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Preface

The new book substantially updates the key topic of “Solar Energy” and the existing
reference sources in this area of knowledge. Several of the latest concepts and research
results are presented by fifty-two top-qualified authors from seventeen countries.
Progress extending from new theoretical ways of understanding the photo-voltaic
phenomenon, to new means of exploiting biological resources for solar energy
extraction are presented. The reader will find that even the harshest topics on solar
energy are presented in an attractive and animated manner, drawing attention to
various and promising means of extracting solar power. The enlargement of solar
technology types described adds value to the new book against our previous,
successful work on the topic.

New boundaries are revealed and ways of extending the present technologies in the
solar energy extraction are suggested, which will bolster the interested reader for new
developments in the field. The editors will be pleased to see that the present book is
analysed and debated. They wait for the readers’ critical reaction with active interest
and welcome positive proposals.

The editor addresses thanks to the contributors for their work and dedication, to
InTech for presenting the text in a pleasant presentation, and waits for new, top level
contributions in the future.

Radu D. Rugescu PhD
University Politehnica of Bucharest, Bucharest
Romania
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Prediction of Solar Radiation
Intensity for Cost-Effective PV
Sizing and Intelligent Energy Buildings

Eleni Kaplani and Socrates Kaplanis
Technological Educational Institute of Patras
Greece

1. Introduction

The solar radiation in the form of electromagnetic waves emitted by the sun, travels the
extraterrestrial space without any essential interaction with matter, and reaches the earth’s
atmosphere. Therein, the beam solar radiation undergoes physic-chemical processes and
experiences scattering by (macro) molecules, dust, or other tiny particles in the air. This
process creates the solar radiation component called diffuse radiation. Thus, the solar
radiation on any surface on the earth consists of the beam solar radiation, the diffuse
radiation and the one reflected by the surroundings.

On the other hand, the length of the path of the solar beam till it reaches the horizontal
surface differs both during the day and during the year. It is high during morning and
sunset hours and shorter during noon hours. Also, due to the sun’s altitude which is low, i.e.
closer to the horizontal in winter months for the North Hemisphere, the length of the path of
the solar beam is longer and, therefore, the intensity of the solar radiation is essentially
affected by the higher air mass it penetrates both on a daily and seasonally basis. Hence,
solar radiation finally reaches the earth surface substantially decreased and dissipated
compared to the extraterrestrial values. Table 1 and Figure 1 show the extraterrestrial solar

cities ¢ JAN FEB MAR AFR MAY JUN JUL AUG SEP OCT NOV
Cairo 3005 583 7201 B843 10265 11158 11460 11261 10536 9316 7681 6187
Iraklio 3532 5029 6465 B30F 10000 71152 11.582 11320 10376 888% F015 5383
Athens W97 4600 AI158 BOTE 9874 11130 11614 11325 10292 8699 6734 5.054
Thessaloniki 4052 4178 5587 7708 9663 11078 11642 11314 10146 8395 6299 455
Firenze 4378 664 S22 7321 942 11006 11648 11281 9976 AD6F 5848 4,050
Zagreb 4580 3322 4876 7051 9259 10941 11645 11248 9850 7837 5540 3712
Paris 4887 2811 4377 6631 898 10832 11624 11184 9642 7474 5066 3.2
London 5150 2309 3870 6192 8691 10704 11588 11104 9413 7090 4581 2700
H.ll'ﬁ!l:lr;'; 5355 1980 3530 5590 S48 10611 11561 11.045 9250 68324 4352 23487
Copenhagen 55.72 1,659 3190 5581 8266 10513 11.531 10982 9080 6549 3920 2.0
Stockholm 5935 1049 2508 4943 7810 10307 11479 10852 8719 5977 347 140
Helsinki 6022 0805 2330 4780 7492 10255 11470 10821 8625 5829 3077 1251

Table 1. Average top-of-atmosphere insolation incident (kWh/m?) for major cities with
latitude spanning from 30 to 60c.
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radiation data for various latitudes. Calculations and analysis was performed on the daily
average solar radiation on top-of-atmosphere data obtained from NASA’s online database
(NASA Surface meteorology and Solar Energy, 2011). It is evident for the North Hemisphere
that, as the latitude increases the top-of-atmosphere solar radiation decreases especially
during the winter months, while during Summer the differences are very small. This is due
to the position of the earth with respect to the sun.
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Fig. 1. Average top-of-atmosphere insolation incident (kWh/m?) for major cities with
latitude spanning from 30 to 60c.

The intensity of the solar radiation which reaches the earth outside its atmosphere in hour h
in a day nj is the extraterrestrial radiation, represented by lex(h;n;j), and can be accurately
estimated by the following equation.

3601
Ly (hin;) = I, -| 1+0.083- cos G

J:l~[cos((p)cos(5)cos(ws)+sin(5)] @

where, I is the solar constant, about 1365 W/m?2, and nj is the incremental number of the
day, with a value range [1, 365], where 1 corresponds to the 1st of January and 365 to the
31st of December. @ is the sunset hour angle, @ is the latitude of the site and & is the angle of
declination of the sun. The daily extraterrestrial solar radiation is determined by eq.(2)
(Duffie & Beckman, 1991).

Hoy ()= [Towt (Bin; )dh =
360n,

2
_ 243600 [1 . 0_033CO5[ o H : {COS((P)COS@)COS(@S) + Zg’a Sin(¢)sin(5)} )

T

where, o is expressed in degrees. If ws is in radians, then the factor m/180 should be
omitted. The angle s is determined by the following equation.



Prediction of Solar Radiation Intensity for
Cost-Effective PV Sizing and Intelligent Energy Buildings 5

ws = cos™(—tan(¢p)tan(5)) (3)

Thus, the extraterrestrial solar radiation can be accurately estimated. However, the local
weather conditions characterized by the Atmospheric Pressure, P, the Ambient
Temperature, T, the wind velocity, vy, the relative humidity, RH , and the cloudiness
associated to the Clearness Index, Kr, (Collares-Pereira & Rabl, 1979; Kaplanis et al., 2002),
may change hour by hour stochastically. Thus, the solar radiation on the horizontal of the
earth’s surface cannot be accurately pre-determined. All this implies that the solar radiation
in a day at a place may not be the same for the same day the year after, as the weather
conditions may not be the same for those two days, see for example Figure 2, where it is
evident that for the same day in consecutive years the pattern differs, while the insolation in
the top-of-atmosphere is always the same.
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Fig. 2. Average insolation incident on horizontal and on top-of-atmosphere per day for the
years 1985-2004 in Athens, Greece.

2. Solar radiation data analysis and the in-built stochastic nature

A large amount of solar radiation data is stored and provided by national databases from
local meteorological stations, such as HNMS's (Hellenic National Meteorological Service,
2011), and global databases such as NASA’s (NASA Surface meteorology and Solar Energy,
2011), JRC’s PVGIS (Photovoltaic Geographical Information System, 2008), SoDa (Solar
Radiation Data, 2011), etc. Thus previous years” data for a site of interest may be retrieved
and analysed in order to serve as an appropriate input to PV sizing or other applications.

As previously discussed, the solar radiation data exhibit a dispersion, larger or smaller
depending on the latitude and the microclimate of the site. Figures 3 and 4 show the
fluctuations of the daily solar radiation on the horizontal as it appears around the
representative day of each month for the years 1985-2004 for the city of Athens, Greece and
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the city of London, UK, respectively. Calculations and analysis was performed on the daily
global solar radiation data obtained from NASA’s online database (NASA Surface
meteorology and Solar Energy, 2011). It is obvious that the profile of the solar radiation and
the degree of the inherent solar radiation stochastic fluctuations in the two cities differ
substantially. Figure 5 shows the average global solar radiation on horizontal per month for
the same years and for major cities with latitude spanning from 30e to 60c.

As the daily solar radiation exhibits different degree of fluctuations both during the day and
throughout the year on different sites, it is important that the past years data available for
the site of interest are thoroughly analysed before a solar radiation prediction methodology
or PV sizing methodology is employed.
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Fig. 5. Average solar radiation around the representative day of each month for the 20 year
period (1985-2004), for major cities with latitude from 30° to 60c.

An in-depth analysis of past years data for the site of interest may be carried out to provide
the probability density function (pdf) the data obey. Research studies have reported on the
use of the Gaussian distribution or modified Gaussian (Jain et al. 1988), the Weibull
distribution (Balouktsis et al., 2006), and the Extreme Value (Type I) distribution (Kaplani &
Kaplanis, 2011). However, due to the inherent stochastic character of the solar radiation
fluctuations, the differences in the location of the various sites, and the differences in the
databases used, an argument upon the preference of one pdf over the other is avoided.
Instead, the designer may analyse the data of the site of interest, extract the pdfs and assess
the best fit provided by the various distributions. The proposed pdfs of the Normal,
Weibull, and Extreme Value (Type I) distribution are given by egs. (4) to (6), respectively.
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An example of the fitting of the 3 distributions on the pdf of January’s data for Athens,
Greece is provided in Figure 6. It is obvious that the Extreme Value distribution in this case
provides a more accurate fit on the data.
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Fig. 6. Normal, Weibull, and Gaussian distributions fitted on the pdf of January’s data for
Athens, Greece, drawn around the representative day for the period 1985-2004.

Using the maximum Likelihood criterion for assessing the best fitted distribution, the
Extreme Value distribution proved to best fit the data for all months (Kaplani & Kaplanis,
2011). A more detailed statistical analysis may be performed, using the Kolmogorov-
Smirnov test in order to test the null hypothesis that the data come from a specified Normal
distribution, or the Lilliefors test to test the null hypothesis that the data come from a
Normal or an Extreme Value distribution, etc. It is recommended that a large sample of data
is used for the fitting.
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3. Hourly and daily solar radiation prediction

Having performed an in-depth statistical analysis on the past years data, it may be said that
future daily solar radiation data may be anticipated to fall within the specific distribution
which best fitted the previous years’ monthly data. However, several solar radiation
prediction models have been proposed in the literature some of which may be more globally
applied.

Kaplanis in (Kaplanis, 2006) has proposed the model provided by eq.(7) to estimate the
daily solar radiation for any day n;. Parameters A, B, C are estimated by fitting an
equation of this form on average monthly past years’data. An example of the fitting
produced by this equation on monthly average data for Athens and Stockholm are
displayed in Figures 7, 8. Table 2 shows the estimated A, B, C parameters for different
cities and the correlation coefficient r showing the goodness of fit of eq.(7) on the data.
Parameters A and B follow a function with argument ¢, as it is evident from the profile of
the data in Table 2.

H(nj) = A+ B - cos(2mn;/365 + () @)

S =0.20792557
r=0.99604130

T T N T T T N T T T T T T YT T Y A I

’\6 T T T [ T T T [ T T T [T T T [ T T T [ T T T [ T 7T T [ T T T [ T T T [ T T T [ T T T [ T 10 ]

1 31 61 91 121 151 181 211 241 271 301 331 361

Average Insolation Incident on horizontal (kWh/m#2)

nj

Fig. 7. Fitting results of eq.(7) on monthly data for Athens (period 1985-2004)
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Fig. 8. Fitting results of eq.(7) on monthly data for Stockholm (period 1985-2004)

city A B C r
Iraklio 5.39 3.26 3.18 0.999
Athens 4.56 2.86 3.21 0.996
Thessaloniki 3.92 271 3.19 0.976
Paris 3.20 2.66 3.29 0.992
London 277 2.35 -3.01 0.990
Stockholm 2.79 2.87 -2.90 0.995

Table 2. Estimated parameters A, B, C for the various cities

Hourly based prediction models, based on similar functions, have also been proposed such
as the model proposed by Kaplanis in eq.(8) (Kaplanis, 2006), where a(n;) and b(n;) are
estimated through 2 boundary conditions and depend on the site and day n;. The model
proposed by the authors in eq.(9) (Kaplanis & Kaplani, 2007) proved to give much better
results compared to other known models.

I(h;n) = a(ny) + b(n;) - cos(2mh/24) 8)

e Hm)x(M) . cos(2mh/24)
e~ k(n))x(h=12)

I(kn)=A+B ©)
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Figure 9, shows an example of the hourly predicted curve obtained by this model using eq.
(9) for the 17t January and the city of Patras, Greece. The past years hourly data and
average data for the same day are also displayed for comparison. The national database
(Hellenic National Meteorological Service, 2011) was used for the hourly solar radiation data
for Patras, Greece for the period 1995-2000. For the summer data, where smaller hourly

fluctuations occur, the proposed model gives even better results, see Figure 10.
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Fig. 9. Hourly data for January 17, for the city of Patras, Greece, and the hourly prediction

model.
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Several research studies have been published on various aspects in the modeling of solar
radiation dealing with mean and stochastic values. For a global perspective the reader is
advised to see also (Aguiar et al., 1988; Aguiar & Collares-Pereira, 1992; Festa et al., 1992;
Gueymard, 1993; Gueymard, 2000; Jain et al., 1988).

The hourly solar intensity provided by eq.(9), denoted by the authors as mean predicted
value Impr, or mean expected Iy exp, is used in a more dynamic stochastic model which uses
one morning measurement as an input and based on the statistical difference of this
measurement from the mean predicted and the assumption of a Gaussian profile, predicts
the hourly solar radiation values for the remaining hours of the day (Kaplanis & Kaplani,
2007). This is a very challenging attempt considering that the model predicts a dynamic
hourly profile depending on only one early morning measurement. The authors improved
that model to take into account either 1, or 2, or 3 morning measurements, predicting the
hourly solar radiation profile for the remaining hours of the day with increased accuracy
(Kaplanis & Kaplani, 2010). In case that a rich database of past years data exist, it is
proposed also the use of average hourly data instead of the mean expected. Thus, according
to this model, the prediction of the solar radiation at hour h in a day n; is based on the
following expression.

Ipr(h;nj)=Iav(h;nj)+R'O-I(h;n/) (10)

where R is a random number drawn from a Gaussian distribution (p=0, 0=1) , however, it is
confined within the interval [t; +1], where t; is determined for the previous hour h; by
eq.(11). For the estimation of t; it is assumed that the difference between the one morning
measured value Imes(hinj) value at hour hy from the average I..(hi;n;) value at the same
hour h; from the past years’ data, follows a Gaussian probability density function. For the
predicted value I (h;n) only positive values, values less than the extraterrestrial lex(hynj),
and less than L(h;nj) + 301nnj are accepted, which is necessary to cut off the Gaussian tail
for high values above the average.

Imeas (hl ;nj )_ Iav (hl ;nj)

OY(hy ;)

t1:

(11)

For the hourly solar radiation prediction profile based on two morning measurements at
hours h; and hy, eq.(12) is proposed, which now uses two stochastic terms, one term as in
eq.(10), which stands for the stochastic fluctuations at hour hs, and a second term to stand
for the rate of change of the I(h;n;), within the time interval [hy, hy]. t> is determined here
similarly to t; in eq.(11) but now for hour hy.

1
Ly (hysny) = Loy (3sm;) + R0y +Z'(t2 Oy ~h 'GI(hT;nj)) Ry (12)
The hourly solar radiation prediction based on three morning measurements at hours hs, hy,
hz is given by eq.(13), where the use of an extra stochastic term is proposed, which provides
the contribution of the second derivative of [Imeas(h;ny)- Lov(h;ny)], with respect to h, to the
I(hyn;) prediction.
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1
Ipr(h4;nj) :Iav<h4;nf)+R'o-I(l’l4?nj) +Z.(t3 'O-I(hs;ﬂj) _t2 'o-l(hzl'"j))'Rl-’_ (13)

1
+§'(t3 "ty ~ 2 b2 Oy T 'O—I(hl;nj)) “R2

The model continues to predict the solar radiation at next hour based on the predicted
values for the previous hours. For more details on this hourly solar radiation predictive
model see (Kaplanis & Kaplani, 2010). Figures 11, 12 show the predicted hourly profile by
this dynamic model using a national database for the city of Patras, Greece and the period
1995-2000 (Hellenic National Meteorological Service, 2011). By entering one, two or three
morning measurements, the model predicts the hourly solar radiation profile for the
remaining hours of the day. It is evident from the figures that the model based on the three
morning measurements gives the best results and a prediction very close to the true
measured data, even for these cases where the true data lie far away from the average years’
data. Due to the random factors that appear in the egs.(10), (12), (13), the generated hourly
predicted profile is never exactly the same but fluctuates stochastically within a small range
of values.
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Fig. 11. Hourly predicted profiles based on one (Ipredicted-1), two (Ipredicted-2) and three
(Ipredicted-3) morning measurements. Plotted against the average data profile (laverage),
the mean expected (Im,exp) calculated by eq.(9), and the true measured data (Imeasured) on
17th January 2000, in Patras, Greece.

Other research studies have proposed methodologies for prediction of sets of hourly profiles
based on Neural Networks (Kalogirou, 2000), Markov chains (Aguiar et al., 1988) and Fuzzy
Logic (Igdour & Zeroual, 2007).
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Fig. 12. Hourly predicted profiles based on one (Ipredicted-1), two (Ipredicted-2) and three
(Ipredicted-3) morning measurements. Plotted against the average data profile (Iaverage),
the mean expected (Im,exp) calculated by eq.(9), and the true measured data (Imeasured) on
16th March 1995, in Patras, Greece.

4. PV sizing methodologies

The previous sections have dealt with the analysis of the in-built stochastic nature of solar
radiation data and the challenging issue of predicting daily and hourly solar radiation
profiles with a high level of reliability. This would be most useful in problems dealing with
the effective and reliable sizing of solar power systems, PV generators, and the predictive
management of a complete system of solar energy sources in conjunction with the power
demand by the loads, since the output of PV systems is highly affected by stochastic meteo-
conditions.

Apart from the requirement for maximizing the Yield Y¢ (kWhe/kWp) for a PV plant on an
annual basis, there is also an increased concern about the reliability of the PV performance,
i.e. to meet the loads with a pre-determined confidence level, at the minimum possible
installed Peak power. The design of a PV plant should aim at installing a plant able enough
to produce and deliver the right output at the minimum cost, with a small Pay-Back Period
(PBP) and a high Performance Ratio (PR), (RETScreen, 2011).

In any PV sizing task all potential power losses related to the PV system elements, i.e. the
inverter, charger, battery storage system, cables, etc, and effects due to PV cell ageing,
battery ageing, matching effects, shadowing, etc., need to be thoroughly investigated and
analysed in order to reach the required Peak Power to be installed. Furthermore, a statistical
analysis of the daily solar radiation and hourly solar radiation fluctuations is essential
within the scope of the PV sizing, as the inherent statistical fluctuation lead to an
uncertainty with respect to the installed Peak Power, a major consideration when a reliable
Stand-Alone PV system (SAPV) is to be installed. The issue of reliability has driven sizing
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methodologies to the introduction of the concept of energy autonomy period of a PV plant,
expressed using the autonomy factor d. The autonomy factor d was introduced for critical
and non-critical loads, given by eqs. (14) and (15) respectively, to provide energy autonomy
when using non-critical loads, requiring power at least 95% of the time, and when using
critical loads, requiring power at least 99% of the time (Messenger & Ventre, 2000).

dgy = —1.9 - PSHypin + 18.3 (14)

dp_cr = —0.48 - PSH,pi, + 4.58 (15)

where PSH is the Peak Solar Hour, defined and estimated as in (Messenger & Ventre, 2000)
for any day, and PSHuin is its minimum value. It is evident that the smaller the minimum
PSH value, as derived from the past years solar radiation data for a region, the higher the
value of d. The drawback of the conventional sizing approach is its high cost, as both the
Peak power (Pp,) to be installed, given by eq.(16), and the Capacity of the Battery Storage
System (Cp), given by eq.(17), increase linearly with the value of d for energy autonomy.

a-QpF

b = PSHp'Rm (16)
_ d-QuF’
L= Y op (17)

where Q1 is the daily load (Wh), F and F’ are correction factors due to transfer power losses, V
is the transfer voltage and DOD the depth of discharge of the battery. The mean PSH is
denoted by PSHy,, and Ry, is used for the conversion of the solar intensity from the horizontal
to the PV array inclined plane, see (Duffie & Beckman, 1991; RETScreen, 2001). R depends on
the day of the month, the latitude of the place and the microclimate of the region.

This conventional PV sizing methodology gives reliable results providing energy autonomy
to the system through the use of the autonomy factor d in the estimation of Pn and Ci,
considering the statistical properties of the solar radiation data as introduced through
PSHmin. However, with the increase of d to accommodate fluctuations in the solar radiation
data, the estimated Pr, and Ct to be installed increase substantially, leading to a requirement
for a larger PV array and a larger battery storage system.

A more cost-effective approach has been proposed in (Kaplanis & Kaplani, 2006), whereby a
different approach to the estimation of the autonomy factor is used, leading to a reliable
system with the need for lower installed Py, and Cy. In this approach it is assumed that H(n)
values follow a Gaussian probability density function, and, thus, the expected H(nj) value
will lie with a 95% confidence level, in the domain:

H() € [Hn(n) £ 2+ 0y (18)

where Hin(n) is the mean daily solar radiation on the horizontal for the representative day of
the month, for which the PV plant is to be sized, through a period of N years and ox is the
standard deviation of H(n).

According to this model if the system is to be sized to guarantee a number of d days of
system autonomy to accommodate any possible solar radiation fluctuation, the total
uncertainty introduced in the determination of Py, through the estimation of PSH, whose
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value (h/day) is numerically equal to the value of H(nj) measured in kWh/m?2, would be
given by the following expressions.

%ha = Ohiu,), ¥ Tin), T O(ny), 4 Oi(r,) 19)

aHd = \/H ' GH(nj) (20)

The relative change in the P, to accommodate an energy deficit for d days with a confidence
level of 95%, may be given by eq.(21). Thus, a correction factor is introduced in the
determination of P, provided by eq.(22). This correction factor is also included in the
determination of Ci, see eq.(23).

5P _ 5sH) _ _ony _ V% %u(n) 21
Pm  PSHpm  Hp(n)  Hu(n)
2'\/3'0'}.1(11 )
Pm,d = Pm " <1 + Tnj)]) (22)
2'\/3'0'1.1(71 b
= (145 ®

The introduction of this correction factor has been evaluated in (Kaplanis & Kaplani, 2006)
using the solar radiation data for January and the period 1995-2000 in Patras, Greece, and
concluded in a significant reduction in Pr,, and C with a system reliability level of 95%.

Recent research studies have proposed new developments of stochastic modeling
(Balouktsis et al., 2006; Kaplani & Kaplanis, 2011; Markvart et al., 2006; Tan et al., 2010), the
use of Hidden Markov Models (Hogaoglu, 2010), and Neural Networks (Kalogirou, 2001;
Mellit et al., 2008), for the sizing of SAPV systems. Several of these approaches are iterative
approaches based on the concept of energy balance and Loss of Load Probability. The
objective being, a search for the minimum required installed Pr, and Cr that would cover the
energy needs required by the loads for a number of days so that the system remains
autonomous. Some configurations may use, in addition, a diesel generator for SAPV system
support in autonomous functionality. A SAPV system configuration is displayed in
Figure 13.

DLtoAC
PV Array ~ ACloads

IFveTTEr
Wik
fmi' PV outpat
G R

BatterySystem

Fig. 13. SAPV system configuration
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According to the energy balance concept, eq.(24), the energy offered by the PV array will be
used by the loads Qr, an amount will be dissipated throughout the pathway from the PV
array to the loads, i.e. being power losses in cables, in the charge controller, the DC/AC
inverter, the battery system, etc., and, finally, the remaining energy will be stored in the
batteries.

Energyoffer - Energydemand - Energylosses = Energystored (24)

Considering a daily description the energy balance equation may take the following form.

hss 24 24
z Apyly (h;nj)npvdh - z qL (h;nj)éh - z powety,..,.0h = Enerqy.,, .aper day (25)
h=hsr h=1 h=1

where Apy is the size of the PV array, It(h;n;) the hourly solar radiation intensity on the
inclined plane of the PV array at hour h for a day nj, and npv the efficiency of the PV
generator. By qr(h;nj) we refer to the hourly power demand by the loads. Thus, the energy
stored during the day would be the energy remaining from the energy provided by the PV
generator, from sunrise to sunset, after it is used up on the loads and an amount ‘burnt’ due
to power transmission and operation losses. During the night, the load power demand is
met by the battery storage system, while some power losses from the battery to the loads
occur. The remaining energy in the batteries will be carried on to the following day. The
battery storage capacity is finite, and, thus, any excess energy after the battery is fully
charged will be burnt. Also, the depth of discharge of the batteries, for deep cycle batteries,
is about 80%, and, therefore, during a dark period of days when the energy in the batteries
has been used up, up to the point where the state of charge (SOC) of the batteries has been
reduced to 1-DOD (20%), the batteries will not be able to supply the loads with any more
energy and the system will fail.

The energy provided by the PV generator during the day is given by eq. (26), and the
remaining energy that will be used to charge the battery is given by eq.(27). The state of
charge of the battery after the end of the day is provided in eq.(28). The SOC of the battery
will result from the previous SOC with the addition of the remaining energy during the day.
The SOC of the battery has an upper limit of 1. Any excess energy will be burnt. The SOC of
the battery after the end of the night will be the SOC after the battery is discharged by the
power required by the night loads, as given by eq.(29). F and F’ are correction factors due to
all power losses from the PV generator to the loads, and from the batteries to the loads
respectively. These factors should also accommodate any temperature effects or PV ageing
and battery ageing effects that reduce the power output.

EPVZPm'PSH'R (26)
DE = Epy — F - Qraay (27)
S0C =SO0C +DE/(C,-V) (28)

S0C = SOC = Quuigne * F'/(C,* V) (29)
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Thus, for an effective sizing of a PV system the following need to be thoroughly considered:

e the optimum angle of inclination and the azimuth of the PV arrays, and the other
geometrical factors concerning the PV arrays, such as possible lay-outs and array
dimensions, especially when there are cases of shadowing by nearby buildings or
objects.

e the minimum power losses in cables, chargers, due to the margin in their operation and
in the inverter(s), especially, when a group of inverters is used. The effect is crucial if
the DC/AC inverter operating domain does not match the i-V characteristic of the PV
array connected to it. In such cases, the efficiency of the inverter drops much below
90%.

o the sizing of the battery bank, introducing realistic corrections to the system’s total
Capacity, Cr (Ah), as otherwise the system might be either oversized or undersized.

e the sizing of the PV generator which has to take into consideration the daily load
profile, the solar energy fluctuations during the daytime and if possible the pragmatic
solar irradiance on a PV generator in any day. The latter requirement has lead, as earlier
mentioned, to the introduction of the concept of d days of energy independence of an
SAPV installation.

Finally, a dynamic simulation model which provides the daily and/or hourly profile of the
energy expected to be delivered by the PV generator, the energy used by the loads and the
state of charge of the battery, such as the one presented in (Kaplani & Kaplanis, 2011), may
be found very useful not only for the optimum sizing of the PV generator and battery
storage system, but also for the precise evaluation of the forecasted entire system
performance and the possibility for application of more efficient controls.

5. Predictive management of PV systems

As several attempts have been recently initiated worldwide towards the development of
intelligent buildings with the integration of renewable energy systems, the introduction of
predictive PV system management in conjunction with effective load management is of
great importance in photovoltaic applications.

A predictive management PV system may be described to have the following modules:

¢ Aninbuilt intelligence for the management of the PV system. This is achieved when the
PV system is equipped with the ability to predict the daily global solar radiation profile.
Section 3 has presented a dynamic prediction model of the hourly solar radiation
profile. This leads to the determination of the pragmatic power to be delivered in a day
by the PV plant.

e A data acquisition system, which is tailored to the model management parameters
opted for, as for instance the global solar radiation intensity, indoor and outdoor
temperature, relative humidity, wind velocity, etc.,, which is consisted of all the
required sensors, such as pyranometer, thermocouples, anemometers, etc.

¢ A micro-processor control unit, with an analysis and control module.

The configuration of a predictive management PV & Loads system for an intelligent
building is provided in Figure 14. It is consisted of the sensors network, the load network
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and the control network. The sensors signal output are fed to the data logger, which in turn
communicates with the Analysis and Control Module in the PC. Given the information
acquired from the sensors the Analysis Module predicts the energy to be delivered during
all hours of the day, communicates with the Control module, which manages the loads
through priority handling. The Control Module through the Interface to the Loads may then
serve the immediate loads and shift flexible low priority loads to the following days, in
order to efficiently meet the energy demand. The Control Module could have an additional
functionality for remote control, i.e. web-based or via mobile.

A predictive management PV system will be seen to succeed in cases where conventional
design methodologies or even more dynamic stochastic models may fail to meet the daily
energy requirements. An effective PV sizing installation in conjunction with a predictive
management PV system will serve as a long term cost-effective solution for energy saving
and efficient energy use.

Sensorl Sensor 2 Sensor3 Sensorn

I
—1 Loadl
| Analysis
€ [ Modute —
e —{ Load?2
| Control
Maodule
— Load3
| Interface |
with loads Yaziis
]

Fig. 14. Configuration of predictive management system for an intelligent building with
solar radiation prediction and load management functions.

6. Conclusions

Due to the stochastic nature of the weather conditions, the intensity of the global solar
radiation for any hour in any day at any place on the ground cannot be absolutely
determined, while this is possible for the extraterrestrial radiation. The stochastic nature of
the solar radiation on the ground surface is the weak point in the cost-effective design of
solar engineering plants, such as the PV systems, which is the main target of this Chapter.
An investigation into the solar radiation fluctuations and their spectra is shown to bring
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improvements and innovations in the sizing of solar plants leading to more competitive
solutions.

Prediction models for the estimation of the daily and hourly solar radiation profile have
been presented and the results where compared with true measured values and values from
available databases, revealing very promising methodologies. These are deemed very useful
in the sizing of solar energy systems, such as PV generators, solar thermal systems for
heating, cooling and other applications; since the amount of either heat or power produced
by the solar radiation conversion through solar collectors and PV cell structures
respectively, is significantly affected by the solar radiation fluctuations.

Methodological approaches for the effective sizing of PV systems to adequately cover the
loads to a predetermined reliability level, may use either expected values resulting from a
thorough analysis of past years data, or mean expected global solar radiation values through
the use of stochastic prediction models, which showed to bring more cost-effective PV sizing
figures, or, finally, benefit from hourly solar radiation on-line prediction models within the
scope of a predictive management system for an intelligent energy building. The latter, is a
very promising direction for highly cost-effective solutions for the installation and
performance of solar energy plants, where the energy offer and the energy demand are both
customized and highly optimized.
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1. Introduction

Our country is very rich in solar resource with annual total solar radiation about 3340-
8360M]J/m2, equivalent to 110-250kg standard coal/m?2 (Wei, 2006)- Since energy crisis
occurrence, an upsurge in application of new energy has been emerged in various countries
of the world. In our country, “Solar Energy Roof Plan” and “Golden Sun” demonstration
projects were also implemented in 2009 to accelerate the application of solar technology in
our country- Now in areas of Tibet, Ningxia, and Gansu where solar resource is rich, solar
resource has been widely used in the fields of power generation, lighting, refrigeration,
heating, boiling and heating water, and cooking. In addition a large batch of solar building
demonstration projects has been constructed, obtaining high social, economical, and
environmental benefits (You, et al. 2002).

In Chongging area, utilization of solar resource is still in groping stage due to its special
geographic location and resource distribution characteristics. For a long time, traditional
view considers that application of solar energy in Chongqing area is congenitally deficient,
making its utilization very small in scale and most of the application modes are of general
application type, which is not suitable to the local climate features (Wei, et al. 2002). In
addition, building-shaped integrated application and research has not been conducted and
efficient utilization of resources has not been realized in solar technologies. This article
describes the research on proper utilization of solar technology and measures, search on the
application potentials of solar resource in Chonggqing area based on the geographic location
and climate features in the area so as to strive to realize efficient utilization of solar resource
at low cost and take the opportunity that Chongqing has been approved as “nation-wide
demonstration city in the application of renewable energy resources in buildings” to
effectively solve the expansion of the application of renewable energy and proper
application of resources in Chongqing area to realize wider scope of building energy
conservation.
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2. Analysis of solar resource in Chongqing area
2.1 Briefing of solar resource in Chonggqing area

Chongging area is located in northern altitude 28°10" - 32°13’, east longitude 105°11’-110°11’,
with sea level elevation of 259.1m, and administrative area of 82,400km?2. Climate in the area
belongs to typical climate extremely hot in summer and extremely cold in winter. In the hot
summer, daily maximum temperature in July is above 35°C in average and the maximum
air temperature can be as high as 43°C. In the cold and wet winter, annual mean
temperature is about 18°C. Weather is cloudy and foggy (Annual mean foggy day is 104
days) (Ding, et al. 2007).

According to solar resource zoning in China, solar resource in Chongqing area belongs to
Category 4 area - poor solar resource area. Annual total solar radiation in the area is
equivalent to the cities of Tokyo, London, Paris, Hamburger, and Moscow (Wei, 2007).
However, the utilization extent of solar resource is not as wide as these cities. Therefore,
utilization quality of resource is not totally determined by its size. As long as proper
technological measures are taken, limited size of resources can find abundant applications.
Table 1 lists solar technologies used in areas having similar solar resource as Chongqing area.
Comparatively speaking, application of solar resource in Chongqing area can only be found in
solar water heater in some places. Application in other areas is rarely seen. How big the
utilization potential of solar resource is and how the benefit brought up by its utilization is in
Chongging area will determine the promotion direction and technical guide of the application
of solar resource in Chongqing area. This research work has analyzed the utilization potential
of solar energy based on the distribution status of solar resource and made a comparative
study and measurement analysis for multi-types of solar energy applications.

Annual total solar | Examples of solar energy
Area radiation /M]/m? application Solar technology used
Tokyo 4220 Hotel Monterey Ginza External sunsh.a d? technology
of building
London Tower Natural lighting technology
London 3640 “Beddington Zero Energy |Solar photoelectric technology ,
Development” Eco-Village solar ventilation stack
Paris 4013 Signal Tower Solar power and w ind power
generation
Heating project in .
Hamburger 3430 Hamburger area, Germany Solar water heating system
Solar photoelectric technology,
Moscow 3520 Crystal Island solar ventilation, and cooling
technology.

Table 1. Solar Technology Applications

By compilation of relevant meteorological data of “A Collection of Special Meteorological
Data for Thermal Environmental Analysis on Chinese Buildings” and the websites of China
Meteorological Administration, the authors analyzed the solar radiation distribution,
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Sunshine duration, cloud cover, and solar altitude parameters in Chonggqing area and made
recommendations for the application of solar resource.

2.2 Distribution of solar radiation

Monthly total solar radiation in Chongqing area (see Figure 1) is not uniformly distributed
and has significant difference. Monthly total solar radiation starts to increase from January
with peak value appearing in July, about 500M]/m?2. After that it starts to decrease with
valley value appearing in December, about 100M]J/m?. From Figure 1 it can be known that
total solar radiation in January, February, October-December is in the range of 80-
200MJ/m2.

Month

—
=D W s OO~ 00 WO O — DD

0 100 200 300 400 500 600
Monthly total radiation /MJ/m?

Fig. 1. Monthly total solar radiation

Winter

Summer
41%

ESpringBSurmmerTlAutumn O Winter

Fig. 2. Seasonal distribution of solar radiation

Solar resource is relatively poor in these months, which go against the application of solar
technologies. Assume that the compact solar water heater installed has a collector area of
3m? (assuming annual mean heat collection efficiency of the collector is 0.5, installed angle
of tilt is 6=33°-42°, heat loss of storage tank and pipeline is 0.25, and same below), when
solar fraction is 40% (Zheng , 2006), if water with initial temperature of 15°C is heated to
60°C, then hot water produced each day is 12.9-32.2L/person (based on a 3-member family,
same below), which is unable to meet the maximum daily hot water consumption quota “40-
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80L/person” (Zheng , 2006; Wang, 2007; Shi 2008) as specified in the standard. However, in
the period of May to September, solar radiation is over 300MJ/m?, for water heater with
collector area of 3m?, 60°C hot water produced can be maintained at over 48L/person every
day. Therefore, there will be at least 5 months in Chongqing area in which solar resource can
be utilized to meet the requirement of domestic hot water. However, due to the significant
periodicity of solar resource distribution, the application should be based on the time period
and the object.

From figure 2 it can be seen that the fraction of solar radiation in summer is the highest in
the four seasons of Chongqing area, about 1270M]/m2, about 41% of the total solar radiation
of the year. This is the best period for solar thermal, solar photoelectric and solar ventilation
and cooling applications. For a 3m?2 compact water heater, 60°C domestic hot water
produced every day can be over 68.8L/person, well meeting the requirement of “40-
80L/person” as specified in the standard. However, on the other hand, the high solar
radiation will increase the heat receiving capacity of solar radiation for the buildings
causing increase of air conditioning load. At this moment, if proper sun-shade technology
and auxiliary solar assisted ventilation technology is used, not only the solar radiation heat
receiving capacity of building envelope can be reduced, also energy consumption of
building can decreased. In the transition season, average outdoor air temperature is in the
range of 14~24°C. The climate is comfortable for people. If solar assisted ventilation is
utilized in this period, not only the time for air conditioning operation can be reduced
effectively, also fresh air can be supplied in the room improving indoor comfort.

2.3 Sunshine duration and monthly mean total cloud cover

From figure 3 it can be seen Sunshine duration in Chongqing area is longest on Summer
Solstice (June 22), about 14h and is shortest on Winter Solstice (December 22), about 10h,
with difference between the two of 4h, or theoretically speaking the daily Sunshine
duration in Chongqing area is more than 10h. Especially in the late spring and early
autumn and in the whole summer, there is sunshine for over half of the time of a day.
Even in winter, Sunshine duration is also about 10h. However, the actual application of
solar energy is affected by cloud cover. In cloudy days, solar radiation scattering only
about 1/5 of the total solar radiation can reach to the ground. This part of scattered
radiation can only be utilized by photoelectric transducer made of semiconductor
material. Therefore, the quantity of cloud cover has direct influence on the selection and
efficiency of solar energy utilization technologies. Figure 4 shows the monthly mean total
cloud cover of several cities. It can be known from the figure that the annual mean total
cloud over in Chongqing area is 78%, far more than the 54 % in Lanzhou, the 45% in
Beijing, and the 48% in Urumgqi, which is very disadvantageous to the yea-round
utilization of solar resource. However, viewing from the seasons, cloud cover is the
highest in winter, averaged at 85%, and is lowest in summer, averaged at 69%. Especially
in July and August in summer, the cloud cover is significantly reduced, almost equivalent
to that of Lanzhou City. Although cloud cover in Chongqing is high in Chongqing area,
the long Sunshine duration of the whole year provides possibility for day lighting design
of buildings. For solar thermal conversion and solar photoelectric conversion, the best
season is summer, while spring and autumn take the second place.
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2.4 Solar elevation angle

Solar elevation angle reflects quantity of solar energy absorbed on the ground in unit time.
The higher the elevation angle, more solar energy will be absorbed on the earth surface.
Figure 5 shows the distribution law of Solar elevation angle in Chongging area at noon for
the 24 solar terms. It can be known from the figure, the maximum value of solar altitude
appears in summer at about 65°~77°. At this moment solar energy absorbed by earth
surface is the highest. Considering the analysis on the utilization period of time described
previously, the angle of inclination of solar water heater or solar photovoltaic board ought
to be set in the range of 13°~25° so that maximum conversion and utilization of solar energy
can be realized. This is more advantageous to improve solar energy absorption and the
efficiency of conversion device as compared with the normal practice of setting the angle of
inclination as the local attitude of (28°~32°). For passive control and regulation, if the angle
of exterior shading of building is properly designed, solar radiation entering the rooms in
summer can be effectively reduced to reduce energy consumption of air conditioners. In
winter in which Solar elevation angle is the lowest, at about 35°~50°, it is not advantageous
for the efficient utilization of solar water heaters and solar photovoltaic board due to the
high cloud cover in Chongqing area. Then passive application can be improved as possible,
for example, day lighting, etc. For combined utilization in summer and winter, the
“utilization” and “control” of solar energy should be improved. The exterior windows of
buildings in Chongqing area is suitable for installation of movable and controllable exterior
sunshade for the convenience of adjustment of out-extended length, angle of exterior
sunshade to meet different sunshade and day lighting requirement.
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3. Potential for the application of solar resource in buildings in chongqing
area

3.1 Sunshine duration and monthly mean total cloud cover

Comparatively speaking, solar water heater technology is mature. Photoelectric conversion
has high efficiency and develops rapidly. They are mainly used to provide medium
temperature warm water for shower bath and domestic hot water. Some applications can be
found in Fengjie, Wulong, Changshou, and Wuxi areas. It can be known from analytical
calculation, for the same compact panel type solar water heater system with collector area of
3.0m2, 60°C hot water that can be produced every day in the four seasons is 47.3L/person,
68.8L/person, 32.9L/person, and 16.5L/person respectively. The standard for Water
Quality for Urban Residential Use requirement of 40-80L/person is well met in spring and
summer. The standard can also be met in autumn and winter if auxiliary heating system is
used. In the aspects of economy and environment, although initial investment is higher than
electric or gas water heaters with cost per square meters (based on collector area) about 1500
RMB, the running costs is less, per square meter of collector can save electric power
700~800kWh, save standard coal 500kg, and what more is that it has no fume, SO,, NO,, and
CO; exhaust emission and has little amount of maintenance, with service life as long as over
10 years (Wei, et al, 2007). With the improvement of peoples’ living standard and the
improvement of solar water heater technology, the application of solar water heater system
in Chongging area will further expanded.

For solar photoelectric system, since it is often cloudy in the whole year and the rainy season
is long in Chongging area, solar resource is characterized by typical non-uniform
distribution. In addition, solar photovoltaic board has very low efficiency in overcast and
rainy days, low light level, and high temperature conditions. This made the solar
photoelectric system unable to be efficiently utilized in the whole year. Also initial
investment of solar photoelectric system is relatively high. Therefore, the application of solar
photoelectric system is tentatively not available with good economy.

3.2 Sunshine duration and monthly mean total cloud cover

It is cloudy in the whole year in Chongging area. Rainy season is long. Sunshine duration is
long. The time period in which solar radiation is high in fine day is mainly concentrated in
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summer. Therefore, utilization of solar energy in summer must take protection and control
into account. Typical practice is to arrange proper sunshade facility in the design of buildings.
Especially in the low latitude Chongqing area and buildings having large area of glass panel
wall, sun-shading technology can play the role of shading and heat insulation and reducing
the load of air conditioners in summer. In the overcast ad rainy days or foggy days in other
seasons, indoor day lighting will be utilized as much as possible to reduce artificial lighting,
improve indoor light environment, and provide natural, gentle, and mild light comfortable
sensation. The author demonstrated with experimental test that provision of interior sunshade
can reduce about 17% of energy consumption for air conditioning. Other domestic and abroad
study also indicated that window sunshade can save about 10%-24% energy while
construction investment used in sunshade is less than 2% (Shi, 2008; Cao, et al,2006; Athienitis
& zempelikos, 2002). Therefore, suitable sunshade and day lighting has good energy saving
and economy for the operation of buildings. Currently, most of the buildings in Chongqing
use fixed sunshades like awning, sunshade board, or out-extended balcony. The exterior
sunshades in different orientations are basically the same in type and size, which are not
provided based on the sunlight condition, causing poor climate adaptability. For this, the
authors carried out research work on the effect of movable exterior sunshades of buildings.

3.2.1 Model experiment and test

The authors mimicked a physical model using wood boards according to similarity
principle (Song, et al, 2003). The model is sized as 1.6 (L) x 1.5 (W) x 1.0m (H). Figure 6 is a
schematic diagram of the test room model. In the experiment, rooms with three types of
orientation of southeast, south, and southwest were provided. Test research has been made
on the effectiveness of exterior sunshades with out-extending length of 0, 0.3, 0.6, and 1.2m
for rooms having different orientation. The experimental tests were made in typical summer
condition in Chongqing area. In the test period, weather was sunny with less cloud cover,
damp, and hot. Maximum outdoor air temperature was 39.7°C with severe solar radiation.
The test points for parameters were determined as shown in Figure 7 according to standard
GBT 5699-2008 - Method of Day Lighting Measurement.

3.2.2 Analysis of test results
A. Horizontal exterior sunshade in southeast orientation

Figure 8 shows the variation curve of indoor average solar radiation intensity under
horizontal exterior sunshades of different out-extended lengths in the southeast orientation
and the variation curve of solar radiation intensity on vertical wall in the southeast
orientation. It can be seen from analysis of the figure that indoor average solar radiation is
the highest and has severe variation in the period of 8:00-10:00 in the morning. In the period
of 10:00-16:00, indoor average solar radiation reduces gradually with the variation of
outdoor solar radiation. However, the variation is very smooth, in the range of 8.1-
23.2W/m?2. At 10:00, the indoor average solar radiation intensity is relatively high without
sunshade provided, at about 139.5W/m? while at the moment, the indoor average solar
radiation intensity having sunshade provided is significantly lower. When out-extending
length of sunshade is at the level of 0.3m, indoor average solar radiation intensity is about
35.2W/m?, reduced by about 104.3W/m?2 as compared with that having no sunshade
provided. This indicates that the provision of horizontal exterior sunshade has effectively



30

Solar Power

kept out direct solar radiation entering into the room from exterior window, thus able to
reduce indoor solar radiation heat.

1300

Fig. 6. Schematic diagram of test room model
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Fig. 7. Test points of indoor sola radiation intensity

Time period

Indoor average solar radiation intensity
with horizontal exterior sunshade with
different out-extended length/ (W/m?)

Reduction amplitude of indoor
solar radiation as compared with
no sunshade provided / %

0.0m 03m [0.bm |0.9m 12m |0.3m 0.6m [0.9m 1.2m
8:00-10:00 134.6 [79.1 65.6 57.9 53.3 41.2 51.2 57 60.4
10:00-16:00 17.1 14.9 12.9 11.3 10.2 12.9 24.6 33.9 40.4

Table 2. Regulation and control effect of horizontal exterior sunshade in southeast

orientation

Table 2 lists the regulation and control effect of horizontal exterior sunshades with different
out-extended lengths in southeast orientation on the indoor solar radiation intensity. It can
be found by comparison of the data in the table that in the time period of 8:00-10:00, the
solar radiation intensity received by the vertical wall in the southeast orientation is the
highest. At this moment, the regulation and control effect of horizontal exterior sunshade is
relatively significant, maximum indoor solar radiation reduction is as high as 60.4% as
compared with the situation without sunshades. While in the time period of 10:00-16:00,
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indoor average solar radiation intensity has not much difference, indoor solar radiation
reduction amplitude as compared without sunshade is 2.2W/m?2, 4.2W/m?, 5.8W/m?, and
6.9W/m? respectively, reduction amplitude is not as high as that in the time period of 8:00-
10:00. This indicates that when horizontal exterior sunshade are provided in the southeast
orientation, the best regulation and control time can be selected in the period of 8:00-10:00.
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Fig. 8. Influence of horizontal exterior sunshade on indoor average solar radiation in
southeast orientation

B. Horizontal exterior sunshade in south orientation

Figure 9 shows variation curve of indoor average solar radiation intensity with horizontal
exterior sunshades having different out-extended lengths in the south orientation and the
variation curve of solar radiation intensity on vertical wall in the south orientation. Form the
figure it can be known indoor average solar radiation intensity reaches peak value
264.9W/m?2 at 12:00 noon and the variation curve is of single peak type. Indoor solar
radiation intensity in the whole day with no sunshade provide is in the range of 12.5-
26.2W/m?, with maximum value appearing at 12:00, about 26.2W /m?2. While with sunshade
provided, indoor average solar radiation intensity is significantly reduced. It can be known
by the analysis of data, when horizontal exterior sunshade in the south orientation has an
out-extended length of 1.2m, the whole day solar radiation reduction can be as high as
40.6% max. as compared with that of with other three out-extended lengths of sunshade,
indicating that the longer the out-extended length of horizontal sunshade facility is, the
better the sunshade effect will be.

C. Horizontal exterior sunshade in southwest orientation

Figure 10 shows variation curve of indoor average solar radiation intensity with different out-
extended lengths of horizontal exterior sunshades and the variation curve of solar radiation
intensity on the vertical wall in the southwest orientation. It can be known from the figure that
in the time period of 14:00-16:00 in the afternoon, indoor average solar radiation reaches the
maximum value in the whole day, in the range of 17.8-146.5W/m?2, and the indoor average
solar radiation has severe variation. While in the time period of 8:00-14:00 in the morning and
at noon, indoor average solar radiation rises gradually and the variation is very smooth in the
range of 4.0-23.2W/m?, regardless how the outdoor solar radiation varies.
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Fig. 9. Influence of horizontal exterior sunshade in south orientation on indoor average solar

radiation

Time period

Indoor average solar radiation intensity

at different out-extended lengths of
horizontal exterior sunshades / W/m?

Reduction amplitude pf indoor
solar radiation as compared with
that without sunshade provided

00m | 03m | 0.6m | 09m | 12m | 03m | 0.6m | 09m 1.2m
10:00-14:00 221 184 15.5 14.1 13.2 16.7 299 36.2 40.3
8:00-10:00
14:00-16:00 12.8 10.8 94 8.6 7.6 15.6 26.6 32.8 40.6

Table 3. Comparison of regulation and control effect of horizontal exterior sunshade in
south orientation
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average solar radiation
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At 14:00, the measured indoor average solar radiation reaches the maximum value
146.5W/m? without sunshade provided. While at this moment, the indoor average solar
radiation intensity is significantly reduced with sunshade provided. When out-extended
length of horizontal exterior sunshade is at 0.3m, indoor average solar radiation is
significantly reduced to 27.0W/m?, reduced by about 119.5W/m?2 as compared without
sunshade provided. In the time period of 14:00-16:00, solar radiation in the southwest is very
high. Regulation and control effect of horizontal exterior sunshade on indoor solar radiation
intensity is high. While in the time period of 8:00-14:00, solar radiation intensity in the
southwest orientation is relatively low, the regulation and control effect of horizontal
exterior sunshade on indoor solar radiation is relatively weak. Table 4 lists the regulation
and control effect of horizontal exterior sunshades with different out-extended lengths in
southwest orientation. It can be found from the comparison of data in the table that in the
time period of 14:00-16:00, solar radiation intensity received by vertical wall in the
southwest orientation is the highest. At this moment the regulation and control effect of
horizontal exterior sunshade is very significant. Indoor solar radiation reduction amplitude
is 55.8%, 62.2%, 66.5%, and 74.4% respectively as compared with that without sunshade
provided. While in the time period of 8:00-14:00, indoor average solar radiation intensity has
not much difference, indoor solar radiation reduction amplitude as compared without
sunshade is 1.3 W/ m?, 2.6 W/ m2, 3.2 W/ m? and 3.5 W/ m? respectively, Reduction
amplitude of indoor solar radiation is very small as compared with in the time period of
14:00-16:00, reduced by 11.8%, 23.6%, 27.3%, and 30.0% respectively.

Indoor average solar radiation intensity|Reduction amplitude of solar
at different out-extended lengths of|radiation as compared with no
horizontal exterior sunshades / W/m? |sunshade provided / %

00m | 03m | 06m | 09m | 1.2m | 03m | 0.6m | 0.9m 1.2m
14:00-16:00 107.8 | 47.7 | 40.7 36.1 27.6 55.8 62.2 66.5 74.4
8:00-14:00 11.0 9.7 8.4 8.0 7.7 11.8 23.6 27.3 30.0

Time period

Table 4. Comparison of regulation and control effect of horizontal exterior sunshade in
southwest orientation

This indicates that provision of horizontal exterior sunshade can effectively prevent direct
solar radiation from entering the room from exterior window to reduce indoor solar
radiation heat. When horizontal exterior sunshade is provided in the southwest orientation,
the best time period for regulation and control is in the range of 14:00-16:00, at which time
indoor solar radiation intensity can be effectively reduced, hence the indoor solar radiation
heat. Therefore, sunshade effect is very significant when horizontal exterior sunshade is
provided in southwest orientation and the best regulation and control time is in the range of
14:00-16:00.

