole given by SH ¼ AH=4 where AH is the
surface area of the black hole [3]. In the nineteenth century, the problem of recon-
ciling time asymmetric behavior with time symmetric microscopic dynamics
became a central issue in this area of physics [4]. Lord Kelvin wrote about the
subjection of physical phenomenon to microscopic dynamical law. If then the
motion of every particle of matter in the universe were precisely reversed at any
instant, the course of nature would be simply reversed for ever after [5]. Physical
processes, on the other hand, are irreversible, such as conduction of heat and
diffusion processes [6, 7]. It subsequently became apparent that not only is there no
conflict between reversible microscopic laws and irreversible microscopic behavior,
but there are extremely strong reasons to expect the latter from the former. There
are many reasons; for example, there exists a great disparity between microscopic
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and macroscopic scales and the fact that the events we observe in the macroworld
are determined not only by the microscopic dynamics but also by the initial
conditions or state of the system.

In the twentieth century, it became clear that the microworld was described by a
different kind of physics along with mathematical ideas that need not be taken into
account in describing the macroworld. This is the subject of quantum mechanics.
Even though the new quantum equations have similar symmetry properties as their
classical counterparts, it also reveals numerous phenomena that can contribute at
this level to the problems mentioned above. These physical phenomena which play
various roles include the phenomenon of quantum entanglement, the effect of
decoherence in general, and the theory of measurements as well.

The purpose of this is to study the subject of entropy as it applies to quantum
mechanics [8, 9]. Its definition is to be relevant to very small systems at the atomic
and molecular level. Its relationship to entropies known at other scales can be
examined. It is also important to relate this information from this new area of
physics to the older and more established theories of thermodynamics and statistical
physics [10–15]. To summarize, many good reasons dictate that the arrow of time is
specified by the direction of increase of the Boltzmann entropy, the von Neumann
macroscopic entropy. To relate the quantum Boltzmann approach to irreversibility
to measurement theory, the measuring apparatus must be included as a part of the
closed quantum mechanical system.

2. Entropy and quantum mechanics

Boltzmann’s great insight was to connect the second law of thermodynamics
with phase space volume. This he did by making the observation that for a dilute
gas, log ∣ΓM∣ is proportional up to terms negligible compared to the system size, to
the thermodynamic entropy of Clausius. He then extended his insight about the
relation between thermodynamic entropy and log ∣ΓM∣ to all macroscopic systems,
no matter what their composition. This gave a macroscopic definition of the obser-
vationally measureable entropy of equilibrium macroscopic systems. With this
connection established, he generalized it to define an entropy for systems not in
equilibrium.

Clearly, the macrostate M xð Þ is determined by x, a point in phase space, and
there are many such points, in fact a continuum, which correspond to the same M.
Let ΓM then be the region in Γ consisting of all microstates x corresponding to a
given macrostate M. Boltzmann associated with each microstate x of a macroscopic
system M a number SB, which depends only on M xð Þ, such that up to multiplicative
and additive constants is given by

S xð Þ ¼ SB M xð Þð Þ ¼ kB log ∣ΓM∣: (1)

This S is called the Boltzmann entropy of a classical system. The constant kB ¼
1:38 � 10�16 erg/K is called Boltzmann’s constant, and if temperature is measured in
ergs instead of Kelvin, it may be set to one. Boltzmann argued that due to large
differences in the sizes of ΓM, SB xtð Þ will typically increase in a way which explains
and describes the evolution of physical systems towards equilibrium.

The approach of Gibbs, which concentrates primarily on probability distribu-
tions or ensembles, is conceptually different from Boltzmann’s. The entropy of
Gibbs for a microstate x of a macroscopic system is defined for an ensemble density
ρ xð Þ to be
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SG ρð Þ ¼ �kB
ð

Γ
ρ xð Þ log ρ xð Þð Þdx: (2)

In (2), ρ xð Þ is the probability for the microscopic state of the system to be found
in the phase space volume element dx. Suppose ρ xð Þ is taken to be the generalized
microcanonical ensemble associated with a macrostate M

ρM xð Þ ¼ ΓMj j�1, x∈Γ;
0, otherwise:

(
(3)

Then clearly

SG ρMð Þ ¼ kB log ∣ΓM∣ ¼ SB Mð Þ: (4)

The probability density for the system in the equilibrium macrostate ρMeq
is the

same as that for the microcanonical and equivalent to the canonical or
grandcanonical ensemble when the system is of macroscopic size. The time devel-
opment of SB and SG subsequent to some initial time when ρ ¼ ρM is very different
unless M ¼ Meq when there is no further systematic change in M or ρ. In fact, SG ρð Þ
never changes in time as long as x evolves according to Hamiltonian evolution, so ρ
evolves according to the Liouville equation. Then SG does not give any indication
that the system is evolving towards equilibrium. Thus the relevant entropy for
understanding the time evolution of macroscopic systems is SB and not SG.

From the standpoint of mathematics, these expressions for classical entropies
can be unified under the heading of the Boltzmann-Shannon-Gibbs entropy [16]. A
very general form of entropy which includes those mentioned can be defined in a
mathematically rigorous way. To do so, let Ω,A, μð Þ be a finite measure space, ν a
probability measure that is absolutely continuous with respect to μ, and its Radon-
Nikodym derivative dν=dμ exists. The generalized BSG entropy is defined to be

SBSG ¼
ð
dν
dμ

� log dν
dμ

� �
dν, (5)

when the integrand is integrable.
This includes the classical Boltzmann-Gibbs entropy when dμ and dν are given by

dμ ¼ d3Npd3Nq
ℏ3N , dν ¼ ρcl dμ: (6)

It also includes the Shannon entropy appearing in information theory in which

Ω ¼ 1, 2, …f g, μ 1f gð Þ ¼ μ 2f gð Þ ¼ … ¼ 1, ν if gð Þ ¼ 1: (7)

In this case, (5) gives the entropy to be

S ¼ �
X
i

ρi log ρið Þ: (8)

In attempting to translate these considerations to the quantum domain, it is
immediately clear that a perfect analogy does not exist.

Although the situation is in many ways similar in quantum mechanics, it is not
identical. The irreversible incompressible flow in phase space is replaced by the
unitary evolution of wave functions in Hilbert space and velocity reversal of x by
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complex conjugation of the wave function. The analogue of the Gibbs entropy (2) of
an ensemble is the von Neumann entropy of a density matrix ρ:

SvN ρð Þ ¼ �kBTr ρ log ρð Þ: (9)

This formula was given by von Neumann. It generalizes the classical expres-
sion of Boltzmann and Gibbs to the realm of quantum mechanics. The density
matrix with maximal entropy is the Gibbs state. The range of SvN is the whole of
the extended real line 0,∞½ �, so to every number ζwith 0< ζ≤∞, there is a density
matrix ρ such that SvN ρð Þ ¼ ζ. Like the classical SG ρð Þ, this does not alter in time
for an isolated system evolving under Schrödinger evolution. It has value zero
whenever ρ represents a pure stare. Similar to SG ρð Þ, it is not most appropriate for
describing the time symmetric behavior of isolated macroscopic systems. The
Szilard engine composed of an atom is an example in which the entropy of a
quantum object is made use of. von Neumann discusses the macroscopic entropy
of a system, so a macrostate is described by specifying values of a set of commut-
ing macroscopic observable operators Â, such as particle number, energy, and so
forth, to each of the cells that make up the system corresponding to the eigen-
values aα, an orthogonal decomposition of the system’s Hilbert space H into linear
subspaces Γ̂α in which the observables Â take the values aα. Let Πα the projection
into Γ̂α. von Neumann then defines the macroscopic entropy of a system with
density matrix ~ρ as

~Smac ~ρð Þ ¼ kB
XN
α¼1

pα ~ρð Þ log ∣Γ̂α∣� kB
XN
α¼1

pα ~ρð Þ log pα ~ρð Þ: (10)

Here, pα ~ρð Þ is the probability of finding the system with density matrix ~ρ in the
microstate Mα

pα ~ρð Þ ¼ Tr Πα~ρð Þ, (11)

and ∣Γ̂α∣ is the dimension of Γ̂α. An analogous definition is made for a system
which is represented by a wave function Ψ; simply replace pα ρð Þ by pα Ψð Þ ¼
Ψ,ΠαΨh i. In fact, ∣ΨihΨ∣ just corresponds to a particular pure density matrix.

von Neumann justifies (10) by noting that

~Smac ρð Þ ¼ �kBTr ~ρ log ~ρ½ � ¼ SvN ~ρð Þ, (12)

for

~ρ ¼
X
α

pα
∣Γ̂α∣

Πα, (13)

and ~ρ is macroscopically indistinguishable from ρ.
A correspondence can be made between the partitioning of classical phase space

Γ and the decomposition of Hilbert space H and to define the natural quantum
analogues to Boltzmann’s definition of SB Mð Þ in (1) as

ŜB Mαð Þ ¼ kB log ∣Γ̂Mα ∣ (14)

where ∣Γ̂Mα ∣ is the dimension of Γ̂Mα . With definition (14) the first term on the
right of (10) is just what would be stated for the expected value of the entropy of a
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classical system of whose macrostate we were unsure. The second part of (10) will
be negligible compared to the first term for a macroscopic system, classical or
quantum, and going to zero when divided by the number of particles.

Note the difference that in the classical case, the state of the system is
described by x∈Γα for some α, so the system is always in one of the macrostates
Mα. For a quantum system described by ρ or Ψ, this is not the case. There is no
analogue of (1) for general ρ or Ψ. Even when the system is in a macrostate
corresponding to a definite microstate at t0, only the classical system will be in a
unique macrostate at time t. The quantum system will in general evolve into a
superposition of different macrostates, as is the case in the Schrödinger Cat
paradox. In this wave function, Ψ corresponding to a particular macrostate
evolves into a linear combination of wave functions associated with very differ-
ent macrostates. The classical limit is obtained by a prescription in which the
density matrix is identified with a probability distribution in phase space and the
trace is replaced by integration over phase space. The superposition principle
excludes partitions of the Hilbert space: an orthogonal decomposition is all that is
relevant.

2.1 Properties of entropy functions

Entropy functions have a number of characteristic properties which should be
briefly described in the quantum case. The set of observables will be the bounded,
self-adjoint operators with discrete spectra in a Hilbert space. The set of normal
states can be taken to be the density operators or positive operators of trace one.

The entropy functional satisfies the following inequalities. Let λi >0 andP
i λi ¼ 1. Then S has the concavity property:

S
X
i

λiρi

 !
≥
X
i

λiS ρið Þ, (15)

with equality if all λi are equal.
Subadditivity holds with equality if and only if ρiρ j ¼ 0, i 6¼ j

S
X
i

λiρi

 !
≤
X
i

λiS ρið Þ �
X
i

λi log λi: (16)

and

S
X
i

λiρi

 !
≤ S TBρð Þ≤ S ρð Þ �

X
k

pk log pk (17)

where the first equality holds iff TBρ ¼ ρ and the second iff S ρkð Þ ¼ S ρð Þ for all k.
The conditional entropy is defined to be

S ρ1jρ2ð Þ ¼ Tr ρ1 log ρ1 � ρ1 log ρ2ð Þ: (18)

The formal expression will be interpreted as follows. If A,B are positive traceless
operators with complete orthonormal sets of eigenstates ∣aii and ∣bii, using a
resolution of identity,

P
ihai∣A log A ∣aii ¼

P
i,j aijAjb j
� �

b jj logAjai
� � ¼P

i,jai aijb j
� �

log ai b jjai
� �

so that
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X
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S
X
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X
i
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X
i

λi log λi: (16)
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X
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X
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X
j

b jjA logA� A logBþ B� Ajb j
� � ¼

X
j

aijA logA� A logBþ B� Ajaih i

¼
X
i, j

aijbih ij j2 ai log ai � ai log b j þ b j � ai
� � ¼ S AjBð Þ:

(19)

Concavity of the function x log x ensures the terms of the final sum are nonneg-
ative. In order that S ρ1jρ2ð Þ<∞, it is necessary that πρ1 ≤ πρ2 where πW ¼ suppW is
the support projection of W, so ρ1 < ρ2. From the definition, S ρ1jρ2ð Þ≥0 with
equality if ρ1 ¼ ρ2. If λρ1 ≤ ρ2, for some λ∈ 0, 1ð Þ, S ρ1jρ2ð Þ≤ � log λ from operator
monotony of log z. If ρ ¼Pi λiρi, then

S ρð Þ ¼
X
i

λiS ρið Þ þ
X
i

λiS ρijρð Þ, (20)

which gives (15) and (16). If T is a trace-preserving operator, then ρ<Tρ, and

S Tρð Þ ¼ S ρð Þ þ S ρjTρð Þ: (21)

This is to say that T is entropy-increasing.
The concept of irreversibility is clearly going to be relevant to the subject at

hand, so some thoughts related to it will be given periodically in what follows. A
possible way to account for irreversibility in a closed system in nature is by the
various types of course-graining. There are also strong reasons to suggest the arrow
of time is provided by the direction of increase of the quantum form of the
Boltzmann entropy. The measuring apparatus should be included as part of the
closed quantum mechanical system in order to relate the quantum Boltzmann
approach to irreversibility to the concept of a measurement. Let Sc be a composite
system consisting of a macroscopic system S coupled to a measuring instrument I ,
so Sc ¼ Sþ I , where I is a large but finite N-particle system. A set of course-
grained mutually commuting extrinsic variables are provided whose eigenspaces
correspond to the pointer positions of I . von Neumann’s picture of the measure-
ment process is basic to the approach, but according to which, the coupling of S to I
leads to the following effects. A pure state of S described by a linear combinationP

αcαψα of its orthonormal energy eigenstates is converted into a statistical mixture
of these states for which cαj j2 is the probability of finding the system in state ψα. It
also sends a certain set of classical or intercommuting, macroscopic variables M of
I to values indicated by pointer readings that indicate which of the states is realized.

There is an amplification process of the S� I coupling where different micro-
states of S give rise to macroscopically different states of I . If I is designed to have
readings which are in one-to-one correspondence with the eigenstates of S, it may
be assumed index α of its microstates goes from 1 to n. Denote the projection
operator for subspace K by Πα, then

ΠαΠβ ¼ Παδαβ,
X
α

Πα ¼ 1Kα , (22)

and each element of the abelian subalgebra of ℬ takes the form with Mα scalars

M ¼
X
α

MαΠα: (23)

Define the projection operators:
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πα ¼ 1⊗Πα, α ¼ 1, … , n: (24)

Suppose A is measured on system S, initially in a state of the composite system
described by a density matrix ρ. The value pα is obtained with probability τα ¼
Tr ρπαð Þ. After the measurement, the state of the composite system is accounted for
by the density matrix:

ρα ¼
1
τα

παρπα: (25)

This is a mixture of states in each of which A has a definite value.
The transformation ρ ! ~ρ ¼Pα παρπα may be viewed as a loss of information

contained in non-diagonal terms ψαρπα0 with α 6¼ β in
P

αα0 παρπα0 . When a sequence
of measurements is carried out and a time evolution is permitted to occur between
measurements leads one to assign to a sequence of events πα1 t1ð Þπα2 t2ð Þ⋯παn tnð Þ the
probability distribution:

P αð Þ ¼ Tr πα1 tnð Þ⋯πα1 t1ð Þρπα1 t1ð Þ⋯παn tnð Þ� �
, (26)

where ρ ¼ ρ 0ð Þ, over the set of histories, where the πk satisfy (22) with Π
replaced by the π. Let us define

D α0, αð Þ ¼ Tr πα1 t1ð Þ⋯παn tnð Þρπαn tnð Þ⋯πα1 t1ð Þ� �
: (27)

The following definition can now be stated. A history is said to decohere if and
only if

D α, α0ð Þ ¼ δα,α0ρα: (28)

A state is called decoherent with respect to the set of πα if and only if

παρ 0ð Þπβ ¼ 0, α 6¼ β: (29)

This implies that Tr πα0ρπαAð Þ ¼ 0 for all α 6¼ α0, which is equivalent to πα, ρ½ � ¼
0 for all α. In contrast to infinite systems where there is no need to refer to a choice
of projections, decoherent mixed states over the macroscopic observables can be
described by relations between the density matrix and the projectors. They would
be of the form ρm ¼ ∣ΨihΨ∣ with ∣Ψi ¼Pα λαπαΦα such that

P
α λαj j2 ¼ 1 and Φα ∈H

and satisfy

X
α6¼α0

πα0ρmπα þ παρmπα0ð Þ 6¼ 0: (30)

The relative or conditional entropy between two states S ρ1jρ2ð Þ was defined in
(18), and it plays a crucial role. It is worth stating a few of its properties, as some are
necessary for the theorem:

S ρ1jρ2ð Þ≥0: (31)

S ρ1jρ2ð Þ ¼ 0, ρ1 ¼ ρ2: (32)

S λρ1 þ 1� λð Þρ2jλσ1 þ 1� λð Þσ2ð Þ≤ λS ρ1jσ1ð Þ þ 1� λð ÞS ρ2jσ2ð Þ: (33)

When γ is a completely positive map, or embedding
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X
j
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X
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possible way to account for irreversibility in a closed system in nature is by the
various types of course-graining. There are also strong reasons to suggest the arrow
of time is provided by the direction of increase of the quantum form of the
Boltzmann entropy. The measuring apparatus should be included as part of the
closed quantum mechanical system in order to relate the quantum Boltzmann
approach to irreversibility to the concept of a measurement. Let Sc be a composite
system consisting of a macroscopic system S coupled to a measuring instrument I ,
so Sc ¼ Sþ I , where I is a large but finite N-particle system. A set of course-
grained mutually commuting extrinsic variables are provided whose eigenspaces
correspond to the pointer positions of I . von Neumann’s picture of the measure-
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leads to the following effects. A pure state of S described by a linear combinationP

αcαψα of its orthonormal energy eigenstates is converted into a statistical mixture
of these states for which cαj j2 is the probability of finding the system in state ψα. It
also sends a certain set of classical or intercommuting, macroscopic variables M of
I to values indicated by pointer readings that indicate which of the states is realized.

There is an amplification process of the S� I coupling where different micro-
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readings which are in one-to-one correspondence with the eigenstates of S, it may
be assumed index α of its microstates goes from 1 to n. Denote the projection
operator for subspace K by Πα, then

ΠαΠβ ¼ Παδαβ,
X
α

Πα ¼ 1Kα , (22)

and each element of the abelian subalgebra of ℬ takes the form with Mα scalars

M ¼
X
α

MαΠα: (23)

Define the projection operators:
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πα ¼ 1⊗Πα, α ¼ 1, … , n: (24)

Suppose A is measured on system S, initially in a state of the composite system
described by a density matrix ρ. The value pα is obtained with probability τα ¼
Tr ρπαð Þ. After the measurement, the state of the composite system is accounted for
by the density matrix:

ρα ¼
1
τα

παρπα: (25)

This is a mixture of states in each of which A has a definite value.
The transformation ρ ! ~ρ ¼Pα παρπα may be viewed as a loss of information

contained in non-diagonal terms ψαρπα0 with α 6¼ β in
P

αα0 παρπα0 . When a sequence
of measurements is carried out and a time evolution is permitted to occur between
measurements leads one to assign to a sequence of events πα1 t1ð Þπα2 t2ð Þ⋯παn tnð Þ the
probability distribution:

P αð Þ ¼ Tr πα1 tnð Þ⋯πα1 t1ð Þρπα1 t1ð Þ⋯παn tnð Þ� �
, (26)

where ρ ¼ ρ 0ð Þ, over the set of histories, where the πk satisfy (22) with Π
replaced by the π. Let us define

D α0, αð Þ ¼ Tr πα1 t1ð Þ⋯παn tnð Þρπαn tnð Þ⋯πα1 t1ð Þ� �
: (27)

The following definition can now be stated. A history is said to decohere if and
only if

D α, α0ð Þ ¼ δα,α0ρα: (28)

A state is called decoherent with respect to the set of πα if and only if

παρ 0ð Þπβ ¼ 0, α 6¼ β: (29)

This implies that Tr πα0ρπαAð Þ ¼ 0 for all α 6¼ α0, which is equivalent to πα, ρ½ � ¼
0 for all α. In contrast to infinite systems where there is no need to refer to a choice
of projections, decoherent mixed states over the macroscopic observables can be
described by relations between the density matrix and the projectors. They would
be of the form ρm ¼ ∣ΨihΨ∣ with ∣Ψi ¼Pα λαπαΦα such that

P
α λαj j2 ¼ 1 and Φα ∈H

and satisfy

X
α6¼α0

πα0ρmπα þ παρmπα0ð Þ 6¼ 0: (30)

The relative or conditional entropy between two states S ρ1jρ2ð Þ was defined in
(18), and it plays a crucial role. It is worth stating a few of its properties, as some are
necessary for the theorem:

S ρ1jρ2ð Þ≥0: (31)

S ρ1jρ2ð Þ ¼ 0, ρ1 ¼ ρ2: (32)

S λρ1 þ 1� λð Þρ2jλσ1 þ 1� λð Þσ2ð Þ≤ λS ρ1jσ1ð Þ þ 1� λð ÞS ρ2jσ2ð Þ: (33)

When γ is a completely positive map, or embedding
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S ρ1 � γjρ2 � γð Þ≤ S ρ1jρ2ð Þ: (34)

The last two inequalities are known as joint concavity and monotonicity of the
relative entropy. The following result may be thought of as a quantum version of
the second law.

Theorem: Suppose the initial density matrix is decoherent at zero time (29) with
respect to πα and have finite entropy

ρ 0ð Þ ¼
X
α

παρ 0ð Þπα,

S ρ 0ð Þð Þ ¼ �kBTr ρ 0ð Þ log ρ 0ð Þð Þð Þ<∞,
(35)

and it is not an equilibrium state of the system. Let ρ t f
� �

, for t f >0, be any
subsequent state of the system, possibly an equilibrium state. Then for an
automorphic, unitary time evolution of the system between 0≤ t≤ t f

S 0ð Þ≤ S t f
� �

, (36)

where S 0ð Þ ¼ S t f
� �

if and only if (e)
P

α< β παρ t f
� �

πβ þ πβρ t f
� �

πα ¼ 0.
Proof: Set ρ0 t f

� � ¼Pα παρ t f
� �

πα ¼ ρ t f
� � � γ, so ρ0 is obtained from ρ by means of

a completely positive map. It follows that

S ρ0 t f
� �jρ0 0ð Þ� � ¼ �S ρ0 t f

� �� �� kB
X
α

Tr ρ t f
� �

πα log ρ 0ð Þð Þπα
� �

¼ �S t f
� �� kBTr ρ t f

� �
log ρ 0ð Þð Þ≤ S ρ t f

� �jρ 0ð Þ� � ¼ �S ρ 0ð Þð Þ � Tr ρ t f
� �

log ρ 0ð Þð Þ� �
:

�

(37)

The first equality uses the cyclic property of the trace and the definition of ρ0.
The second equality uses decoherence of ρ 0ð Þ, and the next inequality is a conse-
quence of (34). The evolution is unitary and hence preserves entropy which is the
last equality. This implies that S tð Þ≥ S 0ð Þ and the equality condition (e) follows
from (32). □

Of course, entropy growth as in the theorem is not necessarily monotonic in
the time variable. For this reason, it is usual to refer to fixed initial and final
states. For thermal systems, a natural choice of the final state is the equilibrium
state of the system. It is the case in thermodynamics that irreversibility is
manifested as a monotonic increase in the entropy. Thermodynamic entropy, it is
thought, is related to the entropy of the states defined in both classical and
quantum theory. Under an automorphic time evolution, the entropy is conserved.
One application of an environment is to account for an increase. A type of course-
graining becomes necessary together with the right conditions on the initial state
to account for the arrow of time. In quantum mechanics, the course-graining
seems to be necessary and may be thought of as a restriction of the algebra and
can also be interpreted as leaving out unobservable quantum correlations. This
may, for example, correspond to decoherence effects important in quantum
measurements. Competing effects arise such as the fact that correlations becom-
ing unobservable may lead to entropy increase. There is also the effect that a
decrease in entropy might be due to nonautomorphic processes. Although both
effects lead to irreversibility, they are not cooperative but rather contrary to one
another. The observation that the second law does hold implies these
nonautomorphic events must be rare in comparison with time scales relevant to
thermodynamics.
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3. Quantum mechanics and nonequilibrium thermodynamics

Some aspects of equilibrium thermodynamics are examined by considering an
isothermal process. Since it is a quasistatic process, it may be decomposed into a
sequence of infinitesimal processes. Assume initially the system has a Hamiltonian
H γð Þ in thermal equilibrium at a temperature T. Boltzmann’s constant is set to one.
The state is given by the Gibbs density operator ρ. This expression can also be
written in terms of the energy eigenvalues εn and eigenvectors ∣ni of H. The
probability of finding the system in state ∣ni is

pn ¼ njρjnh i ¼ e�βεn

Z
: (38)

The average external energy U of the system is given as

U ¼ Uh i ¼ Tr Hρð Þ ¼
X
n

εnpn: (39)

When the parameter γ is changed to γ þ dγ, both εn and pn as well as U change to

dU ¼
X
n

dεn pn þ εn dpn
� �

: (40)

Each instantaneous infinitesimal process can be broken down into a part which
is the work performed; the second is the heat transformed as the system relaxes to
equilibrium. This breakup motivates us to define

δW ¼
X
n

dεnð Þpn, δQ ¼
X
n

εn dpn, (41)

so dU ¼ δQ þ δW, and δ is used to indicate that heat and work are not exact
differentials. The free energy of the system is defined to be F ¼ �T log Z, so dF ¼P

n dεnð Þpn which means

δW ¼ dF: (42)

By integrating over the infinitesimal segments, we find W is

W ¼ ΔF ¼ ΔU � Q : (43)

Inverting Eq. (38) for pn, we can solve for

εn ¼ �T log Zpn
� �

: (44)

Substituting into the relation for δQ, we get two terms, one proportional to
log Zð Þ and the other to log pn

� �
. The term with log Zð Þ when the pk satisfyP

k pk ¼ 1 is

�T
X
n

log Zð Þdpn ¼ �T log Zð Þd
X
n
pn

 !
¼ 0, (45)

It remains to study

δQ ¼ �T
X
n

dpn log pn
� �

: (46)
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α
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P
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� �� �� kB
X
α

Tr ρ t f
� �

πα log ρ 0ð Þð Þπα
� �

¼ �S t f
� �� kBTr ρ t f

� �
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� �
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:

�
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state of the system. It is the case in thermodynamics that irreversibility is
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thought, is related to the entropy of the states defined in both classical and
quantum theory. Under an automorphic time evolution, the entropy is conserved.
One application of an environment is to account for an increase. A type of course-
graining becomes necessary together with the right conditions on the initial state
to account for the arrow of time. In quantum mechanics, the course-graining
seems to be necessary and may be thought of as a restriction of the algebra and
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may, for example, correspond to decoherence effects important in quantum
measurements. Competing effects arise such as the fact that correlations becom-
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effects lead to irreversibility, they are not cooperative but rather contrary to one
another. The observation that the second law does hold implies these
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3. Quantum mechanics and nonequilibrium thermodynamics

Some aspects of equilibrium thermodynamics are examined by considering an
isothermal process. Since it is a quasistatic process, it may be decomposed into a
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H γð Þ in thermal equilibrium at a temperature T. Boltzmann’s constant is set to one.
The state is given by the Gibbs density operator ρ. This expression can also be
written in terms of the energy eigenvalues εn and eigenvectors ∣ni of H. The
probability of finding the system in state ∣ni is

pn ¼ njρjnh i ¼ e�βεn

Z
: (38)

The average external energy U of the system is given as

U ¼ Uh i ¼ Tr Hρð Þ ¼
X
n

εnpn: (39)

When the parameter γ is changed to γ þ dγ, both εn and pn as well as U change to

dU ¼
X
n

dεn pn þ εn dpn
� �

: (40)

Each instantaneous infinitesimal process can be broken down into a part which
is the work performed; the second is the heat transformed as the system relaxes to
equilibrium. This breakup motivates us to define

δW ¼
X
n

dεnð Þpn, δQ ¼
X
n

εn dpn, (41)

so dU ¼ δQ þ δW, and δ is used to indicate that heat and work are not exact
differentials. The free energy of the system is defined to be F ¼ �T log Z, so dF ¼P

n dεnð Þpn which means

δW ¼ dF: (42)

By integrating over the infinitesimal segments, we find W is

W ¼ ΔF ¼ ΔU � Q : (43)

Inverting Eq. (38) for pn, we can solve for

εn ¼ �T log Zpn
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: (44)

Substituting into the relation for δQ, we get two terms, one proportional to
log Zð Þ and the other to log pn
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. The term with log Zð Þ when the pk satisfyP

k pk ¼ 1 is

�T
X
n

log Zð Þdpn ¼ �T log Zð Þd
X
n
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X
n
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� �

: (46)
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By the chain rule

d
X
n

pn log pn
� � !

¼
X
n

dpn log pn
� �þ

X
n

dpn ¼
X
n

dpn log pn
� �

: (47)

So δQ is not a function of the state but is related to the variation of some-
thing that is. Define the entropy S as usual from (9), S ¼ �Pn pn log pn

� �
, and

arrive at

δQ ¼ TdS: (48)

This relation only holds for infinitesimal processes. For finite and irreversible
processes, there may be additional terms to the entropy change. This has been quite
successful at describing many different types of physical system [17–19].

A deep insight has come recently into the properties of nonequilibrium thermo-
dynamics which could be achieved by regarding work as a random variable. For
example, consider a process in which a piston is used to compress a gas in a cylinder.
Due to the nature of the gas and its chaotic motion, each time the piston is pressed,
the gas molecules exert a back reaction with a different force. This means the work
needed to achieve a given compression changes each time something is carried out.

Usually a knowledge of nonequilibrium processes is restricted to inequalities
such as the Jarzynski inequality. He was able to show by interpreting work W as a
random variable that an inequality can be obtained, even for a process performed
arbitrarily far from equilibrium.

Suppose the system is always prepared in the same state initially. A process is
carried out and the total work W performed is measured. Repeating this many
times, a probability distribution for the work P Wð Þ can be constructed. An average
for W can be computed using P Wð Þ as

Wh i ¼
ð
P Wð ÞdW: (49)

Jarzynski showed that the statistical average of e�βW satisfies

e�βW� � ¼ e�βΔF, (50)

where ΔF ¼ F T, γ f

� �
� F T, γið Þ. It holds for a process performed arbitrarily far

from equilibrium. Now the inequality W ≥ΔF is contained in (50) and can be
realized by applying Jensen’s inequality, which states that e�βW

� �
≥ e�β Wh i.

In macroscopic systems, individual measurements are usually very close to the
average by the law of large numbers. For mictoscopic systems, this is usually not
true. In fact, the individual realizations of W may be smaller than ΔF. These cases
would be local violations of the second law but for large systems become extremely
rare. If the function P Wð Þ is known, the probability of a local violation of the
second law is

P W <ΔFð Þ ¼
ðΔF
�∞

P Wð Þ dW: (51)

To get (50) requires detailed knowledge of the system’s dynamics, be it classical,
quantum, unitary, or whatever.
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Consider nonunitary quantum dynamics. Initially, the system has Hamiltonian
Hi ¼ H γið Þ. The system was in thermal equilibrium with a bath at temperature T.
The initial state of the system is the Gibbs thermal density matrix (38). Let εin and
∣ni denote the initial eigenvalues and eigenvectors of Hi as εin is obtained with
probability pn ¼ e�βεin=Z.

Immediately after this measurement, γ changes from γ 0ð Þ ¼ γi to γ τð Þ ¼ γ f

according to the rule γ tð Þ. If it is assumed the contact with the bath is very weak
during this process, the state of the system evolves according to

∣ψ tð Þi ¼ U tð Þ ∣ni, (52)

where U is the unitary evolution operator which satisfies Schrödinger’s equation,
i∂tU ¼ H tð ÞU, U 0ð Þ ¼ 1.

The Hamiltonian is H γ f

� �
at the end and has energy levels ε f

m, eigenvectors ∣mi,
so the probability ε

f
n measured is ∣hm ψ τð Þij j2 ¼ ∣hm∣U τð Þ nij j2. This may be

interpreted as the conditional probability a system in ∣ni will be in ∣mi after time τ.
No heat has been exchanged with the environment, so any change in the envi-

ronment has to be attributed to the work performed by the external agent and is

W ¼ ε f
m � εin, (53)

where both εin and ε
f
m are fluctuating and change during each realization of the

experiment. The first εin is random due to thermal fluctuations and ε
f
m is random due

to quantum fluctuations in W as a random variable by (53).
To get an expression for P Wð Þ obtained by repeating the process several times,

this is a two-step measurement process. From probability theory, if A,B are two
events, the total probability p AjBð Þ that both events have occurred is

p A,Bð Þ ¼ p AjBð Þp Bð Þ, (54)

where p Bð Þ is the probability B which occurs and p AjBð Þ is the conditional
probability B that has occurred. The probability of both events that have occurred is
∣hm∣U τð Þ nij j2pn. Since we are interested in the work performed, we write

P Wð Þ ¼
X
n,m

∣hm∣U τð Þ nij j2pn δ W � ε f
m � εin

� �� �
: (55)

And some over all allowed events, weighted by their probabilities, and arrange

the terms according to the values ε f
m � εin. In most systems, there are present a

rather large number of allowed levels, and even more allowed differences ε f
m � εin. It

is more efficient to use the Fourier transform

G yð Þ ¼ eiyW
� � ¼

ð∞
�∞

P Wð ÞeiyWdW: (56)

This has the inverse Fourier transform

P Wð Þ ¼ 1
2π

ð∞
�∞

dyG yð Þe�iyW : (57)

Using (55), we obtain that
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X
n
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X
n

dpn log pn
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X
n
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X
n

dpn log pn
� �

: (47)
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G yð Þ ¼
X
n,m

∣hm∣U nij j2pn eiy ε
f
m�εinð Þ ¼

X
n,m

njU†eiyε
f
m jm

D E
mjUe�iyεinpnjn
D E

¼
X
n,m

njU†eiyH f jm� �
mjUe�iyHi ρjn� � ¼ Tr U† τð ÞeiyH f U τð Þe�iyHiρ

� �
:

(58)

Hence, it may be concluded that

G ¼ Tr U† τð ÞeiyH f U τð Þe�iyHi ρ
� �

: (59)

This turns out to be somewhat easier to work with than P Wð Þ, and (59) plays a
similar role as Z in equilibrium statistical mechanics. From G yð Þ, the statistical
moments of W can be found by expanding

G yð Þ ¼ eiyW
� � ¼ 1þ iy Wh i � y2

2
W2� �� y3

6
W3� �þ⋯: (60)

A formula for the quantummechanical formula for the moments can be found as
well. The average work is Wh i ¼ H f

� �� Hih i, where for any operator A, we have
Ah it ¼ Tr U† tð ÞAU tð Þρ� �

as the expectation value of A at time t. This follows from
the fact that the state of the system at t is ρ tð Þ ¼ U tð ÞρU tð Þ†. From the definition of G,
it ought to be the case that G y ¼ iβð Þ ¼ e�βW

� �
. However, ρ in (38) and (59) yields

G iβð Þ ¼ 1
Zi

Tr U†e�βH f U
� � ¼ 1

Zi
Tr eβH f
� � ¼ Z f

Zi
: (61)

Using Z ¼ e�βF, (61) yields (50)

G iyð Þ ¼ e�βW� � ¼ e�βΔF: (62)

Nothing has been assumed about the speed of this process. Thus inequality (50)
must hold for a process arbitrarily far from equilibrium.

4. Heat flow from environment approach

There is another somewhat different way in which the Jarzynski inequality can
be generalized to quantum dynamics. In a classical system, the energy of the system
can be continuously measured as well as the flow of heat and work. Continuous
measurement is not possible in quantum mechanics without disrupting the dynam-
ics of the system [20].

A more satisfactory approach is to realize that although work cannot be contin-
uously measured, the heat flow from the environment can be measured. To this
end, the system of interest is divided into a system of interest and a thermal bath.
The ambient environment is large, and it rapidly decoheres and remains at thermal
equilibrium, uncorrelated and unentangled with the system. Consequently, we can
measure the change in energy of the bath �Qð Þ without disturbing the dynamics of
the system. The open-system Jarzynski identity is expressed as

e�βW� � ¼ e�βE f eβQeβEi
� � ¼ e�βΔF: (63)

For a system that has equilibrated with Hamiltonian H interacting with a ther-
mal bath at temperature T, the equilibrium density matrix is ρ ¼ eβH=Z ¼ e�βF�βH,
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where β ¼ 1=KBT. The dynamics of an open quantum system is described by a
quantum operator ~ρ ¼ Sρ, a linear trace-preserving, complete positive map of
operators. Any such complete positive superoperator has an operator-sum
representation

Sρ ¼
X
α

AαρA†
α: (64)

Conversely, any operator-sum represents a complete positive superoperator.
The set of operators Aαf g is often called Krauss operators. The superoperator is
trace-preserving and conserves probability if

P
αA

†
αAα ¼ I. In the simplest case, the

dynamics of an isolated quantum system is described by a single unitary operator
U† ¼ U�1.

The interest here is in the dynamics of a quantum system governed by a time-
dependent Hamiltonian weakly coupled to an extended, thermal environment. Let
the total Hamiltonian be

H ¼ HS tð Þ⊗ IB þ IS ⊗HB þ εHint, (65)

where IS and IB are system and bath identity operators, HS tð Þ the system
Hamiltonian, HB the bath Hamiltonian, and Hint the bath-system interaction with ε
a small parameter. Assume initially the system and environment are uncorrelated
such that the initial combined state is ρS ⊗ ρBeq, where ρBeq is the thermal density
equilibrium matrix of the bath.

By following the unitary dynamics of the combined total system for a finite time
and measuring the final state of the environment, a quantum operator description
of the system dynamics can also be obtained:

S s, tð ÞρS ¼ TrBU ρS ⊗ ρBeq

� �
U† ¼

X
i, f

hb f ∣UðρS ⊗ ð
X
i

e�βεBi

ZB ∣bii bijÞÞU†jb f
� �

¼ 1
ZB

X
i, f

e�βεBi b f jUjbi
� �

ρS bijU†jb f
� �

:

(66)

Here U is the unitary evolution operator of the total system

U ¼ exp
i
ℏ

ðt
s
H τð Þdτ

� �
, (67)

and TrB is the partial trace over the bath degrees of freedom, εBi
� �

are the energy
eigenvalues, jbif g is the orthonormal energy eigenvectors of the bath, and ZB is the
bath partition function. Assume the bath energy states are nondegenerate. Then
(66) implies the Krauss operators for this dynamics are

Ai,f ¼ 1ffiffiffiffiffiffi
ZB

p e�βεBi =2 b f jUjbi
� �

: (68)

Suppose the environment is large, with a characteristic relaxation time short
compared with the bath-system interactions, and the system-bath coupling ε is
small. The environment remains near thermal equilibrium, unentangled and
uncorrelated with the system. The system dynamics of each consecutive time
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interval can be described by a superoperator derived as in (66) which can then be
chained together to form a quantum Markov chain:

ρ tð Þ ¼ S t� 1, tð Þ⋯S sþ 1, sþ 2ð ÞS s, sþ 1ð Þρ: (69)

The Hermitian operator of a von Neumann-type measurement can be broken up
into a set of eigenvalues λσ and orthonormal projection operators πσ such that H ¼P

σ λσπσ . In a more general sense, the measured operator of a positive operator-
valued measurement need not be projectors or orthonormal. The probability of
observing the a-th outcome is

pa ¼ Tr AaρA†
a

� �
: (70)

The state of the system after this interaction is

~ρa ¼
AaρA†

a

Tr AaρA†
a

� � : (71)

The result of the measurement can be represented by using a Hermitian map
superoperator A:

A ¼
X
α

aαAαρA†
α: (72)

An operator-value sum maps Hermitian operators into Hermitian operators:

AH½ �† ¼ aαAαHA†
α

� �† ¼
X
α

aα A†
� �†H†A†

α ¼ AH: (73)

In the other direction, any Hermitian map has an operator-value-mean repre-
sentation. Hermitian maps provide a particularly concise and convenient repre-
sentation of sequential measurements and correlation functions. For example,
suppose Hermitian map A represents a measurement at time 0, C is a different
measurement at time t, and the quantum operation St represents the system
evolution between the measurements. The expectation value of a single measure-
ment is

ah i ¼ Tr Aρð Þ ¼
X
α

aαTrAαρA†
α ¼

X
α

pαaα: (74)

The correlation function b tð Þa 0ð Þh i can be expressed as

b tð Þa 0ð Þh i ¼ Tr BStAρ 0ð Þð Þ ¼
X
α, β

aαbβTr Bα St Aαρ 0ð ÞA†
α

� �� �
B†
β: (75)

It may be shown that just as every Hermitian operator represents some mea-
surement on the Hilbert space of pure states, every Hermitian map can be associ-
ated with some measurement on the Liouville space of mixed states.

A Hermitian map representation of heat flow can now be constructed under
assumptions that the bath and system Hamiltonian are constant during the mea-
surement and the bath-system coupling is very small. A measurement on the total
system is constructed, and thus the bath degrees of freedom are projected out. This
leaves a Hermitian map superoperator that acts on the system density matrix alone.
Let us describe the measurement process and mathematical formulation together.
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Begin with a composite system which consists of the bath, initially in thermal
equilibrium weakly coupled to the system:

ρS ⊗ ρBeq: (76)

Measure the initial energy eigenstate of the bath so based on (76):

IS ⊗∣biihbi∣
� �

ρS⊗ ρBeq

� �
IS ⊗∣b jihb j∣
� �

: (77)

Now allow the system to evolve together with the bath for some time:

U IS ⊗∣biihbi∣
� �

ρS ⊗ ρBeq

� �
IS ⊗ ∣b jihb j∣
� �

U†: (78)

Finally, measure the final energy eigenstate of the bath:

IS ⊗ ∣biihb f ∣
� �

U IS ⊗ ∣biihbi∣
� �

ρS ⊗ ρBeq

� �
IS ⊗ ∣b jihb j∣
� �

U† IS ⊗∣b f ihb f ∣
� �

: (79)

Taking the trace over the bath degrees of freedom produces the final normalized
system density matrix where trace over S gives the probability of observing the
given initial and final bath eigenstates. Multiply by the Boltzmann weighted heat,
and sum over the initial and final bath states to obtain the desired average
Boltzmann weighted heat flow:

eβQ
� � ¼

X
i, f

e
�β εBf�εBi

� �
TrSTrBðIS ⊗ ∣b f ihb f ∣ÞUðIS ⊗ ∣biihbi∣Þ

ρS ⊗ ρBeq

� �
ðIS ⊗∣b jihb j∣ÞU†ðIS ⊗ ∣b jihb j∣Þ:

(80)

Replace the heat bath Hamiltonian by IS ⊗HB ¼ H �HS tð Þ⊗ IB � εHint. The
total Hamiltonian commutes with the unitary dynamics and cancels. The interac-
tion Hamiltonian can be omitted in the small coupling limit giving

eβQ
� � ¼ TrSTrB eβH

S=2 ⊗ IS
� �

U e�β=2HS
⊗ IB

� �
ρS ⊗ ρBeq

� �
e�βHS=2 ⊗ IB
� �

U† eβH
S=2 ⊗ IB

� �

(81)

Collecting the terms acting on the bath and system separately and replacing the
Krauss operators describing the reduced dynamics of the system, the result is

eβQ
� � ¼ TrS eβH

S=2 TrB Ue�βHS=2ρSe�βHS=2
� �

⊗ ρBeqU
†

� �
eβH

S=2

¼ TrS
X
α

eβH
S=2Aαe�βHS=2ρSeβH

S=2A†
αe

�βHS=2:
(82)

To summarize, it has been found that the average Boltzmann weighted heat flow
is represented by

eβQ
� � ¼ Tr R�1SRρS

� �
: (83)

where S represents the reduced dynamics of the system. The Hermitian map
superoperator Rt is given by
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Rtρ ¼ e�βHt=2ρeβHt=2: (84)

The paired Hermitian map superoperators act at the start and end of a time
interval. They give a measure of the change in the energy of the system over that
interval. This procedure does not disturb the system beyond that already incurred
by coupling the system to the environment. The Jarzynski inequality now follows
by applying this Hermitian map and quantum formalism. Discretize the experi-
mental time into a series of discrete intervals labeled by an integer t.

The system Hamiltonian is fixed within each interval. It changes only in discrete
jumps at the boundaries. The heat flow can be measured by wrapping the
superoperator time evolution of each time interval St along with the corresponding
Hermitian map measurementsR�1

t SRt. In a similar fashion, the measurement of the
Boltzmann weighted energy change of the system can be measured with e�βΔE� � ¼
TrRτSR�1

τ . The average Boltzmann weighted work of a driven, dissipative quan-
tum system can be expressed as

e�βW� � ¼ Tr Rτ

Y
t

R�1
t StRt

� �R�1
τ ρ

eq
0

 !
, (85)

In (85), ρteq is the system equilibrium density matrix when the system Hamilto-

nian is HS
t .

This product actually telescopes due to the structure of the energy change
Hermitian map (84) and the equilibrium density matrix (65). This leaves only the
free energy difference between the initial and final equilibrium ensembles, as can be
seen by writing out the first few terms

e�βW� � ¼ Tr Rτ R�1
τ SτRτ

� �
⋯ R�1

2 S2R2
� � R�1

1 S1R1
� �R�1

0 ρ0eq

h i

¼ Tr τ R�1
τ SτRτ

� �
⋯ R�1

2 S2R2
� � R�1

1 S1R1
� � I

Z 0ð Þ
� �

¼ Tr ½Rτ R�1
τ SτRτ

� �
⋯ R�1

2 S2R2
� � R�1

1 S1ρ1eq
Z 1ð Þ
Z 0ð Þ

� �

⋯ ¼ Z τð Þ
Z 0ð Þ ¼ e�βΔF ¼ e�βΔF:

(86)

In the limit in which the time intervals are reduced to zero, the inequality can be
expressed in the continuous Lindblad form:

e�βW� � ¼ TrR tð Þ exp
ðt
0
R ξð Þ�1S ξð ÞR ξð Þdξ

� �
R 0ð Þ�1ρ

eq
0 ¼ e�βΔF: (87)

5. A model quantum spin system

A magnetic resonance experiment can be used to illustrate how these ideas can
be applied in practice. A sample of noninteracting spin-1=2 particles are placed in a
strong magnetic field B0 which is directed along the z direction. Denote by σ j, j ¼
x, y, z the usual Pauli matrices and 1 the 2� 2 identity matrix. It is assumed the
motion of the system is unitary. Then the spin is governed by the Hamiltonian:

H0 ¼ � 1
2
B0σz: (88)
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In units where ℏ is one, B0 represents the characteristic precession frequency of
the spin. Since Ho is diagonal in the ∣�i basis that diagonalizes σz, the matrix
exponential and partition function are given by

e�H=T ¼ eB0=2T 0

0 e�B0=2T

 !
, Z ¼ Tr e�H=T

� �
¼ 2 cosh

B0

2T

� �
, (89)

If we set ~σ to be the equilibrium magnetization of the system, ~σ ¼ σxh ith, the
thermal density matrix is

ρ ¼ ρth ¼
1
2

1þ ~σ 0

0 1� ~σ

� �
, ~σ ¼ tanh

B0

T

� �
: (90)

and ~σ corresponds to the parametric response of a spin-1=2 particle.
The work segment is implemented by introducing a very small field of ampli-

tude B rotating in the xy plane with frequency ω. The work parameter is governed
by the field

B ¼ B sin ωtð Þ, cos ωtð Þ, 0ð Þ: (91)

Typically, B0≈ωT and B≈0:01T, so we may approximate B< <B0. The total
Hamiltonian is the combination

H tð Þ ¼ �B0

2
σz � B

2
σz sin ωtð Þ þ σy cos ωtð Þ� �

: (92)

The oscillating field plays the role of a perturbation which although weak may
initiate transitions between the up and down spin states and will be most frequent
at the resonance condition ω ¼ B0, so the driving frequency matches the natural
oscillation frequency.

The time evolution operator U tð Þ is calculated now. To do this, define a new
operator V tð Þ by means of the equation

U tð Þ ¼ eiωtσz=2V tð Þ: (93)

Substituting (43) into the evolution equation for U tð Þ, i∂tU ¼ H tð ÞU, U 0ð Þ ¼ 1.
It is found that V tð Þ obeys the Schrödinger equation:

i
∂V
∂t

¼ ~H tð ÞV, V 0ð Þ ¼ 1, (94)

It is found that V tð Þ satisfies

i
∂V
∂t

¼ 1
2

ωσz � B0σz � Be�iωtσz=2 σx sin ωtð Þ þ σy cos ωtð Þ� �
eiωσz=2

� �
V tð Þ: (95)

Using the commutation relations of the Pauli matrices and the fact that

e�iωσz ¼ 1 cos
ωt
2

� �
� iσz sin

ωt
2

� �
, (96)

it is found that the terms in the evolution equation can be simplified

e�iασzσxeiασz ¼ 1 cos α� iσx sin αð Þσx 1 cos αþ iσz sin αð Þ
¼ σx þ 2 sin α cos ασy � 2iσzσy sin 2α ¼ σx þ 2 sin α cos ασy sin 2α,

(97)
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Rtρ ¼ e�βHt=2ρeβHt=2: (84)

The paired Hermitian map superoperators act at the start and end of a time
interval. They give a measure of the change in the energy of the system over that
interval. This procedure does not disturb the system beyond that already incurred
by coupling the system to the environment. The Jarzynski inequality now follows
by applying this Hermitian map and quantum formalism. Discretize the experi-
mental time into a series of discrete intervals labeled by an integer t.

The system Hamiltonian is fixed within each interval. It changes only in discrete
jumps at the boundaries. The heat flow can be measured by wrapping the
superoperator time evolution of each time interval St along with the corresponding
Hermitian map measurementsR�1

t SRt. In a similar fashion, the measurement of the
Boltzmann weighted energy change of the system can be measured with e�βΔE� � ¼
TrRτSR�1

τ . The average Boltzmann weighted work of a driven, dissipative quan-
tum system can be expressed as

e�βW� � ¼ Tr Rτ

Y
t

R�1
t StRt

� �R�1
τ ρ

eq
0

 !
, (85)

In (85), ρteq is the system equilibrium density matrix when the system Hamilto-

nian is HS
t .

This product actually telescopes due to the structure of the energy change
Hermitian map (84) and the equilibrium density matrix (65). This leaves only the
free energy difference between the initial and final equilibrium ensembles, as can be
seen by writing out the first few terms

e�βW� � ¼ Tr Rτ R�1
τ SτRτ

� �
⋯ R�1

2 S2R2
� � R�1

1 S1R1
� �R�1

0 ρ0eq

h i

¼ Tr τ R�1
τ SτRτ

� �
⋯ R�1

2 S2R2
� � R�1

1 S1R1
� � I

Z 0ð Þ
� �

¼ Tr ½Rτ R�1
τ SτRτ

� �
⋯ R�1

2 S2R2
� � R�1

1 S1ρ1eq
Z 1ð Þ
Z 0ð Þ

� �

⋯ ¼ Z τð Þ
Z 0ð Þ ¼ e�βΔF ¼ e�βΔF:

(86)

In the limit in which the time intervals are reduced to zero, the inequality can be
expressed in the continuous Lindblad form:

e�βW� � ¼ TrR tð Þ exp
ðt
0
R ξð Þ�1S ξð ÞR ξð Þdξ

� �
R 0ð Þ�1ρ

eq
0 ¼ e�βΔF: (87)

5. A model quantum spin system

A magnetic resonance experiment can be used to illustrate how these ideas can
be applied in practice. A sample of noninteracting spin-1=2 particles are placed in a
strong magnetic field B0 which is directed along the z direction. Denote by σ j, j ¼
x, y, z the usual Pauli matrices and 1 the 2� 2 identity matrix. It is assumed the
motion of the system is unitary. Then the spin is governed by the Hamiltonian:

H0 ¼ � 1
2
B0σz: (88)
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In units where ℏ is one, B0 represents the characteristic precession frequency of
the spin. Since Ho is diagonal in the ∣�i basis that diagonalizes σz, the matrix
exponential and partition function are given by

e�H=T ¼ eB0=2T 0

0 e�B0=2T

 !
, Z ¼ Tr e�H=T

� �
¼ 2 cosh

B0

2T

� �
, (89)

If we set ~σ to be the equilibrium magnetization of the system, ~σ ¼ σxh ith, the
thermal density matrix is

ρ ¼ ρth ¼
1
2

1þ ~σ 0

0 1� ~σ

� �
, ~σ ¼ tanh

B0

T

� �
: (90)

and ~σ corresponds to the parametric response of a spin-1=2 particle.
The work segment is implemented by introducing a very small field of ampli-

tude B rotating in the xy plane with frequency ω. The work parameter is governed
by the field

B ¼ B sin ωtð Þ, cos ωtð Þ, 0ð Þ: (91)

Typically, B0≈ωT and B≈0:01T, so we may approximate B< <B0. The total
Hamiltonian is the combination

H tð Þ ¼ �B0

2
σz � B

2
σz sin ωtð Þ þ σy cos ωtð Þ� �

: (92)

The oscillating field plays the role of a perturbation which although weak may
initiate transitions between the up and down spin states and will be most frequent
at the resonance condition ω ¼ B0, so the driving frequency matches the natural
oscillation frequency.

The time evolution operator U tð Þ is calculated now. To do this, define a new
operator V tð Þ by means of the equation

U tð Þ ¼ eiωtσz=2V tð Þ: (93)

Substituting (43) into the evolution equation for U tð Þ, i∂tU ¼ H tð ÞU, U 0ð Þ ¼ 1.
It is found that V tð Þ obeys the Schrödinger equation:

i
∂V
∂t

¼ ~H tð ÞV, V 0ð Þ ¼ 1, (94)

It is found that V tð Þ satisfies

i
∂V
∂t

¼ 1
2

ωσz � B0σz � Be�iωtσz=2 σx sin ωtð Þ þ σy cos ωtð Þ� �
eiωσz=2

� �
V tð Þ: (95)

Using the commutation relations of the Pauli matrices and the fact that

e�iωσz ¼ 1 cos
ωt
2

� �
� iσz sin

ωt
2

� �
, (96)

it is found that the terms in the evolution equation can be simplified

e�iασzσxeiασz ¼ 1 cos α� iσx sin αð Þσx 1 cos αþ iσz sin αð Þ
¼ σx þ 2 sin α cos ασy � 2iσzσy sin 2α ¼ σx þ 2 sin α cos ασy sin 2α,
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e�iασzσyeiασz ¼ σy cos α� iσxσy sin α 1 cos αþ iσz sin αð Þ ¼ σy � 2 sin α cos ασx þ 2iσzσ sin 2α:
�

(98)

By means of these results, it remains to simplify

e�iωtσz=2 σz sin ωtð Þ þ σy cos ωtð Þ� �
eiωtσz=2

¼ σz sinωt� sinωtþ cosωt sinωt� cosωt sinωtð Þ þ σy sin 2ωtþ cosωt� cosωtþ cos 2ωt
� � ¼ σy:

(98a)

Taking these results to (95), we arrive at

i
∂V
∂t

¼ H1V, H1 ¼ � 1
2

B0 � ωð Þσz � 1
2
Bσy: (99)

This means V tð Þ evolves according to a time-dependent Hamiltonian, so the
solution can be written as

V tð Þ ¼ e�iH1t, (100)

and the full-time evolution operator is given by

U tð Þ ¼ eiωtσz=2e�iH1t: (101)

Since the operators σy and σz do not commute, the exponentials in (101) cannot
be using the usual addition rule.

To express (100) otherwise, suppose M is an arbitrary matrix such that M2 ¼ 1.
When α is an arbitrary parameter, power series expansion of e�iαM yields

e�iαM ¼ 1 cos αð Þ � iM sin αð Þ: (102)

Now H1 can be put in equivalent form

H1 ¼ Ω
2

σz cos ϑþ σy sin ϑ
� �

,

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0 � ωð Þ2 þ B2

q
, tan ϑ ¼ B

B0 � ω
,

(103)

Since σ2i ¼ 1, it follows that

σz cosϑþ σy sin ϑ
� �2 ¼ 1: (104)

Consequently, (100) can be used to prove that V tð Þ is given by

e�iH1t ¼ 1 cos
Ω
2
t

� �
þ i σz cos ϑþ σy sin ϑ
� �

sin
Ω
2
t

� �

¼
cos

Ω
2
t

� �
þ i cos ϑ sin

Ω
2
t

� �
sin ϑ sin

Ω
2
t

� �

� sin ϑ sin
Ω
2
t

� �
cos

Ω
2
t

� �
� i cos ϑ sin

Ω
2
t

� �

0
BBB@

1
CCCA

(105)

Since
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eiωσzt=2 ¼ eiωt=2 0

0 e�iωt=2

 !
(106)

the evolution operator is then given by

U tð Þ ¼ u tð Þ v tð Þ
�v ∗ tð Þ u ∗ tð Þ

� �
: (107)

The functions u tð Þ and v tð Þ in (107) are given as

u tð Þ ¼ eiωt=2 cos
Ω
2
t

� �
þ i sin ϑ sin

Ω
2
t

� �� �
, v tð Þ ¼ eiωt=2 � sin ϑ � sin Ω

2
t

� �
:

(108)

Apart from a phase factor, the final result depends only on Ω and ϑ, and these in
turn depend on B0, B, and ω through (108). To understand the physics of U tð Þ a bit
better, suppose the system is initially in the pure state ∣þi. The probability will be
found in state ∣�i after time t is

∣h�∣U tð Þ þij j2 ¼ vj j2: (109)

This expression represents the transition probability per unit time a transition
will occur. Since the unitarity condition U†U ¼ 1 implies that uj j2 þ vj j2 ¼ 1, we
conclude uj j2 is the probability when no transition occurs. Note v is proportional to
sin ϑ, which gives a physical meaning to ϑ. It represents the transition probability
and reaches a maximum when ω ¼ B0 at resonance where Ω ¼ B, so u and v
simplify to

u tð Þ ¼ eiωt=2 cos
B
2
t

� �
, v tð Þ ¼ eiωt=2 sin

B
2
t

� �
: (110)

Now that U tð Þ is known, the evolution of any observable A can be calculated

Ah it ¼ Tr U† tð ÞAU tð Þρ� �
: (111)

If A is replaced by σz in (111), we obtain

σzh it ¼ Tr
u ∗ tð Þ �v tð Þ

v ∗ tð Þ u tð Þ

 !
σz

u tð Þ v tð Þ

�v ∗ tð Þ u ∗ tð Þ

 !
1
2

1þ ~σ 0

0 1� ~σ

 !

¼ ~σ uj j2 � vj j2
� �

¼ ~σ 1� 2 vj j2
� �

:

(112)

Substituting vj j2, this takes the form

σzh it ¼ ~σ cos 2ϑþ sin 2ϑ cos Ωtð Þ� � ¼ tanh
B0

2T

� �
cos 2ϑþ sin 2ϑ cos Ωtð Þ� �

:

(113)

Consider the average work. Suppose B< <B0, so the unperturbed Hamiltonian
H0 can be used instead of the full Hamiltonian H tð Þ when expectation values of
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e�iασzσyeiασz ¼ σy cos α� iσxσy sin α 1 cos αþ iσz sin αð Þ ¼ σy � 2 sin α cos ασx þ 2iσzσ sin 2α:
�

(98)

By means of these results, it remains to simplify

e�iωtσz=2 σz sin ωtð Þ þ σy cos ωtð Þ� �
eiωtσz=2

¼ σz sinωt� sinωtþ cosωt sinωt� cosωt sinωtð Þ þ σy sin 2ωtþ cosωt� cosωtþ cos 2ωt
� � ¼ σy:

(98a)

Taking these results to (95), we arrive at

i
∂V
∂t

¼ H1V, H1 ¼ � 1
2

B0 � ωð Þσz � 1
2
Bσy: (99)

This means V tð Þ evolves according to a time-dependent Hamiltonian, so the
solution can be written as

V tð Þ ¼ e�iH1t, (100)

and the full-time evolution operator is given by

U tð Þ ¼ eiωtσz=2e�iH1t: (101)

Since the operators σy and σz do not commute, the exponentials in (101) cannot
be using the usual addition rule.