3.3 Solar assisted ventilation technology

Chongqing area prevails over north-northern wind (NNW) in the whole year. It is in slight
and gentle breeze area throughout the year and belongs to wind resource deficient zone.
However, there is abundant of Summer Wind. Summer is extremely hot and full of sunny
days. Solar radiation intensity is high and Sunshine duration is long. The scope of application
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of solar assisted ventilation technology can be extended by utilizing this distribution feature of
summer wind power resource and indoor ventilation can be organized and improved.

3.3.1 Examples of application and test

The research group designed and constructed a solar assisted ventilation system in a certain
energy-saving demonstration building as shown in Figure 11. The main members of solar
assisted ventilation system were tested and measured in a typical summer day in
Chongging area in July, 2009. The main member of the solar assisted ventilation system is
the “sunlight well” on the exterior facade in the southwest orientation of the building. The
“sunlight well” is sized as LxWxH=850x700x9000mm, consisting of two pieces of glass. Each
corresponding floor in the “sunlight well” is provided with exterior windows opened to the
“sunlight well”.

Fig. 11. Solar assisted ventilation system in an energy-saving demonstration building

In order to reflect the effect of thermal pressure ventilation, floor 2 and floor 3 were selected
as the test floors. In the living rooms directly connected to the “sunlight well”, test and
measuring points were arranged according to the test point arrangement requirement of
standard GBT 18204.13-2000 “Methods for Determination of Air Temperature in Public
Places” and GBT 18204.15-2000 “Methods for Determination of Wind Speed in Public
Places”. The tri-section points on the diagonal lines in the living room were taken as the
humidity and wind speed measuring points. These points are all 1.5m above the floor.
During the test, the exterior windows of the ground floor facing the “sunlight well” were
closed.

3.3.2 Analysis of test results
A. Temperature analysis

Since the “sunlight well” faces to southwest, it was subjected to most severe solar radiation
in the afternoon. It can be seen from figure 15 that in the time period of 8:00-12:00, the
temperature in the “sunlight well” on floor 2 is slightly lower than that on floor 3 with
average temperature difference about 0.3°C and maximum temperature difference as high
as 0.5°C. While in the time period of 12:00-18:00, temperature in the “sunlight well” on floor
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2 is significantly lower than that on floor 3 with average temperature difference about 0.9°C
and maximum temperature difference as high as 2.3°C. It can be seen from this that under
the action of solar radiation heat, the air inside and outside the “sunlight well” has a density
difference that causes the air flow to form a “chimney effect” producing extraction or
suction action, thus guiding the indoor air to flow into the “sunlight well” from the open
exterior windows and exhaust into the air from top of the “sunlight well.” At the same time
fresh air is led into the room forming natural ventilation in the room. Especially the average
temperature difference in the “sunlight well” between floor 2 and floor 3 increases by 3
times in the afternoon compared with it in the morning.
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Fig. 12. Variation curves of wind speed in the “sunlight well” and at the exterior windows

It can be seen by analyzing the data in Figure 16 that both temperature in the “sunlight
well” and the outdoor temperature is higher than the indoor temperature. During test, the
average outdoor temperature was 33.5°C. The average temperature in the “sunlight well” on
floor 2 and floor 3 were 32.7°C and 33.3°C respectively. While the average indoor
temperature on floor 2 and floor 3 were 30.1°C and 29.9°C respectively. That is to say, the
average outdoor temperature was about 3.4°C~3.6°C higher than average indoor
temperature. The average temperature in the “sunlight well” was 2.6°C~3.4°C higher than
the average indoor temperature. It can be obtained from thermal pressure ventilation
calculation formula that the pressure difference that can be formed inside and outside the
room is 0.46Pa-0.62Pa. It can be seen from this that the pressure difference formed by the
“chimney effect” of “sunlight well”, leading to indoor ventilation. Study shows that increase
of indoor air speed increases the upper limit of acceptable indoor temperature to about
30°C, which is 2°C higher than the 28°C upper limit of the summer indoor design
temperature in the design specification. To sum up, though the outdoor temperature was
relatively high in the afternoon during the test and the maximum temperature was as high
as 39.6C, the chimney effect of “sunlight well” enhanced the indoor ventilation effect
keeping the average indoor temperature of floor 2 and floor 3 still within acceptable range.
Thus the operation time of air conditioners can be significantly reduced to realize the goal of
energy-saving and consumption reduction.
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Fig. 13. Variation of temperature in the “sunlight well” and outdoor temperature

B. Air velocity analysis

Figure 16 and Figure 17 show the variation curves of air velocity in the center and at exterior
windows of “sunlight well”, in the living room and at double-acting doors. It can be seen
from the figures that in the time period of 9:00-12:00, air velocity of the measuring points is
very smooth and has little fluctuation. At 12:00 noon when solar radiation reaches it
maximum, or about 790W/m?2, air velocity of the measuring points starts to rise up. In the
afternoon when solar radiation received is the highest and the “chimney effect” formed is
most powerful, air velocity of the measuring points reaches its maximum value especially at
the double-acting doors, except the indoor air velocity on floor 3 and the air velocity at the
inlet of “sunlight well” on floor 3. After sunset in the evening, air velocity of the measuring
points decreases gradually and fluctuates smoothly. It can be seen from this that the
“sunlight well” has made full use of solar radiation in the day playing the role of good
indoor ventilation.

Under the condition that the interior cross section of “sunlight well” on floor 2 and floor 3
and the air intake area of the exterior windows opened are the same respectively, the
average indoor air velocity on floor 2 is 0.15m/s in the morning and 0.22m/s in the
afternoon with increase amplitude of 40%. The average air velocity at the double-acting
doors on floor 2 is 0.46m/s in the morning and 0.60m/s in the afternoon, with increase
amplitude of 30%. The average indoor air velocity on floor 3 is 0.14m/s in the morning and
0.16m/s in the afternoon with increase amplitude of 14%, the average air velocity at the
double-acting doors on floor 3 is 0.39m/s in the morning and 0.56m/s in the afternoon, with
increase amplitude about 44%. It can be seen from this that with solar assisted ventilation
measures, air velocity of indoor ventilation is significantly increased with increase
amplitude as high as 14%-40%, thus indoor thermal condition and air quality are improved
significantly. Investment of this technology is low. Auxiliary equipment will no affect the
appearance design of buildings. In addition, the prevailing wind direction in summer in
Chongging area can be considered to form good wind environment for the buildings for the
benefit of applications of solar assisted ventilation and cooling technology to obtain
enhanced indoor natural ventilation effect.
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Fig. 14. Variation curves of air velocity in the house and at double-acting doors

4. Conclusion

It can be seen from the analysis of solar resource and by taking the climate features in
Chongging area into account that:

1.

The use of solar resource in spring and summer in solar photo-thermal system in
Chongging can well meet the demand of domestic hot water by a three-member family.
Although such demand cannot be sufficiently met in autumn and winter, remedy can
be made by taking auxiliary heating measures. Solar photo-thermal system having good
economic and environmental benefit, it will obtain further development with the
increase of demand.

In the extremely hot summer, provision of horizontal exterior sunshades for the exterior
windows of building in different orientations has significant effect of reducing the solar
radiation intensity entering the houses from exterior windows. In addition, there exists
the best regulation and control time period enabling the horizontal exterior sunshades
to play the best role of control. however, in other seasons, much natural light should be
let entering the house for the benefit of building lighting. Therefore provision of
sunshade facility should take the use demand in summer and winter into account.

Solar assisted ventilation technology can effectively reduce indoor temperature in
summer and increaseindoor air velocity so that acceptable indoor temperature can be
increased to 30°C to reduce Air conditioning operation time and the load of air
conditioners and improve indoor thermal comfort.

In summary, although solar resource in Chongqing area is congenitally deficient, technical
measures for the application of solar energy can be integrated with buildings so that solar
resource in the deficient area can be utilized to its maximum in the proper time period and
for proper objects through the above described technical measures.
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1. Introduction

In this chapter we will discuss solar spectral distributions and their corresponding impact
on the climate, especially on the Earth’s atmospheric temperature and energy balance at the
surface. Solar spectrum is defined as a spectral distribution of the solar radiation at the
top of the atmosphere (TOA). It represents the incoming solar energy to the earth system
containing the atmosphere and ocean. Solar radiation is the original driving force for the
continuous circulations of atmosphere and ocean. It has been recognized that the variation
of total solar irradiance (solar constant) at the TOA is one of the important factors impacting
climate change, though the variation in total solar irradiance is very small, approximately only
about 0.1% of the solar constant or about 1.3 W m 2 (Krivova et al, 2010). Besides the variation
of the total solar irradiance the changes in the spectral distribution of the solar radiation can
also affect the climate. However much less attention has been focused on this aspect.

The solar radiation at different wavelengths penetrates Earth’s atmosphere to different depths.
The high energy ultraviolet (UV) radiation is mostly absorbed by ozone in the mesosphere
and stratosphere. The atmosphere is relatively transparent to the visible (VIS) radiation and
allows most visible radiation to reach the earth’s surface and heat the land and ocean surfaces.
The atmosphere has strong absorption in the near infrared (NIR) radiation mainly due to the
water vapor in the lower troposphere. Therefore, different solar spectral distributions at the
TOA can affect the temperature structure in the atmosphere and the energy balance at the
surface, and hence impact the weather and climate.

In this chapter, the most commonly used solar spectra will be summarized and their
characteristics compared. These solar spectra will be applied to off-line radiation calculations
and climate model simulations to quantify the impact on climate.
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2. Measurement of the solar spectrum

Since the 1970s, the measurement of the solar spectral distribution at the TOA has become an
important issue for climate modeling. Since then several solar spectra have been proposed
and widely used. The solar spectrum can be measured at the earth’s surface and on
space platforms or estimated using proxy indicators such as sunspot and faculae. Before
satellite measurements of the solar spectrum became available, the data were mainly from
ground-based measurements and laboratory experiments. Since the historical time series
of the solar spectrum is required for long-term climate simulations and the data from
observations are not long enough for this purpose, reconstruction of the solar spectral time
series using empirical regression is inevitable. The most commonly used solar spectrum
in the early period was that provided by Neckel and Labs (1984) which was derived from
long-term observations of the absolute solar intensity measured at Kitt Peak Observatory and
from aircraft measurements. This solar spectrum became the reference and was used by many
science communities such as radiation model groups and the remote sensing community. We
refer to this solar spectrum as Neckel-Labs in the following discussions.

The second solar spectrum commonly used in the scientific community is that developed
by Kurucz (1995) based on measurements at Kitt Peak Observatory and balloon-based
measurements. This is a synthetic solar spectrum derived by a combination of measurements
and a theoretical model. The development of this spectrum was motivated by research
work performed by Gao and Green (1995) who found that the standard spectrum from
Neckel-Labs contains many absorption features in the 2.0-2.5 ym region that cannot be seen
in the observations from shuttle-borne instruments. These absorption features have been
corrected in the refined Kurucz spectrum. We refer to this solar spectrum as Kurucz95.
The advantage of the Kurucz95 spectrum is its high spectral resolution (~1 cm~!) which is
required by certain research applications, such as offline studies with line-by-line radiative
transfer models. Since this spectrum was published it has been used by several organizations
such as the UK Met Office, the US Atmospheric Environment Research and the Australian
Bureau of Meteorology, etc,. The Kurucz95 spectrum was recently updated by Chance and
Kurucz (2010) who corrected the absorption of solar irradiance by ozone and imported the
cross-calibration with the solar spectrum measured from satellite. We refer to this updated
version as Kurucz10 .

Lean (2000) provided the third solar spectrum which is a reconstruction of spectral irradiance
using multi-component empirical models, based on activity indices such as sunspot and
facular time series. This spectrum was updated with measurements from satellites from 1983
to 2004 covering the last two solar cycles and has been implemented into the UK Met Office
atmospheric model (Zhong et al., 2008). We refer to this spectrum as Lean00.

Satellites make it possible to directly measure the solar spectrum without the confounding
influence of the Earth’s atmosphere. In recent decades, a number of experiments have
been performed on various space platforms which have resulted in the new and improved
solar spectrum published by Thuillier et al. (2003). The spectrum provided by Thuillier
were derived from two instruments flown on the European Retrieval Carrier missions. This
spectrum covers the spectral range from 200 nm to 2400 nm and has been cross compared
with observations from other missions (Thuillier et al., 2003). We combine this data with that
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of the Kurucz10 for the wavelengths beyond 2400 nm to form a full spectrum. We use this
solar spectrum as the standard reference spectrum.
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Fig. 1. Spectral distributions of solar irradiance at the top of the atmosphere. Left: plots on
the original spectral grids; Right: two Kurucz spectra degraded by a moving average over 0.5
nm.

The five solar spectra mentioned above are shown in Fig.1. The major difference between
these spectra is the spectral resolution. The spectral resolutions for the two Kurucz spectra
are much higher than for the other three spectra and exhibit large oscillations in the spectral
region 200-1000 nm. The right panel shows the two Kurucz spectra degraded by taking a
moving average over the 0.5 nm spectral grids of the original spectrum. The degraded curves
are relatively smooth and agree better with the other spectra. Chance and Kurucz (2010) also
compared their modified spectrum with Thuillier’s spectrum using a similar degradation.

It is seen that the spectral distributions of the five solar spectra are different. However, highly
oscillatory spectral signatures make it hard to analyze these differences. In order to create
a picture that can clearly show the spectral differences between the five solar spectra we
calculate the fractional distribution of the incoming solar energy in the three solar spectral
ranges of UV, VIS and NIR and the results are shown in Fig.2. The results presented in this
figure have been normalized by the reference spectrum of Thuillier to explore the differences
relative to the reference spectrum. It is seen that the fractions of the solar energy among the



42 Solar Power

five spectra are different in these spectral regions. These differences will result in significant
differences in the radiative heating rates in the stratosphere and irradiances at the surface as
will be shown in the following sections. The roles of the incoming solar energy in these three
spectral regions are very different. In the UV region, the ozone absorption is dominant in the
mesosphere and stratosphere and most of the solar energy is absorbed here. In the NIR range
water vapor is a dominant absorber with the corresponding strong absorption occurring in
the lower atmosphere. In the VIS range gaseous absorption is relatively weak allowing a large
portion of the solar energy to penetrate through the atmosphere and reach the earth’s surface.
Therefore, different solar spectral distributions can produce different heating profiles inside
the atmosphere and also influence the energy budget at the surface. These physical principles
help us to understand the results of the model simulations shown in the following sections.
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Fig. 2. The fractional distribution of solar energy over three spectral regions from 4 model
spectral data. The results have been normalized by the fraction of the Thuillier reference data.

3. Radiation and climate models

In order to study the sensitivity of the different solar spectral distributions, three kinds of
model will be used. The first is a high resolution line-by-line model, which is usually used
as a benchmark to verify the accuracy of a radiation algorithm used in a climate model,
but in this study, we use it to evaluate irradiance at the surface and the heating rate in
the atmosphere determined using the different solar spectral data. With the line-by-line
calculations, the detailed changes in the heating rates and irradiances corresponding to the
variations of the solar spectral distributions can be revealed. The line-by-line radiative
transfer model GENLN2 (Edwards, 1992) is used to perform these calculations at high spectral
resolution. Version 3.0 of the GENLN2 model is used and this model has been modified to
allow irradiance and heating rates calculations.

The broad-band model used in this study is the Sun-Edwards-Slingo version 2 (SES2) scheme
(Sun, 2011). It has 9 spectral bands in the shortwave region, 4 bands in the UV-VIS and 5 bands
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in the NIR. The 5 solar spectra have been implemented in the scheme so that their impact on
radiative heating in the atmosphere can be assessed in both off-line calculations and in climate
model simulations.

The Australian Community Climate Earth System Simulator (ACCESS) model is used to
perform the climate sensitivity study. ACCESS is a fully coupled system developed at the
Centre for Australian Weather and Climate Research. The atmospheric component is the
UK Met Office Unified Model. The SES2 radiation has been implemented in ACCESS. We
performed AMIP (Atmospheric Model Intercomparison Project) type simulations to assess
the impact of the variation of solar spectrum on the earth’s climate. The model used in this
study has a horizontal resolution of 1.25° x 1.875° in latitude and longitude and 85 vertical
levels. The model top height is about 85 km. The model dynamical core is a semi-implicit,
semi-Lagrangian, predictor-corrector scheme solving the non-hydrostatic, deep-atmosphere
equations (Davies et al., 2005). In addition, the model includes a prognostic cloud fraction and
condensate cloud scheme.

4. Impact of solar spectral distribution

There have been a number of studies investigating the possible impact on climate due to
changes in the solar constant (e.g. Kopp and Lean, 2011), but there is a lack of systematic
research on the intercomparison of those solar spectra mentioned above and the impact on
climate model simulations due to the differences in these spectra. Mlawer et al. (2000)
compared the solar spectral irradiance at the surface determined with their line-by-line
model (LBLRTM) using the Neckel-Labs and Kurucz95 spectra with high spectral resolution
observations obtained at the Southern Great Plains site of the US Atmospheric Radiation
Measurement (ARM) program(Stokes and Schwartz, 1994). Their results suggested that
Kurucz95 provides a better modelled irradiance at the surface. Zhong et al. (2008) compared
the impact of shifting from the Neckel-Labs spectrum to the Kurucz95 and Lean(00 spectra in
a line-by-line radiation model and in a climate model. They found that the solar heating
rate in the stratosphere generated by Kurucz95 is significantly larger than that generated
by Neckel-Labs, because the larger incoming solar energy in the UV causes extra ozone
absorption in the Kurucz95 spectrum. Since different climate models may use any of the
solar spectra introduced above it will be useful to investigate the use of all of the spectra
mentioned above and their influence on radiation and climate models, particularly in the
context of AMIP style experiments. In addition, the recent satellite observation-based Thuillier
spectrum was not accounted for in Zhong et al. (2008) and has not been evaluated in climate
models. In this section, we present a comparison of the five solar spectral data, in which four
of them (Neckel-Labs, Kurucz95, Kurucz10 and Lean00) have been used in AMIP style model
simulations. The satellite observation-based Thuillier spectrum is used as the reference. It
should be emphasized that although we use the Thuillier spectrum as a reference, it should
not be regarded as the standard benchmark because the solar spectrum varies and a spectral
data averaged from a longer period may be preferred. An appropriate comparison with
observations may be desirable to assess the accuracy of these spectral data but this is beyond
the scope of this study.

In Zhong et al. (2008), the related physical discussion focused on the temperature bias in the
stratosphere due to changing the solar spectra. In our discussions, apart from the stratospheric
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temperature issue, more attention is paid to the physics related to the changes in the lower
tropospheric temperature and the surface energy balance.

4.1 Off-line radiation calculations

GENLN2 line-by-line calculations are performed using a middle latitude summer (MLS)
atmosphere with 107 vertical levels to investigate the impact of the changes in solar spectrum
on the solar heating rates in the atmosphere. The HITRAN2008 data base is used and 6
absorbing species (H20, CO2, O3, CH4, N20, 02) are included in the calculations. The water
vapor continuum and oxygen collision-induced continuum are also included. The spectral
resolution of 0.005 cm~! and the Voigt line shape profile are used in the calculations. The
solar constant is taken as 1368.8 W m~2, the solar zenith angles is assumed to be 30° and the
surface albedo is set to 0.2.
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Fig. 3. Solar heating rates determined using GENLN2 line-by-line (upper panels) and SES2
broad-band (lower panels) schemes with five solar spectra. The calculations use the MLS
atmosphere with a solar constant of 1368.8 W m~2 and a solar zenith angle of 30°. The
Thuillier spectrum is treated as the reference and the left panels show the heating difference
between the model spectra and this reference.
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In Fig. 3, the upper left panel shows the solar heating rates calculated by GENLN2 for the five
solar spectra. Taking Thuillier as the reference, the upper right panel shows the differences
in heating rate between the model solar spectra and reference spectrum. It is seen that the
maximum solar heating rate occurs at about 1 hPa. This is due to the absorption by ozone
whose maximum concentration is close to this level. A large difference in heating rate also
occurs around this region. Compared to the result from the reference spectrum, it is found
that the Neckel-Labs and Lean00 spectra produce smaller heating rates, and the two Kurucz
spectra produce larger heating rates. The difference in heating rate between Neckel-Labs and
the reference is about -1.5 K day ! and the difference in heating rate between Kurucz10 and
the reference is about 2 K day’1 , which is about 10% of the heating rate close to 1 hPa.
Since the total incoming solar energy is assumed to be the same for all five spectra, in the
Neckel-Labs and Lean00 spectra, less solar energy is filtered out by ozone absorption before it
reaches the lower atmosphere and ground.

The same calculations are also performed using the SES2 broad-band scheme. In the SES2
model Rayleigh scattering is included. The broad-band calculations use the MLS atmosphere
with 60 vertical levels and the rest of the specifications are the same as those for the line-by-line
calculations. It can be seen that the results from the broad-band calculations are very close to
those of the line-by-line calculations. Since the SES2 radiation algorithm is used in the climate
model calculations shown below, the results in 3 indicate that the radiation calculations in the
climate model are reliable.

It is seen in Fig.2, the old solar spectrum of Neckel-Labs has the smallest solar energy input
in the UV range. This is consistent with the result shown in Fig.3. The heating rate due to
ozone absorption is the weakest for Neckel-Labs. It is found that the two Kurucz spectra have
relatively large energy fraction in the UV spectral range. Therefore, the solar heating rates
from these two spectra are larger than those from the other spectra in the ozone absorption
region.

In order to verify the results of Fig.3, in Fig.4 we present the more detailed line-by-line spectral
heating rates at the 1.5 hPa level, where the ozone absorption is at its peak value. Only the UV
region is shown as the heating rate in other regions is essentially zero. In the upper panel the
heating rates from the Kurucz10, Lean and Thuillier calculations are shown as a function of
wavelength. It is seen that large heating rates occur in the Hartley band around 300 nm due
to the ozone absorption there. Also large differences in heating rate are found in this region
using the different solar spectra. The Lean spectrum produces the smallest heating rate and
the Kurucz10 spectrum produces the largest heating rate.

Figure 2 shows that the Lean00 spectrum has the largest solar fractional input energy in the
NIR region, so it is expected that the use of this spectrum would produce a larger heating rate
in the lower troposphere where the water vapor absorption dominates. However, since the air
density is high in the lower atmosphere, the heating rate becomes small, and the difference in
heating rate is not obviously noticeable in Fig.3. Nevertheless the difference in heating rate in
the lower troposphere can be more clearly found in climate simulations as shown later due to
feedback effects involving water vapor.

It is also seen in Fig.2, that the two Kurucz spectra and Neckel-Labs spectrum have relatively
larger solar input energy in the visible region. Since the atmosphere is relatively transparent
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Fig. 4. Solar spectral heating rates at the 1.5 hPa level of a MLS atmosphere determined using
the GENLN2 model for three solar spectra. The calculations assume a solar zenith angle of
30° and a surface albedo of 0.2. The lower panel shows the heating differences between
Kurucz10, Lean00 and the reference.

in this region, the larger the input solar energy at the TOA will lead to a larger downward
solar irradiance at the surface and this is demonstrated in Fig. 5.

In Fig.5, the downward solar irradiances versus solar zenith angle are plotted. The
calculations are performed using the GENLN2 model. As in Fig.3, the results are determined
taking the spectrum of Thuillier as the reference and the differences in the downward
irradiance at the surface between the model spectra and reference are shown. The upper
left panel of Fig.5 presents the differences in total downward solar irradiance at the surface. It
is found that the downward solar irradiances at the surface obtained using the all four model
solar spectra are higher than that using the reference spectrum. The irradiance difference
between Kurucz95 and the reference is smallest and the difference between Kurucz10 and the
reference is largest. At the solar zenith angle of zero, the Kurucz10 spectrum produces an
extra 2 W m~2 solar downward irradiance at the surface compared with the result from the
reference spectrum.

In order to understand the reason for the difference in the downward flux at the surface,
we separate the broad band results into three spectral ranges and the corresponding results
are shown in the other three panels. In the UV range (upper right panel), the downward
irradiance at the surface from the Kurucz10 spectrum is higher than that from the reference
spectrum, while the results from the other three spectra are less than that from the reference. It
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Fig. 5. Difference of downward solar irradiance between model spectra and the reference
determined using the GENLN2 model. The upper left panel shows the difference in full
spectrum, upper right for the UV spectrum, lower left for the VIS spectrum and lower right
for the NIR spectrum.

is shown in Figs.2 and 3 that Kurucz10 has a larger portion of the solar energy in the UV region
and produces the largest solar heating rate in the stratosphere. The downward irradiance
at the surface is also high using this spectrum. The proportion of the solar energy for the
Neckel-Labs spectrum is significantly smaller in this region and the surface irradiance from
this spectrum is also small compared with the reference results. The difference in irradiance
between Neckel-Labs and the reference can be as large as 7 W m 2 at zero solar zenith angle.

The differences in the downward solar irradiance in the VIS range are shown in the lower left
panel of Fig.5. Since the atmosphere in the VIS region is relatively transparent to downward
solar radiation, the results of the downward irradiance at the surface match well with those
of the incoming solar energy at the TOA as shown in Fig.2. The spectrum of Neckel-Labs,
Kurucz95 and Kurucz10 have a relatively larger proportion of the solar energy in this region
compared with reference spectrum. The downward irradiances at the surface from these three



48 Solar Power

spectra are higher than that of reference, whereas the downward irradiance from Lean00 is less
than the reference due to its relatively less incoming solar energy at the TOA. The difference
between Neckel-Labs and Thuillier is close to 7 W m~2, and difference between Neckel-Labs
and Lean is up to 9 W m 2,

The differences in downward solar irradiance in the NIR region are shown in the lower right
panel of Fig.5. In contrast to the result of the UV, Kurucz10 is the smallest and Lean00 is the
largest. According to Fig.2, Kurucz10 contains the smallest proportion of the solar energy
compared to the other data, which leads to less downward flux at the surface. Also it is easy
to understand why the Lean spectrum has the largest downward irradiance, since the solar
incoming energy portion from this data is the largest one amongst the five spectra in the NIR
range.
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seasons. The upper panels show the results corresponding to the reference solar spectrum
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Overall the spectral distributions of the downward irradiance at the surface are largely
controlled by the distributions of the incoming solar radiation at the TOA, although gaseous
absorption in the atmosphere can also have an effect. It is seen that although the changes
in the downward total irradiance at the surface are within 2 W m~2 corresponding to the
changes in spectral distribution at the TOA, the changes in spectral band irradiance are much
larger, which will have large impacts on boundary layer and on land-surface processes. In the
UV spectral region, for example, the changes in irradiance at the surface will affect the UVB
forecasts that are important to the public. Radiation in the visible region (photosynthetically
active radiation) is partially absorbed by plants and affects crop production and the carbon
balance in the biosphere. In the NIR spectral region, water vapour absorption in the lower
troposphere generates significant greenhouse warming. The radiation reaching the surface
will be largely absorbed by the land surface because of the small albedo, which will lead to an
increase in the surface temperature. The downward solar irradiance at the surface can strongly
influence the surface energy budget and the surface sensible and latent fluxes. Therefore
seeking an accurate solar spectrum is clearly an important issue for numerical modelling of
weather and climate.

4.2 AGCM simulations

In this section, we focus on the impacts of the changes in solar spectral distribution on
present-day model-simulated climate. The climate simulations are performed with the
ACCESS atmospheric model, which has been discussed in the previous section. The AGCM
simulations have been performed with an initial condition specified at September 1978.
Prescribed sea surface temperature and sea ice data with seasonal variations are used as
forcing from the ocean. A series of 30-year climate integrations were performed in order to
find the influence of the different solar spectral distributions on climate simulations. A long
time climate model simulation is required to reduce the noise due to natural variability. We
present below the 30 year mean climatology.

The climate simulations based on four solar spectra (Thuillier, Kurucz95, Kurucz10 and
Lean00) are performed. The Neckel-Labs spectrum is not considered in the climate
simulations, since this old solar spectrum has became less popular in the last decade. As
for the off-line radiative transfer comparisons, the climate simulation results are based on
taking the Thuillier spectrum as the reference. Two seasonal mean results for summer
June-July-August (JJA) and winter December-January-February (DJF) are presented.

We first investigate the temperature response inside the atmosphere. Figure 6 shows the zonal
mean temperature cross-section for the two seasons and difference between the simulations
using the different model spectra and reference spectrum. It is found that higher temperatures
occur in the upper stratosphere due to the ozone absorption in the UV region. In the lower
atmosphere below 2 km, the temperature is relatively large too due to water vapor absorption
in the NIR range. In climate simulations feedback processes can play an important role.
The absorption of solar energy in the NIR spectrum can cause a warming effect, and the
temperature increase in the atmosphere can lead to more water vapor in return. This kind
of feedback can make the temperature bias more sensitive to changes in the incoming solar
spectral distribution.
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The differences in temperature between the climate simulations using different solar spectra
are shown in the lower panels. It is seen that the temperatures in the upper atmosphere from
the simulations using the Kurucz95 and Kurucz10 spectra are systematically higher than that
using the Thuillier spectrum. The difference can be as large as 5 K over large regions in
the upper stratosphere. This is consistent with the results from the off-line line-by-line and
broad-band calculations as shown in Figs.3 and 4. In contrast, the temperatures obtained
by using the Lean spectrum are systematically lower than that using the Thuillier spectrum.
Zhong et al. (2008) have performed GCM simulations to test the effect of the Kurucz95 and
Lean solar spectra used in an early version of the UM model. They have shown that the
use of the Kurucz95 spectrum results in a substantial warm bias above the stratosphere, and
using the Lean spectrum can reduce the warm bias by about 4.3 K. The results obtained here
are consistent with their finding. Furthermore, our results indicate that the use of Kurucz10
spectrum can cause an even larger warm bias in the stratosphere, which has not been studied
by anyone before.

In the lower atmosphere, the Lean00 spectrum produces a noticeable warming bias compared
to that of the Kurucz spectrum. As is shown in Fig.2 the Lean00 spectrum contains a larger
portion of the incoming solar energy in the NIR region, and this energy can penetrate through
the upper atmosphere and reach the lower troposphere where the water vapor absorption
is relatively strong and leading to the larger solar heating rate which warms the lower
troposphere and surface. The difference in temperature shown in the AGCM simulations
is generally larger than the difference in heating rate shown in the off-line calculations. This
is due to the positive feedback between the temperature and water vapor amount mentioned
above.

In the top panels of Fig.7, the two seasonal (JJA and DJF) mean global distributions of
the downward solar irradiances at the surface based on the simulations using the Thuillier
spectrum are presented. It is seen that the downward solar irradiance is much larger in the
northern hemisphere in the summer season and the opposite result happens in the southern
hemisphere. In the lower panels (second to fourth rows), the differences in the downward
solar irradiance are presented. It is seen that changes in solar spectra can cause changes in
solar irradiance at the surface as large as 3 W m~2, which is much lager than that due to the
aerosol forcing (Nicolas et al., 2005). The difference is also larger in the summer hemisphere
than in the winter hemisphere. Of the three model spectra, Kurucz10 has the largest difference
in the downward irradiance and Kurucz95 has the smallest difference compared to that of the
Thuillier spectrum. This is consistent with the off-line broad band results as shown in the
upper left panel of Fig.5.

In Fig.8, the impacts on the surface temperature due to changing the solar spectra are
presented. The upper two panels show the surface temperatures produced by the reference
Thuillier spectrum, for the two seasons of JJA and DJF. The lower panels show the differences
in surface temperature between the model spectra and the reference spectrum. The two
Kurucz spectra produce lower surface temperatures compared to the Thuillier spectrum. It
is seen that the temperature response to the changes in solar spectra is in a range of +2K. As
seen in Fig.7, using the Kurucz10 spectrum leads to more solar irradiance (and hence, solar
energy) reaching the surface. The surface temperature, however, does not respond in the same
direction as this forcing. We therefore need to understand the related physical reasons behind
this behavior. An obvious reason is that the surface albedo is very different in the different
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Fig. 7. Compared in the upper panel are the total downward solar irradiance (W m~2) at the
surface determined using the reference solar spectrum for winter (DJF) and summer (JJA)
seasons with those determined by the model solar spectra, shown as separate differences
(model minus reference) separately in the bottom three panels.

spectral regions. Generally, the surface albedo is relative lower in the NIR range and higher
in the UV and VIS range. A higher surface albedo indicates a stronger surface reflection,
which limits the energy absorption by the surface and produces a lower surface temperature.
The surface albedo in the NIR is about 1/3 of that in the UV and VIS. Therefore, the surface
solar energy absorption is largely determined by the downward solar radiation in the NIR
range. In Fig.5, it has been shown that the Kurucz10 spectrum produces the lowest downward
irradiance at the surface in the NIR range. This explains why the Kurucz10 spectrum produces
the lowest surface temperature. Following the same argument, we can understand why the
Lean00 spectrum produces the relatively highest surface temperature as shown in Fig.8, since
the Lean spectrum corresponds to the largest downward solar irradiance in the NIR range.
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Fig. 8. Compared in the upper panels are the surface temperature distributions determined
by the ACCESS model for two seasons using the reference solar spectrum with those
determined using the model spectra displayed as separate differences in the bottom panels.

5. Summary and conclusions

In this chapter, we have analyzed the solar spectra currently used in climate models.
The radiative impacts of the solar spectra are examined by using high spectral resolution
line-by-line and broad-band radiative transfer models. It has been found that the solar heating
rate in the stratosphere is very sensitive to the solar spectral distribution at the top of the
atmosphere. The most sensitive spectral region is in the Hartley band near 300 nm where
ozone has a strong absorption. The solar energy fraction from the Kurucz95 spectrum in
this region is relative larger and the use of this spectrum leads to a large solar heating in the
upper stratosphere. The modified spectrum of Kurucz10 contains an even larger proportion
of energy in this region, which produces an even higher heating rate. The Lean00 spectrum
which includes the latest observations from space platforms produces heating rates close to
those using the reference Thuillier spectrum.
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It is found that the radiative impact of the solar spectra is not limited to the ozone absorption
in the UV range. The water vapor absorption in the lower atmosphere and the downward
solar irradiance at the surface are also strongly influenced by the choice of the solar spectra.
The effects of changes in the solar spectral distribution on the solar irradiance in three major
spectral regions are much larger than on the total irradiance. The maximum difference in the
total irradiance among the five solar spectra is about 2 W m~2 whereas those in the three
spectral band irradiances are about 6 - 9 W m~2. These spectral differences will in turn
influence important processes, such as the forecast UVB, land-surface processes, and sensible

and latent heat fluxes.

Four solar spectra have been evaluated using the ACCESS climate model. The climate model
simulations show that the temperatures in the stratosphere and above from the Kurucz95 and
Kurucz10 spectra are systematically higher than the result using the Thuillier spectrum. The
difference is up to 5 K. On the other hand the stratospheric temperature due to use of the
Lean00 spectrum is generally lower than the result using the Thuillier spectrum. In the lower
atmosphere the Lean00 spectrum produces a noticeable warming bias compared to that of the
Kurucz spectrum because this data contains a larger portion of incoming solar energy in the
NIR range.

The climate model simulations also show that the changes in solar spectra can influence the
downward solar irradiance at the surface. The difference can be as large as 3 W m~2 for
different solar spectra. The changes in the downward solar irradiance is expected to have
an influence on the surface temperature. However, it is interestingly found that the larger
downward total solar irradiance at the surface does not necessarily correspond to higher
surface temperature. The surface temperature strongly relies on the surface albedo and the
surface albedo is generally much lower in the NIR range. Therefore the surface solar energy
absorption is largely determined by the downward solar radiation in the NIR range.

From the results presented in this study, we cannot make a recommendation on which solar
spectra should be used in a climate model because of the lack of the necessary comparison
with observations. However, our results are of use for future work. For example, it may
be better to examine the solar spectra against observations in the UV spectral region. This
is because the differences in the solar irradiance amongst the five spectra are largest in this
region where only the ozone absorption is important. The calculations in this region are not
influenced by uncertainties from water vapour and other absorbing species. Although we
cannot make a general recommendation our results suggest that the Lean00 spectrum should
be used in the ACCESS (UM) model as it can reduce the model warm bias as identified by
Zhong et al. and the current study.
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1. Introduction

A wide variety of building energy analysis methods are currently available to HVAC
engineers and range from simple to sophisticated. The simplest methods involve the largest
number of simplifying assumptions and therefore tend to be the least accurate. The most
sophisticated methods involve the fewest assumptions and thus can provide the most
accurate results. Generally, methods for building energy analysis can be given at three
categories as follows:

e Single Measure Methods (example: Equivalent Full Load Hours)
e  Simplified Multiple Measure Methods (example: Bin Method)
e  Detailed Multiple Measure Methods (example: Hour by Hour)

Detailed Multiple Measure Method provides the most accurate results. In detailed Multiple
Measure Method, energy calculations are on hour-by-hour basis. Within the detailed
multiplemeasure categories are two major sub-categories worth discussing: The Reduced
Hour-By-Hour Method and 8760 Hour-By-Hour Method. When consider the detailed
methods, it is very difficult to find actual hourly weather data for each place. Also, detailed
methods take much time for calculation [1]. The most detailed methods simulate the hourly
dynamic heat transfer process inside the building envelope as well as the dynamic behavior
of the heating system and the equipment. They are based on thermodynamic principles and
solved numerically by using the initial and boundary conditions in addition to the geometry
of the building. These procedures account for the influence of many factors such as weather,
internal heat gains, building thermal inertia, solar gains, control system, etc., which may
significantly vary with time. These methods are defined to be dynamic and they require
hourly weather temperature data [2]. Dynamic methods are more detailed and usually
require hourly calculations over the whole year for an accurate analysis of the annual load
and the energy consumption [2-5].

* Corresponding Author
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Forecasting the total or monthly energy requirement for cooling or heating purposes
requires the determination of cooling or heating load profiles, for which identification of the
two main external factors are necessary namely; the mean outdoor temperature probability
distribution and the heat gain from sunlight. Monthly outdoor temperature probability
distribution is very important input data for determining monthly heating and cooling
degree-hour. It is known that degree-hour values are calculated simply by summing up the
differences between the hourly dry-bulb temperatures and a standard reference temperature
(base temperature). Outdoor temperature distribution and reference (base) temperature
directly affect the heating or cooling load. Reference temperatures for heating in building
applications vary from country to country. For instance, in the UK, heating degree-hour
values are based on an outside dry bulb temperature of 15.5 °C, while Australia uses 18°C
and the United States uses 18.3°C. After estimating the probable outdoor temperature
distribution, the total cooling or heating degree-hours values are calculated.

Probability density functions are successfully applied in wind, solar, and hydrogen energy
production as well as the outdoor temperature analyses and as such, they are commonly
preferred by many researchers [6-13] for energy analyses in the literature. Coskun [13]
applied this technique to outdoor temperature and proposed a new approach for degree-
hours calculation. He used the sinusoidal function to specify the outdoor temperature
probability distribution. Many scientists [14-20] focused on the total cooling/heating degree
hours and degree-days values for different countries. In some studies, a constant base
temperature method is employed to predict the cooling/heating degree-hours. In the
literature, only a few studies are available that focus on both constant and variable base
temperatures. More recently, hourly building energy simulations increasingly replaced the
simplified load calculation methods such as the degree-days and degree-hours approaches.
These simulations provide several advantages over such kinds of simplified methods during
the design stage, including the ability to explore the equilibrium state of applying a large
number of different combinations (or packages) of energy conservation measures and to
account for any dynamic behavior such as the thermal energy storage in the structure itself.
However, simplified models and methods are still preferred in practice over these
sophisticated building energy simulation programs. In Turkey, people are generally in favor
of using less complicated methods [21].

In this study, a modified degree-hours calculation method is developed to obtain more
accurate results and then applied to four cities in Turkey.

2. Calculation method and new function

Coskun [13] proposed a sinusoidal function to estimate the probability density distribution
of the outdoor temperatures. The proposed sinusoidal function is given by the equation
below:

Hy =a+b-Cos(c-T,, +d) 1)

where, a, b, ¢ and d are the model parameters, T,,, denotes the outdoor temperature in °C
and H; = gives the hours lapsed in a month at a temperature of T, degrees. After
estimation of the temperature probability density distribution, heating and cooling degree-
hours were calculated using the equations below;
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k
HDHTotal = Z Hn . (TBase - Tn) (2)
n=s
k
CDHTotul = z Hn : (Tn - TBase) (3)
n=s

Temperature ‘k’ and ‘s’ denotes the temperature limits of the function. HDHr,, and
CDHy,,, indicate the total heating and cooling degree-hour values for a chosen month,
respectively. Ty, is a reference indoor temperature for both heating or cooling.

2.1 New modeling functions

In this study, two new functions are proposed. The proposed new functions are given by the
equations below:

{—(Tm —g)z}
2
Hp =f-e 2h 4
ket s n(T,, )
Tour
Hp = (5)

out

where, f, h, g, k, m and n are the new model parameters, which are determined according to
mean outdoor temperature probability density distribution, whose determination is
explained detail in Section 3 below.

3. Determination of mean outdoor temperature probability density
distribution

We calculated both temperature probability distribution and time elapsed in a month for
any temperature interval of 1 °C. In the calculation, hourly dry-bulb outdoor temperature
data, based on the last 32 years and recorded by the Turkish State Meteorological Station,
were used. In this study, the general trend was tried to be obtained in one formulation. The
outdoor temperature distribution frequency exhibits different characteristics in each year
and month. Nevertheless, the mean outdoor temperature probability density distribution for
each month can be determined by using the long term actual data for the past temperatures,
which can be utilized as a reference distribution for degree-hours calculations. It was
observed that outdoor temperature has a random fluctuation on general trend. In this study,
the mean outdoor temperature probability density distribution was taken as a reference
distribution for the modified degree-hours calculation method. Fig. 1 is given to illustrate
the fluctuation of actual outdoor temperature frequency distributions for 32 years.

4, Results and discussion

The modified degree-hours calculation method was applied to four cities in Turkey. The
model parameters are determined and given in Table 1. Analysis results show that the two
new functions result in higher accuracy for the summer season. Therefore, the three
functions are incorporated into a modified degree-hours calculation method in this study.
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The two functions proposed in this study were also applied to a case study to demonstrate
its accuracy. The province of Adana was chosen for this purpose. The actual outdoor
temperature probability density distribution and the two functions are shown in Fig. 2 for
the month of May. As it can be seen from Fig. 2, the new functions displayed better
performance for cooling degree-hours calculations for the summer season. Also, actual and
model outdoor temperature probability density distributions for six months were given in
Fig. 3 for Adana.

Adana
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

a 32.80 25.36 25.75
b 3637 2830 29.35
c 028 024 022 - - - - - - - - -

£ T4 2 26 a1 - - - - - - - - -
&
o f - - 6487 - - - - - - 5948 7353
QD
§ g - - - 1736 - - - - - - 1519 11.16
g h - - - aaa - - - - - - 484 404
12}
k - - - 83.856 149.445261.517261.733137.124 71.657 - -
m - - - - -4041 -8583 -1652.7-1668.4 7940 -3407 - -

n - - - - -19.87 -3446 -5945 -59.35 -31.45 -16.88 - -
Temperature 05 05 25 55 115 155 175 175 135 95 15 -5
limits 195 215 255 335 395 405 435 435 415 385 305 245

Months
Balikesir
1 2 3 4 5 6 7 8. 9 10 11 12
a - - - - - 2411 - - - - - 24.00
b - - - - - 24.28 - - - - - 30.26
C - - - - - 0.21 - - - - - 0.21
2 d - - - - - 466 - - - - - 169
a.
o, 67.0
5 f 7 53.76 60.37 51.70 - - - - 53.81 62.06 60.80 -
QO
=
jov}
‘_BD g 485 548 762 1267 - - - - 20.67 1535 10.60 -
3 h 443 499 492 557 - - - - 536 479 473 -
k - - - - 42.664 - 104.903106.627 - - - -
m - - - - -162.4 - -566.7 -571.2 - - - -
n - - - - -10.28 - 2429 2477 - - - -

Temperature -85 -105 75 35 55 85 115 115 65 15 35 35
limits 205 225 265 325 375 355 405 405 365 325 275 195
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Months
Antalya
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
< f 71.70 61.35 66.30 66.10 63.15 58.40 - - - - 61.79 71.50
8_ g 10.24 10.77 1290 16.20 2051 25.38 - - - - 1472 11.34
¢
»; h 416 439 449 4.36 472 494 - - - - 4.68 417
O
§ k - - - - - - 165.897 157.934101.845 65.237 - -
% m - - - - - - -1034.5 -975.4 -557.6 -290.3 - -
’ n - - - - - - -3745 -357 -23.46 -15.58 - -
Temperature -15 -15 05 45 85 125 175 175 145 95 35 05
limits 215 225 265 305 365 405 445 445 395 375 295 235
Months
Ankara
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
*8 f 60.96 5150 5190 54.17 5280 4998 50.18 5045 48.08 55.00 53.65 64.80
s £
?5 §_ g 1.04 214 6.00 1095 1556 1952 23.09 2298 1856 1266 6.65 215
T o
@ h 489 523 575 533 565 583 599 600 6.09 544 540 4.60
Temperature -125 -125 95 35 05 65 85 105 55 05 65 -105
limits 145 165 215 255 315 345 375 385 335 295 215 155

Table 1. Monthly model parameters for the four cities.
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Fig. 1. Actual and mean outdoor temperature frequency distributions for Balikesir during
the month of January
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Fig. 3. Outdoor temperature probability density distribution for six months

5. Conclusions

Results of the analysis show that one function is not sufficient for determining the accurate
outdoor temperature distribution during the year. In this regard, two new functions were
proposed and added to the existing calculation procedure. As a result, the modified degree-
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hours calculation method obtains more accurate results for each month by using all three
outdoor temperature distribution functions. The main advantages of the approach can be
listed as follows:

e  Outdoor temperature distribution for each month can be determined precisely by using
the modified degree-hours calculation method. Probable heating and cooling degree-
hours value can be calculated by using probable outdoor temperature distribution for
each month.

e Heating and cooling degree-hour values can be calculated for each month with respect
to any chosen base temperature.

e The user can easily calculate the time elapsed in a month for temperatures below or
above any chosen level of outdoor reference temperature.
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1. Introduction

Different types of optic systems have been designed, manufactured, and used to concentrate
energy, be it solar or otherwise. To mention just a few, we have for example, 1) the design
and manufacture of a non-imaging Fresnel lens prototype for use in a solar collector of
medium concentration (Leutz et al.,, 2000). This collector was evaluated in terms of the
optical concentration ratio of its lens and the flux distribution on the absorber; 2) the design
and manufacture of a low-frequency Fresnel mirror for a fluorescence detector (Diaz-
Anzures et al., 2004), in which the Fresnel mirror was formed from a set of concentric
spherical rings; 3) the design of mirrors from a set of spherical rings to generate an angular
zone of energy concentration one order of magnitude smaller in comparison to the spot size
generated with a spherical mirror (Gonzalez-Garcia et al., 2009), and 4) the optical design of
a highly radiative solar flux furnace for Mexico (Riveros-Rosas et al., 2010) which consisted
of an arrangement of 409 first surface spherical facets with a hexagonal shape. The
configuration of this design was chosen because of its maximum peak concentration and
also for economical reasons.

In the case of concentrator systems which involve polished elements such as lenses and/or
mirrors, polishing techniques and optical tests are required for their manufacture. In order
to reduce time and costs in the manufacture of solid mirrors designed by the concept of
concentric spherical rings (a design method proposed more as an alternative in the design of
energy concentrating lens and mirrors (Gonzalez-Garcia et al., 2009)), a classical polishing
method was proposed using petal tools designed with Genetic Algorithms (Gonzalez-
Garcia, et al., 2006) and with linear programming, (Santiago-Alvarado, et al., 2007). These
lenses or mirrors can also be polished using different-shaped oscillating tools (Leal-Cabrera,
et al., 2009). One alternative for testing the quality of polished surfaces is the application of
the Ronchi Test (Cornejo-Rodriguez, 2007), which is an inexpensive test and easy to apply.
Based on the ronchigram of the surface being tested, and applying Malacara’s formula, cubic
splines, and Genetic Algorithms, surface errors can be quantified (Cordero-Davila &
Gonzélez-Garcia, 2010; Cordero-Davila, et al., 2011).
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According to the analysis of the influence of the amount of circumsolar radiation in function
of the acceptance angle of the absorber (Buie & Monger, 2004), the results showed that as the
CSR of the sunshape increases, the size of the absorber must also increase to accommodate a
similar amount of energy, that is, the size of the image increases. For this reason, a previous
study proposed the design and manufacture of a mirror that would generate a desired
angular size of the concentration of energy (Gonzélez-Garcia, et al., 2009). One hundred
spherical rings, whose optimum curvature radius values were calculated with Genetic
Algorithms (GA), were employed in the modeling process of the mirror (see Fig. 1). Using
the Full With at Half Maximum criterion (FWHM), the size of the sun-image obtained with
this mirror was 16.82 mm, as shown in Fig. 2.
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Fig. 2. Sun image generated with the mirror designed from a set of concentric spherical
rings: (a) spot diagram and (b) graph of irradiance distribution.

The content of this chapter focuses on the description of a method for designing mirrors that
would generate a desired angular size of a point source placed at infinity. Based on the
simulation of the mirror by means of the ZEMAX optic design program (ZEMAX, Software
For Optical System Design, 2008), the simulated mirror would later generate the
corresponding image of the sun. The method for designing mirrors will be based on the
above mentioned study of the design of mirrors from a set of concentric spherical rings. In
order to be able to generalize the method not only spherical surface rings but also rings with
any type of conic surface will be taken into account, that is, rings with any conic surface.
One implication of this is that the angular size of the image (found during the optimization
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stage using GA) will now be in function of the conic constant, be it through a predetermined
value, or by considering it as a variable to be optimized together with the paraxial curvature
radius of each ring. The sun images generated by four mirrors designed from rings whose
surfaces have a determined value of the conic constant for each design will be simulated.

2. Design and optimization

In line with the procedure for designing a mirror from set of concentric spherical rings which
reduce by one order of magnitude the size of an image of a point source placed at infinity, this
section presents the design of four mirrors from concentric rings with conic profile whose
conic constant for each case are: zero, (original design (Gonzalez-Garcia, et al., 2009) taken as a
comparison), -1 (parabolic rings), -0.5 (rings with elliptical profile), and -1.6279, whose value
was calculated with the GA together with the corresponding curvature radii.

2.1 Design of energy concentrating mirrors

Just like the original design (Gonzélez-Garcia, et al., 2009), these designs of the mirrors are
also intended to reduce, by one order of magnitude the angular size of the image generated
by a spherical mirror whose parameters are 1,500 mm in diameter, a curvature radius of
4,000 mm, and a focal distance of 2,000 mm. generating a disc of least confusion of 0.20966
degrees at a distance of -1,973.0 mm

The design procedure, considering the GA optimization method is expressed through the
following steps:

1. 100 rings are used to model the shape of the mirror surface (from a reference sphere
with a curvature radius of 3,900 mm, considered for the manufacture stage, by means of
petal tool polishing (Gonzélez-Garcia, et al., 2006)). This involves calculating 100
curvature radii that are the variables to be considered in the optimization.

2. In order to reduce the number of variables to be optimized a recurrence formula was
employed to reduce the number of variables from 100 to 20, expressed as

fiyg =1 + A7 @
where r; (i=1,...,100) are the curvature radii of each one of the rings and Az (j=1,...,20) are
the increments of the curvature radii, which would be the variables to be optimized by the

GA. These increments are defined by the following equation

my if 1<i<5
m, if 6<i<10

2
my if 96<i<100

3. The fitness function is established as the error square of the differences between the
simulated angular size (sas) and the desired angular size (das)

Fitness Fuction = S* = (sas — dus)2 (3)
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4.  For the first three mirror designs the conic constant of the rings are considered constant
whereas for the last design the conic constant is considered as just one more variable to
be calculated by the GA, thereby establishing a more general method of design.

Once the design process of the energy concentrating mirrors has been established, the next
process is the optimization of the twenty increments of the curvature radii defined by
equations 1 and 2. The following is a description of the GA applied to optimize the design of
the mirrors.