To express (100) otherwise, suppose M is an arbitrary matrix such that M2 ¼ 1.
When α is an arbitrary parameter, power series expansion of e�iαM yields

e�iαM ¼ 1 cos αð Þ � iM sin αð Þ: (102)

Now H1 can be put in equivalent form

H1 ¼ Ω
2

σz cos ϑþ σy sin ϑ
� �

,

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0 � ωð Þ2 þ B2

q
, tan ϑ ¼ B

B0 � ω
,

(103)

Since σ2i ¼ 1, it follows that

σz cosϑþ σy sin ϑ
� �2 ¼ 1: (104)

Consequently, (100) can be used to prove that V tð Þ is given by

e�iH1t ¼ 1 cos
Ω
2
t

� �
þ i σz cos ϑþ σy sin ϑ
� �

sin
Ω
2
t

� �

¼
cos

Ω
2
t

� �
þ i cos ϑ sin

Ω
2
t

� �
sin ϑ sin

Ω
2
t

� �

� sin ϑ sin
Ω
2
t

� �
cos

Ω
2
t

� �
� i cos ϑ sin

Ω
2
t

� �

0
BBB@

1
CCCA

(105)

Since
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eiωσzt=2 ¼ eiωt=2 0

0 e�iωt=2

 !
(106)

the evolution operator is then given by

U tð Þ ¼ u tð Þ v tð Þ
�v ∗ tð Þ u ∗ tð Þ

� �
: (107)

The functions u tð Þ and v tð Þ in (107) are given as

u tð Þ ¼ eiωt=2 cos
Ω
2
t

� �
þ i sin ϑ sin

Ω
2
t

� �� �
, v tð Þ ¼ eiωt=2 � sin ϑ � sin Ω

2
t

� �
:

(108)

Apart from a phase factor, the final result depends only on Ω and ϑ, and these in
turn depend on B0, B, and ω through (108). To understand the physics of U tð Þ a bit
better, suppose the system is initially in the pure state ∣þi. The probability will be
found in state ∣�i after time t is

∣h�∣U tð Þ þij j2 ¼ vj j2: (109)

This expression represents the transition probability per unit time a transition
will occur. Since the unitarity condition U†U ¼ 1 implies that uj j2 þ vj j2 ¼ 1, we
conclude uj j2 is the probability when no transition occurs. Note v is proportional to
sin ϑ, which gives a physical meaning to ϑ. It represents the transition probability
and reaches a maximum when ω ¼ B0 at resonance where Ω ¼ B, so u and v
simplify to

u tð Þ ¼ eiωt=2 cos
B
2
t

� �
, v tð Þ ¼ eiωt=2 sin

B
2
t

� �
: (110)

Now that U tð Þ is known, the evolution of any observable A can be calculated

Ah it ¼ Tr U† tð ÞAU tð Þρ� �
: (111)

If A is replaced by σz in (111), we obtain

σzh it ¼ Tr
u ∗ tð Þ �v tð Þ

v ∗ tð Þ u tð Þ

 !
σz

u tð Þ v tð Þ

�v ∗ tð Þ u ∗ tð Þ

 !
1
2

1þ ~σ 0

0 1� ~σ

 !

¼ ~σ uj j2 � vj j2
� �

¼ ~σ 1� 2 vj j2
� �

:

(112)

Substituting vj j2, this takes the form

σzh it ¼ ~σ cos 2ϑþ sin 2ϑ cos Ωtð Þ� � ¼ tanh
B0

2T

� �
cos 2ϑþ sin 2ϑ cos Ωtð Þ� �

:

(113)

Consider the average work. Suppose B< <B0, so the unperturbed Hamiltonian
H0 can be used instead of the full Hamiltonian H tð Þ when expectation values of
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quantities are calculated which are related to the energy. Let us determine the
energy of the system at any t by taking operator A to be H0:

H0h it ¼ �B0

2
σzh it ¼ � 1

2
B0Tr U† tð ÞσzU tð ÞρÞ

¼ � 1
2
B0Tr

u ∗ �v

v ∗ u

 !
1 0

0 �1

 !
u v

�v ∗ u ∗

 !
1
2

1þ ~σ 0

0 1� ~σ

 ! !

¼ �B0

4
Tr

u ∗ �v

v ∗ u

 !
u v

v ∗ �u ∗

 !
1þ ~σ 0

0 1� ~σ

 ! !
¼ � 1

4
B0~σ 1� 2 vj j2

� �
:

(114)

The average work at time t is simply the difference between the energy st time t1
and t ¼ 0. Since v 0ð Þ ¼ 0, this difference is

Wh it ¼ �B0

2
~σ 1� 2 vj j2
� �

þ B0

2
~σ ¼ ~σB0 vj j2

¼ ~σB0 sin 2ϑ sin 2 Ω
2
t

� �
¼ ~σB0

B
Ω2 sin 2 Ω

2
t

� �
,

(115)

since sin 2ϑ ¼ 1� cos 2ϑ ¼ B2=Ω2. The average work oscillates indefinitely with
frequency Ω=2. This is a consequence of the fact the time evolution is unitary. The
amplitude multiplying the average work is proportional to the initial magnetization
~σ and B2=Ω2, so the ratio is a Lorentzian function.

The equilibrium free energy is F ¼ �T log Z where Z ¼ 2 cosh B0=2Tð Þ. The
free energy of the initial state at t ¼ 0 and final state at any arbitrary time is the
same yielding

ΔF ¼ 0: (116)

This is a consequence of the fact that B< <B0. According to Wh i≥F, it should
be expected that

Wh it ≥ΔF ¼ 0: (117)

Given the matrices for U tð Þ and ρ that have been determined so far, the function
G can be computed:

G yð Þ ¼ Tr U† yð ÞeixH f U yð Þe�iyHi ρ
� �

¼ Tr
u ∗ �v

v ∗ u

 !
e�iyB0=2 0

0 eiyB0=2

 !
u v

�v ∗ u ∗

 !
eiyB0=2 0

0 e�iyB0=2

 ! 1
2

1þ ~σð Þ 0

0
1
2

1� ~σð Þ

0
BB@

1
CCA

¼ uj j2 þ 1
2

1þ ~σð ÞeiyB0 þ 1� ~σe�iyB0
� �

vj j2:
�

(118)

Set x ¼ iβ and recall use definition (42) for ~σ in the second term of (118) to give

1þ tanh
β

2
B0

� �� �
e�βB0 þ 1� tanh

β

2
B0

� �� �
eβB0

¼ 2 cosh βB0ð Þ � 2 tanh
β

2
B0

� �
sinh βB0ð Þ ¼ 1: (119)
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Substituting (119) into (118), we can conclude

e�βW� � ¼ G iβð Þ ¼ uj j2 þ vj j2 ¼ 1: (120)

This is the Jarzynski inequality, since it is the case that ΔF ¼ 0 here. The
statistical moments of the work can be obtained by writing an expression for G into
a power series

G yð Þ ¼ uj j2 þ vj j2 1þ i~σB0y� 1
2
B2
0y

2 þ⋯
� �

: (121)

From (121), the first and second moments can be obtained; for example

Wh i ¼ ~σB0 vj j2, W2� � ¼ B2
0 vj j2: (122)

As a consequence, the variance of the work can be determined

var Wð Þ ¼ W2� �� Wh i2 ¼ B2
0 vj j2 � ~σ2B2

0 vj j4 � B2
0 vj j2 1� ~σ2 vj j2

� �
: (123)

A final calculation that may be considered is the full distribution of work P Wð Þ.
Now P Wð Þ is the inverse Fourier transform of G yð Þ:

P Wð Þ ¼ 1
2π

ð∞
�∞

dyG yð Þe�iyW : (124)

Using the Fourier integral form of the delta function, (124) can be written as

P Wð Þ ¼ 1
2π

ð∞
�∞

dyG yð Þe�iyW

¼ 1
2π

ð∞
�∞

dy u tð Þj j2 þ v tð Þj j2 1
2

1þ ~σð ÞeiB0y þ 1
2

1� ~σð Þe�iB0y
� �� �

e�iyW :

¼ uj j2δ Wð Þ þ 1
2

v tð Þj j2δ W � B0ð Þ þ 1
2
v tð Þj j2 1þ ~σð Þδ W þ B0ð Þ:

(125)

Work taken as a random variable can take three values W ¼ 0, þ B0, � B0

where B0 is the energy spacing between the up and down states. The event
W ¼ B0 corresponds to the case where the spin was originally up and then
reversed, so an up-down transition. The energy change is B0=2ð Þ � �B0=2ð Þ ¼
B0. Similarly, W ¼ �B0 is the opposite flip from this one, and W ¼ 0 is the case
with no spin flip.

The second law would have us think that W >0, but a down-up flip should have
W ¼ �B0, so P W ¼ �B0ð Þ is the probability of observing a local violation of the
second law. However, since P W ¼ �B0ð Þ is proportional to 1� ~σ, up-down flips are
always more likely than down-up. This ensures that Wh i≥0, so violations of the
second law are always exceptions to the rule and never dominate.

The work performed by an external magnetic field on a single spin-1=2 particle
has been studied so far. The energy differences mentioned correspond to the work.
For noninteracting particles, energy is additive. Hence the total work Wh i which is
performed during a certain process is the sum of works performed on each individ-
ual particle W ¼ W1 þ⋯þWN . Since the spins are all independent and energy is
an extensive variable, it follows that Wh i ¼ N Wh i. where Wh i is the average work
from (115).
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quantities are calculated which are related to the energy. Let us determine the
energy of the system at any t by taking operator A to be H0:

H0h it ¼ �B0

2
σzh it ¼ � 1

2
B0Tr U† tð ÞσzU tð ÞρÞ

¼ � 1
2
B0Tr

u ∗ �v

v ∗ u

 !
1 0

0 �1

 !
u v

�v ∗ u ∗

 !
1
2

1þ ~σ 0

0 1� ~σ

 ! !

¼ �B0

4
Tr

u ∗ �v

v ∗ u

 !
u v

v ∗ �u ∗

 !
1þ ~σ 0

0 1� ~σ

 ! !
¼ � 1

4
B0~σ 1� 2 vj j2

� �
:

(114)

The average work at time t is simply the difference between the energy st time t1
and t ¼ 0. Since v 0ð Þ ¼ 0, this difference is

Wh it ¼ �B0

2
~σ 1� 2 vj j2
� �

þ B0

2
~σ ¼ ~σB0 vj j2

¼ ~σB0 sin 2ϑ sin 2 Ω
2
t

� �
¼ ~σB0

B
Ω2 sin 2 Ω

2
t

� �
,

(115)

since sin 2ϑ ¼ 1� cos 2ϑ ¼ B2=Ω2. The average work oscillates indefinitely with
frequency Ω=2. This is a consequence of the fact the time evolution is unitary. The
amplitude multiplying the average work is proportional to the initial magnetization
~σ and B2=Ω2, so the ratio is a Lorentzian function.

The equilibrium free energy is F ¼ �T log Z where Z ¼ 2 cosh B0=2Tð Þ. The
free energy of the initial state at t ¼ 0 and final state at any arbitrary time is the
same yielding

ΔF ¼ 0: (116)

This is a consequence of the fact that B< <B0. According to Wh i≥F, it should
be expected that

Wh it ≥ΔF ¼ 0: (117)

Given the matrices for U tð Þ and ρ that have been determined so far, the function
G can be computed:

G yð Þ ¼ Tr U† yð ÞeixH f U yð Þe�iyHi ρ
� �

¼ Tr
u ∗ �v

v ∗ u

 !
e�iyB0=2 0

0 eiyB0=2

 !
u v

�v ∗ u ∗

 !
eiyB0=2 0

0 e�iyB0=2

 ! 1
2

1þ ~σð Þ 0

0
1
2

1� ~σð Þ

0
BB@

1
CCA

¼ uj j2 þ 1
2

1þ ~σð ÞeiyB0 þ 1� ~σe�iyB0
� �

vj j2:
�

(118)

Set x ¼ iβ and recall use definition (42) for ~σ in the second term of (118) to give

1þ tanh
β

2
B0

� �� �
e�βB0 þ 1� tanh

β

2
B0

� �� �
eβB0

¼ 2 cosh βB0ð Þ � 2 tanh
β

2
B0

� �
sinh βB0ð Þ ¼ 1: (119)
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Substituting (119) into (118), we can conclude

e�βW� � ¼ G iβð Þ ¼ uj j2 þ vj j2 ¼ 1: (120)

This is the Jarzynski inequality, since it is the case that ΔF ¼ 0 here. The
statistical moments of the work can be obtained by writing an expression for G into
a power series

G yð Þ ¼ uj j2 þ vj j2 1þ i~σB0y� 1
2
B2
0y

2 þ⋯
� �

: (121)

From (121), the first and second moments can be obtained; for example

Wh i ¼ ~σB0 vj j2, W2� � ¼ B2
0 vj j2: (122)

As a consequence, the variance of the work can be determined

var Wð Þ ¼ W2� �� Wh i2 ¼ B2
0 vj j2 � ~σ2B2

0 vj j4 � B2
0 vj j2 1� ~σ2 vj j2

� �
: (123)

A final calculation that may be considered is the full distribution of work P Wð Þ.
Now P Wð Þ is the inverse Fourier transform of G yð Þ:

P Wð Þ ¼ 1
2π

ð∞
�∞

dyG yð Þe�iyW : (124)

Using the Fourier integral form of the delta function, (124) can be written as

P Wð Þ ¼ 1
2π

ð∞
�∞

dyG yð Þe�iyW

¼ 1
2π

ð∞
�∞

dy u tð Þj j2 þ v tð Þj j2 1
2

1þ ~σð ÞeiB0y þ 1
2

1� ~σð Þe�iB0y
� �� �

e�iyW :

¼ uj j2δ Wð Þ þ 1
2

v tð Þj j2δ W � B0ð Þ þ 1
2
v tð Þj j2 1þ ~σð Þδ W þ B0ð Þ:

(125)

Work taken as a random variable can take three values W ¼ 0, þ B0, � B0

where B0 is the energy spacing between the up and down states. The event
W ¼ B0 corresponds to the case where the spin was originally up and then
reversed, so an up-down transition. The energy change is B0=2ð Þ � �B0=2ð Þ ¼
B0. Similarly, W ¼ �B0 is the opposite flip from this one, and W ¼ 0 is the case
with no spin flip.

The second law would have us think that W >0, but a down-up flip should have
W ¼ �B0, so P W ¼ �B0ð Þ is the probability of observing a local violation of the
second law. However, since P W ¼ �B0ð Þ is proportional to 1� ~σ, up-down flips are
always more likely than down-up. This ensures that Wh i≥0, so violations of the
second law are always exceptions to the rule and never dominate.

The work performed by an external magnetic field on a single spin-1=2 particle
has been studied so far. The energy differences mentioned correspond to the work.
For noninteracting particles, energy is additive. Hence the total work Wh i which is
performed during a certain process is the sum of works performed on each individ-
ual particle W ¼ W1 þ⋯þWN . Since the spins are all independent and energy is
an extensive variable, it follows that Wh i ¼ N Wh i. where Wh i is the average work
from (115).
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6. Conclusions

We have tried to give an introduction to this frontier area that lies in between
that of thermodynamics and quantum mechanics in such a way as to be compre-
hensible. There are many other areas of investigation presently which have had
interesting repercussions for this area as well. There is a growing awareness that
entanglement facilitates reaching equilibrium [21–23]. It is then worth mentioning
that the ideas of einselection and entanglement with the environment can lead to a
time-independent equilibrium in an individual quantum system and statistical
mechanics can be done without ensembles. However, there is really a lot of work
yet to be done in these blossoming areas and will be left for possible future
expositions.
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Chapter 7

Equations of Relativistic and
Quantum Mechanics (without
Spin)
Vahram Mekhitarian

Abstract

A relativistically invariant representation of the generalized momentum of a par-
ticle in an external field is proposed. In this representation, the dependence of the
potentials of the interaction of the particle with the field on the particle velocity is
taken into account. The exact correspondence of the expressions of energy and
potential energy for the classical Hamiltonian is established, which makes identical
the solutions to the problems of mechanics with relativistic and nonrelativistic
approaches. The invariance of the proposed representation of the generalized
momentum makes it possible to equivalently describe a physical system in geometri-
cally conjugate spaces of kinematic and dynamic variables. Relativistic invariant
equations are proposed for the action function and the wave function based on the
invariance of the representation of the generalized momentum. The equations have
solutions for any values of the constant interaction of the particle with the field, for
example, in the problem of a hydrogen-like atom, when the atomic number of the
nucleus is Z > 137. Based on the parametric representation of the action, the expres-
sion for the canonical Lagrangian, the equations of motion, and the expression for the
force acting on the charge are derived when moving in an external electromagnetic
field. The Dirac equation with the correct inclusion of the interaction for a particle in
an external field is presented. In this form, the solutions of the equations are not
limited by the value of the interaction constant. The solutions of the problem of
charge motion in a constant electric field, the problems for a particle in a potential
well and the passage of a particle through a potential barrier, the problems of motion
in an exponential field (Morse), and also the problems of a hydrogen atom are given.

Keywords: quantum mechanics, relativistic invariant equations

1. Introduction

–To doubt everything or to believe everything are two equally convenient solutions;
both dispense with the necessity of reflection.

Henri Poincaré (1854-1912)

–I know, I know, but suppose – just suppose! – the purity of the circle has blinded us
from seeing anything beyond it!
I must begin all over with new eyes, I must rethink everything!

Hypathia (�360-415 AD)
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In 1913, Bohr, based on the Balmer empirical formulas, constructed a model of
atom based on the quantization of the orbital momentum [1], which was subse-
quently supplemented by the more general Sommerfeld quantization rules. In those
years, naturally, the presence of a spin or an intrinsic magnetic moment of the
particle or, especially, spin-orbit interaction, or interaction with the nuclear spin,
was not supposed.

In 1916, Sommerfeld, within the framework of relativistic approaches, derived a
formula for the energy levels of a hydrogen-like atom, without taking into account
the spin [2]. Sommerfeld proceeded from the model of the Bohr atom and used the
relativistic relation between the momentum p and the energy E of a free particle
with the mass m.

E2– pcð Þ2 ¼ mc2
� �2

, (1)

where c is the speed of light.
In an external field with a four-dimensional potential (φ,A), it was supposed

that for a particle with the charge q this relation can also be used if we subtract the
components of the four-dimensional momentum of the field (qφ, qA) from the
expression for the generalized particle momentum:

E–qφð Þ2– pc–qAð Þ2 ¼ mc2
� �2

: (2)

In the case of the Coulomb potential φ ¼ Z ej j=r, where e is the charge of elec-
tron, r is the distance from the nucleus, and Z is an atomic number, we obtain in
spherical coordinates

pr
2 þ r2pφ

2 ¼ pr
2 þ L2

r2
¼ Eþ Ze2=r
� �2 � mc2ð Þ2

c2
(3)

where L is the angular momentum. The Bohr-Sommerfeld quantization
conditions take the form

þ
pφdφ ¼ ℏnφ,

þ
prdr ¼

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ Ze2=r
� �2 � mc2ð Þ2

c2
� L2

r2

s
dr ¼ ℏnr,

(4)

where nφ and nr are the orbital and radial quantum numbers, respectively. For
the energy levels, Sommerfeld obtained the formula

En,l ¼ mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zαð Þ2

n� Zαð Þ2

lþ1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ1=2ð Þ2� Zαð Þ2

p
� �2

vuuut

, (5)

where the principal quantum number n ¼ nr þ lþ 1 ¼ 1, 2, 3, … , l ¼
0, 1 , 2, 3, … , n� 1, and α ¼ 1=137:036 is the fine structure constant.
However, in a paper published in 1916 [3], Sommerfeld ‘made a fortunate mistake’
[4] and the derived formula was presented in the following form
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En,l ¼ mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zαð Þ2

n� Zαð Þ2

lþ1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ1ð Þ2� Zαð Þ2

p
� �2

vuuut

: (6)

The formula (6) perfectly described all the peculiarities of the structure of the
spectrum of hydrogen and other similar atoms with the limiting for those years
accuracy of measurements, and there was no doubt about the correctness of the
formula itself. Therefore, the Sommerfeld formula was perceived as empirical, and
instead of the quantum number l, a ‘mysterious’ internal quantum number with half-
integer values j ¼ 1=2, 3=2, 5=2, … , nþ 1=2 was introduced, and formula (6)
was used in the representation

En,j ¼ mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Zα2

n� Z2α2

jþ1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jþ1=2ð Þ2�Z2α2
p

� �2

vuut
, (7)

where n ¼ nr þ jþ 1=2 ¼ 1, 2, 3, … , j ¼ 1=2, 3=2, 5=2, … , nþ 1=2, and l
possess the values l ¼ 0 at j ¼ 1=2 and l ¼ j� 1=2 for others. This formula coincides
with the result of an exact solution of the relativistic Dirac equations in 1928 [5] for
a particle with the spin 1=2 with the classical expression for the potential energy of
an immobile charge in the Coulomb field of a nucleus with an atomic number Z in
the form U rð Þ ¼ Ze2=r.

Formula (7) also indicated a strange limitation of value the charge of a nucleus
with the atomic number Z < 137, above which the formula is losing its meaning. It
was also evident that within the framework of the approaches outlined, the strong
and gravitational interactions, the motions of the planets are not described. The
problem Z < 137 or α> 1 remains the unresolved problem of relativistic quantum
mechanics. Expanding the formula (7) over the order of powers Zα2 in the Taylor
series, with an accuracy of expansion up to the terms by the powers Zα6, we obtain

En,j ¼ mc2 � Zαð Þ2
2n2

� Zαð Þ4
2n3

1
jþ 1=2

� 3
4n

� �
þ … (8)

In 1925–1926, Schrödinger worked on the derivation of the equation for the
wave function of a particle describing the De Broglie waves [6]. The derivation of
the equation also was based on the relativistic relation (1) between the momentum
p and the energy E of the particle, which he presented with the help of the operators
of squares of energy and momentum in the form of an equation for the wave
function

iℏ
∂

∂t

� �2

Ψ� c2 �iℏ
∂

∂r

� �2

Ψ ¼ mc2
� �2Ψ (9)

Like Sommerfeld, Schrödinger used the following representation for a particle in
an external field

iℏ
∂

∂t
� qφ

� �2

Ψ� c2 �iℏ
∂

∂r
� q

c
A

� �2

Ψ ¼ mc2
� �2Ψ (10)
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a particle with the spin 1=2 with the classical expression for the potential energy of
an immobile charge in the Coulomb field of a nucleus with an atomic number Z in
the form U rð Þ ¼ Ze2=r.

Formula (7) also indicated a strange limitation of value the charge of a nucleus
with the atomic number Z < 137, above which the formula is losing its meaning. It
was also evident that within the framework of the approaches outlined, the strong
and gravitational interactions, the motions of the planets are not described. The
problem Z < 137 or α> 1 remains the unresolved problem of relativistic quantum
mechanics. Expanding the formula (7) over the order of powers Zα2 in the Taylor
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In 1925–1926, Schrödinger worked on the derivation of the equation for the
wave function of a particle describing the De Broglie waves [6]. The derivation of
the equation also was based on the relativistic relation (1) between the momentum
p and the energy E of the particle, which he presented with the help of the operators
of squares of energy and momentum in the form of an equation for the wave
function
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� �2Ψ (9)

Like Sommerfeld, Schrödinger used the following representation for a particle in
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In the case of stationary states of a charged particle in the field of the Coulomb
potential for a hydrogen atom it was necessary to solve the equation

d2ψ
dr2

þ 2m
ℏ2

E2 �m2c4

2mc2
� E
mc2

qφ rð Þ þ q2

2mc2
φ2 rð Þ

� �
ψ ¼ 0 (11)

As can be seen, the quadratic expression of potential energy q2φ2 rð Þ=2mc2 is
present in the equation with a positive sign and in the case of attracting fields, the
solutions lead to certain difficulties. When approaching the singularity point, due to
the negative sign, the attractive forces increase and the presence of the singularity
leads to known limitations on the magnitude of the interactions (Figure 1).

Next, the wave vector k is represented as

k1 ¼ 1
ℏc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � mc2ð Þ2

q
, k2 ¼ 1

ℏc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�Uð Þ2 � mc2ð Þ2

q
(12)

and when considering the problem of the passage of a particle with energy E
through a potential barrier U ¼ qφ rð Þ (Figure 2), the height of which is greater than
the doubled resting energy of the particle U > 2mc2, the transmission coefficient
becomes unity, regardless of the height of the barrier (Klein paradox) [7].

Another difficulty is that, as the solution of the particle problem in a potential
well shows, at a sufficient depth, a particle with a wavelength ƛ ¼ ℏ=mc can have
bound states (can be localized) in a well width narrower than the wavelength of the
particle d< ƛ=2 (Figure 3), which contradicts the fundamental principle of quan-
tum mechanics—the Heisenberg’s uncertainty principle.

Also, the solution of the problem of a hydrogen-like atom is limited by the value
of the ordinal number of the atomic nucleus Z ≤ 68 (for the Dirac equation, the
restriction of the atomic number is Z ≤ 137). The same in relativistic mechanics—
when considering strong interactions, the solution of the Hamilton-Jacoby relativ-
istic equation indicates the so-called “particle fall on the center” [8].

In order to get rid of the quadratic term or reverse its sign, in recent years it has
been proposed to represent potential energy in the Klein-Gordon and Dirac equations
as the difference of squares from the expressions of scalar and vector potentials

Figure 1.
The sample dependency of the attractive field potential �1=r and potential interaction energy �1=r � 1=2r2 in
the Klein-Gordon equations.
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(S-wave equation) [9–11]. Such a mathematical formalism corrects the situation, but
from a physical point of view such representations are in no way justified, and the
fields corresponding to such pseudo-potentials do not exist in nature.

Things are even worse with the presence of a quadratic term of the vector field,
because of the sign of which we obtain non-existent states in nature and solutions
that contradict experience.

d2ψ
dr2

� 2i
q
ℏc

A rð Þ � dψ
dr

þ 2m
ℏ2

E2 �m2c4

2mc2
� q2

2mc2
A2 rð Þ

� �
ψ ¼ 0 (13)

According to the solutions of the equations of quantum mechanics and
Hamilton-Jacoby, it turns out that a charged particle in a magnetic field, in addition
to rotating in a circle, also has radial vibrations—Landau levels [12] (even in the
case of zero orbital momentum).

ℏ2

2M
R00 þ 1

ρ
R0 �m2

ρ2

� �
þ E� p2z

2M
�Mω2

H

8
ρ2 � ℏωHm

2

� �
R ¼ 0: (14)

E ¼ ℏωH nρ þ mj j þmþ 1
2

� �
þ p2z
2M

Figure 2.
Passage of a particle through a potential barrier U.

Figure 3.
A particle with a wavelength ƛ can be localized in a well width d< ƛ=2.
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Over these 90 years, especially in very accurate cyclotron resonance experi-
ments, none has detected the electron radial vibrations and the Landau levels.

Solving this equation, Schrödinger, like Sommerfeld, received the formula (5),
which described the structure of the hydrogen spectrum not exactly. Moreover,
from the solution of the problem for a particle in a potential well, it turns out that a
particle with a wavelength ƛ ¼ ℏ=mc has bound states (is placed) in a well of
arbitrary size and, in particular, much smaller than ƛ=2. This fact contradicts the
fundamental principle of the quantum (wave) theory, the principle of uncertainty.

In 1925 Schrödinger sent this work to the editors of ‘Annalen der Physik’ [13],
but then took the manuscript, refused the relativistic approaches and in 1926 built a
wave equation based on the classical Hamiltonian expression, the Schrödinger
equation [14].

H ¼ p2

2m
þU; ! iℏ

∂

∂t
Ψ ¼ 1

2m
�iℏ

∂

∂r

� �2

þ U

 !
Ψ (15)

Equation described the spectrum of the hydrogen atom only qualitatively, how-
ever, it did not have any unreasonable restrictions or singular solutions in the form
of the Sommerfeld-Dirac formula. Klein [15], Fock [16] and Gordon [17] published
the relativistic equation based on the wave equation for a particle without spin in
1926; it is called the Klein-Fock-Gordon equation.

With the discovery of the spin, the situation changed drastically, and in 1926
Heisenberg and Jordan [18] showed that, within the Pauli description of the spin of
an electron, half the energy of the spin-orbit interaction is equal to a term with a
power of α4 in the Taylor series expansion of the Sommerfeld formula equation
reference goes here.

Why exactly the half, Thomas tried to explain this in 1927 by the presence of a
relativistic precession of an electron in the reference frame of motion along the orbit
[19]. The energy of the Thomas precession is exactly equal to half the value of the
energy of the spin-orbit interaction with the inverse (positive) sign, which should
be added to the energy of the spin-orbit interaction. However, the incorrect
assumption that the Thomas precession frequency is identical in both frames of
reference and the absence of a common and correct derivation for non-inertial
(rotating) frames of reference raised doubts about the correctness of such
approaches. The reason for the appearance of half the energy of the spin-orbit
interaction in the Sommerfeld formula is still under investigation and is one of the
unresolved problems in modern physics.

On the other hand, both in the derivation of the Sommerfeld formula and at the
solution of the Klein-Fock-Gordon equation for the hydrogen atom problem [20],
neither the spin nor the spin-orbit interaction energy was taken into account ini-
tially. Therefore, the obtained fine splitting can in no way be owing to the spin-orbit
interaction. This is a relativistic but purely mechanical effect, when the mass (iner-
tia) of a particle is already depends on the velocity of motion along the orbit (of the
angular momentum), because of which the radial motion of the electron changes,
and vice versa. Just this dependence, which results in the splitting of the energy
levels of the electron, and to the impossibility of introducing only one, the principal
quantum number. Nevertheless, even with this assumption, the order of splitting of
the levels according to formula (8) contradicts to the logic; it turns out to be that the
greater the orbital angular momentum, the lesser the energy of the split level.

The matrix representation of the second-order wave Eq. (9) by a system of
equations of the first order is the Dirac construction of the relativistic electron
equation [21] (the Dirac matrices are the particular representation of the
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Clifford-Lipschitz numbers [22]). In the standard representation the Dirac equation
for a free particle has the form [23].

ε̂ ϕ� σ � p̂ χ ¼ mc ϕ,

�ε̂ χþ σ � p̂ φ ¼ mc χ,
(16)

where

1 ¼ 1 0

0 1

� �
, σx ¼

0 1

1 0

� �
, σy ¼

0 �i
i 0

� �
, σz ¼

1 0

0 �1

� �

(17)

are the Pauli matrices (the unit matrix in the formulas is omitted).
For a particle in an external field, Eq. (16) is usually written in the form

ε̂� q
c
φ

� �
ϕ� σ � p̂� q

c
A

� �
χ ¼ mc ϕ,

� ε̂� q
c
φ

� �
χþ σ � p̂� q

c
A

� �
ϕ ¼ mc χ,

(18)

where for an invariant representation in the case of a free particle, the equations
are composed for the difference between the generalized momentum and the
momentum of the field.

In the case of the potential energy of an immobile charge in a Coulomb field, we
obtain the Sommerfeld-Dirac formula as a result of an exact solution of this partic-
ular equation. There, again, although for a system with spin 1=2 the energy of the
spin-orbit interaction is not taken into account initially, but the half is obtained
from the exact solution of the hydrogen atom problem.

More accurate measurements of Lamb in 1947 and subsequent improvements in
the spectrum of the hydrogen atom revealed that, in addition to the lines with the
maximum j, all the others are also split and somewhat displaced (the Lamb shift).
To harmonize the results of the theory with more accurate experimental data on the
spectrum of the hydrogen atom, one had to propose other solutions and approaches
than were laid down by the derivation of the Dirac equation.

The new theoretical approaches had yield nothing and only supplemented the
theory with the illogical and non-physical proposals to overcome the emerging
singularity of solutions: the renormalization, the finite difference of infinities with
the desired value of the difference, and so on. The accounting for the size of the
nucleus corrected only the Z value into the bigger value, but did not solve the
Z > 137 problem. An incredible result was also obtained for the hydrogen atom
problem that the electron is located, most likely, at the center of the atom, that is, in
the nucleus.

The results of solution of the problem for a particle in a potential well both in the
case of the Klein-Fock-Gordon equation and of the Dirac equation contradict to the
basic principle of quantum mechanics, to the uncertainty principle. From the solu-
tions, it turns out to be that a particle can be in a bound state in a well with any
dimensions, in particular, with the size much smaller than the wavelength of the
particle itself, A ¼ ℏ=mc [23].

Despite Dirac himself proposed a system of linear first-degree relativistic equa-
tions in the matrix representation that described the system with spin 1=2, the
contradictions did not disappear, and he himself remained unhappy with the results
of his theory. As Dirac wrote in 1956 [24], the development of relativistic electron
theory can now be considered as an example of how incorrect arguments sometimes
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lead to a valuable result. In the 70s, it became clear that the relativistic theory of
quantum mechanics does not exist, and new, fundamental approaches and equa-
tions should be sought for constructing a consistent theory of relativistic quantum
mechanics. And in the 80s, Dirac already spoke about the insuperable difficulties of
the existing quantum theory and the need to create a new one [25].

The reason for the failure of these theories is quite simple—it is in the ignoring
of the dependence of the interaction energy with the field on the velocity of the
particle. The generalized momentum of the system, the particle plus the external
field, is the sum of the relativistic expression for the mechanical momentum of the
particle and the field momentum in the case of interaction with the immobile
particle

P ¼ ε, pð Þ ¼ 1
c

mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p þ qφ,
mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p βþ qA, P2 6¼ inv

 !
, (19)

which is not an invariant representation of the particle velocity. To construct
some invariant from such a representation, an ‘invariant’ relation was used in all
cases in the form of a difference between the generalized momentum of the system
and the field momentum in the case of interaction with the immobile particle

ε� qφ, p� qAð Þ ¼ 1
c

mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p β

 !
, ε� qφð Þ2 � p� qAð Þ2 ¼ mcð Þ2

(20)

Obviously, the permutation of the components of the generalized momentum
for the construction of the invariant does not solve the posed problem. The state-
ment that the expression (20) is the mechanical momentum of a particle and
therefore is an invariant is unproven and it is necessary to apprehend the formula
(20) as an empirical. Therefore, at high velocities or strong interactions, an unac-
counted dependence of the energy of particle interaction with the field on the
velocity of the particle motion, which results to the erroneous results or the impos-
sibility of calculations.

In [26], an invariant representation of the generalized momentum of the system
was suggested, where the dependence of the interaction energy of the particle with
the field on the velocity was taken into account:

P ¼ ε, pð Þ ¼ 1
c

mc2 þ qφþ qβ �Affiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
mc2 þ qφð Þβþ qA∥ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
p þ qA⊥

 !
(21)

P2 ¼ ε2 � p2 ¼ mc2 þ qφð Þ2 � qAð Þ2
c2

, (22)

which is the four-dimensional representation of the generalized momentum of
the system based on the expression for the generalized momentum of an immobile
particle in a state of rest

P0 ¼ ε0, p0

� � ¼ 1
c

mc2 þ qφ, qA
� �

(23)

whose invariant is always equal to the expression (19) regardless of the state of
the system.
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The application of variational principles to construct the relativistic and quan-
tum theory was based on the principles of construction the mechanics with the help
of the Lagrangian of the system [27], which originally was not intended for relativ-
istic approaches. The Lagrangian construction is parametric with the one time
variable τ = ct, singled out from the variables of the four-dimensional space (the rest
are represented by the dependence on this variable τ) and contains the total differ-
ential with respect to this variable, the velocity of the particle. Such a construction is
unacceptable because of the impossibility to apply the principle of invariance of the
representation of variables and the covariant representation of the action of the
system.

In [28], to construct the relativistic theory on the basis of variational principles,
the canonical (non- parametric) solutions of the variational problem for canonically
defined integral functionals have been considered and the canonical solutions of the
variational problems of mechanics in the Minkowski spaces are written. Because of
unifying the variational principles of least action, flow, and hyperflow, the canoni-
cally invariant equations for the generalized momentum are obtained. From these
equations, the expressions for the action function and the wave function are
obtained as the general solution of the unified variational problem of mechanics.

Below, we present the generalized invariance principle and the corresponding
representation of the generalized momentum of the system, the equations of rela-
tivistic and quantum mechanics [29], give the solutions of the problems of charge
motion in a constant electric field, the problems for a particle in a potential well and
the passage of a particle through a potential barrier, the problems of motion in an
exponential field (Morse), the problems of charged particle in a magnetic field, and
also the problems of a hydrogen atom are given.

2. Principle of invariance

2.1 Generalization of the principle of invariance

The principle of invariance of the representation of a generalized pulse is appli-
cable also in the case of motion of a particle with the velocity v and in the case of a
transition to a reference frame moving with the velocity V.

The four-dimensional momentum of a particle P with the rest mass m moving
with the velocity β ¼ v=c is represented in the form.

P ¼ ε, pð Þ ¼ mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p β

 !
,P2 ¼ ε2 � p2 ¼ mcð Þ2 (24)

This is the property of invariance of the representation of the four-dimensional
momentum P in terms of the velocity of the particle β ¼ v=c.

If to consider the representation of the four-dimensional momentum of
an immobile particle with a mass m by transition into the reference frame
moving with the velocity β0 ¼ V=c, for the four-dimensional particle momentum P
we have.

P ¼ ε, pð Þ ¼ mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p β0
 !

,P2 ¼ ε2 � p2 ¼ mcð Þ2: (25)

This is a property of invariance of the representation of the four-dimensional
momentum P through the velocity of the reference system β0 ¼ V=c.
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lead to a valuable result. In the 70s, it became clear that the relativistic theory of
quantum mechanics does not exist, and new, fundamental approaches and equa-
tions should be sought for constructing a consistent theory of relativistic quantum
mechanics. And in the 80s, Dirac already spoke about the insuperable difficulties of
the existing quantum theory and the need to create a new one [25].

The reason for the failure of these theories is quite simple—it is in the ignoring
of the dependence of the interaction energy with the field on the velocity of the
particle. The generalized momentum of the system, the particle plus the external
field, is the sum of the relativistic expression for the mechanical momentum of the
particle and the field momentum in the case of interaction with the immobile
particle

P ¼ ε, pð Þ ¼ 1
c

mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p þ qφ,
mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p βþ qA, P2 6¼ inv

 !
, (19)

which is not an invariant representation of the particle velocity. To construct
some invariant from such a representation, an ‘invariant’ relation was used in all
cases in the form of a difference between the generalized momentum of the system
and the field momentum in the case of interaction with the immobile particle

ε� qφ, p� qAð Þ ¼ 1
c

mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p β

 !
, ε� qφð Þ2 � p� qAð Þ2 ¼ mcð Þ2

(20)

Obviously, the permutation of the components of the generalized momentum
for the construction of the invariant does not solve the posed problem. The state-
ment that the expression (20) is the mechanical momentum of a particle and
therefore is an invariant is unproven and it is necessary to apprehend the formula
(20) as an empirical. Therefore, at high velocities or strong interactions, an unac-
counted dependence of the energy of particle interaction with the field on the
velocity of the particle motion, which results to the erroneous results or the impos-
sibility of calculations.

In [26], an invariant representation of the generalized momentum of the system
was suggested, where the dependence of the interaction energy of the particle with
the field on the velocity was taken into account:

P ¼ ε, pð Þ ¼ 1
c

mc2 þ qφþ qβ �Affiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
mc2 þ qφð Þβþ qA∥ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
p þ qA⊥

 !
(21)

P2 ¼ ε2 � p2 ¼ mc2 þ qφð Þ2 � qAð Þ2
c2

, (22)

which is the four-dimensional representation of the generalized momentum of
the system based on the expression for the generalized momentum of an immobile
particle in a state of rest

P0 ¼ ε0, p0

� � ¼ 1
c

mc2 þ qφ, qA
� �

(23)

whose invariant is always equal to the expression (19) regardless of the state of
the system.
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The application of variational principles to construct the relativistic and quan-
tum theory was based on the principles of construction the mechanics with the help
of the Lagrangian of the system [27], which originally was not intended for relativ-
istic approaches. The Lagrangian construction is parametric with the one time
variable τ = ct, singled out from the variables of the four-dimensional space (the rest
are represented by the dependence on this variable τ) and contains the total differ-
ential with respect to this variable, the velocity of the particle. Such a construction is
unacceptable because of the impossibility to apply the principle of invariance of the
representation of variables and the covariant representation of the action of the
system.

In [28], to construct the relativistic theory on the basis of variational principles,
the canonical (non- parametric) solutions of the variational problem for canonically
defined integral functionals have been considered and the canonical solutions of the
variational problems of mechanics in the Minkowski spaces are written. Because of
unifying the variational principles of least action, flow, and hyperflow, the canoni-
cally invariant equations for the generalized momentum are obtained. From these
equations, the expressions for the action function and the wave function are
obtained as the general solution of the unified variational problem of mechanics.

Below, we present the generalized invariance principle and the corresponding
representation of the generalized momentum of the system, the equations of rela-
tivistic and quantum mechanics [29], give the solutions of the problems of charge
motion in a constant electric field, the problems for a particle in a potential well and
the passage of a particle through a potential barrier, the problems of motion in an
exponential field (Morse), the problems of charged particle in a magnetic field, and
also the problems of a hydrogen atom are given.

2. Principle of invariance

2.1 Generalization of the principle of invariance

The principle of invariance of the representation of a generalized pulse is appli-
cable also in the case of motion of a particle with the velocity v and in the case of a
transition to a reference frame moving with the velocity V.

The four-dimensional momentum of a particle P with the rest mass m moving
with the velocity β ¼ v=c is represented in the form.

P ¼ ε, pð Þ ¼ mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p β

 !
,P2 ¼ ε2 � p2 ¼ mcð Þ2 (24)

This is the property of invariance of the representation of the four-dimensional
momentum P in terms of the velocity of the particle β ¼ v=c.

If to consider the representation of the four-dimensional momentum of
an immobile particle with a mass m by transition into the reference frame
moving with the velocity β0 ¼ V=c, for the four-dimensional particle momentum P
we have.

P ¼ ε, pð Þ ¼ mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
mcffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p β0
 !

,P2 ¼ ε2 � p2 ¼ mcð Þ2: (25)

This is a property of invariance of the representation of the four-dimensional
momentum P through the velocity of the reference system β0 ¼ V=c.
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For an invariant of the system I, we have

I2 ¼ P2 ¼ ε2 � p2 ¼ ε0ð Þ2 ¼ mcð Þ2: (26)

At β ¼ β0 ¼ 0, we obtain

P ¼ ε, pð Þ β¼β0¼0

�� ¼ ε0 1, 0ð Þ ¼ mc 1, 0ð Þ: (27)

Thus, the generalized momentum of a particle has an invariant representation
on the particle velocity v and the velocity of the reference system V. This property
should be considered because of the general principle of the relativity of motion.
Accordingly, the generalized momentum of the particle P is an invariant regardless
of the state of the system.

If a charged particle is in an external electromagnetic field with potentials
φ, Að Þ, then the stationary charge sees the field exactly with such potentials. If the
charge has a nonzero velocity v, then it will interact with the field differently. To
determine the interaction for a charge moving with the velocity v, one can start
from the principle of the relativity of motion. The effective values of the force or
interaction with the field of the charge moving with the velocity v are the same as
in the case when the charge is immobile, and the field moves with the velocity �v
(in the laboratory frame of reference).

The fact that the interaction of a charged particle with a field depends on the
speed of motion is evidently represented in the formula for the Liénard-Wiechert
potential [8].

More clearly, this can be demonstrated by an example of the Doppler effect for
two atoms in the field of a resonant radiation, when one of the atoms is at rest and
the other moves with the velocity v (Figure 4).

The atom, which is at rest, absorbs a photon, and the moving one does not
absorb or interacts weakly with the field, because of the dependence of the interac-
tion on the velocity of the atom. It is also known that the acting field for an atom
moving with the velocity v corresponds to the interaction with the field moving
with the velocity �v.

2.2 Invariant representation of the generalized momentum

Thus, for a moving charge, the effective values of the potentials φ0, A0ð Þ (in the
laboratory frame of reference) can be written in the form [8]

φ0,A0ð Þ ¼ φþ β �Affiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p , A⊥ þAk þ φβffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p
 !

: (28)

Figure 4.
Two atoms in the field of a resonant radiation.
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If one represents the generalized momentum of the particle in the form

P ¼ 1
c

mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p þ qφ0,
mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p βþ qA0
 !

, (29)

where φ0 and A0 already effective values of the interaction potentials of the
particle moving with velocity v in a field with the potentials φ and A, we obtain

P ¼ 1
c

mc2 þ qφþ qβ �Affiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
mc2 þ qφð Þβþ qA∥ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
p þ qA⊥

 !
: (30)

The expression (30) can be represented in the form

P ¼ mc2 þ qφþ qβ �A
c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,

 
mc2 þ qφþ qβ �A

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p βþ q
c
A� q

c
1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p A � βð Þβ
!

(31)

or

P ¼ ε, εβþ q
c
A� q

c
1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p A � βð Þβ
 !

: (32)

This transformation can be presents in matrices form

ε0, p0f g ¼ ε, pf g þ T̂ ε, pf g (33)

where a Lorentz transformation have a form

1̂þ T̂ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

������������

������������

þ

γ � 1ð Þ

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

������������

������������

þ γ

0 β1 β2 β3

β1 0 0 0

β2 0 0 0

β3 0 0 0

������������

������������

þ γ � 1ð Þ

0 0 0 0

0
β1β1
β2

β1β2
β2

β1β3
β2

0
β2β1
β2

β2β2
β2

β2β3
β2

0
β3β1
β2

β3β2
β2

β3β3
β2

�����������������

�����������������
(34)

The matrices of the invariant representation of a four-dimensional vector, which
preserve the vector module in four-dimensional space, form the Poincare group
(inhomogeneous Lorentz group). In addition to displacements and rotations, the
group contains space-time reflection representations P̂, T̂ and inversion P̂T̂ ¼ Î.

For the module I of the four-dimensional vector of the generalized momentum
P, we have
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For an invariant of the system I, we have

I2 ¼ P2 ¼ ε2 � p2 ¼ ε0ð Þ2 ¼ mcð Þ2: (26)

At β ¼ β0 ¼ 0, we obtain

P ¼ ε, pð Þ β¼β0¼0

�� ¼ ε0 1, 0ð Þ ¼ mc 1, 0ð Þ: (27)

Thus, the generalized momentum of a particle has an invariant representation
on the particle velocity v and the velocity of the reference system V. This property
should be considered because of the general principle of the relativity of motion.
Accordingly, the generalized momentum of the particle P is an invariant regardless
of the state of the system.

If a charged particle is in an external electromagnetic field with potentials
φ, Að Þ, then the stationary charge sees the field exactly with such potentials. If the
charge has a nonzero velocity v, then it will interact with the field differently. To
determine the interaction for a charge moving with the velocity v, one can start
from the principle of the relativity of motion. The effective values of the force or
interaction with the field of the charge moving with the velocity v are the same as
in the case when the charge is immobile, and the field moves with the velocity �v
(in the laboratory frame of reference).

The fact that the interaction of a charged particle with a field depends on the
speed of motion is evidently represented in the formula for the Liénard-Wiechert
potential [8].

More clearly, this can be demonstrated by an example of the Doppler effect for
two atoms in the field of a resonant radiation, when one of the atoms is at rest and
the other moves with the velocity v (Figure 4).

The atom, which is at rest, absorbs a photon, and the moving one does not
absorb or interacts weakly with the field, because of the dependence of the interac-
tion on the velocity of the atom. It is also known that the acting field for an atom
moving with the velocity v corresponds to the interaction with the field moving
with the velocity �v.

2.2 Invariant representation of the generalized momentum

Thus, for a moving charge, the effective values of the potentials φ0, A0ð Þ (in the
laboratory frame of reference) can be written in the form [8]

φ0,A0ð Þ ¼ φþ β �Affiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p , A⊥ þAk þ φβffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p
 !

: (28)

Figure 4.
Two atoms in the field of a resonant radiation.
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If one represents the generalized momentum of the particle in the form

P ¼ 1
c

mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p þ qφ0,
mc2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p βþ qA0
 !

, (29)

where φ0 and A0 already effective values of the interaction potentials of the
particle moving with velocity v in a field with the potentials φ and A, we obtain

P ¼ 1
c

mc2 þ qφþ qβ �Affiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,
mc2 þ qφð Þβþ qA∥ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
p þ qA⊥

 !
: (30)

The expression (30) can be represented in the form

P ¼ mc2 þ qφþ qβ �A
c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p ,

 
mc2 þ qφþ qβ �A

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p βþ q
c
A� q

c
1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p A � βð Þβ
!

(31)

or

P ¼ ε, εβþ q
c
A� q

c
1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p A � βð Þβ
 !

: (32)

This transformation can be presents in matrices form

ε0, p0f g ¼ ε, pf g þ T̂ ε, pf g (33)

where a Lorentz transformation have a form

1̂þ T̂ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

������������

������������

þ

γ � 1ð Þ

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

������������

������������

þ γ

0 β1 β2 β3

β1 0 0 0

β2 0 0 0

β3 0 0 0

������������

������������

þ γ � 1ð Þ

0 0 0 0

0
β1β1
β2

β1β2
β2

β1β3
β2

0
β2β1
β2

β2β2
β2

β2β3
β2

0
β3β1
β2

β3β2
β2

β3β3
β2

�����������������

�����������������
(34)

The matrices of the invariant representation of a four-dimensional vector, which
preserve the vector module in four-dimensional space, form the Poincare group
(inhomogeneous Lorentz group). In addition to displacements and rotations, the
group contains space-time reflection representations P̂, T̂ and inversion P̂T̂ ¼ Î.

For the module I of the four-dimensional vector of the generalized momentum
P, we have
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I2 ¼ P2 ¼ ε2 � p2 ¼ mc2 þ qφð Þ2 � qAð Þ2
c2

, (35)

which is the four-dimensional representation of the generalized momentum of
the system on the basis of the expression of the generalized momentum of a particle
in the state of rest

P0 ¼ ε0, p0

� � ¼ 1
c

mc2 þ qφ, qA
� �

, (36)

whose invariant is defined by the expression (30).
Thus, the generalized momentum of the particle in an external field is not only

invariant relative to the transformations at the transition from one reference system
to another but also has an invariant representation in terms of the velocity of
motion of the particle (30); at each point of space, the value of the invariant I is
determined by the expression (35). This property has not only the representation of
the proper momentum of the particle (the mechanical part), but also the general-
ized momentum of the particle in general.

Let us generalize this result to the case of representation of the generalized
momentum of any systems and interactions, arguing that, regardless of the state
(the motion) of the system, the generalized four-dimensional momentum always
has an invariant representation

P ¼ ε, pð Þ ) P2 ¼ ε2 � p2 ¼ ε0
2 � p0

2 ¼ �I2 ¼ inv, (37)

where ε и p are the energy and momentum of the system, respectively, and the
invariant is determined by the modulus of sum of the components of the general-
ized momentum of the system ε0 and p0 at rest. If the particles interact with the
field in the form ε0 þ αφ, the invariants of the generalized momentum of the system
are represented by the expressions [25].

Pþ2 ¼ ε0 þ αφð Þ2 � αAð Þ2 ¼ ε0
2 þ 2ε0αφþ αφð Þ2 � αAð Þ2,

P�2 ¼ αφð Þ2 � ε0nþ αAð Þ2 ¼ �ε0
2 � 2ε0αn �Aþ αφð Þ2 � αAð Þ2,

P0
2 ¼ ε0 þ αφð Þ2 � ε0nþ αAð Þ2 ¼ 2ε0α φ� n �Að Þ þ αφð Þ2 � αAð Þ2:

(38)

Let us represent the expression for the invariant ε2 � p2 (35) in the following
form

ε2 ¼ E2

c2
¼ p2 þ mc2 þ qφð Þ2 � qAð Þ2

c2
¼ p2 þm2c2 þ 2mqφþ q2

c2
φ2 �A2� �

(39)

and divide it by 2m. Grouping, we obtain the Hamiltonian H of the system in the
form

H ¼ ε2 �m2c2

2m
¼ E2 �m2c4

2mc2
¼ p2

2m
þ qφþ q2

2mc2
φ2 �A2� �

, (40)

that is, we obtain the formula for the correspondence between the energy of the
system E and the energy of the system in the classical meaning H. The correspon-
dence in the form H ¼ p2=2mþ U τ, rð Þ [26] will be complete and accurate if we
determine the potential energy of interaction U and the energy of system in the
classical meaning as
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U ¼ qφþ q2

2mc2
φ2 �A2� �

, H ¼ E2 �m2c4

2mc2
) E ¼ �mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

mc2

r
: (41)

For example, the potential energy U of the electron in the field of the Coulomb
potential φ ¼ Ze=r and in a homogeneous magnetic field B with the vector potential
A ¼ r� B½ �=2 is

U ¼ �eφþ e2

2mc2
φ2 �A2� � ¼ �Ze2

r
þ 1
2mc2

Z2e4

r2
� e2B2

8mc2
r2 sin 2θ: (42)

Note, whatever is the dependence of the potential φ, the possible minimum
potential energy Umin ¼ �mc2=2, and the potential energy as a function of the
vector potential is always negative. The hard constraint of the classical potential
energy value Umin ¼ �mc2=2, which does not depend on the nature of the interac-
tions, results in the fundamental changes in the description of interactions and the
revision of the results of classical mechanics. At short distances, the origination of
repulsion for attraction forces caused by the uncertainty principle is clearly
reflected in the expression for the potential energy of the particle.

Many well-known expressions of the potential energy of interaction with
attractive fields have a repulsive component in the form of half the square of these
attractive potentials—Kratzer [30], Lennard-Jones [31], Morse [32], Rosen [33] and
others. Expression (41) justifies this approach, which until now is phenomenological
or the result of an appropriate selection for agreement with experimental data.

The Hamiltonian H can be called the energy and its value remains constant in the
case of conservation of energy E, but the value of Hand its changes differ from the
true values of the energy E and changes of its quantity. Thus, the classical
approaches are permissible only in the case of low velocities, when H≪mc2 and the
energy expression can be represented in the form

E ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

mc2

r
≈mc2 þH: (43)

3. Equations of relativistic mechanics

3.1 Canonical Lagrangian and Hamilton-Jacoby equation

Let us use the parametric representation of the Hamilton action in the form [28].

S ¼ �
ðt2, r2

t1, r1

εdt� p � drð Þ ¼ �
ðR2

R1

P � dR ¼ �
ðR2

R1

P � dR
ds

ds ¼ �
ðR2

R1

P �Vð Þds ! min ,

(44)

where ds is the four-dimensional interval and V is the four-dimensional gener-
alized velocity.

The functional that takes into account the condition of the invariant representa-
tion of the generalized momentum P2 ¼ ε2 � p2 ¼ I2 ¼ inv, can be composed by the
method of indefinite Lagrange coefficients in the form

S ¼
ðs1

s1

�P �Vþ P2 � I2

2λ

� �
ds ¼

ðs1

s1

P� λVð Þ2þ
2λ

λ2 � I2

2λ

 !
ds ! min , (45)
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I2 ¼ P2 ¼ ε2 � p2 ¼ mc2 þ qφð Þ2 � qAð Þ2
c2

, (35)

which is the four-dimensional representation of the generalized momentum of
the system on the basis of the expression of the generalized momentum of a particle
in the state of rest

P0 ¼ ε0, p0

� � ¼ 1
c

mc2 þ qφ, qA
� �

, (36)

whose invariant is defined by the expression (30).
Thus, the generalized momentum of the particle in an external field is not only

invariant relative to the transformations at the transition from one reference system
to another but also has an invariant representation in terms of the velocity of
motion of the particle (30); at each point of space, the value of the invariant I is
determined by the expression (35). This property has not only the representation of
the proper momentum of the particle (the mechanical part), but also the general-
ized momentum of the particle in general.

Let us generalize this result to the case of representation of the generalized
momentum of any systems and interactions, arguing that, regardless of the state
(the motion) of the system, the generalized four-dimensional momentum always
has an invariant representation

P ¼ ε, pð Þ ) P2 ¼ ε2 � p2 ¼ ε0
2 � p0

2 ¼ �I2 ¼ inv, (37)

where ε и p are the energy and momentum of the system, respectively, and the
invariant is determined by the modulus of sum of the components of the general-
ized momentum of the system ε0 and p0 at rest. If the particles interact with the
field in the form ε0 þ αφ, the invariants of the generalized momentum of the system
are represented by the expressions [25].

Pþ2 ¼ ε0 þ αφð Þ2 � αAð Þ2 ¼ ε0
2 þ 2ε0αφþ αφð Þ2 � αAð Þ2,

P�2 ¼ αφð Þ2 � ε0nþ αAð Þ2 ¼ �ε0
2 � 2ε0αn �Aþ αφð Þ2 � αAð Þ2,

P0
2 ¼ ε0 þ αφð Þ2 � ε0nþ αAð Þ2 ¼ 2ε0α φ� n �Að Þ þ αφð Þ2 � αAð Þ2:

(38)

Let us represent the expression for the invariant ε2 � p2 (35) in the following
form

ε2 ¼ E2

c2
¼ p2 þ mc2 þ qφð Þ2 � qAð Þ2

c2
¼ p2 þm2c2 þ 2mqφþ q2

c2
φ2 �A2� �

(39)

and divide it by 2m. Grouping, we obtain the Hamiltonian H of the system in the
form

H ¼ ε2 �m2c2

2m
¼ E2 �m2c4

2mc2
¼ p2

2m
þ qφþ q2

2mc2
φ2 �A2� �

, (40)

that is, we obtain the formula for the correspondence between the energy of the
system E and the energy of the system in the classical meaning H. The correspon-
dence in the form H ¼ p2=2mþ U τ, rð Þ [26] will be complete and accurate if we
determine the potential energy of interaction U and the energy of system in the
classical meaning as
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U ¼ qφþ q2

2mc2
φ2 �A2� �

, H ¼ E2 �m2c4

2mc2
) E ¼ �mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

mc2

r
: (41)

For example, the potential energy U of the electron in the field of the Coulomb
potential φ ¼ Ze=r and in a homogeneous magnetic field B with the vector potential
A ¼ r� B½ �=2 is

U ¼ �eφþ e2

2mc2
φ2 �A2� � ¼ �Ze2

r
þ 1
2mc2

Z2e4

r2
� e2B2

8mc2
r2 sin 2θ: (42)

Note, whatever is the dependence of the potential φ, the possible minimum
potential energy Umin ¼ �mc2=2, and the potential energy as a function of the
vector potential is always negative. The hard constraint of the classical potential
energy value Umin ¼ �mc2=2, which does not depend on the nature of the interac-
tions, results in the fundamental changes in the description of interactions and the
revision of the results of classical mechanics. At short distances, the origination of
repulsion for attraction forces caused by the uncertainty principle is clearly
reflected in the expression for the potential energy of the particle.

Many well-known expressions of the potential energy of interaction with
attractive fields have a repulsive component in the form of half the square of these
attractive potentials—Kratzer [30], Lennard-Jones [31], Morse [32], Rosen [33] and
others. Expression (41) justifies this approach, which until now is phenomenological
or the result of an appropriate selection for agreement with experimental data.

The Hamiltonian H can be called the energy and its value remains constant in the
case of conservation of energy E, but the value of Hand its changes differ from the
true values of the energy E and changes of its quantity. Thus, the classical
approaches are permissible only in the case of low velocities, when H≪mc2 and the
energy expression can be represented in the form

E ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

mc2

r
≈mc2 þH: (43)

3. Equations of relativistic mechanics

3.1 Canonical Lagrangian and Hamilton-Jacoby equation

Let us use the parametric representation of the Hamilton action in the form [28].