2.2 Genetic algorithm applied

The optimization method applied to calculate the optimum designs of the mirrors is a GA
programmed in FORTRAN for LINUX. It has been used in classical surface polishing
(Gonzalez-Garcia, et al., 2006), in the field of optical testing using Ronchi tests (Cordero-
Davila, et al., 2011), and in optical design (Gonzalez-Garcia, et al., 2009). The content of this
chapter is one more example of this latter application. The stages of the GA applied are
briefly described as follows:

A. Generation of the initial population

In this stage an initial random population of 240 individuals was created for each one of the
twenty increments of the curvature radii. Hence, the total number of individuals or values
randomly generated in this stage is the product 240X20. Within the area of programming
240 chromosomes were programmed, each one with a longitude of 320 genes. Each one of
these chromosomes is divided into 20 chromosomes more (of 16 genes), and each one is
used to calculate the value corresponding to each one of the increments of the curvature
radii. Fig. 3 shows part of the programming corresponding to this stage.

INTEGEER lcromosoma, tpoblacion, maxgeneraciones

PARAMETER |[lcromoscoma=320, tpoblacion=240 ,maxgeneraciones=160)

nvar = 20

do 1i=1, tpoklacion

do jj=1, lcromosocma

CALL RA{srand)

a = rand({srand)

CRLL flips (0.5, a,gene)

pob(ii, 33} = gene
enddo

enddo

Fig. 3. Programming implemented for the generation of the initial population.

B. Evaluation stage

Once the initial population has been created, the evaluation stage is performed to determine,
by means of the fitness function, Eq. (3), which chromosomes (of 16 genes) are the best
values assigned to the increments of the curvature radii, with which Eq. (3) generates a
minimum value. This stage was programmed as a subroutine within which the subroutine
of ray tracing is found, and with which the simulated angular size is calculated.
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C. The selection stage

The next stage in the GA is the selection stage in which the best values of the curvature radii
increments are selected by means of the corresponding chromosomes graded as such in the
evaluation stage. The selection process employed the tournament technique (Gonzalez-
Garcia, et al., 2009), which consists of randomly taking a certain number of individuals from
the population, called tournament size; from this, one of the individuals of the set is chosen
for the next generation. The process is repeated as many times as there are individuals in the
population, in the present case 240 times. Fig. 4(a) shows the subroutine corresponding to
this stage.

SUBROUTINE SelecTorneo(tpoblacion,FSE, croele)
integer non,st,stf,srand,tpoblacion,ab(10)
integer abl,ab2,croele(tpoblacion),stcroele
REAL a,FSE(tpoblacion),ps st
om=0
ps_st=095
do st=1,tpoblacio
nnn = o1
do sti=1,2
CALL RAV2(stf,nnn,srand)
a= rand(srand)
ab(stf) = int( float(tpoblacion)*a)
enddo
abl = ab(1)
ab2 = ab(2)
CALL RAV1{nnn,srand)
a = rand(srand)

if (FSE(abl).gt FSE(ab2) ) then
stcroelel = abl
stcroele2 = ab2
else
stcroelel = ab2
stcroele2 = abl
endif
if (aleps_st)then
croele {st) = stcroelel

else
croele (st) = stcroele2
endif
enddo
END

(@)

CALL aleatoriocruza(lcromosoma,nvar,ii,acru2)
jeruza = acru2
ii = nom+1
CALL aleatoriocruza(lcromosoma,nvar,ii,acru2)
jeruzal = acru2
if { joruzal .1t joruza ) then
‘band = jcruza
Joruza= jeruzal
jeruzal =band
else
endif
do jeru=1 jenueza
hijol{icrujcru) = pobpl (conyugue2 jeru)
hijo2(icru,jcru) = pobpl (conyuguel jeru)
enddo
do jeru=jeruzatljeruzal
hijol{icrujcru) = pobpl (conyuguel jcru)
hijo2(icrujcru) = pobpl (conyugue2 jeru)
enddo
if (jeruzal ne.lcromosoma ) then
do jeru=jceruzal+1,lcromosoma
hijol(icru,jcru) = pobpl (conyugue2 jeru)
hijo2(icru,jcru) = pobpl (conyuguel jeru)
enddo
else
endif
do jei=1,lcromosoma
pobpn(conc,jei) = hijol (icru,jei)
pobpn(conct1 jei) = hijo2(icrujei)

(b)

pm = 1.0/ tpoblacion
do imuta=1,tpoblacion
do jmuts=1,lcromosoma
muta=muta+1
nmn = muta
CALL RAYV1 (nnn,srand)
a=rand(srand)
if ( a.lt.pm ) then
if ( pobpl (immuta jomita).eq.1 ) then
pobpl (imrta jruta) = 0
else
if ( pobpl(imuta jonuta).eq0 ) then
pobpl (imuta,jmuta) = 1
else
endil
endif
else
endif

enddo
enddo

©

Fig. 4. Parts of the program implemented for Genetic Algorithm in FORTRAN
corresponding to the stages of (a) selection, b) crossing, and ¢) mutation.

D. Crossing stage

The next stage to be applied is the crossing stage which involves combining two values of
each increment of the curvature radius selected from the previous stage with a view to
creating better values of these increments, in other words, values which would make the
fitness function generate values close to zero. The crossing technique defined was
implemented at two points. Fig. 4(b) shows part of the programming of this
implementation.

E. Mutation stage

The mutation technique implemented was one in which all the genes of each chromosome of
the population have the same probability of being mutated. The mutation probability value



68 Solar Power

was the inverse of the size of the population. Fig. 4(c) shows the programming
corresponding to this stage.

Once the mutation stage has been completed, the evaluation stage is applied once more to
determine which members are the best solutions. The whole process is repeated all over
again (application of the selection, crossover and mutation stages) to generate populations
with better solutions. Each repetition of the process is known as a generation, and as
generations come and go, the solutions generated get closer and closer to the optimum
solution to the problem. In our application, a population of 240 members was used from a
search throughout 160 generations, see Fig. 3.

2.3 Results obtained from optimization

The results obtained from GA correspond to the design of 4 mirrors to reduce by one order
of magnitude the angular size of the spherical mirror considering as object a point source
located at infinity. As previously mentioned, in each design the concentric rings which
model the surface of the mirror now have a conic surface profile.

Fig. 5 shows the evaluation graphs of the GA by means of the fitness function against the
number of generations corresponding to each one of mirrors designed with different conic
constants. Table 1 shows the energy distribution data generated by each mirror.

Type qf Type of conical Type qf Type of conical
conical ring . conical ring ring used:
Parameter ring used: -
used: Parabolic used: Optimized
Spherical Elliptical conic constant
Conic constant 0 -1 -0.5 -1.6279
Image position (mm) -1973 -1973 -1973 -1973
Total spot size (mm) 0.8405 0.7399 0.7456 0.8449
Geometrical spotsize | y37 01996 01907 02105
(mm)
Geometrical rms X/Y | 157 0.1411 0.1349 01488
spot size (mm)
Angular spot size (°) 0.0244 0.0215 0.0217 0.0240

Table 1. Data of energy distribution of the four designed mirrors.

Fig. 6 shows the energy distribution generated by each mirror, while Fig. 7 shows the
corresponding values of the optimal curvature radii found with GA by means of increments
of the curvature radii.

Based on the results obtained from the optimization of the designed mirrors, one can
conclude that it is possible to design mirrors which concentrate energy in a smaller area
reducing the angular size of the concentration, based on the concept of concentric rings
which have a conic type surface, establishing in the design process a conic constant with a
specific value or considering it as one more variable to be calculated with the GA.
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Fig. 5. Graphs of the fitness function as a function of the number of generations produced by
the GA for the design of mirrors by means of concentric rings with conic constants of a) 0,

b) -1, ¢) -0.5, and d) -1.6279
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Fig. 6. Distribution of energy generated by the mirrors designed with conic constants of a) 0,
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Fig. 7. Graphs of the optimized curvature radii of the concentric rings which model the 4
mirrors designed with conic constants of a) 0, b) -1, c) -0.5 and d) -1.6279.

3. Simulations done with ZEMAX. Images generated from the sun source

To consider the sun as an object in the mirrors designed in the previous section, these
designs were simulated using the commercial optical design program in version EE of
ZEMAX. In order to verify the results obtained of the angular size from each mirror in the
optimization stage, see Table 1, the simulations were first done considering as object a point
source placed at infinity. Afterwards, the point source was replaced by the sun source in
order to generate the corresponding images.

3.1 Simulations done using a point source

To do the simulations of the designed mirrors from the concentric rings, the Non-Sequential
Mode option was selected in the ZEMAX program. This mode is primarily used for non-
imaging applications and its main analysis feature is the ray-trace detector which gives spatial
and angular data on incoherent or coherent rays. Fig. 8 shows the statement of the point
source, while Fig. 9 shows the statement of some of the curvature radii of the concentric rings
through their corresponding aperture and conic constant data. Fig. 10 shows the diagram of
rays in the mirror, while Fig. 11 shows the mirror as seen from the front.

[ Fus flmmamdi | Pes Gomnn [ Paw ifrumnndl | Far bl Suvarad Y-
. T —

Fig. 8. Statement of the point source in ZEMAX used in the simulation of the designed mirrors.
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Fig. 10. Diagram of rays which arrive and are reflected by the designed mirrors.
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Fig. 11. Front view of the designed mirror, simulated with ZEMAX.
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The results obtained of the images generated of the point source at infinity by each mirror,
and their corresponding irradiance distributions, are shown in Figs. 12 to 15. These figures
show the respective results of the design using spherical, parabolic, and elliptical rings, and
with conic constant calculated with GA. The image sizes shown in each one of these figures
agree with those reported in Table 1 from the optimization stage.

Once the results obtained from the optimization stage have been validated with ZEMAX,
the final stage in the simulation process, in which the sun is considered as object, is to
replace the point source with the sun source in ZEMAX.
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Fig. 12. a) Image of the point source, placed at infinity, generated by the mirror designed
with spherical surface rings, and b) its corresponding irradiance distribution graph.
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Fig. 13. a) Image of point source, placed at infinity, generated by the mirror designed with
parabolic surface rings, and b) its corresponding irradiance distribution graph.
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Fig. 14. a) Image of the point source placed at infinity, generated by the mirror designed
from elliptical surface rings (conic constant equal to -0.5), and b) its corresponding
irradiance graph.
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Fig. 15. a) Image of the point source, placed at infinity, generated by the mirror designed
with rings having a conic constant calculated with GA equal to a -1.6279, and b) its
corresponding irradiance distribution graph.

3.2 Simulations done using the sun source as object

To simulate sun images generated by the designed mirrors, the sun source was generated in
a DLL file by means of the following equation

B(6) =B, [1 (050516 / &)’ ~(0.94996 / a)g] )

where B; =13.639x106 W /m?2 stereorad and a=4.653 rad.

While the aureola region was adjusted by the following equation

B(0)=B,(0/a)?, (5)

where B,=72,200 W/ m?2 stereorad.
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Fig. 16 shows the statement of the sun source in the ZEMAX program, while Fig. 17 shows
the image of the sun before arriving at the mirror, at a distance of 150 mm from the vertex.
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Fig. 16. Statement of the sun source in the ZEMAX program.
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Fig. 17. a) Simulation of the sun source before arriving at the mirror, and together with b) its
respective irradiance distribution.

Figs. 18 to 21 show the simulations of sun images with their respective distributions of
irradiance generated with the mirrors designed with spherical, parabolic, elliptical rings,
and rings with conic constant calculated with GA, respectively. Each one of these images
was simulated with the ZEMAX program at a distance of -1973 mm. According to the
FWHM criterion, the sizes of sun images generated by each mirror are shown in Table 2.
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Fig. 18. a) Image of the sun source generated by the mirror designed with spherical surface
rings, and b) their corresponding graph of irradiance distribution.
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Fig. 19. a) Image of the sun source generated by the mirror designed with parabolic surface
rings, and b) their corresponding graph of irradiance distribution.
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Fig. 20. a) Image of the sun source generated by the mirror designed with elliptical surface
rings, with a conic constant of -0.5 and b), its corresponding graph of irradiance distribution.
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Fig. 21. a) Image of the sun source generated by the mirror designed from rings with a conic
constant equal to -1.6279 calculated with GA, and b) its corresponding graph of irradiance
distribution.

Mirror designed with Conic constant Size of(;t;rll)image
Spherical rings 0 16.97
Parabolic rings -1 16.75
Elliptical rings -0.5 16.89

Table 2. Results of sun image sizes generated by the designed mirrors using the FWHM
criterion.

As can be seen in Table 2, the sun image sizes obtained correspond to the angular sizes
obtained from the images of the point source (see Table 1), that is, the biggest angular sizes
correspond to the mirrors with rings whose conic constant was 0 and -1.6279. These very
same mirrors are the ones that generate the biggest sun images, whereas the smallest images
are generated with the mirror designed with elliptical surface rings with a conic constant of -
0.5. Furthermore, the sun image sizes agree with the image size reported from using a
mirror designed from concentric spherical rings (Gonzalez-Garcia, et al., 2009).

4. Conclusions

From the design of four mirrors which reduce by one order of magnitude the angular size of
the image of a point source placed at infinity compared to an image generated by a spherical
mirror, we could generalise the optical design method that uses the concept of concentric
spherical rings for designing energy concentrators. The generalization of the method
consisted in using concentric rings with conic surfaces in the optimization stage, considering
two cases: 1) a constant value of the conic constant, and 2) the conic constant as one more
variable to be optimized. The mirror designs could thereby remain in function of the value
of the conic constant, as well as the paraxial curvature radii of the rings. The four mirrors
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designed were simulated with the commercial optic design program ZEMAX, considering
the sun as object. The images of the sun were compared to the images of the point source
placed at infinity, and this revealed that the sizes of the images of the sun are related to the
angular sizes of the images of the point source: the mirror design which generates the
smallest angular size is the mirror which generates the smallest sun image, while the mirror
which generates the biggest angular size is the mirror which generates the biggest sun
image.

Finally, the results obtained show that it is possible to design mirrors, solar energy
concentrators, from the concept of concentric rings with conic surfaces, thereby generating
an alternative method of optical design for this type of mirrors. This type of method can also
be applied in the design of lens concentrators.
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1. Introduction

Solar concentration utilises devices that range from simple designs, such as flat solar
collectors surrounded by mirrors, to solar concentrators that employ a parabolic trough, a
parabolic dish or a central tower surrounded by heliostats to achieve temperatures of a few
hundred to several thousand degrees Celsius. All of these designs use flat or curved mirrors
and several decades” worth of development have resulted in improved specular reflectance,
half-life and cost.

First surface mirrors use reflective material deposited on a substrate (glass or plastic) and
coated with a protective, transparent film to eliminate abrasion and corrosion. In second
surface mirrors, silver or aluminium is deposited on the back of the transparent substrate.

The development of these mirrors, in particular second surface mirrors, have been reviewed
by numerous authors, including Dennis (1979), Ashley et al. (1988), Jorgensen et al. (1994),
Schissel et al. (1994), Kennedy and Jorgensen (1994), Martin et al. (1994), Fend et al. (2000,
2003), Kennedy et al. (2005), and Kearney and Price (2005).

The 3M® thin mirror (ECP-305), which employs silver deposited on acrylic (PMMA), has
been used for several years at the Solar Power Plant Engineering Institute (National
University of Mexico), where numerous problems have been identified. In particular, cracks
developed rapidly over the acrylic (after 1 year) in Mexico City, which is a very polluted
city, and the acrylic adhered poorly to the silver, resulting in corrosion and the formation of
a tunnel in the mirror during the wet season. Thin silver mirrors (1 mm or less) exhibit
additional limitations, such as weakness, manoeuvrability and high cost, as discussed by
Kennedy et al. (1996). Kearney and Price (2005) discussed the behaviour of the seven
commercial silver mirrors, including a silver-coated first surface mirror. The performance,
based solely on accelerated time, produced a specular reflection coefficient above 95% after
the equivalent of 5 years of exposure and a reflection above 90% after 6 years.

Compared to silver, aluminium is the most abundant metal, is relatively inexpensive and is
the most widely used non-ferrous metal. Aluminium reflectors generally provide an initial
reflection (of solar radiation) of 85-91%, exhibit good mechanical properties and are easy to
recycle. However, exposure to air causes serious degradation of the optical properties of
unprotected aluminium surfaces in just a couple of years. Compared to untreated
aluminium, anodised aluminium exhibits improved behaviour because of the ALLOs layer,
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which protects the metal from further reaction. For this reason, anodising is often used to
prolong the life of aluminium reflectors. Nonetheless, high purity aluminium must be used
in order for the mirror to obtain good reflectance. The Alanod MIRO® brand manufactures
this type of aluminium mirror utilising highly reflective aluminium foil. However, SiO;
protects against abrasion and improves corrosion resistance, making it an attractive
candidate for the development of aluminium mirrors; however, its economic feasibility must
be demonstrated.

One of the advantages of aluminium first surface mirrors is that they do not require glass
with low iron content. However, first surface mirrors made of aluminium and silver have
not been thoroughly investigated as alternatives to solar concentrators.

. Reflectance Time
Mirror Type 0:(£0.01) [years] Comments
Initial Final
FEK-244 0.86 0.72 16 Tunnel effect and corrosion
Kingston 0.86 0.49 16 Very poor reflectance
PMMA (SH?m) 0.85 0.72 16 Poor adhesion and corrosion
Mexican Mirror
Corrosion, tunnel effect and crack on
ECP-305 0.95 0.92 2 PMMA
Al-first surface 0.85 0.85 2 Without important problems
ReflecTech® 0.94 0.94 2 Silver Mirror Film

Table 1. Specular reflectance of commercial mirrors after 16 years of weather exposure at the
Solar Power Plant of Engineering Institute

Kennedy et al. (1996) have shown progress in aluminium mirrors (Al,Os) protected with
polyethylene terephthalate (PET); the use of glass substrates and stainless steel were also
reported. Morales and Ajona (1996, 1999) have developed sol-gel technology for silver
mirrors and explored protection using SiO, and different substrates. Fend et al. (2000) have
explored anodised or coated aluminium sheets and report accelerated aging, Brogren et al.
(2004) developed aluminium-polymer-laminated steel reflectors using stainless steel as the
substrate. Almanza et al. (1992, 1995) and Martinez et al. (2000) have developed the first
aluminium mirror surface using quartz (5iO;) as a protective layer and soda lime float glass.
Table 1 shows the specular reflectance (200 to 2200 nm) of some commercial mirrors after 16
years (1979-1995) of exposure to the aggressive weather of Mexico City at the Solar Plant
Engineering Institute (National University of Mexico). In the international literature, long-
term outdoor tests are hard to find because most studies are performed in simulated
weather conditions. Table 1 also shows results for the ECP-305 and the aluminium mirror
first surface after two years of exposure. The tabulated results show a considerable decrease
in the specular reflectance, in addition to numerous other problems, of mirrors with 16 years
of exposure. An alternative product is the silver-based ReflecTech® Mirror Film, which
exhibits an initial specular reflectance of 94%.
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Primary aluminium mirror surfaces have also been applied to semiconductor lithography
where a high reflectance (90%) is required (Hernandez et al., 2003) and high-quality mirrors
are needed for different management systems to measure the distance in thermonuclear
reactors (Yang et al., 2006).

2. Manufacture of mirrors for solar applications

This section reviews the utilisation of tungsten filament evaporation, electron guns,
sputtering and coatings made from fluids via the sol-gel technique or chemical baths.

Filaments, electron guns (e-guns), linear magnetrons, sol-gel techniques and chemical baths
have all shown promise in the deposition of thin film metals and dielectrics. In reviewing the
use of these devices in Mexico, this paper presents the fabrication of aluminium first surface
mirrors, in which reactive evaporation, such as the change of SiO into Si;O3 under specific
oxygen conditions in a low pressure evaporator, is an important deposition method. The
resulting film forms a conveniently thin and transparent layer, protecting the aluminium first
surface mirror. Alternatively, quartz (S5iO2) can be substituted for SiO in the protective layer.

Coatings employing substances with high melting points (metals and dielectrics) are made
possible via the use of e-guns, while linear magnetrons enable the deposition of metals or
dielectrics at lower temperatures by using a plasma to sputter the material (Rossnagel et al.,
1990; Wasa, 1992) into larger areas. In this last case, the mirror area depends on the number
and size of the available magnetrons, as well as the size of the chamber.

These devices have been used to obtain first surface solar aluminium mirrors (Almanza et
al., 1992, 1995) as well as in other applications related to film deposition. Figure 1 shows
some of the devices that are used to make thin films, including the vacuum chamber, which
has a volume of nearly 1.5 m3.

In addition to their size, one of the problems with first surface solar mirrors is the likelihood
of contamination during the evaporation process. After certain period of time of exposure to
the environment, corrosion and tunnelling can degrade the mirror, especially in high
humidity conditions. Nonetheless, these mirrors have been successfully used in numerous
applications, including high UV reflectance measurements involved in water detoxification
(Blake, 1992), as solar mirrors under natural and extreme conditions (Almanza et al., 1992,
1995) using the visible spectrum and in laser and IR applications (Haas et al., 1982).

Fig. 1. Photograph of vacuum chamber, high voltage source, and vacuum gauges
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2.1 Filaments

A single, 1 to 2 mm-diameter tungsten filament is usually used to thermally evaporate
aluminium using a low voltage transformer. Because aluminium exhibits good wetting
(Glang, 1970), it is possible to evaporate it directly onto the sample. It took approximately 10
minutes to evaporate a film of approximately 4000 A using a 60 A power supply in a vacuum
of 4x10 Torr. The cylindrical chamber employed had a diameter of 1.35 m and a length of 1 m.
The filament-substrate distance was fixed at approximately 250 mm. A 99.999% purity
aluminium wire was rolled around the filament and used as the evaporable substance. After
the aluminium evaporation, SiO was thermally evaporated. Commercial SiO was obtained in
either powder or grain form. Evaporation of the SiO was achieved using a 40 mm long, 3 mm
(external diameter) tantalum tube into which three small holes of approximately 0.5 mm were
bored. Heating the tube forced SiO vapours through the holes toward the glass substrate
located approximately 250 mm away. The tube was heated with a current on the order of 100
A, reaching a temperature between 1150 and 1250 °C (Glang, 1970).

When the vacuum chamber was opened immediately after evaporation, observation of the
mirror surface by optical microscopy revealed a SiO film with the texture of small worms.
This was interpreted as a strong contraction because 1) the SiO evaporation occurred at very
high temperatures even upon reaching the substrate and 2) when the chamber was opened,
the cool air produced a thermal shock. This phenomenon disappeared when the mirrors
were kept for several hours inside the chamber under poor vacuum conditions. The total
specular reflectance of these mirrors, measured with a solar spectrum reflectometer that
simulates the visible spectrum (270< A <2940 nm), was approximately 0.80. When the SiO
was changed into Si>O3 by reactive evaporation (during which oxygen was injected into the
chamber) at a pressure of ~104 Torr and at an evaporation rate of ~3 A/s (Haas et al., 1982;
Drummeter & Haas, 1967), the reflectance increased to 0.86.

During the aluminium evaporation, some filament contamination occurred (Almanza et al.,
1995). This was because Al reacted with W to form an alloy (Glang, 1970); W reacted with
oxygen to form WO; (Haas et al., 1982). As a result, pinholes (Glang & Gregor, 1970)
appeared on the mirrors. These pinholes served as the initiation sites for environmental
corrosion (Almanza et al., 1992). Thus, the main reason for building two e-guns was to avoid
air particle contact during the opening of the chamber.

2.2 Electron guns

Our laboratory designed two electron guns, adopting existing technology to evaporate high
purity aluminium and SiO or SiO» (quartz) films. The electron guns were of the bent-beam
type (Glang, 1970). Figure 2 shows the main components of such a device.

Each e-gun used a permanent Alnico magnet, one with a capacity of 450 gauss and the other
with a capacity of 161 gauss. This range of magnetic fields allowed the deflection of the
beam to the targets. On each e-gun, two iron vertical plates were placed in contact with the
magnet in order to create an extension of the magnetic field, which deflected the electron
beam to the target.

The power supply that provided the kinetic energies to the electrons operated in the range
of 3.5 to 4.5 kV. Based on this energy, the magnetic rigidity (Bp) was estimated for the
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electrons using tables from the published literature (Siegbahn, 1966). For example, for 3.5
keV, Bp = 202 gauss-cm and p = 1.25 cm (radius of curvature); for 4.5 keV, Bp = 228 gauss-
cm and p = 1.42 cm. For the other magnet and with an average kinetic energy of 4 keV, Bp =
228 gauss-cm and p = 1.3 cm.

Both magnets could focus the electron beam onto crucibles by orienting them via the
deflection radius (Figure 2).

Fig. 2. Close-up photography of the two electron guns

The size of the beam is approximately 1 cm2. Generally, commercial e-guns produce a point
beam; however, in order to achieve this, it is necessary to design and develop a complete
optical study. Such a study is not necessary in the present case because it is useful to spread
the beam as much as possible. The irregular beams of these e-guns are practical because they
enable the evaporation of a larger target area than is generally obtained by a point beam e-gun.

Another important parameter is the tungsten filament in which the electrons are produced.
This filament was adapted from a halogen car lamp. Its mean life is determined by the
evaporated substances that react with it and the sputtering of the incident high-energy
positive ions.

Two types of mirrors were fabricated: Al-Si;0; and Al-Si>Os. For the evaporation of Al a
boron nitride (NB) crucible was used, thereby utilising the good wetting that occurred on
the melted aluminium (Glang, 1970). A graphite crucible was used for the higher melting
SiO or SiOs.

The evaporation procedure was as follows: a 1000 A Al film was evaporated onto a clean
floated glass substrate by applying 50 mA for 5 min at a pressure of 4x10-> Torr. Then, in order
to produce reactive evaporation of SiO, oxygen was introduced until a pressure of 104 Torr
was reached, and a current of 30 mA was applied to the e-gun for one hour, so that a 3200 A
5i0; film was integrated. The low oxygen pressure conditions and low evaporation rate(s)
required long time evaporation to assure high composition quality of the dielectric film(s).

Both e-guns are depicted in Figure 2. The pinholes were minimised due to the contaminant-
free conditions inside the chamber and on the glass surface. The total specular reflectance of
the mirrors was 0.89. Similar mirrors were previously reported to behave well under severe
environmental conditions (Almanza et al., 1995).
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2.3 Magnetron sputtering

The goals of magnetron sputtering, depending on the magnetron size, are film purity and
the capable of coating large areas. There are two kinds of magnetrons widely used for film
deposition: the cylindrical type and the planar type. As with e-guns, the use of two
magnetrons reduces deposition time and produces higher quality films.

In this study, a planar magnetron with a target area of 125x250 mm was used. An Al target
with a thickness of 12.5 mm and a quartz target of 6.4 mm were also used. The latter was
thermally bonded to the backing plate, improving thermal conductivity and allowing simple
water cooling of the target. Behind the target, permanent magnets produced a magnetic
field, acting as a magnetron sputter source, of several hundred gauss parallel to the cathode
surface (Rossnagel et al., 1990). As a result, the electrons were forced to move in a spiral,
forming a long ring over the cathode surface.

This electron confinement, in conjunction with the gas confined in the evaporator chamber,
produced an argon-plasma. When DC power was used, generation of the sputtering plasma
required high currents (approximately 1.5 A) due to the effect of electron accumulation in a
relatively low voltage field (450V). Increasing the current density increased the sputtering
rate. The electrons' spiral movement increased the collision probability (with the existing gas
molecules inside the chamber). Thus, the plasma was kept at lower working pressures (from
1x10-4 to 1x10-2 Torr).

Because of the lower density of gas molecules in this study compared to diode sputtering,
the majority of sputtered atoms were less thermalised and, therefore, reached the substrate
at higher energies. In both cases, the atom directions were randomised due to multiple
collisions with sputtering gas particles, which improved the step coverage over all
directions before arriving at the substrate (Pulker, 1999).

Two magnetrons were used to produce aluminium mirrors with areas of 300x600 mm. These
were made via continuous movement of the glass substrate facing each magnetron (Figure
3). Depending on the target, a DC or RF source power supply was used.

=

Fig. 3. Photograph of two magnetrons: aluminium and quartz targets; and mirror bracket
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To protect it from particle attack, the magnetron body was covered with a stainless steel
shield (non-magnetic material). The distance between this cover and the target was critical
and had to be maintained at approximately 5 mm. Because of this close proximity, the
radiofrequency impedance between the electrode (source material) and the shield was small,
and the applied energy was dissipated (and lost) across the ground connection.

Because of their sensitivity to heat, water and air, the magnets were covered by a stainless
steel, water-cooled shield and embedded in a protective epoxy coating.

The DC power supply produced an output of 3 A and 600 V while feeding the magnetron
with the aluminium-target (99.99% purity and 125x250 mm area). The radiofrequency power
supply operated at 13.6 MHz and was capable of producing an output of 1250 W, which fed
the quartz-target magnetron. Because a matching network was required between the RF
power supply and the plasma chamber in the radiofrequency system, it was necessary to
convert the electrical load impedance of the plasma chamber to a value of 50-70 Q. The
matching network consisted of a tuner and a control panel. The tuner was composed of two
variable, motor-driven (via an outer control circuit) air capacitors and a coil.

The radiofrequency generator (RFX-II model, from Advanced Energy) was capable of
producing an output of 1250 W and maintaining a steady-state for the time period required.
Their wide variety of functions were controlled by two microprocessors, providing excellent
signal precision and stability. The entire device was automated and controlled using a
computer. The reflected power, the forward power, the set point and the running time were
all tracked.

The RF generator was connected to the tuner using a 50 Q coaxial wire. The tuner was
connected to the magnetron with a Teflon®-covered copper-plated tube that was shielded
with an iron pipe so that its operator was protected (note that this describes only the
segment outside the evaporator chamber). The plated tube dissipated the heat easily. The
length, shape and composition material of this connection had a major influence over the
system performance, requiring the optimal configuration to be determined empirically. In
addition, it was necessary to mount the tuner as close as possible to the magnetron and in a
particular position because any changes produced different impedance values, implying a
mismatch between plasma and RF generator. A bad connection produced overheating due
to large amounts of dissipated energy.

The experiments were performed inside the same 1.35 m diameter cylindrical tank (Figure
4). The vacuum was produced using two different kinds of pumps: diffusion and
mechanical. It was necessary to keep the working pressure in the range of 5x104 to 1x103
Torr in order to obtain adequate impedance and deposition rates. All the aluminium
deposition processes were carried out in approximately 30 minutes. The real deposition time
was 15 minutes for a 1000 A aluminium film at 400 W and a DC Bias of -35 to -47 V. The film
quality was higher than that obtained by thermal evaporation and e-gun evaporation due to
pinhole minimisation, film uniformity and nucleation.

For the deposition of SiO,, the working pressure was in the range of 2x103 to 3x10- Torr.
The real deposition time for a 3200 A film was 40 minutes at 850 W and a DC Bias ranging
from -55 to -60 volts.
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RUs)

Fig. 4. Photograph of the vacuum chamber and diffusion pump for high vacuum

2.4 Sol-gel

Although this study did not involve the sol-gel technique, we find it pertinent to provide a
comprehensive overview of this technique. The sol-gel process, also known as chemical
solution deposition, is a wet-chemical technique widely used in the fields of materials
science and ceramic engineering. Such methods are used primarily for the fabrication of
materials originating from a chemical solution (or sol) that acts as the precursor for an
integrated network (or gel) of either discrete particles or network polymers. The sol-gel
technique offers a low-temperature method for synthesising materials that are either totally
inorganic in nature or both inorganic and organic. The process, which is based on the
hydrolysis and condensation reactions of organometallic compounds in alcoholic solutions,
offers many advantages for the fabrication of coatings, including excellent control of the
stoichiometries of precursor solutions, ease of compositional modifications, customisable
microstructures, ease of introducing various functional groups or encapsulating sensing
elements, relatively low annealing temperatures, the possibility of depositing coatings on
large area substrates, and simple and inexpensive equipment (Morales & Duran, 1997).
Within the past several years, a number of developments in precursor solutions, coating
processes and equipment have made the sol-gel technique even more widespread.

Several methods can be used to make sol-gel coatings. Spin coating and dip coating are two
basic techniques used to deposit sol-gel coatings. Spin coating produces a one-sided coating,
while dip coating yields a double-sided coating. Both techniques are used in manufacturing
to make different coatings and thin films.

2.5 Conclusions and suggestions

As demonstrated, the two most feasible methods for the deposition of films are e-guns and
magnetron sputtering. Both methods allow metallic and dielectric evaporation with a
minimum of contamination on any type of substrate, as demonstrated by the aluminium
first surface solar mirrors used in this study. The method used depends on the substrate
area needed. E-guns have been used for substrates with small areas (100x40 mm). Large area
substrates can be deposited using several guns, resulting in uniformity of nucleation on the
deposited film, an important concern in electronic and other applications. However, such
devices are more costly.
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In magnetrons, the metallic targets are deposited using a DC power supply employing
considerable current, which is the principal limitation with regard to the area and the rate of
evaporation. For dielectrics, a RF power supply is needed to perform the process, and the
main problems are grounding and match-coupling; thus, it is important to avoid
unnecessary equipment and ground all necessary electronic components as well as shield
the RF reflectance by the substrate or any other undesirable metallic material around it.

3. Manufacturing technique

This third section discusses in detail the results obtained during the development of first
surface solar mirrors, describing the main parameters involved in the implementation of
each type of manufacturing technique as well as associated problems and suggestions to
solve them.

3.1 Cleaning glass substrate

A clean substrate is important for the successful deposition of any film or coating. The
cleaning process is required to break the links between pollutant molecules and between
contaminants and the substrate (Almanza et al, 1992, 1995, 2009; Correa et al.,, 199§;
Martinez et al., 2000). Thus, the technique chosen depends on the materials that compose the
substrate, the type of pollutants and the degree of cleanliness required.

Substrate cleaning is essential, both to increase the adhesion between the film and the glass
and to minimise corrosion of the mirrors. Any dust, grease, gel (i.e., the natural gel layer of
glass deposited on the surface of the glass during its manufacture), oxide layers, etc., should
be removed from the sheets of glass before they are placed inside the evaporation chamber.

Any contamination on the surface of the glass can cause defects in the deposited film and
reduce the lifetime of the mirror. The glass can be cleaned chemically or it can be exposed to
enough energy to remove the impurity, either by heating or by particle bombardment
(Almanza et al., 1992, 1995, 2009; Correa et al., 1998; Martinez et al., 2000). A simple
mechanical process, such as grinding, can be carefully and efficiently performed to avoid
damaging the surface. The most common chemical methods are based on acid cleaning,
which involves the conversion of oxides and fat-soluble compounds.

One of the most practical chemical cleaning methods employs a chromic mixture. Its use as a
cleaning agent is based on its extremely strong oxidising power. For instance, the addition
of chromic salts to concentrated sulphuric acid does not result in a simple solution. Instead,
it produces the reaction 1.

K,Cr,0, + 3H,50, = 2K* + H;0* + 3HSO; + 2Cr0; Q)

In the technique used for the substrate, there is always as a final treatment the so-called
glow discharge that is applied within the evaporation chamber. It is a physical process that
involves the exposure of glass to a glow discharge using argon or oxygen. This discharge is
established between an anode (the evaporator chamber walls) and a circular aluminium
cathode and close to the substrate to make cleaning more efficient. The required voltages
range from 500 to 5000 V. Either AC or DC voltage can be used, although the latter is more

common.
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In glow discharge cleaning, impurities are removed as a result of the following mechanisms
(Brawn, 1970):

1. Direct heating by the collision of charged particles.

2. Desorption of impurities by the continuous bombardment of electrons.

3. Desorption of impurities as a result of the bombardment of low energy ions and neutral
particles.

4. Surface modification of glass by the continuous addition of the particles that make up
the plasma.

Mechanism 4 is very important, particularly for substrates containing a substantial amount
of SiO,. It facilitates bridging between glass oxidisers and reactive metals, such as
aluminium or chrome. It has also been observed to aid nucleation during the subsequent
deposition of reflective films.

This study employed bathing in an acid solution (chromic mixture) and ion bombardment.
The cleaning procedure was as follows:

- A 600x300x3 mm glass sheet was washed with commercial detergent and a soft sponge,
then rinsed with water until the surface no longer felt soapy.

- The washed glass sheet was dipped in a chromic solution at 80 °C for half an hour. The
composition was as follows: 24 g KoCr,O7, 408 mL H,SO4 and 144 mL H,O.

- The glass was removed carefully from the chromic mixture and was allowed to cool for
a few minutes. Next it was rinsed with water and wiped with a cloth to remove
residues of the solution. Then it was dried in the atmosphere or using a hot air gun.

- The substrate was then rinsed with distilled water and placed in a container with
isopropyl alcohol. Finally, the glass sheet was air dried at a temperature of 90-110 °C for
10 minutes.

The wetting of the surfaces must be examined to determine if the substrate is clean. This is
known as the "water-break test" (Maissel, 1970): "If a clean substrate is removed from a
container of pure water, a continuous film of water remains on the surface." This correlates
with a good wetting between the substrate and water.

3.2 Sputtering of aluminium and silicon dioxide

Sputtering is one of several techniques used for the deposition of metals on glass substrates.
The others are chemical deposition and evaporation.

With regard to producing and evaluating mirrors, we specifically describe the deposition
process with flat magnetrons developed in this part.

After installing the glass in front of the magnetron and performing glow discharge cleaning,
the aluminium film is deposited. Argon is introduced into the tank at a pressure of 6x10+ Torr,
and direct current is applied to the system at 810 V with low power (200 W). This generates an
electrical current that ionises the gas, causing the surface of the magnetron with the aluminium
target to become bright, at which point it is said that one has "lit the magnetron".

There are situations in which no plasma is formed at a pressure of 6x10-* Torr. This usually
occurs when the magnetrons, their targets, and/or the interior of the tank are exposed to the
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atmosphere for extended periods of time, causing the formation of oxides and the
adsorption of other contaminants in the air. In this case, the pressure must be raised an
order of magnitude. Consequently, there are numerous molecules exposed to the stream
that feeds the ionisation, increasing the collision probability and causing the cascade effect
(where the first ionisation of argon atoms produces electrons that ionise more atoms) and
ionisation to rapidly occur.

Once plasma is formed, the voltage drops to 200-300 V, and the current increases from
nearly zero to ~0.5A, indicate that a flow of electrons has been established between the
electrodes. The system is left under these conditions for a few minutes to ensure that
undesirable substances in/on the target surface (mainly aluminium oxide) are removed. As
the minutes elapse, the voltage gradually increases as the current decreases (because the
power output remains constant), indicating that the undesirable substances have burned off.

At this point, the power can be increased to almost 400 W or left at 300 W, depending on the
aluminium deposition rate desired. Sputtering begins when the potential between the
electrodes reaches between 400 and 500 V. The aluminium target is negatively biased (also
called the cathode) so that the bombarding Ar ions arrive with energies of approximately
100-500 eV. Atoms on the aluminium surface are joined by energies of 2-10 eV (sublimation
energy), while the average energy of detached atoms lies between 10 and 40 eV. The
difference, the remaining energy, is dissipated in the magnetron as heat, making it very
important to cool this device in order to improve its durability and to prevent melting of the
target and damage to the magnets that make up the magnetron.

The rate of erosion was determined experimentally with the data obtained regarding the
film thickness and deposition time. The deposition rate also depends on the angle of
incidence of ions from the normal of the target surface. At angles above 80°, the ion is most
likely reflected, while angles of 60°-80° produce the maximum shedding of particles from
the cathode (Rossnagel, 1990, see Figure 5). Detached particles reach the substrate after
suffering multiple collisions. The net result is the arrival of atoms at a maximum solid angle
(covering an entire hemisphere) (Gambino, 1978).
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Fig. 5. Dependence on the amount of target particles detached from the angle of incidence of
the ions. Note that the distribution is the secant at angles less than ~60° from the normal to
the surface
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Tables 2 and 3 show typical parameters for the operation conditions employed during the
deposition of aluminium and quartz. When the aluminium foil has reached the desired
thickness, quartz deposition is initiated. As previously explained, when dielectric quartz
sputtering is required, it is obtained via a radiofrequency power supply rather than direct

current.
System Power supply | Current Voltage Run time | Effective time
Mo (W] [A] V] o] [min]
[Torr]

7.4x104 160 0.6-0.7 | 269-280 11:17 0
7.8x104 200 0.72 274- 11:22 0
7.5x104 250 0.86 287 11:27 0
7.3x104 250 0.46 528 11:30 0*
7.2x104 300 0.55 539 11:32 2
7.2x104 350 0.64 545 11:34 4
7.4x104 350 0.65 535 11:48 18

(Pumin= 4.4x10° Torr; Film thickness ~1000 A)
*Note: at this time the mirror is placed in front of the magnetron.

Table 2. Typical run for the deposition of aluminium using direct current for sputtering

System P Polarisation Run Effective
ower . .
Pressure (W] of electrodes time time
[Torr] [V] [h:m] [m:s]
Selected | Reflected | Supplied
7.8x10-3 3 2 5 0 12:21 0
2.2x10-3 100 2 102 -12 12:23 2:20
2.1x10-3 200 2 202 -23 12:25 4:40
2.0x10-38 300 2 302 -31 12:27 6:40
2.1x10-3 400 2 402 -39 12:29 8:40
2.3x10-3 500 3 503 -47 12:31 10:40
2.5x10-3 600 3 603 -54 12:33 12:40
2.2x103 700 3 703 -59 12:35 14:40
2.5x10-3 800 3 803 -59 12:37 16:40
2.4x10-38 800 3 803 -59 12:39 18:00*
2.1x103 790 2 792 -64 12:49 28:00
2.6x10-3 790 2 792 -65 12:59 38:00
2.7x10-3 790 2 792 -64 13:19 58:00
2.1x103 790 3 793 -63 13:29 68:00
3.2x103 790 3 793 -63 13:39 78:00

(Pmin=1.9x10> Torr; atmosphere with 25% O,; Film thickness 5000 A)
*Note: at this time the mirror is placed in front of the magnetron.

Table 3. Typical run for the deposition of quartz with radiofrequency ion erosion



Solar Mirrors 91

The argon plasma does not guarantee quartz deposition; therefore, deposition depends on
the power required to ensure an acceptable evaporation rate, which can also cause Si-O
bonds to break. This decomposition of some molecules of quartz (SiO,) was evident by the
yellowing appearance of the substrate; this yellowing is typical of films of silicon monoxide
used in mirrors. Because this undesirable colour lowers the reflectance of the mirrors, we
introduced a percentage of oxygen as a working gas to ensure that the SiO molecules
reacted and this yellow colour was eliminated (by oxygen’s action via reactive evaporation
over the quartz film (Hass, 1982).

However, the presence of oxygen decreases the ion erosion rate. This is because, in order for
this gas (oxygen) to be reactive and to adsorb and coat the quartz target surface to cause the
formation of SiO, molecules, one must spend an ion to remove the oxygen out of the way
that stands. The associated kinetics was studied by Jones et al. (1968). High concentrations of
oxygen (at 50% -35%) slowed the process and caused plasma instability manifested by small
oscillations in pressure. This caused the impedance of the system to vary continuously,
causing the reflected power to increase.

The optimum oxygen levels were determined to be from 15% to 30%. The magnetron was lit
at pressures of 6 to 8x10 Torr. The working pressure was 2 to 2.5x10-3 Torr and the
deposition time was 1 hour at a power from 800 to 850 W.

During sputtering of both substances, the glass substrate is kept in constant motion with the
help of an engine adapted for this purpose (in order to provide coverage for a larger area).
This allows the uniform deposition of 60x30 cm mirrors. Mirror size was determined by the
space limitations imposed by the evaporation chamber.

It is important to note that the erosion rate depends on the RF-biased electrodes with respect
to the plasma (Figure 6). The larger the polarisation, the more ions it will attract and, along
the way, the more kinetic energy it will acquire. Thus, during the experimental polarisation
of -65 V, the quartz deposition rate was almost double that obtained at -40 V.

The origin of this polarisation arises from the high mobility of electrons compared to ions.
The high flow of electrons to the electrodes causes the plasma to acquire a positive potential
because of the excess positive ions.

In our case, the cathode was connected to the RF source through a capacitor in series with
the coupling impedance, and the area of the substrate was greater than the cathode.
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Fig. 6. An approximation of voltage versus time based on the potential of the plasma during
radiofrequency sputtering, V is the potential of the substrate
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Thus, the average current of ions and electrons reaching the electrodes is the same condition
that is met if the electrodes were to acquire a negative bias, thereby slowing down the
electrons and speeding up the ions. The extent of polarisation depends on the system
pressure. If the pressure increases to maintain constant power, the polarisation decreases.
This is partly due to the drop in voltage caused by the increase of neutral particles that
reduce the impedance of the plasma.

3.3 Formation mechanism of the films

In magnetron sputtering, the substrate is far away from the bulk of the plasma, which is
confined near the target surface by the magnetic field of the magnetron. It, therefore, suffers
little bombardment by high energy electrons or plasma ions. In addition, the presence of the
magnetic field enables the use of lower pressures because the particles are confined to a
small region due to the collisions between them. To maintain low pressure, the mean free
path of the atoms sputtered over the substrate increases with very little loss of kinetic
energy (15 to 25 eV for light metals and up to 50 eV for heavy metals).

Several atomic processes determine the growth of a film in its initial phase, including
condensation, adsorption, surface diffusion, diffusion into the film and nucleation (Liith,
1993) (Figure 7).

Adsorption in a Surface Nucleation L
special place diffusion O
Diffusion

Fig. 7. Representation of the processes involved in film growth on a solid surface. Substrate
atoms are open circles

Film depositions occur via the condensation of atoms incident to the glass substrate. The
condensation of a new material is given by the amount of particles arriving/cm? per second.
It can be divided into three stages. In the first stage, the bombarding atoms transfer kinetic
energy to the atoms of the substrate network and are incorporated with weak bonds
(adsorption). In the second phase, they spread over the surface, exchanging energy with the
structural network of the substrate and some other species that are adsorbed, until they
obtain favourable locations or low energy and effectively become defects on the surface of
the substrate. At these sites, more atoms begin to accumulate, forming small islands. This
phenomenon is called nucleation. The nuclei grow and coalesce to become a continuous
layer of the substance on the substrate. The density and size of the islands have great
influence on the interface with the substrate and, thus, the film adhesion. The ion
bombardment and the high kinetic energy of the atoms arriving favours the creation of
zones of nucleation, resulting in more areas of growth and less crowding in one place. This
effect also decreases the amount of micro holes (Mattox, 1978), such that the interface of the
film is described as more continuous or fine-grain. However, if nucleation areas are few, the
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interface will have a "coarse type” structure. Once the film is continuous, growth happens
on the surface as the result of the diffusion of newly arriving atoms. Finally, in the third
stage, the incorporated atoms are rearranged by diffusion processes. Substrate and film
atoms are exchanged, and the interface between the two substances becomes gradual. This
enhances the film adhesion and reduces tension in the solid network caused by the creation
of the interface between the two substances. In other words, the atoms of both materials are
rearranged and settle at energetically favourable sites.

This is true for aluminium, but not for quartz (SiO,), where the surface diffusion of atoms is
almost zero. The phenomenon is manifested in the variation of film thicknesses along the
mirror as a function of the target position (direction of arrival). Another consequence is the
appearance of holes or trenches in the film (up to the microscopic level), which are caused
by shading phenomena due to oblique incidence angles. This leads to the production of less
dense and porous films with low refractive indexes.

Films with grain structures occur in systems with low substrate temperatures and relatively
high pressures and where the mean free paths are short. This results in oblique incidence
angles that favour growth atop the defects on the substrate surface, which in turn induces a
shadow effect that accentuates the lack of uniformity throughout the film.

These defects are reduced when the polarization of the electrodes is increased, resulting in
an increase in particle bombardment on the target surface and deposit on the substrate, so
that there is a re-sputtering making it possible most particles are deposited on the substrate
and fill the gaps that still remain (Miiller, 1987).

The films have different structures depending on which of the three processes were more
important during the film formation. This importance is given by the ratio T/Tm, where T is
the substrate temperature and Tm is the melting point of the sputtered material in degrees
absolute (Thornton, 1974).

4. Accelerated ageing tests

This chapter describes accelerated environment ageing tests for Al-SiyO first surface solar
mirrors, including humidity, thermal cycling, temperature, salt water immersion, sulphur
dioxide, and abrasion. Experimental procedures are described in detail. Specular reflectance
measurements of tested mirror samples are used as the basis for an inspection technique for
assessing performance degradation. The main goals of these tests were to determine the
protection provided by a Si,O. layer over an Al reflecting film and to assess the
environmental stability of such mirrors. The experimental results show that Si;Oy layers
play an important role in protecting the mirrors, enabling them to be quite stable under the
test conditions employed.

Two approaches can be applied to evaluate environment ageing tests and to study the
degradation of solar mirrors: 1) outdoor natural weathering exposure and 2) accelerated
environment ageing tests. Accelerated environment ageing tests are very often employed to
evaluate and examine the performance of solar mirrors by means of simulated artificial
environment conditions. In general, commercially available reflector materials are exposed
to accelerated ageing in a climatic test chamber. In some cases, the experimental tests will
substitute devices when the chamber is not available.
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4.1 Preparation and selection of mirrors for tests

All Al-Si,Oy first surface mirrors were manufactured using a high Al deposition rate and a
low SiyO deposition rate (Jiefeng et al., 1992). Their dimensions were 100 x 40 x 3 mm. The
main difference among these samples was the thickness of the SiyOy layer over the Al
reflecting film, which varied from 1500 A to 2800 A. In each test, samples with different
SiyOx layer thicknesses were included. In order to determine the influence of tin from the
glass surface on mirror properties, some sample films were deposited over the tin-poor
surface of float glass substrates, while others were deposited over the tin-rich surface.

Humidity tests were used to examine three other kinds of mirror samples (in addition to Al-
SiyOx first surface mirrors) obtained from different manufacturers, as follows: silver second
surface mirrors with low iron glass and with plastic film (3M® Company) as substrates, and
polished Al-sheet first surface mirrors. These three kinds of mirrors provided a comparison
with the Al-SiyO, first surface mirrors.

4.2 Experimental program

a) Humidity Tests: The exposure box used in these tests is illustrated in Figure 8. The box was
made of stainless steel and heat-insulating materials. Its inner dimensions were as follows:
100 cm long, 100 cm wide and 100 cm high. The test chamber was connected to a steam
generator, a Samsung HU-820A Ultrasonic Humidifier, by a tube. The relative humidity
(RH) in the chamber was measured with a Vaisala Humidity and Temperature Indicator
HMI31 and was controlled and adjusted by changing the vapour flow produced by the
steam generator. To prevent water vapour loss, the box was sealed with a rubber gasket.
The electric heater and cryogenic refrigerator provided higher or lower temperature
conditions inside the box. Thermocouples were used to monitor the inner temperature of the
chamber during the experiment. A fan was used to maintain a constant uniform
temperature and humidity inside the chamber.

The humidity tests were performed using two exposure conditions:

1. Room Temperature, 100% RH
2. 50°C,~60% RH.

Clean mirror samples were deployed on a sample-frame, which was then placed at the
centre of the bottom of the chamber. When the steam humidifier began to work, the cover of
the chamber was closed. At this point, water vapour began to flow. The desired rate was
obtained by adjustments. When temperatures that were higher or lower than room
temperature were needed, the heater or the cryogenic refrigerator was used. Thus, various
combinations of humidity and temperature were obtained. During the tests, reflectance of
the samples was measured periodically.

b) Thermal Cycling: Under outdoor applications, solar mirrors were subjected to high and
low temperature conditions. Tests were conducted to examine the bonding between films
and their glass substrates under the above environmental thermal cycling (Figure 8).

Firstly, mirror samples were placed into an oven at 50°C with an ambient humidity for 1 h,
then removed from the oven, cooled down to room temperature and maintained at that
temperature for another 1 h. Then, the samples were dipped into a tank filled with liquid
nitrogen for 20 min. Then they were removed from the liquid nitrogen, were allowed to reach
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room temperature again and were maintained at that temperature for 1 h. The above process
was repeated several times. The appearance of the mirrors was recorded after every cycle.