S ¼ �
ðt2, r2

t1, r1

εdt� p � drð Þ ¼ �
ðR2

R1

P � dR ¼ �
ðR2

R1

P � dR
ds

ds ¼ �
ðR2

R1

P �Vð Þds ! min ,

(44)

where ds is the four-dimensional interval and V is the four-dimensional gener-
alized velocity.

The functional that takes into account the condition of the invariant representa-
tion of the generalized momentum P2 ¼ ε2 � p2 ¼ I2 ¼ inv, can be composed by the
method of indefinite Lagrange coefficients in the form

S ¼
ðs1

s1

�P �Vþ P2 � I2

2λ

� �
ds ¼

ðs1

s1

P� λVð Þ2þ
2λ

λ2 � I2

2λ

 !
ds ! min , (45)
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where λ ¼ λ sð Þ is the given parameter, determined by the condition of invariance
of the representation. Because λ and I are given and they do not depend on the
velocity, we have an explicit solution in the form

P� λV ¼ 0, λ ¼ �I τ, rð Þ, (46)

where the four-dimensional momentum is represented in the form

P ¼ IV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � p2

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p ,
ηffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p
 !

: (47)

Thus, the action is represented in the form

S ¼
ðs2

s1

Ids ¼
ðs2

s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � p2

q
ds ¼

ðτ2

τ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � p2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p
dτ (48)

and the canonical Lagrangian of the system is given by

L ¼ I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � p2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p
: (49)

The correctness of the presented parametrization is confirmed by the obtained
expressions for the generalized momentum and energy from the Lagrangian of the
system in the form

ε ¼ η
∂L
∂η

� L ¼ Iffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 � p2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p ,

p ¼ ∂L
∂η

¼ Iffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p η ¼ εη,
(50)

which coincide with the initial representations of the generalized momentum
and energy. Accordingly, the Lagrange equation of motion takes the form

dp
dτ

¼ � I
ε

∂I
∂r

: (51)

If we multiply Eq. (50) by p ¼ εη scalarly, after reduction to the total time
differential, we obtain,

dε2

dτ
¼ ∂I2

∂τ
: (52)

If the invariant is clearly independent of time, then the energy ε is conserved
and the equation of motion is represented in the form of the Newtonian equation

dη
dτ

¼ � I
ε2

∂I
∂r

: (53)

For a particle in an external field we have

L ¼ � 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2 þ qφð Þ2 � qAð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2=c2

p
: (54)
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Using the explicit form of the generalized momentum (32) with the accuracy of
the expansion to the power of β2, we obtain the equation of motion in the form

d
dτ

ε� q
2c

A � β
� �

β ¼ qEþ q β� B½ � � ∂

∂r
q
c
A � βþ q2

2mc2
φ2 �A2� �� �

, (55)

where the velocity-dependent components of the force are present. In particu-
lar, the velocity-dependent force is present in the Faraday law of electromagnetic
induction [34], which is absent in the traditional expression for the Lorentz force.

The Hamilton-Jacobi equation is represented in the form

∂S
∂τ

� �2

� ∂S
∂r

� �2

¼ mc2 þ qφð Þ2 � qAð Þ2
c2

(56)

and it reflects the invariance of the representation of the generalized momen-
tum. The well-known representations of the Hamilton-Jacobi Eq. (8) also contain
the differential forms of potentials—the components of the electric and the
magnetic fields.

3.2 Motion of a charged particle in a constant electric field

Let us consider the motion of a charged particle with the mass m and charge –q
in the constant electric field between the plane electrodes with the potential differ-
ence U and the distance l between them. For one-dimensional motion, taking the
cathode location as the origin and anode at the point x ¼ l, from (56) we have

∂S
∂τ

� �2

� ∂S
∂x

� �2

¼ mc2 þ qU 1� x=lð Þð Þ2
c2

: (57)

Let us represent the action S in the form

S ¼ �Etþ f xð Þ, (58)

where E ¼ mc2 þ qU is an the electron energy at the origin on the surface of the
cathode under voltage –U; as a result, from (57) we obtain

S ¼ �Etþ 1
c

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � mc2 þ qU � qU

x
l

� �2r
dx: (59)

We find the solution from the condition ∂S=∂E ¼ const. As a result of
integration, we obtain

t ¼ l
c

1þ 1
α

� �
arccos 1� α

1þ α

x
l

� �
, α ¼ qU=mc2 (60)

or

x ¼ l
1þ α

α
1� cos

α

1þ α

ct
l

� �� �
, t≤

l
c

1þ α

α

� �
arccos

1
1þ α

� �
: (61)

The well-known solution in the framework of the traditional theory [8] is the
following:
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which coincide with the initial representations of the generalized momentum
and energy. Accordingly, the Lagrange equation of motion takes the form
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¼ � I
ε
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: (51)

If we multiply Eq. (50) by p ¼ εη scalarly, after reduction to the total time
differential, we obtain,

dε2
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¼ ∂I2

∂τ
: (52)

If the invariant is clearly independent of time, then the energy ε is conserved
and the equation of motion is represented in the form of the Newtonian equation

dη
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¼ � I
ε2

∂I
∂r

: (53)

For a particle in an external field we have

L ¼ � 1
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p
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Using the explicit form of the generalized momentum (32) with the accuracy of
the expansion to the power of β2, we obtain the equation of motion in the form

d
dτ

ε� q
2c

A � β
� �

β ¼ qEþ q β� B½ � � ∂

∂r
q
c
A � βþ q2

2mc2
φ2 �A2� �� �

, (55)

where the velocity-dependent components of the force are present. In particu-
lar, the velocity-dependent force is present in the Faraday law of electromagnetic
induction [34], which is absent in the traditional expression for the Lorentz force.

The Hamilton-Jacobi equation is represented in the form

∂S
∂τ

� �2

� ∂S
∂r

� �2

¼ mc2 þ qφð Þ2 � qAð Þ2
c2

(56)

and it reflects the invariance of the representation of the generalized momen-
tum. The well-known representations of the Hamilton-Jacobi Eq. (8) also contain
the differential forms of potentials—the components of the electric and the
magnetic fields.

3.2 Motion of a charged particle in a constant electric field

Let us consider the motion of a charged particle with the mass m and charge –q
in the constant electric field between the plane electrodes with the potential differ-
ence U and the distance l between them. For one-dimensional motion, taking the
cathode location as the origin and anode at the point x ¼ l, from (56) we have

∂S
∂τ

� �2

� ∂S
∂x

� �2

¼ mc2 þ qU 1� x=lð Þð Þ2
c2

: (57)

Let us represent the action S in the form

S ¼ �Etþ f xð Þ, (58)

where E ¼ mc2 þ qU is an the electron energy at the origin on the surface of the
cathode under voltage –U; as a result, from (57) we obtain

S ¼ �Etþ 1
c

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � mc2 þ qU � qU

x
l

� �2r
dx: (59)

We find the solution from the condition ∂S=∂E ¼ const. As a result of
integration, we obtain

t ¼ l
c

1þ 1
α

� �
arccos 1� α

1þ α

x
l

� �
, α ¼ qU=mc2 (60)

or

x ¼ l
1þ α

α
1� cos

α

1þ α

ct
l

� �� �
, t≤

l
c

1þ α

α

� �
arccos

1
1þ α

� �
: (61)

The well-known solution in the framework of the traditional theory [8] is the
following:
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t ¼ l
αc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α

x
l

� �2
� 1

r
or x ¼ l

αct=lð Þ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αct=lð Þ2

q , t≤
l
c

ffiffiffiffiffiffiffiffiffiffiffi
1þ 2

α

r
: (62)

In the ultrarelativistic limit qU≫mc2, the ratio of the flight time of the gap between
the electrodes x ¼ lð Þ is equal to π=2 according to formulas (60) and (62) (Figure 5).

The electron velocity v ¼ dx=dt when reaching the anode is

v ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1= 1þ αð Þ2

q
: (63)

3.3 Problem of the hydrogen-like atom

Let us consider the motion of an electron with the mass m and charge –e in the
field of an immobile nucleus with the charge Ze. Then the problem reduces to an
investigation of the motion of the electron in the centrally symmetric electric field
with the potential �Ze2=r.

Choosing the polar coordinates r,φð Þ in the plane of motion, we obtain the
Hamilton-Jacobi equation in the form

∂S
∂τ

� �2

� ∂S
∂r

� �2

� 1
r2

∂S
∂φ

� �2

� mc2 � Ze2=r
� �2

c2
¼ 0: (64)

Let us represent the action S in the form

S ¼ �EtþMφþ f rð Þ, (65)

where E and M are the constant energy and angular momentum of the moving
particle, respectively. As a result, we obtain

Figure 5.
Dependence of the flight time of the gap between the electrodes on the applied voltage according to the formula
(60) and (curve 1) and (62) (curve 2) in l=c units.
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S ¼ �EtþMφþ 1
c

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � mc2ð Þ2 þ 2mc2

Ze2

r
�M2c2 þ Ze2

� �2
r2

s
dr: (66)

We find trajectories from the condition ∂S=∂M ¼ const,withuse ofwhichweobtain,

φ ¼
ð

Mcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � mc2ð Þ2 þ 2mc2 Ze2

r � M2c2þZe2
r2

q d
1
r
, (67)

which results in the solution

r ¼ Mcð Þ2 þ Ze2
� �2

mc2Ze2
1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
mc2
� �2 1þ Mc

Ze2

� �2� �
� Mc

Ze2

� �2s
cos φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ze2

Mc

� �2r ! :

(68)

The coefficient of the repulsive effective potential is essentially positive, that is,

M2c2 þ Ze2
� �2

>0 therefore, any fall of the particle onto the center is impossible.
The minimum radius rmin ¼ r0 Z þ 1ð Þ, where r0 ¼ e2=mc2 is the classical radius of
an electron.

The secular precession is found from the condition

φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ze2=Mc

� �2q
¼ 2π, (69)

whence, we obtain

Δφ ¼ 2π � 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ze2=Mc

� �2q ≈ π
Ze2

Mc

� �2

, (70)

that has the opposite sign as compared with the solution in [8]. The reason for
the discrepancy of the sign is the unaccounted interaction of the self-momentum
with the rotating field, that is, the spin-orbit interaction.

4. Equations of the relativistic quantum mechanics

Using the principle of the invariant representation of the generalized momentum

P2 ¼ ε2 � p2 ¼ I2 ¼ inv, (71)

it is possible to compose the corresponding equation of the relativistic quantum
mechanics by representing the energy and momentum variables by the
corresponding operators ε̂ ¼ iℏ∂=∂τ and p̂ ¼ �iℏ∂=∂r:

ε̂ð Þ2Ψ� p̂ð Þ2Ψ ¼ iℏ
∂

∂τ

� �2

Ψ� �iℏ
∂

∂r

� �2

Ψ ¼

ε2 � p2� �
Ψþ iℏ

∂ε

∂τ
þ divp

� �
¼ I2Ψþ iℏ

∂ε

∂τ
þ divp

� �
,

(72)

123

Equations of Relativistic and Quantum Mechanics (without Spin)
DOI: http://dx.doi.org/10.5772/intechopen.93336



t ¼ l
αc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α

x
l

� �2
� 1

r
or x ¼ l

αct=lð Þ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αct=lð Þ2

q , t≤
l
c

ffiffiffiffiffiffiffiffiffiffiffi
1þ 2

α

r
: (62)

In the ultrarelativistic limit qU≫mc2, the ratio of the flight time of the gap between
the electrodes x ¼ lð Þ is equal to π=2 according to formulas (60) and (62) (Figure 5).

The electron velocity v ¼ dx=dt when reaching the anode is

v ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1= 1þ αð Þ2

q
: (63)

3.3 Problem of the hydrogen-like atom

Let us consider the motion of an electron with the mass m and charge –e in the
field of an immobile nucleus with the charge Ze. Then the problem reduces to an
investigation of the motion of the electron in the centrally symmetric electric field
with the potential �Ze2=r.

Choosing the polar coordinates r,φð Þ in the plane of motion, we obtain the
Hamilton-Jacobi equation in the form

∂S
∂τ

� �2

� ∂S
∂r

� �2

� 1
r2

∂S
∂φ

� �2

� mc2 � Ze2=r
� �2

c2
¼ 0: (64)

Let us represent the action S in the form

S ¼ �EtþMφþ f rð Þ, (65)

where E and M are the constant energy and angular momentum of the moving
particle, respectively. As a result, we obtain
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Dependence of the flight time of the gap between the electrodes on the applied voltage according to the formula
(60) and (curve 1) and (62) (curve 2) in l=c units.
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S ¼ �EtþMφþ 1
c
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� �2
r2

s
dr: (66)

We find trajectories from the condition ∂S=∂M ¼ const,withuse ofwhichweobtain,

φ ¼
ð
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r2

q d
1
r
, (67)

which results in the solution

r ¼ Mcð Þ2 þ Ze2
� �2

mc2Ze2
1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
mc2
� �2 1þ Mc

Ze2

� �2� �
� Mc

Ze2

� �2s
cos φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ze2

Mc

� �2r ! :

(68)

The coefficient of the repulsive effective potential is essentially positive, that is,

M2c2 þ Ze2
� �2

>0 therefore, any fall of the particle onto the center is impossible.
The minimum radius rmin ¼ r0 Z þ 1ð Þ, where r0 ¼ e2=mc2 is the classical radius of
an electron.

The secular precession is found from the condition

φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ze2=Mc

� �2q
¼ 2π, (69)

whence, we obtain

Δφ ¼ 2π � 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ze2=Mc

� �2q ≈ π
Ze2

Mc

� �2

, (70)

that has the opposite sign as compared with the solution in [8]. The reason for
the discrepancy of the sign is the unaccounted interaction of the self-momentum
with the rotating field, that is, the spin-orbit interaction.

4. Equations of the relativistic quantum mechanics

Using the principle of the invariant representation of the generalized momentum

P2 ¼ ε2 � p2 ¼ I2 ¼ inv, (71)

it is possible to compose the corresponding equation of the relativistic quantum
mechanics by representing the energy and momentum variables by the
corresponding operators ε̂ ¼ iℏ∂=∂τ and p̂ ¼ �iℏ∂=∂r:

ε̂ð Þ2Ψ� p̂ð Þ2Ψ ¼ iℏ
∂

∂τ

� �2

Ψ� �iℏ
∂

∂r

� �2

Ψ ¼

ε2 � p2� �
Ψþ iℏ

∂ε

∂τ
þ divp

� �
¼ I2Ψþ iℏ

∂ε

∂τ
þ divp

� �
,

(72)
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and

ε̂Ψð Þ2 � p̂Ψð Þ2 ¼ iℏ
∂Ψ
∂τ

� �2

� �iℏ
∂Ψ
∂r

� �2

¼ ε2 � p2� �
Ψ2 ¼ I2Ψ2: (73)

The case of conservative systems, when any energy losses or sources in space are
absent, corresponds to the relation ∂ε=∂τ þ divp ¼ 0. In this way,

∂
2Ψ
∂τ2

� ∂
2Ψ
∂r2

¼ � I2

ℏ2 Ψ

∂Ψ
∂τ

� �2 � ∂Ψ
∂r

� �2 ¼ � I2

ℏ2 Ψ
2:

8>><
>>:

(74)

For the charged particle in an external field with an invariant in the form of
(30), the equations will take the form

∂
2Ψ
∂τ2

� ∂
2Ψ
∂r2

¼ � mc2 þ qφð Þ2 � qAð Þ2
ℏ2c2

Ψ

∂Ψ
∂τ

� �2 � ∂Ψ
∂r

� �2 ¼ � mc2 þ qφð Þ2 � qAð Þ2
ℏ2c2

Ψ2:

8>>><
>>>:

(75)

For stationary states we obtain

∂
2Ψ
∂r2

þ E2 � mc2 þ qφð Þ2 þ qAð Þ2
ℏ2c2

Ψ ¼ 0

∂Ψ
∂r

� �2 þ E2 � mc2 þ qφð Þ2 þ qAð Þ2
ℏ2c2

Ψ2 ¼ 0:

8>>><
>>>:

(76)

Rewriting the equations taking into account the formulas of the classical corre-
spondence (40), we will obtain the equations for the wave function in the tradi-
tional representation

ΔΨþ 2m
ℏ2 H�Uð ÞΨ ¼ 0,

∂Ψ
∂r

� �2

þ 2m
ℏ2 H�Uð ÞΨ2 ¼ 0,

(77)

the first of which formally coincides with the Schrödinger equation for the wave
function of stationary states.

For the action function S associated with the wave function by the representa-
tion Ψ ¼ A exp –iS=ℏð Þ or S ¼ iℏ lnΨþ iℏ lnA, we will obtain
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(78)

which represents the exact classical correspondence instead of the quasiclassical
approximation [12]. Note, the equations similar to (78) also follow from the
Eq. (46) in [12] if we demand for an exact correspondence and equate to zero the
real and imaginary parts.
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4.1 Particle in the one-dimensional potential well

Let us consider the particle of massm in a one-dimensional rectangular potential
well of the form

V xð Þ ¼ 0, 0≥ x≥ a
�V0, 0≤ x≤ a:

�
(79)

From the first equation of system (70) we have

d2Ψ
dx2

þ E2 � mc2 þ V xð Þð Þ2
ℏ2c2

Ψ ¼ 0: (80)

Then, U0 ¼ –V0 þ V0
2= 2mc2ð Þ corresponds to the potential energy of the parti-

cle in the well in the classical meaning. In the latter case, it is known [12] that the
bound state with the energy H ¼ 0 E ¼ mc2ð Þ arises under the conditions

U0 ¼ � π2ℏ2

2ma2
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≥ �mc2
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2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2a n
� �2q , (82)

where λ ¼ 2πƛ ¼ 2πℏ=mc ¼ h=mc: Maximum depth of the classic well is equal
to U0 ¼ –mc2=2 at V0 ¼ mc2: The condition for the existence of the bound state
with an energy H ¼ 0 E ¼ mc2ð Þ in a potential well of size a is expressed by the
relation

a ¼ λn=2, n ¼ 1, 2, 3… (83)

In the three-dimensional case, the bound state with the energy H ¼ 0 E ¼ mc2ð Þ
arises under the same conditions [23] for a spherical well with a diameter d and
depth V0 with the d ¼ λn=2, n ¼ 1, 2, 3… .

The solution of this simple example is fundamental and accurately represents the
uncertainty principle ΔxΔp≥ℏ=2. It clearly represents the wave property of the
particle, clearly showing that the standing wave exists only at the condition a≥ λ=2
when the geometric dimensions of the well are greater than half the wavelength of
the particle.

4.2 Penetration of a particle through a potential barrier

Let us consider the problem of penetration of a particle through the rectangular
potential barrier [23] with the height V0 and width a. Then, U0 ¼ V0 þ V0

2= 2mc2ð Þ
corresponds to the potential energy of the particle in the well in the classical
meaning, and H ¼ E2–m2c4

� �
=2mc2 corresponds to the energy. Substituting these

expressions into the solution of the Schrödinger equation for the rectangular poten-
tial barrier, we obtain for the transmission coefficient D of the particle penetrating
through the potential barrier at E> V0 þmc2

�� ��
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to U0 ¼ –mc2=2 at V0 ¼ mc2: The condition for the existence of the bound state
with an energy H ¼ 0 E ¼ mc2ð Þ in a potential well of size a is expressed by the
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In the three-dimensional case, the bound state with the energy H ¼ 0 E ¼ mc2ð Þ
arises under the same conditions [23] for a spherical well with a diameter d and
depth V0 with the d ¼ λn=2, n ¼ 1, 2, 3… .

The solution of this simple example is fundamental and accurately represents the
uncertainty principle ΔxΔp≥ℏ=2. It clearly represents the wave property of the
particle, clearly showing that the standing wave exists only at the condition a≥ λ=2
when the geometric dimensions of the well are greater than half the wavelength of
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and at E< V0 þmc2
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where ƛ ¼ ℏ=mc is the de Broglie wavelength of the particle. As can be seen, the
barrier is formed only in the energy range �2mc2 >V0 >mc2.

For the problem of the passage of a particle with energy E through a potential
barrier U (Figure 2) the wave vector k is represented as

k1 ¼ 1
ℏc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � mc2ð Þ2

q
, k2 ¼ 1

ℏc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � mc2 þ Uð Þ2

q
(86)

and if the particle energy does not exceed the potential barrier, then the trans-
mission coefficient is zero, regardless of the height of the barrier and not have. In
this case, there is no contradiction similar to the Klein paradox.

4.3 Charged particle in a magnetic field

The vector potential of a uniform magnetic field A along the z axis direction in
the cylindrical coordinate system ρ,φ, zð Þ has components Aφ ¼ Hρ=2, Aρ ¼ Az ¼ 0
and Eq. (76) takes the form

ℏ2

2M
R00 þ 1

ρ
R0

� �
þ E� ℏ2m2

2M
1
ρ2

þMω2
H

8
ρ2 � p2z

2M

� �
R ¼ 0, (87)

wherem – angular quantumnumber,M –mass of electron,H–magnetic field value,
ωH ¼ eH=Mc. In this case, the equation below differs from the known [12] one by the
absence of the field linear term ℏωHm=2 and the sign of a quadratic termMω2

Hρ
2=8.

In this form, the Eq. (87) does not have a finite solution depending on the
variable ρ and, provided R = const, we have

R00 þ 1
ρ
R0 ¼ 0,

E� ℏ2m2

2Mρ2
þMω2

H

8
ρ2 � p2z

2M

� �
R ¼ 0:

(88)

Or

E� ℏ2m2

2M
1
ρ2

þMω2
H

8
ρ2 � p2z

2M
� 0: (89)

From (89) we have for the energy levels
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W ¼ Mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2 ƛ

ρ
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2ρH
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þ pz
Mc

� �2
s

: (90)

where ρH ¼ c=ωH (magnetic event horizon), and ρ as a constant parameter.
If an electron is excited by a magnetic field from a state of rest, then W ¼ Mc2

and from (88) we obtain

� ℏ2m2

2Mρ2
þMω2

H

8
ρ2 ¼ 0, (91)

or

mℏωH ¼ M ρωHð Þ2=2 ¼ Mc2

2
ρ

ƛH

� �2

(92)

From (92) for a magnetic flux quantum we have

e
hc

Hπρ2 ¼ e
hc

Φ ¼ m, ΔΦ ¼ hc
e
: (93)

We get the same results when solving the Hamilton-Jacobi equation.

4.4 Particle in the field with Morse potential energy

We determine the energy levels for a particle moving in a field with a potential
φ xð Þ ¼ �φ0e�x=d.

According to (41), for the potential energy of interaction V xð Þ with the field
φ xð Þ we obtain the expression of the potential Morse energy (Figure 6)

V xð Þ ¼ �qφ0e
�x=d þ 1

2mc2
qφ0e

�x=d
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¼ mc2 �qφ0e
mc2

�x=d
þ 1
2
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e�x=d

� �2� �
:

(94)

Figure 6.
The exponential potential of the field φ xð Þ and Morse potential energy of interaction V xð Þ.
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where ƛ ¼ ℏ=mc is the de Broglie wavelength of the particle. As can be seen, the
barrier is formed only in the energy range �2mc2 >V0 >mc2.
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and if the particle energy does not exceed the potential barrier, then the trans-
mission coefficient is zero, regardless of the height of the barrier and not have. In
this case, there is no contradiction similar to the Klein paradox.
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We determine the energy levels for a particle moving in a field with a potential
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According to (41), for the potential energy of interaction V xð Þ with the field
φ xð Þ we obtain the expression of the potential Morse energy (Figure 6)
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Figure 6.
The exponential potential of the field φ xð Þ and Morse potential energy of interaction V xð Þ.
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Schrödinger equation takes the form

d2ψ
dx2

þ 2m
ℏ2 E�mc2 � qφ0

mc2
e�x=d þ 1

2
qφ0

mc2
e�x=d
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ψ ¼ 0: (95)

Following the procedure for solving Eq. (95) in [12], introducing a variable
(taking values in the interval [0,∞]) and the notation

ξ ¼ 2d
qφ0

mc2
ƛ
d
e�x=d, s ¼ d

ƛ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2E
mc2

r
, n ¼ d

ƛ
� sþ 1

2

� �
, (96)

We get

d2ψ
dξ2

þ 1
ξ

dψ
dξ

þ � 1
4
þ nþ sþ 1=2

ξ
� s2

ξ2

� �
ψ ¼ 0: (97)

Given the asymptotic behavior of function ψ for ξ ! ∞ and ξ ! 0, after
substituting ψ ¼ e�ξ=2ξsw ξð Þ we obtain

ξw00 þ 2sþ 1� ξð Þw0 þ nw ¼ 0 (98)

equation of degenerate hypergeometric function (Kummer function).

w ¼ 1F1 �n, 2sþ 1, ξð Þ (99)

A solution satisfying the finiteness condition for ξ ¼ 0 and when ξ ! ∞ thew
turns to infinity no faster than a finite degree ξ is obtained for a generally positive n.
Moreover, the Kummer function 1F1 reduces to a polynomial.

In accordance with (96) and (99), we obtain values for energy levelsW (Figure 7)

W ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� ƛ

2d
2nþ 1ð Þ

� �2
s

: (100)

Figure 7.
The dependence of the energy of particle W on the quantum number n(100) at d ¼ 10ƛ in units of mc2.
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For the binding energy in the ground state W0 for n ¼ 0 of (100) we have
(Figure 8).

W0 ¼ mc2 �mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� ƛ

2d

� �2
s

(101)

Because parameter s is determined to be positive (96) s ¼ d=ƛ� n� 1=2≥0 and
n≤ d=ƛ� 1=2, then at n ¼ 0 the minimum value is d ¼ ƛ=2, which reflects the
Heisenberg uncertainty principle. The maximum binding energy of a particle
mc2 �W is limited from above by a value mc2 regardless of the nature and
magnitude of the interaction (Figure 9).

The interaction constant qφ0=mc2 (97) does not have any limitation on the value
and is not included in the expression for energy levels (100) and only determines the
spatial properties of the wave function (99) through variable ξ (Figures 9 and 10).

We emphasize that despite the fact that the potential energy for a stationary
particle V xð Þ has a depth of mc2=2, the maximum binding energy for a moving

Figure 9.
Dependency of function ψ ξð Þj j2 at d ¼ 10ƛ and n ¼ 0.

Figure 8.
The dependence of the binding energy of the ground state mc2 �W0 (101) on the size d≥ ƛ=2 in units of mc2.
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turns to infinity no faster than a finite degree ξ is obtained for a generally positive n.
Moreover, the Kummer function 1F1 reduces to a polynomial.

In accordance with (96) and (99), we obtain values for energy levelsW (Figure 7)

W ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� ƛ

2d
2nþ 1ð Þ

� �2
s

: (100)

Figure 7.
The dependence of the energy of particle W on the quantum number n(100) at d ¼ 10ƛ in units of mc2.
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For the binding energy in the ground state W0 for n ¼ 0 of (100) we have
(Figure 8).

W0 ¼ mc2 �mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� ƛ

2d

� �2
s

(101)

Because parameter s is determined to be positive (96) s ¼ d=ƛ� n� 1=2≥0 and
n≤ d=ƛ� 1=2, then at n ¼ 0 the minimum value is d ¼ ƛ=2, which reflects the
Heisenberg uncertainty principle. The maximum binding energy of a particle
mc2 �W is limited from above by a value mc2 regardless of the nature and
magnitude of the interaction (Figure 9).

The interaction constant qφ0=mc2 (97) does not have any limitation on the value
and is not included in the expression for energy levels (100) and only determines the
spatial properties of the wave function (99) through variable ξ (Figures 9 and 10).

We emphasize that despite the fact that the potential energy for a stationary
particle V xð Þ has a depth of mc2=2, the maximum binding energy for a moving

Figure 9.
Dependency of function ψ ξð Þj j2 at d ¼ 10ƛ and n ¼ 0.

Figure 8.
The dependence of the binding energy of the ground state mc2 �W0 (101) on the size d≥ ƛ=2 in units of mc2.
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particle in the ground state is equal to mc2 (Figure 11), which is a relativistic
effect of the particle’s motion in the ground state - in the ground state, the particle
not at rest.

4.5 Problem of the hydrogen-like atom

The motion of a charged particle in the Coulomb field can be described as a
motion in the field of an atomic nucleus (without the spin and magnetic moment)
with the potential energy –Ze2=r.

In spherical coordinates, Eq. (70) for the wave function takes the form

1
r2

∂

∂r
r2
∂Ψ
∂r

� �
þ 1
r2 sin θ

∂

∂θ
sin θ

∂Ψ
∂θ

� �
þ

1
r2 sin 2θ

∂
2Ψ
∂φ2 þ

1
ℏ2c2

E2 � mc2 � Ze2

r

� �2
 !

Ψ ¼ 0:
(102)

Figure 11.
The dependency of the potential energy of the interaction of Morse V xð Þ and energy levels of the particle W �
mc2 at d ¼ 27ƛ in units of mc2.

Figure 10.
Dependency of function ψ ξð Þj j2 at d ¼ 10ƛ and n ¼ 5.
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Separating the variables

Ψ ¼ Φm φð ÞYl, m θð ÞR nR, l rð Þ (103)

and introducing the notations [12]

α ¼ e2

ℏc
, ρ ¼ mZe2

ℏ2
2r
N

¼ Zα
mc
ℏ

2r
N

, M2 ¼ ℏ2l lþ 1ð Þ,

Hn ¼ En
2 �m2c4

2mc2
¼ �mZ2e4

ℏ2
1

2N2 ¼ �mc2Z2α2
1

2N2 ,

s sþ 1ð Þ ¼ l lþ 1ð Þ þ Z2α2 ) s ¼ �1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1=2ð Þ2 þ Z2α2

q
(104)

(only the positive root is taken for s), for stationary states we have

d2Φ
dφ2 ¼ �m2Φ,

1
sin θ

d
dθ

sin θ
dY
dθ

� �
� m2

sin 2θ
Y ¼ �l lþ 1ð ÞY,

d2R
dρ2

þ 2
ρ

dR
dρ

� s sþ 1ð Þ
ρ2

R ¼ � nr
ρ
� 1
4

� �
R,

(105)

where m ¼ �0, � 1, � 2, … , l ¼ 0, 1, 2, 3, … , mj j< l and s ¼ �1=2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1=2ð Þ2 þ Z2α2

q
.

The solution of Eq. (88) formally coincides with the well-known Fuse solution
for the molecular Kratzer potential in the form U ¼ A

r2 � B
r ¼ Z2e4

2mc2
1
r2 � Ze2 1

r at the
condition, that n� s� 1 ¼ nr must be a positive integer or zero. According to (87),
we obtain the energy levels

Hn,j ¼ �mc2
Z2α2

2 nr þ 1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1=2ð Þ2 þ Z2α2

q� �2 ,

Еn,j ¼ mc2
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1� Z2α2

nr þ 1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1=2ð Þ2 þ Z2α2

q� �2

vuuuut
,

(106)

where the radial quantum number nr ¼ 0, 1, 2, … . Introducing the principal
quantum number n ¼ nr þ lþ 1=2, l< n n ¼ 1, 2, 3, …ð Þ, we finally obtain

En,j ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2α2

nþ Zα2

lþ1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ1=2ð Þ2þZ2α2

p
� �2

vuuuut
: (107)

For the ground state with the l ¼ 0 and n ¼ 1, we have

E0 ¼ mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ Z2α2

qr , s ¼ Z2α2

1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ Z2α2

q (108)
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where the radial quantum number nr ¼ 0, 1, 2, … . Introducing the principal
quantum number n ¼ nr þ lþ 1=2, l< n n ¼ 1, 2, 3, …ð Þ, we finally obtain

En,j ¼ mc2
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For the ground state with the l ¼ 0 and n ¼ 1, we have
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without any restrictions for the value of Z. In this case, 1–s>0 and there is no fall
of the particle on the center [8], and the probability of finding the particle at the
center (in the nucleus) is always equal to zero.

In this case, the obtained fine splitting is in no way connected with the spin-orbit
interaction and is due to the relativistic dependence of the mass on the orbital and
radial velocity of motion, which results to the splitting of the levels.

4.6 Dirac equations

In the standard representation, the Dirac equations in compact notation for a
particle have the form [21].

ε̂ϕ� σ � p̂ χ ¼ mcϕ,
ε̂χþ σ � p̂ ϕ ¼ mcχ:

(109)

In addition, for the particle in an external field they can be represented in theorm

ε̂ϕ� σ � p̂ χ ¼ mcþ q
c
φ

� �
ϕþ q

c
σ �Aχ,

ε̂χþ σ � p̂ ϕ ¼ mcþ q
c
φ

� �
χ� q

c
σ �Aϕ:

(110)

By writing the wave equations for the wave functions, we obtain

∂
2

∂τ2
� ∂

2

∂r2

� �
ϕ ¼ � mc2 þ qφð Þ2 � qAð Þ2

ℏ2c2
ϕ� q

ℏc
σ � B� iEð Þχ,

∂
2

∂τ2
� ∂

2

∂r2

� �
χ ¼ � mc2 þ qφð Þ2 � qAð Þ2

ℏ2c2
χ þ q

ℏc
σ � B� iEð Þϕ,

(111)

where we used the properties of the Pauli matrices. It is easy to verify that the
functions ϕ and χ differ only in the constant phase ϕ ¼ χe�iπ ¼ �χ and the equa-
tions can be completely separated and only one equation can be used, bearing in
mind that (111) can be of a variable sign

∂
2

∂τ2
� ∂

2

∂r2

� �
Ψ ¼ � mc2 þ qφð Þ2 � qAð Þ2

ℏ2c2
Ψ� q

ℏc
σ � B� iEð ÞΨ: (112)

In the case of a stationary state, the standard representation of the wave
Eq. (110) has the form

ε�mc� q
c
φ

� �
φ ¼ σ � pþ q

c
A

� �
χ,

εþmcþ q
c
φ

� �
χ ¼ σ � p� q

c
A

� �
φ:

(113)

4.7 Dirac equations solution for a hydrogen-like atom

For a charge in a potential field with the central symmetry [23], we have

φ

χ

� �
¼

f rð Þ
r

Ωjlm

�1ð Þ1þl�l0 g rð Þ
r

Ω jl0m

0
BB@

1
CCA: (114)
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After substituting (96) into (95), we obtain

f 0 þ χ

r
f � εþmc� Ze2

c
1
r

� �
g ¼ 0

g0 � χ

r
g þ ε�mcþ Ze2

c
1
r

� �
f ¼ 0,

8>>><
>>>:

j ¼ l� 1=2j j, jmax ¼ lmax þ 1=2

χ ¼ �1, l ¼ 0

χ ¼ � jþ 1=2ð Þ:

8><
>:

(115)

Let us represent the functions f and g in the form

f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcþ ε

p
e�ρ=2ργ Q1 þ Q2ð Þ,

g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc� ε

p
e�ρ=2ργ Q1 � Q2ð Þ,

(116)

where

ρ ¼ 2λr=ℏ, λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcð Þ2 � ε2

q
, γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ Z2α2

q
, α ¼ e2

ℏc
: (117)

Substituting (116) into the Eq. (117), for the sum and difference of the equations
we have

ρQ1
0 þ γ � Zαmc=λð ÞQ1 þ χ � Zαε=λð ÞQ2 ¼ 0,

ρQ2
0 þ γ þ Zαmc=λ� ρð ÞQ2 þ χ þ Zαε=λð ÞQ1 ¼ 0:

(118)

Close to ρ ¼ 0, the system of equations always has a solution, because

γ2 � Zαmc=λð Þ2 ¼ χ2 � Zαε=λð Þ2: (119)

Then

Q2 ¼ � γ � Zαmc=λ
χ � Zαε=λ

Q1 ¼ � χ þ Zαε=λ
γ þ Zαmc=λ

Q1: (120)

Forming equations of the second order and solving with respect to Q1 and Q2,
we obtain

ρQ1
00 þ 2γ þ 1� ρð ÞQ1

0 � γ � Zαmc=λð ÞQ1 ¼ 0,

ρQ2
00 þ 2γ þ 1� ρð ÞQ2

0 � γ þ 1� Zαmc=λð ÞQ2 ¼ 0:
(121)

With allowance for (121), the solution of these equations is

Q1 ¼ AF γ � Zαmc=λ, 2γ þ 1, ρð Þ,
Q2 ¼ �A

γ � Zαmc=λ
χ � Zαε=λ

F γ þ 1� Zαmc=λ, 2γ þ 1, ρð Þ, (122)

where F α, β, zð Þ is the degenerate hypergeometric function and A is the normal-
ization constant of the wave function. The function F α, β, zð Þ reduces to a polyno-
mial, if the parameter α is equal to an integer negative number or zero. Therefore,
finite solutions for the functions f and g are

γ � Zαmc
λ

¼ �nr: (123)
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From expressions (117), we obtain

f ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcþ ε

p
e�ρ=2ργ�1 F �nr, 2γ þ 1, ρð Þ þ nr

χ � Zαε=λ
F 1� nr, 2γ þ 1, ρð Þ

� �
,

g ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc� ε

p
e�ρ=2ργ�1 F �nr, 2γ þ 1, ρð Þ � nr

χ � Zαε=λ
F 1� nr, 2γ þ 1, ρð Þ

� �
,

(124)

where nr ¼ 0, 1, 2, … is the radial quantum number. For the energy levels, we
obtain from the condition (117)

εp,χ
mc

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2α2

nr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ Z2α2

p� �2

vuuut (125)

and taking into account the obtained values of χ, we finally have
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where the principal quantum number n ¼ nr þ jþ 1=2. Besides j ¼ n� 1=2, all
other levels with j< n� 1=2 are degenerated twice in the orbital angular momentum
l ¼ j� 1=2j j. The ground state energy for n ¼ 1 and j ¼ 1=2 is

E0 ¼ mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2α2

p (127)

without any limitations for the value of Z. In this case γ � 1 ¼ �1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2α2

p
>0, and no falling of particle on the center is observed, and the proba-

bility to find the particle in the center (in the nucleus) is always equal to zero.
In the resulting formula (126), the order of sequence of the fine splitting levels is

inverse relative to the order of sequence in the well-known Sommerfeld-Dirac
formula. If to compare the expansions in a series in the degree of the fine-structure
constant of two formulas
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then the difference will be equal to
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where the last term is the expression for the spin-orbit interaction energy. Thus,
to obtain the true value of the energy levels of the hydrogen atom, it is necessary to
add the energy of the spin-orbit interaction in formula (126) in the form (130). This
is completely justified, because such an interaction was not initially included in
Eq. (115) and was not reflected in the final result.

5. Conclusion

The principle of invariance is generalized and the corresponding representation
of the generalized momentum of the system is proposed; the equations of relativis-
tic and quantummechanics are proposed, which are devoid of the above-mentioned
shortcomings and contradictions. The equations have solutions for any values of the
interaction constant of the particle with the field, for example, in the problem of a
hydrogen-like atom, when the atomic number of the nucleus Z > 137. The equations
are applicable for different types of particles and interactions.

Based on the parametric representation of the action and the canonical equa-
tions, the corresponding relativistic mechanics based on the canonical Lagrangian is
constructed and the equations of motion and expression are derived for the force
acting on the charge moving in an external electromagnetic field.

The matrix representation of equations of the characteristics for the action
function and the wave function results in the Dirac equation with the correct
enabling of the interaction. In this form, the solutions of the Dirac equations are not
restricted by the value of the interaction constant and have a spinor representation
by scalar solutions of the equations for the action function and the wave function.

The analysis of the solutions shows the full compliance with the principles of the
relativistic and quantum mechanics, and the solutions are devoid of any restrictions
on the nature and magnitude of the interactions.

The theory of spin fields and equations for spin systems will be described in
subsequent works.
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From expressions (117), we obtain
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where nr ¼ 0, 1, 2, … is the radial quantum number. For the energy levels, we
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where the last term is the expression for the spin-orbit interaction energy. Thus,
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5. Conclusion

The principle of invariance is generalized and the corresponding representation
of the generalized momentum of the system is proposed; the equations of relativis-
tic and quantummechanics are proposed, which are devoid of the above-mentioned
shortcomings and contradictions. The equations have solutions for any values of the
interaction constant of the particle with the field, for example, in the problem of a
hydrogen-like atom, when the atomic number of the nucleus Z > 137. The equations
are applicable for different types of particles and interactions.

Based on the parametric representation of the action and the canonical equa-
tions, the corresponding relativistic mechanics based on the canonical Lagrangian is
constructed and the equations of motion and expression are derived for the force
acting on the charge moving in an external electromagnetic field.

The matrix representation of equations of the characteristics for the action
function and the wave function results in the Dirac equation with the correct
enabling of the interaction. In this form, the solutions of the Dirac equations are not
restricted by the value of the interaction constant and have a spinor representation
by scalar solutions of the equations for the action function and the wave function.

The analysis of the solutions shows the full compliance with the principles of the
relativistic and quantum mechanics, and the solutions are devoid of any restrictions
on the nature and magnitude of the interactions.
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Chapter 8

Nature of Temporal (t > 0)
Quantum Theory: Part I
Francis T.S. Yu

Abstract

It is our science governs the mathematics and it is “not” our mathematics
governs our science. One of the very important aspects is that every science has to
comply with the boundary condition of our universe; dimensionality and temporal
(t > 0) or causality. In which I have shown that time is real and it is not an illusion,
since every aspect within our universe is coexisted with time. Since our universe is a
temporal (t > 0) subspace, everything within our universe is temporal. Science is
mathematics but mathematics is not science, we have shown that any analytic
solution has to be temporal (t > 0); otherwise, it cannot be implemented within our
universe. Which includes all the laws, principles, and theories have to be temporal?
Uncertainty principle is one of the most fascinated principles in quantum mechan-
ics, yet Heisenberg principle was based on diffraction limited observation, it is not
due to the nature of time. We have shown it is the temporal (t > 0) uncertainty that
changes with time. We have introduced a certainty principle as in contrast with
uncertainty principle. Of which certainty subspace can be created within our uni-
verse; which can be exploited for application. Overall of this chapter is to show that;
it is not how rigorous the mathematics is, it is the physical realizable paradigm that
we embrace.

Keywords: temporal universe, timeless space, physical realizable, uncertainty
principle, certainty principle, quantum mechanics

1. Introduction

Strictly speaking every scientific solution has to be proven whether it is physical
realizable before considering for experimentation, since analytical solution is math-
ematics. For example, if an elementary particle has proven not a temporal (t > 0) or
a timeless (t = 0) particle, it has no reason to spend that big a budget for experi-
mentally searching a timeless (t = 0) particle since timeless particle does not exist
within our universe. Similarly, a mathematician discovers a 10-dimensional sub-
space, would not you want to prove that his 10-dimensional subspace is a temporal
(t > 0) subspace, before experimentally search for it since mathematical solution is
virtual.

Nevertheless at the dawn of science, scientists have been using a piece or pieces
of papers; drawn models and paradigms in it and using mathematics as a tool
analyzing for possible solution. But never occurs to them the back ground of that
piece of paper represented a mathematical subspace that is “not” existed within our
universe, for which practically all the laws, principles, and theories were developed

139



Chapter 8

Nature of Temporal (t > 0)
Quantum Theory: Part I
Francis T.S. Yu

Abstract

It is our science governs the mathematics and it is “not” our mathematics
governs our science. One of the very important aspects is that every science has to
comply with the boundary condition of our universe; dimensionality and temporal
(t > 0) or causality. In which I have shown that time is real and it is not an illusion,
since every aspect within our universe is coexisted with time. Since our universe is a
temporal (t > 0) subspace, everything within our universe is temporal. Science is
mathematics but mathematics is not science, we have shown that any analytic
solution has to be temporal (t > 0); otherwise, it cannot be implemented within our
universe. Which includes all the laws, principles, and theories have to be temporal?
Uncertainty principle is one of the most fascinated principles in quantum mechan-
ics, yet Heisenberg principle was based on diffraction limited observation, it is not
due to the nature of time. We have shown it is the temporal (t > 0) uncertainty that
changes with time. We have introduced a certainty principle as in contrast with
uncertainty principle. Of which certainty subspace can be created within our uni-
verse; which can be exploited for application. Overall of this chapter is to show that;
it is not how rigorous the mathematics is, it is the physical realizable paradigm that
we embrace.

Keywords: temporal universe, timeless space, physical realizable, uncertainty
principle, certainty principle, quantum mechanics
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from a piece or pieces of papers, which are timeless (t = 0) and strictly speaking are
virtual.

Since science is mathematics but mathematics is “not” equaled to science, it is
vitally important for us to understand what science really is. In order to understand
science, firstly we have to understand what supported the science? For which the
supporter must be the subspace within our universe. In other words, any scientific
solution has to be proven existed within our universe; otherwise, it may be fictitious
and virtual as mathematics is, since science is mathematics. In which we see that,
our universe is a physical subspace that supports every physical realizable aspect
within her space, “if and only if ” the scientific postulation complies within the
existent condition of our universe; dimensionality and causality or temporal (t > 0).

The essence of our temporal (t > 0) universe is that; if a mathematical solution is
“not” complied within the temporal (t > 0) condition of our universe, it cannot
exist within our universe. Since quantum mechanics is one of the pillars in modern
science, I will start with one of the most intriguing principles in quantum
mechanics; uncertainty principle. I will carry on the principle onto a newly found
“certainty” principle. In which I will show Heisenberg’s principle was based on
diffraction limited observation, instead upon on “nature” of time, developing his
principle. I will also show the mystery of coherence theory can be understood with
principle of certainty. In which I will show that; certainty subspace can be created
within our temporal (t > 0) universe. Samples as applied to synthetic aperture
imaging and wave front reconstruction will be included.

2. Science and mathematics

There is a profound relationship between science and mathematics, in which we
have seen that without mathematics there would be no science. In other words,
science needs mathematics but mathematics does not need science. Although sci-
ence is mathematics but mathematics is not science. For example, any mathematical
solution if it cannot be proven it exists within our universe, then her solution is
“not” a “physical realizable” solution that can be “directly” implemented within our
temporal (t > 0) universe.

But this is by no means to say that; the solutions are not temporal (t > 0) or
timeless (t = 0) solutions there are not science. In fact practically all the fundamen-
tal laws, principles, and theories are timeless (t = 0) or time-independent. And these
timeless (t = 0) laws, principles, and theories were and “still” are the corner stone
and foundation of our science, as I will call them timeless (t = 0) or time-
independent science; a topic I will elaborate in a different occasion. For simplicity,
let me take one of the simplest examples; Einstein’s energy Eq. (1) as given by;

E ¼ mc2 (1)

where E is the energy, m is the mass and c is the velocity of light. This equation is
one of the most famous equations in science, yet it is timeless (t = 0). Although this
equation has been repeatedly used and applied in practice, but strictly speaking; it
cannot be directly implemented within our temporal (t > 0) universe, since it is not
a time variable function. Let us transform Einstein’s equation into a time variable
equation as given by [1].

∂E tð Þ
∂t

¼ �c2
∂m tð Þ
∂t

, t>0 (2)
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where ›E(t)/›t is the rate of increasing energy conversion, �›m/›t is the
corresponding rate of mass reduction, c is the speed of light, and t > 0 denotes a
forward time-variable equation. In which we see Eq. (2) is a time-dependent equa-
tion exists at time t > 0, which represents a forwarded time variable function that
only occurs after time excitation at t = 0. Incidentally, this is the well-known
“causality” constraint (i.e., t > 0) [2] as imposed by our temporal (t > 0) universe.

Nevertheless in mathematical, a postulation is first needed to proof that there is
solution existed before we search for the solution, although it is not guarantee that
we can find it. But it seems to me it does not have a criterion to proof that a
hypothetical science is existed within our universe, before we search for the science.
For example, an analytically solution indicates that it exists an “angle particle” from
a complicated mathematical analyses, will not you want to find out first is the
solution existed within our temporal (t > 0) universe before experimentally to
search for it. And this is precisely that we shall know first before experimentation is
taken place, since it is a very costly in time and in revenue to find a physical particle.

Although science needs mathematics, but without simplicity mathematically
approximation, science would be very difficult to learn and to facilitate. And this is
precisely the reason practically all the fundamental laws are point-singularity
approximated. In which we see precisely, science is a “law of approximation” and
mathematics is “an axiom of certainty”. Again we take Einstein’s energy equation of
Eq. (1) as an example, no dimension and size and it is a typical point-singularity
approximated equation. It is discernible; if we include all the negligibly terms,
“physical significances” of this equation would be over whelmed by the terms of
mathematics. For which we see that an ounce of good approximation worth more
than tons of mathematical calculation!

Let me stress that the essence of simplicity in science is that without the sym-
bolic substitution and approximation, it will be extremely difficult or even impos-
sible to develop science since science itself is already very complicated. Yet
simplicity representation of science has also been misinterpreted as referred them as
“classical and deterministic (i.e., classical physics).” The implication of determinis-
tic or classical is a totally misled by our part, since our predecessors who developed
those fundamental laws and principles were “precisely” understood the deficiency
of approximation. Yet without the approximated presentation, how can we develop
science? Instead of ignoring our predecessors’ wisdom, turns around we had treated
them “deterministic” or classical, which were “never” been our predecessors inten-
tion. Again without the point-singularity approximated science, please tell me how
we can develop those simple and elegant laws, principles, and theories. Although
those laws, principles, and theories were timeless (t = 0), most of them were and
“still” are the foundation and corner stone of our science. Nevertheless, mathemat-
ics is a “symbolic” langue of science, but mathematics is not science.

Since all laws, principles, and theories were made to be broken or revised or
even to replace, as science advances into sub-subatomic scale regime and moving
closer to near real time processing, those timeless (t = 0) laws, principles, and
theories could produce incomprehensible consequences; particularly as applied
them directly confronting the temporal (t > 0) constraint of our universe. For
example, as applying superposition principle to quantum computing and commu-
nication, since superposition is a timeless (t = 0) principle [3].

3. Temporal (t > 0) subspace

In this section, I will show several subspaces that have been used by the scien-
tists, in the past as depicted in Figure 1. It is reasonable to stress that why subspace
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of a scientific model embedded is crucially important is that any analytical solution
produced follows the “limitation” of the subspace, because it is the subspace dic-
tates the science but “not” the mathematics changes the subspace.

For example, when you are designing a submarine, the subspace that the sub-
marine is supposed to be situated within is vitally important; otherwise, your
submarine will very “likely” not to survive thousands of feet underwater pressure.
Therefore, it is necessary to know the subspace that a postulated science to be
implementing into it; otherwise, the postulated science is very likely “cannot” be
existed within the subspace.

In view of Figure 1, we see that; there is an absolute-empty space, a mathemat-
ical virtual space, a Newtonian’s space [4], and a temporal (t > 0) space. An
absolute-empty space or just empty space has no substance and has no time. A
mathematical virtual space is an empty space which has no substance in it, but
mathematicians and theoretical scientists can implant coordinate system in it, since
mathematics is virtual and theoretical scientists are also mathematicians.

We note that mathematical virtual space has been used over centuries by scien-
tists at the dawn of science, but this is a virtual space that does “not” exist within
our temporal (i.e., t > 0) universe. The next subspace is known as Newtonian space
[4]; it has substance and coordinates in it, but treated time as an “independent”
variable, for which Newtonian and mathematical spaces are virtual the “same.”
Since Newtonian space is time independent, it “cannot” be exist within our tempo-
ral (t > 0) space since time and substance has to be “mutually coexisted” within our
temporal (t > 0) universe. Yet scientists have been using Newtonian space for their
analyses over centuries and not knowingly it is a virtual space.

The last subspace is known as temporal (t > 0) space [5], where time and
substance are interdependently “coexisted” and time is a forward “dependent var-
iable” runs at a “constant speed”. We stress that this temporal (t > 0) subspace is
currently “only” physical realizable space, where the space was created by Einstein
energy Eq. (2).

Physical reality is that any scientific hypothesis that deviates “away” the
boundary condition that imposed by our temporal (t > 0) universe is “not” a
physically realizable solution. But this is by no means that the virtual mathematical
empty space and Newtonian space are useless. The fact is that all the physical
sciences were developed within timeless (t = 0) or Newtonian subspaces “inadver-
tently,” at the dawn of science. Practically all the fundamental laws, principles,
and theories were derived from a timeless (t = 0) subspace, which was from the
background subspace of a piece of paper although not intentionally [6]. In which we
see that practically all the laws, principle, and theories are timeless (t = 0).

Figure 1.
(a) Shows an absolute-empty space, (b) a virtual mathematical space, (c) a Newtonian space, and
(d) a temporal (t > 0) space, respectively.
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Nevertheless what temporal (t > 0) space means is that any subspace is
coexisted with time, where time is a forward dependent variable with respect to its
subspace and its speed has been well settled when our universe was created. This
means that before the creation of our temporal universe, there is a “larger” temporal
space that our universe is embedded in; otherwise, our universe will “not” be
existed. Nevertheless every subspace within our universe is a time varying stochas-
tic [7] subspace, in which every substance or subspace changes with time. Strictly
speaking our universe is a “temporal (t > 0) stochastic expanding subspace.” For
which we see that; any postulated law, principle, and theory has to comply with the
temporal (t > 0) condition within our universe; otherwise, it is virtual as
mathematics.

4. Timeless (t = 0) space

Let me show what mathematicians can do within a virtual subspace as depicted
in Figure 2. Since quantum mechanists are also mathematicians, they can implant
coordinate system within an empty space as they wishes, regardless whether the
model is physically realizable or not.

The basic difference between Figure 2(a) and (b) is that there is a virtual
coordinate system that has been added in Figure 2(b) by quantum mechanists.
Once the coordinate system is implanted, dimensionality of the sub-atomic particles
cannot be ignored. The reason is that for the atomic model to be existed within the
subspace, the atomic model has to “comply” with the existence conditions within
the subspace, since it is the subspace affects the solution and not the solution
changes the subspace. In which we see that neither Figure 2(a) nor Figure 2(b) are
“not” physical realizable paradigms. For which solutions obtained from these empty
subspace models will be timeless (t = 0).

Aside the non-physical realizable paradigms of Figure 2, I will show what a
timeless (t = 0) subspace can do for substances within the subspace. Let me assume
we have three particles situated within an empty space, as normally do on a “piece
of paper”, shown in Figure 3.

Figure 2.
A set of atomic models embedded within virtual empty subspaces. (a) shows a singularity approximated atomic
model is situated within an empty space, which has no coordinate system. (b) shows an atomic model is
embedded within empty space that has a coordinate system drawn into it.
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Since empty subspace has “no time,” all particles within the subspace collapse or
“superimposing” instantly all together at t = 0, because time is distance and distance
is time. This is precisely the “simultaneous and instantaneous” superposition prin-
ciple does in quantum mechanics [3]. The reason particles collapsed at t = 0, it is
because the subspace has “no time.” And the other reason that particles
superimposed together, since within a timeless (t = 0) space, it has “no distance” or
no space.

By virtue of energy conservation, we see that superimposed particles has a mass
equals to the sum of entire superimposed particles, but it has “no size.” In view of
timelessness space, we see that the superimposed particles can be found everywhere
within the entire timeless (t = 0) subspace, since timeless (t = 0) subspace has “no”
distance, as depicted hypothetically in Figure 4. In which we see that Schrödinger’s
fundamental principle of superposition is existed within a virtual timeless (t = 0)
subspace, and it cannot be existed within our temporal (t > 0) universe, since
timeless and temporal are “mutually exclusive.”

By the way, this is precisely the superposition principle that Einstein was
objecting to, which he called it spooky. As I quote from a 1935 The New York Times’
article (i.e., Figure 5), “Einstein and two scientists found quantum theory is

Figure 3.
A hypothetical scenario shows three particles are embedded within an empty subspace.

Figure 4.
Superimposed particle existed “simultaneously and instantaneously” all over the entire timeless (t = 0) subspace.
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incomplete even though correct” [8]. In view of preceding illustration, we see that
Schrödinger’s superposition principle is “correct” but only within a timeless (t = 0)
subspace and it is “incorrect” within our temporal (t > 0) space,” since timeless
space cannot exist within our temporal universe.

5. Time is not an illusion but real

As we accepted subspace and time are coexisted within our temporal (t > 0)
universe, time has to be real and it cannot be virtual, since we are physically real.
And every physical existence within our universe is real. The reason some scientists
believed time is virtual or illusion is that; it has no mass, no weight, no coordinate,
no origin, and it cannot be detected or even be seen. Yet time is an everlasting
existed real variable within our known universe. Without time there would be no
physical matter, no physical space, and no life. The fact is that every physical matter
is associated with time which including our universe. Therefore, when one is deal-
ing with science, time is one of the most enigmatic variables that ever presence and
cannot be simply ignored. Strictly speaking, all the laws of science as well every
physical substance cannot be existed without the existence of time. For which we
see that time “cannot” be a dimension or an illusion. In other words, if time is an
illusion, then time will be “independent” from physical reality or from our universe.
And this is precisely that many scientists have treated time as an “independent”
variable such as Murkowski’s space [9], for which the space can be “curved” or
time-space can be changed by gravity [10]. If time-space can be curved, then we
can change the “speed” of time. In other words, is our universe exists with time, or
time exists with universe? The answer is our universe exists with time, although
space and time are interdependent but is not time exists with our universe.

As time is coexisted with subspace, we see that any subspace within our tempo-
ral (t > 0) universe cannot be empty and speed of time is the same everywhere
within our universe. This means that the speed of time within a subspace is “rela-
tively” with respect to the different subspaces, as based on Einstein’s special theory
of relativity [9]. For example, subspaces closer to the edge of our universe, their
time runs faster “relative” to ours, but the speed of time within the subspaces near
the edge as well within our subspace are the “same,” which has been determined by
the speed of light as our universe was created by a big bang theory using Einstein
equation as given by [5];

Figure 5.
A 1935 New York times’ article.

145

Nature of Temporal (t > 0) Quantum Theory: Part I
DOI: http://dx.doi.org/10.5772/intechopen.93561



Since empty subspace has “no time,” all particles within the subspace collapse or
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Figure 3.
A hypothetical scenario shows three particles are embedded within an empty subspace.

Figure 4.
Superimposed particle existed “simultaneously and instantaneously” all over the entire timeless (t = 0) subspace.
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incomplete even though correct” [8]. In view of preceding illustration, we see that
Schrödinger’s superposition principle is “correct” but only within a timeless (t = 0)
subspace and it is “incorrect” within our temporal (t > 0) space,” since timeless
space cannot exist within our temporal universe.
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existed real variable within our known universe. Without time there would be no
physical matter, no physical space, and no life. The fact is that every physical matter
is associated with time which including our universe. Therefore, when one is deal-
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variable such as Murkowski’s space [9], for which the space can be “curved” or
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tively” with respect to the different subspaces, as based on Einstein’s special theory
of relativity [9]. For example, subspaces closer to the edge of our universe, their
time runs faster “relative” to ours, but the speed of time within the subspaces near
the edge as well within our subspace are the “same,” which has been determined by
the speed of light as our universe was created by a big bang theory using Einstein
equation as given by [5];
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where ›E/›t is the rate of increasing energy conversion, �›m/›t is the
corresponding rate of mass reduction, c is the speed of light and t > 0 represents a
forward time-variable. In which we see that it a “time-dependent” equation exists at
time t > 0; a well-known causality constraint (i.e., t > 0) [2] as imposed by our
universe. Similarly preceding equation can be written as:
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where ε and μ are the permittivity and the permeability of the deep space,
respectively, υ is the radian frequency variable, E2(υ) and H2(υ) are the respective
electric and magnetic field intensities, the negative sign represents the “out-flow”

energy per unit time from an unit volume, ∇�ð Þ is the divergent operator, and S is
known as the Poynting Vector or “Energy Vector” of an electro-magnetic radiator
as can be shown by S(υ) = E(υ) � H(υ) [11].

In view of this equation, we see how our universe was created as depicted by a
composited diagram in Figure 6, in which we see that radian energy (i.e., radiation)
diverges from the mass, as mass reduces with time. In which we see that our
universe enlarges and her boundary expands at speed of speed of light.