Fig. 8. Box for Humidity Test and Temperature Control Unit

c) Temperature Test: In general, temperature is very important with regard to mirror
degradation because of its obvious effects on degradation rates. High temperature can cause
mirror performance to degrade rapidly. According to the recommendation contained in
Masterson et al. (1983), high temperature exposures must not exceed 80°C. The objective of
temperature tests was to examine the thermal stability and performance degradation of first
surface mirrors under high temperature conditions.

The specimens were heated by inserting them into a laboratory furnace kept at 70°C under
ambient laboratory humidity. All samples were maintained at the same uniform
temperature. After every successive 24 h, the appearance and reflectance of the mirrors were
evaluated.

d) Salt Water Immersion: For this test, a solution with 5% (w/w) concentration of NaCl
(instead of salt mist) was used. The immersion of the mirrors was conducted at
temperatures ranging from 13 to 16°C in our study. In order to monitor the corrosion,
appearance and reflectance of the tested mirrors, they were examined at intervals of 24 h
after immersion.

e) Exposure to Moist Sulphur Dioxide: In order to simulate industrial atmospheric corrosion,
sulphur dioxide (SO,) was chosen as a pollutant. Samples were placed in a glass desiccator
having a volume of ~10 dm? and containing 50 mL of water. SO, was produced by the
chemical reaction 2.

Na,S0; + H,S0, - Na,S0, + H,0 + SO, @)

By introducing 5 g of Na,SOs into the glass chamber, then adding sulphuric acid slowly and
intermittently, SO, was produced (Dennis & McGee, 1980). It was introduced into the
chamber through a rubber hose. In order to detect SO, in the chamber, a piece of wetted pH
value paper was placed in the same position of the exposed samples. When the pH paper
showed a null (0) pH value, introduction of SO, was stopped and the chamber sealed. The
appearance and optical properties of the mirrors were examined periodically. The chamber
was refilled with SO; after each inspection.

f) Abrasion Test: Under outdoor environments, solar mirrors will accumulate dust and wind-
borne particles; therefore, repeated cleaning of their surfaces is needed during the service
period. These likely damage the specularity and lower the efficiency of a concentrating
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mirror. Thus, abrasion-resistance for first surface mirrors is clearly an important avenue for
advancement.

A simple abrasion test using a clean, soft cloth was performed under dry and wet conditions
separately. The procedure for the abrasion test was as follows: 1) the surfaces of the test
mirrors were wiped using a dry, clean and soft cloth; 2) wet abrasion tests were performed
using a clean, soft cloth soaked with an aqueous solution of a common detergent. Every 10
wipes, the surfaces of the tested mirrors were observed in order to determine whether any
film damage occurred. After such tests, mirror surfaces were cleaned and reflectance
measurements were conducted.

4.3 Results and analyses

a) Humidity Tests: were performed in triplicate. Two tests were performed at room
temperature and 100% RH, and the third was conducted at 50°C and ~ 60% RH. The
experimental results are listed in Tables 4, 5 and 6.

Spots appeared early in the humidity tests and remained unchanged in size thereafter. It is
assumed that these consisted of alumina formed as a result of pinhole defects in the Si;Ox
film, where the Al film would have been exposed to water vapour and, therefore, oxidized
during the test.

As a result, formation of Al;03-H,O would block and seal the original defect, preventing
oxidation of the Al film around the holes and thereby limiting the size of the spots. Sample
4-8-2 showed a severe drop in reflectance. The reason was that the Si;Ox layer was too thin
to protect the Al reflecting film.

Additional mirrors with thicker films were manufactured. These were subjected to two
humidity tests. Firstly, the samples listed in Table 3 were tested at room temperature and
100% RH for three and four weeks. After that, they were exposed to 50 °C and ~ 60% RH for
two weeks. The experimental parameters and results are summarised in Tables 4, 5 and 6.

Sample Thickness Reflectance (p)* Comments
. SiOx Exposed
Al film film Unexposed [weeks]
[A] [A] 1 2 3 4

4-8-2 1517 | 748 0.786 0.776 | 0.767 | 0.763 | 0.767 Small holes
4-27-2 | 2000 | 2000 0.804 0.817 | 0.814 | 0.815 | 0.809
4-20-1 | 2000 | 2200 0.776 0.790 | 0.785 | 0.785 | 0.785 |Very small holes
3-11-2 | 1340 | 2230 0.813 0.825 | 0.822 | 0.822 | 0.818 |Very small holes
5-4-3 2000 | 2500 0.829 0.839 | 0.839 | 0.841 | 0.835
4-29-3 | 4000 | 2500 0.827 0.837 | 0.833 | 0.833 | 0.831

4-1-1 1500 | 2520 0.807 0.811 | 0.809 | 0.808 | 0.808 |Very small holes

4-27-9 | 2000 | 2000 0.786 0.776 | 0.767 | 0.763 | 0.767 Small holes

*Reflectance measurements of samples were performed using SSR.
Slide glass sheet. Corning 7059 Sheet glass.

Table 4. Reflectance of mirrors exposed at room temperature and 100% RH environment for
up to four weeks
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Tables 5 and 6 show superior experimental results compared to Table 4. No obvious
degradation of performance occurred except in the case of the 3M silvered-tape sample,
which showed severe edge corrosion after exposure to room temperature and 100% RH for 3
days. Water vapour permeated between the silver reflecting layer and covering (plastic film)
causing degradation of the silver layer reflectance.

Sample Thickness Reflectance (p)* Comments
Al SiOx | Unexpose Exposed
film film d [weeks]
[A] [A] 1 2 3
10-7-1 1257 2850 0.888 0.887 0.887 0.887
10-1-1 980 1557 0.852 0.853 0.852 0.853
0 9-29-2 | 1413 1552 0.850 0.850 0.851 0.851
9-24-1 1454 2600 0.879 0.880 0.879 0.879
9-18-1 1225 2534 0.886 0.887 0.886 0.887
9-14-2 | 1247 2361 0.884 0.884 0.882 0.884
9-8-2* 1012 2053 0.868 0.868 0.866 0.868
7-16-2 | 1000 2200 0.875 0.876 0.873 0.875
7-8-1 1092 2000 0.871 0.873 0.870 0.873
Al sheet 0.896 0.896 0.893 0.894
Ag mirror 0.920 0.919 0.920 0.920
3Me silvered-tape | 0.963 0.962 - | Heavy edge
corrosion

*Films were deposited on the tin-rich surface of float glass substrate

Table 5. Reflectance of mirrors exposed to room temperature and 100% RH environment for
up to three weeks

Sample Thickness Reflectance (p)
Al film SiO, film Unexposed Exposed
[weeks]
[A] [A] 1 2

10-7-1 1257 2850 0.887 0.888 0.887
10-1-1 980 1557 0.853 0.853 0.853
9-29-2 1413 1552 0.851 0.851 0.850
9-24-1 1454 2600 0.879 0.879 0.879
9-18-1 1225 2534 0.887 0.887 0.886
9-14-2 1247 2361 0.884 0.884 0.884
9-8-2 1012 2053 0.868 0.867 0.867
7-16-2 1000 2200 0.875 0.874 0.867
7-8-1 1092 2000 0.973 0.871 0.872
Al sheet 0.894 0.893 0.893
Ag mirror 0.920 0.918 0.918

Table 6. Reflectance of mirrors exposed to 50 °C and ~60% RH environment for up to two
weeks
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b) Thermal cycling: After every thermal cycle, the surfaces of tested mirrors were carefully
checked to determine if any damage, crack or exfoliation of the films took place. When the
tests were finished, the surfaces of the samples were cleaned and reflectance measurements

were carried out. Five cycling times were performed and the results are summarised in
Table 7.

During thermal cycling, the experimental conditions were very harsh. Two samples cracked,
but the properties of the films in all five samples remained intact. When liquid nitrogen is
used as the low temperature environment, the ageing test can be accelerated further and the
test period reduced. However, if experimental conditions permit, a low temperature
environment of dry ice plus alcohol is preferable.

Sample Thickness Reflectance (p) Comments
Al film SiOy film Previous After 5
[A] [A] cycles
10-7-3 1257 2850 0.884 0.88
9-24-2 1454 2600 0.877 0.874
9-18-2 1225 2534 0.885 - Glass was cracked
8-26-3 1000 2300 0.886 0.883
7-16-1 1000 2200 0.878 0.878 Glass was cracked

Table 7. Results of thermal cycling test

c) Temperature test: Four pieces of mirror samples were heated in the oven at 70°C for 72 h.
At 24 h intervals, the samples were removed from the oven, and the appearance and
reflectance were checked and measured. The samples were then returned to the oven for
further treatment. No detectable change in the samples was observed after thermal
treatment for 72 h. Table 8 shows the results of the temperature test.

Sample Thickness Reflectance (p)
Al film SiO4 film Initial Heated
[A] [A] 24h 48 h 72h
9-24-3* 1413 1552 0.846 0.847 0.848 0.847
9-22-3* 1208 2500 0.868 0.869 0.867 0.866
9-14-1 1247 2361 0.885 0.886 0.885 0.885
7-1-2 1000 2000 0.865 0.864 0.863 0.863

Table 8. Results of temperature test of mirrors in air at 70 °C

d) Exposure to moist sulphur dioxide: was conducted for 48 h. At regular intervals, the samples
were removed from the test chamber, and their appearance and reflectance were measured.
The samples were then returned to the chamber for further exposure. The experimental
results are given in Table 9. After 24 h exposure, sample 9-24-3 first showed very obvious
corrosion (transparent small holes were present). Its reflectance decreased as well, even
though a thicker SiyO, layer (2600 A) was deposited on its surface. This may be exceptional
and related to the preparation processes of the batch containing sample 9-24-3.
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Sample Thﬁll(;ess Reflectance (p)
Al SiOy Initial Exposed
[A] [A] 1h 3h 6h 12h | 24h | 48h

9-29-1 | 1413 | 1552 0.852 | 0.853 0.853 0.852 | 0.852 | 0.840 | 0.830
9-24-3 | 1453 | 2600 0.874 | 0.873 0.873 0874 | 0.874 | 0.872 | 0.864
9-18-3 | 1225 | 2534 0.881 0.881 0.880 0.881 0.880 | 0.881 | 0.881
8-20-1 | 1167 | 2105 0.881 0.880 0.880 0.880 | 0.879 | 0.880 | 0.879

7-8-2 1092 | 2000 0.872 | 0.873 0.873 0872 | 0.872 | 0.873 | 0.872

Table 9. Results of exposure to moist sulphur dioxide

e) Salt water immersion: At every 24 h interval, the samples were withdrawn from the salt
solution, rinsed with distilled water and dried. Then the appearance was checked and the
reflectance measured. Table 10 summarises the results of the salt water immersion test. After
72 h immersion, there was no drop in the reflectance nor change in the appearance of three
of the samples. However, noticeable corrosion occurred at a local area of sample 10-1-3 after
24 h immersion (Figure 9).

Sample Thickness Reflectance (p)* Comments
Al film | SiO4 film Initial Immersed
[A] [A] 24h | 48h | 72h
10-7-3 1257 2850 0.884 0.884 | 0.884 | 0.884
10-1-3 980 1557 0.845 0.845 | 0.847 -
9-14-3 1247 2361 0.879 0.878 | 0.881 | 0.880 Local corrosion
7-16-3 1000 2200 0.868 0.868 | 0.869 | 0.868

Table 10. Results of salt water immersion

ot 4 e

Fig. 9. Photograph of Sample 10-1-3 after 24 h immersion showing corrosion

On the corroded area, the Al reflecting film disappeared. However, no corrosion was
observed in the rest of this sample, including its edges. Therefore, it was determined that the
local corrosion of sample 10-1-3 resulted from defects in the Si,O, layer.
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f) Abrasion test: On each sample surface, 200 wiping strokes of dry or wet abrasion were
conducted. No obvious changes in the appearance or the reflectance of tested samples were
observed.

5. Conclusions

The manufacture and performance of solar mirrors are already considered to be successful.
The main limitation has been their durability in real environments such as Mexico City. The
reflectance remained at 82% after 16 years of exposure in the Solar Plant of Engineering
Institute (see table 11), supporting the use of this technology in solar concentrators that use
aluminium as mirrors. The biggest application is currently for reflectance of ultraviolet solar
radiation that reaches us from the Sun. This is applied in photocatalytic processes for the
detoxification of substances that cannot be degraded by other methods. These substances
are oxidised to carbon dioxide (a process called mineralisation).

Reflectance

ps(20.01) Test applied Comments

Mirror Type

Manufacture Date
(dd/mm/yyyy)
First surface

Initial Final

Mexico City’s weather |A few, very thin scratches

22-04-1995 0.85 0.82 (16 years) on the SiO; layer

Table 11. Specular reflectance of aluminium first surface mirror

Increasing the SiO, protective layer beyond 300 nm is suggested in order to eliminate or
minimise the ‘few very thin scratches” effects on specular reflectance. Additionally, during
the accelerated environmental tests for the integrated and compound mirrors, the main
degradation parameters were high humidity and atmospheric salinity.

The development of mirrors for solar applications continues to be a process of
improvement. A lot of considerations are involved in the development of high specular
reflectivity mirrors that demonstrate long lives, low cost and adaptability to any solar
concentrator technology. The compilation of data presented in this chapter is a small part of
a larger team effort that aims to provide additional knowledge to further us along the
difficult path toward practical, renewable energy, particularly solar energy.
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Application of Solar Energy in the
Processes of Gas, Water and Soil Treatment

Joanna Pawtat and Henryka D. Stryczewska
Lublin University of Technology
Poland

1. Introduction

Shortening of natural resources will impose greater limitations on electric energy
consumption in various fields including treatment technologies. Moreover, with increasing
of environmental awareness in the society there comes the need of shifting industry and
farmers towards clean and eco-friendly techniques, which allow to avoid formation of
secondary pollutants during the treatment process.
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Fig. 1. Global irradiation in Europe (Energie-Atlas GmbH, 2005).

Small water, wastewater, gas and soil treatment installations supplied with electric energy
from renewable energy sources are perfect example of zero-emission technology achieved
with reasonable cost (Pawlat et al., 2011). Possibility of solar energy application, as one of
the alternative energy resources for decontamination processes is strongly dependent on
geographical location. Near-equatorial places called “sunny belt” are much more favorable
and cost-effective for solar installations. However, constant growth of fuel prices in the last
decade caused rapid development of solar technology across Europe, including its northern
parts. The average insolation of Europe territory is presented in Fig. 1. (Energie-Atlas
GmbH, 2005).
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Poland is situated in the moderate climatic zone between 49° and 54.5¢ of the northern
latitude. Daily interval (time from the sunrise to the sunset) covers over 51% of 8767 hours
in the average year, and this period is 24 hours longer in the northern parts compared with
the southern ones. In winter, day is almost 1 hour longer in southern regions of Poland
comparing with the northern regions whereas it is opposite in summer (Nalewaj et al., 2003).

Fig. 2. Total radiation (KWh/m?).
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Fig. 3. Insolation in Lublin between 1-3 June 2002, (Nalewaj et al., 2003).

The average annual insolation on Poland’s territory amounts to about 1100 kWh/m?2
(3500MJ/m?2) per year on a horizontal area, which corresponds to the calorific value of 120
kG of theoretical standard fuel (29300 kJ/kg of hard coal, 41860 kJ/kg of petroleum). Fig. 2
depicts insolation map of Polish territory. The insolation of this area is characterized by a
big annual diversification. For example, the annual amount for the Lublin city is about 1107
kWh, and while over 15% of annual energy reaches Lublin in August, in December it is only
1,6%. The typical daily insolation in Lublin area in Summer is depicted in Fig. 3.

In Europe solar thermal collectors are primarily used for hot water production and space
heating (use of solar energy for cooling is rather limited). According to (EUROBSERVER,
2010), the solar thermal panel area installed in the EU during 2009 was 4166056 m? giving
22786,1MWy, of the accumulated installed solar thermal capacity. Prevailing technology is
flat glazed collectors integrated into an insulated casing (heat transport fluid circulates in an
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absorber sheet placed behind a panel of glass- 3608711 m2 and 106494 m? installed in 2009 in
Europe and Poland, respectively) over the vacuum tube collector (fluid circulates inside a
double vacuum tube and insulation is provided by the vacuum- 408998 m? and 37814 m?
installed in 2009 in Europe and Poland, respectively) and unglazed collectors (matrix of
black plastic tubes, stacked against each other left out in the fresh air- 148347 m? installed in
2009 in Europe).

The largest national collector bases were in Germany (12899800 m2 and 9029,9 MWy,) and in
Austria (4330000 m2 and 3031 MW4,). The 10th place on the EU2009 list belonged to Poland
with 509836 m? of collectors installed, giving 356,9 MW4,). Poland had 13,4 m? of solar thermal
collectors installed per 1000 inhabitants and produced 9,4 kWy, per 1000 inhab. in 2009.
Leaders per capita were Cyprus (873,9 m2/1000inhab.and 611,7 kWy,/1000 inhab) and Austria
(517,1 m2/1000 inhab. and 362 kW,/1000 inhab.). In UE on average 64,9 m?2 and 45,5kWy, were
installed and produced per 1000 inhabitants, respectively (EUROBSERV’ER, 2010).

In 2010 Europe also continued photovoltaic plants” installation reaching over 80% of global
installed photovoltaic’s capacity and generating 22,5 TWh of photovoltaic power. The
additional installed capacity in the EU over twelve months to the end of 2010 ranged
13023,2MW,, (growth of 120,1%).The cumulated predicted photovoltaic capacity of EU in
2010 is presented in Fig.4 (EUROBSERV’ER, 2011).
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Fig. 4. Cumulated photovoltaic capacity in the European Union countries in 2010 (in MWy)
(EUROBSERV’ER, 2011).
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Average photovoltaic power per inhabitant in European Union in 2010 was 58,5 W,/inhab,
with leading Germany and Czech Republic with 212,3 and 185,9 W, /inhab., recpectively.
The most of 2009-2010 electricity production from this source took place in Germany (12000
GWHh) and Spain (6302 GWh). In Poland it was only 1,8 GWh (EUROBSERV’ER, 2011).

2. Solar energy in water treatment

Inadequate access to clean water and lack of its sanitation are persistent world-wide
problems affecting humans on each continent (according to UN number of people who lack
access to safe drinking water will increase from over 1 bilion to over 1.8 billion in in 2025).
Moreover, industry and agriculture also require huge amounts of water causing further
deterioration of water quality and its scarcity in the region.

There are many conventional technologies of water decontamination but with growing
environmental pollution they are sometimes insufficient besides being energy-consuming.
These technologies often require addition of suplemental chemical compounds, which lead
to secondary pollution. Ozone based technologies combined with advanced oxidation
processes (AOP), already investigated and tested for three decades proved to be a good
alternative to traditional methodes. However, AOP methodes are also considered expensive
and power-consuming. Thus combining treatment technologies with alternative energy
sources can be a perfect solution allowing optimum purification due to combination of
variety of decontamination techniques. In this part applicationof solar power for water
desalination, drinking water and wastewater treatment is described.

2.1 Solar desalination

Desalination aims to remove any salts and mineral from water to make it suitable for
drinking or for industrial application. The most common process is thermal desalination,
which uses boiling water and is based on evaporation and vacuum distillation. Energy
required to evaporate water is 2.3 MJ per kilogram. The installations, which belong to this
category are simple stills, MEH (Multi Effect Humidification)) MED (Multi Effect
Distillation), MES (Multi Effect Solar Desalination) and MSF (Multi Stage Flash). Novel
desalination plants use reverse osmosis (RO), electrodesalinization (EDI) and membrane
distillation (MD). Despite of used method, desalination of water requires tremendous
amount of energy. The main criteria for desalination system in developing countries are
affordability, reliability, simplicity and good quality of output medium. Areas, where
shortage of drinking water limits the socioeconomic development are often highly insolated.
Thus, using solar power for desalinization purposes seems to be economically justified.
Moreover, water can be obtained in environmentally-friendly process.

Two examples of small thermal desalinization installations for use in remote arid areas are
depicted in Fig. 5 (Chaibi, 2000; Al-Kharabsheh and Goswami, 2003).

Solar powered humidification- dehumidification principle is evaporation of seawater and
condensation of water vapor from the humid air in the unit at ambient pressure and at
temperatures between 40°C and 85°C (Al-Hallaj et al., 2006). Simplicity of the set up made it
popular in different parts of the world. Typical MEH desalination unit is presented in Fig. 6a.
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Multi-effect distillation unit was developed in Germany (Muller-Hoist et al., 1999) and then
applied on the island of Fuerteventura, where it is working for several years without almost
any maintenance or repair. The optimized module produced 40 L/h of fresh water, but it
was shown that production of 1000 L/d is possible when the unit was operated
continuously for 24 h. Based on a collector area of 38 m?, the daily productivity of the
optimized module is about 26 L/m? of collector area for a 24-h run and with thermal storage
under optimized laboratory conditions (Parekh et al., 2004).
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Fig. 5. Simple solar still (Chaibi, 2000) (a), desalination system using low-grade solar heat
(Al-Kharabsheh and Goswami, 2003) (b).

Application of solar chimney to generation of energy and sea water desalination, which is
shown in Fig. 6 is also an interesting approach. Through theoretical analysis, it has been
demonstrated that the integrated system can significantly improve the solar energy
utilization efficiency as well as the land resources utilization efficiency (Zuo, 2011).
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Fig. 6. Sketch of a natural draft air circulation MEH desalination unit (Parekh et al., 2004) (a),
Schematic diagram of the integrated desalination system with solar chimney (Zuo, 2011) (b).
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The Solarflow water treatment system for remote indigenous communities was invented at
The Environmental Technology Centre, Murdoch University (the Murdoch ETC) in Perth, in
the early 1990s and it is constantly modified since then (Dallas et al., 2009). The Solarflow is a
self-contained solar-powered unit capable of producing 400 L/d of high quality drinking
water from brackish water via reverse osmosis and requires only 120W of photovoltaic power.

Other project combining solar thermal and seawater or brackish water reverse osmosis is
SOFRETES system, which was already in operation in the early 1980s (Delgado et al., 2007).

As an output of the project SMADES, employing membrane distillation and aiming in design
of large solar powered desalination system, the pilot plant was built in Aqaba, Jordan in 2006.
Feed water was seawater directly from the Red Sea (55,000 pS/cm) (Banat et al., 2007).

MEDSOL is an EU project on seawater desalination by innovative solar-powered membrane
distillation system (Galvez et al., 2009). Commercial sea water purification system is offered
by Blue Spring Company, (Fig. 7). Models EC-1MS, through EC-30MS with output capacity
ranging from 1.2 m3/d to 30 m3/d can serve the fresh water needs of communities from 6 to
160 households.

Fig. 7. Blue Spring Solar desalination system.

2.2 Solar energy for water conditioning

Availability of drinking water is an ultimate condition for the inhabitation. Extraction of
water from air (EWA) (Scrivani et al., 2007) is the solution in the case of lack of primary
source of water. The total quantity of water contained in 1 km? of atmospheric air, that is, in
most regions around the globe, ranges from 10,000 to 30,000 m3 of pure water.

In proposed solution, the refrigerator was operated by an electricity driven compressor and
the cold fluid going into the heat exchanger was produced by a reverse compression-
expansion thermodynamic cycle (Fig. 8). It was claimed by the manufacturers that
approximately one liter of diesel fuel operating the electrical generator could provide four
liters of water from air. In fact, system integration with PV panels could make it more
reasonable from economy point of view.

In the developing countries, where sophisticated water purification methods are not
available, solar water disinfection (SODIS) revealed a great potential to reduce the global
diarrhoeal diseases burden, which affects over 1.8 million people (Meierhofer and Landolt,
2009; Acra et al., 1980).
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Fig. 8. Typical EWA plant for potable water production (condensation occurs by passage of
the air on the cold coils of a heat pump) (Scrivani et al., 2007).

According to extensive microbiological investigation, 30°C water temperature, a threshold
solar radiation intensity of at least 500 W/m?2 (all spectral light) is required for 3-5h for
SODIS to be efficient for destruction of diarrhoea-causing pathogens in contaminated
drinking water. Water can be stored in any transparent container. Since the year 2000,
SODIS is being promoted in developing countries through information and awareness
campaigns and currently used in 33 countries (Fig. 9) by more than 2 million people and
decreasing diarrhoea outbreaks by 16-57%.
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Fig. 9. More than 2 million users currently practise SODIS in 33 countries (Meierhofer and
Landolt, 2009).
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Single-basin solar stills, presented in Fig. 10 for the removal of a selected group of inorganic,
bacteriological, and organic contaminates were investigated (Hanson et al., 2004) and turned
to be efficient in removing non-volatile contaminants from the water. Removal efficiencies
of more than 99% were noted on salinity, total hardness, nitrate, and fluoride.
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The group of Sixto Malato has been investigating the solar photocatalysis and proposing
various innovations in the process for more than decade. Mechanism of solar driven
photocatalysis is depicted in Fig. 11, (Robert and Malato, 2002).

Malato group was often using compound parabolic collectors (CPC), however variety of
shapes and solutions including trough reactor (PTR), thin-film-fixed-bed reactor (TFFBR),
double skin sheet reactor (DSSR, pilot plant in Wolfsburg factory of the Volkswagen AG),
etc. can be employed (Bahnemann, 2004).

In areas where water is heavily contaminated standalone systems, which were used for
desalination and simple light disinfection might be not sufficient. AOP methods and
catalytic processes can bring rapid improvement of the effluent water quality. Many
research groups were investigating the catalytic systems based on titanium compounds and
Fenton process.
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Fig. 10. Isometric view of El Paso Solar Energy Association still (Hanson et al., 2004).
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Fig. 11. General mechanism of the photocatalysis, (Robert and Malato, 2002).

Solar driven photocatalytic oxidation processes are presented in Tab. 1. (Blanco et al., 2009).
Tab 2. (Malato et al, 2009) compares various factors, which must be taken into the
consideration when TiO; and photo-Fenton process are used.
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TiO»-persulfate photocatalytic
system (A < 390 nm)

Photo-Fenton method (H20: and Fe**)
irradiated in the UV-vis range (A < 580 nm)

TiOz + hv —egp + hyp

hiy + Hy0 —*OH + H*
S,08% + €55 — S0,° + 50,2
S04

Fez+
Fed+
~ L Hy0 —*0OH + S04 +HT

+ H,0, — Fe3* + OH- + *OH
+H,0 + hv—Fel+ + H" +*OH

Table 1. Photocatalytic oxidation processes that can be driven by solar energy (Blanco et al.,

2009).
TiO, Photo-Fenton
Stress on [Corrosive liquids: oxidative process, Corroswe llqul(.is:. oxidative process, H,0,, iron
. ions, usually acidic pH (2-3.5), salt
reactor  [pH and salt concentration depend on .
. . concentration and temperature depend on
materials [application. o
application.
. |TiO, may adsorb on the reactor walls  [[ron oxides may deposit on the reactor walls
Cleaning 0 L . . S . .
preventing illumination, effective preventing illumination, effective chemical
procedure . . . .
# chemical cleaning agents are HCI, and [cleaning agents are chelating agents, such as
mostly, HyF,. oxalic acid and acidic pH.
Reszdgnce Long residence time in the collector  [Long residence time in the collector may cause
(ime i ay cause dissolved O depletion H,O, depletion
collector Y . ' 22 '
Temperat [Not relevant to process performance  [Strongly influential on process performance,
ure between 20 and 80 °C. beneficial if higher.
Reactor  [Light distribution in the collector is [Light distribution is governed by absorbance of
diameter/ [largely governed by absorbance and  [the solution, which is a function of catalyst
depth—  [scattering by the catalyst particle. A |concentration and wastewater. Absorbance
optical  |direct correlation between ideal catalyst|varies strongly along the streatments due to the
athlengthlconcentration and diameter exists. appearance and destruction of compounds.
[Effective  [<390 nm for TiO,, being approx. 4% of |[Depends strongly on the presence of complexes,
wavelengt [sunlight's irradiance power (sunny may be up to 550-600 nm being 28-35% of
h range  |days). sunlight's irradiance power (sunny days).

. Rate law changing from first through Little research performed, first or.der rate laW
Light suggested over a broad range of light intensity,
. .. [half order to zero-order dependency as . .2 .
intensity S . applicable as long as ferric iron predominates

the light intensity increases. .
over ferrous iron.
[Fenton process takes place in dark zones,
Dark clevated temperature influences the reaction rate
ones No reactions taking place in dark zones.|positively. Alternating dark and illumination
intervals have shown to reduce the necessary
illumination time.
L [Process control includes the determination of the
\Process  |Process control mainly includes the .
.. itreatment: end. pH must be controlled to avoid
control  |determination of «reatments end. . N
iron precipitation.

Table 2. Comparison of TiO; and photo-Fenton process aspects relevant to the
photoreactor's design requirements, (Malato et al., 2009).
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EU supported several different projects with the aim of developing a cost effective
technology based on solar photocatalysis for water decontamination and disinfection in
rural areas of developing countries, for instance: SOLWATER and AQUACAT (Malato et
al., 2009) (Fig. 12).

Fig. 12. Schematic diagram and photograph of the photoreactor developed in AQUACAT
and SOLWATER projects for photocatalytic disinfection in developing countries (Malato et
al., 2009).

Fig. 13. View of the solar detoxification demonstration plant erected by ALBAIDA at La
Mojonera (Almeri“a, Spain), (Malato et al., 2007).

Huge solar driven photocatalytic plant, presented in Fig. 14, was built in Almeria, Spain
under the “SOLARDETOX" EU project on solar detoxification technology for the treatment
of industrial non-biodegradable persistent chlorinated water contaminants, (Malato et al.,
2007). Nowadays, facility allows to investigate following technologies (Bahnemann, 2004):

a. Solar Desalination, from two different approaches, combined solar power and
desalination plants (MW range), and medium to small solar thermal desalination
systems (kW range).

b. Solar Detoxification, by making use of the near-ultraviolet and visible bands of the solar
spectrum (wavelengths shorter than 390 nm for TiO, and 580 nm for photo-Fenton) to
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promote a strong oxidation reaction by generating oxidizers, either surface-bound
hydroxyl radicals (OH-) or free holes, which attack oxidizable contaminants, producing
a progressive break-up of molecules yielding CO,, HO and dilute mineral acids.

c. Solar Disinfection, which applies the detoxification techniques mentioned above, using
a supported photocatalyst, to generate powerful oxidizers to control and destroy
pathogenic water organisms.
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Ozone generator
Bank battery
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Fig. 14. Integrated PV water/ gas/soil conditioning system based on ozone.

Integrated PV system based on AOP and application of ozone (Fig. 14) for water and gas
conditioning was developed by Stryczewska group (Stryczewska, 2011; Komarzyniec et al.,
2010; Pawlat et al, 2011a; Pawtlat et al, 2011b). System was applied for conditioning of the
pool waters, soil and gas. It will be further described in part 5.

2.3 Solar wastewater treatment

Wastewater treatment processes can be basically divided into 3 groups: mechanical, chemical
and biological. They are used in various combinations depending on the type and
concentration of pollutants. Some of discharged industrial impurities are not decomposable by
conventional technologies, require tremendous amount of energy, thus, must be treated with
alternative methods such as AOP. Those needs can be at least partly assured by using solar
supported technologies. Examples of solar power employing in the processing of hardly-
treatable compounds from various industrial branches such as pharmaceutics, chemical,
semiconductor, dye, paper, food and for farms” and landfills” leachates are known.

Fig. 15 presents solar photocatalytic treatment plant developed to treat wastewater from
recycling pesticide bottles (Albaida plant, Almeria, Spain) (Blanco et al., 2009). Water from
washing the pesticide bottles was treated in batches until 80% of the TOC has been
mineralized. At this point, the water was transferred to the post-treatment (iron
precipitation, sedimentation and recuperation), and either reused for bottle washing or
discharged for irrigation through an activated carbon filter to ensure discharge quality.
About 75% of the total volume of the treatment circuit was continuously exposed to sunlight
in 150 m? of CPC solar reactors.
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Fig. 15. Conceptual design of the ALBAIDA solar photocatalytic plant for the treatment of

wastewater from washing shredded plastic pesticide bottles for recycling, (Blanco et al.,
2009).

Another coupled solar-biological system at field pilot scale based on CPC and fixed bed
reactor (Fig. 16) for the treatment of biorecalcitrant pollutants was developed in EPFL
(Sarria et al.,, 2003). The photo-Fenton system was the most appropriate AOP for the
degradation of a model biorecalcitrant compound, 5-amino-6-methyl-2-benzimidazolone
(AMBI). The coupled reactor, operating in semicontinuous mode achieved 80-90%
mineralization performance depending on the range of initial dissolved organic carbon.
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Fig. 16. Schematic representation of the coupled solar-biological flow reactor (Sarria et al.,
2003).

il

100% of the cyanides and up to 92% of TOC in wastewater effluent from an Integrated
Gasification Combined-Cycle was degraded in the cycle utilizing concentrated solar UV
energy (UV/Fe(Il)/H20O,) in a Solar CPC pilot plant (Duran et al., 2010) under the optimum
conditions ([H202] = 2000 ppm, [Fe(ll)] = 8 ppm, pH = 3.3 after cyanide oxidation, and
[(COOH);] = 60 ppm).
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Different solution was design of solar heated reactor for anaerobic wastewater or biological
sludge treatment at temperatures higher than the ambient air temperature (Yiannopoulos et
al., 2008). For the proposed reactor system, the solar energy absorbed by flat plate collectors
was transferred to a heat storage tank, which continuously supplied an anaerobic-filter
reactor with water at a maximum temperature of 35°C. At this temperature the COD
removal efficiency was approximately 80%.

3. Solar energy in conditioning of air and drying the crops
3.1 Cooling and air conditioning

There are two main ways to convert solar radiation into cooling or conditioning of air, based
on PV panels and solar collectors combined with variety of thermodynamic processes (Fig. 17),
(Henning, 2007). Solar buildings and using of gravitational ventilation is gaining more and
more popularity in Europe but this topic will not be a subject of the present chapter.

Techniques allowing use of solar thermal collectors, which are currently prevailing over PV
panels for air-conditioning of buildings can be basically divided into thermally driven
chillers (to produce chilled water which can be used for any type of air-conditioning) and
open cycles, also referred to as desiccant cooling systems, (for direct treatment of air in a
ventilation system). Typical system based on thermal process is presented in Fig. 18.

solar radiation

electric process thermal process
photovoltaic panel solar thermal collector
I l ]
vapour compression heat transformation thermomechanical
cycle process process
[ : 1
open cycles cloeed Gyolos Hanklne-cyclel_’
vapour compression
liquid sorbent I ~| liquid sorbent I | steam jet cycle
L{ counterflow|absorber —  Vuilleumier cycle

solid sorbent I

| fix bed process

|| dryabsorption
(e.g. ammonia / salt)

Fig. 17. Solar radiation for air-conditioning. Processes marked in dark grey: market available
technologies which are used for solar assisted air-conditioning. Processes marked in light
grey: technologies in status of pilot projects or system testing (Henning, 2007).
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Following processes, depicted in Fig. 18 are taking place: 1- intake, 2-sorptive
dehumidification of supply air; 3-pre-cooling of the supply air in counter-flow to the return
air from the building; 4-evaporative cooling of the supply air to the desired supply air
humidity by means of a humidifier; 5-the heating coil is used only in the heating season for
pre-heating of air; 6-a small temperature increase is caused by the fan; 7-supply air
temperature and humidity are increased by means of internal loads; 8-return air from the
building is cooled using evaporative cooling close to the saturation line; 9-the return air is
pre-heated in counter-flow to the supply air by means of a high efficient air-to-air heat
exchanger, e.g., a heat recovery wheel; 10-regeneration heat is provided for instance by
means of a solar thermal collector system; 11-the water bound in the pores of the desiccant
material of the dehumidifer wheel is desorbed by means of the hot air; ) 12-exhaust air is
blown to the environment by means of the return air fan.

O— v

~
backup
heater
:
return air
7 -~
cooling
loads
s 7~
supply air

dehumidifier heat recovery
wheel wheel

Fig. 18. Standard desiccant cooling cycle using a dehumidifier wheel with solar thermal
energy as driving heat input, (Henning, 2007).

In Europe thermal systems are mostly installed in Germany and Spain. Large ones are
installed at the Sarantis cosmetics factory in Greece and the federal office for environmental
issues of Bavaria in Augsburg. In Freiburg/Germany a solar cooling system is operated by
the University hospital for air-conditioning of a laboratory.

The system, presented in Fig. 19 consists of an adsorption chiller with a capacity of 70 kW
and a field using evacuated tube collectors with an aperture area of 170 m? (Henning, 2007).

Integration of air conditioning especially for cooling purposes with PV panels is another
eco-friendly approach as cooling is usually used in the period of high insolation. Thus, use
of PV supplied energy could stabilize the grid. PV panels integrated with air conditioning
system are already commercially offered on the market by LG (Fig. 20a). LG’s solar-assisted
air conditioner requires only 727 watts per hour of energy for cooling.

Another solution is a hybrid system (photovoltaic + solar thermal) proposed by SolarWall®
PV/T , which provides up to 4 times the total energy from the same surface area. ICL Co
Ltd, Mitsubishi Chemical Corp and Nippon Fruehauf Co Ltd co-developed the air
conditioning system "i-Cool Solar” (Fig. 20b), which stores electricity via the photovoltaic
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panels in special on-board batteries and uses the stored energy to power the cabin air
conditioner when the truck is idle.

Fig. 19. Solar collector field (evacuated tubes) installed in system at University hospital in
Freiburg (Henning, 2007).

a

Fig. 20. LG solar hybrid air conditioner (a), ICL Co Ltd, Mitsubishi Chemical Corp and
Nippon Fruehauf Co Ltd solar cooled truck (b)

3.2 Drying of crops

Application of solar energy for drying crops, clothes, building materials is one of the oldest
one. The first installation for drying by solar energy was found in South France and is dated
at about 8000 BC. Two basic moisture transfer mechanisms are involved in drying:
migration of moisture from the mass inside to the surface and transfer of the moisture from
the surface to the surrounding air, in the form of water vapor. Drying by solar radiation can
be divided into direct, or open-air sun drying, the direct exposure to the sun and indirect
solar drying or convective solar drying, (Belessiotis and Delyannis, 2011; Leon et al. 2002).
Selecting the perfect conditions for drying is not easy as the food materials are very sensitive
and their color, flavor, texture or nutritional value should not be seriously affected.
According to (Belessiotis and Delyannis, 2011) outdoor sun-air heating suits to fruits
because of high sugar and acid content but vegetables have low sugar and acid content
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increasing the risk of spoilage during sun- and open-air drying. The basic classification of
solar drying modes is summarized in Tab. 3. Basically, direct solar dryers, indirect solar
dryers, mixed-mode dryers and hybrid solar dryers can be distinguished (Fudholi, 2010).
Fig. 21 gives examples of basic design of solar dryiers.

. I. Solar w!lmqr Solar chimnay —
Exit air Connecting pipes
P | Airvalve
Air blower

Solar cabinet
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Brik wall

Vermizulite

air nlet i N e Steps
Reclmgular ducl

fannorene hase

Fig. 21. Examples of solar crops dryers: indirect-mode forced dryer, (Al-Juamily et al., 2007)
(a), indirect type natural convection solar dryer with an integrated thermal mass and a
biomass-backup heat, (Madhlopa and Ngwalo, 2007) (b).

Solar Dryers

v
v v

Natural Circulation . Forced Circulation
—p Hybrid -#4——
(Passive Dryers) AR (Active Dryers)

Direct mirect Mixed-mode

s

Cabinet  Greenhouse Chimney-type

Dryers Dryers Chamber-type (tray-type/rack-type
dryer, bin type, and tunnel- type)
l—‘ Wind Ventilated Dryer
Reverse Non Reverse I
Absorber  Absorber ; +
With Storage Without Storage
Reflecting Non Reflecting

Table 3. Classification of solar dryers and drying modes (Fudholi, 2010).
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4. Solar energy for wastes and solids treatment

Solar energy might be used in processing of solid and liquid wastes on several stages of
their treatment. PV panels might be used for generating of electrical power for each devices
but commonly rather thermal solar power is used to maintain or increase the temperature
required for the treatment process.

Solar power can be used in the process of gasification of carboniferous materials including
wastes of high carbon content. Solar steam-gasification of biomass makes use of
concentrated solar energy to convert solid biomass feedstocks into high-quality synthesis
gas (syngas) - mainly H, and CO - applicable for power generation in efficient combined
cycles and fuel cells, or for Fischer-Tropsch processing of liquid biofuels (Lede, 1999; Perkins
and Weimer, 2009; Melchior, 2009). Conventional auto-thermal gasification requires a
significant portion of the introduced feedstock to be combusted with pure O, to supply
high temperature process heat for the highly endothermic gasification reaction. For
example, the energy required to gasify bituminous coal of LHV 34 MJ/kg is supplied by
burning 35% of the injected coal mass (Piatkowski and Steinfeld, 2008). In contrast, the solar-
driven gasification eliminates the need for a pure stream of oxygen (Melchior, 2009).

Solar-driven steam-gasification is free of nearly all combustion by-products and produced
syngas has a lower amount of CO (calorific value is over that of the original feedstock by an
amount equal to the enthalpy change of the reaction).

The solar hydrogen technology can be divided into water thermolysis (needs a high
temperature heat source at above 2500 K), thermochemical cycles for water-splitting, and
hybrid solar/fossil fuels processes.

Thermochemical gasification of tires and plastic bottles into synthesis gas using ZnO as a
donor of oxygen in the infra-red furnace and concentrated solar energy was studied
(Matsunami et al., 1999). Another solution for concentrated-solar supported gasification was
two phase biomass char (biochar) steam gasification in a bubbling fluidized bed (Fig. 22).
Hydrogen was the principal expected product followed by carbon monoxide (Gordillo and
Belghit, 2011).

Concentrated
Thermal radiation

; CPC
| |
//’/ Gas output

Packed Bed —

{— Insulation

Fig. 22. A bubbling fluidized bed gasifier with concentrated thermal radiation as source of
energy (Gordillo and Belghit, 2011).
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3kW solar reactor prototype was invented for continuous steam-gasification of biochar
(ultimately for the biomass feedstock) (Melchior et al, 2009). High-temperature
thermochemical reactor, depicted in Fig. 23, used cavity-type configuration to capture
effectively the incident concentrated solar radiation entering through a small opening
(aperture) and multiple internal reflections.
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Fig. 23. Schemata of the solar chemical reactor configuration (cross-sectional view) at ETH’s
High-Flux Solar Simulator (a), and of scaled-up reactor consisting of a cavity-receiver
containing an array of 8 tubular absorbers (b), (Melchior et al., 2009).

A novel system of hydrogen production by biomass gasification in supercritical water
(SCWG) using concentrated solar energy has been constructed, installed and tested with
biomass model compounds (glucose) and real biomass (corn meal, wheat stalk) (Chen et al.,
2010). The system’s schema is shown in Fig. 24.
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17

Fig. 24. Schematic diagram of SCWG using concentrated solar energy system [Chen et al.,
2010]. (1: nitrogen bottle; 2: feedstock tank; 3: feeder; 4: solar receiver/reactor; 5: heat
exchanger; 6: cooler; 7: filter; 8: back-pressure regulator; 9: liquid-gas separator; 10: wet test
meter; 11: relief valve; 12, 13: mass flow meter; 14, 15: high pressure metering pump; 16:
water tank; 17: toroidal surface heliostat with the two axis spinning-elevation sun tracking;
18: secondary cone surface concentrator).

The maximal gasification efficiency (the mass of product gas/the mass of feedstock) in
excess of 110% was reached, hydrogen fraction in the gas product approached 50%.

Big Belly System (Fig. 25) is an interesting initiative for small scale application of PV power
for compression of city wastes. It reduces collection frequency by up to 80%, freeing up
resources, slashing fuel costs and increasing recycling opportunities. Innovative container
allows accommodating 8 times more trashes than traditional one and will bring about 12
mln USD savings in 10 years period in Philadelphia city.

Fig. 25. Big Belly System.
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5. Prototype installation of air, water and soil treatment suppliedd from PV
panels

Autonomous water treatment installation supplied from PV panels and installation for air,
water and soil treatment were developed in Lublin University of Technology in cooperation
with Japanese partners. Set-ups were extensively described (Pawlat et al., 2011; Stryczewska,
2011; Komarzyniec et al., 2010; Pawlat et al, 2011a; Pawlat et al, 2011b; Ebihara et al., 2011;
Takayama et al., 2006; Komarzyniec et al., 2010).

Small water treatment installations with ozone generation using electric energy from
renewable energy sources could be the good solutions to variety of environmental problems.
Fig.26 depicts a small household water ozonation installation. Proposed system was made of
three basic sub-systems: electric energy power system, ozone production system and water
treatment system. It was totally autonomous, designed for a constant work in difficult
climatic conditions. The devised technological solution is excellent to be utilized in remote
terrains, which are distant from electroenergetic network or in the places where the
electroenergetic main is unstable and fallible.
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Fig. 26. Water ozonation system

Ozone based techniques in the case of soil contamination are good alternative to the
traditional techniques like heating, flushing with chemical additives, landfilling,
incineration, etc. Benefits of ozone applications in agriculture might be summarized as
follows:

- use of ozone in soil treatment will not result in the build-up of any environmentally
persistent or toxic compounds as Os is immediately consumed in the soil treatment
process.

- ozone is manufactured on site so it cannot be stored and its sudden release to the
atmosphere is not possible like it could occur with compressed methyl bromide or other
persistent toxic gases or chemicals used for soil sterilization.

- minimum human toxicity.

Integrated system for ozonation of soil was presented in Fig. 27.
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Fig. 27. Soil ozonation system

Currently, the total cost of generating electrical energy from solar batteries is one order of
magnitude higher than in case of nuclear energy. However, the application of solar batteries
becomes profitable, as far as the demand for electrical energy is small. The correctly selected
system should cover about 95+100% of electrical energy demand during summer. Tab. 4
collects photovoltaic cell parameters, used to supply water ozonation system with electrical
energy.

. Maximum Maximum Maximum o Short

Maximum Open Circuit L
Power System Power Power Voltage Circuit
Voltage Voltage Current Current

210 W 600 V 266V 79 A 332V 8.58 A

Table 4. Photovoltaic cell parameters

5.1 Production of ozone

The ozone generation took place with the usage of corona discharge. The ozonizer was
powered with high frequency supplier with pulse control and amplitude modulation. It was
possible to control ozone concentration. The basic parts of ozone generator were titanium
electrodes (one covered with ceramic dielectric material). In order to lower the ozonier’s
consumption of electric energy, the complex system of radiators was used, so electrodes
were efficiently cooled with atmospheric air (Fig. 28).

The utilized ozone generator operated with both: pure oxygen and atmospheric air as
substrate gases, 1.5 g/h and 6 g/h of O; were generated, respectively. Gas flow ranged 3,3-
4,7 1/min with 180 W of power consumption.

Ozone production chart and voltage characteristics are depicted in Fig. 29 and 30,
respectively.

Through an increase of frequency not only the increase of efficiency, but also reduction of
electric energy consumption was achieved.
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Fig. 28. Ozone generator: 1, 4 - titanium electrode, 2 - ceramic layer, 3 - discharge gap, 4 -
radiator
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Fig. 29. Ozone generation chart.
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5.2 Water ozonation system

The appropriately made contact container has a fundamental influence on stability and final
quality of water ozonation process. In the majority of ozonation systems ozone is added to
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water in the form of bubbles through diffuser. The effectiveness of such a process is low
because ozone is not evenly mixed with water, and when in large quantities, ozone
evaporates from water into ozone destructors, from where the unused oxygen is blown out
to the atmosphere. To reduce influence of factors mentioned above innovative WOFIL
system was used. In this solution, raw water was initially aerated and oxidized with the
oxygen mixed with ozone, which evaporated from the contact container. This solution
enabled the increase of ozonation process” efficiency by almost 30% (in comparison with the
competitive ideas) without the increase of electrical energy consumption. It also resulted in
reduction of amount of gas which was blown out to ozone destructors and in lower values
of residual ozone after the contact container.

In order to remove the excess of the produced and the residual ozone the catalytic
destructors were used. System is presented in Fig. 31.

i, —

| B

—i1u__
OIGNHE TECHHNGLORY

i Orans

Fig. 31. WOFIL water ozonation system

5.3 Power supply

The main element of the circuit was bi-directional inverter, administering loads, the flow of
energy and the work of accumulators. Inverter provided 24 V grid of DC voltage and a
typical grid of AC voltage 110 V/60 Hz or 230 V/50 Hz. Thus, it enabled integration ranging
from electric generators to energy receivers.

Photovoltaic systems, air turbine, generators with diesel motors, water-power plants are
connected together with load on the side of alternating voltage. The batteries of
accumulators, fuel cells and DC receivers, however, are integrated on the side of DC
voltage. Fig. 32 depicts a flow chart of electric grid which cooperates with water ozonation
system.
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The connection of solar batteries on the side of alternating voltage required application
additional DC/AC inverter, what allowed to avoid using an expansive DC wiring and
additional adjustment.
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Fig. 32. Grid supplying water ozonation system with electric energy.

5.4 Energy distribution

Limited power value received from photovoltaic cells poses the main problem in designing
an efficient treatment system. Power consumption of individual electric elements in
integrated ozonation system is shown in Fig.33.
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Fig. 33. Electric energy consumption in the system.

When the whole system is accurately aligned, usage of some of electronic elements, utilized
in pilot installation, which are responsible for controlling functioning of the system might be
omitted. Thus, power consumption could be lowered to several hundred Watts.

6. Conclusions

Usage of solar power via thermal collectors or photovoltaic panels to the water, air, waste
and soil treatment is an environmental-friendly and cost-effective solution, especially on
areas with yearly uniform and high insolation.
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The presented water and air/water/soil ozonation set-ups are currently being prepared for
implementation procedures. Since being fully autonomic systems of modular construction,
they could be easily adjusted to individual needs. Power from PV panels could cover up to
95-100% energy needs in summer period in optimized integrated system.

Efficiency of ozone application and AOP methods for water is already well known. Ozone
usage in the case of soil allowed to achieve 99.9% sterilization efficiency in the case of
Fusarium oxysporum at the ozone dosage over 20 gOs/m3.
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1. Introduction

A comfortable indoor environment is one of the main requirements of a well-designed
house yet most of the low-cost houses are characterised by poor thermal performance.
Mainly poor design, sub-standard building materials and poor craftsmanship contribute to
the poor performance. The inclusion of energy-efficient passive solar design features in the
construction of affordable housing offers many benefits which include; reduced operating
costs, reduced energy related greenhouse emissions, and reduced need for expensive
heating and cooling of the house and above all, improved comfort. The basic natural
processes used in passive solar energy are the thermal energy flows associated with
radiation, conduction, and natural convection. When solar radiation strikes a building, the
building materials can reflect, transmit, or absorb the solar radiation [Makaka, Meyer; 2008].
Additionally, solar energy causes air movement that can be predictable in designed spaces.
These basic responses to solar heat lead to design elements, material choices and placements
that can provide heating and cooling effects in buildings. The thermal state is determined by
the difference of the sums of the heat gains and heat losses. Bricks form the about 80% of the
building materials and their physical properties play a role in determining the indoor
thermal behaviour. These properties include thermal conductivity, water absorption, sound
dumping and compressive strength. The addition of fly ash to clay in a defined ratio can
really improves these properties and at same time reducing the manufacturing process.
South Africa produces about 90 tones of fly ash annually posing a huge problem on the
disposal management of fly ash. The use of fly ash in the manufacturing of bricks is one of
the ways of the management of this waste.

The aim of this chapter is to establish the impact of passive solar design and building
materials properties on the indoor temperature and to establish a statistical correlation of
the indoor temperature with outdoor weather parameters [Makaka, Meyer; 2008]. It seeks to
develop an understanding of the criteria used for the selection of an appropriate passive
solar architecture that is sensitive to both energy use and climatic conditions, i.e., it gives the
details of the design and the selection of building materials used, energy efficient design
optimization using ECOTECT building design software and ventilation efficiency. Most of
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computer based prediction models are complicated for an average trained builder this
results in the construction of poor thermal performing buildings. In this chapter a statistical
method is used to develop a simple indoor temperature predicting model.

2. Principles of passive solar design

The building design phase integrates the site, floor plan, building orientation, landscaping,
materials, mechanical systems and architectural characteristics. The design of an energy-
efficient house requires a careful analysis and evaluation of all proposed design alternatives
throughout the different design stages. The central issue in passive solar design is to
minimize the energy required for heating, cooling and artificial day lighting. This can be
achieved through the use of a range of different features that improve the building’s thermal
and lighting performance. The properties of the building materials vary and selection must
be in accordance with the climate of specific regions [Makaka, Meyer; 2008]. The decisions of
the architect and builders in the early stages of the design process are fundamental to a
holistic approach in constructing a passive solar house (PSH). In the schematic design phase
of the PSH, prior to making any sizing of windows, wall thickness, etc., decisions on broader
issues such as building orientation and the appropriate spatial organization of the building
must be made. As the design is developed, more accurate investigations are needed to
obtain the appropriate size of building components based on design criteria and objectives
that are determined at the outset. Passive solar design integrates several issues that can be
rather contradictory; larger glazing to achieve solar gains can result in overheating, and an
airtight building can produce bad indoor air quality [Wray et al., 1979]. These issues must be
dealt with carefully by seeking the best balance between the passive solar design
requirements and the budget. Consequently, in the Southern Hemisphere, the house must
be oriented north to maximize the heat gain of the low north winter sun but eliminating the
possible indoor solar radiation penetration in summer. The direction of the prevailing winds
determined the layout of major outdoor features and the placement of windows to enhance
optimal natural ventilation. The basic components of passive solar design are discussed in
the following sections.

3. Advantages of energy efficient design features

A whole-house “system” approach to design and construction is the appropriate method of
developing energy-efficient and sustainable houses. A system approach considers the
interaction between the site, building envelope, mechanical systems, occupants, and other
factors. This system recognizes that the features of one component of the house can greatly
affect others. Energy efficient houses are more comfortable because of stable indoor
temperature. The indoor humidity is better controlled and drafts are reduced. Energy-
efficient houses protect the planet and offers greater fire safety. Energy efficient houses
experience less condensation, which protects framing, windows and finish materials
[Kunzel et al, 2003].

4. Fly ash bricks

Bricks of different proportions of clay and fly ash were molded and compressive strength,
water absorption and thermal conductivity were measured. The amount of fly ash was
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increased in steps of 10% (in volume). The clay-fly ash ratio which produced a brick with
high compressive strength, low water absorption and low thermal conductivity was then
used to mold bricks for the construction of a passive solar house. The ratio of 1:1 (clay : fly
ash) was found to produce a brick with the ideal properties, i.e., low water absorption
capacity, low thermal conductivity, high heat capacity, high compressive strength and high
sound damping. Table 1 shows the chemical composition of fly ash collected from two
different sites. The properties of fly ash bricks depend mainly on two factors: (i) the energy
content of the fly ash used and (ii) the chemical composition of the fly ash [Makaka, Meyer,
2008]

' Sulphate | Phosphate | Silicate |Calcium (| Magnesium | Potassium | Aluminum
| s 507 | @s POT) | (503) | cay | (Mg | (k) | (ar)

A 0.3 <0.1 20.3 0.36 0.05 1.63 141

B 0.2 01 20.9 215 0.12 2.68 19.6

Table 1. Percentage chemical composition of fly ash [Makaka, Meyer, 2008]

The other constituents include FeO, Na;O, K>O and unburnt carbon that form the bulk part
of the fly ash. The South African fly ash has high-energy content, making it excellent for
manufacturing bricks. Chemical composition of the fly ash and the temperature attained
during burning determine the brick colour.

Figure 1 shows the variation of thermal conductivity with the increase percentage of fly ash
in the brick composition, i.e., the insulating property of the fly ash brick increases with the
increase of the amount of fly ash. The fly ash bricks are observed to have high heat making
them ideal for use as thermal mass. From figure 1, it can be seen that thermal conductivity
decreases with increase in the proportion of fly ash with a minimum value of about 0.0564
W/mK, which correspond to a mixing proportion of 50% fly ash to 50% clay by volume. The
mixing proportion of 50% fly ash to 50% clay result in 93% reduction in thermal
conductivity as compared to a pure clay bricks. The fly ash bricks are very light in weight
(density 400-1190 kgm-3) making it much easier to transport the bricks [Makaka, Meyer;
2008]. As the carbon in the brick burns the trace elements melts thus sintering the brick and
at the same time small-unconnected cavities are created, giving the brick effective heat
insulating properties (low conductivity). Above 50% of fly ash, the cavities start to decrease
in size and number as the metallic elements starts to dominant, thus increasing the thermal
conductivity of the brick. The fly ash bricks have an added advantage of being very smooth
with an attractive colour thereby doing away with the need for external plastering and
painting.

Water is associated with deterioration processes affecting masonry materials. Its presence
within the interior pore structure of masonry can result in physical destruction if the
material undergoes wet/dry or freeze/thaw cycles [Raman et al., 2001]. The freeze/thaw
process is particularly damaging if the masonry material has high water absorption. The
high water absorption results in high expansion and contraction thus weakening the brick.
Because of these factors, the water permeability of a masonry material is related to its
durability.
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Fig. 1. The variation of thermal conductivity.[Makaka, Meyer; 2008]

Figure 2 shows the variation in water absorption as the amount of fly ash in the brick
increases. Water absorption of fly ash bricks decreases with increase in fly ash. A mixing
proportion of 50% fly ash to 50% clay produces a brick with minimum water absorption.
According to the South African Building Standard Code (SABSC), the brick water
absorption must be less than 20% by weight [Agrement South Africa, 2002].
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Fig. 2. Water absorption of fly ash bricks [Makaka, Meyer; 2008].
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From figure 2 it is clear that the addition of 20% fly ash by volume reduces the water
absorption by 32%, while the addition of 50% fly ash lowers the water absorption by 62%.
Since the created cavities are unconnected, permeability and porosity are reduced. The
reduction in permeability and porosity implies the reduction in freezing/thawing damage
of the brick since there will be minimal amounts of water in the brick. As the content of fly
ash increases beyond 50%, the amount of unburnt carbon increases and upon burning a
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significant proportion of the brick will be burnt [Makaka, Meyer; 2008]. In this case the trace
metallic elements are insufficient to bind the remaining proportion thereby creating
connected cavities, which results in high water absorption bricks with low compressive
strength. During brick firing the unburnt carbon enhance the burning process raising the
temperature higher thus initiating the vitrification process to take place.

Figure 3 shows the variation in compressive strength of fly ash bricks for different
proportions of fly ash. The compressive strength generally increases in comparison to bricks
manufactured without fly ash. The SABSC specify the minimum brick compressive strength
of 5 Mpa [Agrement South Africa, 2002]. The addition of fly ash significantly improves the
compressive strength. The mixing proportion of 50% fly ash to 50% clay produced a brick
with the desired properties, i.e., high compressive strength (12 MPa), low water absorption
(8.84%) and low thermal conductivity (0.0564 W/mK). Fly ash bricks with this mixing
proportion (50% fly ash) were recommended for wall construction. These bricks were
bought from a local brick maker approximately 600 m from the site of construction.
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Fig. 3. Compressive strength of fly ash bricks [Makaka, Meyer; 2008].

Somerset East experiences high humidity, and there was need to use wooden doorframes
and window frames which are resistant to rust. Being a poor heat conductor the wood
minimizes the unwanted heat gain/loss. The wooden doorframes and window frames were
found to have the added advantage of being cheaper than the metal frames. Corrugated iron
sheets were selected for roofing as they were found to be much cheaper than other roofing
materials such as roofing tiles. Asbestos was disregarded for health reasons since it causes
asbestosis. Metallic purlins were selected based on strength; however they were not to
protrude to the external. This was done to minimize heat/loss and fast corrosion.

5. Experimental passive solar house
5.1 Design of the passive solar house

A passive solar house was designed, simulated using Ecotect building design software and
constructed on a land that slopes facing north with an average gradient of about 0.134, having
good solar access, making it ideal for passive solar design. Figure 4 shows the transverse
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section of the building. The design tried to harmonize the benefits of compactness and the
requirements of natural day lighting, passive heating/cooling and natural ventilation. The
sun’s path determined the orientation of the house. The house was constructed to face north
with more window area on the north wall to allow solar radiation penetration in winter to
serve as solar heating thereby reducing the need of winter artificial heating. This orientation
was to optimize the solar radiation that penetrates indoor in winter. The roof was split into
two, the lower and upper roof. The lower roof faces north while the higher roof faces south.

Winter sun

Top of roof +3929

High roof +3697

Summer sun

Winter sun Lower roof +2815
High/low roof +2436

70177"7

(@)

Top of roof +3929

Summer sun High roof +3697

Lower roof +2815

High/low roof +2436

(b)

N

Fig. 4. Transverse building section: Solar radiation in (a) winter and (b) summer.
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This was done in order to enable the insertion of clerestory windows making it possible to
direct solar radiation to the desired rear zone (floor and southern wall) and to maximize day
lighting, thus minimizing the use of electricity during the day. The northern roof is ideal for
mounting photovoltaic modules as active solar energy converters.

5.2 Operation of the passive solar house

In summer, the sun almost rises from the east and sets in the west. In this case, the roof
overhangs were made long enough (simulation was done ECOTECT) to eliminate the
possibility of sunrays penetrating indoor. With reference to the clerestory windows, the
upper roof was extended out by 200 mm while the lower roof was extended in by 100 mm.
This eliminates the possible direct penetration of the solar radiation in summer while
allowing maximum penetration in winter.

In winter (May to August) the sun rises almost northeast, but following a low northern path
in the sky and then set in the northwest. From May to August the daily maximum angle of
the sun ranges from 34° to 48° and this maximum angle occurs at around 12h15 with June
21st having the smallest angle. Thus, the north facing windows allows solar radiation to
penetrate indoor, while the clerestory windows allow the south wall and the far south floor
(thermal mass) to receive solar radiation. The thermal masses of high heat capacity (i.e.
concrete floor of 100 mm thickness and the wall made from fly ash bricks) absorb solar
radiation during the day.

The thermal masses used are of high heat capacity thus absorbing large amounts of solar
energy with minimal temperature variation. This prevents overheating of the indoor
environment, thus keeping the indoor temperature within the comfort levels. At night, as
the outdoor temperature decreases; the thermal mass slowly radiates long-wave radiation
heating the indoor air therefore keeping the indoor air temperature within the thermal
comfort levels. Since the window glazes are opaque to the long wave thermal radiation, the
thermal radiation emitted by the thermal mass is trapped indoor, and heat loses are
minimized.

Somerset East experiences westerly prevailing winds in summer, so the small windows on
the west and east make it possible to control the ventilation rate. The clerestory windows
and the south windows enhance controllable natural ventilation rate and helps to maintain
temperature within the comfort levels (16°C to 28°C).

6. Predicted performance of the passive solar house

The mathematical description of thermal behaviour of building systems is complex. It
involves the modelling of several interconnected subsystems, each containing long-time
constants, non-linearities and uncertainties such as convection coefficients, material
properties, etc. Moreover, external unpredicted perturbations, i.e., external weather (e.g.
temperature and humidity), soil temperature, radiation effects and other sources of energy,
such as people, illumination and equipments, should also be taken into account.

The analysis of the different design alternatives was carried out by averages of an hourly
dynamic simulation using Ecotect™ Building Design Software [Marsh, 2004]. Many building
energy simulation software packages use the thermal zones concept to define thermal
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properties for the simulation. The effects of building parameters on the facade thermal
performance were studied through the simulations. Building models were built in the
simulation program. The South African Building Standard Code specifies the lower and upper
comfort levels to be 16°C and 28°C respectively and relative humidity levels of 30% to 60%.

Figure 5 shows the simulation results of the PSH. The simulation results indicate that the
indoor temperature of the passive solar house was within the limits of the comfort levels for
about 98% of the total period (380 hours) tested. However, the outdoor was outside the
comfort levels for 44% of the period with 30% being above the upper comfort level (28°C)
and 14% below the lower comfort level (16°C). With reference to figure 5, the PSH was
observed to have an average thermal time lag of 3 hours and a decrement factor of 0.67.
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Fig. 5. Indoor and outdoor air temperature of the PSH simulated over a 380 h period
(Summer).

The maximum indoor temperature attained was about 28°C and a minimum of 17°C giving
a temperature swing of 10°C, while the outdoor temperature swing was about 31°C.
However, it must be noted that the actual performance of the house is not only restricted to
design and materials used, but also to the operation of the house on the part of the
occupants.

7. Ventilation
7.1 Ventilation efficiency

Natural ventilation provides a cheaper and simpler way of cooling buildings. Low cost
energy efficient passive solar buildings rely on natural ventilation and the building
ventilation components must be positioned to capture the prevailing winds. Pollutants can
build up to levels that may negatively impact human health unless they are removed or
diluted with fresh outside air. The natural ventilation efficiency and air quality of the
passive solar house was measured using the carbon dioxide tracer gas method. Reducing air
leakage from the house envelope is one of the ways to reduce energy use, as well as improve
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the comfort, health and building durability. Traditionally, residential construction greatly
relied on air infiltration through the building envelope, i.e. through the unintended gaps in
walls, roofs, windows, doors, and other construction elements to provide ventilation. Low
cost energy efficient passive solar buildings rely on natural ventilation and the building
ventilation components must be positioned to capture the prevailing winds [Myers, 2004].

House operation plays a key role in controlling a comfortable indoor environment. Somerset
East experiences westerly prevailing winds (W (60 £ 15) N) and the passive solar house was
designed to make use of these winds to control the indoor environment, i.e., indoor
temperature and humidity, which are the key factors that determine thermal comfort. The
South African Residential Ventilation Building Code [Agrement South Africa] recommends
an average natural specific air exchange rate of 0.35 h' and an indoor carbon dioxide
concentration less than 0.500%.

Equivalent outdoor airflow rate corresponds to the outdoor airflow rate that would result in
the same CO, concentration in the measured room without inter-zone air flows.

An adult person produces on average (i.e. quiet or doing light work, about 100 W metabolic
rate) carbon dioxide at about 20 [/h. At steady state, assuming that occupants are the only
CO; sources, the equivalent airflow rate per person, Q., is related to CO, concentration (Ci,
indoors and C,: outdoors) by [Roulet, 1991]:

S

Qe ===
Cin - Cout

[m3 /] @
where S is the CO; source rate, i.e. about 20 [/h. Assuming a steady state (constant carbon
dioxide concentration), equation 6.1 can be used to assess the equivalent outdoor airflow
rate per person.

Another way is to use the CO, concentration records when there is no CO, source in the
building. During these periods, the concentration decays down to the background
concentration, by dilution with the outdoor air flow. If there is good mixing and if the
outdoor air flow rate is constant, the decay is exponential and the factor corresponds to the
air change rate and the concentration at any time t, is given as [Penman, 1982]:

C=Cpe ™ )

where u is the specific air exchange rate [h1] C,is the initial concentration above the
background concentration. Taking logarithms both sides of equation 2 and differentiating
with respect to time the specific air exchange rate can be approximated by the following
expression:
A(In(C))
--=o=d ©
At

If the outdoor airflow rate is not constant, the decrement calculated from two measurements
of concentration taken at time # and t, provides an unbiased estimate of the average
equivalent outdoor specific airflow .
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7.2 Ventilation rate

Tracer gas tests were conducted over a period of time to measure actual air change rates.
Figure 6 shows the indoor air currents due to the westerly prevailing winds. Carbon dioxide
was injected into the house and its concentration monitored over time to determine how
quickly the gas dissipates through the house’s envelope. The west side ventilation
components were used to control the indoor environment by regulating the amount of air
flowing into the house. A carbon dioxide sensor was placed in the centre of the house at a
height of about 0.45 m above the floor.

Warm air exhausted
through clerestory
windows

Fig. 6. Air current movements.

A fan was used to pump the indoor air into the sensor at a rate of about 300 ml/min. To
investigate the effects of each of the ventilation component configurations, i.e., windows and
doors, the ventilation rate tests were done in four configurations. A carbon dioxide sensor
connected to a CR1000 datalogger and a computer was used to monitor carbon dioxide
concentration in the house.

Configuration I

The carbon dioxide gas was injected into the house when all doors and windows were
closed and a fan was used to mix the air in the house for about 5 minutes. The operation of
the fan was intended as a contingency plan to evenly distribute the initial tracer dose
throughout the space for the calculation of exchange rates. The windows and doors were then
opened and carbon dioxide concentration was recorded at 1-minute time intervals until a
constant concentration was achieved.

Configuration IT

Carbon dioxide was injected into the house with doors and windows closed; a fan was
switched on for 5 minutes to mix the air. Windows were then opened but keeping the doors closed
and carbon dioxide concentration readings taken at 1-minute intervals.
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Configuration III

The procedure of configuration II was repeated but doors were opened and windows closed and
the carbon dioxide concentration recorded at a 1-minute intervals.

Configuration IV

The procedure cited in phase 2 was repeated but all windows and doors were closed and carbon
dioxide concentration recorded at 1-minute interval.

In all the above cases it was not possible to inject equal amounts of the tracer gas as the
equipment used could not allow the measurement of the amount of gas injected.

7.3 Ventilation rate

The tracer gas technique was used to measure the air exchange rate. Figures 7 and 8
illustrate the tracer gas concentration profiles measured for different ventilation component
configurations, i.e., opening and closing of doors and windows. The average indoor and
outdoor temperatures during these tests were, Ti, = 20 °C and Tow =17 °C, and an average
wind speed of 0.5 m/s blowing from W(600* 150)N. Figure 7 show the tracer gas
concentration variation for configuration I, i.e., when both windows and doors were open.
Results indicate that the concentration decays exponentially to the background
concentration within a period of 16 minutes. Assuming that the west window and door are
the only paths through which the westerly winds enter the house, then the mass air flow
rate through the door and window is approximated by equation r1=C;A\/2pAP . Taking
the average air density to be 1.2 kg/m3 and an average indoor and outdoor pressure
difference of 4 Pa. For wide-open windows and doors, the opening area is the sum of the
windows and doors areas, which gives 2.06 m?, and taking the discharge coefficient C,;= 0.6,
the average mass airflow was found to be approximately 3.83 kg/s.
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Fig. 7. Tracer gas concentration decay for configuration I and II [Makaka, Meyer; 2008].
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From figure 7 it was observed that the closing of doors significantly reduced the carbon
dioxide concentration decay rate implying a reduction in the ventilation rates achieved
when both doors and windows were open. Opening windows and closing doors reduced

the mass flow rate to 3.16 kg/s (i.e. a reduction of 17%). This means doors play a significant
role in the ventilation of the PSH.

Figure 8 illustrates the decay of the tracer gas concentration for configurations III and 1V,
ie., for open doors and closed windows, and for when both windows and doors were
closed. Comparing configurations 1 and III it was found that the opening of doors and
closing windows reduced the mass flow rate from 3.83 kg/s to 0.67 kg/s (i.e. a reduction of
82%). Configuration IV produced the minimum tracer gas concentration decay rate. It took
approximately 69 minutes for the tracer gas to decay to the background concentration.
When both doors and windows were closed, the infiltration and exfiltration airflow was
through the unintended gaps, such as, gaps between floor and door, roof and wall, etc.
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Fig. 8. Tracer gas concentration decay for configuration III and IV [Makaka, Meyer; 2008].

With reference to figures 7 and 8 and taking a reference initial tracer gas concentration of
0.28% the time taken for the tracer gas concentration to decay to the background
concentration varied depending on the type of the ventilation components in use. Table 2
summarizes the time taken for the carbon dioxide concentration to decay from 0.28% to the
background concentration. From Table 2 it can be seen that windows have a higher
ventilation effect (shorter decay time) than doors. However this depends on the wind speed
and direction and the orientation of the ventilation component with respect to the wind
direction.

Somerset East experience W(600% 15N prevailing winds, and when windows are open and
doors closed, the west side windows capture the prevailing winds which then escape
through the east and south windows, and to a lesser extent through the north side windows.

This gives an effective controllable air inflow and outflow by adjusting the opening area of
windows.
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In the case where windows are closed and doors open, the west side door captures the
prevailing winds. Since the prevailing winds are not purely westerly, components of the
inflow air currents also penetrate through the north side door. These currents are then
opposed by the inflow air current through the west side door which will try to escape
though the north side door as it is the only designed escape path under this configuration.
This results in reduced concentration decay time, implying a reduced air exchange rate as
compared to when windows are open and doors closed.

Ventilation components state Decay period (minutes)
Configuration I: All windows closed and doors open 16
Configuration II: All doors closed and windows open 17
Configuration III: All doors and windows open 13
Configuration IV: All windows and doors closed 69

Table 2. Decay periods for different ventilation components status.

7.4 Air quality

Several decay periods can be observed from figures 12 through 13. For each period, the
initial and final times were determined and a normalized concentration, C,, was calculated
for each measurement time:

_C(H)-C(©) @)
" C(0)-C,

where C(0) is the initial concentration at the beginning of the decay period and Cis the

background concentration and was found to be 0.234%. This background concentration was
first deducted from the carbon dioxide concentration to get the increase resulting from the
instant of injection. Figures 9 and 10 show the graphs of Ln(C,) versus time for different
ventilation component configurations. The air change rate, which is the slope of the line that
represents Ln(Cy,) versus time was calculated for each graph.
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Fig. 9. Logarithmic graph of concentration: configuration I and II [Makaka, Meyer; 2008].
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Fig. 10. Logarithmic graph of concentration: configuration III and IV [Makaka, Meyer; 2008].

Table 3 shows the calculated specific airflow exchange rates () for different ventilation
component configurations. In this table, the confidence intervals were calculated from the
dispersion of the concentration measurements around the regression line, using 0.1%
probability (99.9% confidence). When all the designed ventilation components were closed
(configuration IV) the least specific air exchange rate () of (0.29 £ 0.03) h' was observed
as compared to other ventilation component configurations. The equivalent outdoor airflow
rates (M, ) for each ventilation component configurations were calculated using the

expression: M,, = uV, where V is the volume of the house. The house has a volume of 34.56
m?3 and an envelope area of 61.1 m2 Assuming that the flows are due to the envelope

M
leakage the specific leakage rate (S; ) was obtained using the expression: S; = % where A

is the area of the envelope and results are summarized in table 3

Configuration| Ventilation |Specific air Equivalent Specific Rate of
component exchange |outdoor air flow |leakage rate S; | ventilation
status rate y (h')|rate M, (m?/h) (m3/h.m2) |heatflow Q,
1/s)
I Doorsand |9.58 + 0.04| 331.08 + 1.38 5.42 772
windows open
1I Doors closed |1.74 £ 0.02| 60.13 £ 0.69 0.98 140
and windows
open
I Doors openand [0.84 + 0.04| 29.03 = 1.38 0.48 68
windows closed
v Doorsand |0.29 + 0.03| 10.02 + 1.04 0.16 24
windows closed

Table 3. Specific airflow rates calculated from the various CO, concentration decays
[Makaka, Meyer,; 2008]
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The ventilation rate determines the indoor environment as the incoming air carries with it
thermal energy. If the outdoor temperature is higher than the indoor, and as the outdoor air
flows indoors, the tendency is to raise the indoor temperature. The rate of ventilation heat
flow is approximated by equation.Q, =1200M,,AT . Taking the average indoor-outdoor
temperature difference AT to be 7°C and the ventilation rates from Table 3, the ventilation
heat flow rates were calculated. Table 3 also shows the summary of results for the rate of
ventilation heat flows for different ventilation component configurations. Depending on the
indoor and outdoor temperature difference, configuration I, which has the highest rate of
ventilation heat flow, can result in excess heat gains or losses. However, adjusting the
effective open areas of the ventilation components can regulate the heat gain/loss, thus
keeping the indoor environment within the comfort levels.

It must be noted that the rate of ventilation heat flow for configuration IV is through the
unintended ventilation path ways, i.e. through gaps between doors and floors, etc, since all
designed ventilation components were closed.

8. Indoor temperature variation
8.1 Prediction of indoor temperature

The mathematical description of thermal behaviour of building systems is a complex
process. It involves the modelling of several interconnected subsystems, each containing
long-time constants, non-linearities and uncertainties such as convection coefficients,
material properties, etc. The indoor temperature is affected by a number of stochastic
parameters, which include, wind speed and direction, relative humidity, solar radiation and
outdoor temperature. The random infiltration rate and thermophysical properties (such as
thermal conductivity of the walls and heat capacity of the room) have an impact on the
indoor temperature.

The statistical approach allows estimating the probabilistic future thermal behaviour of
buildings based on monitored statistical information, such as outdoor temperature, relative
humidity, etc. The stochastic behaviour of the occupants in operating the ventilation
components and other indoor human activities greatly affects the thermal performance of
buildings. Some can even choose to close doors to avoid pets to get indoor thus
compromising the thermal performance of the house. These parameters sometimes are
uncertain and in some cases are difficult to find the exact information.

8.2 Correlating Ti, and Tout

Figure 11 shows the best-fit linear regression correlations of the indoor and outdoor
temperatures for summer. It was seen that the indoor and outdoor temperatures had
different correlations for low temperatures (less than 28°C), and for high temperatures
(greater than 28°C). At low temperatures the correlation factor was found to be R? =0.8064
while for high temperatures the correlation factor was R* = 0.6028 . At low temperatures the
correlation was found to be stronger implying that at low temperatures there is less
dependence on other parameters such as relative humidity as compared to high
temperatures. At high temperatures relative humidity was found to be very low (minimum),
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while the solar radiation was maximum. This suggests that relative humidity and solar
radiation have significant influence on the indoor temperature at high outdoor
temperatures. The peak indoor temperatures were found to occur during cooking periods
and thus creating a departure from the low temperature variation trend. A departure of
about 57% was observed from the low temperature variation trend to high temperature
variation trend and this departure is indicated in figure 11 by a double arrow. This
departure can be due to indoor heat sources, such as heat from stove. At low temperatures
the correlation between the indoor and outdoor temperature was found to be:

T, =0.691T,,, +11.67 ®)

out

while at high temperatures it was found to be:

T,, =1.088T,,, +0.308 (6)
45
Summer .
40 4 R?=0.6028 +
_ 35
D
- 3
2
225
2
E 20
215
=
= 10 R =305
3
0 4 . r - . r - r |
1] 5 [1] 15 X0 25 30 35 40

Outdoor Temperature (7C)

Fig. 11. Summer: Correlation of indoor and outdoor temperature [Makaka, Meyer; 2011].

Figure 12 shows the best-fit correlation of the indoor to the outdoor temperature for winter
period. At high outdoor temperatures (above 28°C) the correlation factor was found to be
R*=0.4568 while at low temperatures (less than 28°C) it wasR?>=0.7391. At low
temperatures the correlation is relatively stronger than at high temperatures implying that
the outdoor temperature has a greater influence on the indoor temperature at low
temperatures. The departure from the low temperature variations trend was found to be
about 62% and is indicated in figure 19 by a double arrow. This departure may be attributed
to indoor heating and activities which are independent to the outdoor temperature.

At low temperatures the correlation function between the indoor and the outdoor
temperature was found to be:

Tin = 0.657Tos + 8.671 @)
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while at high temperatures it was found to be:

T, =1.052T,, +1.449 ®)

out

From the correlation functions for summer and winter it was observed that the outdoor
temperatures have significant influence on the indoor temperature. It must also be noted
that, if a change occurs in the comfort parameters (e.g., temperature) that might result in
discomfort, occupants react in a way that tend to restore their comfort, and there is no
precise temperature at which one opens a window, but as the temperature rises there is an
increase in probability that windows need to be opened. In figure 12, a significant number of
data points appear as outliers. Although the occupants never used a proper heater, it is
highly likely that at times they used a two-plate electrical stove to heat the indoor
environment, thus giving rise to outliers. It must be noted that the outliers are above the
trend line, confirming that at times a heating system was used. However the occupants
never reported the use of a heater or fan.

Winter Ri=04568 ‘

Indoor temperature (“C)

5 4 Ri=0.7391

0 3 10 15 2 25 30

Outdoor temperature (“C)
Fig. 12. Winter: Correlation of indoor and outdoor temperature [Makaka, Meyer; 2011].

The wide dispersion of the points about the trend line also indicates that the indoor
temperature is not affected by the outdoor temperature only but by other factors such as
ventilation rate, relative humidity, wind speed and solar radiation. The correlations also
suggest that the passive solar house is freeze resistance since when the outdoor temperature
is 0°C, the indoor temperature would be about 8°C in winter and much higher (about 12°C)
in summer. From the measured data it was observed that on the 29/5/29 at around 06h30
the outdoor temperature dropped to about 1.6°C and the indoor temperature only dropped
to 9.4°C. This indicates the high heat retention capacity of the thermal mass (fly ash bricks),
such that when the outdoor temperature drops to zero, the stored thermal energy in the wall
continue to heat the indoor air keeping it at a temperature above 8°C.
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8.3 Correlating Ti, and outdoor relative humidity

Figure 13 shows the correlation of indoor temperature to outdoor relative humidity for
summer. The data points were found to follow two distinct distribution trends, i.e., at low
(less than 34%) and high (greater than 34%) relative humidity. The correlations factors
were found to be very weak, for low relative humidity the correlation factor was found to
be, R?=0.2774 while for high relative humidity it was found to be R =0.3099 . The
differences in correlation strength at low and high relative humidity suggest that there are
other variables which dominate at low relative humidity and not at high relative
humidity. At low relative humidity solar radiation was found to have a greater influence
on the indoor relative humidity variation. The low correlation factors indicate that there
are other parameters which have a higher impact on the indoor temperature than the
outdoor relative humidity. At low outdoor relative humidity (less than 34%) the
correlation was found to be:

T, =—-0.3395(RH),,,; +40.464 o)

while at high relative humidity the correlation was:
T,, =-0.1184(RH),,; + 33.389 (10)

Figure 14 shows the correlation of the indoor temperature and outdoor relative humidity for
the winter period. The data points were found to be more scattered than for the summer.
The high scatter is due to the variability of the Somerset East weather, which can change two
to three times a day and a change of indoor activities due to the change of season. The
dependence of the indoor temperature with the outdoor relative humidity was found to be
different for low and high outdoor relative humidity. For low relative humidity the
correlation factor was found to be R*=0.2657 while for high relative humidity the
correlation factor was R” =0.4027 . Low relative humidity was found to correspond to high
temperatures, which is directly related to the solar radiation. High solar radiation was found
to correspond to low relative humidity. At low relative humidity the correlation function
was found to be:

T,, =-0.6862(RH),,, +36.65 (11)

while at high relative humidity the correlation function was found to be:

T,, =—0.1004(RH),,; +22.70 (12)

8.4 Effect of solar radiation on indoor temperature

Figure 15 shows the correlation of the indoor temperature and solar radiation. The

correlation factor was found to be R? = 0.5873 . It must be noted that the indoor temperature
is affected by a number of factors, which include heat generated by the occupants and from
equipments such as stove and refrigerator.
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The indoor and outdoor temperature difference gives the direction of heat flow. High solar
radiation was found to be associated with low indoor and outdoor temperature differences.
Maximum indoor temperatures were found to occur at around 14h00. In summer the roof
was found to attain high temperatures and the roof being of iron sheets (good thermal
conductor) contributed significantly to the indoor temperature distribution. The high
roof temperature diminishes the indoor and outdoor temperature difference. The correlation
function between indoor temperature and solar radiation, I, was found
to be:

T, =0.00751 + 21.27 (13)

m

Equation (13) shows that when the solar radiation is zero (at night), the indoor temperature
would be within the thermal comfort levels (about 21°C). During the day the thermal mass
would have absorbed solar radiation and releases it at night thus keeping the indoor
environment within the comfort levels.

8.5 Temperature modeling

The generalized mathematical model for predicting indoor temperature of any building has
to take into account two types of data: on one hand the climatic conditions to which the
building is exposed and, on the other hand, the thermal properties of the building. In an
unoccupied house one can have a complete control over the conditions of the house,
whether to open or close; shade or unshade the windows, etc. During the experimental
period, the ventilation components can be maintained at the same configuration without
indoor heat generation or cooling.

In occupied buildings the situation is very different, as the occupants have complete
freedom to change the conditions according to their changing needs or desires. The activities
of the occupants have a significant influence on the indoor temperature distribution.
Predicting the indoor temperature is a very difficult and complex process, as random
variables come into play, such as the closing and opening of the ventilation components.
Outdoor weather variables such as wind speed, temperature, solar radiation and relative
humidity are key determinant factors of the indoor temperature. However it must be noted
that the indoor temperature is also linked to the heat fluxes generated in the house by
appliances.

The performance of the house was observed to depend on how the occupants operate the
house, and the thermal behaviour of the house in winter was seen to be different from that
in summer. Based on the monitored results, the first stage in the development of the
experimental predictive model was to analyze the patterns between (i) T;, and T, (ii) T;
and I (iii) T;, and RH,, (iv) T;, and V,, . Taking into account these possible dependences
predictive models for the indoor temperature for summer and winter were developed. A
linear dependence was proposed as the above relation patterns were observed to be linear.
Tin =0 ¥ Tout

+a,*RH,;+a3"[+a,*V, +as (14)

Where:
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T.., = Indoor temperature

Tt = Outdoor temperature

V., = Wind speed

I' = Solar radiation

RH,,,; = Outdoor relative humidity

a; = Regression coefficient

The constant a5 takes into account heat generated indoors either by appliances or occupants.
The above-proposed model is a simplification of a complex dependence. It must be noted
that all the parameters involved are not independent. For example, the outdoor temperature
greatly depends on irradiance and wind speed. Using regression analysis, the coefficients in
equation (14) were determined.

For summer the following model was obtained:

T,, =0.818207T,,, +0.013562(RH)

out

ot — 012907V, +0.000381 +8.18 (15)

For winter the following model was obtained:
T,, =0.898116T,,, + 0.03914(RH),,, — 0.2545V,, +0.00575I + 4.20 (16)

Figures 16 and 17 show the comparison of the measured and predicted indoor temperatures
for summer and winter, respectively.
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Fig. 16. Summer: measured and predicted indoor temperature [Makaka, Meyer; 2011]..

From equations (15) and (16) it can be noted that the outdoor temperature, solar radiation
and outdoor relative humidity have a positive contribution to the indoor temperature, i.e.
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when the outdoor temperature, solar radiation and relative humidity increase, the indoor
temperature increases. But when the wind speed increases the tendency is to lower the
indoor temperature. From the models it was seen that the outdoor weather parameters do
have varying impact on the indoor temperature but with high sensitivity to the outdoor
temperature. The determination of the sensitivity of the models revealed that the indoor
temperature could be predicted to 85% accuracy in summer and to 87% accuracy in winter,
considering the outdoor temperature only.

From figures 16 and 17, it can be seen that the predicted temperatures agree well with the
measured data, however in summer there were some significant differences at some peak
temperatures, with the measured temperature being higher than the predicted. These peak
temperature differences were due to the indoor heat generating activities such as cooking
and ironing. It must be noted that in the model thermal properties of the building were not
taken into consideration.
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Fig. 17. Winter: Measured and predicted indoor temperature [Makaka, Meyer; 2011].

9. Conclusions

Fly ash bricks with the ratio 1:1 clay to fly ash mixing ratio were found to have the low
water absorption, low thermal conductivity, high compressive strength and attractive
decorative colour that eliminates the need for external plastering.

The monitoring results suggest that the building behaviour cannot be restricted to
construction issues only. The thermal behaviour was the result of construction and non-
construction factors, and their interaction as well.

Passive solar gain, ventilation mechanisms, orientation, and socio-environmental factors
such as the life style and behaviour of the occupants, associated with the use of
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complementary heating, operative heating (cooking, metabolic heat production), were
found to have a significant impact on the indoor temperature distribution. The house
performed differently in summer and winter. The indoor temperature followed the outdoor
temperature implying that the solar radiation has a great impact on the indoor temperature
variation.

The ventilation rate was found to depend on the ventilation component in use, windows
were found to have a higher ventilation effect than doors. Correct opening and closing of
windows can regulate the air infiltration thus controlling the indoor air quality.

When the day-to-day indoor temperature variations and the outdoor weather parameters
are known, it is possible to reconstruct an approximate indoor temperature patterns during
a given period. An indoor temperature prediction formula was modelled; it was shown that
knowing the outdoor weather data parameters, the indoor temperature could be predicted.
Outdoor temperature was found to have the largest impact on the indoor thermal
environment. Significant differences were noted during cooking periods when a lot of heat
was generated indoors, resulting in much higher measured indoor temperature than the
model can predict. It is worth mentioning that the activities of the occupants play an
important role in indoor temperature distribution.
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1. Introduction

Along with the rapid development of industry, various issues related to energy and
environment got generated which are now grown into a significant level. The hazardous
waste materials with high concentrations are being discharged directly or indirectly into
water bodies without adequate treatment to remove harmful compounds. The World Bank
estimates that 17 to 20 percent of industrial water pollution comes from textile dyeing and
treatment causing a major global problem. A facile and cheap method for removing
inorganic and organic pollutants from wastewater has much relevance in modern world.
Dyes are an important class of aquatic pollutants. Its complexity and variety makes it
difficult to find a unique treatment procedure that entirely covers the effective elimination
of all types of dyes. Particularly, biochemical oxidation suffers from significant limitations
since most dyestuffs commercially available have been intentionally designed to resist
aerobic microbial degradation and also they may get converted into toxic or carcinogenic
compounds. The physical methods such as flocculation, reverse osmosis and adsorption on
activated charcoal are nondestructive and merely transfer the pollutant to other media, thus
causing secondary pollution (Binitha, 2009, as cited in Belver, 2006) Heterogeneous
photocatalysis with various oxide semiconductor photocatalysts is an efficient and rapidly
expanding purification technique for water and air. Semiconductor-oxides are a popular
class of materials because of their functionalities and applications in the field of
photocatalysis and generation of photoelectricity.

There has been greater attention on the photocatalytic activity of nanocrystalline TiO, after
the discovery of photodecomposition of water on Titania [Ali, 2009; Hao, 2008; Parida, 2007;

* Corresponding Author
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Xiang, 2008; Dambar, 2007, Wang, 2004; Colmenares, 2006; Kolenko, 2005; Shengli, 2006;
Baiju, 2007]. Titania (titanium oxide) is considered as one of the most promising
heterogeneous photocatalyst owing to the facts such as high photocatalytic activity, strong
oxidizing power, low cost, chemical and thermal stability, resistance to photo corrosion and
non-toxicity. In addition, TiO, possess favorable optoelectronic properties which makes it a
well accepted photocatalyst for the degradation of various environmental pollutants
(Meenal, 2009; Pirkanniemi; 2002).

HMTIC = LA W R e, L [.

Fig. 1. Degraded methylene blue solution under 1 h exposure to sun light over N doped
TiO; and Au loaded N doped TiO»

However, the high intrinsic band gap energies of major crystalline forms of TiO; (3.2 eV
for anatase phase and 3.0 eV for rutile) makes them effective photocatalysts only when the
wavelengths of light is shorter than 387 nm. Thus only a small part of solar light is
harvested if we use bare TiO, photocatalysts (Haijian, 2008, as cited in Fujishima &
Honda, 1972; Li, 2000). It is known that the UV part of the solar spectrum accounts only
for about 4% of the incoming solar energy while the major part of the rest is visible light
(Binitha, 2010). It is therefore of great significance to adjust the band structure of TiO: to
improve the photoreaction rate for the efficient use of solar energy for photocatalysis.
There are several studies in recent years attempting the incorporation of the visible range
of solar spectrum also in the photocatalytic process, which include dye sensitization,
metal ion doping, nonmetal doping, etc. (Meenal, 2009, as cited in Choi, 1994; Shockley &
Read, 1952; Asahi, 2001). The incorporation of specific dopants in TiO, should improve
the efficiency of the photocatalytic behavior by creating new band structures or by
suppressing the recombination of photogenerated electron-hole pairs resulting in
improved quantum efficiency (Zhiqgiao, 2009).

The most feasible method for improving the photocatalytic performance of titania are
considered as doping with metals as well as non metals. Recent researches concerning TiO»-
doped with nonmetal elements such as nitrogen (Yohei, 2004, as cited in Sato, 1986; Asahi,
2001; Morikawa, 2001), fluorine (Yohei, 2004, as cited in Hatori, 1998), sulfur (Yohei, 2004 as
cited in Umebayashi, 2002) and carbon (Yohei, 2004, as cited in Khan, 2002) have been
reported. Among the different anion dopants, nitrogen is observed to be the most effective
one and is widely studied.
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Fig. 2. Band structure of semiconductor titania: Making it suitable for pollutant degradation

Sato (Sato, 1986) was the first person who reported N-doped titania by annealing the
mixtures of a commercial titanium hydroxide and NH4Clor NH4OH, which showed higher
photocatalytic activity in the visible-light region. Asahi et al. (Asahi, 2001) reported that
nitrogen-doped titania could induce the visible-light activity in which nitrogen atoms
substitute a few oxygen atoms (0.75%), and the doped nitrogen was responsible for the
visible-light sensitivity. These two studies had kicked off a new area of research to extend
the absorbance of TiO; into visible-light region by means of nitrogen-doping. There has
been several methods reported thereafter for the preparation of N doped TiO», such as high
temperature treatment of TiO, under NHj3 flow (Hao, 2008, as cited in Asahi, 2001; Irie, 2003;
Diwald, 2004), hydrolytic process (Hao, 2008 as cited in Thara, 2003; Noda, 1986; Salthivel,
2003), mechanochemical (Hao, 2008 as cited in Yin, 2003; Wang, 2004), reactive DC
magnetron sputtering (Hao, 2008, as cited in Lindgren, 2003; Chen, 2004), sol-gel (Hao, 2008,
as cited in Burda, 2003), solvothermal process [(Hao, 2008, as cited in Aita, 2004), calcination
of a complex of Ti ion with a nitrogen containing ligand (Hao, 2008, as cited in Sano, 2004),
calcination in nitrogen atmosphere etc.

Among the different preparation procedures, sol gel route is the preferred one because of its
endowed nature. The temperatures required for all stages of the process involved in the
conversion of sol to gel apart from densification are low, avoiding material degradation and
resulting in high purity and stoichiometry of the products. The fact that the precursor metal
alkoxides are volatile in general and thus are easily purifiable, substantiates the formation of
high purity products. Also, since the organometallic precursors involving different metals
are normally miscible with each other, a homogeneous controlled doping can be achieved
easily. In addition, during sol gel synthesis the chemical conditions are mild and thus even
biological species including enzymes and whole cells may be entrapped retaining their
functions after doping on sol gel prepared metal oxides. Besides, the formation of highly
porous and nanocrystalline materials can be achieved by sol gel method, by means of
appropriate chemical modification of the precursors, adequate control over the rates of
hydrolysis and condensation, resulting in the formation of colloid particles of suitable size,
porosity and the pore size, and thus achieving a fine control over the pore wall chemistry of
the final material. However, there are only a few reports on the anion-doped photocatalysts
prepared using wet-methods such as sol-gel and co-precipitation owing to the difficulties
involved in the procedure (Hao,2008). Still there are some reports on the N doped sol gel
titania which shows good visible light activity for the degradation of pollutants (Dewi, 2010;
Hu, 2010; Jian, 2006; Liu, 2005; Min, 2008)).
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In the previous studies, the shifting of the absorbance of TiO, to visible light upon nitrogen
doping is explained in two ways. One proposed mechanism is the narrowing of the band
gap by mixing the N2p and O2p states. Another explanation is the existence of two
absorption edges in the UV visible spectra, the one around 400 nm, the resultant of the band
structure of original TiO, and second one around 530 nm which is attributed to the newly
formed N2p band located above the O2p valence band. The incorporation of nonmetal
dopant atoms into the lattice structure of titania is believed to decrease the band gap, and
shift its response to the visible part of the solar spectrum (Xin & Quingquan, 2008, as cited in
Asahi, 2001; Khan, 2002; Ohno, 2004; Lin, 2007).
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Fig. 3. Schematic picture of reduced band gap of titania as a result of mixing of N 2p and O
2p stages

As clear from the pictorial representation, the hole and electron pair separation is small when
the electron is excited by the visible light after N doping and thus they can recombine easily,
which will reduce the efficiency of photons. Thus suppression of the recombination of hole-
electron pairs is a necessity for visible light active photocatalysts.
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Fig. 4. The schematic diagram representing the shifting of TiO, absorption to visible region
as a result of the newly formed N2P band above the TiO, valance band



Nanogold Loaded, Nitrogen Doped TiO, Photocatalysts
for the Degradation of Aquatic Pollutants Under Sun Light 161

hv [(+) nerwnal
X

valance
band

Fig. 5. The schematic diagram showing the role of doped metal nanoparticles in the
photocatalytic activity. Metal nanoparticles act as an electron sink, supporting interfacial
charge transfer and reduce the chances for charge recombinations.

Doped metal nanoparticles are believed to suppress the recombination of photo-induced
electron-hole pairs, when they migrate from the interior of the photocatalyst to the metal
surface resulting in increased photo quantum efficiency (Xin & Quingquan, 2008, as cited in
Choi, 1994; Lin & Yu, 1998). Thus, metal nanoparticles can be considered as an electron sink,
which can promote interfacial charge transfer and consequently less charge recombinations
occur.

Thus in the present work, we are looking for a synergestic effect from both dopings. That is
the anion doping can provide the narrowing of the band gap and the noble metal
nanoparticles are suppose to suppress recombinations. Our objective is the preparation of
unsurpassed photocatalysts which are sun light active. Nano gold loaded nitrogen doped
TiO, photocatalyst was prepared through the sol-gel route using titanium isopropoxide as
titanium source, ammonium nitrate as nitrogen precursor and chloroauric acid was used as
the precursor for gold nanoparticles. The combined doping of nano gold and nitrogen leads
to the high activity of the prepared system for the photodegradation of MB under visible
light irradiation. Here, nanogold is observed to provide substantial progress in the
photocatalytic activity compared to that of simple nitrogen doped titania for the MB
degradation under sunlight.

2. Experimental
2.1 Preparation of photocatalysts

Au-loaded N doped TiO2 nano powders were prepared by sol-gel process. The sol was
prepared following a reported procedure (Sunajadevi & Sugunan, 2004). Titanium
isopropoxide (98%, Aldrich) was used as the precursor of TiO2. 50 ml of Titanium (IV)
isopropoxide was hydrolyzed in 600 ml water containing 5 ml nitric acid. Precipitation
occurred immediately and the mixture was stirred continuously at room temperature to



162 Solar Power

form a highly dispersed sol. To this, 4.39g ammonium nitrate was added to get the N-doped
titania and stirring was continued for another 4h. The sol was then aged for two days and
dried at 70°C. The powdered sample was then calcined at 400 °C for 5h to get the yellow
coloured nitrogen doped titania.

Nano gold loading: Different percentage of nanogold are loaded on loaded on N- doped TiO2
photocatalysts by deposition- precipitation method, which can provide nano-sized gold
particles with strong contact of Au particles with the support. Chloro auric acid was used as
the gold precursor. The aqueous Chloroauric acid solution(2.1x103M) is heated to 70 9C. Then
the pH of the solution was adjusted to 8 by dropwise addition of 0.5M NaOH solution. The
required amount of the support was added in to it with vigourous stirring. The stirring was
continued at 70°C for 2h. The pH was maintained as 8 throughout the preparation. It was then
cooled to room temperature, filtered and washed with distilled water to make it free from
chloride ions. Subsequently it was dried at 80°C for overnight followed by calcination at 200
°C for 5 h. The catalytic systems thus produced are designated as NTiO,, 1AuNTiO, and
2AuNTiO:; for nitrogen doped TiO, with no gold loading, 1% and 2% Au loading respectively.

2.2 Catalyst characterization

XRD patterns of the samples were recorded for 20 between 10 and 80° on a Bruker AXS D8
Advance diffractometer employing a scanning rate of 0.02°/S with Cu Ka radiation
(A=1.5418). The FTIR spectra were recorded in Thermo Nicolet, Avatar 370 spectrometer in
the region 400-4,000 cm1. TEM photographs of the prepared systems were taken in JEOL
JEM 2100 Electromicroscope. SEM pictures are collected using a JEOL Model JSM - 6390LV.

2.3 Photocatalytic degradation studies

Photocatalytic degradation of Methyleneblue (MB) was done by the use of solar energy. All
outdoor experiments were carried out in closed Pyrex flasks at room temperature with
stirring. The irradiation was performed on sunny days, from 11.00 to 14.00 h when solar
intensity fluctuations were minimum. The samples were immediately centrifuged and the
quantitative determination of dye was determined using colorimeter (CL 157 - ELICO)
before and after the irradiation. Experiments were repeated to get better results. The MB
concentraction of 5 mg/L mmol at 2h of exposure to sunlight are used for all measurements
except for time study.

3. Results and discussion

With an objective to develop a visible light or solar energy responsive photocatalyst,
nitrogen doping is done on titania where ammonium nitrate is used as the N precursor. N
dopant is added to the stable sol and with gelation the development of a yellow colour is
observed whereas introduction of gold changes the colour to violetish ash. With the increase
in gold loading, the colour was found to deepen. The different catalytic systems prepared
are characterized using various techniques.

3.1 Photocatalyst characterization

It is well established that the electron and hole recombination can be suppressed by increasing
the crystallinity of the Semiconductor, minimizing the crystal defects which act as
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recombination centers (Tsugio, 2006, as cited in Sclafani, 1990). Our objective here is the
preparation of fine particles of small band gap semiconductor with high degree of
Crystallinity, which can make photocatalysts that are capable of showing visible light activity.
The crystalline nature of the present samples were analyzed using XRD analysis. Both anatase
as well rutile phase were visible in the samples where anatase phase was the predominant one.
The foremost peak corresponding to (1 0 1) reflections of the anatase phase of TiO, was well
evident at the angle of 25.28¢, as well as the minor peaks were appeared around 37.8¢, 48.0,
53.8° and 55.1°. The major peak of the (1 1 0) diffraction of rutile was observed at the angle of
27.50¢, whereas the minor peaks appeared at 36.15°, 41.33¢, 54.44°, 56.76°, 62.89> and 69.17-.
Weight ratios of each phase were calculated using the following equation:

W= 2r
0.884A , +A

Here A represents the integrated intensity of the anatase (1 0 1) peak and Ar the integrated
intensity of the rutile (1 1 0) peak (jirapat, 2009, as cited in Gribb, 1997). Increase in gold
loading increases the anatase to rutile ratio. This observation is apparently is surprising
since we are adding gold precursor to the calcined gel. Thus it is expected that the 2AuTiO»
can show maximum photoactivity, since anatase is considered as the most photocatalytically
active form of TiO,. TiO, obtained by following the same procedure without any N doping
is also showing the existence of both anatase and rutile as the crystalline phases (XRD is not
shown) (Sunajadevi & Sugunan, 2004). The crystallite size of different systems were
calculated using Scherrer equation and the results are provided in table 1.

Weight fractions of phase (%) Crystal size (nm)

Catalyst Anatase Rutile Anatase Rutile
1% AuNTiO; 65.74 34.26 6.17 11.62
2% AuNTiIO; 86.78 13.22 6.98 7.71

Table 1. Anatase to rutile ratio and crystallite size of gold loaded catalysts
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Fig. 6. XRD patterns of different systems
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The surface morphology of different systems was analyzed using SEM. In Fig. 7, SEM
micrographs of 1AuNTiO, and 2AuNTiO, are given. All samples appeared as
agglomerations of smaller particles with a high tendency for crystallization.

20kV  X5,000 b5pm 0000 1246 SEI

20kv  X5,000 b5pm 0000 1246 SEI
Fig. 7. SEM images of the prepared systems

The TEM micrographs of the photocatalysts show that the gold particles are highly
dispersed on the surface of N doped TiO; and the mean diameter of gold particles estimated
from the TEM images are less than 5nm. In the case of 1TAuNTiO,, only few gold particles
are visible and its size is also found to be smaller when compared to that in 2AuNTiO». At
higher gold loading of 2%, there is competent dispersion for the nanoparticles and the gold
particles are visible as sharp dark spots over the gray coloured support. Furthermore, the
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lattice fringes of the crystallographic planes of anatase and rutlies are found to be visible,
consistent with the XRD patterns. The visible TiO2 particles are more or less spherical in
shape and are found to be of lower size of around 10 - 20 nm diameter

NTiO

1AuNTiO,

Fig. 8. TEM images of the prepared systems
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In the FTIR spectra of the systems shown in Fig. 9, a broad peak seen around 3400 cm-! can
be assigned to stretching vibration mode of the OH groups within the TiO; sol-gel. The
corresponding bending vibration band was observed at 1637 cm-1. The TiO,-OH bonds arise
from the hydrolysis reactions occurring during the gelling of the titanium alkoxide. In the
low energy region of the spectrum, the bands around 500 cm-! can be assigned to bending
vibrations of Ti-O bonds.