Figure 7 shows a schematic diagram of our temporal (t > 0) universe, which
depicts approximately the behavior of subspace changes as her boundary expands
with speed of light. In which we see that, subspace enlarges faster closer toward
the boundary, but solid substance m (t) changes little within the subspace. We
also see that the out-ward speed of particle (or subspace) increases “linearly” as
boundary increases with light speed. For example; out-ward speed of particle 2 is
somewhat faster than particle 1 (i.e., v2 > v1). For which we see that our universe
is a dynamic temporal (t > 0) “stochastic” universe that simple geometrical
equation or mathematical abstract space can describe. One of the important
aspects of our universe is that every subspace, no matter how small it is, “cannot”
be empty and it has time.

For instance, in order for us to be existed within our planet, we must be
temporal (t > 0): that is we have time and must change with time; otherwise, we

Figure 6.
Composite temporal (t > 0) universe diagrams. r = ct, r is the radius of our universe, t is time, c is the velocity of
light, and ε0 and μ0 are the permittivity and permeability of the space.
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cannot exist within our universe. In other words, our time is the same as our planet
and the universe but the velocity of our planet is different from other subspaces. For
example, subspaces near the edge of our universe are moving faster than us, for
which it has “relative” speed of time between us and a subspace closer to the edge of
our universe. On the other hand, if we assume that we are timeless (t = 0), we could
“not” have existed within our universe, since time and timelessness are mutually
exclusive.

I further note that any subspace within our universe cannot empty, since sub-
space is coexisted with time. Although subspace is coexisted with time, but time is
neither equaled to subspace. Yet, space is time and time is space since time and
space are mutually inclusive. For example, substance has dimension (or space), but
time has no dimension and no mass. In which we see that time is “not” a dimension
but it is “dependently” existed with respect to subspace. In which we stress that it is
our universe governs the science and it is not the science changes our universe.

Once again, we have shown that time is “not “an illusion or virtual, time is
physically real because everything existed within our living space is physical real;
otherwise, it will not be existed within our temporal universe. In other words,
everything within our universe is temporal (t > 0), of which I have discovered that
practically all the laws, principles, theories, and paradoxes of science were devel-
oped from a timeless (t = 0) platform (i.e., a pieces or pieces of papers) for
centuries, at the dawn of science “inadvertently” [6].

Nevertheless, one of the important aspects within our universe is that every
subspace has a price, an amount of energy ΔE, and a section of time Δt to create
(i.e., ΔE and Δt), and it is “not free.” For example, a simple facial tissue takes a huge
amount of energy ΔE and a section of time Δt to create. It is, however, a “neces-
sary” but not sufficient condition, because it also needs an amount of information
ΔI to make it happen (i.e., ΔE, Δt, and ΔI) [12].

In short, I would stress that if there is a beginning then there is an end. Since
time and space are coexisted, then time and space have no beginning and no end. In
which we see that time-space [or temporal (t > 0) space] is ever existed, since
existence and non-existence are mutually exclusive. In other words, emptiness and
non-emptiness are mutually excluded, then time “always” exists with space. Thus,
time is real because the space is real, for which time-space has no beginning and has
no end. And this must be the art of temporal (t > 0) universe.

Figure 7.
A schematic diagram of our temporal (t > 0) universe. c is the speed of light, m(t) is the temporal mass, and v is
the radial velocity.
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diverges from the mass, as mass reduces with time. In which we see that our
universe enlarges and her boundary expands at speed of speed of light.

Figure 7 shows a schematic diagram of our temporal (t > 0) universe, which
depicts approximately the behavior of subspace changes as her boundary expands
with speed of light. In which we see that, subspace enlarges faster closer toward
the boundary, but solid substance m (t) changes little within the subspace. We
also see that the out-ward speed of particle (or subspace) increases “linearly” as
boundary increases with light speed. For example; out-ward speed of particle 2 is
somewhat faster than particle 1 (i.e., v2 > v1). For which we see that our universe
is a dynamic temporal (t > 0) “stochastic” universe that simple geometrical
equation or mathematical abstract space can describe. One of the important
aspects of our universe is that every subspace, no matter how small it is, “cannot”
be empty and it has time.

For instance, in order for us to be existed within our planet, we must be
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cannot exist within our universe. In other words, our time is the same as our planet
and the universe but the velocity of our planet is different from other subspaces. For
example, subspaces near the edge of our universe are moving faster than us, for
which it has “relative” speed of time between us and a subspace closer to the edge of
our universe. On the other hand, if we assume that we are timeless (t = 0), we could
“not” have existed within our universe, since time and timelessness are mutually
exclusive.

I further note that any subspace within our universe cannot empty, since sub-
space is coexisted with time. Although subspace is coexisted with time, but time is
neither equaled to subspace. Yet, space is time and time is space since time and
space are mutually inclusive. For example, substance has dimension (or space), but
time has no dimension and no mass. In which we see that time is “not” a dimension
but it is “dependently” existed with respect to subspace. In which we stress that it is
our universe governs the science and it is not the science changes our universe.

Once again, we have shown that time is “not “an illusion or virtual, time is
physically real because everything existed within our living space is physical real;
otherwise, it will not be existed within our temporal universe. In other words,
everything within our universe is temporal (t > 0), of which I have discovered that
practically all the laws, principles, theories, and paradoxes of science were devel-
oped from a timeless (t = 0) platform (i.e., a pieces or pieces of papers) for
centuries, at the dawn of science “inadvertently” [6].

Nevertheless, one of the important aspects within our universe is that every
subspace has a price, an amount of energy ΔE, and a section of time Δt to create
(i.e., ΔE and Δt), and it is “not free.” For example, a simple facial tissue takes a huge
amount of energy ΔE and a section of time Δt to create. It is, however, a “neces-
sary” but not sufficient condition, because it also needs an amount of information
ΔI to make it happen (i.e., ΔE, Δt, and ΔI) [12].

In short, I would stress that if there is a beginning then there is an end. Since
time and space are coexisted, then time and space have no beginning and no end. In
which we see that time-space [or temporal (t > 0) space] is ever existed, since
existence and non-existence are mutually exclusive. In other words, emptiness and
non-emptiness are mutually excluded, then time “always” exists with space. Thus,
time is real because the space is real, for which time-space has no beginning and has
no end. And this must be the art of temporal (t > 0) universe.

Figure 7.
A schematic diagram of our temporal (t > 0) universe. c is the speed of light, m(t) is the temporal mass, and v is
the radial velocity.
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6. Law of uncertainty

One of the most intriguing principles in quantum mechanics [13] must be the
Heisenberg’s Uncertainty Principle [14], as shown by the following equation:

Δp Δx≥h (5)

where Δp and Δx are the momentum and position errors, respectively, and h is
the Planck’s constant. As reference to “wave-particle dynamics,” the momentum p
of a “photonic particle” is presented by a “quanta” of energy hυ as given by:

p ¼ h=λ ¼ hυ=c (6)

where h is the Planck’s constant, λ is the wavelength, υ is the frequency, and c is
the velocity of light.

In which we see that Heisenberg’s principle was based on “wave-particle duality”
existed within an “empty space.” The essence of the Heisenberg’s uncertainty
principle is that one cannot precisely determine the position x and the momentum
p of a particle “simultaneously under observation”, as illustrated in Figure 8. In
which we see that; it is “independent” of time, since Heisenberg’s principle was
based on “observation” stand point which has nothing to do with changing naturally
with time. Yet we know that if there is “no” time there is “no” uncertainty.

In view of Figure 8, Heisenberg principle was derived on an empty timeless
(t = 0) subspace and it has “nothing to do or independent” with the “underneath
subspace” that the particle is situated. Strictly speaking, it is “not” a physical
realizable paradigm should be used in the first place, since particle and empty
subspace are “mutual exclusive.” Secondly, the position error Δx of Heisenberg was
based on a “diffraction limited” microscopic observation, where the “spatial”
ambiguity of Δx is given by [15]:

Δx ¼ 0:6 λ= sin α (7)

where λ is the observation wavelength, 2(sin α) is the “numerical aperture” of
the microscope and α is subtended half-angle of observation aperture. In which we

Figure 8.
A particle in motion within an “empty” subspace. v is the velocity. Note that background paper has been treated
as an “empty” subspace for centuries.
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see that the position error Δx is “not” due to particle in motion, but based on the
diffraction limited aperture. This is precisely why Heisenberg’s position error Δx
has been interpreted as an “observation error” which is independent with time. But
uncertainty changes naturally with time, since without time it has no uncertainty.

Secondly, the momentum error Δp as I quote [15]: after collision the particle
being observed, the photon’s path is only to lie within a cone having semi-vertical
angle α in which momentum of the particle is uncertain by the amount as given by:

Δp ¼ h sin αÞ=λð (8)

where λ is the wavelength of the quantum leap of hυ. In which we see that;
momentum error Δp is “not” due to band width Δυ of quantum leap since any
physical radiator has to be band limited. In other words, the momentum error Δp of
preceding Eq. (8) is a singularity approximated λ, which is “not” a band limited Δλ
of physical reality.

As we look back at the subspace that Heisenberg’s principle developed from, it
was an “inadvertently” timeless (t = 0) subspace as shown in Figure 8. Aside the
timeless (t = 0) subspace, it is the uncertainty mainly due to diffraction limited
observation, which is a “secondary cause” by human intervention, but not due to
naturally change with time. This is similar to entropy theory of Boltzmann [16]:
entropy increases naturally with time within an enclosed subspace. In which we see
that uncertainty should be increasing with time, without human intervention. As I
have noted, without time, there would be no entropy and no uncertainty.

Nevertheless, momentum error Δp and position error Δx are mutually
“coexisted.” In principle they can be traded. But the trading cannot without con-
straint, since time is a dependent forward variable. But Heisenberg uncertainty;
Δp and Δx are “not” mutually dependent, since his position error Δx is due to
diffraction limited observation, which is nothing to do with time. For which it poses
a physical “inconsistency” within our universe, although Heisenberg principle has
been widely used without any abnormality. But it is from the “physical consistency”
standpoint, Heisenberg’s position error Δx was based on diffraction limited obser-
vation has “nothing” to do with time. And also added and his momentum error
Δp was based on singularity wavelength λ which is “not” a band limited reality.

Yet, uncertainty principle can be made temporal (t > 0), similar to entropy
theory of Boltzmann. For which we have a “law of uncertainty” as stated: uncer-
tainty of an isolated particle increases naturally with time. Or more specific: uncer-
tainty of an isolated particle within an isolated subspace, increases with time and
eventually reaches to a maximum amount within the isolated subspace. For which
we see that there it exists a profound connection between uncertainty and entropy.

7. Temporal (t > 0) uncertainty

Since it is our universe governs the science and it is not the science governs our
universe. Therefore, every principle within our universe has to comply with the
temporal (t > 0) condition within our universe; otherwise, the principle cannot be
existed within our universe. Which includes all the laws, principles and theories;
such as Maxwell’s Electro-Magnetic theory, Boltzmann’s entropy theory, Einstein’s
relativity theory, Bohr’s atomic model, Schrödinger’s superposition principle, and
others. Of which uncertainty principle cannot be the exception?

Let us now assumed a temporal (t > 0) particle m(t) is situated within a
temporal (t > 0) subspace as depicted in Figure 9. Strictly speaking any particle
existed within a temporal subspace must be a temporal (t > 0) particle; otherwise,
the particle cannot be existed within our temporal (t > 0) universe.
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see that the position error Δx is “not” due to particle in motion, but based on the
diffraction limited aperture. This is precisely why Heisenberg’s position error Δx
has been interpreted as an “observation error” which is independent with time. But
uncertainty changes naturally with time, since without time it has no uncertainty.

Secondly, the momentum error Δp as I quote [15]: after collision the particle
being observed, the photon’s path is only to lie within a cone having semi-vertical
angle α in which momentum of the particle is uncertain by the amount as given by:

Δp ¼ h sin αÞ=λð (8)

where λ is the wavelength of the quantum leap of hυ. In which we see that;
momentum error Δp is “not” due to band width Δυ of quantum leap since any
physical radiator has to be band limited. In other words, the momentum error Δp of
preceding Eq. (8) is a singularity approximated λ, which is “not” a band limited Δλ
of physical reality.

As we look back at the subspace that Heisenberg’s principle developed from, it
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timeless (t = 0) subspace, it is the uncertainty mainly due to diffraction limited
observation, which is a “secondary cause” by human intervention, but not due to
naturally change with time. This is similar to entropy theory of Boltzmann [16]:
entropy increases naturally with time within an enclosed subspace. In which we see
that uncertainty should be increasing with time, without human intervention. As I
have noted, without time, there would be no entropy and no uncertainty.

Nevertheless, momentum error Δp and position error Δx are mutually
“coexisted.” In principle they can be traded. But the trading cannot without con-
straint, since time is a dependent forward variable. But Heisenberg uncertainty;
Δp and Δx are “not” mutually dependent, since his position error Δx is due to
diffraction limited observation, which is nothing to do with time. For which it poses
a physical “inconsistency” within our universe, although Heisenberg principle has
been widely used without any abnormality. But it is from the “physical consistency”
standpoint, Heisenberg’s position error Δx was based on diffraction limited obser-
vation has “nothing” to do with time. And also added and his momentum error
Δp was based on singularity wavelength λ which is “not” a band limited reality.

Yet, uncertainty principle can be made temporal (t > 0), similar to entropy
theory of Boltzmann. For which we have a “law of uncertainty” as stated: uncer-
tainty of an isolated particle increases naturally with time. Or more specific: uncer-
tainty of an isolated particle within an isolated subspace, increases with time and
eventually reaches to a maximum amount within the isolated subspace. For which
we see that there it exists a profound connection between uncertainty and entropy.

7. Temporal (t > 0) uncertainty

Since it is our universe governs the science and it is not the science governs our
universe. Therefore, every principle within our universe has to comply with the
temporal (t > 0) condition within our universe; otherwise, the principle cannot be
existed within our universe. Which includes all the laws, principles and theories;
such as Maxwell’s Electro-Magnetic theory, Boltzmann’s entropy theory, Einstein’s
relativity theory, Bohr’s atomic model, Schrödinger’s superposition principle, and
others. Of which uncertainty principle cannot be the exception?

Let us now assumed a temporal (t > 0) particle m(t) is situated within a
temporal (t > 0) subspace as depicted in Figure 9. Strictly speaking any particle
existed within a temporal subspace must be a temporal (t > 0) particle; otherwise,
the particle cannot be existed within our temporal (t > 0) universe.

149

Nature of Temporal (t > 0) Quantum Theory: Part I
DOI: http://dx.doi.org/10.5772/intechopen.93561



For simplicity, we further assume m(t) has no time or “pseudo-timeless,” after
all science is a law of approximation. The same as Heisenberg’s assumption, the
particle is a photonic particle (i.e., a photon), as from wave particle-duality stand-
point [17] momentum of a photon is given by:

p ¼ h=λ ¼ h υ=c (9)

where h is the Planck’s constant, λ is the wavelength and υ is the frequency of the
photonic particle. As I have mentioned earlier, within our universe any radiator has
to be band limited. Thus the momentum error is naturally due changes of band-
width Δυ, as given by;

Δp ¼ h Δυ=c (10)

Instead of using a cone of light as Heisenberg had postulated. By virtue of time-
bandwidth product Δυ Δt = 1, Δυ “decreases” with time. For which position error
can be written as:

Δr ¼ c Δt (11)

where r is the radial distance, we have the following uncertainty relationship;

Δp Δr ¼ h Δυ=c� c Δt� ¼ h Δυ Δt½½ (12)

In which we see that; Δυ � Δt is the “time-bandwidth” product. As we imposed
the optimum energy transfer criterion on time-bandwidth product [12], as given by:

Δυ Δt≥ 1 (13)

Since lower bound for a photonic particle is limited by Planck’s constant, we
have the following equivalent form as given by:

ΔE Δt≥h (14)

Nevertheless, in view of Eq. (13), momentum uncertainty principle can be
shown as:

Δp Δr≥h, t>0 (15)

Figure 9.
A temporal (t > 0) particle m(t) within a temporal (t > 0) subspace. r is the radial direction. Note: it is a
“physical realizable” paradigm, since a temporal particle m(t) is embedded within a temporal subspace.
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where (t > 0) denotes that uncertainty principle is complied with the temporal
(t > 0) condition within our universe. In view of either conservation of momentum
or energy conservation, we see that position error Δr increases naturally with time.
Which shows that momentum error Δp “decreases” naturally with bandwidth Δυ,
as in contrast with Heisenberg’s assumption; momentum error Δp has “nothing” to
do with the changes of Δυ. This is precisely the “law of uncertainty” as I have
described earlier, uncertainty of an isolated particle increases naturally with time.

Since the increase in position error Δr is due to time, it must be due to the
dynamic expansion of our universe [5]. For example, as the boundary of our uni-
verse constantly expanding at the speed of light, by virtue of energy conservation, it
changes every dynamic aspect within our universe. As time moves on naturally, the
larger the position error Δr increases with respect to that starting point, as illus-
trated in Figure 10.

Therefore we see that uncertainty is “not” a static process it is a temporal (t > 0)
dynamic principle, as in contrast with Heisenberg’s position error Δr is “indepen-
dent” with time and his momentum error Δp is “independent” with Δυ. In which
we see that if there is no time, there is no uncertainty and no probability. Never-
theless, each of the uncertainty unit or cell, such as (Δp, Δx), (ΔE, Δt) and (Δυ, Δt)
is self-contained. In other words, ΔE and Δt are coexisted which they can be
bilateral traded, but under the constraint of time as a forward moving dependent
variable. In other words, if a section of Δt has been used, we cannot get the “same”
section back, but can exchange for a different section of Δt. In which we see that we
can trade for a narrower Δt with a wider ΔE or wider Δt with a narrower ΔE. But
we “cannot” trade Δt for ΔE, since Δt is a real dependent variable has “no”
substance to manipulate.

8. Certainty principle

One of the important aspects of “temporal uncertainty” is that subspace within
our universe is a temporal (t > 0) uncertain “subspace.” In other words, any
subspace is a temporal (t > 0) stochastic subspace, such that the dynamic behavior
of the subspace changes “dependently” with time. In which any change within our
universe has a profound connection with the constant expanding universe. In which
we have shown that uncertainty increases naturally with time, even though without

Figure 10.
Position error Δr (i.e., sphere of Δr) enlarges naturally with time within a temporal (t > 0) subspace: Δr
represents a position error of the particle, at various locations as time moves constantly.

151

Nature of Temporal (t > 0) Quantum Theory: Part I
DOI: http://dx.doi.org/10.5772/intechopen.93561



For simplicity, we further assume m(t) has no time or “pseudo-timeless,” after
all science is a law of approximation. The same as Heisenberg’s assumption, the
particle is a photonic particle (i.e., a photon), as from wave particle-duality stand-
point [17] momentum of a photon is given by:

p ¼ h=λ ¼ h υ=c (9)

where h is the Planck’s constant, λ is the wavelength and υ is the frequency of the
photonic particle. As I have mentioned earlier, within our universe any radiator has
to be band limited. Thus the momentum error is naturally due changes of band-
width Δυ, as given by;

Δp ¼ h Δυ=c (10)

Instead of using a cone of light as Heisenberg had postulated. By virtue of time-
bandwidth product Δυ Δt = 1, Δυ “decreases” with time. For which position error
can be written as:

Δr ¼ c Δt (11)

where r is the radial distance, we have the following uncertainty relationship;

Δp Δr ¼ h Δυ=c� c Δt� ¼ h Δυ Δt½½ (12)

In which we see that; Δυ � Δt is the “time-bandwidth” product. As we imposed
the optimum energy transfer criterion on time-bandwidth product [12], as given by:

Δυ Δt≥ 1 (13)

Since lower bound for a photonic particle is limited by Planck’s constant, we
have the following equivalent form as given by:

ΔE Δt≥h (14)

Nevertheless, in view of Eq. (13), momentum uncertainty principle can be
shown as:

Δp Δr≥h, t>0 (15)

Figure 9.
A temporal (t > 0) particle m(t) within a temporal (t > 0) subspace. r is the radial direction. Note: it is a
“physical realizable” paradigm, since a temporal particle m(t) is embedded within a temporal subspace.
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where (t > 0) denotes that uncertainty principle is complied with the temporal
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any other perturbation or human intervention. Similar to the myth of Boltzmann’s
entropy theory [16], entropy increases naturally with time within an enclosed
subspace, which has been shown is related to the expanding universe [5].

Similarly, there is a profound “connection” between coherence theory [18] and
“certainty” principle as I shall address. Nevertheless, it is always a myth of
coherence, as refer to Figure 11, where coherence theory can be easily understood
by Young’s experiment. In which degree of coherence can be determined by the
“visibility” equation as given by:

ν ¼ Imax–Imin
Imaxþ Imin

(16)

where Imax and Imin are the maximum and minimum intensities of the fringes.
But the theory does not tell us where the physics comes from. For which, it can be
understood from “certainty principle,” as I shall address.

It is trivial that if there is an uncertainty principle, it is inevitable not to have a
certainty principle. This means that, as photonic particle we are looking for is
“likely” to be found within a “certainty” subspace. Since “perfect certainty” (or
absolute uncertainty) occurs at t = 0, which is a timeless (t = 0) virtual subspace not
exist within our universe. Nevertheless, “certainty principle” can be written in the
following equivalent forms;

Δp Δr<h, t>0ð Þ (17)

ΔE Δt<h, t>0ð Þ (18)

Δυ Δt< 1, t>0ð Þ (19)

where (t > 0) denotes that equation is subjected to temporal (t > 0) constrain. In
view of the position error Δr in Eq. (17), it means that it is “likely” the photonic
particle can be found within the certainty subspace. Since the size of the subspace is
limited by Planck constant h, it is normally used as limited boundary “not” to be
violated. Yet within this limited boundary, certainty subspace had been exploited
by Dennis Gabor for his discovery of wave front reconstruction in 1948 [19] and as
well it was applied to synthetic aperture radar imaging in 1950s [20].

Since the size of certainty subspace is exponentially enlarging as the position
error Δr increases, for which the “radius” of the certainty sub-sphere is given by:

Δr ¼ c Δt ¼ c=ðΔυÞ (20)

where c is the speed of light, Δt is the time error, and Δυ is the bandwidth of a
light source or a quantum leap hυ. Thus we see that position error Δr is inversely
proportional to bandwidth Δυ, as plotted in Figure 12.

Figure 11.
Young’s experiment. Σ represents an extended monochromatic source, Q1 and Q2 are the pinholes, and “I”
represents the irradiance distribution.
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In view of this plot, we see that when bandwidth Δυ decreases, a larger certainty
subspace enlarges “exponentially” since the volume of the subspace is given by:

Certainty subspace ¼ ð4π=3ÞðΔrÞ3 (21)

In which we see that, a very “large” certainty subspace can be realized within
our universe which is within limited Planck’s constant h as depicted in Figure 13,
where we see a steady state radiator A emits a continuous band limited Δυ electro-
magnetic wave as illustrated. A “certainty subspace” with respect to an assumed
“photonic particle” A for a give Δt can be defined as illustrated within r = c Δt,
where Δt = 1/Δυ. In other words, it has a high degree of certainty to relocate particle
A within the certainty subspace. Nevertheless, from electro-magnetic disturbance
standpoint; within the certainty subspace provides a high “degree of certainty” (i.e.,
degree of coherence) as with respect to point A.

As from coherence theory stand point, any other disturbances away from point
A but within the certainty subspace (i.e., within r < c Δt) are mutual coherence
(i.e., certainty) with respect A; where r = c Δt is the radius of the “certainty
subspace” of A. In other words, any point-pair within d < c Δt, where Δt = 1/Δυ,
are “mutual coherence” within a radiation subspace. On the other hand, distance

Figure 12.
A plot of position error Δr versus bandwidth Δυ.

Figure 13.
A certainty subspace is embedded within uncertainty subspace. A is assumed a steady state photonic particle
emits a band limited Δυ radiation, r is the radius with respect to the emitter A; and B represents the boundary of
certainty subspace of A.
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In view of this plot, we see that when bandwidth Δυ decreases, a larger certainty
subspace enlarges “exponentially” since the volume of the subspace is given by:

Certainty subspace ¼ ð4π=3ÞðΔrÞ3 (21)

In which we see that, a very “large” certainty subspace can be realized within
our universe which is within limited Planck’s constant h as depicted in Figure 13,
where we see a steady state radiator A emits a continuous band limited Δυ electro-
magnetic wave as illustrated. A “certainty subspace” with respect to an assumed
“photonic particle” A for a give Δt can be defined as illustrated within r = c Δt,
where Δt = 1/Δυ. In other words, it has a high degree of certainty to relocate particle
A within the certainty subspace. Nevertheless, from electro-magnetic disturbance
standpoint; within the certainty subspace provides a high “degree of certainty” (i.e.,
degree of coherence) as with respect to point A.

As from coherence theory stand point, any other disturbances away from point
A but within the certainty subspace (i.e., within r < c Δt) are mutual coherence
(i.e., certainty) with respect A; where r = c Δt is the radius of the “certainty
subspace” of A. In other words, any point-pair within d < c Δt, where Δt = 1/Δυ,
are “mutual coherence” within a radiation subspace. On the other hand, distance
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Figure 13.
A certainty subspace is embedded within uncertainty subspace. A is assumed a steady state photonic particle
emits a band limited Δυ radiation, r is the radius with respect to the emitter A; and B represents the boundary of
certainty subspace of A.

153

Nature of Temporal (t > 0) Quantum Theory: Part I
DOI: http://dx.doi.org/10.5772/intechopen.93561



greater than r > c Δt from point A is a mutual “uncertainty” subspace with respect
to A. In other words, any point-pair distance is larger than d > c Δt within the
radiation space are mutually “incoherent.” In which we see that; it is more
“unlikely” to relocate a photonic particle, after it has been seen at point A, within a
“certainty subspace.”

Since certainty subspace represents a “global” probabilistic distribution of a
particle’s location as from particle physicists stand point, which means that it is
“very likely” the particle can be found within the certainty subspace. In which we
see that a postulated particle firstly is temporal (t > 0) or has time; otherwise,
there is no reason to search for it. Then after it has been proven it is a temporal
(i.e., m(t)) particle, it is more favorable to search the particle, within a certainty
subspace.

The essence of “wave-particle duality” is a mathematical simplistic assumption
to equivalence a package of wavelet energy as a particle in motion from statistical
mechanics stand point, in which the momentum p = h/λ is conserved. However one
should “not” treated wave as particle or particle as wave. It is the package of wavelet
energy “equivalent” to a particle dynamics (i.e., photon), but they are “not”
equaled. Similar to Einstein’s energy equation, mass is equivalent to energy and
energy is equivalent to mass, but they are not equaled. Therefore as from energy
conservation, bandwidth Δυ “decreases” with time is the physical reality instead of
treating a package of wavelet as a particle (i.e., photon), which was due to the
classical mechanics standpoint, treats quantum leap momentum p = h/λ. In which
we see that photon is a “virtual” particle although many quantum scientists have
been regarded photon as a physical particle?

We further note that any point-pair within the certainty subspace exhibits some
degree of certainty or coherence, which has been known as “mutual coherence”
[18]. And the mutual coherence can be easily understood as depicted in Figure 14,
in which a steady state band limited Δυ electro-magnetic wave is assumed existed
within a temporal (t > 0) subspace. As we pick an arbitrary disturbance at point B, a
certainty subspace of B can be determined within r ≤ c Δt, as shown in the figure.

Figure 14.
Various certainty subspace configurations, as with respect to various disturbances within a steady state band
limited Δυ electro-magnetic environment within a temporal (t > 0) subspace.
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This means that any point disturbance within in the certainty subspace has a strong
certainty (or coherence) with respect to point B disturbance. Similarly if we pick an
arbitrary point A, then a certainty subspace of A can be defined as illustrated in the
figure, of which we see that a portion is overlapped with certainty subspace of B.
Any other disturbances outside the corresponding subspaces of certainty A, B, and
C are the uncertainty subspace. It is trivial to see that a number of configurations of
certainty subspaces can be designed for application. In which we see that multi
wavelengths, such as Δυ1, Δυ2, and Δυ3, can also be simultaneously implemented to
create various certainty subspace configurations, such as for multi spectral imaging
or information processing application.

One of the commonly used for producing certainty subspaces for complex wave
front reconstruction is depicted in Figure 15 [21]. In which we see that a band
limited Δυ laser is employed, where a beam of light is split-up by a splitter BS. One
beam B2 is directly impinging on a photographic plate at plane P and other beam B1

diverted by a mirror and then is combined with beam B2 at the same spot on the
photographic plate P. It is trivial to know that if the difference in distances between
these two beams is within the certainty subspace, then B1 and B2 are “mutually”
coherence (or certainty); otherwise, they are mutually incoherence (or uncertain).
In which we see that the distance between B1 and B2 is required as given by:

∣d1–d2 ∣< c Δt ¼ c=Δυ (22)

where d1 and d2 are the distances of bean B2 and B2, respectively, from the
splitter BS. In which we see that radius of certainty subspace of BS is written by;

Δr ¼ ∣d1–d2 ∣< c Δt ¼ c=Δυ (23)

where |d1 – d2 | = c/Δυ is the “coherent length” of the laser. In which we see that
by simply reducing the bandwidth Δυ, a lager certainty subspace can be created
within a temporal (t > 0) subspace.

Figure 15.
An example of exploiting certainty subspace for wave front reconstruction. BS, beam splitter; P, photographic
plate.
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arbitrary point A, then a certainty subspace of A can be defined as illustrated in the
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9. Essence of certainty principle

Since every substance or subspace within our universe was created by an
amount of energy ΔE and a section of time Δt [i.e., (ΔE, Δt)], any changes of ΔE
changes the size of certainty subspace Δr. This is a topic that astrophysicists may be
interested. Similarly to particle physicists, subatomic particle has to be temporal
(t > 0); otherwise, the particle must be a virtual particle cannot exist within our
universe. Secondly, it is more “likely” a temporal (t > 0) particle to be found within
its certainty subspace; otherwise, it will be searching a timeless (t = 0) particle
“forever” within our temporal (t > 0) universe. In view of the certainty unit: ΔE
and Δt are mutually coexisted in which time is a forward dependent variable. Any
changes of ΔE can “only” happen with an expenditure of a section time Δt, but it
“cannot” change the speed of time. Since the energy is “conserved,” Δt is a section
of time required to have the amount of ΔE within a certainty unit of (ΔE, Δt). In
other words, ΔE and Δt can be traded; for example, a wider variance of ΔE is traded
for a narrower Δt.

Nevertheless, time has been treated as an “independent” variable for decades, as
normally assumed by scientists. But whenever a section of time Δt has been used, it
is not possible to bring back the “original” moment of Δt, even though it is possible
to reproduce the same section of Δt. This similar as we reconstructed a damaged
car, but we cannot bring back the “original” car that has been crashed. And this is
precisely the “price of time” to pay for everything within our universe. Then my
question is that if time is a forward dependent variable with respect to its subspace,
how can we “curve” the space with time? Similarly, we are coexisted with time, how
can we get back the moment of time that has passed by?

Since certainty subspace changes with bandwidth Δυ as illustrated in Figure 16,
in which we see that as bandwidth Δυ decreases a very large certainty subspace can
be created within our universe as depicted in Figure 16(a)–(c).

High resolution observation requires shorter wavelength but shorter wavelength
inherently has broader bandwidth Δυ that creates a smaller certainty subspace,
which can be used for high resolution wave front reconstruction [21]. On the other
hand, for a larger certainty subspace, it required a narrower bandwidth of Δυwhich
has a larger certainty subspace for exploitation, such as applied to side looking radar
imaging [20]. In which we see that the size of the certainty subspace can be
manipulated by the bandwidth Δυ as will be shown in the following:

Since narrower bandwidth Δυ offers a huge certainty subspace that can be
exploited for long distance communication, in which I have found that the certainty
subspace is “in fact” the coherence subspace as I have discussed in the preceding. In
other words, within a certainty subspace it exhibits a “point-pair certainty” or
coherent property among them as illustrated in Figure 17. In other words, it has a

Figure 16.
Size of certainty subspace enlarges rapidly as band width Δυ narrows. (a) shows a very small size of certainty
subspace as the result of Δυ approaching to very wide. (b) shows the size of certainty subspace reduces as Δυ
continues to reduce. And (c) shows a huge size certainty subspace can be created as band width Δυ narrows.
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high degree of certainty within a certainty subspace between points. This means
that, if a photonic particle as it has been started at point u1, then it has a high degree
of certainty that the particle to be found at the next instantly Δt at u2, since distance
is time within a temporal (t > 0) subspace.

For example, given any two arbitrary complex disturbances u1(r1; t) and
u2(r2; t), as long the separation between them is shorter than the radius Δr of the
certainty subspace as given by:

d≤ c=ðΔυÞ (24)

the disturbances between u1(r1; t) and u2(r2; t) are “certainly” related (or mutu-
ally coherence). For which the “degree of certainty” (i.e., degree of coherence)
between u1 and u2 can be determined by the following equation:

γ12 Δtð Þ ¼ Γ12 Δtð Þ
Γ11 0ð ÞΓ22 Δ0ð Þ (25)

where, “mutual certainty” (or mutual coherence) function between u1 and u2
can be written as:

Γ12 Δtð Þ¼ lim
T!∞

1
T

ðT
0
u1 t; r1ð Þu ∗

2 t� Δt; r1ð Þdt (26)

Similarly, the respective “self certainty” (or self coherence) functions are,
respectively, given by:

Γ11 Δtð Þ¼ lim
T!∞

1
T

ðT
0
u1 t; r1ð Þu ∗

1 t� Δt; r1ð Þdt (27)

Γ22 Δtð Þ¼ lim
T!∞

1
T

ðT
0
u2 t; r2ð Þu ∗

2 t� Δt; r2ð Þdt (28)

Figure 17.
Mutual certainty within a certainty subspace. u1(r1; t) and u2(r2; t) represent two arbitrary disturbances
separated at distance d.
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subspace is “in fact” the coherence subspace as I have discussed in the preceding. In
other words, within a certainty subspace it exhibits a “point-pair certainty” or
coherent property among them as illustrated in Figure 17. In other words, it has a

Figure 16.
Size of certainty subspace enlarges rapidly as band width Δυ narrows. (a) shows a very small size of certainty
subspace as the result of Δυ approaching to very wide. (b) shows the size of certainty subspace reduces as Δυ
continues to reduce. And (c) shows a huge size certainty subspace can be created as band width Δυ narrows.
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high degree of certainty within a certainty subspace between points. This means
that, if a photonic particle as it has been started at point u1, then it has a high degree
of certainty that the particle to be found at the next instantly Δt at u2, since distance
is time within a temporal (t > 0) subspace.

For example, given any two arbitrary complex disturbances u1(r1; t) and
u2(r2; t), as long the separation between them is shorter than the radius Δr of the
certainty subspace as given by:

d≤ c=ðΔυÞ (24)

the disturbances between u1(r1; t) and u2(r2; t) are “certainly” related (or mutu-
ally coherence). For which the “degree of certainty” (i.e., degree of coherence)
between u1 and u2 can be determined by the following equation:

γ12 Δtð Þ ¼ Γ12 Δtð Þ
Γ11 0ð ÞΓ22 Δ0ð Þ (25)

where, “mutual certainty” (or mutual coherence) function between u1 and u2
can be written as:

Γ12 Δtð Þ¼ lim
T!∞

1
T

ðT
0
u1 t; r1ð Þu ∗

2 t� Δt; r1ð Þdt (26)

Similarly, the respective “self certainty” (or self coherence) functions are,
respectively, given by:

Γ11 Δtð Þ¼ lim
T!∞

1
T

ðT
0
u1 t; r1ð Þu ∗

1 t� Δt; r1ð Þdt (27)

Γ22 Δtð Þ¼ lim
T!∞

1
T

ðT
0
u2 t; r2ð Þu ∗

2 t� Δt; r2ð Þdt (28)

Figure 17.
Mutual certainty within a certainty subspace. u1(r1; t) and u2(r2; t) represent two arbitrary disturbances
separated at distance d.
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One of the interesting applications for certainty principle must be to synthetic
aperture radar imaging as I have mentioned earlier is shown in Figure 18. In
which we see an aircraft carried a side looking synthetic radar system shown in
Figure 18(a), emitting a sequence of radar pulses scanned across the flight path of the
terrain. The returned pulses are combined with local radar pulses, which are “mutual
coherence” (i.e., high degree of certainty), to construct a recording format that can be
used for imaging the terrain, for which a synthetic imagery is shown in Figure 18(b).
In which we see a variety of scatters, including city streets, wooded areas, and
farmlands and lake with some broken ice floes can also be identified on the right of
this image. Since microwave antenna has a very narrow carrier bandwidth (i.e., Δυ)
and its certainty radius (i.e., d = c�Δt) or the coherence length can be easily reached to
hundreds of thousand feet. In other words, a very large certainty subspace for
complex-amplitude imaging (or for communication) can be realized.

Finally I would address again within the certainty unite (Δp, Δr) [i.e., equiva-
lently for (ΔE, Δt) and (Δυ, t) unit] can be mutually traded. But it is the trading of
Δp for Δr (or ΔE for Δt and Δυ for Δt) is physically visible, since time is not a
physical substance but a forward constant dependent “variable” that we “cannot”
manipulate. For which we see that the “section” of Δt that has been “used” cannot
get it back. In other words, we can get back the same amount Δt, but “not” the same
moment of Δt, that has been expensed. As I have shown earlier, everything within
our universe has a price, an amount of energy ΔE, and a section of time Δt. Aside
ΔE we can physically change, it is the moment of time Δt which has been expensed
that is “preventing” us to get it back, because that moment of Δt is the “same
moment” of time of our temporal (t > 0) universe that has been passed. And this is
the “moment of time” Δt within our temporal (t > 0) universe, once the “moment”
passes by and we can never able to get it back.

10. Conclusion

In conclusion, I would point out that quantum scientists used amazing mathe-
matical analyses added with their fantastic computer simulations provide very
convincing results. But mathematical analyses and computer animations are virtual

Figure 18.
Side-looking radar imaging within certainty subspace: (a) shows a side-looking radar scanning flight path;
(b) shows an example of synthetic aperture radar imagery.
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and fictitious, and many of their animations are “not” physically real; for example
such as the “instantaneous and simultaneous” superimposing principle for quantum
computing is “not” actually existed within our universe. One of the important
aspects within our universe is that, one cannot get something from nothing there is
always a price to pay, an amount of energy ΔE and a section of time Δt. The
important is that they are not free!

Since any science existed within our universe has time or temporal (t > 0), in
which we see that any scientific law, principle, theory, and paradox has to comply
with temporal (t > 0) aspect within our universe; otherwise, it may not be science.
As we know that science is mathematics but mathematics is not equaled to science.
In which we have shown that any analytic solution has to be temporal (t > 0);
otherwise, it cannot be implemented within our universe. Which includes all the
laws, principles, and theories have to be temporal (t > 0)?

Since it is our universe governs our science and it is not our science changes our
universe. In which we have shown every hypothetical science, law, principle, and
theory has be temporal (t > 0); otherwise, they are virtual and fictitious which
cannot exist within our universe. Since time is a dependent variable coexisted with
space, we have concluded that time is not an illusion but real, since we are real. As
in contrast with most of the scientists, they believe that time is an independent
variable and some of them even believe that time is an illusion?

Uncertainty principle is one of the most fascinating principles in quantum
mechanics, yet Heisenberg principle was based on diffraction limited observation, it
is not due to the nature of time or temporal (t > 0) nature of our universe. We have
shown uncertainty increases with time, as in contrast with Heisenberg’s principle.
We have also introduced a certainty principle, in which we have shown high degree
of certainty within a certainty subspace can be exploited. For which we have shown
that certainty subspace can be created within our temporal subspace for complex
amplitude communication and imaging. Yet the important aspect of this chapter is
that it is not how rigorous the mathematics is, but it is the physical realizably of
science is, since mathematics is not science.
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important is that they are not free!
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Since it is our universe governs our science and it is not our science changes our
universe. In which we have shown every hypothetical science, law, principle, and
theory has be temporal (t > 0); otherwise, they are virtual and fictitious which
cannot exist within our universe. Since time is a dependent variable coexisted with
space, we have concluded that time is not an illusion but real, since we are real. As
in contrast with most of the scientists, they believe that time is an independent
variable and some of them even believe that time is an illusion?

Uncertainty principle is one of the most fascinating principles in quantum
mechanics, yet Heisenberg principle was based on diffraction limited observation, it
is not due to the nature of time or temporal (t > 0) nature of our universe. We have
shown uncertainty increases with time, as in contrast with Heisenberg’s principle.
We have also introduced a certainty principle, in which we have shown high degree
of certainty within a certainty subspace can be exploited. For which we have shown
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Chapter 9

Nature of Temporal (t > 0)
Quantum Theory: Part II
Francis T.S. Yu

Abstract

Since Schrödinger’s quantum mechanics developed from Hamiltonian, I will
show that his quantum machine is a timeless (t = 0) mechanics, which includes his
fundamental principle of superposition. Since one of the most controversial para-
doxes in science must be Schrödinger’s cat. We will show that the myth of his
hypothesis is “not” a physical realizable postulation. The most important aspect in
quantum theory must be the probabilistic implication of science, a set of most
elegant and simple laws and principles, which will be discussed. Since information
and entropy have a profound connection, we will show that information is one of
very important science in quantum theory, for which several significant aspects of
information transmission will be stressed. Nevertheless, the myth of quantum the-
ory turns out to be not Schrodinger’s cat but the nature of a section of time Δt. Since
time is a quantity that we cannot physically manipulate, we could change the
section Δt but not the speed of time. Although we can squeeze a section of Δt, but
we cannot squeeze Δt to zero. And this is the ultimate quantum limit of “instanta-
neous” response we can never be able to obtain. Since time traveling is one of the
very interesting topics in science, I will show that time traveling is impossible even
at the speed of light. Nevertheless, I will show quantum mechanics is a temporal
(t > 0) physical realizable mechanics, and it should “not” be as virtual and timeless
(t = 0) as mathematic does.

Keywords: quantum mechanics, Hamiltonian mechanics, timeless mechanics,
temporal mechanic, temporal universe, timeless space, physical realizable,
Schrödinger’s cat

1. Introduction

Two of the most important discoveries in the twentieth century in modern
science must be the Einstein’s relativity theory [1] and Schrödinger’s quantum
mechanics [2]; one is dealing with very large objects and the other is dealing with
very small particles. Yet they were connected by means of Heisenberg’s uncertainty
principle [3] and Boltzmann’s entropy theory [4]. Yet, practically, all the laws,
principles, and theories of science were developed from an absolute empty space,
and their solutions are all timeless (t = 0) or time-independent. Since our universe is
a temporal (t > 0) space, timeless (t = 0) solution cannot be “directly” implemented
within our universe, because timeless and temporal are mutually exclusive.
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Quantum Theory: Part II
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Abstract

Since Schrödinger’s quantum mechanics developed from Hamiltonian, I will
show that his quantum machine is a timeless (t = 0) mechanics, which includes his
fundamental principle of superposition. Since one of the most controversial para-
doxes in science must be Schrödinger’s cat. We will show that the myth of his
hypothesis is “not” a physical realizable postulation. The most important aspect in
quantum theory must be the probabilistic implication of science, a set of most
elegant and simple laws and principles, which will be discussed. Since information
and entropy have a profound connection, we will show that information is one of
very important science in quantum theory, for which several significant aspects of
information transmission will be stressed. Nevertheless, the myth of quantum the-
ory turns out to be not Schrodinger’s cat but the nature of a section of time Δt. Since
time is a quantity that we cannot physically manipulate, we could change the
section Δt but not the speed of time. Although we can squeeze a section of Δt, but
we cannot squeeze Δt to zero. And this is the ultimate quantum limit of “instanta-
neous” response we can never be able to obtain. Since time traveling is one of the
very interesting topics in science, I will show that time traveling is impossible even
at the speed of light. Nevertheless, I will show quantum mechanics is a temporal
(t > 0) physical realizable mechanics, and it should “not” be as virtual and timeless
(t = 0) as mathematic does.

Keywords: quantum mechanics, Hamiltonian mechanics, timeless mechanics,
temporal mechanic, temporal universe, timeless space, physical realizable,
Schrödinger’s cat

1. Introduction

Two of the most important discoveries in the twentieth century in modern
science must be the Einstein’s relativity theory [1] and Schrödinger’s quantum
mechanics [2]; one is dealing with very large objects and the other is dealing with
very small particles. Yet they were connected by means of Heisenberg’s uncertainty
principle [3] and Boltzmann’s entropy theory [4]. Yet, practically, all the laws,
principles, and theories of science were developed from an absolute empty space,
and their solutions are all timeless (t = 0) or time-independent. Since our universe is
a temporal (t > 0) space, timeless (t = 0) solution cannot be “directly” implemented
within our universe, because timeless and temporal are mutually exclusive.
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Although timeless laws and principles have been the foundation and cornerstone of
our science, there are also scores of virtual solutions that are “not” physical realiz-
able within our temporal (t > 0) space.

Yet, it is the major topic of the current state of science, fictitious and virtual as
mathematics is. Added with very convincing computer simulation, fictitious science
becomes “irrationally” real? As a scientist, I felt, in part, my obligation to point out
where those fictitious solutions come from, since science is also mathematics.

Since Schrödinger’s quantum mechanics is a legacy of Hamiltonian classical
mechanics, I will first show that Hamiltonian was developed on a timeless (t = 0)
platform, for which Schrödinger’s quantum machine is also timeless (t = 0); this
includes his quantum world as well his fundamental principle of superposition. I will
further show that where Schrödinger’s superposition principle is timeless (t = 0), it is
from the adaption of Bohr’s quantum state energy E = hυ, which is essentially time
unlimited singularity approximated. I will also show that nonphysical realizable wave
function can be reconfigured to becoming temporal (t > 0), since we knew a physical
realizable wave function is supposed to be. And I will show that superposition prin-
ciple existed “if and only if” within a timeless (t = 0) virtual mathematical subspace
but not existed within our temporal (t > 0) space.

When dealing with quantum mechanics, it is unavoidable not to mention
Schrödinger’s cat, which is one of the most elusive cats in science, since Schrödinger
disclosed the hypothesis in 1935? And the interesting part is that the paradox of
Schrödinger’s cat has been debated by score of world renounced scientists such as
Einstein, Bohr, Schrödinger, and many others for over eight decades, and it is still
under debate. Yet I will show that Schrödinger’s hypothesis is “not” a physical
realizable hypothesis, for which his half-life cat should “not” have had used as a
physical postulated hypothesis.

In short, the art of a quantum mechanics is all about temporal (t > 0) subspace,
in which we see that everything existed within our universe; no matter how small it
is, it has to be temporal (t > 0), otherwise it cannot exist within our universe.

2. Hamiltonian to temporal (t > 0) quantum mechanics

In modern physics, there are two most important pillars of disciplines: It seems
to me one is dealing with macroscale objects of Einstein [1] and the other is dealing
with microscale particle of Schrödinger [2]. Instead of speculating micro- and
macro objects behave differently, they share a common denominator, temporal
(t > 0) subspace. In other words, regardless of how small the particle is, it has to be
temporal (t > 0), otherwise it cannot exist within our temporal (t > 0) universe.

As science progresses from Newtonian [5] to statistical mechanics [6], “time”
has always been regarded as an “independent” variable with respect to substance or
subspace. And this is precisely what modern physics has had been used the same
timeless (t = 0) platform, for which they have treated time as an “independent”
variable. Since Heisenberg [3] was one of the earlier starters in quantum mechanics,
I have found that his principle was derived on the same timeless (t = 0) platform as
depicted in Figure 1. And this is the “same” platform used in developing Hamilto-
nian classical mechanics [7]. Precisely, this is the reason why Schrödinger’s quan-
tum mechanics is “timeless (t = 0)” [8], since quantum mechanics is the legacy of
Hamiltonian.

In view of Figure 1, we see that the background of the paradigm is a piece of
paper, which represents a timeless (t = 0) subspace; it is “not” a physical realizable
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model since particle and empty space are mutually exclusive. Notice that total
energy of a “Hamiltonian particle” in motion is equal to its kinetic energy plus the
particle’s potential energy as given by [7];

H ¼ p2= 2mð Þ þ V (1)

which is the well-known Hamiltonian equation, where p and m represent the
particle’s momentum and mass, respectively, and V is the particle’s potential energy.
Equivalently, Hamiltonian equation can be written in the following form as applied
for a “subatomic particle”;

H ¼ � h2= 8π2m
� �� �

∇2 þ V (2)

where h is Planck’s constant, m and V are the mass and potential energy of the
particle, and ∇2 is a Laplacian operator;

∇2 ¼ ∂
2

∂xi ∂xj

We note that Eq. (2) is the well-known “Hamiltonian Operator” in classical
mechanics.

By virtue of “energy conservation”, Hamiltonian equation is written as

Hψ ¼ f� h2=ð8π2mÞ
h i

∇2 þ Vgψ ¼ E ψ (3)

where ψ is the wave function that remains to be determined and E and V are the
energy factor and potential energy that need to be incorporated within the equation.
And this is precisely where Schrödinger’s equation was derived from; by using the
energy factor E = hυ (i.e., a quanta of light energy) adopted from Bohr’s atomic
model [9], Schrödinger equation can be written as [7]

∂
2ψ

∂x2
þ 8π2m

h2
E� Vð Þψ ¼ 0 (4)

Figure 1.
A particle in motion within a timeless (t = 0) subspace. v is the velocity of the particle.
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Although timeless laws and principles have been the foundation and cornerstone of
our science, there are also scores of virtual solutions that are “not” physical realiz-
able within our temporal (t > 0) space.

Yet, it is the major topic of the current state of science, fictitious and virtual as
mathematics is. Added with very convincing computer simulation, fictitious science
becomes “irrationally” real? As a scientist, I felt, in part, my obligation to point out
where those fictitious solutions come from, since science is also mathematics.

Since Schrödinger’s quantum mechanics is a legacy of Hamiltonian classical
mechanics, I will first show that Hamiltonian was developed on a timeless (t = 0)
platform, for which Schrödinger’s quantum machine is also timeless (t = 0); this
includes his quantum world as well his fundamental principle of superposition. I will
further show that where Schrödinger’s superposition principle is timeless (t = 0), it is
from the adaption of Bohr’s quantum state energy E = hυ, which is essentially time
unlimited singularity approximated. I will also show that nonphysical realizable wave
function can be reconfigured to becoming temporal (t > 0), since we knew a physical
realizable wave function is supposed to be. And I will show that superposition prin-
ciple existed “if and only if” within a timeless (t = 0) virtual mathematical subspace
but not existed within our temporal (t > 0) space.

When dealing with quantum mechanics, it is unavoidable not to mention
Schrödinger’s cat, which is one of the most elusive cats in science, since Schrödinger
disclosed the hypothesis in 1935? And the interesting part is that the paradox of
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model since particle and empty space are mutually exclusive. Notice that total
energy of a “Hamiltonian particle” in motion is equal to its kinetic energy plus the
particle’s potential energy as given by [7];

H ¼ p2= 2mð Þ þ V (1)

which is the well-known Hamiltonian equation, where p and m represent the
particle’s momentum and mass, respectively, and V is the particle’s potential energy.
Equivalently, Hamiltonian equation can be written in the following form as applied
for a “subatomic particle”;

H ¼ � h2= 8π2m
� �� �

∇2 þ V (2)

where h is Planck’s constant, m and V are the mass and potential energy of the
particle, and ∇2 is a Laplacian operator;

∇2 ¼ ∂
2

∂xi ∂xj

We note that Eq. (2) is the well-known “Hamiltonian Operator” in classical
mechanics.

By virtue of “energy conservation”, Hamiltonian equation is written as

Hψ ¼ f� h2=ð8π2mÞ
h i

∇2 þ Vgψ ¼ E ψ (3)

where ψ is the wave function that remains to be determined and E and V are the
energy factor and potential energy that need to be incorporated within the equation.
And this is precisely where Schrödinger’s equation was derived from; by using the
energy factor E = hυ (i.e., a quanta of light energy) adopted from Bohr’s atomic
model [9], Schrödinger equation can be written as [7]

∂
2ψ

∂x2
þ 8π2m

h2
E� Vð Þψ ¼ 0 (4)

Figure 1.
A particle in motion within a timeless (t = 0) subspace. v is the velocity of the particle.
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In view of this Schrödinger’s equation, we see that it is essentially “identical” to
the Hamiltonian equation, where ψ is the wave function that has to be determined,
m is the mass of a photonic-particle (i.e., photon), E and V are the dynamic
quantum state energy and potential energy of the particle, x is the spatial variable,
and h is Planck’s constant.

Since Schrödinger’s equation is the “core” of quantum mechanics, but without
Hamiltonian’s mechanics, it seems to me that we would “not” have the quantum
mechanics. The “fact” is that quantum mechanics is essentially “identical” to Ham-
iltonian mechanics. The major difference between them is that Schrödinger used the
dynamic quantum energy E = hυ as adapted from a quantum leap energy of Bohr’s
hypothesis, which changes from classical mechanics to quantum “leap” mechanics
or quantum mechanics. In other words, Schrödinger used a package of wavelet
quantum leap energy hυ to equivalent a particle (or photon) as from “wave-particle
dynamics” of de Broglie’s hypothesis [10], although photon is “not” actually a real
particle. Nevertheless, where the mass m for a photonic particle in the Schrödinger’s
equation remains to be “physically reconciled”, after all science is a law of approx-
imation. Furthermore, without the adaptation of Bohr’s quantum leap hυ, quantum
physics would not have started. It seems to me that quantum leap energy E = hυ has
played a “viable” role as transforming from Hamiltonian classical mechanics to
quantum mechanics, which Schrödinger had done to his quantum theory.

Although Schrödinger equation has given scores of viable solutions for practical
applications, at the “same time”, it has also produced a number of fictitious and
irrational results which are not existed within our universe, such as his Fundamen-
tal Principle of Superposition, the paradox of Schrödinger’s Cat [8], and others.

In view of Schrödinger’s equation as given by Eq. (4), we see that it is a timeless
(t = 0) or time-independent equation. Since the equation is the “core” of
Schrödinger’s quantum mechanics, it needs a special mention. Let me stress the
essence of energy factor E in the Hamiltonian equation. Since Schrödinger equation
is the legacy of Hamiltonian, any wave solution ψ emerges from Schrödinger
equation depends upon the E factor. In other words aside the embedded subspace,
solution comes out from Schrödinger equation whether is it a physical realizable; it
depends upon the E factor that we introduced into the equation. As referring to the
conventional Hamiltonian mechanics, if we let the energy factor E be a “constant”
quantity that exists at time t = t0, which is “exactly” the classical mechanics of
Hamiltonian, this means that the Hamiltonian will take this value of E at t = t0 and
evaluates the wave function ψ as has been given by [7]:

ψ ¼ ψ0 exp �i 2π E t–t0ð Þ=h½ Þ (5)

which is the Hamiltonian wave equation, where ψ0 is an arbitrary constant, h is
Planck’s constant, and a constant energy factor E(t – t0) occurs at t = t0. Although
Hamiltonian wave equation is a time-variable function, it is “not” a time-limited
solution, for which we see that it “cannot” be implemented within our temporal
(t > 0) universe, since time unlimited solution cannot exist within our universe.
This means that, wave solution ψ of Eq. (5) is “not” a physical realizable solution.

Then a question is being raised, why the Hamiltonian wave solution is time
unlimited? The answer is trivial that Hamiltonian is mathematics and his mechanics
was developed on an empty timeless (t = 0) platform as can be seen in Figure 1.
Since it is the subspace that governs the mechanics, we see that particle-wave
dynamics cannot exist within a timeless (t = 0) subspace. But Hamiltonian is
mathematics and Hamilton himself is a theoretician; he could have had implanted a
particle-wave dynamic into a timeless (t = 0) subspace, although timeless (t = 0)
subspace and physical particle cannot coexist. Of which this is precisely all the
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scientific laws, principles, and theories were mostly developed on a piece or pieces
of papers, since science is mathematics. This is by no means that timeless (t = 0)
laws, principles, and theories were wrong [11], yet they were and “still” are the
foundation and cornerstone of our science. However, it is their direct implementa-
tion within our temporal (t > 0) universe and also added a score of their solutions
are irrational and virtual as “pretending” existed within our temporal (t > 0) sub-
space, for example, superposition principle of quantum mechanics, paradox of
Schrödinger’s cat, time traveling, and many others.

Nevertheless as we refer to Figure 1, immediately we see that it is “not” a
physically realizable model that should be used in the first place. Secondly, even
though we pretend that the particle in motion within can exist in an empty space, a
question is being asked: how can a particle-wave dynamic propagate within an
empty space? Thirdly, even though we assumed wave can be exited within an
empty space, why it has to be time unlimited? From all these physical reasons, we
see that time unlimited Hamiltonian wave equation of Eq. (5) is “not” a physically
realizable solution, since it only existed within a timeless (t = 0) virtual mathemat-
ical space, which is similar within a Newtonian space, where time has been treated
as an “independent” variable.

Since Schrödinger’s mechanics is the legacy of Hamiltonian mechanics, firstly we
see that Schrödinger’s quantum “mechanics” is a solution as obtained from Hamil-
tonian’s mechanics. Secondly, the reason why Schrödinger’s quantum mechanics is
timeless (t = 0) is the same reason as Hamiltonian, because its subspace is empty.
Nevertheless, the major differences between Schrödinger’s mechanics and
Hamiltonian mechanics must be the name sake of “quantum”, where comes Bohr’s
atomic quantum leap E = hυ, a quanta of light as shown in Figure 2, that
Schrödinger has used for the development of his mechanics. This is precisely since
Schrödinger’s solution is very similar to Hamiltonian of Eq. (3) as given by [7],

Figure 2.
Bohr atomic model embedded in a timeless (t = 0) platform (i.e., a piece of paper).
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ψ tð Þ ¼ ψ0 exp �i 2π υ t–t0ð Þ=h½ � (6)

which is the well-known Schrödinger wave equation, where ψ0 is an arbitrary
constant, hυ is the frequency of the quantum leap, and h is Planck’s constant.

As anticipated, Schrödinger wave equation is also a “time unlimited” solution
with “no” bandwidth. For the same reason as Hamiltonian, Schrödinger wave
equation is “not” a physically realizable solution that can be implemented within
our temporal (t > 0) universe, since any physically realizable wave equation has to
be “time and band limited”. Yet, many quantum scientists have been using this time
unlimited solution to pursuing their dream for quantum supremacy computing [12]
and communication [13] but “not” knowing the dream they are pursuing is “not” a
physically realizable dream.

Since quantum mechanics is a “linear “system machine, similar to Hamiltonian
mechanics, for a multi-quantum state energies atomic particle, the energy E factor
to be applied in the Schrödinger’s equation is a “linear” combination of those
quantum state energies as given by

E ¼ Σhυn, n ¼ 1, 2, …N (7)

where υn is the frequency for the nth quantum leap, and h is Planck’s constant.
Therefore, the overall wave equation is a linear combination of all the wave func-
tions as given by

ψN tð Þ ¼ Σ ψ0n exp �i 2π υn t–t0nð Þ=h½ �, n ¼ 1, 2, …N (8)

in which we see that all the wave functions are “super-imposing” together. This is
precisely the Fundamental Principle of Superposition of Schrodinger. Yet, this is the
principle that Einstein “opposed” the most as he commended as I quote: “mathemat-
ics is correct, but incomplete”, published in The New York Times newspaper in 1935
[14]. And it is also the fundamental principle that quantum computing scientists are
depending on the “simultaneous and instantaneous” superposition that quantum
theory can offer to develop a quantum supremacy computer. But I will show that the
superposition is a timeless (t = 0) principle and it does “not” exist within our universe.

Before I get started, it is interesting to show a hypothetical scenario of “super-
position in life”. If we assumed our life-expectancy can last for about 500 years,
then we would have very good chance to coexist with Isaac Newton and possibly
with Galileo Galilei somewhere in “time”. Furthermore, if our universe is a “static”
universe or timeless (t = 0), then we are also very likely to coexist with Galileo and
Newton not only in “time” but superimposing with them everywhere in a timeless
(t = 0) space. And this is precisely what “simultaneous and instantaneous” super-
position can do for us, if our universe is timeless (t = 0) subspace.

As we understood from the preceding illustration, we know that any empty (i.e.,
timeless) subspace cannot be found within our universe. And we have also learned
that within our universe, every quantum leap hυ has to be temporal (t > 0), that is
time- and band-limited; otherwise it cannot be existed within our universe.

In view of Eqs. (7) and (8)), we see that they are time “unlimited” wave
functions, and it is trivial to see that all of those wave functions, ψN(t), n = 1, 2 …

N, are superimposing together at all times. Similar to an example that I had postu-
lated earlier, if our life expectancy can be extended to 500 years, we would be
coexist with Einstein and may be with Newton somewhere in time, although
500 years of life-expectancy is time limited. But again, time unlimited wave func-
tion is “not” a physical real function, since it cannot exist within our temporal
(t > 0) universe.
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In order to mitigate the temporal (t > 0) requirement or the causality condition
of those wave functions ψN(t), we can “reconfigure” each of the wave function to
becoming temporal (t > 0). In other words, we can reconfigure each of the wave
function to “comply” with the temporal (t > 0) condition within our universe. For
example, as illustrated in Figure 3 we see that each of the quantum leap hΔυ is
represented by “time limited” wavelets.

by which it can be shown that “reconfigured” wave functions are
approximated by

ψ tð Þ ¼ Σ ψon exp ½�αon t� tonð Þ2� cos ð2πυntÞ, t>0, n ¼ 1, 2, 3: (9)

ψ tð Þ ¼ 0, t≤0 (10)

where t > 0 denotes equation is subjected to temporal (t > 0) condition, in
words exited only in positive time domain. In view of these equations we see that
the packages of quantum leaps are “likely” temporal separated, in which we see that
all the wavelets are very “unlikely” to be “simultaneous and instantaneous” super-
posing together. Once again, we have proven that Schrödinger’s fundamental prin-
ciple of superposition “fails” to exist within our temporal (t > 0) universe.

3. Timeless (t = 0) space do to particles

On the other hand, if we take the preceding physical realizable wave functions of
Eq. (9) and implement them within a timeless (t = 0) subspace, then it is trivial to
see that how a timeless (t = 0) subspace can do to all the wave-particle dynamics
within a timeless (t = 0) subspace. Since within a timeless (t = 0) space it has no
time and no dimension, all wave-particles (i.e., package of wavelets) will be col-
lapsed at t = 0, as can be seen in Figure 4.

Before this goes on, I would say that the wave-particle duality is a “nonphysical”
reality assumption to “equivalence” a package wavelet of energy to a particle in
motion, which is strictly from a statistical mechanics point of view, where momen-
tum of a particle p = h/λ is conserved [7]. However, one should “not” be treated
wave or a package of wavelet energy hΔυ as a particle or particle as wave. It is the

Figure 3.
A multi-quantum state atomic model embedded within a temporal subspace.
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package of wavelet energy “equivalent” to particle dynamics (i.e., photon), but they
are “not” equaled [15]. Similar to Einstein’s energy equation, mass is equivalent to
energy and energy is equivalent to mass, but mass is not equal to energy and energy
is not mass, for which quanta of light hΔυ or a “photon” is a “virtual” particle, in
which we see that a photon has a momentum p = h/λ but no mass, although many
quantum scientists regard a photon as a physical real particle.

In view of Figure 4we see that within a timeless (t = 0) space, it has no time and
no space; every particle exists anywhere within a timeless (t = 0) space but only
exited at t = 0. This is precisely what the “simultaneous and instantaneous” super-
position of Schrödinger’s principle is anticipated for, since this is the fundamental
principle that quantum scientists are aiming for, to build a quantum supremacy
computer. This is as well applied to quantum entanglement communication, but
unfortunately, the “simultaneous and instantaneous” superposition does “not” exist
within our universe, of which we have had shown that superposition principle
exists “if and only if” in a mathematical virtual timeless (t = 0) space, and it cannot
exist within our temporal (t > 0) universe.

The reason that superposition principle “fails” to exist is coming from a
nonphysical realizable paradigm used in the analysis, which can be traced back to
the development of Hamiltonian mechanics, since quantum mechanics is an exten-
sion of Hamiltonian. I have found that it is the background subspace (i.e., a piece of
paper) used in quantum mechanical analysis. Since the background represents an
“inadvertently” empty timeless (t = 0) subspace, where a photonic particle in
motion was embedded, it is also that piece of paper that Bohr’s atomic model was
used, added his quantum state energy hυ is not a time limited physical reality.

Aside the substance and emptiness are mutually excluded; it is the subspace that
governs the behavior of each wave functions ψn(t). In which within a timeless (t = 0)
subspace, we have shown all the wave functions ψN(t), regardless time limited or
time unlimited, collapse all together at t = 0. In other words, all the quantum state
wavelets superimposed at a “singularity” t = 0. This is the reason that superposed
quantum state energies can be found anywhere and everywhere within a virtual
mathematical timeless (t = 0) space, since a timeless (t = 0) space has no distance.

Figure 4.
All the particles within a timeless (t > 0) subspace actually have done; converges all the particles at t = 0.

168

Quantum Mechanics

From this illustration, we have shown once again that; it is not how rigorous the
mathematics is, it is the physical realizable paradigm determines her analytical
solution is physical realizable or not? For which we see that; the wave functions as
obtained from Schrödinger equation is virtual as mathematics is, because
Schrödinger’s quantum mechanics was developed on an empty subspace platform,
the same platform as Hamiltonian classical mechanics.

4. Schrödinger’s cat

When we are dealing with quantum mechanics, it is inevitable not to mention
Schrödinger’s cat since it is one of the most elusive cats in the science since
Schrödinger’s disclosed it in 1935 at a Copenhagen forum. Since then his half-life cat
has intrigued by a score of scientists and has been debated by Einstein, Bohr,
Schrödinger, and many others as soon as Schrödinger disclosed his hypothesis. And
the debates have been persisted for over eight decades, and still debating. For
example, I may quote one of the late Richard Feynman quotations as: “After you
have leaned quantum mechanics, you really “do not” understand quantum
mechanics …”.

It is however not the art of the Schrödinger’s half-life cat; it is the paradox that
quantum scientists have treated it as a physical “real paradox”. In other words,
many scientists believed the paradox of Schrödinger’s cat actually existed within our
universe, without any hesitation. Or literally “accepted” superposition is a physical
reality, although fictitious and irrational solutions have emerged; it seems like
looking into the Alice wonderland. In order to justify some of their believing some
quantum scientists even come up with their believing; particle behaves weird
within a microenvironment as in contrast within a macro space. Yet, some of their
potential applications such as quantum computing and quantum entanglement
communication are in fact in macro subspace environment. Nevertheless, I have
found many of those micro behaviors are “not” existed within our universe; and
the paradox of Schrödinger’s cat is one of them, as I shall discuss briefly in the
following:

Let us start with the Schrödinger’s box as shown in Figure 5; inside the box we
have equipped a bottle of poison gas and a device (i.e., a hammer) to break the

Figure 5.
Inside the box we equipped a bottle of poison gas and a device (i.e., hammer) to break the bottle, triggered by the
decaying of a radio-active particle, to kill the cat.
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Figure 4.
All the particles within a timeless (t > 0) subspace actually have done; converges all the particles at t = 0.
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bottle, triggered by the decaying of a radio-active particle, to kill the cat. Since the
box is assumed totally opaque of which no one knows that the cat will be killed or
not, as imposed by the Schrödinger’s superposition principle until we open his box.

As we investigate Schrödinger‘s hypothesis of Figure 5, immediately we see that;
it is “not” a physical realizable postulation at all, since within the box it has a
timeless (t = 0) or time independent radioactive particle in it. As we know that; any
particle within a temporal (t > 0) subspace has to be a temporal (t > 0) particle or
has time with it, otherwise the proposed radioactive particle cannot be existed
within Schrödinger’s temporal (t > 0) box. It is therefore, the paradox of
Schrödinger’s cat is “not” a physical realizable hypothesis and we should “not” have
had treated Schrödinger’s cat as a physically real paradox.

Since every problem has multi solutions, I can change the scenarios of
Schrödinger’s box a little bit, such as allow a small group of individuals take turn to
open the box. After each observation, close the box before passing on to the next
observer. My question is that how many times the superposition has to collapse?
With all those apparent contradicted logics, we see that Schrödinger‘s cat is “not” a
paradox after all! And the root of timeless (t = 0) superposition principle as based on
Bohr’s quantum leap hυ, represents a time “unlimited” radiator, which is a singu-
larity approximated wave solution. For which we should “not” have treated quan-
tum leap hυ a physical real radiator, since any quantum leap has to be time and band
limited within our universe.

Finally I would address that; all the laws, principles, theories and paradoxes
were made to be broken, revised and replaced, it is not they were all approximated,
because they all changes with time or temporal (t > 0). Yet, without approximated
science, then there would be no science in which we have shown that a simple
hypothetical paradox takes decades to resolve! And this is the nature of quantum
mechanics and is all about temporal (t > 0) subspace.

5. Nature of Δt

Since our universe was assumed created with a huge energy explosion with time
situated within a “non-empty” space. Every subspace “no” matter how small is
created by an amount of energy ΔE and a section of time Δt for which every
subspace is temporal (t > 0) (i.e., existed with time).

In view of modern science, there is a set of simple, yet elegant laws and princi-
ples that are profoundly associated with a unit of (ΔE Δt). The objective of this
section is to explore the relationship between these laws and principles as related
with the unit of (ΔE, Δt). Since time is a dependent forward variable moves at a
constant speed, we see that Δt is one of the most “esoteric” variable existed within
our universe. We will show that once a moment of Δt is used, we “cannot” get it
back although ΔE and Δt can be traded. In which I will show that; there it is a
physical limit for Δt to approaching to “none” (i.e., Δt ⟶ 0), that “prevents”
us to reach; even though we have the all the price to pay. And this must be the
nature of Δt?

Nevertheless, there is a set of “simple and elegant” laws and principles that are
profoundly associated with a section of time Δt. These are laws and principle of
entropy of Boltzmann [4], information of Shannon [16], uncertainty of Heisenberg
[3], relativity of Einstein [1] and temporal (t > 0) universe [17]. Each of them has
associated with a section of time Δt which changes naturally with time. And all
these evidences tell us science has to be temporal (t > 0) and dynamics, which
cannot be “static” or timeless (t = 0). In other words, if there has no time, then there
has no science. Nevertheless, science is a law of “approximation”, as in contrast
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with mathematics, which is an axiom of “certainty”, of which I state these laws and
principles “approximately” as follows:

Law of entropy; entropy within an enclosed subspace increases naturally “with
time” or remains constant.

Theory of information; the higher the amount the information, the more uncer-
tain the information is.

Principle of uncertainty; uncertainty of an isolated particle increases naturally
“with time”.

Theory of special relativity; when a subspace moves faster “relatively” than the
other subspace; there is a “relativistic” time speed between them, although time
speed within the subspaces remains the same.

Nature of universe; every isolated subspace was created by amount of energy ΔE
and a section of time Δt and it is a dynamic temporal (t > 0) stochastic subspace
changes naturally with time.

Nevertheless, it is easier to facilitate these laws and principles in mathematical
forms, since mathematics is a “language”, as given by

S ¼ �k ln p (11)

I ¼ � log 2 p (12)

ΔE Δt≥h (13)

Δt0 ¼ Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (14)

U : ΔE Δt≥ ðΔmc2ÞΔt,  ΔE Δt≥h (15)

where S, I, and U are entropy, information and universe respectively, k is the
Boltzmann’s constant, h is the Planck’s constant, p is the probability, Δt is a section
of time, Δt’ is the dilated section of time, v is the velocity, m is the mass and c is the
speed of light. k = 1.38 � 10�16 ergs per degree centigrade and h = 6.624 � 10�27

erg-second.
In this we see that our universe was created by means a “huge” amount of

energy ΔE and a “long” section of time Δt. And Δt is “still” extending rapidly, since
the boundary of our universe is still expanding at the speed of light [17].

In view of these laws and principles, they must be the most “elegant and simple”
science equations that existed today in which these equations either attached or
associated with a section of time Δt, except Eq. (12) since information theory is
mathematics. But as soon information is recognized as related to entropy, informa-
tion is equivalent to an amount of entropy; this makes an amount of information a
physical quantity which is acceptable in science. For which we will show that a
section of Δt will be associated with the theory of information, otherwise informa-
tion will be very difficult to apply in science. Since Δt is coexisted with ΔE, we will
further see that; every bit of information takes an amount of energy ΔE and a
section of time Δt to transmit, to create, to process, to store, to process and to
“tangle”.

As we got back from Eq. (11) to Eq. (15) we see that; they are all point-
singularity approximated; otherwise it will be very difficult to write in simple
mathematical forms. As the laws and principles stated, there are all associated with
time, by which they are all space-time variable laws and principles, since time is
space and space is time within our temporal (t > 0) universe. In short, they are all
connected to a unit of (Δt, ΔE) which is the basic building blocks of our universe.
For which I envision that; every existence within our universe has a beginning and
has an end. But it is time; it has “no” beginning and has “no” end!
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Since our temporal (t > 0) universe was created based on a commonly accepted
Big Bang Theory [17], we see that our universe as is a temporal (t > 0) dynamic
“stochastic” subspace [18]. The boundary of our universe increases at the speed of
light, we see that; every subspace within our universe is a “nonempty” temporal
(t > 0) stochastic subspace. By the way, any one or two dimensional subspaces
“cannot” be existed within our universe, since one or two dimensional subspaces
are volume-less for which any independent Euclidian subspace “cannot” be simply
applied to describe a temporal (t > 0) subspace. Because all the dimensional coor-
dinates (e.g., x y z coordinates) of a temporal space are all “interdependent” with
time, where time is a forward variable with respect to the subspace. In other words,
every substance no matter how small it is, has to have time and temporal (t > 0).

In view of the time dilation of Einstein’s relativity of Eq. (14) and Heisenberg’s
uncertainty principle of Eq. (13); we see that they are associated with a section of
time Δt; which represents a “temporal (t > 0)” subspace, as given by;

Δr ¼ c Δt

where r is the radius of a spherical subspace and c is the velocity of light. In
which we see that subspace enlarges rapidly as Δt increases is given by

V ¼ ¾ð Þ π ðc ΔtÞ3 (16)

This shows precisely our universe is expandingwith a section of timeΔt. SinceΔE is
a physical quantity equivalent to a subspace that “cannot” be empty and coexisted with
Δt, then every unit (ΔE,Δt) is a temporal (t> 0) subspace, in which we see that time
and space “cannot” be separated. In other words, time and space are “interdependent”
althoughΔE is a physical quantity butΔt is an invisible “real” variable.

6. Entropy and information

As we look back at Boltzmann entropy Eq. (11), we see that it is a typical
timeless (t = 0) point-singularity approximated equation. But the law described;
entropy increases with “time”, implies that entropy is associated with a section of
time Δt, although it is “not” shown in the equation. Nevertheless, law of entropy is
essentially identical to the law of information as can be seen by their logarithmic
expressions of Eq. (11) and Eq. (12), for which we have the following relationships
as given by [19];

S ¼ k I ln 2 (17)

where I is an amount of information in “bit” and k is Boltzmann’s constant in
which we see that, “every bit” of information is equal to an amount of entropy ΔS
which is given by

ΔS ¼ k ln 2, per bit of information (18)

Although an amount of information can be “traded” for a quantity of entropy,
but entropy is a “cost” in energy “equivalents” to an amount of information, but
“not” the “actual” information. In other words, it is a “necessary cost” of an amount
of entropy to pay for an amount of information in bits. For example, if an amount of
entropy ΔS is equivalent to 1000 bits of information of a specific book. Then how
many books have the same 1000 bits or how many different items has also 1000
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bits? Similarly, an amount of information in bits is not given us the actual informa-
tion, but it is a “necessary cost” but “not sufficient” to obtain the precise informa-
tion. In which we see that; the amount of entropy ΔS is a “necessary cost” needed to
obtain an equivalent number of information in bits.

Since entropy is a “physical quantity” similar to energy, as given by

ΔS ¼ ΔE=T ¼ hΔυ=T (19)

where ΔE = hΔυ is the quantum leap energy and T = C + 273 is the absolute
temperature in Kelvin, C is the temperature in degree Celsius. In which we see that;
higher the thermal noise requires higher energy to transmit a of bit information.

ΔE ¼ T k ln 2 (20)

Thus, we see that an amount of entropy is equivalent to an amount of informa-
tion, but it is “not” the information. But an amount of information is equivalent to
an amount of entropy that makes information a very “viable” physical quantity can
be applied in science. In which we see that; information and entropy can be simply
traded as given by

ΔS()ΔI (21)

Nevertheless, we have shown that; either information or entropy has to be a
temporal (t > 0) or time dependent law, as given by respectively;

I tð Þ ¼ � log 2 p tð Þ, t>0 (22)

S tð Þ ¼ �k ln p tð Þ, t>0 (23)

where k is the Boltzmann’s constant. In which we see that either information or
entropy “increases” with time, and (t > 0) denotes imposition by temporal (t > 0)
constraint. The amount of entropy for I(t) bits of information can be written as

S tð Þ ¼ k I tð Þ ln2, t>0 (24)

where I(t) is in bits and k is the Boltzmann’s constant. In view of preceding
equation, it shows that entropy increases as amount information increases. In which
we see that “every bit” of information ΔI takes an amount of energy ΔE and a
section of time Δt to “create” or to transmit as given by

ΔI � ΔE Δt ¼ h, per bit of information (25)

Since “every bit” of information is equivalent to an amount of entropy ΔS,

ΔS ¼ k ln 2, per bit of information (26)

Thus, every quantity of entropy ΔS is “equivalently” equaled to an amount of
energy ΔE and a section of time Δt to produce as shown by

ΔS ¼ ΔE=T (27)

where T = C + 273 is the absolute thermal noise temperature in Kelvin, C is the
temperature in degree Celsius, h is the Planck’s constant. Since ΔE is “coexisted”
with Δt, it is reasonable to say that; every ΔS is also associated with a section of time
Δt as given by
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ΔS()ΔI (21)

Nevertheless, we have shown that; either information or entropy has to be a
temporal (t > 0) or time dependent law, as given by respectively;

I tð Þ ¼ � log 2 p tð Þ, t>0 (22)

S tð Þ ¼ �k ln p tð Þ, t>0 (23)
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entropy “increases” with time, and (t > 0) denotes imposition by temporal (t > 0)
constraint. The amount of entropy for I(t) bits of information can be written as

S tð Þ ¼ k I tð Þ ln2, t>0 (24)
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ΔI � ΔE Δt ¼ h, per bit of information (25)
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where T = C + 273 is the absolute thermal noise temperature in Kelvin, C is the
temperature in degree Celsius, h is the Planck’s constant. Since ΔE is “coexisted”
with Δt, it is reasonable to say that; every ΔS is also associated with a section of time
Δt as given by
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ΔS � E Δt=T ¼ h=T, per bit of information (28)

In which we see that information is connected with the law of uncertainty,
where “every bit” of information is profoundly associated with ΔE and Δt.

Since every subspace within our universe is created by an amount of energy ΔE
and a section of time Δt, we see that; Boltzmann’s entropy, Shannon’s information,
Heisenberg’s uncertainty and Einstein’s relativity has a profound association with a
section of Δt and of ΔE since they are coexisted. In other words, all the laws,
principles, and theories as well the paradoxes have to comply with the “coexistence”
of ΔE and Δt, otherwise those laws and principles cannot guarantee to be existed
within our universe.

Nevertheless, increasing entropy is regarded as a “degradation” of energy by
Kelvin [19], although entropy was originated by Clausius [19]. But he might have
intended it to be used as a “negative” of entropy (i.e., neg-entropy) in which we see
that as entropy or amount of information increases means that there is “energy
degradation”. This is also meant that entropy or amount of information “degrades
with time”. Let me stress again “energy degradation” within our universe is due to
boundary expansion of our universe at the speed of light [17]. For which I see it
entropy increases with time is “no longer” a myth, as most scientists believed it is.

Since all the laws and principles are attached with a price-tag of (ΔE, Δt), but it
is the Δt ⟶ 0 that “cannot” be reached, even though we assumed having all the
energy of ΔE to pay for! This is precisely the “physical” limit of a temporal (t > 0)
subspace, by which the “instantaneous” moment of time (i.e., t = 0) can be
approached but can “never” be able to attend, regardless how much of energy ΔE
we willing to pay for. And this is the nature of Δt!

7. Uncertainty and information

Every substance or subspace has a piece of information which includes all the
elementary particles, basic building blocks of the subspaces, atoms, papers, our
planet, solar system, galaxy, and even our universe! In other words, the universe is
flooded with information (i.e., spatial and temporal), or information fills up the
whole universe. Strictly speaking, when one is dealing with the origin of the uni-
verse, the aspect of information has never been absence. Then, one would ask:What
would be the amount of information, aside the needed energy ΔE, is required to
create a specific substance? Or equivalently, what would be the “cost” of entropy to
create it? To answer this question is to let me start with the law of uncertainty, in
equivalent form, as given by

Δυ Δt ¼ 1 (29)

where υ is the bandwidth, in which there exists a profound relationship of an
“information cell” [20], as illustrated in Figure 6. In which we see that, the shape of
(Δυ, Δt) or equivalently (ΔE, Δt) can be “mutually” exchanged. Since every bit of
information can be efficiently transmitted, if and only if it is transmitting within the
constraint of the uncertainty principle (i.e., Δυ�Δt ≥ 1). This relationship implies
that the signal bandwidth should be either equal or smaller than the system band-
width (i.e., 1/Δt ≤ Δυ). In which we see that Δt and Δυ can be “traded”.

It is however the unit region but not the shape of the information cell that
determines the limit, as illustrated in Figure 6, we see that; within each unit cell,
that is (Δυ, Δt) [or equivalently (ΔE, Δt)] can be mutually traded. But it is from Δυ
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to Δt or from ΔE to Δt, since Δυ and ΔE are physical quantities. For which we see
that; once a section of Δt is “used”, we “cannot” get back the same moment of Δt,
although we can create the same section of Δt, since time is a forward dependent
variable.

Nevertheless, there are basically two types of information transmission; one
is limited by uncertainty Principle and the other is constrained within the
“certainty subspace”. And the boundary between these two regimes is given by
Δυ�Δt = 1 (or ΔE�Δt = h) as I called this limit a Quantum Unit [21]. In which we
see that Δυ can be traded for Δt. But under uncertainty regime, information is
carried by means of intensity (i.e., amplitude square) variation. Yet, information
can also be transmitted within the certainty regime, such as applied to complex-
amplitude communication [22, 23]. As limited by the law of uncertainty, a
quantum unit subspace QLS, for (ΔE, Δt) and (Δυ, Δt), are shown in Figure 7
for reference.

Since every subspace within our universe is a temporal (t > 0) subspace, the
radius of any subspace can be described by a time-dependent variable as given by

r ¼ c �Δt (30)

Figure 6.
Various (Δυ, Δt) information cells, where Δυn and Δtn are the bandwidths and time-limited sections, and
υ1 > υ2 >υ3 > … >υn are the frequencies.
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that; once a section of Δt is “used”, we “cannot” get back the same moment of Δt,
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see that Δυ can be traded for Δt. But under uncertainty regime, information is
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where c is the speed of light, and Δt represents a section of time. In which we see
that the size of the subspace enlarges rapidly as Δt increases as given by

V ¼ ¾ð Þ π c Δtð Þ3 (31)

Since the carrier bandwidth Δυ and time resolution Δt are exchangeable, we see
that the size of the QLS enlarges as the carrier bandwidth Δυ decreases. In other
words, narrower the carrier bandwidth Δυ has the advantage of having a larger
quantum limited subspace for complex-amplitude communication as depicted in
Figure 8.

In this we see that it is possible to create a temporal (t > 0) subspace within a
temporal (t > 0) space (i.e., our universe) for communication. We stress that; it is
“not” possible to create any time independent or timeless (t = 0) subspace within
our temporal universe, since timeless (t = 0) or time independent “cannot” be
existed within temporal universe. And this timeless (t = 0) or the “instantaneous
limit” (or the causal condition) is the fact of physical limit (i.e., Δt ⟶ 0) within
our universe. This limit can only be approached with huge amount of energy ΔE,
but we can “never” be able to reach it?

Furthermore, let me note that; timeless (t = 0) or time independent subspace is
“not” an “inaccessible” space as some scientists claimed, since inaccessible implies it
existed within our universe. Nevertheless, one of the apparent aspects of using large

Figure 7.
A set of quantum limited subspaces (QLS). (a) Shows a ΔE limited subspace; (b) Shows a Δv limited subspace.

Figure 8.
A “very large” quantum limited subspace as depicted in (a) can be realized in practice within our temporal
(t > 0) space, for example, such as applied to synthetic aperture radar imaging shown in (b).
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quantum limited subspace is for complex information transmission, for example, as
applied to complex wave front construction (i.e., holographic recording) [23],
complex-match filter synthesis [24], as well as synthetic aperture radar imaging
[22]. But there is an apparent price paid for using a “wider” section of time Δt;
which “deviates” further away from real-time transmission.

8. Reliable communication

One of the important aspects of information transmission is that “reliable”
information can be transmitted, such that information can be reached to the
receiver with a “high degree of certainty”. Let me take two key equations from
information theory, “mutual information” transmission through a “passive additive
noise channel” as given by [19]

I A; Bð Þ ¼ H Að Þ–H A=Bð Þ (32)

and

I A; Bð Þ ¼ H Bð Þ–H B=Að Þ (33)

where H(A) is the information provided by the sender, H(A/B) is the informa-
tion loss (or equivocation) through transmission due to noise, H(B) is information
received by the receiver, and H(B/A) is noise entropy of channel.

However, there is a basic distinction between these two equations: one is for
“reliable” information transmission and the other is for “retrievable” information.
Although both equations represent the mutual information transmission between
sender and receiver; but their objectives are rather different. Example; using
Eq. (32) is purposely designed for “reliable information transmission” in which the
transmitted information has a high degree of “certainty” to reach the receiver.
While Eq. (33) is purposely designed to “retrieve information” from “unreliable”
information” by the receiver. For which we see that; for “reliable” information
transmission, one can simply increase the signal to noise ratio at the transmitting
end. While for “unreliable” information transmission is to extract information from
ambiguous information. In other words, one is to be sure information will be
reached to the receiver “before” information is transmitted, and the other is to
retrieve the information “after” information has been received.

In communication, basically there are two orientations: one by Norbert Wiener
[25, 26] and the other by Claude Shannon [16]. But there is a major distinction
between them; Wiener’s communication strategy is that; if the information is
corrupted through transmission, it may be recovered at the receiving end, but with
a “cost” mostly at the receiving end. While Shannon’s communication strategy
carries a step further by encoding the information before it is transmitted such that,
information can be “reliably” transmitted, also with a “cost” mostly at the trans-
mitting end. In view of the Wiener and Shannon information transmission orienta-
tions; mutual information transfer of Eq. (32) is kind of Shannon type, while
Eq. (33) is kind of Wiener type. In which we see that; “reliable” information
transmission is basically controlled by the sender; It is to “minimize” the noise
entropy H(A/B) (or equivocation) of the channel, as shown by

I A; Bð Þ≈H Að Þ (34)

One simple way to do it is by increasing the signal to noise ratio, with a “cost” of
higher signal energy (i.e., ΔE).
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On the other hand, to recovering the transmitted information is to “maximize”
H(B/A) (the channel noise). Since the entropy H(B) at the receiving end is “larger”
than the entropy at the sending end; that is H(B) > H(A), we have,

I A; Bð Þ ¼ H Bð Þ–H B=Að Þ≈H Að Þ (35)

Eq. (35) essentially shows us that; information can be “recovered” after being
received, again with a price; ΔE and Δt. In view of these strategies; we see that the
cost paid for using Weiner type for information transmission is “much higher” than
the Shannon type; aside the cost of higher energy of ΔE it needs extra amount of
time Δt for “post processing”. Thus, we see that Wiener communication strategy is
effective for a “none cooperating” sender, for example, applied to radar detection,
and others. One the other hand, Shannon type provides a more reliable information
transmission, by simply increasing the signal to noise so that every bit of informa-
tion can be “reliably transmitted” to the receiver.

Therefore, we see that quantum entanglement communication [13] is basically
using Wiener communication strategy. The price will be “much higher and very
inefficient”, such as post processing is one thing. And it is “illogical” to require the
received signal be “more equivocal” (i.e., uncertain); the better the information
recovery it can be received at the receiving end. In which quantum entanglement
communication is designed for extracting information as Weiner type communica-
tion. However, it is “not” the purpose for reliable information-transmission of
Shannon.

9. Relativistic transmission

One of most esoteric aspects in time must be Einstein’s special theory of relativ-
ity [1] as stated approximately as follows: when a subspace moves faster than the
other, there is a “relative” time speed between them, although time speed within
the subspaces is the “same”. In this we see that the “relativistic time” within a vast
cosmological space may not be the same. Let me start with the relativistic time
dilation as given by

Δt0 ¼ Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (36)

where Δt0 is the relativistic time window, as compared with the time window Δt
of a standstill subspace; v is the velocity of a moving subspace; and c is the velocity
of light. In which we see that time dilation Δt0 within a moving subspace, “relative”
to the time duration of the standstill subspace Δt, appears to be wider as velocity
increases.

In view of law of uncertainty limit as given by

ΔE Δt ¼ h (37)

we see that every subspace is limited by ΔE and Δt. In other words, it is the h
region, but not the shape of that determines the boundary of (ΔE, Δt). For example,
the shape can be either elongated or compressed, as long as it is equaled to h region,
as can be seen depicted in Figure 6.

Incidentally, the uncertainty limit of Eq. (37) is also the limit of “reliable” bit
information transmission [16]. Nonetheless the connection with the special theory
of relativity is that; subspaces near the edge of our universe will receive a
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“narrower” section of relativistic time (Δt’) with respect to an standstill subspace,
since relativistic dilation time window is wider Δt’ > Δt. In which we see that;
“relativistic” uncertainty within the moving subspace, as with respect to a standstill
subspace, can be shown as given by

ΔE Δt’½1–ðν=cÞ2� ½ ¼ h (38)

Or equivalently we have,

Δυ Δt’½1–ðν=cÞ2� ½ ¼ 1 (39)

In which we see ΔE energy is “conserved”. Thus a “narrower” time-window Δt
can be squeeze as with respect to standstill subspace. This is precisely physically
possible to exploit for “time-domain” digital communication, as from ground
station to satellite information transmission.

One the other hand, as from satellite to ground station digital-transmission, we
might want to use digital-bandwidth (i.e., Δν). This is a “frequency-domain”
information transmission strategy, as in contrast with time-domain, which has
“not” fully exploited yet. In which the “relativistic” uncertainty relationship within
the standstill subspace as with respect to the moving subspace can be written as

ΔE Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v

c

� �2q ¼ h (40)

Or equivalently we have,

Δv Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v

c

� �2q ¼ 1 (41)

In this we see that a narrower bandwidth Δv can be used for “frequency
domain” digital communication.

Nevertheless, the essence of ΔE Δt = h (or Δυ Δt = 1) shows that ΔE and Δt or
Δυ and Δt can be mutually traded. Again, trading from ΔE for Δt or equivalently
from Δυ for Δt is physically viable, since ΔE and Δυ are physical quantities and Δt is
“not”. Since Δt is coexisted with ΔE (or equivalently with frequency Δυ), we can
change Δt, but we “cannot” change the speed of time. In other words, it is time
dictates the science but “not” science changes or “curves” the speed of time. In
which we have shown that in principle, we can “squeeze” Δt as small as we wish
with a huge price of ΔE, but we can “never” able to squeeze Δt to zero (i.e., Δt = 0).
In which we see that; it is “not” possible to transmit a “bit” of information “instan-
taneously” (i.e., t = 0) within our temporal (t > 0) universe.

Since digital communication requires a “narrower” Δt for rapid transmission
and complex amplitude communication needs a “wider” Δt for transmission, this is
what communication between satellites and ground stations can do with the “rela-
tivistic” uncertainty principle. For example, using digital transmission from ground
station to satellite stations has the advantage to squeeze the relativistic Δt somewhat
at receiving satellite station. On the other hand, from a satellite station to ground
stations, one might use wider relativistic Δt for digital frequency signal transmis-
sion. Wider Δt also offers a lager “certainty” communication space for complex
wave front transmission [22].

Let me assume a “relativistic” communication scenario as depicted in Figure 9,
in which we assume Q1 and Q2 satellite stations situated within two distinct
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Δt0 ¼ Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (36)

where Δt0 is the relativistic time window, as compared with the time window Δt
of a standstill subspace; v is the velocity of a moving subspace; and c is the velocity
of light. In which we see that time dilation Δt0 within a moving subspace, “relative”
to the time duration of the standstill subspace Δt, appears to be wider as velocity
increases.

In view of law of uncertainty limit as given by

ΔE Δt ¼ h (37)

we see that every subspace is limited by ΔE and Δt. In other words, it is the h
region, but not the shape of that determines the boundary of (ΔE, Δt). For example,
the shape can be either elongated or compressed, as long as it is equaled to h region,
as can be seen depicted in Figure 6.

Incidentally, the uncertainty limit of Eq. (37) is also the limit of “reliable” bit
information transmission [16]. Nonetheless the connection with the special theory
of relativity is that; subspaces near the edge of our universe will receive a
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“narrower” section of relativistic time (Δt’) with respect to an standstill subspace,
since relativistic dilation time window is wider Δt’ > Δt. In which we see that;
“relativistic” uncertainty within the moving subspace, as with respect to a standstill
subspace, can be shown as given by

ΔE Δt’½1–ðν=cÞ2� ½ ¼ h (38)

Or equivalently we have,

Δυ Δt’½1–ðν=cÞ2� ½ ¼ 1 (39)

In which we see ΔE energy is “conserved”. Thus a “narrower” time-window Δt
can be squeeze as with respect to standstill subspace. This is precisely physically
possible to exploit for “time-domain” digital communication, as from ground
station to satellite information transmission.

One the other hand, as from satellite to ground station digital-transmission, we
might want to use digital-bandwidth (i.e., Δν). This is a “frequency-domain”
information transmission strategy, as in contrast with time-domain, which has
“not” fully exploited yet. In which the “relativistic” uncertainty relationship within
the standstill subspace as with respect to the moving subspace can be written as

ΔE Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v

c

� �2q ¼ h (40)

Or equivalently we have,

Δv Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v

c

� �2q ¼ 1 (41)

In this we see that a narrower bandwidth Δv can be used for “frequency
domain” digital communication.

Nevertheless, the essence of ΔE Δt = h (or Δυ Δt = 1) shows that ΔE and Δt or
Δυ and Δt can be mutually traded. Again, trading from ΔE for Δt or equivalently
from Δυ for Δt is physically viable, since ΔE and Δυ are physical quantities and Δt is
“not”. Since Δt is coexisted with ΔE (or equivalently with frequency Δυ), we can
change Δt, but we “cannot” change the speed of time. In other words, it is time
dictates the science but “not” science changes or “curves” the speed of time. In
which we have shown that in principle, we can “squeeze” Δt as small as we wish
with a huge price of ΔE, but we can “never” able to squeeze Δt to zero (i.e., Δt = 0).
In which we see that; it is “not” possible to transmit a “bit” of information “instan-
taneously” (i.e., t = 0) within our temporal (t > 0) universe.

Since digital communication requires a “narrower” Δt for rapid transmission
and complex amplitude communication needs a “wider” Δt for transmission, this is
what communication between satellites and ground stations can do with the “rela-
tivistic” uncertainty principle. For example, using digital transmission from ground
station to satellite stations has the advantage to squeeze the relativistic Δt somewhat
at receiving satellite station. On the other hand, from a satellite station to ground
stations, one might use wider relativistic Δt for digital frequency signal transmis-
sion. Wider Δt also offers a lager “certainty” communication space for complex
wave front transmission [22].

Let me assume a “relativistic” communication scenario as depicted in Figure 9,
in which we assume Q1 and Q2 satellite stations situated within two distinct
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subspaces, one travels at a velocity v and the other is stand still. In view of this
figure, we see that the hypothetical scenario is a “physical realizable” paradigm,
since these two subspaces are embedded within a temporal (t > 0) space.

Now, if we let Q1 station transmits a pulse signal with a duration Δt to Q2 station.
Assuming without any significant time delay, the digital pulse as received by Q2

station appeal “wider” due to relativistic dilation as can be seen from Eq. (41). For
instance, if we assume the time-dilation from Q1 station relatively with respect to
Q2 station is two time wider (i.e., Δt’ = 2Δt), then Δt’ is two times wider as received
by Q2; to complete for a bit” of information transmitted from Q1, as depicted in
Figure 10, where we see that the transmitted ΔE is “conservation”. Needless to say
that if the received pulse of Δt is transmitted back to Q1 in motion; the receiving
pulse width will be 2 time broader, as can be seen in the figure. In which we see that;
one can exploits faster “time-digital” transmission from a static station Q2 to a
moving station Q1. From Q1 to Q2 static station, one can take advantage for larger
communication subspace, such as synthetic aperture radar imaging [22].

Figure 9.
Relativistic digital transmission within temporal subspace.

Figure 10.
A relativistic digital information transmission, Δt’ = 2Δt.
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As I see it; it is our universe governs the science and it is not the science dictates
our universe. Within our universe every subspace is created by an amount of energy
ΔE and a section of time Δt. Once a section of Δt has been used, it cannot bring it
back, although we can create the same Δt at a different time. Although ΔE can be
traded for Δt, but it is “impossible” to squeeze Δt equals to zero (i.e., t = 0), and this
is the “temporal limit” of our universe. In this we see that there is “no” substance
that can travel instantly (i.e., t = 0) within our universe. Even someday we may
discover substance that travels beyond the speed of light, this is by “no”means that
the substance can travel instantly (i.e., t = 0) within our universe.

Nevertheless, the nature of a section of time Δt is all about our temporal (t > 0)
universe, in which time is space and space is time. I have shown that within our
universe every subspace takes an amount of energy ΔE and a section of time Δt to
“tangle”; by which ΔE and Δt cannot be separated. Although ΔE and Δt can be
mutually traded, it is trading ΔE for Δt, or Δυ for Δt, but not trading for ΔE or Δt
for Δυ since Δt is a real variable but “not” a physical quantity. But we cannot trade
Δt for ΔE; once a section of Δt has been used, it cannot bring it back since time is a
forward dependent variable. It is however, in principle, possible to trade ΔE (or Δυ)
for a smallest Δt, but it is “not” possible to squeeze Δt to zero, no matter how much
energy ΔE that one is willing to pay. Since Δt = 0 is the “instantaneous” response
that “cannot” be reached within a temporal (t > 0) subspace, in which we see that
Δt is lower bounded by Δt =0. But Δt = 0 exists only within a timeless (t = 0) space
but not within our universe.

In view of the laws of entropy, information, uncertainty, relativity, and universe
as given by

ΔI � ΔE Δt ¼ h, per bit of information (42)

ΔS � E Δt=T ¼ h=T, per bit of information (43)

ΔE Δt≥h (44)

Δt0 ¼ Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (45)

U : ΔE Δt≥ ðΔmc2ÞΔt,  ΔE Δt≥h (46)

Notice that law of universe in Eq. (46) has a set of equations; one is for an
isolated mass m and the other is for isolated photonic-particle, since photon is a
“virtual” particle has no mass. Nevertheless, these laws and principles are pro-
foundly associated with (ΔE, Δt), where unit (ΔE, Δt) is the “necessary” cost
within our universe. We have shown that it is possible to “squeeze” Δt by widening
ΔE. This corresponds to a higher energy of shorter wavelength λ. But it is “impos-
sible” to trade for infinitesimal small section of Δt (i.e., t ≈ 0), which is physical
limited as imposed by our temporal (t > 0) universe.

10. Time traveling?

One of the most interesting topics in science must be time traveling for which I
assume a photonic traveler (i.e., a photon) is situated within subspace 1 at the
center of our temporal universe in Figure 11. In view of this figure, the outward
speed of subspaces 3 moves somewhat faster than subspace 2 (i.e., v3 > v2) toward
the boundary of our universe since subspace 3 is closer to the boundary.

Now we let the photonic traveler start his voyage with a “narrow pulse” width
Δt’ from subspace 1 (i.e., very closed to our planet earth) to a distant subspace 3,
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which has an outward velocity of v3. If the “relativistic” time dilation Δt’ between
these two subspaces is “two” times wider than the static sunspace 1 (i.e., Δt = 2 Δt’).
Then velocity of subspace 3 can be calculated by means Einstein’s special theory of
relativity as given by

Δt0 ¼ Δtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p (47)

For which the outward velocity V3 is given by

V3 ¼ 0:87 c ¼ 0:87 � 186, 000 ¼ 161, 820 miles=s

With reference to Hubble space telescopic observation [27], the boundary of our
universe is about 15 billion light years away from subspace 1; for which Subspace 3
is estimated about 13 billion light years away from the center of our universe.
Which will take the photonic traveler a 13 billion light-years and possible added
another 13 billion light-years to catch-up to subspace 3, since subspace 3 has moved
away as traveler’s voyage started. For which the traveler will take about 26 billion
light-years to reach subspace 3, at speed of light.

Nevertheless, as arrived at subspace 3, the traveler’s pulse pulse-width reduces to
about 1/4 the size. Which has a 3/4 “gain” in relative time-duration with respect to
the static subspace 1 and the gain can be translated into “duration” of time that has
been taken during the voyage. Since it took about a total 26 billion light-years
journey to reach subspace 3, there is a “net gain”of about 19.5 billion light-years
ahead “relatively” to the time duration that has gone by at the subspace 1. In other
words; there is a total 19.5 billion light-years “relatively ahead” of subspace 1, after a
total 26 billion light-years journey to subspace 3, as illustrated in Figure 12.

Figure 11.
A schematic diagram of our expanding universe. It shows our universe is a temporal (t > 0) dynamic stochastic
universe; time and space are “coexisted.” (μo, εo) are the permeability and permittivity of space.
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After the long journey arrived at subspace 3, the traveler is contemplating when
he should return back. The “dilemma” is that if he waited too long, he may not be
able to return home soon enough to enjoy some of his time-gained, since subspace 3
is moving even faster closer to the speed of light. For which he has decided to return
right away, since is a longer journey of “more” than 26 billion light-years to cover,
in view of an outward velocity of subspace 3 to overcome.

But as I see it; all the “relative” time-gained will be used up on his journey back
home; it turns out the traveler will be home at precisely the same time of subspace 3
“without” any time gain. This part I will let you to figure out, since you have all the
mathematics to play with. Yet the worst scenario is that; the traveler “cannot” find
his home, since his home had been gone a few billion light-years ago after he had
departed from subspace 1 to subspace 3.

On the other hand, if the traveler is “not” a cruising photonic particle, then the
kinetic energy to reach a velocity of V3 = 161,820 miles/s can be calculated as

K.E. = ½ m v2 = ½ m (161,820)2.
which is a price that “nobody” can afford, even just for one-way trip to subspace

3, where m is the mass of the traveler, in which we see that “time traveling” to the
future is “unlikely”, even assume we can travel at the speed of light.

Nevertheless, every subspace within our universe is always attached a price; a
section of time Δt and an amount of energyΔE, although the unit (ΔE, Δt) is a
“necessary” cost. For example the “cost” to create a golf ball; it need a huge amount
of energy ΔE and a section of time Δt, but without an amount of information ΔI (or
equivalent an amount of ΔS) it will not make it happen.

Another scenario is that traveling within “empty” space as depicted in Figure 13,
as normally assumed. in spite it is a nonphysical paradigm; we see that traveler can
reach subspace 3 instantly and return back as he wishes, since within a timeless
(t = 0) space it has “no” distance and no time, although the diagram shows it has.
And this is precisely a virtual mathematical paradigm do to science, even though the
subspace has no time and yet appears it has. For which I have found; practically all
the laws, principles and theories of science were developed from the same empty
space, which is “not” a physical realizable subspace.

Since science is a “principle” of logic, in which we see that a simple logic worth
more than tons of mathematics. For example, as illustrated in Figure 14, if a time-
traveler able to remove himself from current moment of 2020 and searching for last
year of the same moment of 2019. The question is can he find it? The apparent
answer is that; last year of our universe has been departed. Similarly, the traveler is
wishing to visit next year 2021, but next year of our universe has not arrived yet.

In short, I remark that it is physical realizable science that “directs” the mathe-
matics, but not the virtual mathematics that leads science, although science needs

Figure 12.
The “relative” time gain as the traveler reached subspace 3. BLY represents billion light-years.
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mathematics. In which I note that; it is “not” how rigorous the mathematics is, it is
the physical realizable science we embrace. Otherwise more and more virtual sci-
ences will continuingly emerge. In view of relativity, we can “relatively” slow down
the time somewhat, but we can “never” change the speed of time. It is you walk
with time, and it is “not” time walks with you.

11. Conclusion

In conclusion, I would point out that quantum scientists used amazing mathe-
matical analyses added to their fantastic computer simulations that provide very
convincing results. But mathematical analyses and computer animations are virtual
and fictitious, and many of their animations are “not” physically real, for example,

Figure 13.
Our universe model embedded within an empty space. This is a subspace that normally used since the dawn of
science.

Figure 14.
A composited temporal universe as function of time. Notice that these temporal universes cannot be
“simultaneous” existed as superposition principle of quantum mechanics.
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the “instantaneous and simultaneous” superimposing principle for quantum com-
puting did “not” actually exist within our universe. One of the important aspects
within our universe is that one cannot get something from nothing there is always a
price to pay an amount of energy ΔE and a section of time Δt. The important is that
they are not free!

Any science that existed within our universe has time or temporal (t > 0), in
which we see that any scientific law, principle, theory, and paradox has to comply
with temporal (t > 0) aspect within our universe, otherwise it may not be a
physically realizable science, as we know that science is mathematics but mathe-
matics is not equal to science. In this we have shown that any analytic solution has
to be temporal (t > 0), otherwise it cannot be implemented within our universe,
which includes all the laws, principles, and theories.

Since Schrödinger’s quantum mechanics is a legacy of Hamiltonian classical
mechanics, we have shown that Schrödinger’s mechanics is a timeless (t = 0)
machine since Hamiltonian mechanics is timeless (t = 0). This includes
Schrödinger’s fundamental principle of superposition which is “not” a physically
realizable principle. Since Schrödinger’s cat is one of the most controversial para-
doxes in modern history of science, we have shown that the paradox of
Schrödinger’s cat is “not “a physically realizable paradox, which should not have
been postulated!

The most esoteric nature of our universe must be time, for which every funda-
mental law, principle, and theory is associated with a section of time Δt. We have
shown that it is the section of Δt that we have used cannot bring it back. And this is
the section of Δt that a set of most elegant laws and principles are associated with.
In this we have shown that we can squeeze Δt approaches to zero, but it is “not”
possible to reach zero even though we have all the energy ΔE to pay for it, in which
we see that we can change the section of Δt, but we cannot change the speed of
time.

Information is a very important aspect in science, since everything is a piece of
information. Nevertheless, without the connection with entropy, information
would be very difficult to apply in science. Since entropy is in energy form, but this
is by “no” means that entropy is conserved implies that information is conserved
since entropy is equivalent to an amount of information. We have shown; informa-
tion has two major orientations; Shannon transmission is for “reliable” information
while Weiner communication is for information “retrieval”, for which we see that
every bit of information takes an amount of energy ΔE and a section of time Δt to
transmit, and it is not free.

Nevertheless, time traveling is a very interesting topic for all scientists, in which
I have shown it is physically “not” realizable; it is simply we cannot “curve” a
temporal (t > 0) space, since time in a “dependent” forward variable with space. It
is science can change a section of time Δt but “not” change the speed of time. In
other words, we walk on the street and it is not the street that walks on us.
However, time traveling is possible if our universe is embedded within an empty
space. But emptiness is a timeless (t = 0) space which is “not” exited within our
temporal universe. And this is precisely most of the scientists uses this empty space
for over a few centuries since the dawn of science. And this is precisely why all the
laws, principles and theories are timeless (t = 0) or time-independent.

Overall, this chapter is to show that it is not how rigorous the mathematics is, it
is the physically realizable paradigm that produces viable solution. If one used a
nonphysical realizable model, it is very “likely” one will get a nonphysical realizable
solution, virtual and fictitious as mathematics is.

Finally, I would stress that the nature of temporal (t > 0) quantum mechanics is
all about the temporal (t > 0) universe, in which we have seen that it is our universe
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and fictitious, and many of their animations are “not” physically real, for example,

Figure 13.
Our universe model embedded within an empty space. This is a subspace that normally used since the dawn of
science.

Figure 14.
A composited temporal universe as function of time. Notice that these temporal universes cannot be
“simultaneous” existed as superposition principle of quantum mechanics.
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the “instantaneous and simultaneous” superimposing principle for quantum com-
puting did “not” actually exist within our universe. One of the important aspects
within our universe is that one cannot get something from nothing there is always a
price to pay an amount of energy ΔE and a section of time Δt. The important is that
they are not free!

Any science that existed within our universe has time or temporal (t > 0), in
which we see that any scientific law, principle, theory, and paradox has to comply
with temporal (t > 0) aspect within our universe, otherwise it may not be a
physically realizable science, as we know that science is mathematics but mathe-
matics is not equal to science. In this we have shown that any analytic solution has
to be temporal (t > 0), otherwise it cannot be implemented within our universe,
which includes all the laws, principles, and theories.

Since Schrödinger’s quantum mechanics is a legacy of Hamiltonian classical
mechanics, we have shown that Schrödinger’s mechanics is a timeless (t = 0)
machine since Hamiltonian mechanics is timeless (t = 0). This includes
Schrödinger’s fundamental principle of superposition which is “not” a physically
realizable principle. Since Schrödinger’s cat is one of the most controversial para-
doxes in modern history of science, we have shown that the paradox of
Schrödinger’s cat is “not “a physically realizable paradox, which should not have
been postulated!

The most esoteric nature of our universe must be time, for which every funda-
mental law, principle, and theory is associated with a section of time Δt. We have
shown that it is the section of Δt that we have used cannot bring it back. And this is
the section of Δt that a set of most elegant laws and principles are associated with.
In this we have shown that we can squeeze Δt approaches to zero, but it is “not”
possible to reach zero even though we have all the energy ΔE to pay for it, in which
we see that we can change the section of Δt, but we cannot change the speed of
time.

Information is a very important aspect in science, since everything is a piece of
information. Nevertheless, without the connection with entropy, information
would be very difficult to apply in science. Since entropy is in energy form, but this
is by “no” means that entropy is conserved implies that information is conserved
since entropy is equivalent to an amount of information. We have shown; informa-
tion has two major orientations; Shannon transmission is for “reliable” information
while Weiner communication is for information “retrieval”, for which we see that
every bit of information takes an amount of energy ΔE and a section of time Δt to
transmit, and it is not free.

Nevertheless, time traveling is a very interesting topic for all scientists, in which
I have shown it is physically “not” realizable; it is simply we cannot “curve” a
temporal (t > 0) space, since time in a “dependent” forward variable with space. It
is science can change a section of time Δt but “not” change the speed of time. In
other words, we walk on the street and it is not the street that walks on us.
However, time traveling is possible if our universe is embedded within an empty
space. But emptiness is a timeless (t = 0) space which is “not” exited within our
temporal universe. And this is precisely most of the scientists uses this empty space
for over a few centuries since the dawn of science. And this is precisely why all the
laws, principles and theories are timeless (t = 0) or time-independent.

Overall, this chapter is to show that it is not how rigorous the mathematics is, it
is the physically realizable paradigm that produces viable solution. If one used a
nonphysical realizable model, it is very “likely” one will get a nonphysical realizable
solution, virtual and fictitious as mathematics is.

Finally, I would stress that the nature of temporal (t > 0) quantum mechanics is
all about the temporal (t > 0) universe, in which we have seen that it is our universe
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that governs our science; it is not our science that “curves” our universe. Although
we can change a section of time Δt, we cannot change the speed of time. In short, it
is the physically realizable science we value, but not the fancy mathematical solu-
tion we adored.
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Chapter 10

Analysis of Quantum
Confinement and Carrier
Transport of Nano-Transistor in
Quantum Mechanics
Aynul Islam and Anika Tasnim Aynul

Abstract

Quantum mechanics is the branch of physics that consists of laws explaining the
physical properties of the nature of nano-particles and their characteristics on an
atomic scale. The study of nano-particles significantly challenges our current per-
ception of the universe and the fabric of reality itself. Quantum particles have both
wave-like and particle-like characteristics. The fundamental equation that predicts
the physical behaviour of a quantum system is the Schrödinger equation and the
Poisson equation using Monte Carlo simulations. This gives rise to the wavefunction,
electron and hole densities, energy levels and band structure of the system which
contains all the measurable information about the particle such as time and position,
where position is represented using probabilities. This is because particles do not
have one definite position during the time before measurement. In fact, they exist
as a fuzzy distribution of all possible states where the likelihood of finding the
particle in some states is more probable than others. This is known as being in a
superposition of all states. When the quantum system is observed, however, its
wavefunction collapses so it consequently falls into one specific position. Moreover,
in this chapter we present the simulation results of conduction band profile, elec-
tron density (classical and quantum mechanical), eigenstate and eigenfunctions for
Si, SOI and III-V MOSFET structures at bias voltage 1.0 V using 1D Poisson-Schr-
ödinger solver.

Keywords: nano-devices, nano-particles, MOS, SOI and III-V structures, 1D
Poisson-Schrödinger solver, conduction and valence band profile, carrier density
and wavefunctions in the potential well, wave-particle duality

1. Introduction

In this chapter, a connection between the band structure and quantum confine-
ment effects with device characteristics in nano-scale devices is established. Three
different devices are presented: a 25 nm gate length Si MOSFET, a 32 nm SOI
MOSFET and a 15 nm In0.3 Ga0.7As channel MOSFET. We use a 1D Poisson-
Schrödinger solver across the middle of the gate along the channel of the devices. The
goal is to obtain the calculations of an energy of bound states and associated carrier
wavefunctions which are carried out self consistently with electrostatic potential.
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The obtained wavefunctions are then used to calculate a carrier density which
allows to obtain a sheet density across the structure at given bias.

One of the architectures seriously considered the Silicon-On-Insulator (SOI)
transistor as a replacement for bulk MOSFETs. SOI transistors have many advan-
tages compared with the conventional bulk MOSFET architecture. One of the most
important is a better electrostatic integrity. SOI devices tolerate thicker gate oxides
and low channel doping, allowing scaling to sub-10 nm channel lengths without
substantial loss of performance.

However, the transition to this new device architecture and the eventual intro-
duction of new materials in order to further boost device performance is a chal-
lenging task for the industry. However, the simulation of UTB transistors has to
consider the impact of quantum confinement effects on the device electrostatics.
The confinement effects can be induced into classical device simulation approaches
using various approximations which include the density gradient approach [1, 2],
the effective potential approach [3] and 1D Poisson-Schrödinger solver acting
across the channel [4].

This idea leads onto another fundamental quantum superpower called quantum
tunnelling. Quantum tunnelling causes particles to simply pass through physical
barriers. If a particle was trapped in a well where it has not got enough kinetic
energy to escape the well, it would stay in the well as one would expect, however,
there is a slight difference. There will also be an exponentially decaying probability
that the particle is found outside the well (under specific conditions, that is)! This
has to do with the fact that the particles have a ‘wave’ of probable locations it can be
in which extends beyond the well.

2. Quantum mechanics in a semiconductor

The purpose of this chapter is to understand the behaviour and properties of the
particles of semiconductor material and devices. In order to get a conception of
conduction band and valence band profile, drift velocity, energy, characteristics of
the electrical field, wavefunction, carriers density and the mobility of carriers, we
need to have an idea on the behaviour of carriers and then proper analysis about
semiconductor materials which is related to the different potential. For more
understanding about the particles in the theory of semiconductor physics we need
to increase our knowledge extensively on the area of quantum mechanical wave
theory. Furthermore, we will get idea about the physical behaviour of the materials
in semiconductor physics whose electrical properties are related to the behaviour of
the carriers in the crystal lattice structure. We will do an analysis of these carriers
with the formulation of quantum mechanics, so called ‘wave mechanics’. One of the
most important parts to describing wave mechanics is ‘Schrödinger wave equation’.
The gradient of Poisson equation describes about the carriers density of the mate-
rials in the semiconductor devices. More details about the characteristics and
behaviour of carriers of the semiconductor materials related with the quantum
mechanical behaviour are described in this chapter.

2.1 Action of quantum mechanics

Generally, in quantum mechanics, we need to know the basic idea about the
principle of tiny energy behaviour (photon), the wave-particle duality,
wavefunction behaviour in the potential well, Heisenberg uncertainty principle,
and the Schrödinger and Poisson equation.
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2.1.1 Wave and photon energy

In general, a wave is a ‘perturbation’ from the surrounding or ‘collision’ between
particles that travel from one position to another position over time. As we know a
wave like classically or electromagnetic wave, which carries momentum and energy
during changing the position, while in quantum mechanically a wavefunction can
be applied to find out probabilities. We can say the equation for such wavefunction,
so called Schrödinger wave equation, which will be described and developed math-
ematically with more details in the next section [1, 2].

We will now explore the physics behind the photoelectric effect. If light (mono-
chromatic) falls on a smooth and clean surface of any material, then at some specific
conditions, electrons are emitted from the surface. According to classical physics,
the high intensity of light where the work function of the material will be overcome
and an electron will be emitted from the surface, does not depend on the incident
frequency, which is not observable. The observed effect is that, at a constant
intensity of the incident light, the kinetic energy of the photoelectron increases
linearly with frequency, start at specific frequency ν0, below this frequency we did
not observe any emission of photoelectron, as shown in Figure 1(a) and (b).

After heating the surface, from that surface, thermal radiation will be emitted
continuously (Planck), which form in discrete packets of energy called ‘quanta’.
The energy of these quanta is generally described by E ¼ hν, where ν is the
frequency of radiation and h is a Planck’s constant. However, Einstein explained
that the energy in a light wave also contains photon or quanta, whose energy is also
given by E ¼ hν. A photon with high energy can emit an electron from the surface
of the material. The required energy to emit an electron is equal to the work
function of the material, and rest of the incident photon energy can be converted
into the kinetic energy of the photoelectron [1–3]. The maximum kinetic energy of
the photoelectron can be written below as in the equation form:

Tmax ¼ 1
2
mv2 ¼ hν� hν0 (1)

2.1.2 Wave-particle duality

As we know the light waves in the photoelectric effect behave like particles. In
the Compton effect experiment, an X-ray beam was incident on a solid - individual
photons collide with single electrons that are free or quite loosely bound in the
atoms of matter, as a result colliding photons transfer some of their energy and
momentum of electrons.

Figure 1.
(a) The photoelectric effect and (b) the kinetic energy of the photoelectron as a function of the incident
frequency.

193

Analysis of Quantum Confinement and Carrier Transport of Nano-Transistor in Quantum…

DOI: http://dx.doi.org/10.5772/intechopen.93258



The obtained wavefunctions are then used to calculate a carrier density which
allows to obtain a sheet density across the structure at given bias.

One of the architectures seriously considered the Silicon-On-Insulator (SOI)
transistor as a replacement for bulk MOSFETs. SOI transistors have many advan-
tages compared with the conventional bulk MOSFET architecture. One of the most
important is a better electrostatic integrity. SOI devices tolerate thicker gate oxides
and low channel doping, allowing scaling to sub-10 nm channel lengths without
substantial loss of performance.

However, the transition to this new device architecture and the eventual intro-
duction of new materials in order to further boost device performance is a chal-
lenging task for the industry. However, the simulation of UTB transistors has to
consider the impact of quantum confinement effects on the device electrostatics.
The confinement effects can be induced into classical device simulation approaches
using various approximations which include the density gradient approach [1, 2],
the effective potential approach [3] and 1D Poisson-Schrödinger solver acting
across the channel [4].