2% AuNTIO,

1% Au NTiO,

% Transmittance
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4000 3500 3000 2500 2000 1500 1000 500
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Fig. 9. FTIR spectra of the prepared systems

3.2 Photoactivity results

Photodegradation of MB was done to get the information on the pollutant degrading
capability of the present systems. The reaction variables were optimized using 2AuNTiO; to
achieve the conditions for maximum degradation.

3.2.1 Effect of catalyst dosage

A series of experiments were carried out to optimize the catalyst loading by varying the
amount catalyst from 0.05g - 0.20g/50ml MB solution of concentration 5 mg/l. The
degradation results for 2 h irradiation are shown in Fig. 10. The rate of degradation increased
linearly with increase in catalyst weight from 0.05g to 0. 10g which then decreases with further
increase in the amount of catalyst used. The initial enhancement in photoactivity with catalyst
weight may be due to the increase in number of photons absorbed and the number of dye
molecules adsorbed on the catalyst molecules. Also the density of the catalyst particles in the
area of illumination increases with the catalyst dosage. When the amount of catalyst is
exceeding certain limit, the dye molecules available are not sufficient for adsorption and hence
the additional catalyst powder is not taking part in the photocatalytic activity and
consequently the rate becomes independent of the amount of catalyst beyond certain limit. It is
reported that the increase in opacity of the solution at high catalyst dosage decreases the
penetration of light inside the solution with a consequent decrease in the photoreduction of the
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dye (Binitha, 2011, as cited in Maruthamuthu, 1989). Thus, the optimum amount of catalyst
needed to get maximum degradation of pollutant in the present case is 0.1 g.

3.2.2 Effect of volume of MB

The influence of volume of MB on degradation rate was studied by varying the volume of
the dye from 25 to 100 ml at a constant TiO; loading of 2 g/L for 2 h exposure to sunlight. It
was observed from Fig. 11, that the degradation rate increased from 25 ml to 50 ml and then
decreased with further increase in the amount of dye. The absorption of light by the
pollutant may be dominated at higher volumes which in turn decrease the absorbance of
light by the catalyst causing a reduction in the photocatalytic activity.

100 Catalyst Weight Optimization
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Fig. 10. Effect of catalyst dosage on the degradation of 50 ml of 5 mg/L MB for 2h irradiation

3.2.3 Effect of time

The degradation of 50 ml of 5mg/L MB was investigated by changing the irradiation time
from 1 h to 3 h and the activity over the three catalytic systems is plotted in Fig. 12. It is
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Fig. 11. Effect of volume of MB solution on the degradation of 5 mg/L MB for 2h irradiation
using 2g/L catalyst
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observed that the degradation reaches 100 % within 3 h of exposure to sunlight in the case of
2AuNTiO,. This system is thus found to be capable for complete degradation of dye
pollutants within this short duration of 3 h solar irradiation. Lower loading of gold (1%) also
showed improvement in the photocatalytic activity when compared to N doped TiO»
without metal nanoparticles. All the three catalytic systems studied showed far better
activity than undoped titania which showed very low photodegradation of MB (not
included in the figure) , less that 10% even after keeping for 3 h under sunlight.
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Fig. 12. Effect of Time on the degradation of 50 ml of 5 mg/L MB over a catalyst dosage of 2g/L

4. Conclusion

In conclusion, we are reporting the successful preparation of highly efficient photocatalytic
systems, N-doped TiO, and Au nanoparticle incorportated N doped TiO.. The
photodegradation of aquatic pollutant methylene blue over N-doped TiO, and Au
nanoparticle incorportated N doped TiO, catalysts were investigated and the catalytic
performances were compared. Visible light activity was achieved for TiO, upon anion
doping. It was found that Au nanoparticle loading over TiO; is capable of improving the
photocatalytic activity of N doped TiO. to a greater extent and the inserted metal
nanoparticles are believed to act as electron sinks to prevent the recombination of electron-
hole pairs. In addition, X-ray diffraction patterns reveal the suppression of rutile phase with
increase in the percentage of gold loading which also can be considered as a favorable factor
to obtain superior photoactivity. The inserted gold particles were found to have spherical
morphology of less than 5 nm dimension as evident from TEM micrographs. The 2AuNTiO;
catalytic system was found to be the best among the three showing complete removal of the
pollutant within 3 h exposure to sunlight.
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1. Introduction

"Solar radiation plays a fundamental role in the marine environment. It supplies the energy
that drives thermodynamic and photochemical processes in the sea, including the heating of
waters, their stratification and movement, and their evaporation, also the warming of the
atmosphere, the photosynthesis of the organic matter essential for the maintenance of life
and the functioning of marine ecosystems, and the photo-oxidation of marine pollutants"
(Dera & Wozniak, 2010). The amount of solar energy reaching the sea surface can be
determined by means of direct measurements or calculations with the use of various
models of different precision and complexity. Due to obvious reasons, systematic, direct
measurements in the area of oceans and seas with the spatial resolution satisfactory for
monitoring and analysis of several processes like the ones mentioned above, are impossible
in practice. On the other hand, credibility of modelling strongly depends on model's input
data - their quality and time resolution. The most difficult task in calculating the solar
energy stream at the sea surface using a model is to obtain its momentary value. It is caused
by the lack of precise information on the components of the Earth's atmosphere influencing
the solar radiation along its way from the upper boundary to the sea surface. The most
important of these components is the cloudiness but other parameters like aerosol optical
thickness, the content of water vapour or ozone should also be taken into account.

Fast development of satellite technique in the field of Earth observation and monitoring
makes it possible to get more or less precise information about the atmosphere properties
which play an important role in solar energy transfer to the Earth's surface in every place
and further into the sea.

The idea of our consideration is to provide a broad overview of contemporary space-borne
sources of data necessary to increase the accuracy of simple models of solar energy transfer
through the Earth's atmosphere, especially over the oceans and seas.

2. Solar radiation

The Sun, a medium-sized star, produces energy as a result of thermo-nuclear processes in its
interior. Recently it has been estimated to be about 3.9x102 W. This power is radiated into
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space uniformly in all directions. Fundamental physical laws tell us that the intensity of this
radiation decreases as the inverse square of the distance from the source. At the mean
distance from the Sun to the Earth this energy, in total, is known as solar "constant". Its
spectral distribution is close to the radiation of a blackbody at the temperature about 6000 K
but, due to different processes inside and on the surface of the Sun, this dependence is not as
smooth as it results from Planck's law. It is the reason that the first step to obtain the
spectrum of solar energy at the Earth's surface is to determine, by means of measurements,
its value in the upper frontier of the atmosphere (TOA!). Along the path to the Earth's
surface, the incoming solar radiation undergoes the wave dependent processes of
absorption and scattering. As a result, a part of it is reflected back to space, another part is
absorbed by the elements of the air and the rest reaches the surface. It consists of two
components: the direct radiation from the Sun and the diffuse radiation from the
atmosphere. Under cloudless conditions the relationship between them depends on the
position of the Sun in the sky - the higher the Sun elevation angle the higher the difference
between them. In Fig. 1 one can see an exemplary spectral distribution of the solar
irradiance at the sea level calculated for real cloudless atmosphere over the Baltic Sea near
the solar noon on 2011-06-21 at 11:00 UTC (the Sun elevation angle was about 59°). The
evident differences between the shapes of the extraterrestrial and other curves are due to the
light absorption and scattering processes which depend on some components of the air. The
most important of these processes are: molecular scattering, absorption by water vapour,
ozone, and other atmospheric gases as well as attenuation (absorption and scattering) by
atmospheric aerosols. The strength of these processes depends to a different degree on
concentration and distribution in the atmosphere of the accounted components. The most
spectacular consequences of strong deviations of some components’ concentrations from
their common state are known as the global warming (due to the increase in the greenhouse
gases concentration - the water vapour is one of them) or the "ozone hole" - the effect of
decreased ozone concentration in the so-called ozone layer. The importance of such
phenomena for life on our planet causes the need of their continuous monitoring. It is done
by the networks of ground-based measuring stations like for instance WMO-Global
Atmospheric Watch observing system, Network for the Detection Atmospheric
Composition Change, NOAA Earth System Research Laboratory/Global Monitoring
Division etc. It is obvious, that such networks do not cover the whole Earth's surface and the
shortage of information concerns in particular the atmosphere over the oceans and seas (Fig.
2). It is also true for the solar radiation monitoring . New opportunities in the area of global
monitoring of the Earth's atmosphere and surface arose due to fast development of the
space-based measurements. The satellite-based instruments provide regular views of any
place of the Earth. Despite the fact that such measurements must still be supplemented by
the ground-based measurements, it enables fast progress in broadening our knowledge in
this area.

The traditional way of getting the information on the solar energy reaching the Earth's
surface in the case of lack of direct measurements was to use more or less complicated
models of light transmission in the atmosphere. To run the model it is necessary to gather
the input data which characterize actual state of the atmospheric components important
from this point of view, namely: the atmospheric pressure and humidity, aerosol optical

L Top of the atmosphere
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thickness (AOT), content of ozone, and cloudiness. One can do it using routine
measurements or values obtained by interpolation between them, results of calculations
with the use of other (meteorological) models, climatological values, models of the Earth's
atmosphere etc. The space-based measurements of AOT, content of ozone, and water vapour
in the column of the atmosphere, and cloudiness used as the input data can rise the
precision of such models to a significant degree. To check this thesis we shall compare the
results of calculations of solar energy input at the Baltic Sea surface performed with a simple

model for irradiance on the horizontal plane at the Earth's surface presented in part 3.
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Fig. 1. Direct, diffuse, and total solar irradiance for a real cloudless atmosphere over the
Baltic Sea (long. 18.82°E, lat. 54.60°N) on 2011-06-21 near solar noon (11:00 UTC)
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Fig. 2. The 132 WMO-GAW stations measuring total ozone with Dobson and/or Brewer
spectrophotometers (GCOS-GAW ..., 2007)
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3. Model

There are many ways of calculation of light transmission through the Earth's atmosphere
from complicated models like developed in the 1970's LOWTRAN2 or MODTRANS to the
simplest ones that take into account the dependence of the incoming radiation only on one
variable (e.g. mean cloudiness). To compare the influence of different sources of the input
data on the results of solar irradiance calculations at the sea level we have chosen a simple
model proposed by Bird and Riordan (1986) with several later modifications (Krezel &
Kozlowski, 2001; Krezel et al., 2008). The model enables one to calculate easily the
contribution of the main constituents to the total attenuation of the solar radiation on its way
from the upper frontier of the Earth's atmosphere to the sea surface.

3.1 Calculation algorithms of direct solar radiation

Considering the most important processes of interaction of the solar radiation passing to the
sea surface with the atmosphere constituents, the direct irradiance of the horizontal area by
the solar beam incidence (at the sea surface) could be expressed as:

Es(A) = cos S%TRO") “TaA) Two()-To () Tc() @

where: A — the wavelength; 9 - the solar zenith angle, Fs(1) — the spectral density of the solar
constant; f=R¢R - the factor defining the annual variability of the distance between the
Earth and the Sun (R and R, — actual and mean distance between the Earth and the Sun,
respectively); Tr(A)..Tg(A) — the functions of the atmosphere transmission describing
irradiance attenuation in the processes of molecular scattering, scattering and absorption by
aerosols and absorption by water vapour, ozone and the most important constant gaseous
components of the atmosphere, respectively.

In the algorithms the presented Fi(L) values and the coefficients of absorption of water
vapour dux(A), ozone aps(A) and constant gaseous components of the atmosphere ag(A) for
122 wavelengths were accepted after Neckel and Labs (1981). The algorithms allowing to
determine B value and the solar zenith angle at a given place and any time were taken from
Michalsky (1988).

To calculate the succeeding transmission functions one should know the so-called relative
optical atmospheric mass M. At the sea level the expression of Kasten & Young (1989)
considering curvature of the atmosphere was applied:

-6.07995) 163641

M=[siny, +0.50572 .(28%s
T

)

where: the solar altitude y_= T _g isexpressed in radians
2

2 Low-resolution propagation model and computer code for predicting atmospheric transmittance and
background radiance from 350 to 40,000 cm at a resolution of 20 cm-!

3 MODerate resolution atmospheric TRANsmission - computer program designed to model atmospheric
propagation of electromagnetic radiation from 100 to 50,000 cm spectral range at a resolution of 0.2 cm-.
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In the calculations of the atmospheric transmission functions (1) the following algorithms
were used:

a. molecular scattering (Kneizys et al., 1980):

_M’
s 1.335 @)
34 (115.6406-=7°)
A

T,(A)=exp

where: M'=M(P/Py), P - the atmospheric pressure [hPa], Po=1013 hPa; the wavelength 2 is
expressed in [um].

b. aerosol attenuation:

The influence of aerosols on the light transmission is taken into consideration by
determination of so-called aerosol optical thickness of the atmosphere (AOT):

AOT(A)=1,(h)=-MInT,() (4)

where T, - the light transmission through the cloudless atmosphere resulting from the
presence of aerosols. For determination of AOT the classical formula of Angstrom (1963)
was used:

AOT(L) =P, A0 ®)

For the Baltic Sea area the values of b, and B, coefficients, typical for the regions of relatively
low atmosphere dustiness, were applied, i.e. $,=0.12 and b,=1.0274 for 1<0.5 um and 1.2060
for A>0.5 pm.

c. absorption by ozone is calculated from the formula:
To(2) = exp[-ay(2)- O5 - My ] ©)
where the relative optical mass of the atmospheric ozone My was defined after Iqbal (1983):

@)
h
(1+K;O)

2-hp.\05
29 + 0
(cos™8* 270

Mp=

and hp = 22 km was accepted as the mean height of the maximum ozone concentration. The

mean nine-year (1997-2005) O; values, defining the ozone concentration in an atmospheric air

column of a unit base area, for latitudes 50°- 60°N in individual months are shown in Table 1.
Month ‘ Jan | Feb ‘ Mar ‘ Apr ‘ May‘ Jun ‘ Jul ‘Aug‘ Sep ‘ Oct ‘Nov ‘ Dec
Osfem] | 037 | 039 | 040 | 039 | 038 | 036 | 033 | 032 | 031 | 030 | 032 | 035

Table 1. Mean ozone concentration in the atmosphere in latitudes 50°- 60°N (TOMS, 2007)
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d. absorption by water vapour; the expression presented by Leckner (1978) was used:

-0.2385- 4, (A)- W -M ®)

T.(A)=ex
o) [1+20.07 - go(h) - W - M™%

where W is the water vapour mass in an atmospheric air column of unit base area and is
calculated from the data on the water vapour pressure ¢y at the sea level, according to the
relation (Reitan, 1960):

P
1000 )

W =(0.123+0.152 - ¢;)

where: eg and P are expressed in [hPa].

e. absorption by the other significant components of the atmosphere; the expression from
the paper by Leckner (1978) was applied:

141 g, (M) M’ (10)

T.(A)=ex
()= exp [1+118.3- 4,(0)- M'T**

In the model for determination of illumination at the sea level by direct solar radiation, the
algorithms (1) to (10) were used. The source of the highest errors is undoubtedly the way of
determination of solar radiation attenuation by aerosols. This error is the greatest when the
instantaneous illumination values are calculated and it decreases with the extension of
averaging period.

3.2 Calculation algorithms of scattered radiation

Algorithms presented in the paper of Bird and Riordan (1986) were used in the model
construction.

It should be assumed that scattered radiation incident on the horizontal area is the total of
three components:

Ei(A) = Ear(A) * Edo(A) + Egg(X) (11)

- resulting from molecular scattering Ejr(A),
- resulting from aerosol attenuation E(A) and
- resulting from multiple reflection between the sea (land) surface and the atmosphere

Eag(M).
These components have the following forms:
Ear()= F(1)-B*+ 089 To () T6(A) Tun(t) Taal) [1-Tr(2)"*]-05 12
EaM) = Fs(1)-B? 089 To (1) To(A)}Tuo(A) TaaM) T ()" -[1-Tus(2)]- F (13)

[Fs(A)cos 8+ Egg + EaaM)]rs(M)r g ()

(14)
I-rrg(h)

Edg(x‘) =
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Tu()) and Tys(A) are transmission functions determined by aerosol absorption and scattering,
respectively:

T = explron() - 14(1)- M] -
T) = exp HL-an(M)] 5,0 M) (16)

where: wp()) is the so-called single scattering albedo (from definition ;= % ; band a are
a

the volume coefficients of scattering and absorption, respectively), t,(L) - the optical
thickness of the atmosphere resulting from aerosol occurrence. For its determination
formulas (4) and (5) were used.

It is assumed here that molecular scattering and scattering by aerosols are independent and
also, that half of the irradiance is directed towards the lower hemisphere in the process of
Rayleigh's scattering, regardless of actual direction of incident solar radiation.

The dependence of single scattering albedo on the wavelength is defined by the relation:
- ' A 2 17
wo(h) = @0(0.4pm)-exp[-w(lnﬁ) 1 (17)
where: (0.4 pm) - the single scattering albedo for the wavelength of 0.4 pm, ®' - the

wavelength variation factor.

In the regions of relatively low atmospheric turbidity w(0.4)=0.945 and «'=0.095, (%)
represents surface albedo and is one of the input data necessary for calculations whereas
atmosphere albedo could be expressed as:

r () =T, W, T, 0] 05 [1-T )]+ (1 -F T W) L-T. ()] | (18)

In the relation (13) F denotes the contribution of radiation scattered towards the lower
hemisphere, which in the case of molecular scattering could be accepted as 0.5 and for
aerosol attenuation depends on the solar zenith angle:

F=1-05-exp[(AFS+ BFS-cos 9) - cos §] (19)
AFS= ALG-[1.459 + ALG - (0.1595 + ALG -0.4129)] (20)
BFS = ALG -[0.0783 + ALG-(-0.3824 — ALG - 0.5874)] (1)
ALG=In(1-<cos 6>) (22)

Asymmetry factor <cos6> was accepted for so called rural atmosphere model (0.65). In
relation (18) the parameters with apostrophe were calculated applying M=1.8, and in the

formula defining F - cos 9 = % . Finally, the obtained expression for E;(A) is multiplied by C

coefficient:
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(23)

colax 0.55)"® for 2 <0.45 ym
1.0 for 1>0.45 ym

Reassuming, the determination of the illumination or radiation dose at the sea level by
means of the presented algorithms requires the knowledge only on two parameters of
atmospheric conditions, the atmospheric pressure and the water vapour pressure, routinely
registered at the sea level at meteorological stations. Albedo of the sea area was accepted as
constant and equal to 0.06.

3.3 Cloudiness

Traditionally, clouds have been observed visually by trained technicians at weather stations
and onboard ships around the world (often in units of eighths, or oktas), following the
general rules outlined by the World Meteorological Organization (WMO, 1975). Before "the
satellite epoch" the influence of cloudiness on the solar irradiation at the Earth's surface has
been taken into account by using these visual observations of the cloud cover as input data
in the simple models. The longer the averaging time was the better coherence of measured
and calculated results was obtained. Apart from the subjectivity of such observations, their
number as well as time and spatial resolution over the seas and oceans, make these results
unreliable. Accounting for high temporal variability of cloudiness, meteorological models as
a source of the input data are also a source of serious errors (Krezel & Kozlowski, 2001).
Nevertheless, if the cloudiness over the area of interest is known the average energy flux at
the horizontal plane can be expressed as:

E=ETy (24)

where: E - irradiance reaching the sea surface in the case of cloudless atmosphere; T¢; - a
function describing the influence of an average cloudiness on the light transmission, given
by Krezel (1985):

Ty =1-agc —bec? (25)
where: ¢ - cloudiness in tenth, a¢; i bc - best-fit coefficients.

Assuming the independence of T¢ on the wavelength the formulas (24) and (25)
complement the model with this very important component and make it applicable for the
atmosphere.

4. Satellite sources of input data
4.1 Aerosol optical thickness

In the next approximation, it is assumed to utilise the Advanced Very High Resolution
Radiometer (AVHRR) data. The upward radiance over the dark sea surface within red and
infrared bands depends primarily on the type and concentration of aerosols in the atmosphere.
The amount of solar radiation backscattered by aerosols is proportional to the aerosol optical
thickness 1, and the phase function PA(y). Light attenuation by marine aerosols arises mainly
from the scattering processes (ie. the single scattering albedo ®' = 1). Therefore, the
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dependence between the radiance measured by the space-borne radiometer and 1, should also
allow for the light source-observation direction geometric configuration. This means that PA(y)
has to be known in order to determine the value of 1, (Stowe et al., 1997).

Results of hitherto investigations indicated that the variability of PA(y) in the case of
backscattering is considerably lower than the 1, variability, and even, to a certain extent,
does not depend on the type of aerosols (Stowe et al., 1997). Koepke & Quenzel (1979)
showed that the variability of PA(y) is contained within the range of about +25% (and can be
lowered down to #4% in the case of optimal geometric configuration), whereas 1, can range
even over an order of magnitude. The feasibility of 1, determination based on a single
spectral channel data on reflectance was proved by Kaufman (1993) who stated the
universality in the dependence between 1, and the path radiance.

Standard algorithms used to determine the aerosol optical thickness on the basis of data
from a single spectral channel (1 or 2) of the AVHRR, which were developed for
NOAA/NESDIS! (first-generation algorithm), allow for the geometric configuration of the
system. Moreover, the correction referring to the actual distance between the Earth and the
Sun is considered, and the values are rescaled according to the wavelength of 0.5 pm
(rescale coefficient is 1.348). Additional parameters used as the input data are i) the ocean
albedo (Lambert’s reflection coefficient), ii) volumetric absorption and scattering coefficients
and iii) the phase function PA(y) which is determined on the basis of the Mie theory and
redefined for the model of aerosol particles.

The values of AOT(500 nm) calculated by means of the above-mentioned algorithm are
rendered accessible in a quasi-operational mode by NOAA/NESDIS. Utilisation of AVHRR
data in AOT determination enables gaining information on the values of this parameter
within a spectral interval of 100 nm with the central value at 630 nm. The algorithm enabling
one to determine the AOT variability within the whole visible spectrum was developed
basing on the analysis of measurement data recorded mainly on Gotland, within the
framework of AERONET? program. Functional dependencies enabling determination of
AOT for optional wavelength within PAR band were obtained (Krezel et al., 2008):

AOT (L)= AOT(500)aexpb(}) (26)

where: AOT(500) - the aerosol optical thickness at 500 nm determined on the basis of
AVHRR data by means of the first-generation algorithm, a - empirical coefficient equal to
1.63, A - the wavelength [nm], b(A) - coefficient related to the wavelength A, which can be
described by the following formula:

b(1) = 4.588 exp(~2.981% / 1000) 27)

Dependencies (26) - (27) make it possible to obtain digital images of t,(A), which are
presented in Fig. 3.

4 National Oceanic and Atmospheric Administration /National Environmental Satellite, Data, and
Information Service
5 Aerosol Robotic Network - http:/ /aeronet.gsfc.nasa.gov/
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Fig. 3. Exemplary maps of aerosol optical thickness over the Baltic Sea calculated on the
basis of interpolated AVHRR channel 1 data

4.2 Water vapour

The water vapour is present in the troposphere - the lower part of the atmosphere. Its
content varies significantly with space and time, being dependent on the air temperature. At
the sea level, concentration of water vapour can change from 102 gm-=3 at high latitudes up
to 30 gm?3 in the equatorial regions. It is one of the most important atmosphere constituents
that attenuates radiation. The strongest absorption occurs far out in the infrared part of the
solar spectrum, making atmosphere almost opaque for the wavelengths in the range of
about 30-900 pm. Weaker water vapour absorption bands affect transmittance windows that
are useful for remote sensing in the near infrared (NIR), thermal-infrared (IR) and
microwave (MW). It provides a way to retrieve water vapour content on the basis of
satellite measurements of reflected solar NIR radiation or emitted by the Earth's surface IR
and MW radiation.

The humidity of the atmosphere can be expressed in different ways, e.g. absolute humidity,
specific humidity, dew point temperature or integrated precipitable water vapour (IPWV).
In the satellite techniques the latter one, also called the integrated column water vapour or
total atmospheric water vapour (denoted W), is used. It expresses the height of the layer of
liquid water, obtained by condensing all the water vapour in the zenith direction at the
surface of a unit area. A layer of 1 cm thickness corresponds to 1 g of precipitable water per
1 cm? of the area.

In the NIR part of the spectrum, the absorption peaks of the water vapour are located
mainly around 720, 820 and 940 nm. The differential absorption technique utilizing this
region of spectrum assumes, in general, that the integrated water vapour content is related
to the transmission in a spectral channel affected by the water vapour absorption and that
the transmission can be estimated using the radiance ratio of two bands - absorption and
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non-absorption ones. It comes from the simplification of the Lambert's law (Gao & Goetz,
1990; Bouffiés et al., 1997; Tahl & von Schoenermark, 1998). As the assumptions undergoing
the theory cannot be true in reality, nonlinear relationships are used in practice. The
disadvantage of this method is limitation to daytime measurements and its high sensitivity
to aerosols and thin clouds - their occurrence can lead both to overestimation (photon path
enlarged due to multiple scattering) or underestimation (photon path reduced due to
backscattering) of the atmospheric humidity content.

In the recent years, studies in retrieving total atmospheric water vapour content based on
the absorption technique has been carried out using sensors such as the Medium Resolution
Imaging Spectrometer (MERIS) working onboard the European Envisat satellite (Fischer &
Bennartz, 1997) and Moderate Resolution Imaging Spectrometer (MODIS) onboard two U.S.
American platforms, Terra and Aqua (Gao & Kaufman, 2003; Albert et al., 2005;
Moradizadeh et al., 2008). The general form of the water vapour retrieval algorithm for
MERIS level 2 products is (ESA, 2006):

2
W=k, +k 1og[£@15 j +k, 1og2(LC’ﬂ5 J (28)

Ch14 Ch14

where Lejisa and Leys are the radiances measured in MERIS channels 14 and 15 respectively,
and ko, k1 and k; are the regression coefficients, dependent on few factors, with the geometry
of observation among them. The absorption band 15 is centred at 900 nm and the reference
non-absorption band 14 at 885 nm. Above land surfaces, top of the atmosphere (TOA)
radiances are corrected for the spectral slope of the surface albedo prior to applying the
algorithm. Above water surfaces, the algorithm additionally takes into account the aerosol
optical thickness, except for regions where the Sun glint is significant. Correction is made
using AOT at 900 nm estimation based on the radiances measured at MERIS bands 12 (775
nm) and 13 (865 nm). The advantage of the second instrument, MODIS, is that it has two
more channels in the infrared spectral region, where the water vapour absorption occurs.
Thus, the water vapour content is calculated as the weighted mean of three independent
estimations (NASA MODO05 algorithm) performed according to (Gao & Kaufman, 1998,
2003):

2

Ch2 LChZ

where Lcy,; are the radiances measured in MODIS water vapour absorption channels 17, 18
or 19, centred around 905, 936 and 940 nm respectively. Non-absorption reference band 2
has its centre at 865 nm. It have to be mentioned that these three bands have different water
vapour sensitivity (Sobrino & El Kharraz, 2003), so weighting factors for averaging are
calculated based on the range of possible water vapour content and the transmissivities in
band i.

Global data of both sensors are available with the nadir resolution of 1 km. MERIS full
resolution of 300 m can be used locally for more detailed water vapour estimation (Fig. 4).
Near polar orbits and wide swath of these systems enable to observe each point at the
Earth’s surface at least once every two days. Higher temporal resolution can be provided
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using sensors measuring emitted infrared radiation, such as AVHRR or the Spinning
Enhanced Visible and Infrared Imager (SEVIRI). The AVHRR, which is carried by the
American TIROS-N/NOAA series of satellites since 1979, provides long time series of data
with about 1 km spatial resolution. NOAA satellites, working in pairs, can give information
on the same point of the surface at least 4 times per day. SEVIRI, operating on board of
meteorological geostationary satellites provides data with coarser spatial resolution
depending on distance from the sub satellite point (about 3.3 km at the central Baltic Sea)
but with very high temporal resolution - up to 15 min from the recently working Meteosat
Second Generation satellite (MSG).

200 1-06-04 06150
total water vapour

2011-06-04 0100
e total water vapour
MERIS Level 2 product

weat hier fomecast

Fig. 4. Exemplary maps of total atmospheric water vapour over the Baltic Sea region
calculated on the basis of a weather prediction model (left) and a standard MERIS Level 2
product under clear sky conditions (right) for the same day

Both instruments have two spectral bands in the range of 8.5-12.5 pm atmospheric window,
which is affected by the water vapour absorption. These are AVHRR’s band 4 (10.3-11.3 pm)
and 5 (11.5-12.5 pm) or SEVIRI's band 9 (9.8-11.8 pm) and 10 (11.0-13.0 pm). Using
measurements of radiation at two wavelengths in retrieving the surface brightness
temperature makes it possible to limit the influence of the atmosphere brightness
temperature on the calculated values of the water vapour content. This is a so-called split-
window technique, that can be used directly to obtain the surface brightness temperature
and, if an independent estimate of the mean brightness temperature of the atmosphere is
available, also the column-integrated water vapour.

In practice the split-window technique is rarely used directly to obtain water vapour from
sensors measuring emitted infrared radiation. Several simplified methods utilising
regression have been proposed instead of it. To retrieve humidity content from the AVHRR
and SEVIRI thermal channels a method based on the linear atmosphere-surface temperature
relationship (LASTR) can be used (Sobrino et al., 2002; Sobrino & Romaguera, 2008). It
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considers a simple linear relationship between W and the atmospheric transmittance (t) in
channel 4 of AVHRR or 9 of SEVIRI. Best fit regression coefficients for each instrument was
derived based on simulations of atmospheric models. In the case of SEVIRI they are a
function of the viewing geometry by means of the cosine of satellite zenith angle. The
transmittance through the atmosphere from the surface to the satellite in channel i, for a
cloud-free situation, and considering the emissivity as being equal to one for a blackbody,
can be obtained from the radiative transfer equation as:

— 'Tz _Tai

. 30
ST eST-T, (0

where T; is the brightness temperature retrieved from the radiance measured in channel i, T,;
is the effective atmospheric temperature (resulting from the whole column of the
atmosphere) and SST is the sea surface temperature. SST can be derived from the same data
using the split-window algorithm. Its nonlinear form NLSST is recommended (Walton et al.,
1998). The effective atmospheric temperature is strongly correlated with SST values thus can
be obtained with sufficient accuracy using linear regression.

The new SEVIRI instrument has two more water vapour channels at 6.2 and 7.3 pm, that
improves possibilities of water vapour retrieval. However, IR radiometry has the same
limitation as mentioned before - it allows to estimate the humidity content only under clear
sky conditions. In the presence of clouds, only the microwave techniques can be used. Similar
methods, accounting for measurements at two frequencies (22.235 and 31 GHz) has been
developed. They can be used to retrieve precipitable water over the ocean (but not over the
land) based on observations provided for example by the Special Sensor Microwave/Imager
(SSM/I) and its successor (SSMIS) onboard a series of platforms in the US Defence
Meteorological Satellite Programme (DMSP) or the Advanced Microwave Scanning
Radiometer (AMSR-E) onboard NASA’s Aqua satellite. The advantage of ‘seeing through
clouds’, however, is reduced by coarse ground resolution, that cannot be finer than 25 km.

4.3 Ozone

The amount of the total stratospheric ozone has been regularly measured since the mid
1950s. It is usually expressed in Dobson units (DU). 100 DU correspond to the amount of
ozone that would produce a layer of 1 mm of thickness at pressure of 1 atm. The highest
concentrations of ozone in the stratosphere occur at about 25 km at the equator and 20 km in
the northern polar regions. The average values are about 300 DU but they vary significantly
in space and over the year.

Ozone has absorption lines in all major portions of the electromagnetic spectrum so it can be
measured with a variety of techniques. The most important for the satellite measurements of
integrated ozone are the ultraviolet Huggins bands (310-350 nm) and Chappuis bands in the
visible part of the spectrum (380-750 nm), where absorption occurs due to dissociation of
ozone. There is also an infrared ozone absorption band at 9.6 pym connected with changes in
the vibrational state of the molecules.

Satellite remote sensing of the total ozone in both the stratosphere and troposphere is based
mainly on measurements of the ultraviolet albedo of the Earth. Instruments which currently
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measure these albedos are the Solar Backscatter Ultraviolet Spectrometer (SBUV/2) and the
Global Ozone Monitoring Experiment (GOME-2) onboard NOAA and METOP 2 satellites.
Previous GOME instrument operated from the ESA platforms as well. Both instruments are
nadir-looking sensors, thus ozone maps are generated using interpolation and smoothing
procedures.

Algorithms to retrieve the total ozone utilize the split-window technique using measurements
of radiation in two closely spaced channels in the Hartley-Huggins bands. Channels 2 and 3 of
GOME fulfil these requirements. They are characterised by limited interference from other
trace gas absorbers and a smaller interference of Ring effect (partially filled Fraunhofer lines in
the backscattered spectrum). SBUV/2 measures backscattered radiance at 12 discrete
wavelengths in the range of spectrum between 252 and 340 nm, giving possibility to retrieve
vertical profiles of the ozone concentration (Bhartia et al., 1996).

The infrared ozone absorption band is utilized by TIROS-N Operational Vertical Sounder
(TOVS) processing the data recorded by High Resolution InfraRed Sounder (HIRS/2). The
ozone retrieval regression algorithm uses channels 9 (9.71 pm), 8 (11.11 pm), and 3 (14.49
pm) (Engelen & Stephens, 1997). Channels 3 and 8 are incorporated in order to correct the
ozone-sensitive channel 9 for the temperature dependence. Climatological data are used to
incorporate the unobserved upper layer of the atmosphere (Neuendorffer, 1996). The 9.7 pm
IR channel is also present in the SEVIRL This channel measures ozone concentration at high
temporal and spatial resolution, in near-real-time mode. The algorithm uses an optimal
estimation approach to fit the calculated 9.7 channel radiances to the observed values by
adjusting the ozone quantity in the 1000-30 hPa layer with constraining boundary
conditions from the European Centre for Medium-Range Weather Forecasts (ECMWEF) and
the 10.8 pm channel observations (EUMETSAT, 2010).

Reanalised SBUV/2 and TOVS ozone products are provided in form of global ozone grids
with spatial resolution of 1° and temporal resolution of 1 day by TOAST System¢. GOME-2
products can be obtained from NESDIS with the same temporal resolution but at 1°x1.25°
spatial grids. Our solar irradiance model does not utilize the satellite ozone data yet.

4.4 Cloudiness

It is out of discussion that pretty-nearly any space born information on cloudiness,
especially over the seas and oceans, is better than that calculated even by advanced
meteorological models (Fig. 5). Nevertheless, because of the complicated structure of clouds
in the terrestrial atmosphere, variability in their consistency, diversification of water drops
size and ice particles' shape etc. there is no easy way to presume the optical thickness of
clouds basing on the analysis of the solar radiance reflected from their surface and recorded
by a satellite-borne radiometer. For instance the problem of the cloudiness influence on the
solar energy flux reaching the sea surface can be divided into two stages:

e it has to be determined whether the Sun was obstructed by clouds at a given point and
time or not - wrong answer to this question leads to over- or underestimation of
considered parameter value almost by an order of magnitude,

¢ Total Ozone Analysis using SBUV/2 and TOVS
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o if the Sun is obstructed by clouds, it has to be determined which and to what degree the
properties of clouds influence the value of considered parameter - correct solution to
this problem improves the accuracy of estimation by several percent.

2000-068-11 000
cloudiness coefficient
weather [orecast

JIN0-08-11 045
* cloudiness coeflicient
SEVIE] algorithm

Fig. 5. Exemplary maps of the cloudiness coefficient over the Baltic Sea region calculated on
the basis of a weather prediction model and SEVIRI observation for the same day

Previous studies (see e.g. Krezel, 1985) showed that if i) the differences arising from
astronomical reasons are filtered, ii) the areas with direct reflection of the solar radiation are
omitted and iii) the period of time or places where the sea is covered with ice are not taken
into consideration, then the most important factors significantly affecting the radiance
reaching a satellite-born sensor are the degree of the sky cloud cover over the area from
which the signal recorded by a satellite is generated and the optical thickness of clouds
obstructing the sun rays. The basic problem to solve in this case is to determine the
threshold values, i.e. to determine the values of albedo under cloudless sky and total cloud
cover conditions and to decide how to analyse the in-between cases. The difficulty arises
from the fact that the threshold value is a function of many variables, i.e. the surface type
(land, sea and their variability), its physical properties (e.g. temperature, humidity,
concentration of some substances in the water etc.), current weather conditions (e.g. wind,
fog) and the Sun-pixel-satellite geometric configuration. It means that in the case of the
water surface the problem is a little bit lighter. Maybe the simplest method to solve it is to
adopt formulas (24) and (25) by introducing another variable in the place of c. It has been
suggested (Krezel et al., 2008) to introduce a cloudiness coefficient cr, a function of albedo
determined on the basis of the analysis of Meteosat visible channel data, into formula (25).
Within the area of the sea, the albedo is the lowest where the sky is cloudless and the
highest where a thick layer of clouds covers a whole pixel. In-between values depend
mainly on the degree of cloud and/or fog cover of each pixel and, on a smaller scale, on the
transmittance of clouds and fog. Theoretically, the value of albedo determined from a
satellite contains resultant information, i.e. the value of albedo is almost the same in the case
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of a pixel covered in 50% with a thick layer of opaque clouds and a pixel totally covered
with clouds characterized by transmittance of 50%. In the former situation the cloudiness ¢ =
0.5 and the cloudiness coefficient cr = 0.5, whereas in the later case ¢ =1 and c¢r = 0.5.

Replacing c in formulas (24) and (25) with cr should result in significant improvement of
obtained results. Nevertheless, the differences between calculated and measured
instantaneous irradiance (especially in the case of extreme values) can be still expected,
because the coefficient ¢r does not contain information on such phenomena as light
reflection from side edges of the clouds of cumulus type, or the thickness of the cloud layer,
because when the thickness exceeds a certain value its further increase does not affect the
satellite-measured albedo. The decrease in averaging period will result in higher differences
between modelled and measured values. Of course, on account of introduction of a new
variable, new values of regression coefficients in equation (25) should be determined.

5. Conclusion

We calculated the downwelling PAR irradiance over the Baltic Sea applying the model with
the use of two sources of input data: no-satellite and satellite in order to evaluate the
influence of application of the information on the atmosphere constituents obtained by
means of remote sensing technique on the accuracy of the light transmission model
retrievals. The sources of the non-satellite data on cloudiness and total atmospheric water
vapour (retrieved from modelled dew point temperature) were numerical weather
predictions provided by ICM? UM model (spatial resolution 4 km, four 48-h forecasts per
day with temporal resolution of 1 h). In the case of the AOT the average climatological
values were applied (Krezel, 1985). As the satellite sources, SEVIRI and AVHRR
observations were used together with calculations described in previous sections to provide
the cloudiness coefficient and AOT. Water vapour content was taken from the standard
Level 2 products of MERIS (only for clear sky conditions). Ozone concentration was
assumed as constant, averaged over the whole region (Table 1). The results of calculations
were validated on the basis of the values of the downward irradiance recorded at the
Institute of Oceanography’s automatic measurement station in Hel in the period since
August 2010 to May 2011. The comparison was made using a reference pixel whose central
point was located about 7 km north-east of the station (Fig. 6).

The values of PAR irradiance modelled on the basis of non-satellite data appear to be in
good agreement with measurements, which is confirmed by high correlation coefficient (Fig.
7). It proves the correctness of used formulae and the quality of model calibration. However,
the cloud of points on the scatterplot, pointing both overestimation and underestimation of
irradiance by modelled data, indicate that for individual cases the differences may be even
more than 100%. The irradiance time series show it more clearly (Fig. 8). Deviations of
modelled values from measured ones lay within the range of - 265 + 210 Wm=2. Using
satellite data improves results of the modelling even in case of applying only the satellite
evaluation of cloudiness (Fig. 7, Table 2). It reduces the statistical error by over 10 Wm-2. It
proves that the most important factor affecting the irradiance, the cloudiness coefficient,

7ICM - Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw,
Poland (http:/ /www.icm.edu.pl)
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should be determined with better accuracy than that of a weather prediction model. High
temporal resolution of SEVIRI observations enabled to reproduce diurnal fluctuations in the
illumination under variable clouds condition with better accuracy (Fig. 8).
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Fig. 7. Values of PAR irradiance at Hel - observed and modeled with two sets of input data
for the period of 2010-08-26 to 2011-05-24 (r - linear correlation coefficient between modelled
and measured data)
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input data source statistics
c AOT w n min max mean st.dev.
ns ns ns 2535 -264.8 211.0 -8.07 38.68
s ns ns 2535 -282.1 185.1 -10.00 26.94
s s ns 2535 -281.2 196.5 -4.79 26.89
s s s 2535 -281.2 196.9 -4.75 26.90

Table 2. Statistical characteristics of modeled PAR irradiance values deviation from
measured ones [Wm=2] (n - number of data, st.dev. - standard deviation) for different input
data sets (satellite - s; non-satellite - ns) of cloudiness coefficient (c), aerosol optical
thickness (AOT) and total atmospheric water vapour (V)
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Fig. 8. Values of PAR irradiance at Hel - observed and modelled with two sets of input data
for 5 day time series (temporal resolution of calculations 1h) and 1 day time series (temporal
resolution of calculations 15 min.)

Accounting for the satellite AOT data instead of climatological values makes further
decrease in errors reducing the systematic underestimation of modelled data (Table 2). The
water vapour influences the whole PAR irradiance in a less degree. More realistic spatial
distribution of evaluated PAR irradiance seems to be the most valuable improvement of
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modelling provided by the satellite input data set. As it results from the presented examples
(Fig. 9), applying the satellite data in the solar radiation transmission models significantly
reduces the calculation errors. Consequently, it can influence the evaluation of other
processes and phenomena occurring in the sea or estimations of the energy budget etc.
Considering the fact that most of the satellite data are now available for operational use,
their utilisation should become common.

Irraddiance [PAR)

A Irradiance (PAF)
non-satellite input data set

satellite input data set

2011-06-04 09:50 “3E 2011-06-04 (9:50
Irradiance (FAE) " Irradiance (PAE)
non-satellite inpul data set satellite input data set

Fig. 9. Exemplary maps of PAR irradiance at the Baltic Sea surface modelled on the basis of
two input data sets (non-satellite or satellite) under cloudy (2010-08-11) and clear-sky (2011-
06-04) conditions
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It is worth noticing that clouds are the most important atmosphere constituent which
influences the accuracy of calculations of the solar energy flux at the sea surface. On the
other hand, due to radiometers working onboard geostationary satellites, nowadays the
cloudiness can be determined, in operational mode, with temporal resolution of 15 minutes.
The scale of the temporal and spatial variability is shown in Fig. 10. Consequently, there is
an opportunity to monitor the short-term variability in the sea surface layer resulting from
the changes in the intensity of the solar radiation, e.g. water mixing, phytoplankton blooms,
primary production rate.
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Fig. 10. Exemplary time series of PAR irradiance at the Baltic Sea surface modelled using
the satellite (SEVIRI) data
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Turbines for Satellite Power Supply
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Germany

1. Introduction

Since the mid-nineties the power demand of GEO satellites has increased immensely
(Nobbe, Tappert, 2004). This increased power demand is needed for applications like
telecommunication, navigation and Earth observation. Conventional solar cells are
producing the necessary electrical power through photovoltaic, whereas often large solar
arrays are needed because of the relatively low cell efficiency and the temperature
dependency of the Maximum Power Point (MPP). But solar cells are not the only possible
concept to convert solar energy into electrical energy. The key concept of present paper is
the use of a thermo-dynamic conversion principle, using the Organic Rankine Cycle (ORC).

Extensive research work has been conducted in the last fifty years related to ORC spacecraft
applications. The new approach, which will be highlighted in this work, is the use of so
called Power-MEMS (Power Micro Electro-Mechanical Systems) in order to convert solar
into electrical energy. Here, a Micro-Turbine-Generator-Module (MTG-Module), consisting
of a Cassegrain collector system, a vapor generator, a turbine-generator system and a
condenser/ radiator, works by the use of the organic fluid Toluene. Final goal is the use of
many MTG-Modules integrated on a spacecraft panel in order to supply a satellite with
electrical power.

2. Background Power MEMS

Within the last five years many laboratories have put a lot of effort in research of different
system concepts for Power-MEMS. Main focal point within this effort was set on the open
Joule process, where a work gas (e.g. Butan, Methan or Hydrogen gas) is fired together with
Oxygen in a micro combustion chamber. The hot combustion gases impel a micro turbine
feeding a micro generator.

These Power-MEMS will be used as an alternative to batteries for laptops, camcorders or
other power consuming mobile applications. The research group of Reynaerts (Department
of Mechanical Engineering, University of Leuven, Belgium) (Peirs et al., 2003) has developed
a Power-MEMS using a single-stage axial micro turbine with a rotor diameter of 10 mm
(compare Figure 1). This turbine is a first step in the development of a micro generator. The
expansion of the gas takes place in the stationary nozzles. The turbine is made of stainless
steel using die-sinking electro-discharge machining (EDM).
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Fig. 1. Micro turbine design from Reynarts, University of Leuven, Belgium; (Peirs et al.,
2003)

The Power-MEMS weighs 66 g, which is hold by a micro bearing system (compare Table 1).
The turbine has been tested to speeds up to 160,000 rpm and generates a maximum
mechanical power of 28 W with an efficiency of 18.4 %. When coupled to a small generator,
it generates 16 W of electrical power, which has an efficiency for the total system of n=10.5
% (Peirs & Reynaerts, 2004).

Part Mass (g)
Turbine 36
Pneumatic connector 15.8
Ring 0.77
Nozzle disc 1.78
Small bearing 0.03
Large bearing 0.07
Rotor 1.63
Outlet disc 0.35
Circlip 0.27
Housing 15
Generator 30
Total* 66

* including Turbine & Generator

Table 1. Masses of different parts of the Prof. Reynarts Power-MEMS turbine; (Peirs et al., 2003)

Another Power-MEMS is designed by the research group of Epstein at the MIT, USA
(Jacobson et al., 2006). Here, the Power-MEMS is a 5-level wafer-bonded micro-machined
turbine/bearing rig. The production process involves the use of 5 wafers, 16 masks, and 9
deep silicon etching steps, double-sided deep reactive ion etching (DRIE), and Laser-
Assisted-Etching (LAE) (Lin et. al.,, 2006). Materials like ceramics such as silicon carbide
(SiC) and silicon nitride (Si3N4) are used for this chip turbine engine. Figure 2 shows a
cutaway of the engine as well as a Si-wafer of radial inflow turbine stages.

The micro engine also uses the open Joule process, where Hydrogen was chosen as a first
fuel. Figure 3 shows a cross section of the H2 demo engine. The centrifugal compressor and
radial turbine rotor diameters are 8 mm and 6 mm respectively (Epstein, 2004). The
compressor discharge air wraps around the outside of the combustor to cool the combustor
walls, capturing the waste heat and is so increasing the combustor efficiency while reducing
the external package temperature.
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Fig. 2. Upper side: Cutaway H2 demo gas turbine chip; Lower left & right: A 4:1 pressure
ratio, 4 mm rotor dia radial inflow turbine stage a swell as a Si wafer of radial inflow turbine
stages; (Epstein, 2004)

Thrust bearings on the centreline and a thrust balance piston behind the compressor disk
support the axial loads. The peripheral speed of the compressor is 500 m/s so that the
rotation rate is 1.2 Mrpm. With 400 pm span airfoils, the unit is sized to pump about 0.36
g/ sec of air, producing 0.1 Newton of thrust or 17 W of shaft power (Epstein, 2004).
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Fig. 3. H2 demo engine with conduction-cooled turbine constructed from six silicon wafers
developed by the MIT research group of Prof. Epstein; (Epstein, 2004)

A Power-MEMS that is working with the closed Rankine cycle is under development at the
Department of Mechanical Engineering - Columbia University, USA (Frechette, 2003a).
Here, a system-level and component design study of a micro steam turbine power plant-on-
a-chip was conducted. The Power-MEMS is similar build up as the H2 demo engine from
Epstein, MIT (compare Figure 4). Possible application for this type of Power-MEMS is
power generation from waste energy (e.g. PCU-cooling, illumination heat or car radiator
heat). The work fluid for this Power-MEMS is water.

The micro fabricated device consists of a steam turbine that drives an integrated micro feed
pump (3 mm thick by 1 cm? planar form). Two-phase flow heat exchangers are also
integrated on-chip with the rotating components to form a complete micro heat engine unit,
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which is converting heat to electricity. Expected power levels range from 1-12 W per chip
with energy conversion efficiency in the range of 1-11% (compare Figure 5) (Frechette,
2003b). The figure presents the predicted performance for three different configurations:

e Top bars are for a high superheated temperature (800°C) and high pressure (8 MPa) by
50°C ambient temperature,

e mid bars represent lower temperature (400°C) and lower pressure (0.6 MPa), and

e lower bars are the same device, but with 25°C ambient temperature. This last
configuration requires active cooling with a fan that is driven by a fraction of the micro
Rankine device output.

|

COLD SIDE 1 + | | ‘II

Haal Rejection CONDENSER PUMP  GENERATOR CONTACT PADS
Fig. 4. Cross-section schematic of micro steam-turbine power plant-on-a-chip; (Frechette, 2003a)

Summarized, all shown Power-MEMS have an increasing Technology Readiness Level
(TRL), although some concepts are still in its preliminary design phases. Nevertheless, an
implementation for a spacecraft application seems conceivable.

Itlgal Pamg lwbing  Beannps Windage Con- Gienerator  Looling
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Fig. 5. Predicted performance of the micro steam turbine power Plant-on-a-chip for three
configurations. (water 24 mg/s, Pmax=0.6 MPa); (Frechette, 2003b)



Mems-Concept Using Micro Turbines for Satellite Power Supply 199

3. Requirements & assumptions

First step is the determination of the MTG's electrical power output. From here, the
thermodynamic Rankine cycle can be calculated. The resulting thermodynamic values
directly affect the geometric construction of the module. During this preliminary study
several requirements and assumptions were made.

The key system requirements are:

e  Electrical power output P > 10 Watt per MTG-Module

e  Solar radiation concentrated by the use of a Cassegrain collector system
Modular design shall be used for the MTG many modules on one solar panel

¢ Closed Rankine cycle principle used as conversion principle

e MITG concept shall offer high average temperature of condenser in order to keep
radiator surface small

e  System shall be robust

o Lifetime of system > 10 a

The key assumptions are:

¢ Only energy conversion system within the power subsystem is subject of evaluation
here (no batteries or PCUs)

¢ Negligence of microgravity effects for Rankine cycle process

¢  Calculation of stationary mode only (no considerations concerning start or end working
phases)

e Negligence of Albedo and IR-radiation due to GEO orbits

e  Specific solar flux S=1350 W/m?

¢ Vertical incidence of sun's radiation towards collector system

4. Description of concept

As major work principle the Organic Rankine Cycle (ORC) was selected. The ORC works at
lower temperatures than the normal Rankine cycle. Here, the working fluid is not water but
an organic fluid with a lower evaporation temperature. To match the system requirements a
fluid with a long stable life time and a low degradation factor had to be chosen. The decision
was made for Toluene (C7HS8), which has excellent characteristics for the MTG process
(Prabhu, 2006). Toluene has the following characteristics:

¢  Molar mass: 92.14 g/mol

¢ Melting point -93°C (189 K)

¢  Boiling temperatue: 110.6 °C

¢  Boiling pressure: 1.01325 bar

o  Critical temperature: 320.95

o  Critical pressure: 42.365 bar

e  Thermal conductivity: 0.134 W/mK
e Density: 0.87 g/cm?