This idea leads onto another fundamental quantum superpower called quantum
tunnelling. Quantum tunnelling causes particles to simply pass through physical
barriers. If a particle was trapped in a well where it has not got enough kinetic
energy to escape the well, it would stay in the well as one would expect, however,
there is a slight difference. There will also be an exponentially decaying probability
that the particle is found outside the well (under specific conditions, that is)! This
has to do with the fact that the particles have a ‘wave’ of probable locations it can be
in which extends beyond the well.

2. Quantum mechanics in a semiconductor

The purpose of this chapter is to understand the behaviour and properties of the
particles of semiconductor material and devices. In order to get a conception of
conduction band and valence band profile, drift velocity, energy, characteristics of
the electrical field, wavefunction, carriers density and the mobility of carriers, we
need to have an idea on the behaviour of carriers and then proper analysis about
semiconductor materials which is related to the different potential. For more
understanding about the particles in the theory of semiconductor physics we need
to increase our knowledge extensively on the area of quantum mechanical wave
theory. Furthermore, we will get idea about the physical behaviour of the materials
in semiconductor physics whose electrical properties are related to the behaviour of
the carriers in the crystal lattice structure. We will do an analysis of these carriers
with the formulation of quantum mechanics, so called ‘wave mechanics’. One of the
most important parts to describing wave mechanics is ‘Schrödinger wave equation’.
The gradient of Poisson equation describes about the carriers density of the mate-
rials in the semiconductor devices. More details about the characteristics and
behaviour of carriers of the semiconductor materials related with the quantum
mechanical behaviour are described in this chapter.

2.1 Action of quantum mechanics

Generally, in quantum mechanics, we need to know the basic idea about the
principle of tiny energy behaviour (photon), the wave-particle duality,
wavefunction behaviour in the potential well, Heisenberg uncertainty principle,
and the Schrödinger and Poisson equation.

192

Quantum Mechanics

2.1.1 Wave and photon energy

In general, a wave is a ‘perturbation’ from the surrounding or ‘collision’ between
particles that travel from one position to another position over time. As we know a
wave like classically or electromagnetic wave, which carries momentum and energy
during changing the position, while in quantum mechanically a wavefunction can
be applied to find out probabilities. We can say the equation for such wavefunction,
so called Schrödinger wave equation, which will be described and developed math-
ematically with more details in the next section [1, 2].

We will now explore the physics behind the photoelectric effect. If light (mono-
chromatic) falls on a smooth and clean surface of any material, then at some specific
conditions, electrons are emitted from the surface. According to classical physics,
the high intensity of light where the work function of the material will be overcome
and an electron will be emitted from the surface, does not depend on the incident
frequency, which is not observable. The observed effect is that, at a constant
intensity of the incident light, the kinetic energy of the photoelectron increases
linearly with frequency, start at specific frequency ν0, below this frequency we did
not observe any emission of photoelectron, as shown in Figure 1(a) and (b).

After heating the surface, from that surface, thermal radiation will be emitted
continuously (Planck), which form in discrete packets of energy called ‘quanta’.
The energy of these quanta is generally described by E ¼ hν, where ν is the
frequency of radiation and h is a Planck’s constant. However, Einstein explained
that the energy in a light wave also contains photon or quanta, whose energy is also
given by E ¼ hν. A photon with high energy can emit an electron from the surface
of the material. The required energy to emit an electron is equal to the work
function of the material, and rest of the incident photon energy can be converted
into the kinetic energy of the photoelectron [1–3]. The maximum kinetic energy of
the photoelectron can be written below as in the equation form:

Tmax ¼ 1
2
mv2 ¼ hν� hν0 (1)

2.1.2 Wave-particle duality

As we know the light waves in the photoelectric effect behave like particles. In
the Compton effect experiment, an X-ray beam was incident on a solid - individual
photons collide with single electrons that are free or quite loosely bound in the
atoms of matter, as a result colliding photons transfer some of their energy and
momentum of electrons.

Figure 1.
(a) The photoelectric effect and (b) the kinetic energy of the photoelectron as a function of the incident
frequency.

193

Analysis of Quantum Confinement and Carrier Transport of Nano-Transistor in Quantum…

DOI: http://dx.doi.org/10.5772/intechopen.93258



A portion of the X-ray beam was deflected and the frequency of the deflected
wave had shifted compared to the incident wave as shown in Figure 2. The
observed change in frequency and the deflected angle corresponded exactly to the
collision between an X-ray (photon) and an electron in which both energy and
momentum are conserved [1, 2].

In 1924, de Broglie observed that just as the waves exhibit particle-like behav-
iour, the particles also show wave-like characteristics. So, the assumption of the de
Broglie was the existence of a wave-particle duality principle. The momentum of a
photon is given by:

p ¼ h
λ
; ¼ h

p
, (2)

where p is the momentum of the particle and λ is known as the de Broglie
wavelength of the matter wave. In general, electromagnetic waves behave like
particles (photons), and sometimes particles behave like waves. This wave-particle
duality principle quantum mechanics applies to small particles such as electrons,
protons and neutrons. The wave-particle duality is the basis on which we will apply
wave theory to explain the motion and behaviour of electrons in a crystal.

2.1.3 Uncertainty principle

The uncertainty principle describes with absolute accuracy the behaviour of
subatomic particles, which makes two different relationships between conjugate
variables, including position and momentum and also energy and time [1, 2].

For the case 1, it is impossible to simultaneously explain with accuracy the
position and momentum of a particle. If the uncertainty in the momentum is Δp,
and the uncertainty in the position is Δx, then the uncertainty principle is stated as

ΔpΔx≥
ℏ
2
or ℏ, (3)

where ℏ is defined as ℏ ¼ h
2π = 1.054 x10�34 J-s and is called international Planck’s

constant.
For the case 2, it is impossible to simultaneously describe with accuracy the

energy of a particle and the instant of time the particle has this energy. So, if the
uncertainty in the energy is given by ΔE and the uncertainty in the time is given by
Δt, then the uncertainty principle is stated as

ΔEΔt≥ℏ (4)

Figure 2.
Compton scattering diagram showing the relationship of the incident photon and electron initially at rest to the
scattered photon and electron given kinetic energy.
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One consequence of the uncertainty principle is that we cannot, for example,
determine the exact position of an electron. We, instead, will determine the
probability of finding an electron at a particular position [5, 6].

2.2 Basic principle of Schrödinger and Poisson equation

Generally, the Schrödinger equation description depends on the physical situa-
tion. The most common form is the time-dependent Schrödinger equation which
gives an explanation of a system related with time and also predicts that wave
functions can form standing waves or stationary states. The stationary states can
also be explained by a simpler form of the Schrödinger equation, the time-
independent Schrödinger Equation [7–9]. We will explain here the motion of
electrons in a crystal by theory, which is described by Schrödinger wave equation.

2.2.1 Time dependent and time independent Schrödinger wave equation and the density
probability function

The Schrödinger equation is one of the fundamental tools for the understanding
and prediction of nano-scaled semiconductor devices. For the case of one dimension
the wave vector and momentum of a particle can be considered as scalars, so
relating the de Broglie equation, we can write as

E ¼ ℏω p ¼ ℏk (5)

We use these equation and properties of classical waves to set up a wave equa-
tion, known as the Schrödinger wave equation. We solve this equation for the
particles which are confined to a potential well, and also to find the solution for
particular discrete values of the total energy. However, we develop a theory by
considering a particle, moving under the influence of a potential, V (x, t). For this
case, the total energy E is equal to the sum of the kinetic and potential energies
which can be written as,

Eψ ¼ Hψ ¼ p2

2m
þV

� �
ψ (6)

As we know the momentum operator, and energy are given by

p ¼ �iℏ
∂

∂x
,E ¼ iℏ

∂Ψ x, tð Þ
∂t

(7)

After solving Eqs. (6) and (7), we can develop the one-dimensional time-
dependent Schrödinger equation, which can be written as

iℏ
∂ψ x, tð Þ

∂t
¼ � ℏ2

2m
∂
2ψ x, tð Þ
∂x2

þV xð Þψ x, tð Þ, (8)

where ψ x, tð Þ is the wave function, which describes the behavior of an electron in
the device and V(x) is the potential function assumed to be independent of time, and
m is the mass of the particle. Assume that the wave function can be written in the form

ψ x, tð Þ ¼ ψ xð Þϕ tð Þ, (9)

where ψ xð Þ is a function of the position x only and ϕ tð Þ is a function of time t
only. Substituting this form in the Schrödinger wave Eq. (8), we get
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iℏ ψ xð Þ ∂ϕ tð Þ
∂t

¼ � ℏ2

2m
ϕ tð Þ ∂

2ψ xð Þ
∂x2

þV xð Þ ψ xÞ ϕ tð Þð (10)

Now, if we divide both sides of the Eq. (10) by the wave function, ψ xÞ ϕ tð Þ,ð
we get

iℏ
1

ϕ tð Þ
∂ϕ tð Þ
∂t

¼ � ℏ2

2m
1

ψ xð Þ
∂
2ψ xð Þ
∂x2 þV xð Þ (11)

After solving the Eq. (11) (using differential equation), the solution of the above
equation can be written as

ϕ tð Þ ¼ e�i E
ℏð Þt (12)

We notice the solution of Eq. (12) is the classical exponential form of a
sinusoidal wave. As we see from Eq. (11) on the left hand side with function of
time, which is equal to the constant of total energy of the particle, and the right
hand side is a function of the position x only. After simplification of the above
equation the time-independent portion of the Schrödinger wave equation can now
be written as

� ℏ2

2m
1

ψ xð Þ
∂
2ψ xð Þ
∂x2 þV xð Þ ¼ E

∂
2ψ xð Þ
∂x2 þ 2m

ℏ2 E�V xð Þð Þ ψ xð Þ ¼ 0 (13)

Now, the total wave function can be written as in the form of product of the
position or time independent function and the time dependent function,

ψ x, tð Þ ¼ ψ xð Þ ϕ tð Þ ¼ ψ xð Þe�i E
ℏð Þt (14)

According to the Max Born, the function ψ x, tð Þj j2dx is the probability of finding
the particle between x and xþ dx at a given time, we can express also ψ x, tð Þj j2 dx
as a probability density function.

ψ x, tð Þj j2 dx ¼ ψ x, tð Þ � ψ ∗ x, tð Þ, (15)

where ψ ∗ x, tð Þ is the complex conjugate function. Following Eq. (14), we can
rewrite:

ψ ∗ x, tð Þ ¼ ψ ∗ xð Þei E
ℏð Þt (16)

Finally, we can develop the density of the probability function using Eq. (14),
and Eq. (16), which is independent of time.

ψ x, tð Þj j2 dx ¼ ψ xð Þ � ψ ∗ xð Þ ¼ ψ xð Þj j2 (17)

The main difference between classical and quantum mechanics is that in
classical mechanics, the position of a particle can be determined precisely,
whereas in quantum mechanics the position of a particle is related in terms of
probability [1, 2].
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2.2.2 Wave function behaviour: finite square well, infinite square well, and tunnelling
behaviour

In quantum mechanics, finite square well is an important invention to explain
the particle wave function behaviour in the crystal. It is a further development of
the infinite potential well, in which particle is confined in the square well. The finite
potential well, there is a probability to find the particle outside the box. The idea in
quantum mechanics is not like the classical idea, where if the total energy of the
particle is less than the potential energy barrier of the walls it is not possible to find
the particle outside the box. Alternatively, in quantum mechanics, there is a prob-
ability of the particle existing outside the box even if the particle energy is not
enough by comparing the potential energy barrier of the walls [1, 8, 9].

We apply here the time independent Schrödinger equation for the case of an
electron in free space. Consider the potential function V xð Þ will be constant and
energy must have the condition E >V xð Þ. For analysis, we assume that the potential
function V xð Þ ¼ 0 for the region II inside the box, as shown in Figure 3, and then
the time-independent wave equation can be written as from Eq. (13) as

∂
2ψ xð Þ
∂x2 þ 2mE

ℏ2 ψ xð Þ ¼ 0 (18)

Letting k ¼ ffiffiffiffiffiffiffiffiffiffi
2mE

p
=ℏ or E ¼ ℏ2k2=2m, then Eq. (18) leads to

∂
2ψ xð Þ
∂x2 ¼ �k2ψ xð Þ (19)

After solving the Eq. (19) using differential equation, the general solution becomes

ψ xð Þ ¼ A sin kxð Þ þ B cos kxð Þ,

where A and B are complex numbers, and k is any real number.
Now, for the region I and region III, outside the box, where the potential

assumed to be constant, V xð Þ ¼ V0, and Eq. (13) becomes

∂
2ψ xð Þ
∂x2 þ 2m

ℏ2 E�V xð Þð Þ ψ xð Þ ¼ 0

� ℏ2

2m
δ2ψ xð Þ
δx2 ¼ E�V0ð Þψ xð Þ (20)

Figure 3.
Potential function of the finite potential well for different regions along the x-direction, with three discrete
energy levels and corresponding wave function.
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We will get here two possible solutions, depending on energies, where E is
smaller than V0, that means the particle is bound the potential and E is greater than
V0, that means the particle is moving in free space, which is represented by
travelling wave (shown in Figure 3).

The potential V xð Þ as a function of the position is shown in Figure 4. The
particle is assumed to exist in region II so the particle is contained within a finite
region of space. The time-independent Schrödinger wave equation can be written as

∂
2ψ xð Þ
∂x2

þ 2m
ℏ2 E� V xð Þð Þ ψ xð Þ ¼ 0, (21)

where E is the total energy of the particle. If E is finite, the wave function must
be zero, or ψ xð Þ ¼ 0, in both regions I and III. A particle cannot penetrate these
infinite potential barriers, so the probability of finding the particle in regions I and
III is zero.

In the quantum mechanics, the particle in a box (also known as the infinite
potential well) describes a particle free to move in a small space surrounded by
impenetrable barriers (shown in Figure 4). In classical systems, for example, a
particle trapped inside a large box can move at any speed within the box and it is no
more likely to be found at one position than another. However, when the well
becomes very narrow (on the scale of a few nanometers), quantum effects become
important. The particle may only occupy certain positive energy levels [1, 9, 10].

The energy of the incident particle (E>V) in region I and transmitted particle
(E >V) in region III through the potential barrier (E <V) in region II, where the
tunnelled particle is the same but the probability amplitude is decreased. There is a
finite probability that a particle impinging a potential barrier will penetrate the
barrier and will appear in region III (shown in Figure 5). This quantum mechanical
tunnelling phenomenon can be applied to semiconductor devices.

Quantum tunnelling is the quantum mechanical phenomenon where a
subatomic particle’s probability disappears from one side of a potential barrier
and appears on the other side without any probability appearing inside the well.
Quantum tunnelling is not predicted by the laws of classical mechanics where
surmounting a potential barrier requires enough potential energy [9, 10].

2.2.3 Maxwell’s equations: Poisson equation

To develop the Poisson equation we need to describe the famous Maxwell’s
equations in their differential form. In mathematics, Poisson’s equation is a partial
differential equation, which describe the potential field caused by a given charge
distribution [2, 8]. Our goal is to find the density of the electron in the crystal of the

Figure 4.
Potential function of the infinite potential well for different regions along the x-direction, with three discrete
energy levels and corresponding wave function in the box or potential well.
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semiconductor device classically. As we know the Gauss’s law is ∇ �D ¼ ρ, where ∇
is the divergence operator, D is the electric displacement law (D ¼ εE), ρ is the free
charge density, ε is the permittivity of the medium, and E is the electric field
(E ¼ �∇V). Maxwell’s four equations describe the electric and magnetic fields
arising from distributions of electric charge and currents, and how those fields
change in time. Maxwell’s equations described as follows [2]:

∇ � E ¼ ρ
ϵ0

, (22)

∇ � B ¼ 0 (23)

∇� E ¼ � δB
δt

, (24)

∇� B ¼ μ0jþ μ0ϵ0
δE
δt

(25)

We can substitute the value of electric displacement in the basic equation of
Gauss’s law, which can be rewritten as ∇ � E ¼ ρ

ϵ0
, so called Eq. (22). In electrostatic,

we suppose that there is no magnetic field, then Eq. (24) can be rewritten as ∇�
E ¼ 0, The electric field as the gradient of a scalar function V, is called electrostatic
potential. Thus we can write E ¼ �∇V, and the minus sign is chosen so that V is
introduced as the potential energy per unit charge. Finally, we can develop the
derivation of Poisson’s equation using Eq. (22), and Eq. (24), which leads to

∇ � E ¼ ∇ � �∇Vð Þ ¼ ρ
ϵ0

∇2V ¼ � ρ
ϵ0

(26)

2.3 Contribution of Schrödinger and Poisson equation in nano-particles

In this section, a connection between the bandstructure and quantum confine-
ment effects with device characteristics in nano-scale devices is established. Three
different devices are presented: a 25 nm gate length Si (Silicon) MOSFET (Metal
Oxide Semiconductor Field Effect Transistor), a 32 nm Silicon-on-insulator (SOI)
MOSFET and a 15 nm implant free (IF) In0.3Ga0.7As (Indium Gallium Arsenide)
channel MOSFET. We use a 1D Poisson-Schrödinger solver across the middle of the

Figure 5.
Quantum tunnelling: The wavefunctions through the potential barrier, a significant tunnelling effect can be seen
in three different regions.
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semiconductor device classically. As we know the Gauss’s law is ∇ �D ¼ ρ, where ∇
is the divergence operator, D is the electric displacement law (D ¼ εE), ρ is the free
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gate along the channel of the devices. The goal is to obtain the calculations of an
energy of bound states and associated carrier wavefunctions which are carried out
self consistently with electrostatic potential. The obtained wavefunctions are then
used to calculate a carrier density which allows to obtain a sheet density across the
structure at given bias. We have chosen the SOI MOSFET for comparison because it
is considered for low power applications. The SOI technology is developing now
into the commercial area and is included in the ITRS. The SOI based MOSFETs have
a silicon channel made of a narrow layer of less than 10 nm grown on a relatively
thick SiO2 layer. Such strongly confined device channel creates an ultra-thin body
(UTB) which provides enhanced carrier transport and, therefore, this transistor
architecture is better to be referred as UTB SOI. The FD (fully depleted) SOI
MOSFET has superior electrical characteristics and a threshold control from a bot-
tom gate compared to the bulk CMOS device, which are described as follows [11, 12]:

1.decrease in a power dissipation and faster speed due to reduced junction area,

2.steep subthreshold slope,

3.negligible floating body effects,

4. increased channel mobility,

5.reduced short-channel effects and an excellent latchup immunity.

From a point of simplicity, we will first consider the UTB SOI transistor archi-
tecture because it is quite illustrative for quantum-mechanical calculations of a
confined structure. We will consider a semiconductor material with a small energy
gap sandwiched between energy barriers from a material with a larger energy gap.
In this way, a quantum well is formed between the barriers which introduce a
potential well with discrete energy levels, where particles are confined in one
dimension and move free in other two directions as shown in Figure 6 [13].

We will now focus exclusively on the calculation of quantum states related to
electrons. The calculation of quantum states related to holes or any other particles or
quasi-particles are equivalent. In the calculations, we will determine the conduction
band profile, electron density, energy levels (eigenstates), wavefunctions
(eigenfunctions) and electron sheet density in the semiconductor device structure
under external potential. In this case, both Schrödinger and Poisson equations have
to be solved self-consistently. The one-dimensional, time independent
Schrödinger’s wave equation for a particle in a potential distribution is a second
order ordinary differential equation, which is given by [14].
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where ψ is the wave function, E is the energy eigenvalue, V xð Þ is the potential
energy assumed to be independent of time, ℏ is Planck’s constant divided by 2π,
m � m xð Þ is the effective mass of an electron which is a position dependent, H
represents the Hamiltonian operator associated with the sum of the kinetic and
potential energies of the system.

The potential distribution ϕ xð Þ in the semiconductor can be determined from a
solution of the 1 D Poisson Eq. (26), which is given by

d
d xð Þ εS xð Þ d

d xð Þ
� �

ϕ xð Þ ¼ �ρ xð Þ
ε0

(29)

The charge density ρ is given by

ρ ¼ ND xð Þ �NA xð Þ þ p xð Þ � n xð Þ: (30)

Eq. (25) can be written as

d
d xð Þ εS xð Þ d

d xð Þ
� �

ϕ xð Þ ¼ �q ND xð Þ �NA xð Þ þ p xð Þ � n xð Þ½ �
ε0

, (31)

where ϕ is the electrostatic potential, εS is the semiconductor dielectric constant,
ε0 is the permittivity of free space. In the static behaviour, ND and NA are called the
ionised donor and acceptor concentrations and, in the case of dynamic behaviour, n
and p are known as electron and hole density distributions. When dealing with n-
type majority carriers semiconductor devices, we can ignore the holes contribution
due to their slow movement compared to the electron dynamics. Then only the
electrons and donors are considered. As a result the above Eq. (31) can be written as

d
d xð Þ εS xð Þ d

d xð Þ
� �

ϕ xð Þ ¼ �q ND xð Þ � n xð Þ½ �
ε0

(32)

The potential energy V in the Hamiltonian is related to the electrostatic potential
ϕ as follows [15]:

V xð Þ ¼ qϕ xð Þ þ ΔEC xð Þ, (33)

where ΔEC is the pseudopotential energy due to the band offset at the
heterointerface. The wavefunction ψ xð Þ in Eq. (27) and the electron density n xð Þ in
Eq. (32) are related by

Figure 6.
Schematics of conduction band structure of silicon in <100> oriented narrow channels [assumed (100) plane
for the Si-SiO2 interface]. The energy levels are also shown in the silicon quantum well.
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where ψ is the wave function, E is the energy eigenvalue, V xð Þ is the potential
energy assumed to be independent of time, ℏ is Planck’s constant divided by 2π,
m � m xð Þ is the effective mass of an electron which is a position dependent, H
represents the Hamiltonian operator associated with the sum of the kinetic and
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n xð Þ ¼
XM

k¼1

ψ ∗
k xð Þψk xð Þnk, (34)

where the summation runs over all the subbands, M is the number of bound
states, and nk is the electron occupation for each state. The electron occupation of a
state k is given by the Fermi-Dirac distribution:

nk ¼ m
πℏ2

ð∞

Ek

1
1þ exp E� EF=kBTð Þ dE, (35)

where Ek is the eigenenergy, is the EF Fermi energy, and kBT is the thermal
energy. An iteration procedure is employed to obtain self-consistent solutions for
Eqs. (27) and (32). Starting with a trial potential xð Þ, the wave functions, and their
corresponding eigenenergies, Ek are used to calculate the electron density distribu-
tion nx using Eqs. (34) and (35).

2.4 Simulation results: wavefunctions behaviour of particles in the
semiconductor devices: 1D Poisson-Schrödinger solver

The previous method of solving the Schrödinger-Poisson equations (see Section
2.3) has been applied to calculate the conduction band profile, electron concentration,
energy levels (eigenstates) and wavefunctions (eigenfunctions) in a cross-section
placed in middle of the gate of Metal-Oxide-Semiconductor (MOS) structure.

2.4.1 Si MOS structure

The MOS structure consists of a Metal-Oxide-Semiconductor capacitor, which is
in the heart of the MOSFET. Figure 7 shows the ideal MOS structure for p-type
silicon in the flat band condition. The MOS structure is called the flat-band condi-
tion if the two following conditions are met [16]:

1.The work function of metal and silicon are equal, which implies that in all the
materials, all energy levels in both the silicon and oxide are flat. When there is
no applied voltage between the metal and silicon, their Fermi levels line up.

2.There exists no charge, the electric field is zero everywhere in the oxide and at
the Si-SiO2 interface.

The energy bands in the semiconductor near the oxide-semiconductor interface
bend as a voltage is applied across the MOS capacitor [13]. We will assume three
different bias voltages. One is below the threshold voltage, VT, the second is just
above the threshold voltage, and third one is at an on-current condition. The
threshold voltage is defined as the applied gate voltage required to create the
inversion layer charge and is one of the important parameters of MOSFETs. For
enhancement mode, n-type MOS structure, the accumulation is for VG < 0, the
depletion for VT > VG > 0, the inversion for VG � VT and the strong inversion for
VG >> 0 [14].

An accumulation layer of holes occurs in the oxide-semiconductor junction
typically for negative voltages when the negative charge on the gate attracts holes
from the substrate to the oxide-semiconductor interface. The induced space charge
region is created for positive voltages. The positive charge on the gate pushes the
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mobile holes into the substrate. Therefore, the semiconductor is depleted of mobile
carriers and a negative charge occurs at the interface because the fixed ionised
acceptor atoms are in fixed positions [16].

We will investigate a Si MOS structure at a cross-section in the middle of a gate
of the 25 nm gate length Si MOSFET. The structure shown in Figure 8(a) has a
p-type silicon substrate, oxynitride (ON) gate oxide with a thickness of 1.6 nm, a
dielectric constant of εON = 7 and a metal gate.

The conduction band profile in a MOS structure of bulk silicon, biased at gate
voltage of VG = 1.0 V is shown in Figure 8(b). The ground state energy rises from
the conduction band edge as shown in Figure 8(b). This phenomenon is called
surface quantization by applied higher gate voltage. The surface quantization is
often expressed by a triangular well approximation and the potential near the
interface has almost a triangular shape because the potential barrier of SiO2 is
relatively high in silicon MOS structure [13]. Figure 8(b) shows also the classically
calculated electron density which will peak at the interface and predicts a much
larger electron density and higher energy level when compared to the lower gate
voltage [14, 16]. The quantum-mechanically calculated electron density is smaller
and a displacement of the charge from the interface occurs when compared to the
classical calculation.

2.4.2 Silicon-on-insulator (SOI) MOS structure

The investigated 32 nm gate length silicon-on-insulator (SOI) MOSFET is grown
on a silicon (Si) substrate. The SOI structure has a layer of silicon dioxide (SiO2)

Figure 7.
Ideal metal-oxide-semiconductor (MOS) structure with p-type silicon substrate in a flat band condition.

Figure 8.
(a) A schematic metal-oxide-semiconductor (MOS) structure for the 25 nm gate length MOSFET with p-type
silicon substrate, (b) conduction band, electron density (classical and quantum-mechanical), energy level,
Fermi energy level and wavefunction under an applied bias of VG = 1.0 V across the channel for the MOS
structure of the 25 nm gate length Si MOSFET, where T = 300 K.
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mobile holes into the substrate. Therefore, the semiconductor is depleted of mobile
carriers and a negative charge occurs at the interface because the fixed ionised
acceptor atoms are in fixed positions [16].

We will investigate a Si MOS structure at a cross-section in the middle of a gate
of the 25 nm gate length Si MOSFET. The structure shown in Figure 8(a) has a
p-type silicon substrate, oxynitride (ON) gate oxide with a thickness of 1.6 nm, a
dielectric constant of εON = 7 and a metal gate.

The conduction band profile in a MOS structure of bulk silicon, biased at gate
voltage of VG = 1.0 V is shown in Figure 8(b). The ground state energy rises from
the conduction band edge as shown in Figure 8(b). This phenomenon is called
surface quantization by applied higher gate voltage. The surface quantization is
often expressed by a triangular well approximation and the potential near the
interface has almost a triangular shape because the potential barrier of SiO2 is
relatively high in silicon MOS structure [13]. Figure 8(b) shows also the classically
calculated electron density which will peak at the interface and predicts a much
larger electron density and higher energy level when compared to the lower gate
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(a) A schematic metal-oxide-semiconductor (MOS) structure for the 25 nm gate length MOSFET with p-type
silicon substrate, (b) conduction band, electron density (classical and quantum-mechanical), energy level,
Fermi energy level and wavefunction under an applied bias of VG = 1.0 V across the channel for the MOS
structure of the 25 nm gate length Si MOSFET, where T = 300 K.
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with a thickness of 20 nm, which is called buried oxide (BOX) and is fabricated on a
Si substrate, and a silicon body (which creates a device channel) with a thickness of
8 nm. A Hafnium Oxide (HfO2) layer is deposited above the silicon body as a gate
oxide with a thickness of 1.19 nm and a dielectric constant of εHfO2 ¼ 20 and a top
metal contact referred to as a gate as shown in Figure 9(a). The metal gate will be
able to bend the semiconductor bands with the application of a gate potential [13].

We have investigated the specified 32 nm gate length SOI MOSFET using, again,
a self-consistent solution of 1D Schrödinger and Poisson equations. Figure 9(b)
shows the electron conduction band and density profiles, which are obtained along
a slice taken through the middle of a SOI MOS structure, from the surface to the
substrate biased at VG = 1.0 V at room temperature. In this structure, the potential
energy creates a square quantum well, because the potential difference between the
front interface and the back interface is small and the potential barriers are very
high. Electrons are therefore confined in the ultra-thin Si body, which is
sandwiched between the gate oxide and the BOX. The electron energy in the
perpendicular direction is quantized and the energy of the ground state rises
[14, 16] when compared to the conduction band. We can find two discrete energy
levels in the quantum well. The classically calculated electron density will again
peak at the interface of oxide and semiconductor. The quantum-mechanically cal-
culated electron density will peak away from the oxide-semiconductor interface due
to displacement of the charge from the interface [13].

2.4.3 MOS structure for an InGaAs channel transistor

We have selected an In0.3Ga0.7As channel because of its optimal electron mobil-
ity and low effective mass. We investigate the effect of a confined channel in the
implant free (IF) In0.3Ga0.7As channel MOSFET with a gate length of 15 nm aimed
for the future sub-22 nm Si technology. The IF MOSFET is derived from a HEMT
structure which has

1.an oxide layer to prevent gate tunnelling,

2.a δ-doping layer placed below the channel. This placement allows the metal
gate to maintain a good control of carrier transport in the channel, and

3.an ultra-thin body channel to the heterostructure used in a transistor design.

Figure 9.
(a) A schematic for silicon on insulator (SOI) structure with the 32 nm gate length. (b) Electron density
(classical and quantum-mechanical) distribution, conduction band and energy levels under an applied bias of
VG = 1.0 V.
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We have used, again, the 1D self-consistent solution of the Poisson-Schrödinger
equation to obtain the conduction band profile, energy levels, wavefunctions and
electron density in a confined body of this heterostructure MOSFET.

The III-V MOSFET consists of In0.3Ga0.7As channel with thickness of 5 nm,
high-ε dielectric layer of Gadolinium Gallium Oxide (GdGaO) as a gate dielectric
with a thickness of 1.5 nm and whose dielectric constant is εGGO ¼ 20. The
In0.3Ga0.7As channel is located between an Al0.3Ga0.7As layer with a thickness of
1.5 nm and an Al0.3Ga0.7As layer of a thickness of 3 nm. The δ-doping layer is placed
below the channel with a concentration of 7 � 1012 cm�2. The Al0.3Ga0.7As layer at
the bottom of the structure is grown as a thick buffer layer of 50 nm as shown in
Figure 10(a). The whole device is grown on a GaAs substrate [13, 14].

Figure 10(b) shows the conduction band, five discrete energy levels and elec-
tron concentration (classical and quantum mechanical) across the channel for the
15 nm gate length In0.3Ga0.7As MOSFET biased at VG = 1.0 V.

At VG = 1.0 V, we obtain three discrete energy levels in the quantum well with
corresponding wavefunction for these energy levels shown in Figures 11(a) in SOI
MOSFET. We summarise that in future technology the bulk MOSFET will be
replaced by an ultra-thin-body (UTB) silicon-on-insulator (SOI) on the basis of
better electrostatistic integrity, low channel doping to get high mobility, high
dielectric material to prevent gate leakage and metal gate [17–19].

Figure 10.
(a) Cross-section of the 15 nm gate length In0.3Ga0.7As channel MOS structure with a high- ε dielectric layer
which is located below the metal gate, and (b) conduction band, electron density and discrete energy levels
under an applied bias of VG = 1.0 V, across the channel for a MOS structure of the 15 nm gate length
In0.3Ga0.7As MOSFET.

Figure 11.
(a) Electron wave functions under an applied bias of VG = 1.0 V across the channel for a MOS structure of the
32 nm gate length SOI MOSFET. (b) The wavefunctions under an applied bias of VG = 1.0 V, across the
channel for a MOS structure of the 15 nm gate length In0.3Ga0.7As MOSFET.
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We have used, again, the 1D self-consistent solution of the Poisson-Schrödinger
equation to obtain the conduction band profile, energy levels, wavefunctions and
electron density in a confined body of this heterostructure MOSFET.

The III-V MOSFET consists of In0.3Ga0.7As channel with thickness of 5 nm,
high-ε dielectric layer of Gadolinium Gallium Oxide (GdGaO) as a gate dielectric
with a thickness of 1.5 nm and whose dielectric constant is εGGO ¼ 20. The
In0.3Ga0.7As channel is located between an Al0.3Ga0.7As layer with a thickness of
1.5 nm and an Al0.3Ga0.7As layer of a thickness of 3 nm. The δ-doping layer is placed
below the channel with a concentration of 7 � 1012 cm�2. The Al0.3Ga0.7As layer at
the bottom of the structure is grown as a thick buffer layer of 50 nm as shown in
Figure 10(a). The whole device is grown on a GaAs substrate [13, 14].

Figure 10(b) shows the conduction band, five discrete energy levels and elec-
tron concentration (classical and quantum mechanical) across the channel for the
15 nm gate length In0.3Ga0.7As MOSFET biased at VG = 1.0 V.

At VG = 1.0 V, we obtain three discrete energy levels in the quantum well with
corresponding wavefunction for these energy levels shown in Figures 11(a) in SOI
MOSFET. We summarise that in future technology the bulk MOSFET will be
replaced by an ultra-thin-body (UTB) silicon-on-insulator (SOI) on the basis of
better electrostatistic integrity, low channel doping to get high mobility, high
dielectric material to prevent gate leakage and metal gate [17–19].
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(a) Cross-section of the 15 nm gate length In0.3Ga0.7As channel MOS structure with a high- ε dielectric layer
which is located below the metal gate, and (b) conduction band, electron density and discrete energy levels
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In0.3Ga0.7As MOSFET.

Figure 11.
(a) Electron wave functions under an applied bias of VG = 1.0 V across the channel for a MOS structure of the
32 nm gate length SOI MOSFET. (b) The wavefunctions under an applied bias of VG = 1.0 V, across the
channel for a MOS structure of the 15 nm gate length In0.3Ga0.7As MOSFET.
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Figure 10(b) shows the conduction band and electron concentration for the 15 nm
gate length In0.3Ga0.7As MOSFET biased at VG = 1.0 V. Five discrete energy levels
can be observed at this high bias with the corresponding wave functions in the
quantum well shown in Figure 11(b) [20].

3. Conclusions

We have been carried out using a self-consistent solution of 1D Poisson-Schr-
ödinger equation to determine conduction band profiles, electron density, energy
levels (eigenstates) and wavefunctions (eigenfunctions) in the Si, SOI and InGaAs
MOS structures under external potential. We have afterwards simulated the elec-
tron sheet density as a function of the applied gate bias and made a comparison
among the three device structures, the 25 nm gate length bulk Si, 32 nm UTB SOI,
and 15 nm gate length InGaAs MOSFETs.

We have investigated the effect of electron confinement in nanoscaled transistor
channels using 1D simulation through cross-sections of the devices. These investi-
gations have been carried out using a self-consistent solution of 1D Poisson-Schr-
ödinger equation to determine conduction band profiles, electron density, energy
levels (eigenstates) and wavefunctions (eigenfunctions) in the Si, SOI and
In0.3Ga0.7As MOS structures under external potential. We have afterwards simu-
lated the electron sheet density as a function of the applied gate bias and made a
comparison among the three device structures, the 25 nm gate length bulk Si
MOSFET, the 32 nm UTB SOI Si MOSFET, and the 15 nm gate length IF
In0.3Ga0.7As MOSFET [20].

I can envisage that my future work could be related to the investigations of the
new physical phenomena present in the UTB MOSFET architectures. As explained
previously, the planar and non-planar UTB device architectures are preferred solu-
tions for future technology nodes because the conventional bulk MOSFETs suffer
from a poor electrostatic behaviour when scaled to sub-22 nm gate lengths
exhibiting unsatisfactory short channel effects. These short channel effects can be
summarised as follows:

1.reduced carrier mobility at high channel doping, hampering the device
performance,

2.band-to-band drain leakage current [19],

3.and high gate tunnelling current and poor electrostatic control despite
employment of metal/high-ǫ gate stacks, etc. [1, 3].

The UTB MOSFET architectures do not show such severe short channel effects
because they have superior electrostatic integrity thanks to the electron confine-
ment of their channel region.
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Chapter 11

Development of Supersymmetric
Background/Local Gauge Field
Theory of Nucleon Based on
Coupling of Electromagnetism
with the Nucleon’s Background
Space-Time Frame: The Physics
beyond the Standard Model
Aghaddin Mamedov

Abstract

A new reformulated gauge field theory comprising discrete super symmetry
matrixes U (1) = SU (2) + SO (3) has been developed which explains why all the
elementary particles appear in three families with very similar structures. The three
families’ performance is the product of discrete conservation of energy—momen-
tum eigenvalue Es = 1/2Eawithin space–time frame which appears to be the genetic
code of new physics. A new supersymmetric gauge field theory of photon was
developed, which describes fundamental conservation laws through invariant
translation of the discrete symmetries of nature. A new gauge theory describes all
the fundamental laws through isomorphism of the discrete space–time SU (2)
frame and energy-momentum SO (3) symmetry group. Coupling of space and time
phases of energy conservation generates the background gauge field, which in
conjugation with the local gauge field mediates discrete performance of three frac-
tional proton-neutron families of baryon structure. The presented theory requires
to have a new look to our understanding of symmetry and conservation laws.

Keywords: supersymmetric theory, discrete double gauge field, discrete
space–time symmetry, strong interactions, matter–antimatter symmetry

1. Introduction

From the beginning, I would like to show that there is no matter–antimatter
asymmetry in nature and the matter–antimatter asymmetry would eliminate exis-
tence of our world in cyclic mode, moving to the randomness. Matter–antimatter,
holding discrete supersymmetric genetic code 2Es = Ea, appear in different phases
of energy conservation with the change of frequency. The phenomenon called

209



References

[1] Donald Neamen A. Semiconductor
Physics and Devices, Chapter 2. 3rd ed.
New Delhi/New York: University of
New Mexico; 2007

[2] Rae AM, Napolitano J. Quantum
Mechanics, Chapter 3 and 5. 6th ed.
London/New York: CRC Press/Taylor
and Francis Group; 1986

[3] Ridley BK. Quantum Processes
in Semiconductors. London: Oxford;
1982

[4] Frank DJ, Dennard R, Nowak E,
Solomon P, Taur Y, Wong H-S.
Proceedings of the IEEE. 2001;89:
259-288

[5] Winstead B, Ravaioli U. IEEE
Transactions on Electron Devices. 2003;
50(2):440-446

[6] Lundstrom M. Fundamentals of
Carrier Transport. 2nd ed. Cambridge,
UK: Cambridge University Press; 2000

[7] Kazutaka T. Numerical Simulation of
Submicron Semiconductor Devices,
Chapter 2. New York: Artech House,
Inc; 1993. p. 102

[8] Jacoboni C, Lugli P. The Monte Carlo
Method for Semiconductor Device
Simulation. Vienna, Austria: Springer-
Verlag; 1989. p. 114

[9] Griffiths David J. Introduction to
QuantumMechanics. 2nd ed. Edinburgh
Gate, Harlow: Prentice Hall; 2004. ISBN
978-0-13-111892-8

[10] Physicist Erwin Schrödinger’s
Google doodle marks quantum
mechanics work. The Guardian. 13
August 2013 [Accessed: 25 August 2013]

[11] Schrödinger E. An undulatory
theory of the mechanics of atoms and
molecules. Physical Review. 1926;28(6):
10491070

[12] Laloe F. Do We Really Understand
Quantum Mechanics. New York:
Cambridge University Press; 2012.
ISBN: 978-1-107-02501-1

[13] Aynul I, Kalna K. Nano-Transistor
Scaling and their Characteristics Using
Monte Carlo. Moldova, UK: LAP
LAMBERT Academic Publishing; 2018.
p. 60. ISBN-13: 978-613-9-94747-8.
Available from: https://www.lap-pub
lishing.com/

[14] Aynul I, Kalna K. Analysis of
electron transport in the nano-scaled Si,
SOI and III -V MOSFETs: Si/SiO2

interface charges and quantum
mechanical effects. In: IOP Conf. Series:
Materials Science and Engineering.
Vol. 504. UK: IOP Publishing; 2019.
p. 012021. DOI: 10.1088/1757-899X/
504/1/012021

[15] Shankar R. Principles of Quantum
Mechanics. 2nd ed. New York/London:
Kluwer Academic/Plenum Publishers;
1943. ISBN: 978-0-306-44790-7

[16] Aynul I. “Monte Carlo Device
Modelling of Electron Transport in
Nanoscale Transistors” Doctor of
Philosophy. Wales, United Kingdom:
College of Engineering, Swansea
University Swansea SA2 8PP; 2012

[17] Jacoboni C, Lugli P. The Monte
Carlo Method for Semiconductor Device
Simulation. Vienna, Austria: Springer-
Verlag; 1989. p. 90

[18] Oda S, Ferry DK. Silicon Nano-
electronics. London/New York: Tech-
nology and Engineering; 2006. pp. 89-95

[19] Frank DJ, Laux SE, Fischetti MV.
Monte Carlo simulation of a 30 nm dual-
gate MOSFET: How short can Si go. In:
Technical Digest - International Electron
Devices Meet; 1992. pp. 553-556

[20] Sekigawa T, Hayashi Y. Solid-State
Electronics. 1984;27:827-828

208

Quantum Mechanics

Chapter 11

Development of Supersymmetric
Background/Local Gauge Field
Theory of Nucleon Based on
Coupling of Electromagnetism
with the Nucleon’s Background
Space-Time Frame: The Physics
beyond the Standard Model
Aghaddin Mamedov

Abstract

A new reformulated gauge field theory comprising discrete super symmetry
matrixes U (1) = SU (2) + SO (3) has been developed which explains why all the
elementary particles appear in three families with very similar structures. The three
families’ performance is the product of discrete conservation of energy—momen-
tum eigenvalue Es = 1/2Eawithin space–time frame which appears to be the genetic
code of new physics. A new supersymmetric gauge field theory of photon was
developed, which describes fundamental conservation laws through invariant
translation of the discrete symmetries of nature. A new gauge theory describes all
the fundamental laws through isomorphism of the discrete space–time SU (2)
frame and energy-momentum SO (3) symmetry group. Coupling of space and time
phases of energy conservation generates the background gauge field, which in
conjugation with the local gauge field mediates discrete performance of three frac-
tional proton-neutron families of baryon structure. The presented theory requires
to have a new look to our understanding of symmetry and conservation laws.

Keywords: supersymmetric theory, discrete double gauge field, discrete
space–time symmetry, strong interactions, matter–antimatter symmetry

1. Introduction

From the beginning, I would like to show that there is no matter–antimatter
asymmetry in nature and the matter–antimatter asymmetry would eliminate exis-
tence of our world in cyclic mode, moving to the randomness. Matter–antimatter,
holding discrete supersymmetric genetic code 2Es = Ea, appear in different phases
of energy conservation with the change of frequency. The phenomenon called
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symmetry breaking is the discrete supersymmetric invariant translation of back-
ground gauge symmetry to the local gauge symmetry with the invariant inverse.

Nature does not distinguish a difference between the laws, describing different
scale events, and selects very simple principle, which holds symmetry with the
perfect conservation laws. The main problem of classic, relativistic, and quantum
mechanics theories is the application of mathematical models, which describe a break
of continuous symmetry, associated with the continuous energy conservation. Due to the
consumption of energy in dynamical processes with the discrete energy portions,
application of continuous functions, such as Lagrangian and Hamiltonian, for differ-
entiation of change leads to the runaway of the energy solutions to infinity. Artificial
renormalization of Lagrangian/Hamiltonian dynamical equations leads to the
approximate symmetry; therefore we cannot use these linear differential equations to
get correct fundamental laws of nature. Due to these problems, some authors, for
example, Weinberg, suggest [1] that nature is approximately simple and Yang-Mill
symmetry naturally should produce approximate symmetry. Weinberg sand Glashow
suggested that [1, 2] nuclear interactions have spontaneous symmetry breaking that is
why these interactions may produce only approximate symmetry.

The theories, describing spontaneous breaking of continuous symmetry, with
application of renormalization approach, do not provide proper mathematics of
energy conservation, associated with the symmetry. Presently there is no theory,
which may describe conservation of action during “change” of an event at small
space and time intervals. An action is the product of energy consumption, and due
to the discrete consumption of energy, the outcome product of an action has to
produce discrete action formulation. However, Lagrangian continuous action prin-
ciple (Hamiltonian as well) does not hold this requirement.

Our opinion is that the fundamental laws of nature cannot appear in differential
formulations in correct way, if these equations do not include dynamical superpo-
sition origin and describe interactions through change of continuous function.
Without involvement of the original position to the differential equation and using
the continuous function, we cannot conserve energy at the origin and remove
renormalization groups, adding to the physical theories.

Feynman showed [3] that you could describe an event in the Hamiltonian in the
form of differential equation, which describes how the function changes in term of
operator. We may provide our comment that such a task is not realizable with the
Hamiltonian, because it is a continuous function and does not involve dynamical
initial position. The action is the discrete space–time function; therefore, the con-
tinuous outcome of a discrete action without relation to dynamic local position is
uncertain.

Feynman [4] applied renormalized Lagrangian action to quantum mechanics
but even in Feynman’s renormalized Lagrangian action is not conserved. The main
problem of Lagrangian action and Feynman approach is the application of linear
continuous action-response relation.

Therefore, we need an entirely new theory to describe reversible fundamental
laws of nature, combining discrete conservation of energy with the boundary-
mapped space–time, which would combine all kind of fields and forces within dis-
crete background symmetry. Application of discrete energy conservation law and
discrete symmetry as the product of this law may change drastically our present
knowledge on the nature of forces and their roles in fundamental interactions. It is
possible that nature and performance of forces, merging at the background symme-
try, will be different, and reversibility of dynamical laws at discrete symmetry may
change completely the role and classification of forces.

In our previous studies [5–7], we showed that wrong description of dynamical
laws through simple continuous displacement in space–time structure using only
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intervals and linearity in differential equations might be the reason for appearance
of uncertainty problems of quantum mechanics and infinity in classic physics for-
mulations. Similarly Nobel Laureate Hoof ’t showed [8] that “when we send dis-
tances and time intervals to zero we do assume that the philosophy of differential
equations works.”

In the present paper, we will discuss a new reformulated gauge theory, combin-
ing “twin brothers” of background/local gauge fields, conjugated with the new
energy-momentum rotational symmetry group and associated with the discrete
space–time symmetry. We will describe fundamental change of physical laws when
we shift from the theories based on continuous energy conservation law to the
discrete energy-momentum invariant translation, carried within the discrete space–
time frame. Simply, we will present an invariant action-response exchange parity,
relative to the response, which drastically changes features of classic, relativistic,
and quantum theories. The paper will describe why all the elementary particles come in
three families with very similar structure. The three families’ performance is the product
of energy conservation within energy-momentum exchange interaction, which became the
genetic code of our existence and new physics. We believe that our theory of supersymme-
try is the rebirth of gauge field theory, which does not need application of
renormalization.

2. The genetic code of origin as the superposition

2.1 The illness of linear differential equations for description of energy
conservation

First, I would like to discuss shortly literature information [9] to show that
Newton’s traditional differential equations, describing change of an event in
abstract space and time, do not provide exact solution. It describes change of an
event in abstract time by a smooth continuous vector field, which has local
diffeomorphism, preserving only limited property of an event. Diffeomorphism is a
function in smooth manifold, which describes differentiation where the original
position is lost. The present mathematical knowledge does not provide any solution
on how to eliminate the diffeomorphism problem of differentiation to save the
initial property of a function. That is why all theories, describing symmetry, have to
use renormalization, which drives them, similar to quantum uncertainty, to the
local approximate symmetry.

Presently there is no mathematical solution on how to get nonlinear differential
equation, which may describe change of dynamical local position from point to
point on the discrete space–time, where space and time may change their
dimensions relative to the energy-momentum flux to the space–time frame. This
approach is very useful for a wide class of mathematical problems because it solves
boundary value problems (which is in reality initial value problems) of differential
equations.

Traditional differentiation describes change of interval of one variable in rela-
tion to other, for example, change of space in relation of time—dS/dt.We suggest a
new mathematical theory for differentiation of a function without loss of the origin/
local dynamical structure within multiple variables, such as space, time, and energy.
Presentation of differentiation through coupling of intervals of change of multiple
variables with their superposition origin produces deterministic outcome regardless
of scale of interactions.

The theory, which we suggest, comprises the principle that any interaction, to
hold symmetry, after change in the space–time frame, should look the same as its
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symmetry breaking is the discrete supersymmetric invariant translation of back-
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background superposition/dynamical local origin of energy-momentum content
and space–time frame. The basic statement of such a concept is very simple: “parti-
cles may hold their “non-charged” state of rest only in discrete mode.” Such an
approach is the modification of Aristotle’s concept [10] that “natural state of a body
to be at rest” which does not present rest in discrete mode, therefore does not hold
conservation of energy.

The nature of rest is well described by Nobel Laureate Anderson [11]. By Ander-
son opinion, a system at stationary state of rest could not stay long and stationary state
can be only equal superposition and its inverse. By his opinion, only superposition and
inverse mixture may describe the absence of dipole moment. Unfortunately,
Anderson did not put his statement into mathematical formulation. However,
Anderson’s “equal mixture” is equivalent to the equal numbers of matter–antimatter,
which, as we will show later, needs modification.

We found out that we could solve the gap in “Anderson’s equal mixtures “and
describe stable steady-state performance of matter if we will apply vector type of
discrete exchange interactions between two symmetric states, which can bring the
system to superposition in discrete mode and hold discrete CP invariance of strong
interactions. The superposition displays the genetic particle, while displacement
from the superposition appears as the antiparticle of the superposition. It is easy to
show that the origin of this principle is the conjugation of discrete conservation of
energy with the discrete space–time, which is in hold for any fields/particles
regardless of scale and completeness.

2.2 The basic statement of symmetry

While symmetries are conjugated with the corresponding conservation laws, we
will start our analysis from principles of energy conservation. Distribution of energy
in a medium requires certain space locality and time duration. The portion of
energy, consumed for displacement of space, appears as the potential ingredient,
while the time portion of the total energy presents kinetic energy. We may present
the potential and kinetic ingredients of energy in the form of conjugated space and
time portions. The suggested approach is different from Lagrangian or Hamilto-
nian, because these functions present continuous conservation of certain abstract
amounts.

The Lagrangian or Hamiltonian functions, as Feynman stated [12], describe an
abstract mathematical principle, which involves a certain numerical quantity,
which has to be conserved. These formulations present some abstract number,
which does not change, and after the change, we should have the same number.

Due to the conjugation with the conservation of energy, an event symmetry
after the change should look the same. Therefore, a mathematical formulation of
symmetry should show that (a) we have the same number of energy after change of
an event and (b) an event looks the same as origin. We will describe how we can get
such a mathematical formulation.

The exchange interaction of superposition (initial neutral state) with its dis-
placement may produce two outcomes: (a) the symmetry of particles is continuous,
such as the outcome of change looks the same as origin continuously, but breaks
down spontaneously; (b) the outcome of change looks the same in discrete mode,
with invariant translation without violation of symmetry. Later we will show that
the outcome of interactions after change may look the same if the fundamental laws
describe conservation of energy only in discrete mode.

Mathematically this statement, in general, may have the following form:

F´ s, tð Þ ¼ F s, tð Þ (1)
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Eq. (1) after differentiation may display Maxwell equations in an alternative
way. If a system after change looks the same in discrete mode in opposite phase, the
equation of symmetry has a negative phase solution:

F´ s, tð Þ ¼ �F s, tð Þ (2)

The positive and negative solutions of dynamic supersymmetry outcomes of a
discrete event together will have a form:

F´ s, tð Þ ¼ �F s, tð Þ (3)

We can assume that the positive solution of Eq. (3) presents the discrete sym-
metric function in space–time phase in the local gauge field, while the negative sign
is an antisymmetric solution of the symmetric function of an event in an opposite
energetic phase of the background gauge field. The positive and negative solutions
of Eq. (3) appear as a discrete change of the symmetric function from one phase to
another phase, which is a shift of energy conservation from space–time phase
(holding by ordinary matter) to the energy phase. These phases as background/local
gauge fields discretely transform to each other, leading conservation of energy and
symmetry in discrete mode within opposite energy and space–time phases.

The classic physics Eq. (3) in some sense is similar with Schrödinger’s wave
function:

d
dt

ψ ¼ �iHψ (4)

The problem of Schrödinger’s Eq. (4) is that it describes change of wave function
only in one phase, which is time. The space phase representative is Hilbert space,
which presents the original function but does not undergo any changes.

If classic physics could describe the symmetry and energy conservation law
within the space–time frame with conjugation of space and time intervals with the
dynamic local states of variables, there will be no need of application of
Schrodinger’s wave function (4), which uses probability approach. The wave func-
tion of quantum mechanics with the local states of space and time coordinates could
have deterministic classic equation to describe the exact symmetry of Nature. The
deterministic equation of background space–time symmetry after the change of an
event in discrete mode may look the same:

dS
dt

¼ � S1
t1

(5)

where the left side of the equation describes uniform change of space and time
coordinates of an event, while the right side presents the original local space–time
frame. The positive sign describes outcome of the ordinary matter phase, while the
negative sign shows the outcome of antimatter. The statements of Eqs. (1)–(3) and
(5), without Dirac’s relativistic quantum mechanics, naturally predict existence of
antiparticles to hold discrete conservation of energy within different states.

3. Development of a new mathematical theory for differentiation
of change

Hoof ’t showed [8] that it is possible to eliminate the bad effect of small time
intervals and small displacement in space by improvement of mathematical
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background superposition/dynamical local origin of energy-momentum content
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formulation of small-scale transformation, for example, by renormalization group.
However, renormalization tool leads to the approximate symmetry and
renormalized artificial outcome of a natural event. The other way, which he
suggested, is to find a new, improved theory.

To find new theories, we need to eliminate two problems: nonindependence
feature of uncertain space displacement and time intervals in combined space–time
unit and linearity of the change. We cannot get any help from special relativity (SR)
and Minkowski’s space–time to eliminate independent features of space and time
intervals because they do not involve local origin and connect opposite time interval
with the three space intervals into a nonsymmetric four-momentum frame (3:1),
which involves abstract intervals of neutral space and time variables without their
local positions.

We cannot use principles of general relativity (GR) theory as well because
general relativity does not provide boundary-mapped reversible dynamical law due
to its continuous space–time frame. GR does not have a background, which is the
reason that GR’s geometric, continuous space–time structure at small-scale interac-
tions cannot find origin and runs away to the infinity. Wheeler’s suggestion [13] on
“space tells mass how to move, mass tells to space-time how to curve” does not
produce a complete concept in a sense that it produces uncertainty because GR’s
space–time cannot tell to mass the path and boundary to move and mass cannot tell
space–time boundary where to stop.

First, we will look how the features of dynamics change if we gradually reduce
time interval Δt, moving from the high scale to the small-scale event, as was done
by Hoof ’t [8]. However, we will analyze not an interval as Hoof ’t did, but a
function Δf/f1, which as a mathematical operator may give information about
change of a function in relation to its dynamical local origin. This function is a
sufficient entity for the identification of change. The non-unitary function Δf/f1
shows quantum behavior and with the fractional feature (portion) produces the
outcomes with the integer numbers (f2/f1–1). The mathematical operator in the
form of Δf/f1 portion describes the fraction of the change in relation to its dynam-
ical origin. Similarly, the operator ΔS/S1 describes displacement of space with the
applied force in relation to its origin, while the operator Δt/t1 describes the fluctu-
ation of time about instant of action. The functions ΔS/S1 and Δt/t1 describe the
entanglement of the displacement with the initial superposition as the genetic code
of the event. The relation of change around its origin Δs/S1 generates a spherical
space, while relation of time interval to instant of time produces a round time
structure. Therefore, there is no preferred inertial system and mathematical model,
which may display an event better than its initial superposition state.

In planet-scale events, reduction of the distance twice, as was shown by Hoof ’t
[8], does not affect significantly the linearity of change. The parameter ΔS/S1 also
describes a similar effect of the change to the linearity. However, if we reduce
interval of time twice in a small-scale event, using Δt/t1 function, we will be able to
describe catastrophic effect of the change to the linearity of the motion.

The relation of intervals of time and displacement to the origin creates entan-
glement of the final and initial states of coordinates. The origin of an event in this
case “tells the body how to move and the final state of a motion gets the information
where to stop.” However, the entanglement of interval of change with the origin
leads to the deterministic nature of the dynamical event within a certain boundary,
and it is the only way for elimination of the infinity problem of small-scale interac-
tions. The effect of initial/local coordinate of time and space of a body appears as an
action of initial energy contents (such as inertial mass, inertial energy) of a body to
the change of pathway. Presently all the physical laws use only independent inter-
vals to describe the change of an event without relation of change to the initial local
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state. This is the main problem of physical laws, applying the renormalization group
to remove uncertainty of initial position.

4. Energy-momentum: (a) charged antiparticle-particle pair and
(b) neutral twin particles

Lagrange and Hamilton suggested conservation of energy in the form of linear
differential equations as well. The main concern of these equations is that the
position coordinates and velocity components are independent variables and deriv-
atives of the Lagrangian with respect to the variables taken separately.

The specific feature of our approach is that energy, distributed within space and
time portions, appears in the form of non-separable energy-momentum exchange
entities. Energy in one phase appears as the consumed charged part in the space–
time frame and in another phase appears as itself, comprising color ingredients of
neutral photon-antiphoton pair. On this basis, we may present energy and momen-
tum in two forms: (a) energy-momentum exists in the form of electrically charged
matter–antimatter pairs, and (b) energy-momentum exists in the form of color
charge pairs, where every part is an own particle of the other part. The condition of
energy and momentum in forms (a) and (b) are completely different. However, the
color charged bosonic pairs, which appear as “the neutral twin brothers” in the form
of Majorana particles, are the superposition where it has a trend to move. In space–
time phase, energy appears as Dirac’s particles. It seems obvious that, at superposi-
tion of color charge “neutral twin brothers,” all the ingredients of energy-
momentum, as internal products, will exist in the form of twin particles.

Now we may apply this mathematical tool for characterization of any type of
change, particularly ingredients of space–time. The parameters ΔS/S1 and Δt/t1 have
no unity and are unit-less parameters, which makes easy to compare them as the
equivalent entities. Using Wheeler’s [13] statement that the equation of special rela-
tivity E = mc2 allows to transfer space and time equivalently to each other, we may
show problems of such a statement. For this purpose, wemay analyze the relationship
between energy and mass portions without application of Lorentz transformations.

γ ¼ ΔE
E1

:
Δm
m1

¼ ΔE
Δm

:
m1
E1

;
E1
m1

¼ c2,ΔE ¼ γΔmc2 (6)

Eq. (6) describes change of energy-mass equivalence with the effect of initial
condition (we may call rest mass and rest energy) in the form of “non-Lorentz
transformation.” By literature information [14], the exact value of Lorentz factor at
velocity close to speed of light is 2.00. If we use numeral value γ = 2.00, as an exact
Lorentz factor [14], at uniform speed of light c2 = 1, Eq. (6) produces condition.

Δm ¼ 1=2ΔE (7)

for energy mass invariant translation. The energy and mass invariance (7)
appears as the product of discrete exchange of energy-momentum relation and pro-
duces half-integer-integer spin interactions of mass and integer spin carrier particles.

5. Electromagnetic energy as the origin of space-time

5.1 Alternative model of space-time structure

Based on Planck’s discrete energy radiation and empirical principle of energy
conservation, we can formulate a nonempirical mathematical expression of energy.
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change, particularly ingredients of space–time. The parameters ΔS/S1 and Δt/t1 have
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The basic principle of energy conservation states that “Energy can only be trans-
ferred from one form to another.” Transformation of energy from one form to
another requires boundary within the space–time frame, carrying conservation of
energy through space and time portions. While conservation laws associated with
the time and space frame symmetries, we may consider that equally distributed
space and time portions of energy hold simultaneous conservation of energy and
momentum within symmetric frame. On this bass, the energy portions, equally
distributed in space or time phases, both cover the half of the total available energy:
Es = Et = 1/2Ea. This equation is the equivalent expression of Eq. (7). Similarly, the
total energy comprises the mixture of energy portions, equally distributed within
two parts of the space–time frame: 2Es = Ea.

Based on these simple equations, we may construct mathematical model of
energy conservation, which has to combine energy-momentum conservations
within the space–time frame. Conjugation of energy-momentum conservations
within exchange interaction, which appears in discrete mode, generates principles
of discrete symmetry. In this sense, special relativity’s energy-mass relation E = mc2

does not hold invariant discrete energy-mass exchange relation and cannot describe
discrete symmetry of energy-mass relation, localized within the discrete space–time
frame:

Based on such an approach, we may present space–time as a frame, which com-
prises cross product of space portion as materialization of energy and cross product of
time portion, which at decay of space–time returns an energy to the origin:

Es
dS
S1

� Ea� Esð Þdt1
t1

¼ 0 (8)

The first part of Eq. (8) presents the portion of consumed energy (Es) in space
phase with the positive sign, while the second ingredient of the equation shows the
remaining energy portions within the time ingredient of total energy with the
negative sign. Model (8) gives the following equations:

dS
S1
dt
t1

¼ Ea � Es

Es
(9)

dS
dt

¼ S1
t1

Ea

Es
� 1

� �
(10)

λ ¼ Ea

Es
� 1 (11)

at λ ¼ 1,Es ¼ 1=2Ea (12)

S1 and t1 are the space and time variables, corresponding to the origin/dynamic
local boundary, and Ea–Es and Es are the energy portions, distributed in space and
time within energy-momentum exchange interaction at conditions corresponding
to the background/dynamical local boundaries of S1 and t1. The background super-
position as the gauge field holds the hidden initial space and time variables, which
carry invariant translation of energy and corresponding symmetry from one form
of energy to another and inverse. The local dynamical gauge position is the mathe-
matical operator, which translates energy in the form of force from the local matter
phase to energy phase. The Ea electromagnetic energy of model (9) is the symmetry
generator of local gauge field, while Es appears as the local momentum ingredient
of energy of the background gauge field.
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The right side of Eq. (9) describes energy-momentum exchange interaction,
relative to the original momentum of superposition, which generates shift of energy
conservation from the space–time frame to the original energy phase. The particle of
space–time moves through the electric field, and electric field in reverse order propagates
through the space–time field of matter. Eq. (10) describes the cross product wave
function where the local space–time wave S1/t1 is carried by the flux of energy-
momentum wave (Ea/Es-1) which changes wavelength and wave amplitude of
space–time by S1 and t1. Conservation of energy-momentum is associated with the
symmetry in time and space; therefore symmetry has to be the cross product of
space–time and energy-momentum relation.

Model (10) has two important features on coupling of particle with the field.
The eigenvector of model (9) connects force, field, and particle together: (a) the
mathematical operator describes change of symmetry generating electromagnetic
field in relation to initial momentum of a particle, and (b) it presents change of
space–time position of a “non-Aristotelian” particle in relation to the symmetry-
generating field.

The superposition’s genetic code in the form of dynamical space–time (S1/t1)
unit has discrete coupling with the electromagnetic field (10). Model (10) in general
form describes relation of energy portions, distributed within space–time field,
which generates discrete vector space as a product of discrete energy-momentum
relation. The suggested approach is different from Sudarshan and Marshak’s V-A
theory of weak force [15], while without discrete eigenfunction, producing integer
spin particles you cannot reverse a particle to the background gauge field. However,
Hilbert space of quantum mechanics and V-A theory do not carry such a perfor-
mance. The other feature of Eq. (9) is reciprocal isomorphic discrete symmetry of space–
time and energy-momentum exchange interaction, which became the outcome products of
each other, forming the supersymmetric gauge equation. Such an approach allows com-
bining all the conservation laws within these symmetric interactions.

The background gauge field’s force carrier Ea holds the symmetry of Es matter
ingredients of eigenfunction (Ea � Es)/Es in the space–time frame of local gauge
field. When the symmetry generator is turned off (Ea = 0), the Es through coupling
of local and background particles return to the background gauge field in the form
of neutral pairs of gauge field. Based on model (10), which combines space–time
with the electromagnetism (energy-momentum conservation), the origin of space–
time appears to be the background gauge field energy, which generates the basic
unit of matter space–time frame and holds its conservation within conjugation of
background/local gauge phases.

We found out that simplifying strong interactions to the linear exchange of
photons or meson within continuous symmetry is the reason for appearance of
problems of particle physics theories. Particularly, Yukawa’s meson theory of strong
interactions, describing linear exchange of mesons, and V-A theory of CP violation
are examples of such theories.

5.2 The space and time particles of the space-time frame

Model (9) has a philosophical meaning: we do not present time as itself, which as
an entity is different from space. We present a certain entity in time phase and this
entity is the energy. That is why time has no independent existence from space
energy portions and is not an abstract parameter, which may flow independently.
The same philosophy is relative to the space as well. We did not present an event in
abstract three-dimensional space or within four-momentum frame of SR; we
describe the vector space, which changes dimension and direction in accordance
with the flux of energy and momentum to this space. Such a space of space–time
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The right side of Eq. (9) describes energy-momentum exchange interaction,
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abstract three-dimensional space or within four-momentum frame of SR; we
describe the vector space, which changes dimension and direction in accordance
with the flux of energy and momentum to this space. Such a space of space–time
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may change from three-dimensional frame to two- or round dimensional space–
time. Based on the frequency of energy-momentum flux, space–time at the small
scale moves to the round dimension, which is not possible by Hamiltonian’s or
Lagrangian’s only time-dependent linear equations.

Replacement of intervals by combination of the origin with the displacement in
the form of portions is the new algebraic expression of dimension, which as the
mathematical operation carries natural renormalization of the change to the initial
origin. Relation of the change to the initial origin generates S2/S1–1 quantum
operator, producing outcomes by the integer numbers.

Based on such a phenomenon, any particle of space–time field or antiparticle of
energy field has no independent existence. The condition Ea > 0 is the displacement
from the superposition (field excitation) with the generation of three-dimensional
space, which produces a local field and its particle (electrically charged mass).
When an energy flux to space–time discontinued (Ea = 0), the distinction between
field and particle disappears, and the superposition and field merge. At Ea = 0, the
negative energy matrix produces U (1) symmetry group of gauge field, similar to
Maxwell’s theory of electromagnetism. Model (9) can be applied for any interaction
of (Ea � Es) as a field and Es as a particle.

The other specific feature of our theory is that the relation of the change to its
origin generates an original code as its own reference frame of an event. The state of
origin of the space or time particle became their own antiparticle. When a particle
does not change (Ea = 0), its position in space, merging with its antiparticle,
generates neutral particle of discrete rest. Conjugation and merging of two states
(fields) became the main principle of discrete symmetry and conservation of energy
within a certain boundary.

Our theory uses the background gauge field as the only possible reference frame,
where all the interactions take their origin. The relation of an event or the particle’s
space–time frame to the background gauge field became the obvious concept, while
the background gauge field is the source of interactions and mediates the space–
time frame of a particle within the local gauge field. The background state is the
source of symmetry generating electromagnetic force-gravitation exchange inter-
action in the local gauge field, which has to deliver energy back to its origin.
Gravitation appears as the short-range force, which holds discrete performance of elec-
tromagnetic force and generates stable existence of a nucleon in discrete mode.

The inertial frame of reference in classic physics and special relativity is the
same and states “the body with net zero force does not accelerate and such a body is
at rest or moves at a constant velocity.” Based on our theory, this statement is not
completely true. When the net force flux to the space–time frame is zero (Ea = 0),
particles move to the reference background gauge field which holds discrete per-
formance but not constant rest. We explain SR’s time delay statement differently.
By SR, “the clock of a moving body will tick slower than clock that is in rest in his
inertial frame of reference.” SR states that if the particle’s speed approaches the
speed of light, the massless particles that travel with speed of light is unaffected by
passage of time.

First, the massless particles cannot have free travel due to the requirement of
energy conservation within boundary. Based on model (10), time instant t1 is
proportional to eigenvalue (12), and with the reduction of this value, the time
instant and clock will tick slower than the background state.

The relation of change to initial origin eliminates unity which allows describing
energy portions in space and time phases within any symmetric dimensions which
may change from linearity of planet-scale event (string like dimension) to round
dimension of baryon-scale interactions. The minimum portion of quanta, produced
from the nonlinear energy-momentum exchange vector interaction, generates an
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elementary space–time frame. The condition Es = 1/2Ea of model (10) generates the
invariant translations in a space–time frame:

dS
S1

� dt
t1

¼ 0 (13)

When symmetry generator electromagnetic energy is turned off (Ea = 0), we
will get decay of space–time and shift of energy from local gauge space–time frame
to the energy phase of the background gauge field:

dS
S1

þ dt
t1

¼ 0 (14)

Eqs. (13) and (14) are the alternative presentations of Eq. (5). The portions of
energy, carried by space and time identities dS/S1 and dt/t1, play a role of the
quantum operator of annihilation or creation, through coupling with the energy-
momentum exchange interactions.

The condition Es = 1/2Ea became the energy-momentum genetic code of
particle-antiparticle interactions in the discrete space–time frame. The genetic code
of Eq. (13) in the space–time frame generates a three-jet performance of ingredients
of energy-mass exchange interaction.

The concept of supersymmetry, which we suggest in (9), describes the conju-
gated symmetry, which involves simultaneous symmetry of space–time frame and
energy-momentum exchange interactions, carrying both in discrete mode.

5.3 The theory of spin as the product of discrete energy-momentum
exchange interaction

In accordance with our concept, a change of particle’s displacement around their
superposition generates the conserved quantity called spin, which in quantum
physics has identification, as the angular momentum. By quantum physics, the spin
number for a point particle is the product of pseudo-vector position (relative to
some unknown origin) and its momentum vector r � p [16].

In accordance with our theory, the spin is the conserved vector quantity, pro-
duced from conservation of energy within discrete energy-momentum exchange
relation, which generates for ingredients of this interaction’s spin numbers (12). The
space and time portions of energy in exchange interaction (12) appear as interaction
of fields, which produces the ingredients of this interaction in the form of fermions
and bosons.

The quantum physics’ presentation of spin, as a cross product of vector position
with the momentum, does not produce quantity, which may carry energy-
momentum conservation in a proper way. The quantum mechanic’s specification of
spin is a very abstract concept because the point particle is not a particle, which
does not have a space–time frame of matter and therefore cannot produce half spin
identity in the form of fermion. We suggest the identification of angular momen-
tum as a product of the particle’s space–time position vector and energy-momentum
exchange interaction (10), which produces not the pseudo-vector but the local
space vector. This vector generates a deterministic pathway of a particle’s dynamics.
In such a model, the dynamic local position became the deterministic position
vector. Therefore, we may identify fermions and bosons only as the products of
space–time frame. Due to these features, quantum mechanics cannot explain
unusual feature of baryon frame where two identical quarks in proton or neutron
frame do not obey the Pauli rules of quantum statistics.
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elementary space–time frame. The condition Es = 1/2Ea of model (10) generates the
invariant translations in a space–time frame:
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When symmetry generator electromagnetic energy is turned off (Ea = 0), we
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to the energy phase of the background gauge field:
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Eqs. (13) and (14) are the alternative presentations of Eq. (5). The portions of
energy, carried by space and time identities dS/S1 and dt/t1, play a role of the
quantum operator of annihilation or creation, through coupling with the energy-
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The condition Es = 1/2Ea became the energy-momentum genetic code of
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of Eq. (13) in the space–time frame generates a three-jet performance of ingredients
of energy-mass exchange interaction.

The concept of supersymmetry, which we suggest in (9), describes the conju-
gated symmetry, which involves simultaneous symmetry of space–time frame and
energy-momentum exchange interactions, carrying both in discrete mode.

5.3 The theory of spin as the product of discrete energy-momentum
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In accordance with our concept, a change of particle’s displacement around their
superposition generates the conserved quantity called spin, which in quantum
physics has identification, as the angular momentum. By quantum physics, the spin
number for a point particle is the product of pseudo-vector position (relative to
some unknown origin) and its momentum vector r � p [16].

In accordance with our theory, the spin is the conserved vector quantity, pro-
duced from conservation of energy within discrete energy-momentum exchange
relation, which generates for ingredients of this interaction’s spin numbers (12). The
space and time portions of energy in exchange interaction (12) appear as interaction
of fields, which produces the ingredients of this interaction in the form of fermions
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The quantum physics’ presentation of spin, as a cross product of vector position
with the momentum, does not produce quantity, which may carry energy-
momentum conservation in a proper way. The quantum mechanic’s specification of
spin is a very abstract concept because the point particle is not a particle, which
does not have a space–time frame of matter and therefore cannot produce half spin
identity in the form of fermion. We suggest the identification of angular momen-
tum as a product of the particle’s space–time position vector and energy-momentum
exchange interaction (10), which produces not the pseudo-vector but the local
space vector. This vector generates a deterministic pathway of a particle’s dynamics.
In such a model, the dynamic local position became the deterministic position
vector. Therefore, we may identify fermions and bosons only as the products of
space–time frame. Due to these features, quantum mechanics cannot explain
unusual feature of baryon frame where two identical quarks in proton or neutron
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The genetic code of supersymmetry Es = 1/2Ea explains this paradox. The
antisymmetric wave function (13) holds the invariance of baryon performance
through discrete symmetry, carried within background and local gauge fields. From
supersymmetric genetic code.

Es = 1/2Ea (12) follows why quark ingredients should have 2/3 and 1/3 fractional
charges. From three portions of energy (charges), only two portions describe one
type of charge, and the other one portion describes another charge, holding the
requirement of discrete Es = 1/2Ea symmetry.

6. The invariant translations within fermion-boson pairs

By Wilczek’s [17] opinion of getting symmetry and maintaining the balance of
conserved quantum numbers, the extra particles should exist by an equal number of
antiparticles. However, our theory predicts that invariant translation of ingredients
of energy-momentum exchange interaction should not involve equal numbers of
particle-antiparticle pairs but has to follow the condition of Eq. (12) Es = 1/2Ea. We
think that the concept of equal numbers appeared from wrong identification of a
particle as a point-like particle, which cannot produce identity for fermion. In
accordance with the invariant translation (12), from one charged fermion, we can
produce only half-neutral boson. Therefore, based on invariant particle-antiparticle
translation (12), to get a neutral bosonic particle, we have to double the number of
particles to produce a neutral boson:

2 Es ¼ 1=2Eað Þ ! 2Est ¼ Eatð Þ (15)

This operation is similar to quantum mechanic’s doubling of wave function.
However, in our case it is due to combining of energy portions, distributed in space
and time phases to get full portion of energy at the origin in the form of boson.
Elimination of dipole moment requires removal of charges in the space–time frame
of matter, which requires decay of the space–time frame of ordinary matter and
restoration of energy at the origin. However, the fractional charges of nucleons of
baryon structure do not allow separation of quarks with elimination of charges. To
eliminate this restriction, virtual particles with the fractional charges of baryon
structure undergo coupling to pion families, which, as intermediate bosons, carry
easy decay with production of neutral particles of the background gauge field.

The π-mesons generation through coupling of proton-antiproton or quark-
antiquark pairs during decay of space–time frame was proven by experiments,
carried out in Berkeley Center where it was observed that formation of neutral field,
which could be accounted for neutral π-mesons, created by collisions of high-energy
protons. In addition, it was shown that the neutral mesons decayed into two mesons
with the lifetime of the order of 10�13 s or less [18].

The produced π-mesons family became intermediate spin zero bosons due to the
decay of the space–time frame of matter, while the spin number is the product of
energy-momentum exchange interaction within the space–time frame of ordinary
matter. On this basis, the coupling particles get the performance of the neutral
particles of gauge field. The doubling of particles (14) at Ea = 0 reverses the
performance of the forces due to the transition of energy conservation from space–
time phase to energy phase with the change of sign (13).

The shift of symmetry from space–time frame local field to the background
gauge field symmetry leads to the disappearance of spin and generation of gauge
field particles due to the coupling of initial and local momentum in the form
(�Es/Es) of Eq. (10).
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It is necessary to note a very important feature of translation of ingredients of
Eq. (14) when the ingredients of this equation doubled. The half-integer fermions
of this equation became integer carrier particles, while integer carrier particles
became double integer carrier particles. Therefore, in energy phase the performance
of forces holding space–time frame changes in the opposite order.

Based on model (10), depending on the energy flux to the space–time frame, the
helicity of the ingredients of the space–time frame changes. In accordance with
Eq. (14) when electromagnetic interactions turned off (Ea = 0), the difference
between space and time phase particles disappears, and all the particles behave as
integer number particles of the background gauge field. In this case, the chirality
and handiness of particles gets the same left-handed direction. When local symme-
try generator force is not available (Ea = 0), the momentum of matter space–time
phase (10) transforms to the energy of the gauge field and gets a negative sign.
Simply, “the ingredients of energy return to itself.” In this case, Dirac’s neutrinos
transform to the neutral Majorana neutrinos having left helicity to the background
gauge field where bosonic particles involve gamma rays, neutral fermions pair, and
neutral neutrinos.

To understand the nature of particles and forces, we have to analyze the decay
mechanism of produced pion families, where the W vector bosons were intermedi-
ate ingredients:

πþ ! μþ þ νμ (16)

π� ! μ� þ νμ� (17)

π0 ! 2γ (18)

The produced ingredients of the decay form the balance equation:

πþπ�π0 ! 2γþ μþ=μ� þ νμ=νμ� (19)

The decay of the local gauge field to hold vector conservation produces a new
vector, which comprises generation of intermediate W vector bosons from decay of
π pions. The 2Es = Ea code of the background gauge field requires equal numbers of
electron and neutrino family pairs which is realized by the equal branching ratios of
the decay of intermediate W vector bosons. Eq. (19) describes decay condition in
average for muon family leptons.

The product stream composition generates composite of neutral particles, which
exists in annihilation mode in the background gauge field to hold equation 2Es = Ea:

2γ $ �μþ=μ� þ νμ=νμ� (20)

In the discrete energy conservation mode, the particles cannot hold annihilation
process for a long time. Coupling of gamma rays with the neutral particles leads to
the generation of charge and electromagnetic force of local gauge field:

2γþ μþ=μ� þ νμ= νμ� $ μ�=νμ� þ μþ=νμ þ Ea electromagnetic force
� �

(21)

The intermediate step in the symmetric translation from fermions to gauge field
is the transformation of proton-antiproton pair to neutron-antineutron Majorana-
type particles, which decompose to kaon family mesons. Due to the existence of
three fractional proton-antiprotons, comprising other flavors of quarks, the
decomposition of neutron-antineutron pair produces three kaon-type mesons. The
decay products of other unidentified two kaons, which we may call Kaon2 and
Kaon3, can be described similarly by Eqs. (16)–(19).
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Based on model (10), depending on the energy flux to the space–time frame, the
helicity of the ingredients of the space–time frame changes. In accordance with
Eq. (14) when electromagnetic interactions turned off (Ea = 0), the difference
between space and time phase particles disappears, and all the particles behave as
integer number particles of the background gauge field. In this case, the chirality
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In accordance with the equation Es = 1/2Ea, for transformation of fermions to
bosons (transformation of mass back to energy), we have to double the numbers of
particles through coupling of space and time phases, carrying energy portions. In
reverse order, for generation of fermions from bosons (generation of mass from
energy), we have to separate space and time phases (12) to produce charge and
reduce spin numbers of particles.

While our theory involves meson families as intermediate particles within half-
integer-integer particle transformations, we may compare our supersymmetry the-
ory with the basic principles of Yukawa’s meson theory. The background of
Yukawa’s theory is the spontaneous breaking of continuous symmetry [19] and
involves interaction between scalar ϕ and a Dirac field ψ. Yukawa’s vector in the
form of pseudo-scalar field is the linear combination of nuclear force-electric dipole
moment (φ�φ0) which is very similar to V-A theory [15]. Both theories cannot
describe CP invariance of strong interactions, while the linear combination of
vectors could not produce translation of interactions to the initial state.

In Yukawa model, meson is the force carrier, but in accordance with our theory,
meson is the product of invariant translation from baryon frame and is the inter-
mediate ingredient of the background gauge field where all the forces merged.

7. The Yang-Mills theory and the mass gap of Yang-Mills theory

The main feature of Yang-Mill theory [1, 20] is that to produce differentiable
manifold it applies continuous elements of Lie group. Yang-Mills theory, using
differentiable manifold of non-Abelian Lie group and continuous Lagrangian, tried
to describe the behavior of elementary particles through the combination of elec-
tromagnetic and weak forces. The non-Abelian Lie group is opposite to discrete
symmetry, while traditional differentiation is not applicable for discrete symmetry
group. The Yang-Mills theory does not have mathematical formulation for proper
matrix reduction to get the nonzero mass particles of the local gauge field.

The Yang-Mills theory does not explain why the weak force has continuous energy
spectrum. Pauli [21] suggested the production of massless neutrino together with the
electron to explain continuous spectrum, but this explanation was not valid because
quantum field theories have nomechanism for translation of space–time fermions to the
gauge field bosons, showing continuous energy spectrum. Yang andMill had no choice
and selected the only possible way—application of non-Abelian Lie group, having
Lagrangianmanifold. The other problem of Yang-Mills theory is the application of
energy-momentum four-vector (R4), which leads to the V-A-type energy-momentum
spectrum that produces a gap in energy between zero and some positive number.

However, the Yang-Mills theory is the only correct concept among all particle
physics theories, used to describe strong interactions. The very important feature of
the Yang-Mills theory is that it suggests simultaneous production of massless pho-
tons in addition to three massive bosons. Unfortunately, this excellent suggestion
has no proper mathematics, which could describe invariant translation of gauge
bosons to fermions of strong interactions.

8. Dirac’s relativistic quantum theory and problems of Dirac’s
“electron sea”

Dirac [22] applied the relativistic theory to Schrodinger’s equation to get relativ-
istic wave function of electron motion. The problem of Dirac equation was negative
energy solution. To solve this problem, Dirac assumed interaction of electron with
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the electromagnetic field where the electron was placed in a positive-energy
eigenstate to get decay into negative-energy eigenstates. However, such an
approach had a problem that the real electron would disappear by emitting energy
in the form of photons.

Based on our theory on discrete performance of nucleon ingredients, it is easy to
show that generation of photons from fractional electron charges at coupling mode
predicts existence of its antiparticle-positron. Model (9) presents electromagnetic
interaction of space–time particle (Es), particularly electron, with the electromag-
netic field (Ea), through deterministic energy-momentum exchange interaction
without the application of relativistic quantum approach.

In the absence of electromagnetic field (Es = 0), this interaction moves to the
background energy field through merging of photon’s fractional electric charges to
particle-antiparticle pair e/e and ν/νwith the generation of a neutral current instead
of Dirac’s electron “sea.”

For formulation of gauge field theory, instead of Dirac’s relativistic approach, we
used classic principles: (a) formulation has to hold symmetric space and time
derivatives, in relation to origin, and (b) energy-momentum exchange relation has
to present the momentum and energy as the space and time parts of a space–time
vector instead of a four-momentum frame of Dirac’s relativistic theory.

The basic principles of our supersymmetric theory replaced Dirac conditions
through (a) and (b). The problem of Dirac’s approach is that the space and time
derivatives enter to the equation with the second order, which led to the loss of the
original function and its first-order derivative. That is why Dirac’s equation could
not find the local position of an electron in motion in a deterministic way and used
probability density. The second problem of Dirac equation is that he introduced to
his equation relativistic energy-momentum relation in the form of linear space–time
vector, similar to Sudarshan’s V-A vector that could not produce integer spin carrier
neutral particle field from half-integer spin carrying fermion particle. This was the
reason for the theory to produce “electron sea.” In accordance with the supersym-
metric theory, fermion-showing performance as a particle in local space–time gauge
phase became a field of neutral bosons of background gauge phase of energy. This is
the supersymmetric feature of nature.

In gauge energy phase, electron and positron coupling to e/e generates, together
with the Majorana ν /ν neutrinos, a vacuum “sea” of neutral current. Therefore, the
“Dirac sea of electrons” in reality is the gauge field of neutral particles. The energy of
the field is finite and has a boundary within the space–time frame, existing through
discrete shift between space–time and energy phases of energy conservation.

9. Performance of Dirac’s and Majorana neutrinos in model

Particle physics does not provide any information why Dirac’s neutrinos have to
transform to Majorana neutrinos. The exchange interaction (Ea/Es � Es/Es) of
Eq. (10) determines the nature of neutrinos. When interaction with electromag-
netic energy is off (Ea = 0), the difference between Es in the denominator and
nominator of Eq. (10) disappears. The Es of nominator presents local momentum,
while the Es in the denominator describes initial momentum as genetic code of
superposition. At (Ea = 0), the momentum ingredients of expression Es/Es became
equivalent and cancel each other with the disappearance of charges of quarks
(e�/ν�)/(e+/ν) ! (e/e)/(ν/ν) and generation of Majorana neutrinos (ν/ν) and
neutral e/e fermion pairs of gauge field in the form of bosons. In the energy phase,
the gauge field Majorana particles became boson particles, and the chirality and the
handiness get the same direction. Transformation of fermions of local gauge field to the
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background gauge bosons as the intermediate particles is the necessary step for invariant
translations of strong interactions.

Themixture of neutral electron-positron pairs andMajorana neutrinos generates
the spin 2 neutral particles of graviton of spin zero gauge field, carrying gravitation
force to the background vacuumwith the velocity faster than electromagnetic force in
anymedium. Therefore, gravitation force appears in reverse order from electromag-
netic energy through coupling of entangled space and time portions of energy to restore
it at the background vacuum (Ea = 0). It is not “spooky action at a distance” [23] but
coupling of entangled non-separable portions of energy, existing in different forms.

The mass of Majorana neutrinos (Majorana mass) in the background gauge field
is very low, but they became massive as Dirac neutrinos of baryon structure due to
the entanglement with the charged electron family particles. Due to the decay of
space–time phase at (Ea = 0), the particles of gauge field has the continuum spec-
trum. The e/e and ν/ν pars have no independent existence, but with the gamma
rays, they form dark matter and energy content with ratio 33 and 66%, holding
Ea = 2Es gauge field frame of energy conservation.

At vacuum expectation value takes place discrete shift of gauge field energy
back to the local gauge field of space–time. Majorana neutrinos became again Dirac
neutrinos with the generation of charge and massive particles of exchange interac-
tion (Ea�Es)/Es.

10. The problems of Weyl spinors and quantum field theory

Quantum field theory suggests existence of massless half spin fermions and pro-
vides relativistic Weyl equation for description of massless half spin fermions. Due to
the connection of Weyl’s spinor to Dirac’s theory of half spin electron, Weyl spinors
describes Dirac fermions in the form of two ½ spin massless fermions. Quantum field
theory does not explain physical nature ofWeyl’s massless spin ½ particles, while spin
½ fermions in Dirac structure are massive particles. Dirac’s theory describes energy-
momentum relation as a continuous function that is why physical nature of predicted
massless ½ spin fermions remains open. In accordance with our theory, neutrinos,
existing in pair with the electron and positron, as Dirac fermions in quark’s structure,
in energy phase transform to integer spin “twin”Majorana particles. In mathematics,
usually such an inversion has to meet requirements of spinors.

The spinor is the mathematical operation [24], which produces vector space by
addition of vectors together or multiplication by numbers, called scalar. The vector
addition or scalar multiple operation must satisfy requirements, called axioms. The
real vector space presents a physical quantity such as force and multiplication of a
force by a real multiplier which produces another force vector.

Spinor, as a vector, exhibits inversion, when a physical system constantly rotates
through a full turn (360°). In the following chapters, we will explain scalar multi-
plication in strong interactions and will provide mathematical framework, carrying
the inversion of particles from half spin to integer spin neutral particles with the
simultaneous change in the nature of existing force.

11. Development of new gauge field as the frame for discrete
conservation of energy

11.1 General principles

The idea of a gauge theory appeared from Weyl spinors, but Weyl’s theory, as
we mentioned, could not produce the gauge scalar field due to the helicity problem
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of neutrinos, and the produced particles remained spin ½ fermions. The neutrinos
helicity was the main problem of all of the field theories which did not allow to
describe fundamental laws of nature in a proper way. The question why nature has
no right-handed neutrino produced an opinion [25] that “God decided that Nature
should be left handed.” Due to this problem, particle physics theories suggest that
nature respects parity with regard to all the fundamental forces with the exception
of the weak interaction, which involves neutrinos.

Based on our model (9), the generation of free neutrinos and antineutrinos
takes place at cutoff electromagnetic interactions (Ea = 0), which reverses the
momentum to the background state. The problem is that Weyl’s theory
determines the spin only relative to the positive momentum vector, and
individual ½ spin carrier massless Weyl spinors violate conservation of parity. For
this reason, Pauli specified Weyl spinors “unphysical” [21]. Weyl’s theory could not
combine neutrinos to hold parity conservation in the form pair of virtual Majorana
particles.

Weyl’s theory cannot explain why production of his spinors in the unitary
transformations takes place only in the presence of half angle. Hamilton rotation
about some axis, in a similar way, connects half angle and the Pauli matrixes. The
presence of half angle in both cases was unavoidable [25].

Model (10) shows that at Es = 1/2Ea, the invariant translation within complex
space–time coordinates are connected within tangent 45 which describes space–
time symmetry t1 ΔS = S1 Δt in the form of coordinates y = x symmetry. This is the
half-angle mystery of Weyl and Hamilton translations. The two-dimensional space–
time frame in association with the Es = 1/2 Ea discrete energy-momentum symme-
try carries this translation.

Hamiltonian and momentum are the adjoint elements of the Lie Algebra
group that generate linear transition in space and time. Model (10) presents the
nonlinear energy-momentum exchange relation as the adjoint elements of
three-dimensional SO (3) group and shows that Hamiltonian linear
transformation alone cannot do invariant translation. Due to the involvement of
symmetry generator force Ea, the translation has to be with the change of
dimension. The invariant translation requires conjugation of invariant space–time
frame SU (2) with the three-dimensional energy-mass exchange transformation
through SO (3) group where change of space–time dimension is the driving force of
translations.

Under unitary transformations, one rotation (360°) does not bring the state of
a body to the origin. One rotation brings SU (2) x SO (3) local gauge symmetry to
U (1) matrix with simultaneous transformation of a three-dimensional particle
frame to linear gauge field. Therefore, full translation of opposite phases holds
condition: SU (2) x SO (3)/U (1). Doubling the spin numbers of quark ingredients
through coupling of space and time portions of energy Es = 1/2Ea to 2Es = Ea
produces unstable pions which produce non-charged boson-like ingredients of the
background gauge field U (1).

The second transformation with the reversing of U (1) symmetry group brings
the linear gauge field back to the space–time (SU (2) x SO (3)) frame of three
particles of baryon structure. Coupling of neutral e/e, ν/ν, and ꝩ/ꝩ ingredients in
such a translation generates quarks of baryon structure. The invariance between
bosons and fermions in the form of strong interactions is possible only in discrete
mode with the change of space–time dimensions.

With the reversed momentum line (Ea = 0), the antineutrino changes its helicity
and becomes the left-handed particle, which leads to the coupling of two neutrinos
in the form of bosonic twin particles. The right-handed neutrino would block
generation of U (1) field and its translation back to SO (3) matrix, that is why
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nature does not allow its existence. Weyl’s theory due to the wrong helicity misses
these translations.

The other problem of quantum mechanics is that it eliminates participation of
neutrinos in strong interactions due to the absence of charges. However, our theory
shows that neutrinos are the necessary ingredients for generation of strong force,
while coupling with the neutral e/e pairs generates formation of charges through
their reproduced right–left helicity in SO (3) group.

Without conjugation of SU (2) and SO (3) symmetry groups, the description of
chiral symmetry is not possible. At Ea = 0, Dirac particles transform to Majorana
neutral massless particles which eliminates the difference between handiness and
chirality.

11.2 Mathematical framework of discrete gauge field

Gauge, in common sense [26] is a measurement of a relative position of a system
with reference to another abstract system to determine boundary of measurement.
The gauge theory has no mathematical framework relative to the proper reference
frame for measurement of change. In this aspect, the gauge theory has the same
reference frame problem of classic physics.

Based on literature [26], the gauge symmetry has specification, as “is a lack of
change when some field being applied.” The meaning of this statement is that the
measurable quantity after the change looks the same. Linearly differentiable
Lagrangian of non-Abelian algebra due to the absence of the space–time frame
cannot provide a mathematical formulation on how the gauge field after the change
may look the same.

The theory, which we apply, provides a mathematical framework to the gauge
theory to measure a quantity, relative to its initial superposition state. We suggest
that change of energy and momentum in discrete mode generates the dynamical
operator of gauge field, which describes the measurement in relation to the initial
origin with the integer numbers of energy portions.

When the superposition of a gauge field after displacement within space, time,
and energy looks the same, the invariant transformation produces invariance for all
the inner ingredients of the change ΔS = S1, Δt = t1, and Ea –Es = Es with the
realization of condition 1 = 1 (9).

The genetic code of exchange interactions Es = 1/2Ea keeps the discrete sym-
metry of force carrier and electrically charged ingredients of space–time at different
spin numbers (12). In the energy phase (13) of gauge field, the genetic code
Es = 1/2Ea undergoes multiplication by scalar 2 to Ea = 2Es which holds the discrete
symmetry within color charge ingredients of gauge field, leaving spin untouched.
When the electromagnetic interactions is off (Ea = 0), coupling of space and time
portions of energy generates transformation of half spin matter fermions to integer
bosons ν/ν + e/e + ꝩ/ꝩ family of background vacuum:

dS
S1

¼ dt
t1

�Es

Es

� �
(22)

When electromagnetic energy is off (Ea = 0), merging of space and time por-
tions of energy generates left side helicity for all the non-charged ingredients of
gauge field of background vacuum. At this condition, all the half-integer fermions
merging with their own antiparticles form neutral integer spin carrying bosonic
particles. Eq. (22) is the equation of vacuum, where space and time portions of
energy merging generates a one-dimensional space–time frame of vacuum.
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The integer spin carrying particles, produced at zero electromagnetic interac-
tions within baryon’s space–time frame, can hold invariance of gauge field only in
discrete mode:

e� =ν�ð Þ= eþ =νð Þ $ e=eð Þ= ν=νð Þ þ ꝩ=ꝩ (23)

The symmetries of space–time (Es = 1/2Ea) and energy (2Es = Ea) phases do not
have independent existence and only in conjugation carry discrete conservation of
energy.

We assume that 2Es = Ea frame of the background gauge field involves a
combination of elastic (Thomson effect) and inelastic scattering (Compton effect)
where inelastic scattering gradually transforms to elastic scattering. At background
vacuum expectation value takes place translation of the background gauge field
energy to space–time frame of local gauge field by elastic scattering, which involves
absorbing of gamma rays by the virtual matter bosons. This process shifts the
continuous spectrum of longitudinal waves of the background field of bosons to the
discrete spectrum of transference waves of charged matter particles. This is the
process, which eliminates generation of ultraviolent divergences.

According to quantum mechanics, vacuum energy without renormalization
mathematically is infinite. However, this statement is true only if the background’s
gauge field energy has no shift to the local gauge field of matter’s space–time frame.
During shift of the background gauge field’s energy to the local space–time field,
Majorana neutrinos transform to Dirac neutrinos with the transformation of color
charges to the electric charges of quarks.

11.3 Mechanism of conjugation of background and local gauge fields

In accordance with our theory, if field does not change, it cannot hold energy
conservation and symmetry within reversible dynamic translations. Energy can
exist only through propagation in space–time frame, and in reverse order, space–
time is the matter product of energy distribution. On this basis, conjugated exis-
tence of background energy and local gauge matter fields is the necessary condition
for conservation of energy.

The energy-momentum exchange relation of the model (12) in the form of
eigenvector generates exchange of particle with the field. The energy-momentum
exchange relation of eigenvector (12) describes the relation of two fields, such as
electromagnetic-gravitation fields, which carry invariant translation to each other.
Electromagnetic force in the form of Ea can be a vector field and at the same time
photon particle. At Ea = 0, the electromagnetic force disappears as a field/particle
and transforms to gauge field of boson ingredients.

Model (10) describes local gauge field S1/t1, which carries energy at each point
of space–time. Local gauge field carries electromagnetic force in space–time frame
in the form of energy-momentum content and strength of electromagnetic field
determined by its coupling with the local space–time field. Model (10) combines all
types of interactions and translates them to each other through energy-momentum
exchange interaction. In this case, background/local gauge field of articles appear as
the “two worlds of particles.”

The vector space, as specified in mathematics, moves through plane wave,
which is field. By the requirement of vector space [24], the field where the vector
has to move requires existence of two equivalent field functions that determine the
field value. These functions involve two parameters, which are time and displace-
ment along the direction. In accordance with our model (13), the symmetry of
energy portions, distributed evenly within space and time phases, generates two
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nature does not allow its existence. Weyl’s theory due to the wrong helicity misses
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dS
S1

¼ dt
t1

�Es

Es

� �
(22)

When electromagnetic energy is off (Ea = 0), merging of space and time por-
tions of energy generates left side helicity for all the non-charged ingredients of
gauge field of background vacuum. At this condition, all the half-integer fermions
merging with their own antiparticles form neutral integer spin carrying bosonic
particles. Eq. (22) is the equation of vacuum, where space and time portions of
energy merging generates a one-dimensional space–time frame of vacuum.
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The integer spin carrying particles, produced at zero electromagnetic interac-
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e� =ν�ð Þ= eþ =νð Þ $ e=eð Þ= ν=νð Þ þ ꝩ=ꝩ (23)

The symmetries of space–time (Es = 1/2Ea) and energy (2Es = Ea) phases do not
have independent existence and only in conjugation carry discrete conservation of
energy.

We assume that 2Es = Ea frame of the background gauge field involves a
combination of elastic (Thomson effect) and inelastic scattering (Compton effect)
where inelastic scattering gradually transforms to elastic scattering. At background
vacuum expectation value takes place translation of the background gauge field
energy to space–time frame of local gauge field by elastic scattering, which involves
absorbing of gamma rays by the virtual matter bosons. This process shifts the
continuous spectrum of longitudinal waves of the background field of bosons to the
discrete spectrum of transference waves of charged matter particles. This is the
process, which eliminates generation of ultraviolent divergences.

According to quantum mechanics, vacuum energy without renormalization
mathematically is infinite. However, this statement is true only if the background’s
gauge field energy has no shift to the local gauge field of matter’s space–time frame.
During shift of the background gauge field’s energy to the local space–time field,
Majorana neutrinos transform to Dirac neutrinos with the transformation of color
charges to the electric charges of quarks.

11.3 Mechanism of conjugation of background and local gauge fields

In accordance with our theory, if field does not change, it cannot hold energy
conservation and symmetry within reversible dynamic translations. Energy can
exist only through propagation in space–time frame, and in reverse order, space–
time is the matter product of energy distribution. On this basis, conjugated exis-
tence of background energy and local gauge matter fields is the necessary condition
for conservation of energy.

The energy-momentum exchange relation of the model (12) in the form of
eigenvector generates exchange of particle with the field. The energy-momentum
exchange relation of eigenvector (12) describes the relation of two fields, such as
electromagnetic-gravitation fields, which carry invariant translation to each other.
Electromagnetic force in the form of Ea can be a vector field and at the same time
photon particle. At Ea = 0, the electromagnetic force disappears as a field/particle
and transforms to gauge field of boson ingredients.

Model (10) describes local gauge field S1/t1, which carries energy at each point
of space–time. Local gauge field carries electromagnetic force in space–time frame
in the form of energy-momentum content and strength of electromagnetic field
determined by its coupling with the local space–time field. Model (10) combines all
types of interactions and translates them to each other through energy-momentum
exchange interaction. In this case, background/local gauge field of articles appear as
the “two worlds of particles.”

The vector space, as specified in mathematics, moves through plane wave,
which is field. By the requirement of vector space [24], the field where the vector
has to move requires existence of two equivalent field functions that determine the
field value. These functions involve two parameters, which are time and displace-
ment along the direction. In accordance with our model (13), the symmetry of
energy portions, distributed evenly within space and time phases, generates two

227

Development of Supersymmetric Background/Local Gauge Field Theory of Nucleon Based…
DOI: http://dx.doi.org/10.5772/intechopen.93087



field functions of negative displacement by the conjugation of space and time
variables:

s1Δt ¼ �t1Δs (24)

Therefore, the ingredients of Eq. (13) generate two equivalent functions:

Ft s1,Δtð Þ ¼ �Fs t1, Δsð Þ (25)

The function Fs describes displacement in space, while the function Ft describes
duration of change. When the values of field function are vectors, the plane wave is
longitudinal. The space and time portions of energy in the background gauge field
form a one-dimensional space–time frame that is why the plane wave in this case is
longitudinal. Multiplication of equation (Es = 1/2Ea) by scalar 2 leads to the forma-
tion of neutral particles e/e, ν/ν, and ꝩ/ꝩ of the background gauge field 2Es = Ea in
the form of spinors, similar to Hamilton quaternions spinors [25]. The ingredients
of Hamilton’s equation (I; J; K) are imaginary quantities, while the products of our
model are virtual particles:

I2 ¼ J2 ¼ K2 ¼ ijk ¼ �1 Hamiltonð Þ (26)

e=e ¼ ν=ν ¼ ꝩ=ꝩ ¼ eνꝩð Þ ¼ �1 (27)

Es ¼ 1=2Eað Þ Space–time phaseð Þ ! Inversion to energy phase 2 Es ¼ Eað Þ
(28)

The equation (2Es = Ea) produces a new vector where the scalar is the real
number. The inversion transforms integer spin electromagnetic force to the other
force being integer 2 spin carrying force. The new force is the gravitation, which
with continuous longitudinal wave moves to the background through conjugation
of ingredient (eνꝩ) of produced neutral spinors.

It is necessary to note that generation of inversion vector space for transforma-
tion of energy conservation from space–time phase to energy phase meets all the
requirements, required for scalar multiplication procedure, given in the form of
axioms [24]. One of the requirements of axioms is the condition x + (�x) = 0,
which is in hold within discrete annihilation of space and time variables (14). Due
to the conservation of energy within discrete energy and space–time phases, an
event comes to the origin after two full rotations (720°). The generated field has an
algebra of zero-dimensional geometric spinor with one-directional helicity to the
background origin.

Model (9) describes conservation of energy through non-unitary space–time
variables, which unifies fields, particles, and forces within non-unitary energy
portions allowing transformation of all the identities to each other. The background
plasma-like gauge field can hold the discrete symmetry only through coupling with
the local gauge field. The local gauge field of virtual matter, which is the combina-
tion of electric and magnetic fields, holds interaction of electrically charged space
and handiness carrying time particles within the discrete space–time frame. The
driving force for generation of local gauge field’s space–time frame of matter is the
discrete conservation of energy-momentum pairs.

Due to the absence of space–time frame, the neutral particles of the background
gauge field have only color interactions with the feature of “neutral crystals” of time
and space portions, bubbling in gauge field condensate with the small wavelength.
Recently Wilczek [27] described the similar idea in more details.
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11.4 Invariant translation of symmetries within background/local gauge fields

Background gauge/local gauge fields exist in the form of field-anti-field pair.
Due to the energy-momentum non-commutation, the local gauge field is the non-
Abelian, while background gauge is Abelian field. Generation of non-Abelian local
gauge field from background Abelian’s gauge field is not spontaneously symmetry
breaking. The local gauge field at Ea = 0 of model (9) merges with the background
gauge field, as particle-antiparticle pair. In this case, the difference between particle
and field disappears. The background and local gauge fields are connected through
SO (3) rotational matrix which carries invariant translation of particle to field.
Quantum mechanics mediates physical quantity by the square of the wave function,
but SO (3) group of model (9) mediates physical quantity of the background gauge
field by coupling of space–time portions of energy, carried in the form of matter–
antimatter pair.

Model (9) suggests that CP symmetry of strong interactions is in hold only
through cross product of SU (2) x SO (3) symmetry groups within two transforma-
tions: one is charge cancelation translation, and the second is parity transformation.

Yang-Mills [24, 28] attempted to apply gauge theory to the strong interactions
through elevating of global symmetry to local gauge symmetry, but this attempt
produced symmetry breaking. Without conjugation of SU (2) matrix of space–time
frame and energy-momentum exchange interactions SO (3) (9), the background
gauge field U (1) cannot carry invariant translation of mass to the opposite phase of
local gauge field of strong interactions.

By Glashow’s opinion [2] electromagnetism is mediated not only by photons; it
arises from the requirement of local gauge invariance. However, based on our
theory, this statement is true only partly because the role of local gauge field is
reversible and symmetric. The local gauge field is needed for generation of electro-
magnetic interaction and cancelation it takes place by gravitation for discrete con-
servation of energy within space–time of baryon frame. The SO (3) symmetry
group of gauge field translates electromagnetic force to the gravitation force.
Therefore, without gravitation force, it is impossible to get invariant performance
of strong interactions. The Standard Model, as Kibble showed [29], did not find
place for gravity, and that is why it cannot not explain why the elementary particles
come in three families with very similar structure but wildly differing masses.

In our theory electromagnetism and gravitation are unified within SU (2) x SO (3)
symmetry of local gauge field which involves unification of charges as the internal
products of baryon’s space–time frame. The genetic code of baryon particles Es = 1/2
Ea holds all the internal conservation laws: baryon conservation, isospin conservation,
hypercharge conservation, and boson-fermion spin invariant translation. It is known
that the hypercharge of SU (3) symmetry is one of two quantum numbers of the
hadrons and alongside with isospin I3 follows the formula:Q = J3 + 1/2Y. For multiples
of particles, the hypercharge gets formulation J = 2Q.

According to model (9), at local gauge field, the hypercharge current coupling is
the condition Es = 1/2 Ea which describes local space–time symmetry at J3 = 0. At
the background gauge field, the hypercharge conservation Ea = 2Es describes mul-
tiple bosons, similar to J = 2Q. Based on Eqs. (8)–(12), the discrete conservation of
energy at the background gauge field produces condition:

ΔF ¼ ΔS
Δt

þ S1
t1

;
ΔS
Δt

¼ � S1
t1

,ΔF ¼ 0 (29)

The equation ΔF = 0 describes discrete nonvanishing energy state of spin zero
boson’s condensate of the background gauge field.
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12. Principles of isomorphism of SU (2) and SO (3) symmetry groups

We developed a new algebra for the isomorphism of SU (2) matrix to SO (3)
group which holds 3D rotation about three-dimensional R3 Euclidean space, to
preserve the origin in discrete mode. The SO (3) three-dimensional matrix
describes the three-jet performance of elementary particles.

The left side of model (9) is SU (2) matrix of space–time, but the right side
describes three-dimensional energy-momentum exchange interaction within
SO (3) group. The inseparable SU (2) and SO (3) matrixes make inseparable
position and momentum. Therefore, the non-separation phenomenon of position
and momentum, called uncertainty of quantum mechanics, is the necessary condi-
tion to hold discrete invariant translation of symmetries.

The new space and time geometry, which we suggested, is the presentation of
new Hilbert space, which is equivalent to Euclidean space where the dimension of a
Euclidean-type space may change in accordance with the associated vector space.
The SU (2) and U (1) symmetry groups of standard model do not exist in the same
phase, and U (1) x SU (2) is not the cross products due to the existence of these
groups in opposite phases of discrete conservation of energy. Therefore, even the
extension of SU (2) x U (1) matrixes [2] of standard model to symmetry group
SU (3) x SU (2) x U (1) [30] cannot describe strong interactions.

For restoration of origin, the eigenvalue of rotation has to have signs �1, and
model (9) provides this condition. The eigenvector with eigenvalue +1 describes
extension of baryon space–time frame, while (�1) in the form of reflection returns
the space–time to the origin. Conservation of energy at the origin holds conserva-
tion all of the inner products of translation.

The SU (2) and SO (3) are not subgroups of U (1), as common algebra states;
the SU (2) x SO (3) and U (1) are the products of each other in opposite phases of
discrete symmetry. The special orthogonal SO (3) rotation symmetry group
describes rotation about the origin of the three-dimensional Euclidean space.
Orthogonal matrix is the square matrix; a matrix is orthogonal if its transpose is
equal to its inverse within equations Es = 1/2Ea and 2Es = Ea which are equal to
each other. First is the matrix Q, and second is the inverse matrix.

At Es = 1/2Ea, the SU (2) symmetry has isomorphic relation to SO (3) symme-
try, but at 2Es = Ea, the SU (2) symmetry undergoes surjective homomorphism to
SO (3) symmetry. The surjective homomorphism of the Lie group describes [30]
two algebraic structures of the same type, which generates coupling of particle and
antiparticle to the same structure. The isomorphism requires symmetry in opposite
phases, but Lie algebra does not explain why isomorphic symmetries exist in oppo-
site phases. The surjective homomorphism requires that the ingredients of the
homomorphism should have one element, which should be the same for these
ingredients. The same ingredient is the mass of particle and antiparticle, which
makes them coupling by surjective homomorphism. The particle-antiparticle pair
forms a domain-codomain pair where antiparticle codomain is the mathematical
image of superposition origin and completely covers the domain function.

At Ea = 0, the SU (2)matrix gets smooth 2:1 surjective homomorphism to SO (3)
group matrix which generates U (1) symmetry of the background gauge field.

13. Mathematical formulations of SU (2) x SO (3) matrixes

Multiplication of energy-momentum spin relation Es = 1/2Ea to 2Es = Ea elim-
inates the difference in energy portions, distributed in space and time phases. Using
these equations and model (9), we can get the following equations:
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ΔS
S1
Δt
t1

¼
2
Δs
s1

� Δt
t1

Δt
t1

(30)

From this formula, we will get:

ΔS
S1

� �2

� 2
Δt1
t1

� �
Δs1
s1

� �
þ Δt

t1

� �2

¼ 0 (31)

ΔS
S1

� �
� Δt

t1

� �� �2
¼ 0 (32)

ΔS
S1

� Δt
t1

¼ 0 að Þ, ΔS
S1

� Δt
t1

¼ 0 bð Þ (33)

The equations (32) and (33) describe the combination of space–time and energy-
momentum symmetries in the form SU (2) x SO (3) product, which holds conser-
vation of energy within invariant translations.

In mathematics isomorphism is a mapping between two structures of the same
type that can be reversed. Model (10) describes isomorphism of SU (2) and SO (3)
matrixes not only from the point of view of reverse mapping structures; it shows
that due to the reciprocal transformation of space–time and energy-momentum
identities, these symmetry groups are not separable from each other.

The rotational symmetry group SO (3) cannot carry translation if the model does not
provide the state of origin. Without initial position of space and time, you cannot
build a gauge field theory where the antiparticle cannot find its twin brother in the
background gauge field. The energy-momentum exchange eigenvector (12)
through angular momentum generates the rotational SO (3) symmetry, while the
SU (3) group of standard model describes only continuous symmetry. The SO (3)
generates rotation about the origin in Euclidean space. Only this symmetry group
with matrix multiplication may produce elementary particles.

The quadratic Eq. (31) with two variables, which is generalized to vector space,
is an algebraic expression of quadratic polynomial P(x, y) = 0 equation. Such a
polynomial fundamental equation takes place in conic sectors, having the expres-
sion f(x, y) = 0.

At Ea = 0, the space and time variables became asymptotically equivalent. The
asymptotic limit for these variables having binary relation f (Δs/S1), f (Δt/t1) can
be described as follows:

Lim
Δs
s1

! 1

fðΔtt1 Þ
f ðΔss1Þ

¼ 1 (34)

14. Translation of space dimensions. Transmutation of dimension-based
physical laws to frequency

We replaced velocity in linear equation of classic electromagnetic field by the
frequency to present electromagnetic field, conserved as the cross product of
energy-momentum exchange and local gauge field position of space–time. The
electromagnetic field Ea of model (9) involves electromagnetic fields, and its rela-
tion with the magnetic field Es produces the three field symmetry Es = 1/2Ea.
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The equations (32) and (33) describe the combination of space–time and energy-
momentum symmetries in the form SU (2) x SO (3) product, which holds conser-
vation of energy within invariant translations.

In mathematics isomorphism is a mapping between two structures of the same
type that can be reversed. Model (10) describes isomorphism of SU (2) and SO (3)
matrixes not only from the point of view of reverse mapping structures; it shows
that due to the reciprocal transformation of space–time and energy-momentum
identities, these symmetry groups are not separable from each other.

The rotational symmetry group SO (3) cannot carry translation if the model does not
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build a gauge field theory where the antiparticle cannot find its twin brother in the
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14. Translation of space dimensions. Transmutation of dimension-based
physical laws to frequency

We replaced velocity in linear equation of classic electromagnetic field by the
frequency to present electromagnetic field, conserved as the cross product of
energy-momentum exchange and local gauge field position of space–time. The
electromagnetic field Ea of model (9) involves electromagnetic fields, and its rela-
tion with the magnetic field Es produces the three field symmetry Es = 1/2Ea.
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Model (10) shows that generation of new space vector takes place when dimen-
sion of space–time changes. The energy flux, coupled with the space–time (10),
determines the space–time structure and dimension of space and time variables.
The third dimension of space and generation of mass takes place in discrete mode at
positive value of function Ea � Es > 0.

Based on model (10), the wave amplitude of space–time is the composite prod-
uct of instant of time and displacement in space, while the wavelength is the
composite product of change of time and local space. The time instant t1 appears as
the genetic code of wave amplitude, while the local space S1 appears as the genetic
code of wavelength in the form of superposition.

Conservation of energy in the form of space and time portions requires trans-
mutation of dimension-based physical laws to unit-less dynamics of frequency,
which changes through integer numbers (10). While the energy-momentum con-
tent of photon is constant, the phenomenon called mass appears as a unit of change
of frequency of energy distribution in space–time frame. Change of the frequency
leads to the change of the space length and duration of the interaction, keeping the
same physical law regardless of scale. At ΔS/S1 = 0, we get Ea = Eswhich shows that
when particles move to short or zero distance, the difference between energy and
momentum disappears. Thus, mass appears as the space phase equivalent of energy.

To hold conservation of finite amount, energy generates space–time phase
through which it moves from one form to another. The SO (3) group generates a
two-dimensional non-unitary isomorphic space–time symmetry of SU (2) matrix
which holds the three-dimensional discrete performance of baryon structure through
discrete invariant in-out of energy (in the form of so called gluons) to this frame.

Therefore, the discrete in-out external energy (gamma rays, transformed to
electromagnetic force) generates additional in-out space dimension in baryon
structure of local gauge field. When neutral particles are translated to the back-
ground gauge field, the SO (3) group eliminates external dimension in baryon
structure and returns energy back to vacuum.

Such a performance of SO (3) symmetry group is missed in the standard model,
and the known symmetry groups of strong interactions do not involve this symmetry.
Combination of SU (2) non-unitary group with the SO (3)matrix generates new
principles of fundamental laws which hold invariant translations of all of the natural
symmetries through the background gauge field U (1). However, the background
gauge field cannot hold its state in continuous symmetry. We may describe the uni-
form state of a particle in gauge field as ΔS/Δt = 0, which has isomorphism with the
matter–antimatter symmetry at conditions where there is no change in space–time:

Ea� Es

Es

� �
¼ 0, Ea ¼ Es (35)

Such a state of a particle generates timeless matter–antimatter annihilation,
which violates conservation of energy and leads to the ultraviolence divergences.
According to the condition (35), it is very difficult to suggest any valid mechanism
without renormalization to eliminate ultraviolence divergences with the equal
numbers of matter–antimatter.

Wilzcek [17] suggested that instead of number of virtual particles, we have to
speak of the numbers of internal loops in Feynman graphs. However, instead of
Feynman diagram, we suggest the energy-momentum loop. Wilczek showed that
proton mass in Planck unit arises from the basic unit of color coupling strength,
which is of order ½ at the Plank scale. We showed that the color coupling code ½
arises from energy-momentum exchange interaction.
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15. The new theory of photon

15.1 Dual performance of photons

Quantum mechanics suggests that photons are electrically neutral and do not
couple to other photons. Based on our theory, a photon in the background gauge
field behaves as color charge “twin pairs” while in the local gauge field became an
electrically charged virtual particle-antiparticle pair. In the local gauge field of
matter space–time frame, the interaction of photon with the quarks takes place
through generation of fractional charge ingredients of photon and their cross cou-
pling with the quark charges which produces Majorana bosons of the background
gauge field. Neutrinos in the local gauge field separate colors of gamma photons for
generations of quarks for three fractional protons. You cannot see quarks because
photon-photon cross coupling eliminates quarks, translating them to the gauge
field.

Photon-antiphoton in the form of Majorana particles do not have independent
existence and for conservation of energy have to generate the discrete space–time
frame of baryon’s matter, holding strong interactions. When an electromagnetic
field is on, it keeps conservation laws in baryon structure but, when it is off, trans-
forms conservation laws to the background energy phase of gauge field.

Photon in the gauge field is not a single boson, but it is the composite frame of
neutral bosons. Invariant translation of fermions to bosons requires cutoff electro-
magnetic force (Ea = 0) where cross coupling of Es = 1/2 Ea shape particles to
particles of the background gauge field 2Es = Ea takes place. The color charge mass
of photons of the background gauge field appears in the local gauge field in the form
of space mass of fractional electric charges of baryon space–time frame.

In accordance with model (9), quanta are the energy-momentum carrying ele-
ments, and only the energy-momentum content determines the existence of pho-
tons in the form of finite amount of quanta. The portions of energy, carried by
space–time portions of energy, appear with the integer numbers (10).

Without clear understanding of half spin phenomenon and the Pauli exclusion
principle, we cannot describe photon as a boson. The exclusion principle states that
two identical half spin carrying fermions cannot occupy the same quantum state.
Pauli’s “quantum state” is an abstract point-like state of a particle which does not
involve the space–time frame, and his rule does not explain the fact of the existence
of two same quarks in baryon’s space–time frame. In this sense, Wilczek [16] also
raised the question that two identical quark fermions did not appear to obey the
normal rules of quantum statistics. It is difficult to understand the pattern of
observed baryons using antisymmetric wave functions, as it requires symmetric
wave functions.

The formula Es = 1/2Ea explains that space and time portions of energy in the
form of particle and antiparticle discretely share the space and only half of the
available energy belongs to matter’s space portion. On this basis, we modified the
exclusion principle to the statement that matter fermion with half spin can present
only half portion of the available energy in the form of space. With multiplication of
fermion space to scalar, we can produce two fermions that can occupy similar space
at different times, holding 2Es = Ea condition. The vector space of matrix SO (3)
does multiplication of the code Es = 1/2Ea by two to produce two quarks, existing in
opposite phases with one force carrier quark 2Es = Ea: decay of proton’s (+2/3)
quark produces in the opposite phase two other (�1/3) quarks in the opposite
phase. The antiquarks, following the same rule, keep the existence of baryon struc-
ture. The Pauli exclusion principle cannot predict such a translation of half spin
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fermions to integer spin particles, while the standard model has no cross
SU (2) x SO (3) matrixes to carry this translation.

In a similar way we can explain why light cannot be at the same time matter and
antimatter, which is the necessary condition to carry a finite amount of energy.
Distribution of photon energy within space and time phase colors in the
space–time frame generates fractional charges in time phase in the form of positron
(+2/3, +2/3, �1/3) and electron (�2/3, �2/3, +1/3) of space phase to hold the
genetic code Es = 1/2Ea. The quarks appear as the ingredients of photon’s fractional
charges within the space–time frame which carry a virtual baryon structure and the
ingredients of nucleons. You cannot cut and separate fractional charges of
entangled quarks into two separate species. That is the reason why the ingredients
of quark-antiquark pair do not have independent existence, which is specified as the
confinement problem of quantum physics.