Key principle for the Rankine cycle (organic or not organic) is the isobar evaporation of a
liquid work fluid within a vapor generator. The hot vapor impels a turbine, which again
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drives a generator for the electrical power generation. After the steam passes through the
turbine, the condenser detracts the thermal heat so that the steam condensates and returns
again into its liquid form. A feed pump transports the fluid towards the vapor generator
and compresses the fluid to boiler temperature (compare Figure 6).

Overheater
Q
—» Evaporator

Y
Wi
-
Y-
f‘ Feed Pump o astuian

| Condenser

Fig. 6. Thermal dynamic flowchart of the closed Rankine cycle process.

The MTG Module concept is build up of five subsystems:

e  (Cassegrain mirror collector system

e  Micro receiver system/ vapor generator
e  Turbine-Generator system

¢ Condenser/ radiator system

e Micro feed pump

Figure 7 (left) depicts the schematic cross-section of a MTG-Module, where the collector
system, the thermal engine section and the radiator system are assembled to a single
module.

The Cassegrain mirror collector system has a parabolic primary mirror and a hyperbolic
secondary mirror that reflects the light back down through a hole in the primary mirror
(compare Figure 7, right). An advantage of this collector concept is the possibility to place
the Power-MEMS behind the primary mirror. This way the radiator is always in the shadow
of the primary mirror, which is important for a sufficient radiation.

The receiver system is an evaporator or heat exchanger that consists of single metal foils,
which are connected by a diffusion bonding process to form a nearly monolithic body. The
number of integrated micro channels is in the order of several hundreds to several
thousands (comp. Figure 8).
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Fig. 7. Left: Schematic cross-section of a Micro-Turbine-Generator (MTG-Module); Right:
Schematic drawing of a Cassegrain collector & concentration system

The devices have an extremely high heat transfer to volume ratio of about 30,000 m? per m3,
which makes it possible to transfer thermal power in the range of several kilowatts within a
volume of some cubic centimeters only (Brandner & Schubert, 2005).

s =

Fig. 8. Different microstructure heat exchanger made of stainless steel, each channel at
100pm edge length; (Brandner & Schubert, 2005)

The turbine-generator system consists of a micro turbine, as to some extent discussed in the
previous chapter, and a micro generator. The study revealed that concerning the micro
generator a great demand for research exists due to the fact that until now no applicable
micro generator is available (concerning long-life expectance). Although, some research is
performed on the field of micro generators, like the generator from the research group of
Schmidt at Technical University of Berlin, Germany (compare Figure 9) (Walter, 2004).

The condenser/ radiator system, where the hot Toluene vapor has to condensate after
leaving the turbine, consists of the same micro channel heat exchange system as the
evaporator system. In addition to the condenser a radiator must radiate the heat.
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Fig. 9. Prototype for a micro fabricated generator, developed at the Technical University
Berlin, Germany (Walter, 2004)

For the optimal geometric design several preliminary concepts were discussed during the
study. A promising solution is a radiation dome at the back side of the MTG Module
(compare Figure 10). The dome inhabits a secondary passive fluid cycle system (hot tube
principle) transporting the heat from the condenser to the outer side of the MTG-Module
(shadow side). The domes avoid mutual radiation effects between the different radiation
systems, when many MTG modules are implemented on one solar panel.

Back side of the
MTG-Panel

Radiator domes for
heat dissipation

90° angle in order to
avoid counter-radiation

Fig. 10. Key principle for the condenser/ radiator, where radiation domes shall optimize the
radiation area, the opposite radiator plates always stand with an angle of 90° to each other
in order to avoid counter-radiation

After the Toluene vapor has condensated and returned into its liquid form, a micro feed
pump transports the work fluid back to the evaporator system. An additional task of the
feed pump is the compression of the fluid to the required boiler pressure. Many feed pumps
within Rankine cycle machines are coupled directly (over the shaft) with the turbine. The
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Rankine Power-MEMS designed by the Columbia State University already has an integrated
micro feed pump (compare Figure 4). For the MTG-Module a similar micro pump system
would be conceivable.

/i Panel connector

Primary mirror

Secondary mirror
Thermal buffer

Evaporator
Turbine & generator

Feed pump
Honeycomb support structure

Condenser system & water tank

Fig. 11. Cross section of a Cassegrain collector mirror system with a MTG-Module attached

Figure 11 shows a first drawing on the actual design of a MTG-Module. The cross section
shows all necessary subsystems and elements for one Module. A honey comb support
structure fills the not needed volume between mirror system and radiator and adds
additional stiffness to the module.

Fig. 12. Example of a perspective depiction of an assembled solar panel with many
Cassegrain MTG-Modules
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Figure 11 also depicts the micro thermal buffer system that is placed within the receiver
system. This heat buffer system, which usually consists of a thermal salt compound, stores
the thermal load during on daylight phase. During shadow phase the Rankine process is
empowered by the heat dissipation of the thermal buffer. With such a buffer system several
positive implications on the overall system could be established like for example the

possible reduction of battery mass due to the fact of ongoing cycle power during shadow
phases.

The final goal is to integrate many MTG-Modules on a solar panel. As seen in Figure 12 the
primary mirrors have a hexagon-type form in order to optimize usable panel area. This way
a maximum of solar flux can be captured and concentrated. Every single MTG-Module will
convert the solar energy into electrical energy. The partial electrical power outputs from
each of the small steam power plants will be interconnected and serve the power subsystem
as primary energy conversion source.

5. Thermodynamic calculation

The ORC process can be divided into seven sub processes (compare Figure 13):

1-2 Isobar heat supply
2-3 Isobar heat supply (saturated vapor)

3-4 Isobar overheating

4-5 Isentropic relaxation

5-6 Isobar heat dissipation

5-7 Isobar heat dissipation (saturated vapor)
7-1 Isentropic pressure boosting

The Toluene cycle process was calculated for boiler pressure of 5 bar within the isobar heat

supply. The starting fluid temperature (point 1) starts at 290 K and has an end temperature
of 508 K before it enters the turbine.

3
2.240
-
o 180
5 100
E 40

]

- ) :
-1.6 -1.0 .1 0.2 0.6 Specific entropy s
[kl/kg*K]

Fig. 13. Temperature-Entropy Diagram for the Toluene Rankine cycle within the MTG-
Module.
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Within the turbine the vapor relaxes from 5 bar to 0.03 bar and leaves the turbine at a
temperature of 373 K (point 5). During the vapor/ fluid mixture flows through the
condenser, heat dissipation decreases the temperature to 290 K. Table 2 shows the key
thermodynamic working parameters of the chosen and calculated Toluene Rankine cycle
(Goodwin, 1989).

. Average
Working Temp- Pressure Specific ~ Entropy specific Eeat
. erature Enthalpy [kJ/kg*K )
point K] [bar] [kJ/kg] ] capacity cp
[kJ/kg*K]
1 290 5 -420 -1.15 1.8183
2 453 5 -163 -0.3 1.8183
3 453 5 163 0.4 1.4469
4 508 5 313 0.648 1.4469
5 373 0.03 100 0.648 0.9780
6 290 0.03 -13 0312 0.9780
7 290 0.03 -430 -1.15 1.029 (cv)

Table 2. Different working points for Toluene Rankine cycle

Having determined the key parameters for the cycle process the specific enthalpies can be
calculated for the heat supply and for the heat dissipation. Using the standard thermo
dynamical calculation methods one receives the following specific enthalpies:

dhy_, =295
kg
dh2_3 = 326ﬁ qm = dhl_z + dh2_3 + dh3_4 = dh1_4 = 700%

kg g
dhy 4 =79 M
kg

dhs_¢ = —81;:—]
Gout = ANs_¢ + dhg_y =dhs_; = —498ﬂ

dh, =417 kg

kg

For the turbine an enthalpy gradient of 213 kJ/kg results and the pump needs an enthalpy
effort of 571 J/kg or 0.571 kJ/kg. Within the requirements electrical power output for the
MTG-Module was set to 10 Watt. To fulfil this goal the necessary mass flow of the work
fluid Toluene needs to be calculated. Equation (1) represents the method to calculate the
different power consumptions:
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P=Ah-m

1
P = Power; Ah = spec. Enthalpy difference; M

11 =mass flow

The turbine and the generator efficiency factor was chosen each to n=0.7 so that a needed
thermal gross power output of at least 20 Watt is required. Because the feed pump is going
to be impelled by the turbine shaft the efficiency factor of the feed pump (n=0.2) has to be
considered as well:

P pump

PT(net) = Pth(gross) _77_
P

P pump

=P Pr(yery +

)

h(gross) =
pump

Pr(yer) = Net power turbine ; Py, = Gross power thermal;

(gross)
P,y = Power feed pump; n, = efficiency factor pump

Table 3 shows the different possible mass flows with the according calculated thermal input
and output powers for the MTG-Module. The blue highlighted mass flow of 0.1 g/sec was
chosen for the ongoing calculation process. This way for a net turbine power output of 21
Watt a thermal input power of 70 Watt is required. An average temperature of @Trec=548 K
on the surface of the receiver was calculated (by use of general heat transition equations)
under the special consideration of Toluene mass flow and the resulting thermal transfer and
absorption from the fluid.

Mass flow Total input Total output Power {fjd Gross [Tower Net p.ow:r
[kg/sec] power power [Watt] pump turbine turbine
[Watt] [Watt] [Watt] [Watt]

0.00001 7.008 -4.983 0.029 2.130 2.101

0.00005 35.042 -24 914 0.143 10.650 10.507

0.0001 70.084 -49.827 0.286 21.300 21.014

0.0005 350.418 -249.136 1.428 106.500 105.072

0.001 700.836 -498.271 2.855 213.000 210.145

* Net turbine power under consideration of feed pump power
** Feed pump power under consideration of efficiency factor: n=0.2

Table 3. Different calculated net turbine power values as a function of the impelled mass
flow

Having calculated the mass flow and the required thermal power input of the overall
system, the geometric size of the primary mirror can be determined. Here, it has to be
considered that the secondary mirror shadows the centre part of the primary mirror. Not the

full primary mirror system can be used for the solar concentration process (compare Figure
14).
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Fig. 14. Depiction of shadowing area of the secondary mirror towards the primary mirror

Since the solar flux is concentrated onto the receiver, the receiver surface itself emits
radiation to some extent, which has to be considered as loss energy. The required thermal
power for the Cassegrain collector system was calculated with a thermal power balance
approach (equation 3):

Qm + Qemi = Qcoll
. . ®)

Q;,, = required input power ; Q,,,; = emitted loss power;

Q.o = Power collector system

Considering the shadowing effects of the secondary mirror and the emitted loss energy of
the hot receiver, the needed mirror area can be calculated as follows (Zorner, 1991):

Qin +Qemi :Ap S(l_bf)as
— Qin + Qemi
4 S-(1-byf)-a
)
Q,, = required input power ; A, = Area of primary mirror;
Q,i = emitted loss power; S = Spec. solar const.;

by =shadow factor; o = Absorption factor
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Outgoing from equation (4) and by considering a specific solar flux constant of S=1350
W/m? and a high absorption factor (a= 0.8), the needed primary mirror area results to 703
cm? with a theoretical radius of rp=15 cm.

The closed-loop configuration also introduces the need to remove high heat fluxes from the
condenser side. To determine the geometric deviations of the condenser/ radiator system,
49.8 Watt has to be emitted by the radiator (compare Table 4). According to a hint estimate
using the heat transition equation and the Boltzmann equation a total radiator area of 1508
cm? (theoretical radius of 21 ¢cm) is needed. Table 4 summarizes all required and calculated
values for the MTG Module.

Category Calculated Value Category Calculated Value
Electrical Power (System output) 10.3 Watt Area of primary mirrc 703 cm?
Generator power (n=0.7) 14.7 Watt Absorptions factor rec 0.8
Turbine power (n=0.7) 21 Watt Radius of primary mir 15 cm
Feed pump power (n=0.7) 0.286 Watt Shadow factor 0.02
Thermal gross power (turbine) 21.3 Watt Average temperature 548 K
Primary mirror power 95 Watt Area of receiver 10.4 cm?
Power receiver (from cycle proces 70 Watt Radius of receiver 1.8 cm
Power loss receiver (from radiatic 4.3 Watt Area of heat dissipatio 15 cm?
Power radiator (from cycle proces -50 Watt Average temperature 1 306 K
Mass flow Toluene 100 mg/sec Area of radiator 1508 cm?
Specific solar flux (concentraded) 67500 W/m? Radius of radiator 21 cm
Concentration factor C 50

Table 4. Summarized values of calculated values and technical facts of the Micro-Turbine-
Generator (MTG-Module)

Efficiency factor for the MTG-Module, considering the previous assumptions and the
geometrical design (703 cm? of primary mirror) and a power output of 10.3 Watt results to
n=10.85 % (solar-to-electrical efficiency). The comparing solar cell alternative (same area of
703 c¢cm?, triple junction, EOL conditions, working temperature T=100°C) has a solar-to-
electrical efficiency of n=18.7 % (Schubert, 2006).

6. Conclusions

The principle of MTG-Modules reveals a huge development potential not only for space
application but also for terrestrial regenerative energy conversion. Nevertheless, several
arguments have to be examined carefully in order to evaluate the potential of the MTG-
Module. Until now, the module cannot compete with the solar-static principle (solar cell).
The efficiency factor as calculated in the previous chapter is by a factor of 1.72 lower than
the efficiency factor of the competing system (solar cell, triple junction, EOL conditions,
T=100°C) (Schubert, 2006). But while the needed cell area for the solar cells increases linear
with the required power output most of the MTG area is non-imaging-mirror. These mirrors
are relatively easy to produce and therefore low-priced.

Management of two-phase flow in a closed micro system comes with its own set of
challenges. Achieving complete evaporation (droplet-free) and superheating before the
vapor enters the turbine are critical. The condenser has a similar technical challenge, with
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the requirement of preventing vapour from entering the pump. Also the heat transition
between the condenser and the passive hot tube system of the radiation dome has to be
evaluated in more detail. Especially, the difficulties to establish a constant heat sink only by
radiation might be a source for future problems. In addition to it, the radiator has a bigger
area than the primary mirror so that a modular design requirement is difficult to fulfil
although the use of radiation domes was considered.

A successful development of highly integrated systems, such as the Micro-Turbine-
Generator (MTG-Module), requires acceptable operation of all involved components.
Manufacturing tolerances, simplified components models, and two-phase flow physics in
micro gravity environment are examples of potential sources of variability that can affect a
future development program.

For a dynamical system with rotating parts requires high translational speeds and therefore
high frequencies. This in turn implies that such parts will be highly stressed. Therefore, the
components have to be a high degree of robustness in mechanical design and manufacture.
It also limits material choices to those capable of carrying the loads. Nevertheless, from a
system level point of view the MTG-Module has several pros & cons that are summarized as
follows:

Pros:

¢ No power loss due to temperature dependency and shifting Maximum Power Point
(MPP) like for solar cells

e  Thermal buffer system also provides necessary thermal energy during eclipse phases
=> battery mass reduction

¢  Most of MTG area is a “non-imaging-mirror”, which can be produced at little cost

¢ No danger of hot-spots, as they typically occur at solar cells

o  Theoretical efficiency factor is the Carnot efficiency factor

e Advantageous overall energy balance during production process compared to solar
cells

e In general: MTG-Modules can also be used for terrestrial applications within the
regenerative energy industry

Cons:

¢ By now the theoretical efficiency factor is lower than for solar cells

o Difficulties of two-phase flow systems in micro gravity environment

e  Moving parts

e  The potential mass will be higher than for solar cells

¢  Fluid consistency cannot be determined by now

¢  Radiator is bigger than the collector system => mutual radiation effects for panel use
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Concentrating PV-CPC Systems
with Structured Reflectors
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1. Introduction

The conventional sources of energy such as coal, oil, natural gas, etc are undoubtedly
dwindling on a world scale at the current rate of consumption. Other sources of energy like
nuclear power have a nuclear waste disposal problems and the creation of large water
reservoirs for hydro-electricity generation brings about migration and a disturbance in the
general ecosystem. It is for this reason that alternative sources of energy are being sought.
One of the promising sources of energy is the solar energy. Solar thermal collectors can
easily harness the heat from the sun while photovoltaic systems can convert solar energy
directly into electricity. The major problem with solar energy is that it is not evenly
distributed over the globe and that its conversion efficiency is generally low.

In concentrator photovoltaic systems, highly specular (high reflecting) materials are used to
concentrate radiation on the module solar cells. Ultimately, this increases the temperature of
the module solar cells. Module solar cells made from silicon show a drop of 0.5% in power
for each degree rise in temperature [1]. High grade silicon solar cells have been used in
space applications but these are too expensive for conventional use. These specular
materials are not only expensive but also cause un-even illumination in certain geometries
of solar collectors. One way of going round this problem of un-even illumination is to use
diffuse reflectors that have a potential to scatter the radiation flux onto module solar cells.

Non-imaging static concentrators have been tested using converging (Fresnel) lenses as
refractive elements [2, 3, 4]. On the other hand, non-imaging static concentrators with
reflective elements for low concentration have been tested for high latitudes [5, 6, 7].
Specular reflectors have shown to have a long life but the problem of non-uniformity of
illumination has been prominent [6]. Low cost and partly diffuse reflectors have a great
potential for overall cost reduction in photovoltaic-thermal hybrids provided the problem of
non uniform irradiance could be solved [8, 9].

2. Specific objectives

In this chapter, we analyze the performance of a photovoltaic concentrator system with
structured reflectors. These material reflectors are anodized aluminium (oxide layer of ALOs
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forms on aluminium during anodization), rolled aluminium foil (lacquered rolled
aluminium foil, laminated on plastic PET or mylar, and miro (commercial aluminium sheet
coated with TiO,/SiO,/ Al). The overall objective was to test whether a reflector with low-
angle anisotropic scattering in one direction and specular in the other could be characterized
for use in low concentrators.

In the second case, we investigate one alternative of improving the performance of a low
concentrating photovoltaic system using semi-diffuse rolled reflective elements. Our results
indicate that rolling marks on the reflector aligned parallel to the plane of the solar module
cell improve the performance of the photovoltaic system.

3. Methodology
3.1 The compound parabolic concentrator (CPC) geometry

The studied symmetrical compound parabolic concentrator is shown in figure 1. The
acceptance half angle 8. and the geometrical concentration ratio C, were 15° and 3.6
respectively. The optical properties of the reflector materials in terms of their integrated
specular reflectance were analyzed using the Perkin Elmer Lambda 900 spectrophotometer.
In the second analysis, two identical CPCs were constructed as shown in the figures 2(a) and
2(b). In figure 2(a), the diffuse rolled aluminium sheet had its rolling grooves aligned
parallel (HG) to the plane of the solar module cell and in figure 2(b), we show the same
rolled aluminium sheet with the rolling marks aligned perpendicular (VG) to the plane of
the solar module cell.

In both CPCs, the half acceptance angle was 15°, the exit and the entrance apertures were
12.5cm and 42cm respectively, making a geometrical concentration ratio of 3.36. The CPCs
were truncated to a height of 49cm and a total length of about 61cm. The solar cell used was
a standard, high grade mono-crystalline silicon solar cell with dimensions of 12.5cm x
12.5cm inserted at the base of CPC.

Fig. 1. Truncated CPC with 10 cell module string
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Fig. 2. Photograph of CPCs with horizontal grooves(HG) in 2(a) and vertical grooves(VG) in
2(b). module string

4. Current-voltage curve measurements

The current-voltage (I-V) curves were measured using an electronic load instrument [10] by
adjusting the voltage through a logging system of potentiometers, operational amplifiers
and power transistors as shown in the background of figure 2(a). The CPC was tilted
manually below and above normal incidence (0¢) in one degree intervals to + 20°. At every
angle of incidence, an I-V curve was plotted for each reflector material. The current values
were compensated for irradiance at 950 W/m?2 and the voltage values were compensated for
temperature increase on the module at 25°C. From each plotted I-V curve, the short-circuit
current Iy, the open circuit voltage V., the maximum current [,;,; and the maximum voltage
Vimax Were extracted. Subsequently, the maximum power P, and the fill-factor FF were
calculated at each angle of incidence.

The effective specular reflectances (R ) for each material was also estimated from the short-
circuit current equation (1) at normal incidence.

1€ DR 11y oy 1)

C It sc

197 =[1+(C, ~DRY ]Il—blgﬁf +
t 8

The first expression on the right gives the current contribution from beam radiation with
reflectance losses and the second expression accounts for the current contribution from
diffuse radiation. The parameter I is the short-circuit current measured under
concentration, I'Y is the short-circuit current measured on a reference module placed at the
entrance aperture of the CPC, I, is the beam radiation, I, is the diffuse radiation and I; is the
total radiation. The parameter C, = 3.6, is the geometrical concentration ratio of the used
CPC. The ratio of the beam radiation to the total and the ratio of the diffuse radiation to the

total on a typical blue sky day are 0.9 and 0.1 respectively.
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In the second scenario, a standard current-voltage (I-V) plotter [10] was used to generate a
series of I-V curves at each angle of incidence (tilt). From each I-V curve and at a particular
angle of incidence, short-circuit current I, open-circuit voltage V,, maximum power Py,
maximum current I, and maximum voltage V,, were extracted and the fill-factor (FF) was
evaluated from equation (2).

FF =L ;I—m(1——ImR5] )
ISC VOC

Where R; is the series resistance of the module. The corresponding cell efficiency may be
calculated from equation (3).

SC0C ~ ~“m”oc m

INAm - INAm Voc

_FELY, _ LV, [1_1 RSJ o)

Where Iy is the incident solar radiation and A, is the active solar module area.

5. Un-even illumination profile measurements (Flux distribution)

The non-uniform illumination profile apparatus used in the measurements is shown in
figure 3. The rotation of the motor also rotates the potentiometer which in turn moves the
wiper and the attached photo-diode in the clockwise direction.

A small hole of 1 mm diameter was used to increase the resolution of the Photo-diode
measurements. The flux distribution profile measurements were averaged at four regular
intervals along the length of the CPC to minimize errors due to non-linearity of the CPC
geometry. The non-uniform illumination was compared for the three reflectors in terms of
their local concentration ratios (Cr) from the flux distribution measurements.

Fig. 3. Flux distribution profile apparatus resting on module string.
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Fig. 4. Vector representation of light reflection for a specular surface.

6. Ray-tracing techniques

The ray-tracing was performed using commercial Zemax software [11] and the Matlab
programmes. If we denote the incident unit vector i, the normal unit vector 7 and the
reflected unit vector 7, we may make a representation of ray-tracing profile for a specular
surface as shown in figure 4. If the incident ray is known, the reflected ray may be calculated
from the standard reflection equation (4).

Po=i-2(i.0)n (4)

A known number of rays were sent through the aperture of the CPC and monitored
statistically the fraction of rays that hit the absorber directly fo, the fraction of those that hit
the absorber after the first reflection f; and the fraction of those that hit the absorber after the
second reflection f; etc. From these statistics, the effective specular reflectance (R.p) for each
reflector material was estimated from equation (5). Note that equation (5) was evaluated for
normal incidence only as was the case for equation (1) as a comparison.

C
C_L = fo+ fiRyg + foRog” + oo ®)
8

6.1 Goniometric measurements

A photograph of the reflected light distribution from the reflector surface on to the screen is
shown in figure 5. The incident beam was entering through a small hole on the screen and
was reflected by the sample with the rolling grooves aligned vertically (y-direction). A
goniometer instrument was then used to obtain the angular distribution of the reflected
radiation along the x- and y-directions as defined in the figure. We observed the relative
intensity of the detector signal as the alignment of the rolling grooves were either
perpendicular to the scattering direction (scattering plane) or parallel to the scattering plane.

A photo-detector was used to record the relative signal intensity at each scattering angle.
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Fig. 5. Screen showing the reflected intensity. White band indicates direction of more
scattering, hence anisotropic.

7. Experimental results

7.1 1-V characteristic curves

The dependence of the short-circuit current as a function of angle of incidence were
analyzed as shown in figure 6 for the three materials.
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Fig. 6. Angular dependence of short-circuit current for three reflector materials.
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The increase in the short-circuit current was proportional to the increase in irradiance on the
cells. The short circuit current curve for anodized material followed the ideal optical
behaviour because it was used as the base reflector. The miro and the rolled foil short circuit
current curves show narrower angles of acceptance due to loose binding to the reflector
geometry.

The reduction in short-circuit current at angles of incidence less than the acceptance half
angle were due to optical imperfections of the reflector.

The fill factor for each material seemed to be fairly constant within +10° of angular tilt as
shown in figure 7. The fill factor for the anodized reflector dropped sharply at +14° because
all the rays fell on the edge of the cells and hence increased resistive losses. The increase in
fill factor outside these angles of incidence were due to the decrease in generated current.
Figure 8 shows typical current-voltage curves for the different groove orientations on the
diffuse aluminium reflector sheet. The calculated fill-factor values at normal incidence are
shown in the inset. It is observed that the percentage drop in the fill-factor for horizontal
orientation of the rolling marks was about 1.6% and that for the vertical rolling grooves was
about 2.4%. The smaller drop in the fill-factor for horizontal grooves was due to uniform
illumination of the solar flux causing an even distribution of currents within the solar cell.
The larger the fill-factor, the larger the power output and hence the efficiency from a solar
cell as seen in equations (2) and (3).
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Fig. 7. Angular dependence of fill-factor for three reflector materials.
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Fig. 8. 1-V curves for different groove orientations at normal incidence.

Figure 9 shows the variation of short-circuit current (I, for the two groove orientations as a
function of the angular tilt of the CPC. It is observed that short-circuit current for the rolling
marks vertical was higher than the short-circuit current for the horizontal grooves within
the acceptance angle. The vertical grooves behaved similar to a specular material.

High short-circuit currents generated with vertical grooves are not desirable in low
concentrating systems as they induce high intensity peaks caused by local heating.

Figure 10 shows the variation of the fill-factor (FF) as a function of the angular tilt of the
CPC within the acceptance angle (15°). We observe that the fill-factor for the horizontal
rolling marks was better than the corresponding fill-factor for the vertical grooves. The
moderate short-circuit currents generated from the horizontal grooves tended to lower the
heating effect by spreading the illumination flux.
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8. Flux distribution and ray-tracing results

The local concentration ratios (Cr) and the ray-tracing results are shown
effective specular reflectance (R¢f) is also compared as shown in table 1.

in table 1. The
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Reflector CL ratio Ref (From flux and Reff (From I-V Integrated
material (From flux Ray-tracing Eqn. 4) measurements specular

measurements) y & Ban Eqn. 1) reflectance
Miro 2.72 0.73 0.74 0.86
Rolled Foil 2.59 0.68 0.61 0.55
Anodized 2.70 0.72 0.69 0.85
Aluminium

Table 1. Comparison of the local concentration ratios for the different reflector materials and
the ray-tracing results.

Figure 11 shows the comparison of the local concentration ratio (C;) of the solar cell
illumination for the different groove orientations on the reflector as a function of the position
along the solar cell width at normal incidence. It is observed that vertical orientation of the
rolling marks give high concentration peaks along the surface of the solar cell, which is an
indication of high heating. The horizontal rolling marks on the other hand give reduced peaks
across the solar cell width an indication of an even illumination of the solar flux (CtHG curve
on the figure). There is no concentration at the centre of the solar cell because all the rays reach
the solar cell directly without any reflection (CLVG curve on the figure).
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9. Conclusions

The CPC element with a geometrical concentration ratio of 3.6 has been analysed with
different reflector materials. The short circuit current increased within a factor of 2.4 and 2.7.
The fill factors decreased from 0.72 for the reference module to 0.65 under concentration,
giving a percentage decrease of about 10%. The decreased fill factor during concentration
was a result of high and non-homogenous irradiance that increased the resistive losses
during concentration. The rolled aluminium reflector did not perform as expected in the fill
factor improvements although behaved relatively well with the flux distribution
measurements. From the flux distribution measurements, the rolled aluminium could
performance better with an improved CPC geometry. Concentrator geometry with a
uniform intensity distribution would be desirable since the cell with the lowest irradiance
limits the power output from a module.

The effective specular reflectance values from the short-circuit current and those from the
ray-tracing techniques were comparable to within 10% at normal incidence.

However, the rolled aluminium reflector has a potential for use as PV-CPC reflector for cost
reduction. The cost of rolled aluminium is 2 to 3 times less than the cost of anodized
aluminium and 6 times less than the cost of the Miro reflector per square metre. It is
recommended that further work be done on different groove sizes and different groove
orientations in improved geometries. It is expected that reflectors with grooves parallel to
the trough would give stronger scattering across the module and better performance in
terms of fill factor.

We have further demonstrated that a semi-diffuse aluminium sheet reflector with rolling
grooves oriented parallel (HG) to the plane of the solar cell module can improve the fill-
factor as it scatters the solar flux evenly across the solar cell module. It is the even scattering
that causes uniform distribution of currents within the solar cell and therefore reduces the
heat spot formation. Although the differences in the fill-factor were minimal between
horizontal grooves and vertical grooves, the Goniometric measurement results show
remarkable differences in the angular scattering of the light flux across the solar cell. From
the Goniometric results, larger scattering angles are observed from the rolling grooves
aligned perpendicular to the direction of scattering or the plane of scattering.
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1. Introduction

Energy has been playing an important role for civilization. In the early ages, wood was the
main source of energy. Industrialization and modernization which started around two
hundred years ago were mainly based on fossil fuels and even now they are being used on a
large scale. Huge demand of such energies has caused environmental problems and rises in
coal and oil prices as well. With ever expanding cities consuming more and more energy,
the fuel reserves for example oil, gas, coal, etc., throughout the world may not be able to
match the demand. There is a drive towards biofuels but unless the world’s food energy
needs are addressed, the viability of such fuels will remain a mirage for many decades. This
therefore calls for alternative sources of energy such as those employing wind, photovoltaic,
biomass, geothermal and wave power technology. The sun alone is continually releasing an
enormous amount of radiant energy into the solar system. The Earth receives a tiny fraction
of this energy; yet, an average of 1367 watts reaches each square meter of the outer edge of
the Earth's atmosphere. The atmosphere absorbs and reflects some of this radiation,
including most X-rays and ultraviolet rays but still, the amount of solar energy received by
the surface of the earth per minute is greater than the energy utilization by the entire
population in one year (Sen, 2004).

1.1 Solar radiation

Electromagnetic radiation occurs over widely different wavelength ranges: from cosmic,
gamma, X-rays to long radio waves. Sunlight is electromagnetic radiation in the spectral
range of 0.3 pm to 4 um with its maximum intensity around 0.5 um. This spectrum
corresponds to an effective blackbody temperature of about 5800 K (McVeigh, 1977, Sze,
1991). The wavelengths for many solar energy applications are found in the range from the
ultra violet at 0.3 um to the infrared at 50 pm covering the solar spectral range and the
spectral range of the thermal radiation emitted from a surface having a temperature of about
ambient up to 100°C (2 to 50 pm).

Terrestrial solar radiation is a low-intensity, variable energy source reaching a maximum of
about 1000 W/m2. The intensity of the terrestrial spectrum depends on the distance
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travelled through the atmosphere. Outside the atmosphere the spectrum is denoted air mass
zero, AM 0, while the radiation that travels through the atmosphere is AM X where

cosd,

0, is the angle of incidence with respect to zenith (Blatt, 1991). Equation 1.1 is valid only for
zenith angles less than 70° (Kreith and Kreider, 1978). At greater zenith angles, the accuracy
degrades rapidly, with X becoming infinite at the horizon. Figure 1.1 shows a normalized
solar spectrum for air mass 1.5 (AM 1.5). It represents a satisfactory energy-weighted
average for terrestrial applications. It has several local minima, which are caused by
absorption in the atmosphere mainly by water vapour, carbon dioxide and ozone (Duffie
and Beckman, 1991). AM 1.5 has been used later in this chapter to calculate average solar
values of reflectance given that it is advisable to compare different optical properties in
devices within certain spectral regions. These regions can be defined for certain
environments, eye adaptation abilities, material temperatures etc. An expression that gives
the average, H;, for the measured reflectance, transmittance, absorptance or emittance of a
device H()), has been defined as (Mwamburi & Wackelgard,, 2000):

b
[H(2)-g:(2)dA

Hy=2— (1.2)

[#-(1)az
where ¢.(1) is the source function of a specified property, &, which can be the solar
irradiance on earth at a certain level and angle, the range of the human eye sensitivity or the
thermal spectrum of a black body. In this work, ¢:(4) is the solar irradiance (AM 1.5) and
H(4) is the reflectance in some specified wavelength range.
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Fig. 1.1. Solar irradiation spectrum at air mass 1.5 and the relative spectral sensitivity of the
human eye (ISO 9845-1, 1992)
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1.2 Overview of photovoltaic technologies and materials

Research on solar cells can be divided into three areas: technologies that can make current
solar cells cheaper and/or more efficient to effectively compete with other energy sources,
developing new technologies based on new solar cell architectural designs and developing
new materials to serve as light absorbers and charge carriers. The technologies can be
classified into three generations.

The first generation photovoltaic cell consists of a large-area, single-crystal, single layer p-n
junction diode, capable of generating usable electrical energy from light sources with the
wavelengths of sunlight. These cells are typically made using a diffusion process with
silicon wafers. First-generation photovoltaic cells are the dominant technology in the
commercial production of solar cells, accounting for more than 86% of the terrestrial solar
cels (Goetzberger and Hebling, 2000).

The second generation of photovoltaic materials is based on the use of thin epitaxial deposits
of semiconductors on lattice-matched wafers. There are two classes of epitaxial photovoltaics -
space and terrestrial. Space cells typically have higher air mass zero efficiencies in production,
but have a higher cost per watt (Yamaguchi et. al, 2006, Takamoto et. al, 2006). There are a
number of technologies/ semiconductor materials under investigation or in mass production.
Examples include amorphous silicon, polycrystalline silicon, micro-crystalline silicon,
cadmium telluride, copper indium diselenide/sulfide. An advantage of thin-film technology
theoretically results in reduced mass so it allows fitting panels on light or flexible materials
(Shah, et al. 2004). Thin GaAs-based films for space applications with very high potential air
mass zero efficiencies are being produced (Merrill and Senft, 2007).

Third-generation photovoltaics are very different from the previous semiconductor devices
as they do not rely on a traditional p-n junction to separate photogenerated charge carriers.
For space applications, quantum well devices and devices incorporating carbon nanotubes
are being studied with a potential for very high efficiency (Hoffmann, 2006). For terrestrial
applications, these new devices include photoelectrochemical (Fahrenbruch and Bube, 1983)
cells and polymer solar cells (Brabec et. al., 2001), among others.

1.3 The pn junction solar cell

The conventional p-n junction solar cell has a single energy band gap, Eg, so when the cell is
exposed to solar radiation; a photon energy of less than E; makes no contribution to the cell
output if phonon assisted absorption is neglected. A photon with energy greater than Eg
contributes to energy E, to the cell output and the excess over E; is wasted as heat.

The equivalent circuit in Figure 1.2 shows a constant current source in parallel with the
junction.

The source I results from the excitation of excess carriers by the solar radiation. I is the
diode saturation current as derived by the Shockley equation (Sze, 1991) and Ry the load
resistance. The shunt resistance Ry, is caused by surface leakage along the edges of the cell,
and by metal shorts in defects and grain boundaries. The series resistance is as a result of the
front and back contact resistance, the base resistance and the thin top layer resistance.
Ideally Rs = 0 and R¢n, = o0, but even for a high value of Rn (say about 100 Q) its effect on the
I-V characteristics of the cell is negligible. So it is R; that should be kept as low as possible.
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Fig. 1.2. Equivalent circuit of a solar cell
The I-V characteristics of such a device are given by

=1 1)1, , (13)

One important parameter of the cell, open circuit voltage V.. is related to the I; and I; as

szks_Tln[I_m]sz_Tm[I_L] (14)
q q

S S

and since I = 0, hence for a given I, the open circuit voltage increases logarithmically with
decreasing saturation current [.

1.3.1 Loss mechanisms in pn junction solar cell
1.3.1.1 Surface reflection losses

On the top of the solar cell, reflection of incident solar energy do occur and affect short
circuit current of the cell. This is because refection reduces the absorbed carriers and hence
the I. For a bare silicon, these losses account for more than 30% due to high reflectivity of
silicon in the UV and visible regions which is about 0.3 (Green, 1992), However use of
antireflective coatings and texturing of the surface are some of the methods used to
minimize efficiency loss by top surface reflection.

1.3.1.2 Recombination losses

Basically, photovoltaic conversion occurs through three separate processes: (1) the
absorption of light to create electron-hole pairs in an appropriate semiconductor; (2)
collection and separation of these carriers by an internal electric field; (3) distribution to an
external load. Photon incident on the solar cell generates electron hole pairs; Generated
carriers need to be separated before they recombine, with emission of energy.
Recombination causes loss of carrier and reduces the open circuit voltage V. of the cell.

Recombination can occur by having an electron from the conduction band combining with
the hole in the valence band with emission of energy, the so called band-to-band
recombination. Another recombination method which is the dominant form in solar cells is
trap assisted type. This is attributed to impurities present in the semiconductor which
introduce an additional energy level within the forbidden energy gap. This added energy
level acts as a trap and captures electrons and holes leading to recombination.
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Also, the surface of the solar cells have large number of dangling bonds due to abrupt
termination of crystal structure. These dangling bonds act as recombination centers. Carriers
generated at the surface fall in to the dangling bond and recombine with the hole.

Another type of recombination referred to as Auger recombination occurs when a solar cell
is exposed to high intensity of photons. It may involve two electrons and a hole or two holes
and an electron. When hole from the valence band recombine with the electron in the
conduction band the excess energy released during recombination is absorbed by the
neighboring electron in the conduction band which then goes to some higher energy level
and then again falls back to the conduction band with release of energy.

1.3.1.3 Series resistance losses

As already explained in the previous section, series resistance losses arises from power loss
due to R,. and contribute to around less than 20% of the total input power (Markvart, 1994).
The losses increase tremendously when solar cell is operated at high intensities and they are
the subject of this chapter.

1.4 Concentrating photovoltaics

Concentrating Photovoltaic systems use a large area of lenses or mirrors to focus sunlight on
a small area of photovoltaic cells. Concentration of sunlight onto photovoltaic cells, and the
consequent replacement of expensive photovoltaic area with less expensive concentrating
mirrors or lenses, is seen as one method to lower the cost of solar electricity. Because of the
reduction in solar absorber area, more costly, but higher efficiency PV cells may be used
(Dalal and Moore, 1997; Kurtz and Lewandowski, 2004).

1.4.1 Concentrator geometries
1.4.1.1 Single cells

In small point-focus concentrators, sunlight is usually focused onto each cell individually.
This means that each cell has an area roughly equal to that of the concentrator available for
heat sinking, as shown in Fig. 1.3. Single cell systems commonly use various types of lenses
for concentration (Royne et. al., 2005).

__Fntancs apedurs

Fig. 1.3. Single-cell concentrator (Royne et. al., 2005)
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1.4.1.2 Linear geometry

Line focus systems typically use parabolic troughs or linear Fresnel lenses to focus the light
onto a row of cells as shown in Figure 1.4. The areas available for heat sinking extend from
two of the sides and the back of the cell. Compound parabolic concentrators (CPC) shown in
Figure 1.5 fall under this category and have been used for PV and thermal applications and
have been well discussed in literature (Winston, 1974; Tabor, 1984; Brogren et. al., 2000).

Fig. 1.5. Photograph showing an array of compound parabolic concentrators for PV and
Thermal application
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1.4.1.3 Densely packed modules

In larger point-focus systems, such as dishes or heliostat fields, the receiver generally
consists of a multitude of densely packed cells as shown in Figure 1.6. The receiver is
usually placed slightly away from the focal plane to increase the uniformity of illumination.
Secondary concentrators may be used to further improve flux homogeneity (Kreske, 2002).

N e A Entrance aperture

Optical concentration

Multiple cells

Fig. 1.6. Densely packed cells (Kreske , 2002)

1.5 Design considerations

Only a fraction of the incoming sunlight striking a solar cell is converted into electrical
energy. A typical efficiency value for concentrator cells is about 25% (Royne et. al, 2005). The
remainder of the absorbed energy is converted into thermal energy in the cell and may
cause the junction temperature to rise unless the heat is efficiently dissipated to the
environment. The major design considerations for cooling of photovoltaic cells are given
below:

1.5.1 Cell temperature

The four main parameters used to characterize solar cell outputs are the short circuit
current, Iy, the open circuit voltage, Vo, the fill factor, FF, and the conversion efficiency, 1.
In order to evaluate the conversion efficiency of systems where the radiation is concentrated
it is important to calculate the influence of the value of the solar flux on the efficiency. The
ratio of the illumination level incident on a cell to the level corresponding to AM1.5
illumination is the concentration factor. At constant temperature the short circuit current is
proportional to the concentration factor (Green, 1992). An influence on the efficiency results
from the relation between V.. or FF and illumination level. The fill factor is strongly
dependent on the series resistance, Rs, of the solar cell. This has profound consequences on
the efficiency of a cell working under concentrated sunlight because the power loss, caused
by R, increases with the square of the current. For a silicon solar cell with conversion
efficiency of about 24% at 293 K, its efficiency reduces to less than 10% if the temperature
goes beyond 400 K (Figure 1.7).
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Fig. 1.7. Theoretical silicon solar cell efficiency as a function of temperature. The data was
extracted from Fig. 7 in Wysocki and Rappaport, 1960 using digitization software.

1.5.2 Uniformity of temperature

The cell efficiency is known to decrease due to non-uniform temperatures across the cell
(Luque et. al, 1998; Mathur et. al, 1984; Chenlo, 1987). In a photovoltaic module, a number of
cells are electrically connected in series, and several of these series connections can be
connected in parallel. Series connections increase the output voltage and decrease the
current at a given power output, thereby reducing the ohmic losses. However, when cells
are connected in series, the cell that gives the smallest output will limit the current. This is
known as the ‘current matching problem’. Because the cell efficiency decreases with
increasing temperature, the cell at the highest temperature will limit the efficiency of the
whole string. This problem can be avoided through the use of bypass diodes (Edenburn and
Burns, 1981) which bypass cells when they reach a certain temperature or by keeping a
uniform temperature across each series connection. Also, the cells exhibit long-term
degradation if the temperature exceeds a certain limit (SunPower, 2002; Horne, 1993). The
cell manufacturer will generally specify a given temperature degradation coefficient and a
maximum operating temperature for the cell.

1.6 Cooling options for solar cells

As already indicated in the previous sections, the energy conversion efficiency of solar cells
decreases as the temperature of the solar cells increases. Furthermore, increasing
temperature may also have detrimental effects on other components of the photovoltaic
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system, including thermal stress which may result in failures in the photovoltaic system.
Whether the cells are singular, linear or densely packed, passive or active cooling can be
employed to maintain low operating temperatures depending on the complexity and the
scale of the concentrating PV system.

To keep operational costs to a minimum, a simple and low maintenance solution should be
sought. This also includes minimizing the use of toxic materials due to health and
environmental concerns. Reliability is another important aspect because a failure of the
cooling system could lead to the destruction of the PV cells.

A passive convection cooling system for photovoltaic panels utilizes principles of
aerodynamics to channel natural air flow across photovoltaic panels to increase the rate of
heat transfer and increase the convection rate and decrease the temperature of the
photovoltaic panels thereby increasing the efficiency of the solar cells and increasing the
durability of the photovoltaic system. There is a wide variety of passive cooling options
available. The simplest ones involve solids of high thermal conductivity, like aluminium or
copper, and an array of fins or other extruded surfaces to suit the application. More complex
systems involve phase changes and various methods for natural circulation.

Active cooling systems are a little bit more complicated. They require additional hardware
and costs such as a heat pump device having a refrigerating cycle comprising a compressor,
a heat radiator, a decompression device, a heat exchanger etc. The advantage of such a
system is the possibility of cogeneration - electrical and thermal energy.

1.7 Spectrally selective solar reflectors SSR

In principle, any transparent conductor film deposited on a reflecting surface exhibits to
some degree of spectral selectivity. Aluminium is commonly used as a reflecting material
basically due to its very high specula reflectance and its relatively low cost. Parabolic or
planar aluminium reflectors are common in concentrating troughs for photovoltaics, but
they are not spectrally selective. This leads to the concentration of light that is not useful in
the production of electricity in the PV cells and is dissipated in the system as heat

A possible way of reducing the heat buildup on a solar cell is to have only the photons with
energy greater than the band gap of the absorber to illuminate the cell. Thus, if the
reflecting concentrator is replaced with a spectrally selective reflector (SSR), the SSR should
separate the radiation necessary for electricity production from the solar radiation and be
directed to the cell (Figure 1.8).

In some materials like transparent conductors, the spectral position of the plasma absorption
band can be tailored with doping and can reflect selectively when coated on a reflecting
surface by absorbing radiation in the near infra red region with the relationship between
plasma frequency @, and carrier concentration n, being

2
wp =l (1.5)
&M,

where, m, and g are the electron mass and electron charge respectively while g, is the
permittivity of free space.



232 Solar Power

Some good examples are doped tin oxide, zinc oxide and indium tin oxide. Due to the
hardness and inertness of some oxides, they also serve as an excellent protective layer to the
aluminum surface.

The ideal properties of an SSR for use with crystalline silicon solar cells are shown in Fig.
1.9. The wavelength A. for switching from high to low reflectance lies at 1100 nm and
corresponds to the silicon band gap. Reen and Reerm are the integrated reflectance values
which for a Si solar cell are given by

1100
[10 GARA)AA
cell = 1100 s (16)
[ G(A)d2
300
[ GAR(A)A
R _ 1100 (17)
therm 2500 ’ .

IllOO G(l)dl

where G(1) is the AM 1.5 solar spectrum [19]. For an SSR with ideal properties, Reen = 1
and Riwerm = 0 will ensure that solar radiation in the range 300 < 1 < 1100 nm is reflected
towards the solar cell while the rest is absorbed by the SSR and hence does not contribute to
the heating of the solar cell.

—~— Support

PV cell

Fig. 1.8. Integration of a spectrally selective reflector surface on a PV concentrator

1.7.1 The SSR model

The basic optical properties of a transparent conductor (TC) coated aluminum reflector are
hypothesized. Here energy absorption from plasma oscillations in degenerate transparent-
conducting-oxide semiconductor films in combination with a highly reflecting metal
substrate can be used in the fabrication of solar selective reflector surfaces (Figure 1.10).
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The classical Drude theory for metals is often used to calculate the optical constants n and k
for the TCs and Fresnel’s formulae is employed for the reflectance simulations.
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Fig. 1.9. Ideal Reflectance properties of an SSR
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Fig. 1.10. Theoretical model used for the reflectance simulations.

The Drude model gives a phenomenological approach to the problem, based on some of the
fundamental material properties of TCs as the DC mobility, the effective mass and the
concentration of the free charge carriers. As the plasma absorption shifts to shorter
wavelengths for higher doping concentration, an optimum doping can be found
theoretically for a specific choice of SSR.
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So far two types of SSR surfaces have been studied - one based on fluorine doped tin oxide
and the other on niobium doped titanium oxide. For both cases a thin layer of aluminium
oxide was sandwiched between the oxide conducting oxide and aluminium. Figure 1.11
shows the optical properties of TiOxNb/AlOs3/Al SSR surfaces deposited by DC
Magnetron sputtering tailored for Si solar cell application with minimum reflectance centred
around 1500 nm.
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Fig. 1.11. Experimental spectral reflectance for a TiO2:Nb/ Al,O3/ Al structures. The layer
thicknesses are indicated.
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Fig. 1.12. Influence of the thickness of TiO2:Nb film on the reflectance of the SSR. ALLO3
thickness is 90 nm (Maghanga et al, 2011).
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Expectedly, the properties of SSR such as those plotted in Figure 1.11 vary with thickness of
the layers as shown in Figure 1.12 and 1.13. An optimum must therefore be established
which can be achieved by mathematical modelling of the multilayer structure. This requires
the knowledge of optical data of the substrate, TCO and the intermediate layer (Maghanga

et. al, 2009).
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Fig. 1.13. Computed reflectance spectrum for 100, 160, 220, 280 and 320 nm thick fluorine
doped tin oxide on aluminum (Mwamburi et al., 2000)

1.7.2 Heat balance on solar cell

The energy conservation equation for concentrator solar cells is crucial is estimating the
temperature of the solar cell when concentration varies which for concentrator cells
employing parabolic concentrators and can be expressed as

gaAGCo - ﬂgaAoC% - ArgO-B (T4 - T04) - Ach(T - To) =0 ’ (18)

where the first term denotes the luminous power reflected to the cell with reflectance &, the
cell surface absorptivitye, the cell area A, the geometric concentration ratio C and the
energy density g,. The second term in the equation is the electric power delivered to the
external load with the conversion efficiency 7. The third term represents the power
dissipated through radiation with the surface area A, the surface emissivitys, the Stefan-
Boltzmann constant o, the surface temperature T and the ambient temperature T,. The last
term characterizes the power dissipated through convection, which depends on the surface
area A. and the convective transfer coefficient h.

If a cell relies only on the cell surface area for cooling through radiation and convention,
equation 1.8 reduces to
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£aCq, —néaCq, - soy(T* ~T,) ~W(T ~T,) =0 (1.9)

For case of a concentrator cell employing a reflector material with SSR properties, the cell
absorbs only the useful radiation i.e., energy corresponding to the wavelengths < - while

without the SSR property the wavelength range of absorption spans the whole solar
spectrum, say 300< A- <2550nm . Using the parameters in Table 1, the variation of

temperature with concentration for a solar cell with and without an SSR was estimated
using equation 1.8 and plotted in Figure 1.14. At low concentration ratios, the cell
temperature is low and the difference in temperature between the two cases is small. The
effect of the SSR is evident at higher concentration ratios where the temperature of the cell
without the SSR is higher than that with the SSR. The model assumes minimum cooling
from convection and radiation such that A, = 4A,and A. = 104, .

Parameter Description Value

a Surface absorptivity of the cell 0.85

n Efficiency of the cell 0.2

To Ambient temperature 300 K
Convective heat transfer 5 W/m2K

C Concentration factor Variable

£ Emissivity of the cell 0.85

Table 1. Parameters used in calculations of solar cell temperature (Maghanga et. al, 2011)
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Fig. 1.14. Solar cell temperature versus concentration calculated for constructions with and
without a SSR. The following values were assumed: A; = 4A, and A. = 104, (Maghanga et.

al, 2011).
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1.7.3 Evaluation of SSR

The extent at which the SSR reflects solar in the region below and above the solar cell band
gap E; can be calculated for silicon solar using equation 1.6 and 1.7. For instance, for the
SSR properties shown in Figure 1.11, the Reen and Rinerma values are 0.756 and 0.28
respectively. Based on this data, a Figure of Merit (FOM) of an SSR can be estimated using
the formula (Maghanga et. al, 2011):

FOM~0.8+0.2 Rttern. (1.10)

cell

The value attains a minimum value of 0.8 for an ideal SSR and should approach this value as
closely as possible for real SSR coatings. For a non-selective reflecting surface, the FOM is
equal to 1.0.

2. Conclusion

This chapter has explained various loss mechanisms in a pn junction solar cell with
emphasis on losses due to heat build-up on concentrator cells. Using the heat balance
equation, the chapter has illustrated the possible contribution of the SSR to heat reduction
on a solar cell. Specific experimental cases have been cited including a formula that can be
used to evaluate the quality of a spectrally selective reflector surface.
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1. Introduction

The need for large-scale harvesting of renewable and clean energy such as solar or
photovoltaic (PV) energy has been recently fully recognized for reducing greenhouse gas
emissions and securing the availability of energy in the future (Bull, 2001; Bose, 2010;
Rahman, 2008). PV energy can be utilized by converting it into thermal energy or directly to
electrical energy by means of solar cells (Rahman, 2008).