Quarks in the proton-neutron frame exist in the form of fractional charges; that
is why we cannot see a fractional proton or fractional neutron, but we can see a
pion, which appears from doubling of photon’s fractional charges. This mechanism
explains the phenomenon that when the quarks of nucleon are poked by high-
energy photons, the quarks show behavior as they were free particles [17]. Cross
coupling of photon’s quark ingredients with the second photon leads to the scaling
of the genetic code Es = 1/2 Ea to 2Es = Ea which generates free neutral particles.
The cross coupling of fractional charges of a photon in baryon frame through SO
(3) matrix leads to the formation of a pion—the lightest particle to produce the
background gauge field boson which plays a role of a Goldstone boson. In the local
gauge field, the photons, as neutrinos, became Dirac particles, while in the back-
ground gauge field, they are Majorana pairs.

The condition Es = 1/2Ea is the threshold energy to hold a photon within frac-
tional electric charges of baryon frame. Photon seems to be not a fundamental unit
and conserved in space–time in the form of fractional quark unit. In such a mecha-
nism, the threshold energy is not the bound energy of electron in metal, but it is the
energy required to hold 2Es = Ea transformation of fractional electric charges which
is necessary to produce integer charges. The integer electric charge is the combina-
tion of fractional charges, produced by coupling of condition Es = 1/2Ea:

1 ¼ 3=3 ¼ 2=3ð Þ þ 2=3ð Þ � 1=3ð Þ; � 1 ¼ �3=3 ¼ �2=3ð Þ þ �2=3ð Þ � þ1=3ð Þ
(36)

That is why photoemission is not a one-step process, described by Einstein’s
linear equation, which does not cover these steps. Generation of integer electrons
depends on the energy-momentum genetic code (Ea/Es�1), which determines a
threefold frequency.

Model (10) suggests that Planck’s emission of photons takes place only through
merging of fractional charges. At ΔS = Δt, we can get the equation for photon
radiation:

Es

Ea
¼

S1
t1

s1
t1
� 1

(37)

Radiation takes place uniformly through the reduction of frequency by integer
numbers, which describe numbers of energy portions in relation to total energy.
The Ea in Eq. (37) presents the total numbers of elementary quanta. At Planck scale
with the uniform distribution of energy in space and time phase, using condition
(37), we can get the Planck formulation Es = hν where h presents the vacuum
expectation value of background energy (Ea).
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15.2 The three fractional proton families of baryon frame

Presently there is no quantum field theory, which may include space–time as the
main ingredient of strong interactions. By Weinberg’s opinion [1], isospin conser-
vation, which governs strong interactions, has nothing to do with space and time.
However, without space–time, it is impossible to produce the theory of strong
interactions because space–time is the matrix for flux of energy to baryon frame.
Discrete conservation of energy, carried in the space–time by minimum elementary
grain of space–time frame of matter (baryon frame), is the same phenomenon
called strong nuclear interactions. The strong interactions arise from conservation
of energy within the space–time, which has to hold basic elementary baryon’s
space–time unit.

If displacement in the space–time frame of baryon frame has a trend for con-
traction (ΔS = 0), the space–time frame of baryon frame disappears, and the
ingredients of baryon structure became free particles (Ea = Es) which appear as the
“asymptotic freedom phenomenon” of gauge field. By quantum physics, energy is
borrowed for the generation of particles-antiparticles, but the energy, borrowed
from the background gauge field, in reality is required for discrete performance of
baryon’s frame. According to our theory, the integer proton-neutron pair may exist
only within three fractional families, with involvement of other quark flavors,
existing through internal color charge interactions between them with untouched
spin relations. The condition 2Es = Ea produces all types of symmetry (n, ι, mι)
within three fractional proton-neutron families, but the ingredients of this symme-
try have a difference only in color mass (ms). The proton mass does not come from
quarks, but it is comprised of the energy which keeps invariant interactions of three
fractional proton-neutron families. To hold color-based interactions between quark
flavors of fractional protons, quarks have different colors.

Quantum mechanics suggests that isospin, which identifies proton and neutron
as the different states of same particle due to the small mass difference, is an
approximate symmetry. In accordance with our theory, the extra mass of neutron in
comparison with proton arises from coupling of proton-antiproton pairs, which
adds mass of color interactions within fractional charges. On this basis, proton and
neutron are not the different states of the same particle. The neutron-antineutron
pair is the different state of proton-antiproton pair.

According to the Yang-Mills theory [20], when electromagnetic interaction is
neglected, the isotopic spin has no physical significance, and all physical processes
would be invariant under isotopic gauge transformations. It was shown that
when electromagnetic field is not involved, all interactions are invariances at all
space–time points. But these statements could be true only partly because when
electromagnetic field is not involved (Ea = 0), all transformations move to the
background gauge field where space–time forms the frame of integer spin carrying
particles.

In accordance with the SO (3) symmetry, the local Es = 1/2Ea and the back-
ground gauge field 2Es = Ea require existence of uud –ddu proton-neutron relation
within two rotations. Such an existence of quarks determines similar existence of
other two fractional proton-neutron families, which occupy top-down location of
uud-udd in an alternative mode. In this case, the color charges of quarks cancel
each other. This principle explains problems, raised by Wilczek [16] who showed
that it is difficult to get quark-antiquark color cancelation which needs energy. In
accordance with our theory, rotation of fractional proton families’ realizes charge
cancelation during locating them alternatively at top-down positions.

The ingredients of background gauge field appear in the form of dark matter/
dark energy, the composition of which is the same as dark energy/dark matter
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composition of universe. The portion of every boson in gauge field is 33%, which
explains the predicted dark matter composition.

15.3 What is the Planck scale? Where did it come from?

It is well known that the Plank scale is the magnitude of space, time, and energy
below which the prediction of quantum theories is no longer valid and quantum
effects of gravity are expected to dominate. Planck units are derived by
normalization of the numerical values of certain fundamental constants to 1:
c = ℏ = ℎ = ℇo = k = 1.

Planck did normalization of different constants regardless of their dimensions.
However, as we showed through the example of energy-mass transformation of SR,
such a normalization can be done if physical quantities were expressed with
dimensionless units, which give numbers. The relation of changes to their initial
value, which we applied, gives proper normalization, which is a dimensionless non-
unitary operator. Model (9) describes the Planck scale as the boundary position of a
particle in space–time where the change of space presents wavelength, while
amplitude is the initial space locality. The conditions of model (9) ΔS = S1, Δt = t1
are the boundary condition for existence of the space–time which may present the
Planck space and time. Model (9) describes normalization of all the dimensionless
parameters to 1. The space–time triangle wave with the equal wavelength and
amplitude is the Planck scale of space–time. When ΔS < S1, there is the no space–
time frame and strong interactions of baryon frame. This is the phenomenon called
vanishing of the effective coupling at short distances.

At high-energy region, close to ΔS = 0, there is no consumption of energy for
displacement of space which presents quarks as a point-like particle. The point-like
interaction out of space–time “is equivalent to no interaction,” because at point-like
particles, there is no conservation of energy and there is no particle. In the similar
way light cannot be identified as a point-like particle because light without emission
from the space–time frame cannot exist. Without space–time with local position,
energy is not conserved, and baryon structure does not exist. Therefore, without
mathematics of space–time frame, we cannot explain strong interactions and
“asymptotic freedom of baryon quarks at short distances.”

When the local momentum merges with the initial momentum, the local posi-
tion also merges with the initial position. Therefore, due to the non-separable
conservation of energy-momentum in the space–time frame, momentum and posi-
tion are not separable identities. The time-energy relation of the uncertainty prin-
ciple involves interval of external time, which flow independently of measurement.
However, in the concept of production of space–time position from energy conser-
vation, the outcomes of the uncertainty principle probably will be different. The
condition Es ≥ 1/2Ea of the model describes the limit above which Ea may present
the Planck scale, where the space–time and local position do not exist.

Following to the genetic code Es = 1/2Ea, existence of position and momentum
in different phases generates non-commutation of these identities.

16. Gluons

The standard model does not provide any information on gluon’s origin. Based
on our theory, only the origin of a particle can give information on how it will
behave. This is the requirement of the causality that “past determines future.”

Invariant translation from the local gauge field to the background field shows
that gamma rays are the products of transformation of electromagnetic energy
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during decay of the space–time phase of baryon frame and within 2Es = Ea invari-
ance translation became vector boson of the background gauge field. The e/e and
ν/ν pairs, produced simultaneously, do not have independent existence, and with
gamma rays they form three-jet particles to hold 2Es = Ea symmetry of the
background gauge field.

When the flux of electromagnetic interactions to baryon structure is neglected
(Ea = 0), electrically charged interactions disappear, but color interactions without
change are translated to the background gauge field. The color interactions in
baryonic frame do not touch spin interactions of baryonic quarks but hold interac-
tions within three fractional proton-neutron families. Therefore, the color of light
photon as a variable is needed to generate translations between electrically charged
spin Es = 1/2 Ea and color 2Es = Ea interactions.

The color charge of quarks is required to carry interaction between fractional
protons. The correct mass of proton can be calculated only from color-based inter-
actions within fractional protons, and the theories based on a common proton-
electron structure cannot produce correct proton mass. The interaction between
fractional protons is spin invariant and determined by the color interactions. The six
of eight gluons participate within the three fractional proton-neutron families, two
between proton-antiproton-neutron-anti-neutron interactions.

The ingredients of exchange interaction in baryon’s space–time frame carry
three symmetric interactions. The first is the symmetric energy-momentum inter-
action, regulated by conservation of spin numbers (Es = 1/2Ea), which takes place
between quarks. The second symmetric interactions take place internally within
ingredients of baryon frame, (a) the internal color-based symmetric flavor interac-
tions within quarks (called gluons color charge interactions), which combine two
symmetric internal interactions a = b1+ b2: (a1) the internal mass-based symmetric
interactions within neutrinos and (b2) the internal mass-based symmetric interac-
tions within electron families.

At Ea = 0 takes place invariant translation of color- andmass-based internal sym-
metric interactions to the background gauge field to hold the symmetric internal inter-
actions within neutral electron and neutrino families. In reverse translation of energy
conservation frombackground energy phase to local space–timephase, the color charge
transforms to electric charges of quark-antiquark families. The energy inserted to quark
families of baryon frame is the gluon of gamma photons from the gauge energy phase.
Due to the discrete insertion of gammaphotons to quark frame of baryon structure, the
mass of individual quarks is very less than the proton-neutronmasses.

17. New principles of quantum chromodynamics theory

The QCD theory is a non-Abelian gauge theory (Yang-Mills theory) and based on
approximate SU (3) symmetry. Gell-Mann suggested [31] that quarks do not have
space–time frame. Such an approach was the main reason for the appearance of
approximate SU (3) symmetry because point-like behavior of quarks cannot carry
conservation of energy. The other problem of the Gell-Mann approach was due to the
application of Lagrangian continuous field, which produces approximation for
perturbative theories. In addition, the theory used nonsymmetric four-momentum
frame of special relativity. In accordance with our theory, without the discrete space–
time symmetry, all field theories will produce approximate symmetry.

Our theory shows that quarks are not Gell-Mann’s mathematical construct; they
are ingredients of photon’s fractional charges, distributed within the space–time
frame of baryon frame. Han [32] desired to construct models in which the quarks
had integer value electric charges but was not able to deliver a theory.

237

Development of Supersymmetric Background/Local Gauge Field Theory of Nucleon Based…
DOI: http://dx.doi.org/10.5772/intechopen.93087



composition of universe. The portion of every boson in gauge field is 33%, which
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effects of gravity are expected to dominate. Planck units are derived by
normalization of the numerical values of certain fundamental constants to 1:
c = ℏ = ℎ = ℇo = k = 1.

Planck did normalization of different constants regardless of their dimensions.
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At high-energy region, close to ΔS = 0, there is no consumption of energy for
displacement of space which presents quarks as a point-like particle. The point-like
interaction out of space–time “is equivalent to no interaction,” because at point-like
particles, there is no conservation of energy and there is no particle. In the similar
way light cannot be identified as a point-like particle because light without emission
from the space–time frame cannot exist. Without space–time with local position,
energy is not conserved, and baryon structure does not exist. Therefore, without
mathematics of space–time frame, we cannot explain strong interactions and
“asymptotic freedom of baryon quarks at short distances.”

When the local momentum merges with the initial momentum, the local posi-
tion also merges with the initial position. Therefore, due to the non-separable
conservation of energy-momentum in the space–time frame, momentum and posi-
tion are not separable identities. The time-energy relation of the uncertainty prin-
ciple involves interval of external time, which flow independently of measurement.
However, in the concept of production of space–time position from energy conser-
vation, the outcomes of the uncertainty principle probably will be different. The
condition Es ≥ 1/2Ea of the model describes the limit above which Ea may present
the Planck scale, where the space–time and local position do not exist.

Following to the genetic code Es = 1/2Ea, existence of position and momentum
in different phases generates non-commutation of these identities.

16. Gluons

The standard model does not provide any information on gluon’s origin. Based
on our theory, only the origin of a particle can give information on how it will
behave. This is the requirement of the causality that “past determines future.”

Invariant translation from the local gauge field to the background field shows
that gamma rays are the products of transformation of electromagnetic energy

236

Quantum Mechanics

during decay of the space–time phase of baryon frame and within 2Es = Ea invari-
ance translation became vector boson of the background gauge field. The e/e and
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gamma rays they form three-jet particles to hold 2Es = Ea symmetry of the
background gauge field.

When the flux of electromagnetic interactions to baryon structure is neglected
(Ea = 0), electrically charged interactions disappear, but color interactions without
change are translated to the background gauge field. The color interactions in
baryonic frame do not touch spin interactions of baryonic quarks but hold interac-
tions within three fractional proton-neutron families. Therefore, the color of light
photon as a variable is needed to generate translations between electrically charged
spin Es = 1/2 Ea and color 2Es = Ea interactions.

The color charge of quarks is required to carry interaction between fractional
protons. The correct mass of proton can be calculated only from color-based inter-
actions within fractional protons, and the theories based on a common proton-
electron structure cannot produce correct proton mass. The interaction between
fractional protons is spin invariant and determined by the color interactions. The six
of eight gluons participate within the three fractional proton-neutron families, two
between proton-antiproton-neutron-anti-neutron interactions.

The ingredients of exchange interaction in baryon’s space–time frame carry
three symmetric interactions. The first is the symmetric energy-momentum inter-
action, regulated by conservation of spin numbers (Es = 1/2Ea), which takes place
between quarks. The second symmetric interactions take place internally within
ingredients of baryon frame, (a) the internal color-based symmetric flavor interac-
tions within quarks (called gluons color charge interactions), which combine two
symmetric internal interactions a = b1+ b2: (a1) the internal mass-based symmetric
interactions within neutrinos and (b2) the internal mass-based symmetric interac-
tions within electron families.

At Ea = 0 takes place invariant translation of color- andmass-based internal sym-
metric interactions to the background gauge field to hold the symmetric internal inter-
actions within neutral electron and neutrino families. In reverse translation of energy
conservation frombackground energy phase to local space–timephase, the color charge
transforms to electric charges of quark-antiquark families. The energy inserted to quark
families of baryon frame is the gluon of gamma photons from the gauge energy phase.
Due to the discrete insertion of gammaphotons to quark frame of baryon structure, the
mass of individual quarks is very less than the proton-neutronmasses.

17. New principles of quantum chromodynamics theory

The QCD theory is a non-Abelian gauge theory (Yang-Mills theory) and based on
approximate SU (3) symmetry. Gell-Mann suggested [31] that quarks do not have
space–time frame. Such an approach was the main reason for the appearance of
approximate SU (3) symmetry because point-like behavior of quarks cannot carry
conservation of energy. The other problem of the Gell-Mann approach was due to the
application of Lagrangian continuous field, which produces approximation for
perturbative theories. In addition, the theory used nonsymmetric four-momentum
frame of special relativity. In accordance with our theory, without the discrete space–
time symmetry, all field theories will produce approximate symmetry.

Our theory shows that quarks are not Gell-Mann’s mathematical construct; they
are ingredients of photon’s fractional charges, distributed within the space–time
frame of baryon frame. Han [32] desired to construct models in which the quarks
had integer value electric charges but was not able to deliver a theory.
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The other problem of the field theories is that, as Gross [28] perfectly suggested,
quantum field theories do not know which field to use and cannot explain why all
the hadrons, baryons, and mesons appeared to be equally fundamental. The field
theories do not clarify properly the nature of gauge field and unify the four forces
for description of fundamental interactions.

Model (10) combines all fundamental interactions within only electromagnetic
and gravitation forces, strength of which changes with the integer numbers. The
background gauge symmetry is the vacuum, which has no independent existence;
that is why it mediates local gauge field. Such features of the background gauge field
eliminate renormalization procedure, which is widely applied in quantum field
theories. At maximum boundary energy (vacuum expectation value Ea), energy
does not runaway to ultraviolent divergence due to translation of energy for sepa-
ration of space e/e and time ν/ν spin one neutral pairs. In this case, separation of
U (1) matrix into two symmetries takes place with the generation of space–time
SU (2) and energy-momentum SO (3) matrixes. It is reduction from 2Es = Ea
background symmetry to the local gauge field symmetry Es = 1/2 Ea with genera-
tions of ½ spin carrying fermions and integer spin carrying photons of electromag-
netic force. This invariance translation generates electromagnetic force with the
positive sign (Ea�Es)/Es.

QCD is based partly on Poincare symmetry [33] that involves: (a) Abelian Lie
group, (b) rotation in space to the non-Abelian Lie group, and (c) transformations
connecting two uniformly moving bodies. However, having the excellent state-
ments of (a) and (b), Poincare symmetry is not free from the problems due to the
application of Minkowski’s four-momentum space–time isometries that produces a
semi-direct product of the translations. However, the statement (c) does not hold
conservation of energy because it ignores boundary of motion.

The Wikipedia discussion [33] on Poincare symmetry shows that it might be
possible to extend the Poincare algebra to produce super-Poincare algebra that may
lead to the supersymmetry between spatial and fermionic directions. However,
Poincare symmetry due to the absence of initial position cannot deliver conserva-
tion of energy at origin.

Nambu [34] suggested that the nucleon mass arises largely as self-energy of some
primary fermion field, similar to the appearance of energy gap in the theory of
superconductivity. According to his opinion, the nucleon mass is a manifestation of
some unknown primary interaction between originallymassless fermions. In addition,
the pion is not the primary agent of strong interactions, and the nature of primary
interaction is not clear.

In accordance with our theory, Nambu’s coupling is the discrete cutoff electro-
magnetic energy (Ea = 0) to baryon space–time frame, turning fermions to bosons of
the background gauge field, which performs as the superconductive medium due to
the absence of fermionic space–time frame of “free” boson particles of condensate.

Our theory explains the ratio of spin constituents on the basis of ratio of trans-
ference σT and longitudinal waves σl of virtual photon (R = σT/σl) discussed by
Gross [28]. At Es = 1/2Ea we get transference waves σl = 0, while at 2Es = Ea it
transforms to longitudinal wave of virtual bosons σT = 0. If the constituent has spin
zero, the σT became zero σT = 0, but if spin is ½ the σl became zero.

18. The triplet model of hadron particles and problems of quantum
mechanics

It is necessary to note that the three particles performance of nucleons was the
mystery of strong interactions.
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Heisenberg [35] suggested that the proton and neutron are different states of the
same particle, which should produce integer spin for the nucleon because of the
addition of the angular momentum of the constituents. He called this rule addition
law and suggested that full spin of the nucleon is always integer if the mass number
is even; the full spin is half-integer if the mass number is odd.

Sakata suggested [36] that the even-odd rule and addition law can be applied
for other particles as well. He suggested the model of hadrons, which comprised
triplet of proton, neutron, and lambda, but later the quark model was suggested
where triplet of uds quarks replaced pnλ. Sakata’s model could not explain why
hadrons should follow triplet performance of particles, and Sakata suggested
that three pnλ particles are composite states of some hypothetical object called B
matter.

The mystery of triplet particles generated significant concern for particle physics
theories when in 1964 unusual decay spectrum of kaon was reported [37]. Decay of
neutral kaon produced mixture of π � π + ꝩ, which by the author’s opinion “no
physical process would accomplish this decay and any alternative explanation of the
effect requires highly nonphysical behavior of three body decay of neutral kaon.”
The author suggested that the presence of two-pion mode implies that the neutral
kaon meson is not pure eigenstate. Such a decay process leads to the new direction
of studies of particle physics, called spontaneous symmetry breaking.

The eigenvalue (12) of model (9) shows that the triplet performance of hadron
holds condition 2Es = Ea and has pure eigenstate to hold symmetry. This eigenstate
requires existence of symmetry of integer-half-integer particles with the condition
π � π + ꝩ, which meets the requirement of eigenstate (12). Therefore, there is no
symmetry breaking in kaon decay to π � π + ꝩ, and the force called weak interac-
tion is the gravitation force which holds the existence of the nucleon in discrete
symmetry within Es = 1/2Ea and 2Es = Ea invariant energy translations.

Translation of local gauge symmetry Es = 1/2Ea to background symmetry
2Es = Ea, due to the existence of quark flavors in three families of fractional pro-
tons, requires counterpart mixing of quark flavors with generation of kaons. Flavor
mixing appears through mixing of SU (2) and SO (3) matrixes. Due to the existence
of three fractional proton-neutron pairs, the formation of three kaons is the necessary
condition to hold discrete symmetry.

Kobayashi [38] showed that CP violation would occur if irreducible complex
number appears in the element of mixing. By terminology, the irreducible polyno-
mial has a meaning that it cannot be factored into the product of two nonconstant
polynomials. The symmetric reduction of condition 2Es = Ea to Es = 1/2Ea meets
this requirement. The other condition for CP violation, as Kobayashi mentioned, is
that the complex number remains in the polynomial equation, which cannot be
removed by the phase adjoint of the particle state. The polynomial Eq. (32),
describing mixing of SU (2) x SO (3) matrixes meets this requirement as well. By
Kobayashi’s opinion, flavor mixing arises between gauge symmetry and particle
states. Kobayashi’s statement is partly equivalent to our approach only while flavor
mixing is the requirement of invariant translation within the background local
gauge fields.

The standard model suggests that the CP violation is due to the essential differ-
ence between particles and antiparticles. Based on our theory, particles and anti-
particles exist in different phases and are connected through symmetry mediator
electromagnetic energy; when it is off, the antiparticle as the displacement merges
with its superposition twin particle.

Formation of integer spin within proton-neutron pair in the nucleon through the
addition law of proton and neutron is not possible because the proton and neutron
do not exist in the same phase. The integer spin at an even mass number is described
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The other problem of the field theories is that, as Gross [28] perfectly suggested,
quantum field theories do not know which field to use and cannot explain why all
the hadrons, baryons, and mesons appeared to be equally fundamental. The field
theories do not clarify properly the nature of gauge field and unify the four forces
for description of fundamental interactions.

Model (10) combines all fundamental interactions within only electromagnetic
and gravitation forces, strength of which changes with the integer numbers. The
background gauge symmetry is the vacuum, which has no independent existence;
that is why it mediates local gauge field. Such features of the background gauge field
eliminate renormalization procedure, which is widely applied in quantum field
theories. At maximum boundary energy (vacuum expectation value Ea), energy
does not runaway to ultraviolent divergence due to translation of energy for sepa-
ration of space e/e and time ν/ν spin one neutral pairs. In this case, separation of
U (1) matrix into two symmetries takes place with the generation of space–time
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connecting two uniformly moving bodies. However, having the excellent state-
ments of (a) and (b), Poincare symmetry is not free from the problems due to the
application of Minkowski’s four-momentum space–time isometries that produces a
semi-direct product of the translations. However, the statement (c) does not hold
conservation of energy because it ignores boundary of motion.

The Wikipedia discussion [33] on Poincare symmetry shows that it might be
possible to extend the Poincare algebra to produce super-Poincare algebra that may
lead to the supersymmetry between spatial and fermionic directions. However,
Poincare symmetry due to the absence of initial position cannot deliver conserva-
tion of energy at origin.

Nambu [34] suggested that the nucleon mass arises largely as self-energy of some
primary fermion field, similar to the appearance of energy gap in the theory of
superconductivity. According to his opinion, the nucleon mass is a manifestation of
some unknown primary interaction between originallymassless fermions. In addition,
the pion is not the primary agent of strong interactions, and the nature of primary
interaction is not clear.

In accordance with our theory, Nambu’s coupling is the discrete cutoff electro-
magnetic energy (Ea = 0) to baryon space–time frame, turning fermions to bosons of
the background gauge field, which performs as the superconductive medium due to
the absence of fermionic space–time frame of “free” boson particles of condensate.

Our theory explains the ratio of spin constituents on the basis of ratio of trans-
ference σT and longitudinal waves σl of virtual photon (R = σT/σl) discussed by
Gross [28]. At Es = 1/2Ea we get transference waves σl = 0, while at 2Es = Ea it
transforms to longitudinal wave of virtual bosons σT = 0. If the constituent has spin
zero, the σT became zero σT = 0, but if spin is ½ the σl became zero.

18. The triplet model of hadron particles and problems of quantum
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It is necessary to note that the three particles performance of nucleons was the
mystery of strong interactions.
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Heisenberg [35] suggested that the proton and neutron are different states of the
same particle, which should produce integer spin for the nucleon because of the
addition of the angular momentum of the constituents. He called this rule addition
law and suggested that full spin of the nucleon is always integer if the mass number
is even; the full spin is half-integer if the mass number is odd.

Sakata suggested [36] that the even-odd rule and addition law can be applied
for other particles as well. He suggested the model of hadrons, which comprised
triplet of proton, neutron, and lambda, but later the quark model was suggested
where triplet of uds quarks replaced pnλ. Sakata’s model could not explain why
hadrons should follow triplet performance of particles, and Sakata suggested
that three pnλ particles are composite states of some hypothetical object called B
matter.

The mystery of triplet particles generated significant concern for particle physics
theories when in 1964 unusual decay spectrum of kaon was reported [37]. Decay of
neutral kaon produced mixture of π � π + ꝩ, which by the author’s opinion “no
physical process would accomplish this decay and any alternative explanation of the
effect requires highly nonphysical behavior of three body decay of neutral kaon.”
The author suggested that the presence of two-pion mode implies that the neutral
kaon meson is not pure eigenstate. Such a decay process leads to the new direction
of studies of particle physics, called spontaneous symmetry breaking.

The eigenvalue (12) of model (9) shows that the triplet performance of hadron
holds condition 2Es = Ea and has pure eigenstate to hold symmetry. This eigenstate
requires existence of symmetry of integer-half-integer particles with the condition
π � π + ꝩ, which meets the requirement of eigenstate (12). Therefore, there is no
symmetry breaking in kaon decay to π � π + ꝩ, and the force called weak interac-
tion is the gravitation force which holds the existence of the nucleon in discrete
symmetry within Es = 1/2Ea and 2Es = Ea invariant energy translations.

Translation of local gauge symmetry Es = 1/2Ea to background symmetry
2Es = Ea, due to the existence of quark flavors in three families of fractional pro-
tons, requires counterpart mixing of quark flavors with generation of kaons. Flavor
mixing appears through mixing of SU (2) and SO (3) matrixes. Due to the existence
of three fractional proton-neutron pairs, the formation of three kaons is the necessary
condition to hold discrete symmetry.

Kobayashi [38] showed that CP violation would occur if irreducible complex
number appears in the element of mixing. By terminology, the irreducible polyno-
mial has a meaning that it cannot be factored into the product of two nonconstant
polynomials. The symmetric reduction of condition 2Es = Ea to Es = 1/2Ea meets
this requirement. The other condition for CP violation, as Kobayashi mentioned, is
that the complex number remains in the polynomial equation, which cannot be
removed by the phase adjoint of the particle state. The polynomial Eq. (32),
describing mixing of SU (2) x SO (3) matrixes meets this requirement as well. By
Kobayashi’s opinion, flavor mixing arises between gauge symmetry and particle
states. Kobayashi’s statement is partly equivalent to our approach only while flavor
mixing is the requirement of invariant translation within the background local
gauge fields.

The standard model suggests that the CP violation is due to the essential differ-
ence between particles and antiparticles. Based on our theory, particles and anti-
particles exist in different phases and are connected through symmetry mediator
electromagnetic energy; when it is off, the antiparticle as the displacement merges
with its superposition twin particle.

Formation of integer spin within proton-neutron pair in the nucleon through the
addition law of proton and neutron is not possible because the proton and neutron
do not exist in the same phase. The integer spin at an even mass number is described
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by symmetry 2Es = Ea, while half spin at an odd mass number is expressed by the
condition Es = 1/2Ea.

Transformation from kaons to bosons of gauge field involves the following steps:
coupling of fractional proton-antiproton pairs to kaon ! coupling to neutral kaon
! decay to pions ! coupling to neutral pions ! decay of neutral pions to quark
ingredients with participation of intermediate W bosons through discrete transla-
tion of Es = 1/2Ea and 2Es = Ea symmetries to each other.

19. The principles of isospin symmetry

Kibble [29] showed that the proton and neutron are not identical which the
reason for generation of approximate symmetry. The proton has an electric charge,
but the neutron does not. On this basis, the isospin symmetry, which describes
proton-neutron symmetry by SU (2) group, was accepted as an approximate sym-
metry.

The standard model suggests that while isospin is an approximate symmetry, it
must be broken in some way [29]. However, the addition of symmetry breaking
terms generates non-renormalizable theories, producing infinite results. Therefore,
the reason why the symmetry must be broken remained a mystery of particle
physics. On this basis, the standard model, avoiding the need to add explicit sym-
metry breaking terms, suggested spontaneous symmetry breaking [29]. However,
the spontaneous symmetry breaking theory of the standard model, producing mas-
sive bosons, did not explain the main problem of isospin that generates asymmetry:
why the neutron has more mass than the proton or the proton has less mass than the
neutron.

In accordance with quantum mechanics, the physical situation is unchanged if
the electron wave function is multiplied by a phase factor [29]. This transformation
involves a constant (α) and an imaginary number. The problem of such a transfor-
mation is that the constant (α) describes space–time in exponential function with-
out involvement of space–time variables and their boundary. The other problem of
this transformation is that if the electron wave function is multiplied by the phase
factor, the physical situation changes and produces different phase symmetries.

In Kibble’s analysis there is one excellent statement that spontaneous symmetry
breaking occurs when ground state or vacuum does not share the underlying sym-
metry of the theory. As we showed, the background gauge symmetry does not exist
independently and exists only in conjugation with the local gauge field, which
appears as invariant translation of energy from the background vacuum.

Therefore, the isospin symmetry is not related to proton-neutron translation. As
we showed in this chapter, isospin between the neutron and proton exist within the
translation of proton-antiproton pair to neutron-antineutron pair with rotation of
local gauge field to the background gauge field. The ΔS/S1 and Δt/t1 operators of
model (9) within 2 x 2 non-unitary matrix have the exact SU (2) symmetry and
carry this translation. This symmetry within the Es = 1/2Ea genetic code of the
energy-momentum isospin symmetry generates a supersymmetry within the three
particles’ performance of baryon frame which exist in discrete mode in conjugation
with the background vacuum.

20. Conclusion

We developed a new supersymmetric gauge field theory of photon, which
describes fundamental laws of physics through invariant translation of discrete
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symmetries of nature. Simply, we developed a new gauge theory of photon, which
describes all the fundamental laws through conjugation of the discrete space–time
SU (2) frame and energy-momentum SO (3) symmetry group. At background
gauge supersymmetry Ea = 2Es, all the forces and interactions are symmetrically
entangled. Based on the theory, gravitation appears as the short-range force, which
holds discrete performance of electromagnetic field for the existence of the nucleon in
discrete mode. Nature outlined this rule to avoid approximate symmetry in its
fundamental laws.
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by symmetry 2Es = Ea, while half spin at an odd mass number is expressed by the
condition Es = 1/2Ea.

Transformation from kaons to bosons of gauge field involves the following steps:
coupling of fractional proton-antiproton pairs to kaon ! coupling to neutral kaon
! decay to pions ! coupling to neutral pions ! decay of neutral pions to quark
ingredients with participation of intermediate W bosons through discrete transla-
tion of Es = 1/2Ea and 2Es = Ea symmetries to each other.

19. The principles of isospin symmetry

Kibble [29] showed that the proton and neutron are not identical which the
reason for generation of approximate symmetry. The proton has an electric charge,
but the neutron does not. On this basis, the isospin symmetry, which describes
proton-neutron symmetry by SU (2) group, was accepted as an approximate sym-
metry.

The standard model suggests that while isospin is an approximate symmetry, it
must be broken in some way [29]. However, the addition of symmetry breaking
terms generates non-renormalizable theories, producing infinite results. Therefore,
the reason why the symmetry must be broken remained a mystery of particle
physics. On this basis, the standard model, avoiding the need to add explicit sym-
metry breaking terms, suggested spontaneous symmetry breaking [29]. However,
the spontaneous symmetry breaking theory of the standard model, producing mas-
sive bosons, did not explain the main problem of isospin that generates asymmetry:
why the neutron has more mass than the proton or the proton has less mass than the
neutron.

In accordance with quantum mechanics, the physical situation is unchanged if
the electron wave function is multiplied by a phase factor [29]. This transformation
involves a constant (α) and an imaginary number. The problem of such a transfor-
mation is that the constant (α) describes space–time in exponential function with-
out involvement of space–time variables and their boundary. The other problem of
this transformation is that if the electron wave function is multiplied by the phase
factor, the physical situation changes and produces different phase symmetries.

In Kibble’s analysis there is one excellent statement that spontaneous symmetry
breaking occurs when ground state or vacuum does not share the underlying sym-
metry of the theory. As we showed, the background gauge symmetry does not exist
independently and exists only in conjugation with the local gauge field, which
appears as invariant translation of energy from the background vacuum.

Therefore, the isospin symmetry is not related to proton-neutron translation. As
we showed in this chapter, isospin between the neutron and proton exist within the
translation of proton-antiproton pair to neutron-antineutron pair with rotation of
local gauge field to the background gauge field. The ΔS/S1 and Δt/t1 operators of
model (9) within 2 x 2 non-unitary matrix have the exact SU (2) symmetry and
carry this translation. This symmetry within the Es = 1/2Ea genetic code of the
energy-momentum isospin symmetry generates a supersymmetry within the three
particles’ performance of baryon frame which exist in discrete mode in conjugation
with the background vacuum.

20. Conclusion

We developed a new supersymmetric gauge field theory of photon, which
describes fundamental laws of physics through invariant translation of discrete
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symmetries of nature. Simply, we developed a new gauge theory of photon, which
describes all the fundamental laws through conjugation of the discrete space–time
SU (2) frame and energy-momentum SO (3) symmetry group. At background
gauge supersymmetry Ea = 2Es, all the forces and interactions are symmetrically
entangled. Based on the theory, gravitation appears as the short-range force, which
holds discrete performance of electromagnetic field for the existence of the nucleon in
discrete mode. Nature outlined this rule to avoid approximate symmetry in its
fundamental laws.
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Chapter 12

Realization of the Quantum
Confinement
Eugen M. Sheregii

Abstract

In this chapter the three main technologies are described, which allows for the
implementation of quantum structures (QS)—quantum wells (QWs) and hetero-
structures. These are liquid phase epitaxy (LPE), molecular beam epitaxy (MBE),
and metal-organic chemical vapor deposition (MOCVD). The most important
properties, including the quantum Hall effect (QHE), of two-dimensional electron
gas (2DEG) arising in a heterojunction on the boundary of two phases—the so-
called interface—are also presented. The 2DEG properties in different kinds of QW
are described. Double quantum wells as interesting example of quantum structure is
considered also including such a spectacular quantum-mechanical phenomenon as
splitting into symmetrical and anti-symmetrical states.

Keywords: hetero-structure, liquid phase epitaxy, molecular beam epitaxy,
interface, single quantum well, quantum well, electron transport in quantum
structures, two-dimensional electron gas (2DEG), quantum Hall effect,
Shubnikov-de Haas effect, high electron mobility transistors

1. Introduction

The entrapping of electrons in an infinite quantum well (QW) is one of the basic
issues of quantum mechanics showing its difference from classical mechanics. In
fact, nature has given us a natural quantum well—atom. Coulomb’s potential of the
atomic nucleus creates the edges of this well (see Figure 1)—a very narrow well,
about 1 Å (10�10 m) width. As it was shown in previous chapters, in such a narrow
well the electron can occupy only certain energy states—discrete and not continu-
ous energy values—as it is in the macro-world. This was indicated by the linear
emission spectra of atoms discovered at the end of the nineteenth century. Their
interpretation forced Niels Bohr to introduce discrete electronic states, so alien to
classical physics, into the historically first quantum atom theory, which is familiar
from the course of high school physics.

However, this rectangular quantum well, which is the subject of students’ exer-
cises in quantum mechanics course, until the early 1980s was a theoretical issue. As
will be shown in the next paragraphs, the progress of semiconductor technology,
particularly the development of the molecular beam epitaxy (MBE), allowed the
production of hetero-structures with very sharp interface (transition between two
material phases) and later also quantum wells with width less than 100 angstroms
and with finite potential edges, which changed the situation cardinally: the issue of
two-dimensional electron gas (2DEG) appeared and the quantum Hall effect (QHE)
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was discovered—a qualitatively new phenomenon. In this manner, quantum wells
are soluble models and have provided tests for quantum theory. Also, the applica-
tions appeared very quickly—already in the 80-ch formed hetero-lasers—the first
solid-state lasers, and transistors on hetero-structures sizes that do not exceed of
100 nm, which led to the production of modern micro-processors with a packing
density of 20,000 transistors in a spatial centimeter.

In this way quantum mechanics contributed to the emergence of the third
industrial revolution—electronics and radio-communications—as well as the prom-
ised fourth one, computerization (without microprocessors would be impossible)
and global communication network, the Internet, which without semiconductor
lasers would not have been created either. To achieve this duty, it was necessary to
develop appropriate technologies. The first was liquid phase epitaxy (LPE).

2. LPE technology and the hetero-structure production

LPE is the deposition from a liquid phase (a solution or melt) of a thin
monocrystalline layer which is isostructural to the crystal of the substrate [1]. For
the production of hetero-structures, the LPE was first used by Zhores Alferov with
colleagues at the Ioffe Physical and Technical Institute in St. Petersburg [2]. They
produced the hetero-structures based on the GaAs/AlGaAs n-p heterojunctions
(unlike the usual p-n junction, which can be called a homo-junction) [3]. The zone
scheme of such p-n heterojunction is presented in Figure 2. This diagram clearly
shows that a quantum well forms at the interface in the conduction band from the
side of GaAs, i.e., a semiconductor with a smaller energy gap (about 1.4 eV). In the
case of the solid solution Al0.3Ga0.7As that is 1.9 eV, QW is created by the disconti-
nuity in the conduction band profile as a function of distance x. The discontinuity
takes place in the case of the valence band too, and it manifests itself as a leap called

Figure 1.
Natural quantum well of the hydrogen atom created by the potential of the atomic nucleus E = �e/r.
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offset. The QW exists only for electrons, and if the electron concentration increases,
the Fermi level (FL) moves upwardly, and the conduction band will intersect at the
QW, shown enlarged separately in Figure 3. You can see that it is a QW with a
triangular shape. It should be noted that the shape of QW takes place also in the
metal-oxide semiconductor (MOS) structures. Energy states for electrons in the real
QW for the Al0.3Ga0.7As/GaAs junction were calculated by Zawadzki and Pfeffer
[4]: the well depth is about 500 meV, and the resonance states occur at 200 meV
and 360 meV from the bottom of the well. According to these calculations, the
width of the well is about 200 Å or 0.02 μm. This fact explains why hetero-
structures with QW visible in the experiment could not have been obtained earlier
using known crystal growth technologies and obtaining the p-n junctions by diffu-
sion method. These methods did not allow for such a required change in the
composition over several crystal lattice parameters. LPE methods have the advan-
tage that with relative simplicity, a liquid AlGaAs solution with the necessary
composition is poured onto a previously prepared (well-polished and heated to a
temperature of about 600°C) GaAs substrate and the substrate will not melt during
crystallization. Also, the diffusion of atoms is too slow for them to penetrate into the
solid phase. Thanks to this, the required sharpness of the transition (junction) is
preserved. However, the thickness of the AlGaAs layer should not exceed 1–2 μm.
The last limitation is related to the upper layer stresses, resulting from incompati-
bility of the crystal lattice parameters of the substrate and the applied layer—so-
called the lattice mismatch—minimal in the case of the GaAs and the AlGaAs solid

Figure 2.
Energy band diagram for the GaAs/AlGaAs heterojunction point QW, which would mean that the well is filled
with electrons.

Figure 3.
Triangular QW formed in the conduction band at the heterojunction GaAs/AlGaAs shown in Figure 2.
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solution with 30% AlAs as it is only 0.01 Å (4.65 Å for GaAs and 4.66 Å for
Al0.3Ga0.7As) [4]. The first semiconductor lasers were produced thanks to LPE
technology developed for the GaAs/AlGaAs heterojunction in the early 1970s [3].
However, more advanced technology was needed to improve the production of the
heterojunction lasers.

3. MBE technology and the production of the solid-state QW

3.1 Description of the MBE technology

The width of the quantum well in the case of GaAs/Al0.3Ga0.7As heterojunction
is on the order of 150–200 Å, and the technology capabilities of LPE technology are
on the border of these requirements to keep the production of devices based on
them. For this reason, in the 1970s, a fundamentally new technology was developed
that allowed a significant leap in the development of the semiconductor devices as
well as the solid-state physics, generally. The MBE technology is based on the
method of the crystal growth from the gas phase, but the use of computers made it
possible to achieve precision previously unattainable [5]. First of all, it concerns the
composition control (the composition control is so closely that practically every
atom deposited on the substrate is calculated) but it is also the substrate tempera-
ture is much lower (450°C) than in the LPE method what is important because it
reduces the diffusion intensity of atoms and has significantly improved the quality
of the interface. But on the other hand, it is an expensive technology because it
requires a high vacuum—10�11 Torr—which must be sustained continuously over
several years. On the other hand, this extraordinary high vacuum allows the use of
mass spectroscopy in the reactor for precise control of the composition and existing
impurities. It should be recalled that the intrinsic properties of semiconductor
materials were achieved only after chemists learned to clean the input materials
from impurities at a concentration level of 10�12 cm�3, which in turn means chem-
ical purity 99.9999999%. Achieving such chemical purity of input materials requires
huge amounts of labor and energy. The use of a high vacuum of the order of
10�11 Torr means additional “dilution” in the dopant concentration in reactor,
which allowed the use of input materials in the effusors—sources of elements in the
MBE machine—with a chemical purity lower by one row: 99,999999%.

The MBE process was noticed in the late 1970s at Bell Telephone Laboratories by
Arthur and LePore [6]. But, the main role of this method has become the produc-
tion of quantum structures (QS) from the 1980s [7] and above all—hetero-
structures and quantum wells.

Another technology that also relates to high tech is the metal-organic chemical
vapor deposition (MOCVD) in some ways competitive to MBE because it allows
obtaining high-quality quantum structures also.

3.2 MOCVD technology

The MOCVD involves the use of gases—carriers of elements used in QS built
from GaAs, AlGaAs, InGaAs, and others. We call these gases metal-organic, for
example, three-methyl-gal (Ga(CH3)3), three-methyl-aluminum (Al(CH3)3), or
three-hydrogen of arsenic (AsH3). These substances are contained in bottles in a
liquid state at about – 60°C, and are admitted as gases (still cool) to a reactor where
the touching surface of the substrate at 500°C to immediately distributed to the
constituent elements and relatively heavy metals as Al, As, Ga deposited on the
substrate surface at this time how much lighter C and H are pumped out of the
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reactor. MOCVD technology is much cheaper to operate (no vacuum) and is used as
industrial manufacturing technology for QS and devices on their base.

3.3 Two-dimensional electron gas (2DEG)

The improved interface quality of hetero-structures through the use of MBE
technology has led to the discovery of the unique properties of two-dimensional
electron gas. The point is that the quantum well, which is located at the interface in
the conduction band, naturally fills with electrons. The electrons are located in a
layer with a thickness less than 200 Å. This means that they are actually in a plane
that adheres to the interface (parallel to the interface) with a negligible thickness
compared to two other dimensions. That is, a two-dimensional electron gas is
created at the interface, which we will denote as 2DEG.

One of the basic properties of 2DEG is that electrons occupy one of the energy
states of the quantum well at the interface. We will call this state as the energy
sub-band and the dispersion law—energy dependence from quasi-momentum ℇ kð Þ
for 2DEG can be written in the case where the interface plane is the plane (yz) and
x—the direction of growth of the hetero-structure layers (as it is shown in
Figure 2), in the following way:

E kð Þ ¼ Ei þ ℏ2
k2z þ k2y
2m ∗ (1)

where i is 1, 2, 3, … number of the sub-band, ħ = h/2π the Planck constant, and
ℇi is the energy value of the sub-band i, m* effective mass of electrons.

It is obvious that the dispersion law (1) is a consequence of the restriction of
movement in the x direction, in other words, by the quantum confinement, which
causes the energy quantization.

Graphically the expression (1) is presented in Figure 4. The parabolic sub-band
corresponds to each value of i.

The density of states function shown in Figure 5 corresponds to such a law of
dispersion. In contrast to the bulk material where the function of density of states is
proportional to √E, in the 2D case we have steps corresponding to each value of Ei:
D Eð Þ ¼ i m

∗

πℏ2, where m* is the effective mass of electrons.

Figure 4.
The energy sub-bands corresponding to Eq. (1) where ky = 0.
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This stepped nature of the function of the state density for 2DEG in a quantum
well is manifested in a multitude of phenomena including the dependence of the
current through the heterojunction on the gate voltage, on which the transistor
operated on the GaAs/AlGaAs hetero-structure is based, the so-called high electron
mobility transistor (HEMT) [8].

3.4 Quantum Hall effect

The most spectacular expression of 2DEG in QS is quantum Hall effect discov-
ered by von Klitzing [9] in 1980. We can say that QHE is a manifestation of
quantum mechanics on macroscopic scales [10].

Experimentally, QHE shows the remarkable transport data as it is shown in
Figure 6 for a real device in the quantum Hall regime which is the same as in
classical Hall effect when magnetic field B is perpendicular to the plane of the
sample xy and to the current I directed along the x-axis. Then, in the direction
perpendicular to the movement of the charges (electrons), an additional transverse
voltage is created, called the Hall voltage UH. In classical Hall effect, the Hall
resistance RH is simply a linear function of magnetic field and resistivity also
ρxy � B. In QHE we see a series of the so-called Hall plateaus in which ρxy is a
universal constant

ρxy ¼
1
ν

h
e2

(2)

(where e is the electron charge and ν = 1,2,… an integer which means the
number of the states occupied by electrons under the Fermi level and is called as
filling factor) independent of all microscopic details (including the precise value of
the magnetic field). Associated with each of these plateaus is a dramatic decrease in
the dissipative resistivity ρxx ! 0 which drops as much as 13 orders of magnitude in
the plateau regions.

QHE is a two-dimensional phenomenon because when the magnetic field B is
perpendicular to the plane of the hetero-structure, the movement of the electrons in
the plane of the quantum well is completely quantized. This quantization is univer-
sal and independent of all microscopic details such as the type of semiconductor
material, the purity of the sample, the precise value of the magnetic field, and so
forth. The growth of the magnetic field causes an increase of the distance between
Landau levels, ℏωc = eB/m*, and when the Fermi level is located between Landau
levels then, for the electrons occupying the Fermi level, there are no states to

Figure 5.
The function of the state density for 2DEG in a quantum well.
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dissipate, and it cannot move in the electric field—no electric current exists and ρxx
is zero. In this situation the Hall voltage is constant until the Fermi level does not
reach the next Landau level, and the next step of the Hall voltage takes place (in the
case of bulk material, there are always scattering channels causing the presence of
electric current in a strong magnetic field, therefore the dependence of the Hall
voltage on the magnetic field is continuous and reflects the continuity of the density
function of states (see Figure 5)).

As a result, the QHE is now used to maintain the standard of electrical resistance
by metrology laboratories globally.

The magnitude h/e2 = 25,812,80 Ω is so important as constant of the fine struc-
ture in the quantum electrodynamics.

3.5 Quasi-rectangular quantum well

To obtain a quantum well with a rectangular shape, it should be placed close
enough to two heterojunctions as shown in Figure 7. How close? The experiment
shows that at a 200 nm distance, two GaAs/AlGaAs heterojunctions exhibit the
properties of a rectangular QW [11]. It can be seen from Figure 7 that these two

Figure 6.
(a) QHE (the Hall resistance RH as function of magnetic field B); (b) the Shubnikov-de Haas oscillations
(magnetoresistance ρxx(B)) for hetero-structure GaAs/AlGaAs [11].
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heterojunctions must be a mirror image of each other: first is the growth of the GaAs
layer—the QW—and next is of the AlGaAs layer, the barrier for QW. It is clear that
such a well has a form still far from a rectangular well, but it is already known how
to achieve the form of a rectangular potential: stretch the middle GaAs layer as
much as possible. In this case we would have a very wide quantum well.

But there is another way of special engineering allowing to obtain a real rectan-
gular QW considered in Section 3.7. Modeling of quasi-rectangular QW using
heterojunctions InGaAs/InAlGaAs will be shown in the next paragraph.

3.6 Modeling of quasi-rectangular QW based on the InGaAs/InAlGaAs
heterojunctions

Heterojunctions InGaAs/InAlGaAs are important advantage in comparison with
GaAs/AlGaAs because low effective mass of electrons—adding the InAs to the QW
material, i.e., to GaAs—allows effective mass to be significantly reduced from
0.65 m0 for GaAs to even 0.4m0 for InGaAs with 65% of the InAs. This means that
the electron mobility is almost doubled, which is the main goal of the HEMT
modeling. On the other hand, the composition of two solid solutions—InxGa1-xAs
for QW and InyAl1-yAs for a barrier—can be selected so as to minimize mismatch of
the lattice parameters. Such hetero-structures are isomorphic. In this way, the issue
was the production of QW for HEMT based on isomorphic hetero-structures. That
could be used in industry, so the production technology also had to be industrial. To
implement this duty, the MOCVD technology was developed at the Institute of
Electronic Materials Technology (ITME) in Warsaw for the production of isomor-
phic hetero-structures based on InGaAs/InAlAs heterojunctions. The structures are
consisted from single InxGa1-xAs QW and from the two InyAl1-yAs layers—barriers.
Four types (see Table 1) of different forms of structures with a single QW (SQW)
were produced by MOCVD on semi-insulating GaAs at ITME by W. Strupiński
group and tested at the Center for Microelectronics and Nanotechnology at the
University of Rzeszów during the years 2005–2014 [12, 13]. After that, the program
of producing double quantum wells (DQW) and multiple quantum wells (MQW)
was developed in years 2015–2018 [14–16].

3.6.1 SQWs

In Figure 8, cross section of SQWs obtained by MOCVD on semi-insulated GaAs
substrates is shown. If the δ-doping layer with Si is at the top above QW and below
at QW then, the shape of the QW is symmetrical as in Figure 9, if and only at the
top, a QW is asymmetric as in Figure 10.

Figure 7.
QW formed from two heterojunctions.
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Themagneto-transportmeasurements, i.e.,Hall’s resistance curvesRH(B)orRxy (B)
and longitudinalmagnetoresistance ρxx (B), were performed for all the presented
SQWs. It is clearly seen inFigure9 theplateauon thecurveRxy (B) corresponding to the
filling factors ν = 3, 6, 8, etc. Explanation of this values of filling factor is presented in
Figure 10where the curve of Rxy (B) as well as Rxx (B) is interpreted.

In order to interpret the curves Rxy (B) and Rxx (B) for the QW 1088 which is
practically a triangle QW (the electrons are located in the bottom left triangle), the
theory developed by W. Zawadzki [17] was used

aþ bð Þa1=2b1=2 þ b� að Þ2 ln b1=2 � a1=2

b� að Þ1=2
�����

����� ¼
E ∗
g

2m ∗
c

� �1=2
� 4eFℏπ iþ 3=4ð Þ (3)

Figure 8.
The cross section of the SQW grown by the MOCVD.

Sample Channel parameters δ-doping donor
concentration (1012 cm�2)

Composition of
In (%)

Thickness
(nm)

QW profile

1093 75 20 Sharp interface 2.5

1098 65 20 Changing composition in a
channel

5.0

1607 65 23.5 Sharp interface 3.5

1088 53 20 Sharp interface 0.7

Table 1.
Parameters of the channels and descriptions of the interfaces for the SQWs.
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where a = E – E┴; b = Eg + E + E┴; E is the energy of sub-band in QW,
E┴ is the Landau level energy sought, Eg is the energy gap, and F is the
electrical field strength caused by interface and is determined by linear potential
U = eFz.

Results of calculations presented in Figure 10 show that the intersection of
Landau levels of two energy sub-subbands takes place; hence the picture of QHE
and SdH oscillations is more complicated but is perfectly explained by the theory
for the triangle QW.

3.7 Special engineering of a rectangular QW

The special engineering of QW involves changing the composition of the solid
solution in the well to compensate for the reduction in potential at the left and right
corner of the bottom of the well. The schema of such compensation is shown in
Figure 11: there is a change in the composition in the quantum well from the left
side of the interface and the right side too. This mild change from x = 0.53 to 0.65
(on the left and vice versa from 0.65 to 0.53 on the right) accurately compensates
for the value of the energy gap, as well as the decrease in the bottom of the well—
the conduction band—so that it becomes almost flat.

This fact that we are dealing with an excellent rectangular quantum well
confirms the experimental magneto-transport curves obtained for QW 1098.

Figure 9.
The Hall resistivity curve Rxy (B) and longitudinal magnetoresistivity curve Rxx (B) for the SQW 1088
(see Table 1) with asymmetric shape of QW [12, 13].
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The theoretical interpretation of experimental curves presented in Figure 12was
performed by curves of the Landau level (LL) (presented above) calculated
according the theory of Zawadzki [17]:

E� E⊥ð Þ Eg þ Eþ E⊥
� �
Eg

¼ ℏ2π2 iþ 1ð Þ2
2m ∗

0 a2k
(4)

Figure 10.
Interpretation of the QHE curve and magnetoresistance curve for three-angle SQW 1088 [12, 13].

Figure 11.
Schema of the rectangular QW (1098) engineering [13].
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where E is the energy of sub-band in QW, E┴ is the Landau level energy sought,
and Eg is the energy gap, while Δ is the value of the spin-orbit splitting, i is the
number of sub-band, n is the number of LL, μB is the Bohr magneton, and m ∗

c is the
effective mass of electrons on the bottom of the conduction band. As you can see in
the right side of Eq. (4), the energies of states in a rectangular well with a correction
for the finite potential through coefficient k are described.

It is seen that theoretical curve of the Fermi level in the course of the magnetic
field reflected both the plateau of the Rxr(B) and the maxima of the Rxx(B) exper-
imental curves: the QHE plateau positions correspond to the FL positions between
LL that simultaneously correspond to the minima of the SdH oscillations.

In this way, it can be said that thanks to special engineering, it has been possible
to make a real rectangular potential of QW described by quantum-mechanical theory.

3.8 Double quantum well

3.8.1 The SAS-splitting

Technology successes have allowed us to experimentally confirm one interesting
quantum-mechanical phenomenon—it concerns the splitting into symmetrical and
anti-symmetrical states thanks to the Pauli exclusion principle, in other words,
exchange interaction.

Figure 12.
The Hall resistivity curve Rxy (B) and longitudinal magnetoresistivity curve Rxx (B) for the SQW 1098 [13].
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Pauli’s principle was known in relation to atoms, molecules, and crystal theory,
while for the first time an artificial object was generated in which this principle was
spectacularly confirmed—in an electron system consisting of two closely spaced
QWs. In the inset of Figure 13, the potential profile of two QWs with narrow
barrier between wells is shown. Due to narrow barrier, the tunneling among QWs is
facilitated and electrons in these two QWs constitute the common electron system.
This system is subject to Pauli’s principle, as a result of which there are electron
states in which the spin part of the wave function has the opposite sign—
symmetrical and anti-symmetrical functions and correspondently symmetrical and
anti-symmetrical states—separated by the energy gap, the so-called SAS gap.

3.8.2 Magneto-transport phenomena

For first time, this effect was considered in the work of G. S. Boebinger et al. [18]
where the GaAs/AlGaAs DQWs produced by MBE technology were investigated.
This fact was observed experimentally on the QHE curves: where quantum Hall
states at odd integer ν (filling factor) were missing, the ν = odd quantum Hall states
originate from the SAS gap [18].

Magneto-transport phenomena were studied also for the InGaAs/InAlAs DQWs.
In addition to QHE and SdH oscillation, magneto-phonon resonance was also
studied and interpreted using the LL energy theory for the DQW [19]:
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where j is number of the energy sub-band, n is number of the LL, An0n qxy
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matrix element for two Landau levels n and n’, VF
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is factor of screening [19].

Figure 13.
Three kinds of splitting of energy states in DQW: cyclotron ħɷc, spin splitting g*μBB, and ΔSAS—splitting on the
symmetric and antisymmetric states.
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The combination of this DQW theory with the Landau level theory presented
above for SQW (Eq. (4)) gives us the following equation:

E� E⊥ð Þ Eg þ Eþ E⊥
� �
Eg

¼ ℏ2π2 iþ 1ð Þ2
2m ∗

0 a2k
� Δ0 þ 0:38E⊥ð Þ (9)

Adding Eqs. (5) and (6) to this (9) allows the calculation of the LL energy in
DQW. The value of ΔSAS in Eq. (9) depends from magnetic field B as function of
energy E┴:

ΔSAS ¼ Δ0 þ 0:38 E⊥: (10)

where Δ0 is the ΔSAS value without magnetic field.
In Figure 14, the LL energies for DQW 2506 (see Table 1) and interpretation of

the Rxy curve obtained for this DQW are presented. The splits caused by the SAS
gap are clearly seen on the Rxx (B) curve. These are experimental data that indi-
rectly indicate the SAS-splitting in DQW. But on the same DQW it was possible to
make optical measurements from which the energy states were directly determined.

These optical measurements that concern the optical reflection in the infrared
region were made using infrared microscope.

3.8.3 Direct determination of the energy states in the DQW

The experiment on the infrared reflection was performed at the Frascati
National Laboratory in Italy. Synchrotron radiation served the brilliant infrared
radiation source.

Figure 14.
Interpretation of Rxy (B) curve for DQW 2506 [15] .
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Figure 15.
Optical absorption curve obtained by averaging the optical reflection R0 when scanning the sample surface
2506. The recorded absorption bands are renumbered (the double minimum 5 is due to the strong absorption of
CO2 in the atmosphere) [16].

Figure 16.
The electron states in the DQW and optical transitions responsible for absorption bands shown in Figure 15:
1 ! 2 – band 1; 2 ! 3 – band 2; 1 ! 3 – band 3; 3 ! 4 – band 4; 2 ! 4 – band 6; 1 ! 4 – band 7;
2 ! CVE – band 8; 1 ! CVE – band 9 [16].
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Supplying the infrared microscope with such a brilliant radiation source allowed
for unique results [16]. For the first time, the energies of electron states were
determined directly in DQW (see Figures 15 and 16) analogically as it was once
done for the natural H2 molecule [20]. From Figure 16 it can be seen that the delta-
SAS varies depending on the j number of the energy sub-band from 3.1 meV for j = 1
to 9.4 meV for j = 4.

3.9 Conclusion

The implementation of the quantum-mechanical problem of electron entrap-
ment in a quantum well has been described. Various shapes of quantum wells—
produced by advanced technologies as MBE and MOCVD, as well as based on
different materials—are considered. Quantum wells based on GaAs/AlGaAs
heterojunctions are especially important for the production of the semiconductor
lasers, while the ones based on InGaAs/InAlAs heterojunctions are for the produc-
tion of the HEMT transistors. Thanks to special engineering, it has been possible to
make a real rectangular potential of QW described by quantum-mechanical theory.

Research into double quantum wells is a significant cognitive interest as an ana-
logue of a two-atom hydrogen molecule in solid-state physics where essential role
plays such quantum-mechanical phenomenon as exchange interaction. It can be
predicted that their applications in electronics will also not make us wait long.
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