The simplified electrical equivalent model of a solar cell composes of a photocurrent source
and a diode connected across the current source as depicted in Fig. 1a (Lyi & Dougal, 2002;
Villalva, et al., 2009). The solar cell is a highly non-linear and non-ideal current source
yielding limited output voltage and power as depicted in Fig. 1b. In addition with the non-
linear static terminal behaviour, its dynamic behaviour in terms of dynamic resistance and
capacitance is equally non-linear and dependent on the operating point (Anantha Krishna,
et al., 2011; Kumar, et al., 2006; Miki, et al., 2010; Thongpron, et al., 2006). Typical maximum
voltage of a single-junction silicon cell is in the order of 0.5 V (Kumar, et al., 2006). As a
consequence, a large number of cells usually have to be connected in series to form a PV
generator for fulfilling the practical solar energy harvesting.

In order to maximally utilize the energy provided by the PV generator, its operating point
has to be kept at the maximum power point (MPP) (Fig. 1b, the point (1,1)), where the static
and dynamic resistances coincide (Thongpron, et al., 2006; Xiao, et al., 2007a) according to
the maximum power theorem (MacLaughlin & Kaiser, 2007). Innumerable methods and
algorithms have been developed for tracing the location of the MPP as discussed e.g. in
(Esram & Chapman, 2007; Jain & Agarwal, 2007; Salas, et al., 2006).

The output of a PV generator is very seldom suited as such for powering the load because of
its highly varying terminal characteristics due to the changes in the environmental
conditions such as ambient temperature, level of irradiation, cloud passing, etc. The
terminal characteristics in Fig. 1b imply that the PV generator exhibits both constant-
current-source behaviour and constant-voltage-source behaviour as well. The dynamic
characteristics (i.e., the dynamic resistance (rs)) in Fig. 1b confirm also the dual source
nature. In practice, this means that the interfacing can be accomplished either by using
voltage-fed (VF) or current-fed (CF) converters (Capel, et al., 1983) but the different
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interfacing constraints such as the validity of Kirchhoff’s current law and stability under
output-side feedback control have to be carefully considered (Suntio, et al., 2010a&b).
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Fig. 1. Solar cell characteristics: a) Simplified electrical model, and b) static and dynamic
terminal characteristics as normalized I/U, P/U, r/U, and ¢/ U curves

In order to supply maximum power from the energy source, the feedback-control
arrangement shall be such that the input-side feedback loop is the outmost loop within
every converter in the process as depicted in Fig. 2. The dual source nature of the PV
generator makes it possible to use either conventional VF converters or CF converters as the
interfacing media. According to control engineering principles (Suntio, 2009), the input
current of a VF converter and the input voltage of a CF converter have to be used as the
feedback variables. This means, in practice, that the feedback arrangements determine also
the nature and dynamic behaviour of the converter. Despite this fact, it is usual that the
distinction between the VF and CF interfacing converters is not made but all the converters
are considered to be conventional VF converters as in (Dehbonei, et al., 2009a&b; Femia, et
al., 2008) even if special control arrangements (i.e., inversing the polarity of the feedback and
reference signals in the controller) have to be made for proper operation as explicitly shown
e.g. in (Siri, 2001). The same applies also to the grid-connected inverters in the renewable
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energy applications as depicted in Fig. 2. The lack of real recognition of the static and
dynamic differences in the converters compared to the conventional converters has led to a
situation, where the proposed PV converters have not been tested by using a proper input
source as discussed e.g. in (Menti, et al., 2011; Sanchis, et al., 2007). Therefore, the suitability
of the converter for the intended application has to be carefully tested by using a real PV
generator or a solar array simulator, which is known to have the same static and dynamic
properties as the real PV generator.

Fig. 2. Principle of grid-connected PV energy system in grid-parallel operation mode

According to (Petrone, et al., 2008), there are a number of issues related to the MPP-tracking
converters and grid-connected inverters, which reduce the reliability of the PV energy
systems. One of those issues is the stability of the interconnected system, which can be
assessed at an arbitrary interface within the system by means of the small-signal
impedances determined for the upstream (source) and downstream (load) subsystems at the
selected interface (Middlebrook, 1976; Suntio, et al., 2010a&b; Zenger, et al., 2006).

The rest of the chapter will treat the topics discussed above more in detail and is organized as
follows: The basic static and dynamic properties of a real PV panel are introduced in Section 2
including the effect of partial shading (Wang&Hsu, 2011) as well as the characterization of a
certain commercial solar array simulator as a substitute for the real PV generator. General
dynamic representations of interfacing converters are given in Section 3 including the
parameters affecting mostly the quality of the interfacing as well as stability of the system. A
short introduction to the implementation CF converters is given in Section 4. Experimental
evidence is provided in Section 5 to validate the theoretical findings presented in Section 3.
Section 6 summarizes the topics of the chapter and recommends further actions to be taken.

2. Basic properties of a PV generator

The current-voltage characteristics of a PV cell can be represented with sufficient accuracy
by using the single-diode equation given in (1) (Lyi & Dougal, 2002), where i,, and u,, are
the current and voltage of the cell, i, is the light-generated current, i, the diode saturation
current, 7, the series resistance, ry, the shunt resistance, A the diode ideality factor, kthe
Boltzmann constant, T the cell temperature, and g the elementary charge. The PV generator
consists of series-connected cells. As a consequence, its current-voltage characteristics can be
given by adding the effect of the number of series-connected cells N, in the single-diode
equation as shown in (1). Naturally, N, =1 for a single cell.
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C Ug, + Ty, Ug, + Tl
P=tn — 1o {eXp[NSAkT/qj 1:| Ty (1)
The electrical equivalent circuit corresponding to (1) is given in Fig. 1a. The behaviour of the
dynamic resistance (r) and capacitance (c) of the PV module (See Fig. 1) can be easily
understood based on the behaviour of a silicon diode and constant-current source: If the
diode current is low, the resistance of the circuit is high and capacitance low. The increase in
the diode current reduces the resistance and increases the capacitance. The circuit exhibits
lowest resistance and highest capacitance at the open-circuit condition, because all the
photocurrent is flowing through the diode.

The silicon diode has a negative temperature coefficient approximately of -2.5 mV/°C
(Anantha Krishna, et al., 2011). This means that the voltage and maximum output power of
the PV generator decreases along the increase in the cell temperature and vice versa but the
photocurrent remains effectively constant. The effect of the temperature on the resistance
and capacitance is such that the resistance decreases and capacitance increases along the
increase in the temperature and naturally vice versa.

e ——

¥

Fig. 3. Fluorescent lamp unit and Raloss SR30-36 PV module

The above described behaviour of the dynamic parameters without the temperature effect is
clearly visible in Fig. 1b, where all the curves represent normalized measured data from an
actual PV module of Raloss SR30-36, which is illuminated by using a lamp unit shown in
Fig. 3 producing illumination of 500 W/m2. The corresponding short-circuit current and
open-circuit voltage are 1.0 A and 19.2 V as well as the MPP current and voltage 0.91 A and
16.0 V at the module temperature of 44 °C, respectively.

The experimental frequency responses shown below are extracted from the PV module by
means of Venable Industries’ frequency response analyzer Model 3120 with an impedance
measurement kit. The dynamic resistance is extracted from the measurements at the
frequency of 100 Hz. The dynamic capacitance is extracted based on the cut-off frequency of
the first-order filter behaviour or the resonant frequency caused by the cabling inductance of
2 pH and the capacitance of the generator.

2.1 Dynamic resistance and capacitance

The measured output impedances of Raloss SR30-36 panel from the short-circuit (SC) to
open-circuit (OC) conditions are shown in Fig. 4. The low-frequency dynamic resistance is
explicitly normal positive resistance not negative resistance as assumed e.g. by (Xiao, et al.,
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2007a). It is extremely important that the behaviour of the low-frequency dynamic resistance
is correctly considered when analyzing its effect on the dynamic behaviour of the interfacing
converters, otherwise the result of the dynamic analyses are incorrect as e.g. in (Xiao, et al.,
2007a&b; Femia, et al., 2008). The measured dynamic resistance at the dark current
conditions as in (Xiao, et al., 2007a) does not correctly match with the real dynamic
resistance experienced at the illuminated or normal conditions as clearly shown in (M&ki, et.
al., 2010).

The extracted operating-point-dependent dynamic resistance and capacitance values are
shown in Fig. 5, where the normalizing factors are 1 kQ and 22 pF, respectively. Fig. 6 shows
the behaviour of the static (rcon = Upv/Ipv) and dynamic resistance (rss) of the PV panel in the
vicinity of the MPP: The resistances coincide at the MPP.
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Fig. 4. The measured output impedances of Raloss SR30-36 panel from the short-circuit (SC)
to open-circuit (OC) conditions
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Fig. 6. The behaviour of the static (rcon1a) and dynamic (rsg14) resistances in the vicinity of

MPP

2.2 Shading effect

Two Raloss SR30-36 panels were connected in series and Schotky-type shunt diodes were
connected across each panel. One of the panels was illuminated as defined above and the
other with reduced illumination yielding short-circuit current of 0.3 A, respectively. Fig. 7
shows the measured IU curves for the individual panels (Isz1, Isg2) and the series connection
(Isg-tot)) of them. The behaviour of the dynamic resistance is shown in Fig. 8, respectively.
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Fig. 7. The static IU curves of the individual panels and their series connection

The static and dynamic resistances will coincide at each of the MPPs. Fig. 8 implies also
clearly that each of the MPPs divides the operation of the PV generator into constant-current
and constant-voltage sub-regions, which will limit the operation of the VF converters in the
constant-voltage region at the voltages higher than the highest-voltage MPP. The behaviour
of the dynamic resistance implies also problems for the performance of the incremental-
conductance-based methods to locate the real global MPP.
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Fig. 8. The behaviour of the dynamic resistance rsg of the series connected panels

2.3 Solar array simulator

It is not very well understood that the PV generator has unique properties resembling both
constant-current and constant-voltage sources. As a consequence of this, the PV generator is
most often considered to be just a voltage source with rather high output impedance
especially when a capacitor is always connected between the PV generator and the
interfacing converter. Therefore, the proposed converters may not be tested at all by using a
real PV generator or a source simulator having the dynamic properties similar to the real PV
generator (Menti, et al., 2011; Sanchis, et al., 2007). Usually a pure constant-voltage source
with a small resistance in series is only used as in (Park, et al., 2006). As discussed above, it
is, however, extremely important that the input source has the characteristics of a PV
generator especially in respect to the dynamic-impedance behaviour.

A certain commercial solar array simulator (SAS) was programmed to emulate the
behaviour of the Raloss SR30-36 panel by using the voltage and current of the three
remarkable points (OC, SC, and MPP) (Villalva, et al., 2009). The resulting static IU curves
are presented in Fig. 9 showing a perfect match in the constant-current region but a slight
deviation in the constant voltage region.
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Fig. 9. The measured static IU curves of the Raloss panel (SG) and the solar array simulator
(SAS)
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The frequency responses of the solar array simulator were measured and the dynamic
resistance was extracted similarly to the Raloss panel. The comparison of the dynamic
resistances is shown in Fig. 10, where Fig. 10a shows the overall behaviour of resistances,
and Fig. 10b, the behaviour of resistances in the vicinity of the MPP. The overall dynamic
resistance of the SAS emulates quite well the dynamic resistance of the Raloss panel. It can
be expected that the testing with such an input source would very well ensure the working
of the tested converters also in the practical applications. The reason for the inaccuracy of
the static curve in the constant-voltage region is the method to establish the output
resistance as a constant value of approximately three ohms as shown in Fig. 10b.

A multitude of proposed techniques to design solar array simulators can be found in the
open literature but they are very seldom characterized in such way that their dynamic
properties are shown. The correct dynamic behaviour of the electronic solar array simulator
may be possible only when the base of the simulator is a real current source.

800
700
600
500

400

Resistance (Q)

300

200

100

2 4 6 8 10 12 14 16 18 20
Voltage (V)

a)

MPP

Resistance (Q)
o]

4 s 15 155 16 165 17 175 18
Voltage (V)
b)
Fig. 10. The comparison of dynamic resistances of the Raloss panel (rsc) and a commercial
solar array simulator (rsas): a) Overall impedance behaviour, and b) behaviour in the
vicinity of the MPP, where Ry, is the static resistance of the PV generator and the simulator
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3. General dynamic representations

The dynamics of a switched-mode converter can be represented by using certain two-port-
network parameters, which are uniquely determined by the input and output sources as
well as the output variable kept constant (Suntio, 2009). It shall be noted that a resistor as a
load does not change the output mode of a converter but the load has to be either a constant-
current or constant-voltage-type source. In general, the converters can be classified as
voltage and current-fed converters based on their actual input source. Their output mode
can be further classified into voltage and current. As a consequence, there exist four
different types of converters- namely voltage-to-voltage, voltage-to-current, current-to-
current, and current-to-voltage converters, which can be represented by means of G, Y, H,
and Z network parameters, respectively (Tse, 1998). The corresponding two-port models are
shown in Fig. 11. The output mode in Fig. 11 is visible as the dual of the ideal load. It shall
be also noted that the direction of the output current is opposite what is used in the
theoretical two-port-network models (Tse, 1998).
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Fig. 11. Linear two-port models representing converters defined by a) G, b) Y, ¢) H, and d) Z
parameters

According to Fig. 11, it may be obvious that only the current-fed converters (Figs. 11c&d)
can offer an ideal interfacing condition for the PV generator due to its current-source nature
at the input terminal, because the ideal interfacing requires the existence of duality in the
connection interface (Suntio, et al., 2010b). The voltage-fed converters (Fig. 11a&b) are prone
to the violation of Kirchhoff’s current law when the operating point moves into the voltages
below the MPP (Suntio, et al., 2010a). The nature of the input port shown in Fig. 11 is valid
also at steady state justifying the above presented conclusions.
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3.1 General treatment of the converter dynamics

The two-port models shown in Fig. 11 can be equally represented by using matrix
representations havmg typically three input variables [%;, X, % ] and two output
variables [, yout] , Where the subscript ‘in” denotes the variables at the input terminal,
‘out’ the variables at the output terminal, and ‘¢’ the general control variable. The variables
can be either voltage or current. This yields six transfer functions G; shown in (2). The sign
of the transfer function G,, is minus, because the direction of current at the output terminal
is opposite (See Fig. 11) what is generally defined for the two-port networks as shown in
(Tse, 1998).

R)

; G G G R
{Aym } :{ 11 12 13} Ao @
Yout Gy =Gy Gyl .

C

3.1.1 Converter under feedback control

According to the control engineering principles (Suntio, 2009), the feedback can be based
only on the output variables of the system (i.e., §;, and i/ ) yielding two different sets of
closed-loop transfer functions. Under the input-side feedback control, the closed-loop
transfer functions can be presented as shown in (3) based on Fig. 12, where the subscript ‘o’
denotes the open-loop transfer functions, L;, =G, ;,G,G.inG13 the input-side loop gain,
Gge.in the input-side sensor gain, G,the modulator gain, and G_;, input-side-controller

in s the reference for the controlled

se-in
transfer function, respectively. Input variable X

variable. The special transfer functions G,;_,, and G,,_,, are known as certain ideal output-
side transfer functions and defined in (4).

Xout e Gioy | Xou—? G, ]

Lin G]l—o % > Vin Yin > Gzl—o % > Yout
; G, ; i Gyp i .
i Open loop Open loop :
Ga Gwe in , Ga G.w—in ' y in
f i 1 }%
Closed loop Gc—e'n 4 X in Closed loop Ge—r‘n 7 X _in

a) b)

Fig. 12. General closed-loop a) input and b) output control block diagrams under input-side
control
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Gll—o GlZ—o 1 Lin %
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13-0 13-0

Under the output-side control, the closed-loop transfer functions can be presented as shown
in (5) based on Fig. 13, where the subscript ‘o’ denotes open-loop transfer functions,
Lout = Gee-0utGaGe.outGos the output-side loop gain, G, the output-side sensor gain, G, the
modulator gain, and G_,, output-side-controller transfer function, respectively. Input
variable X, is the reference for the controlled variable. The special transfer functions
Gi1_, and Gy,_, are known as certain ideal input-side transfer functions and defined in (6).

Fig. 13. General closed-loop a) input and b) output control block diagrams under output-
side control
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The ideal transfer functions defined in (4) and (6) reserves their values despite the state of
any feedback and they are usually also specific for a given topology (Suntio, 2009). It may be
also obvious that they usually define, especially, the low-frequency behaviour of the
corresponding closed-loop transfer functions. The low-frequency value of the ideal transfer
function G;;_,, = -Y,, / X;, (Suntio, 2009), which is usually the origin of the instability
problems in the interfacing of a PV generator.
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3.1.2 Source and load interactions

The input and output sources are, in practice, non-ideal containing some source impedance,
which may significantly affect the dynamic performance of the converter in terms of
transient behaviour and stability. The source effect can be computed, in general, based on
Fig. 14, where the converter subsystem C is connected in cascade with the source subsystem
S containing either voltage or current source with an internal ohmic non-ideality denoted
by S,, . The input variables of the system are denoted by (X1, X,u2, %, ), the output variables
by (Jin1 Vourr )» and the intermediate variables by (%,,7,), respectively. The dynamic
representations of the subsystems are given in (7), and the source-affected representation of
the converter in (8), respectively, where G, (9) denote the ohmic characteristics of the
input port when the output port is either short circuited (sc) or open circuit (oc) depending
on the nature of the ideal load (i.e., the output port is terminated with the inverse of the
ideal load impedance). According to (8), the ideal transfer function G, (6) determines
partly the source effect on the control-to-output transfer function G,;, ie. the output
control dynamics.

b

Iy i L, out2
—— g ' ——
+ + +
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Fig. 14. The cascaded connection of the non-ideal source and the converter
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The load effect can be computed based on Fig. 15, where the converter subsystem Cis
connected in cascade with the load subsystem L containing either a current or voltage sink
with the internal ohmic non-ideality denoted by L;; . The input, output, and intermediate
variables are the same as defined above. The dynamic representations of the subsystems are
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given in (10), and the load-affected representation of the converter in (11), respectively,
where G,,_; (12) denote the ohmic characteristics of the output port when the input port is
either open circuit (oc) or short circuited (sc) depending on the nature of the ideal source
(i.e., the input port is terminated with the inverse of the impedance of the ideal load).
According to (11), the ideal transfer function Gy, (4) determines partly the source effect on
the control-to-input transfer function G5, i.e., the input control dynamics.
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Fig. 15. The cascaded connection of the converter and the non-ideal load
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3.1.3 General stability assessment

It is well known that the stability of a VF interconnected system consisting of a source and
load subsystem can be determined by means of a certain impedance ratio known as minor-
loop gain by applying Nyquist stability criterion (Middlebrook, 1976; Zenger, et al., 2006).
The impedance-ratio-based method can be generalized to cover all type of interconnected
systems with an assumption that the output mode of the source subsystem has to be a dual
of the input mode of the load subsystem at the interface under consideration (See Fig. 11).

Fig. 16 shows an arbitrary interconnected system, where the source (S) and load (L)
subsystems are assumed to contain the merged dynamical effects from the downstream and
upstream parts of the overall system, respectively. The input, output, and intermediate
variables are the same as defined in Section 3.1.2 but the control variable X, is assumed to be
zero without loss of generality.
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Fig. 16. An interconnected system

The subsystems can be represented by their transfer functions as defined in (13) by utilizing
the intermediate variables (See Fig. 16). The stability of the interconnected system can be
studied by developing the mappings from the system input variables to the intermediate
variables and to the system output variables. These mappings are given in (14) and (15),
respectively. If the original subsystems are stable as stand-alone systems then the stability of
the interconnected system is dependent on 1/(1+S,Lq;)(Zenger, et al, 2006). Stable
operation requires that the roots of (1+S,,L;;) have to locate on the left half plane (LHP) of
the complex plane (Zenger, et al., 2006), which is ensured when the term S,,L,; is stable in
Nyquist sense. The boundary for the instability is SyL;; =-1, which means that the
impedances forming the term have equal magnitudes and phase shift of 180 degrees. In case
of VF interconnected system, Syl =Z .5/ Zi, (i-e., the minor-loop gain defined by
(Middlebrook, 2006)). In case of CF interconnected system, Syl =Z;,1 / Zous (1., the
inverse minor-loop gain defined by (Suntio, et al., 2010Db)).
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3.1.4 Theoretical interfacing constraints

As discussed earlier, the constant-current property of the input port of VF converters (See
Fig. 11) implies that their operation is limited to the constant-voltage region of the PV
generator, because the input current controller would easily saturate due to the violation of
Kirchhoff’s current law if the operation point is moved to the constant-current region
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(Suntio, et al., 2010a). This means also that the real global MPP cannot be traced in the case
of shaded PV generator, because the only possible operation region is the constant-voltage
region locating at the highest voltages. Similar violation of the Kirchhoff’s laws would not
take place in the CF converter under input-voltage control (Suntio, et al., 2010b).

According to (5), the low-frequency value of the closed-loop ohmic transfer function
G;1_. under output-side feedback control (Fig. 13) equals the ideal transfer function G;;_,,
which is known to posses the properties of negative resistance (Middlebrook, 1976; Suntio,
2009; Suntio, et al, 2010a&b). According to (Miki, et al. 2010) the dynamic output
impedance of the PV generator is pure resistance at the low frequencies and equals the
corresponding static resistance at any of the MPPs (Thongpron, et al, 2006). As a
consequence, VF and CF converters become unstable if the operating point is moved to the
MPP under output-side feedback control, because both of the minor-loop gains equal -1 at
the MPP. According to this, the operation region of the VF converter is limited to the
voltages higher than the MPP and the operation region of the CF converter to the voltages
lower than the MPP, respectively (Suntio, et al., 2010a&b).

Under input-side feedback control, the closed-loop ohmic transfer function G;;_. (See (3))

does not possess properties, which resembles negative resistance. Therefore, the converter
stays stable in the minor-loop sense (Suntio, et al., 2010a&b).

The source-affected control-to-output transfer function G5; in (8) has a numerator term
(14 5,,G11.5 ), which is dependent on the internal impedance of the source and the ideal
ohmic behaviour of the input terminal of the converter. According to the discussions above,
the numerator term will be zero at the vicinity of the MPP and will also change the phase of
the transfer function by 180 deg. This implies instability to take place under output feedback
control, when the operating point crosses the MPP. It may be obvious that in case of the
cascaded control, where the output-side feedback loop is the inner loop as in the grid-
connected PV inverters (See (Blaabjerg, et al., 2006)), the output feedback loop will be
unstable and will experience high gain reduction in the vicinity of the MPP. The
consequences are not treated here.

4. Current-fed converter implementation

A CF converter can be implemented in three distinct ways such as i) constructing intuitively
the converter based on the application of capacitive switched cells (Shmilovitz, 2006), ii)
from a VF converter applying duality-transformation methods (Cuk, 1979), and iii) adding a
capacitor at the input terminal of a VF conventional (Leppdaho, et al.,, 2010). The first
method produces a converter with the desired feature defined by the designer. The second
method produces a converter having similar static and dynamic properties as the original
VF converter has but the input and output variables are interchanged. The third method
produces a converter, which has the properties of the dual of the original VF converter, i.e.,
a VF buck converter transforms into a CF boost converter and vice versa. The converter
produced by the third method is not usually recognized to be a CF converter but treated as
if it has the properties of the original converter. This is explicitly shown in (Villalva, et al.,
2010) and justified by means of the voltage-type characteristics of the PV generator when a
capacitor is placed at its output.



254 Solar Power

4.1.1 Duality transformation

The most convenient method to perform the duality transformation is to place a dot inside
every mesh of the electrical circuit, one outside the circuit, and connecting the nodes with
the dual of the branch circuit between the nodes (Cuk, 1979). The duality-transformation
process is described by means of an example in Fig. 17: Fig. 17a shows the original VF
converter known as superbuck converter (Suntio, 2009). Fig. 17b shows the placement of the
nodes inside the meshes and the duals of the branches between the nodes. Fig. 17c shows
the resulting CF superbuck converter, which is described more in detail in (Leppdaho &
Suntio, 2011). The described method is straightforward and quite easy to apply. The
superbuck converter provides continuous input and output voltages and currents, which
makes it a desired converter in many applications. The detailed properties of the VF
superbuck converter can be found from (Suntio, 2009).
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Fig. 17. Performing the duality transformation: a) VF superbuck converter, b) duality
process, and c) CF superbuck converter

4.1.2 Input-capacitor-based transformation

The conventional buck converter in the PV applications is shown in Fig. 18 equipped with
an input capacitor. The ideal voltage source at the output terminal short circuits the output
capacitor and therefore, it is usually omitted as in (Villalva, et al., 2010). The normal switch
control scheme in the conventional buck converter is such that the high-side switch
conducts during the on time and the low-side switch during the off time, respectively. The
intention is usually to control the input voltage to the MPP of the PV generator. It has been
observed that the normal negative feedback control does not work but the polarity of the
feedback signal and its reference has to be inverted. This can be easily deduced from Fig. 18:
If the input voltage (i.e., the PV voltage) is too low and the conduction time of the high-side
switch is increased, the PV voltage would further decrease. If the conduction time of the
high-side switch is, however, decreased, the desired effect will be obtained. Similar effect
can be obtained by inversing the switch control signals (Leppdaho, et al., 2010) or using a
descending PWM ramp signal.

The described controlling scheme of the converter implies that the ideal input-output
relation M(D)=1/(1-D), which is a characteristic property of a boost converter. The buck
power stage with an input capacitor is, actually, the power stage of a CF boost converter.
This fact is not usually recognized but the input capacitor is assumed not to contribute to the
dynamic processes inside the converter. Leppéaho, et al., 2010, have definitively shown that
the converter contains a right-half-plane (RHP) zero and duty-ratio-dependent resonant
behaviour (i.e., second-order dynamics) in its output control dynamics, which are not
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present in the original buck converter when its output is terminated with a constant-voltage
type load. The PV generator removes the RHP zero and the resonant behaviour when the
operating point moves to the constant-voltage region. This is understandable, because the
low resistance value of the output impedance of the PV generator effectively removes the
effect of the input capacitor.

Similarly, the conventional boost power stage with an input capacitor will constitute a
converter having properties of a CF buck converter with an input LC filter (See e.g. (Xiao, et

al., 2007a&b)).
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Fig. 18. Buck-power-stage-based converter

5. Experimental evidence

The experimental converters are shown in Fig. 19 and supplied by Raloss SR30-36 panel
discussed earlier in Section 2. The more detailed information on the converters can be found
from (Huusari, et al., 2010; Leppdaho, et al., 2010). The same frequency response analyzer as
in Section 2 is used to extract the frequency responses shown below.
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Fig. 19. The experimental converters: a) VF superbuck converter, and b) CF boost converter
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Fig. 20a shows the measured input impedances and the output impedances of the PV
generator covering the same operating points as Fig. 20b, where the time-domain behaviour
of the VF superbuck converter (Fig. 19a) is shown when its input-current reference is swept
from 0.25 A to 0.92 A and back, and where the highest-current operating point is slightly in
the constant-current region beyond the MPP.

According to Fig.20a, it is clear that the converter is stable in the minor-loop-gain sense
(Middlebrook, 1979). Fig. 20b shows that the input voltage (u,, ) collapses and the converter
ceases to operate when the Kirchhoff’s current law (KCL) is violated but recovers when the
reference is sufficiently changed back to the constant-voltage region. The behaviour of the
VF converter is as discussed in Subsection 3.1.4 when the violation of the KCL takes place.

Fig. 21a shows the measured input impedances of the CF converter (Fig. 19b) and the output
impedances of the PV generator when the output-voltage-limiting control is active and the
operating point approaches the MPP from the constant-current region. The corresponding
minor-loop gain indicates instability to take place at the MPP (Suntio, et al., 2010b). Fig. 21b
shows the time-domain behaviour of the converter when the operating point is placed in the
constant-voltage region (17 V) and the output-voltage-limiting control is activated. The
instability moves the operating point quickly to the constant-current region, where the
operation is stable. This phenomenon is one of the beneficial features of the CF converters
but it shall be noticed that the MPP-tracking device shall not try to move the operating point
anymore back to the MPP because of the instability to take place. Fig. 21a shows also that
the low-frequency input impedance of the CF converter under output-side control is a
negative resistance as discussed in Subsection 3.1.4. Under input-voltage control, the CF
converters are capable to operate within the whole range of the PV operating points valid
for the certain converter topology.
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Fig. 20. a) The input impedances of the VF converter and the output impedances of the PV
generator, and b) The time-domain behaviour of the VF converter when its input-current
reference is swept from 0.25 A to 0.92 A and back starting from the constant-voltage region
and entering slightly into the constant-current region beyond the MPP
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Fig. 21. a) The input impedances of the CF converter under output-voltage-limiting control
and the output impedances of the PV generator when the operating point moves toward the
MPP, and b) The time-domain behaviour of the CF converter when its operating point is
placed in the constant-voltage region at 17 V and the output-voltage-limiting controller is
activated

Fig. 22 shows the behaviour of the measured control-to-output-current transfer function of
the CF boost converter (Fig. 19b) when the operating point crosses the MPP. It shows that
the phase of the transfer function changes by 180 degrees implying instability to take place
under output-side feedback control as discussed in Subsection 3.1.4 and shown to take place
in Fig. 22b. The transfer function (14 V) shows also the existence of RHP zero and second-
order nature of the converter, which are removed in the constant-voltage region (16 V).
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Fig. 22. The behaviour of the control-to-output-current transfer function of the CF boost
converter when the operating point is moved from the constant-current region (14 V) to the
constant-voltage region (16 V)

6. Summary

The interfacing constraints of PV generator as well as the real nature of the interfacing
converters were introduced. It was defined and experimentally proved that the VF converter
can operate only in the constant-voltage region of the PV generator. This means also that the
MPP, up to which it can operate, is the highest-voltage MPP. Therefore, its MPP-tracking
efficiency is rather poor especially in case of the shaded conditions in the PV generator. The
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CF converters do not suffer from similar constraints when the input voltage is controlled but
become unstable at the MPP or the voltages higher than the MPP under output voltage or
current feedback control.

It was also explicitly stated that the power stage of the converter does not necessarily
determine the true nature of the converter but the input and output sources and the
feedback signals used. These facts are not well understood and therefore, the analyses of the
converter in PV applications are most often deficient or even erroneous.

The resistive nature of the output impedance of the PV generator has tremendous effect on
the dynamics of the converter connected directly to it. The most significant changes are
taken place in the output control dynamics such as the change of phase by 180 degrees when
crossing the MPP, the reduction of the gain of the control-to-output transfer function
significantly at the MPP, the appearing/disappearing of right-half-plane zeros, etc. All these
changes may have fundamental and catastrophic effect on the operation of the PV
converters and inverters.
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1. Introduction

It is believed that in the past 100 years, new technology created by mankind not only
provides unprecedented power of economic development, but also provides mankind with
a great ability to be harmony with the environment. Modern society should be conservation-
minded society, and social life should also be energy-saving. As an inexhaustible source of
new environment-friendly energy source, solar energy has become an important issue of
energy research in this world.

Solar energy is a kind of renewable energy. It is rich in resources, free, non- transportation,
and no pollution to the environment. Solar energy creates a new lifestyle for mankind, and
takes society and human into an era of energy conservation to reduce pollution. Solar
thermal conversion device industry makes solar energy technology fulfill its potential in the
construction area, including hot water, heating, and air conditioning. Solar thermal
conversion industry is studying solar water heating systems and building integration with
the construction industry, and there have been some demonstrations. Solar air conditioning
has been included in the science and technology research, and there is a large-scale
demonstration plant whose economy has yet to be assessed.

As an inexhaustible security, energy-saving, environmental protection, new energy source,
solar energy has attracted more and more concern in this world, and governments or
companies have put their eyes on the sustainable development of the emerging solar energy
field. Now, with solar technology improving continuously and the supporting of the state
government, solar energy applications are increasingly widespread. Solar energy reaching
the surface per second can be up to 80OMW (million kilowatts), if 1% of which is transferred
to electrical power, with 5% of conversion rate, then the annual generating capacity may be
up to 5.6 x 1012kWh, equivalent to 40 times of the current world energy consumption.

Light - heat transfer adopts sunlight to heat the water tank for potential application, which is
the most common and basic form of solar thermal, and the essence of solar thermal is to collect
solar radiation and convert it into heat energy by working substance. Currently, the mature
technology and widely adopted solar thermal applications include solar thermal, solar water
heaters, solar cookers and solar house, of which solar water heaters are the most widely used.
China's solar water heater production and application began in the late 1970s, and after
decades of development, China has become the largest water heater production and
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consumption country in this world. Due to the factors, such as the dispersion of solar energy
resources, its needing high-performance materials to get high energy transfer efficiency, and
other aspects, the application of advanced solar thermal technology is not widely put into the
social practice, and its research and development has a long way to go.

The main contents of this chapter include experimental research on a solar flat-plate
collector, the systematic research on staged solar photovoltaic/solar thermal collectors, solar
air conditioning systems and solar drying systems.

2. Research on solar flat-plate collector

The direct usage of solar radiation energy is to collect solar radiation using greenhouse effect
to heat an object to obtain thermal energy. Currently the flat plate collector and concentrating
solar collector are the two main solar energy collection devices [I. 2. Solar collector is a key
component of solar thermal system, whose manufacturing cost accounts for about half of solar
water heater and its level of development processes and quality standards represent the level
of development of solar thermal and solar collector technology [3l.

2.1 Principles of solar collectors

Solar collector is a device to receive solar radiation and transfer heat to working fluid in a solar
thermal system. If it adopts water as heat transfer medium, it constitutes a variety of solar
water heaters, and if when using air, it yields a variety of solar dryers. Heat-absorbing board is
the core of solar collector to absorb the sun's radiation to heat the heat transfer medium. Non-
concentrating solar collectors apply hot-box principle, also known as the greenhouse effect, to
make solar energy become inner energy [4. Concentrating collectors use focusing principle to
change directions of the sun to concentrate sunlight on a heat-absorbing body of a small area,
increasing radiation intensity on unit area, so that collectors arrive at a higher temperature [5 61,
In this chapter, a solar flat-plate collector is designed and studied.

2.2 Data analysis of solar flat-plate collector

The schematic diagram and picture of solar flat plate collector system are shown as Fig. 1(a)
and (b). As the main parameter, temperature is measured with K-type thermocouple and
TES -1310-type temperature display made in Taiwan.
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(a) Schematic diagram (b) Picture

Fig. 1. Schematic diagram and picture of flat-plate solar collector
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2.2.1 The effect of different insulation materials on the collector performance

Two systems, system A and system B, are studied, and they are with 5cm thickness of glass
wool and 5cm thickness of polyurethane foam board as insulation material respectively. The
cover plates are both double-layer with honeycomb structure. The shell of the collector is
three-ply wood, which is agglunated by three pieces of thin wood boards. The heat-
absorbing bodies are corrugated copper board, and heat transfer working medium is air.
The pumping equipment is a 12V blower. When the ratio of height to width is 1.43, the
effective transmittance of the cellular structure is 0.61. The comparison between different
insulations is shown as Table 1.

Time Atmospheric | Atmospheric irradiation

tempoerature wind speed intensity A | Ab | A3 | Ay | Bt | Bo | Bs | Bs

(0 (m/s)

9:30 28.8 0.86 630.53 |44.2|49.6|33.4|34.7|49.3|57.4|34.7 | 40.8
10:00 29.5 0.72 707.18 |48.0|64.2|32.2|42.0|56.6|67.0|35.0|48.0
10:30 30.3 1.09 72726 |47.4|75.8|32.5|47.2|67.1|78.8|33.6|55.8
11:00 28.3 1.61 76649 |44.5|83.9|33.0|51.5|75.890.3|34.4|62.9
11:30 28.0 1.41 861.39 |58.7|89.0|32.0|54.2|81.7|94.8|35.5|64.0
12:00 29.0 0.66 785.66 |83.4|92.0|37.4|58.9|84.9|97.2|32.2|65.5
12:30 25.2 0.50 71631 |79.1|86.7|30.2|56.2|81.6|91.2|37.3|63.0
13:00 29.1 1.12 685.28 |79.2|86.4|36.0|56.8|83.3|92.2|39.2|62.7
13:30 28.2 1.74 71448 |73.7|86.7|33.0|57.0|81.3|90.4|36.6 | 61.6
14:00 26.3 0.40 684.37 |76.7|84.3|36.0|56.0|79.5|87.2|37.5|63.0
14:30 28.3 0.35 563.92 |75.5|81.4|39.4|55.5|77.8|85.2141.4|60.3
15:00 27.3 0.68 500.96 |68.1|74.3133.7|50.4|70.2|78.0|35.5|56.8
15:30 27.6 0.35 41245 |65.4|70.6|31.6|48.3|66.6|73.0|34.6|53.8

Note: The inlet velocity is 0.2 m / s; A1, A2, As, Ag are respectively the internal temperature of the cover,
the surface, inlet and outlet temperature of the heat-absorbing of the system A. Bi, B2, B3, Bs are
respectively the corresponding parameters of the system B. Different insulation material systems are
used for systems A and B: A-glass wool; B-polyurethane foam board

Table 1. Comparison of experimental data between different insulation systems

The history of the atmospheric temperature, wind speed and radiation intensity changing with
time is shown as Fig. 2. Fig. 2 (a) shows that the atmospheric temperature at the daytime is
relatively stable, so it has no obvious effect on the systems. From Fig. 2 (b), it can be seen that
dynamic performance testing does not depend on wind speed, so the wind speed is only as the
reference conditions of the atmospheric factor. Fig. 2 (c) shows that the fluctuation trend of the
irradiation intensity is not unusual, so the data attained at different time are reliable.
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The history of internal temperature of the cover plate changing with time is shown in Fig. 3.
It demonstrates that during the temperature-increasing process the temperature rising trend
of system B is more obvious than that of system A, and system B is more stable than system
A. It shows that the insulation system has effects on the plate performance during
temperature rising process. The flat covers of the two systems are stable and the
temperature changing trend are almost unanimously, so the effect of heat preservation
system on the cover plate performance during a stable and cooling process is unobvious.

Temparature comparison inside flat

Temperature (°C)
=

Tims (Bad fing)

Fig. 3. The history of internal temperature of the cover plate changing with time

The history of heat absorber temperature changing with time is shown as Fig.4. The two
heat-absorbing lines are almost overlapped, and the effect of heat insulation layer on heat-
absorbing body is less when air, heat transfer medium, is of good flow characteristics. The
effect of insulation layer on the flat cover is so small that it can be regarded because of the
same cover plate structures, the working temperature of heat absorbers in the two systems
may keep almost the same and not affected by the insulation structure.

The temperature at the inlet and outlet changing with irradiance is shown as Fig.5. It
demonstrates that the temperature-rising speed in system B is faster than that in system A,
but the irradiance is not maximum at the highest temperature. The reason is that insulation
layer can delay the effect of irradiation and keep temperature-rising process in the collector
continue for some time. After reaching the maximum temperature difference, system B can
maintain the temperature higher than that of system A, which shows that the insulation
system adopting polyurethane foam board as insulation layer is better than that of glass
wool insulation during the heating process till the highest temperature. But it should be
noted that the temperature transition in system A with the glass wool insulation layer is
more stable at a relatively low temperature and irradiance condition, while system B is with
a sudden drop point, which illustrates that glass wool insulation has better insulation
performance when heat released by the working substance is in the end. As the economic
advantage of glass wool is far greater than that of polyurethane foam, to achieve the best
insulation, polyurethane foam may be considered as insulation material used at the zone
closer to the working fluid, and glass wool is used as insulation at the external wall where
temperature is relatively low, so as to reduce the cost of the system.
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Fig. 5. The inlet and outlet temperature changing with the irradiance

2.2.2 The comparative experiments and data analysis on the cover performance

In this set of experiments, single-layer PC board and double-layer honeycomb structure are
applied as the covers for system A and B, respectively. In the two systems, the shells are
both wooden three plywood, the insulation are both polyurethane foam, and heat-absorbing
bodies are both waveform copper plates. Temperature measurement points are on the
surfaces of the cover (two points) and heat-absorbing surface (two points) respectively.

The history of heat-absorbing body temperature of system A, B changing with time is shown
as Fig. 7. It demonstrates that ignoring other factors, although due to the difference
placement or angle, the initial temperature of system A is higher than that of system B, the
heating rate of system B is significantly higher than that of system A. It shows that there are
heat losses in the two systems during the endothermic process, but the heat loss of system B
is significantly less than that of system A when other conditions are the same. It tells that
honeycomb structure plate plays a great role on inhibition of the heat loss due to air
convection inside the cover.
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Time Atmospheric | Atmospheric| [ J.
temperature | wind speed ) A1 | Ab | As | Ay | Bt | Bo | Bs | Bs

) (mss) | /)
9:30 272 0.55 783.83 |41.6(38.5|69.1|69.7|37.5|35.7|54.4|55.7
10:00 29.2 1.57 787.48 |48.2|46.1|82.0|81.1|43.1|42.0|70.7|68.9
10:30 29.9 0.99 79296 |49.5|48.5|82.6|80.7|43.0(42.3|72.8|70.3
11:00 27.3 1.33 846.79 |49.6|42.0(85.0(86.5|41.3|42.8|78.2|76.1
11:30 25.6 0.57 677.07 |49.4|45.0|86.1|88.3|45.3|47.0|85.2|83.9
12:00 27.6 0.73 558.46 |47.2|43.4|83.2|86.6|46.1|46.5|86.0|85.1
12:30 26.3 0.41 576.70 |44.7|43.3|77.9|77.5|46.3|48.3|85.4|84.2
13:00 28.3 1.72 517.38 |45.9|41.2|82.2|80.7|44.7|45.7|83.4|82.3
13:30 29.3 0.33 404.23 |41.8(38.0(71.9(71.4|40.2|39.9|78.3|78.5
14:00 27.5 242 355.87 |38.3|35.2(61.3|60.9(36.5|37.5|67.7|66.6
14:30 25.9 0.48 30112 |38.6(36.1(58.9|59.6(38.6|38.5|65.4|64.0
15:00 252 2.58 333.06 [43.6(39.5(70.5|68.2(40.2|40.3|68.1|67.3
15:30 26.5 1.63 34310 [39.0(35.9|61.6|60.4|37.2|36.5|64.3|63.7

Note: A1 and A» are the temperature on the cover surface of system A at the different sites, A and A4
are the temperature on the heat-absorbing surface of system A at different sites, taking the average as
the calculation value. Bi, By, Bs and Bs are the corresponding parameters of system B.

Table 2. Comparison between experimental data of the cover performance

Fig. 6. Comparative testing on cover performance
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In the comparative experiments on the cover performance, the changing of atmospheric
temperature, wind speed, radiation intensity, and cover surface temperature with time is
shown as Fig. 8 (a) to (d). From Fig. 8 (a) and (b), it can be seen that the changing of
atmospheric temperature is stable, and its fluctuation is less than 5 °C. Fluctuation of wind
speed is also small, less than 2m/s. From Fig. 8 (c), it can be seen that radiant intensity
reaches the maximum at 11 a.m., and then as the time goes on, the radiation intensity
declines gradually. According to table 2, the experimental conditions meet the requirements
of dynamic performance testing. From Fig. 8 (d), it can be seen that the atmospheric
temperatures are the same, and the covers are both PC board material, so that the surface
temperature difference is very little, and the changing trends are the same. Therefore, the
cover structure will not affect solar energy absorption of the cover surface.
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3. Staged solar photovoltaic / thermal collector

Solar cell is the core unit of solar photovoltaic power generation. Currently the commercial
solar cells are mainly silicon solar cells, including mono-crystalline, polycrystalline and
amorphous silicon solar cells. The effects of temperature on silicon solar cells mainly include
open circuit voltage, short circuit current, peak power and other parameters of the solar cells
[7-101. In the photovoltaic solar thermal flat-plate collector PV /T, there is a conflict between
the photovoltaic power generation efficiency and solar thermal heat production efficiency,
which means that one of them decreases while the other increases. How to further lower
temperature of the solar cell plate and optimize the whole PV/T system to improve
photovoltaic power generation efficiency of the PV /T collectors is the main study content of
our research, which has important significance to improve the integrated utilization of PV /T
solar collectors.

3.1 Structure and working principle of PV / thermal collector

The main structure of the PV/thermal collector consists of cover, solar modules, heat-
absorbing plate, gas or liquid flow path, the edge, back insulation, metal frame and so on,
which is without big difference from the traditional photovoltaic solar thermal (PV/T)
collector system, and it is shown as Fig. 9. However the system adopts a staged PV/T
system, which is different from the traditional photovoltaic solar thermal (PV/T) collector
system. The absorber plate of this solar panel collector is no longer composite as a whole,
which applies staged form, i.e., it is divided into two parts: the primary stage is solar
photovoltaic system and the secondary stage is solar thermal system. There is no direct heat
exchange in the space between the two parts, and heat transfer is through the cooling pipes
connected between them.

1. Water inlet 2. Solar panels 3. Insulation layer 4. Absorber plate 5. Water outlet
6. The primary stage system 7. Cooling water channels 8. The secondary stage system

Fig. 9. System diagram of staged type PV/T

For the primary stage of the solar cell system, usually the photoelectric conversion efficiency
is 15% to 17% by using single crystal silicon solar panels, and the rest of the solar radiation
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will transform into heat, while the efficiency of solar panels will decrease with the
temperature rising on the board surface, which will make solar panels enter a vicious cycle.
For the secondary stage of solar thermal system, the solar radiation heat is mainly absorbed
by the heat-absorbing panels, and then the heat is delivered to the cooling substance so as to
heat the working fluid. The heat production efficiency and the quality of output water of the
system will be improved when the temperature at the inlet of the working fluid increases.

The heat on the solar plate board surface is taken away by cooling water flowing through
the primary stage, which can increase the power generation efficiency of the solar
photovoltaic. The heat of solar collectors is absorbed through the secondary stage by the
cooling water, whose temperature is increased by first stage. The flat-plate solar collector
efficiency increases because of the temperature rising of inlet working fluid, which in turn
makes the overall utilization efficiency of solar energy increase.

3.2 Overall structural design and layout of solar photovoltaic / thermal collector
3.2.1 The size of solar photovoltaic / thermal collector

The design concept of staged photovoltaic solar thermal collector is proposed in this
chapter, and the collector consists of two parts. The primary part is the ordinary solar
photovoltaic thermal collector mainly for power generation, however in this design, water is
adopted as the working fluid for the thermal collector to cool the panels so as to improve its
efficiency and the water is preliminarily heated. The secondary part is a flat-plate collector,
playing the role of thermal collector, which is used to heat water flowing out of the primary
part.

The structure of the staged collector is shown as Fig. 9. The upper is the primary part
covered with solar panels, and the lower side is the secondary part, whose bottom is
covered with blackened copper to enhance heat absorption.

The equipment specifications are as followings:

1. Cabinet: Its material adopts galvanized iron sheet with dimension 1000 x 500 x 150mm.
2.  Endothermic board: Endothermic board adopts 1Imm thickness of copper with the
surface sprayed black in order to reduce glare and enhance the endothermic effect.

3. The circulation line: The circulation line applies copper pipe, whose diameter is 10mm,
to enhance the heat-absorbing and heat transfer, and the copper surface is blackened
with black paint and fixed on the back of absorber plate closely.

4. Transparent cover: It uses ordinary glass, and its size is 505 x 490 x 4mm.

Insulation: Insulation adopts fiberglass, whose thickness is about 50mm.

6. Solar panels: Its power is 20W, and its voltage is 17.6V, current is 1.14A, open circuit
voltage is 21.6V, short circuit current is 1.33A, and its size is 426 x 406 x 30mm, weight
2.6kg.

o

3.2.2 The distribution of PV/T heat collector

In this issue, the distribution of PV/T heat collector is two-stage, i.e., the primary stage is
photovoltaic subsystem and the secondary stage is photo-thermal subsystem. The principle
of this system has been discussed above. Now we focus on its dimensions.
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The primary-stage system (PV system) is shown as Fig. 10(a). The dimensions of the system
is 500x500x150 mm, and its bottom and all-around are covered with the heat insulating
material with 50mm of thickness. Its inner space is with the dimensions of 400x400mm,
where a single crystal silicon solar panel of 400x300mm is arranged in it. S-shaped cooling
line made of copper, whose outer diameter is 10mm, is installed on the back of solar panel.
The copper tube is closely fixed on the back of solar panel to fully absorb the heat and to
decrease the temperature of the latter, and heat cooling water inside the tube at the same
time. There is an inlet and an outlet of water in the primary stage system.

The secondary stage system (PT system) is shown as Fig. 10(b). The overall size is equal to
the primary stage system. The size of heat-absorbing aluminum plate is 400x400mm, which
is mounted inside the system. It is covered with black heat-absorbing paint. Compared with
previous arrangement, the S-shaped copper tube is arranged on heat-absorbing aluminum
plate. It closely contacts the heat-absorbing plate through fiche to enhance its heat transfer
efficiency. Furthermore, the copper tube is covered with black heat-absorbing paint to
absorb radiation directly. In the secondary stage system, there exists an inlet and an outlet of
water as well.
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(a) The primary stage system (PV) (b) The secondary stage system (PT)
1. Inlet 2. External wall 3. Heat insulating material 4. S-shaped tube 5. Heat-absorbing plane 6. Outlet
Fig. 10. The primary and secondary stages of the PV /T system

3.3 The experimental system of PV/T heat collector
3.3.1 The system transform valve

A valve, which is called transform valve, is used to link the primary and the secondary stage
systems to control the connection or disconnection of the two stage systems to conduct a
single PV, single PT and PV/T experiment studied in this chapter. The overall system
scheme is shown as Fig. 13. When transform valve is closed and the auxiliary valve is open,
the primary stage system is dependent from the secondary stage, and the experiment can be
conducted on the primary and secondary stage respectively. When the transform valve is
open and the auxiliary valve is closed, the primary is linked to the secondary stage system,
and the cooling water or air enters into the primary stage system through the inlet and take
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the heat of solar panel away. Then, it continues to absorb heat when it enters into the
secondary stage system, which produces hot water and hot air.

3.3.2 The distribution of data collection points

In order to measure the data better, high accuracy thermocouple is mounted on each
monitor node shown as Fig.11. Thermocouples A, B, C and D are to measure the inlet and
outlet temperature of the primary and secondary stage system, respectively. Thermocouple
E and F are to measure internal cavity temperature of the primary and secondary stage
system respectively. At the same time, there are testing points to measure the atmospheric
temperature, wind speed, voltage and current of the solar panel.

3.3.3 The principle of measurement

The electric performance testing of the solar panel may be attributed to test its voltage
current characteristics. Since the voltage current characteristics is relative to the testing
conditions, the performance of solar panel needs to be tested under standard condition or
the measured results need to be transformed into standard condition. The standard testing
condition consists of standard sunshine, which includes standard spectrum and radiation,
and standard testing temperature, which can be controlled manually. The standard sunshine
can be simulated or attained in nature. When simulated sunshine is applied, the spectrum
depends on the sort of electric light source and filtering and reflecting systems. Radiation
can be adjusted through the calibrated value of the short-circuit current of the solar battery.
In order to reduce unmatched error of the spectrum, the spectrum of simulated sunshine
should be close to the standard sunshine spectrum or the standard solar battery, whose
response is almost the same as that of the tested battery, should be chosenl!112],
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1. The primary stage outlet system 2.The primary stage system 3.The secondary stage system 4. The
secondary stage outlet system 5.Transform valve 6.The primary stage outlet 7. The secondary stage inlet

system 8. Auxiliary valve A.Thermocouple A B. Thermocouple B C. Thermocouple C D.
Thermocouple D E. Thermocouple E F. Thermocouple F

Fig. 11. The valve control and distribution of data acquisition diagram
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3.3.4 Electric performance testing conditions
a) The standard testing conditions

Overall radiation is measured by AM 1.5 standard action spectrum. The radiation is
1000W/m?, and the testing temperature is 25°C.

As for the standard testing, the tolerance error of standard temperature measurement is
£1°C, while the tolerance error is +2°C for the nonstandard testing. If the testing can only be
conducted under nonstandard condition due to the restriction of the objective condition, the
tested results should be transformed into the standard testing condition.

b) Testing devices and apparatus

The testing devices and apparatus include standard solar battery, voltmeter, ammeter,
sample resistance, load resistance, thermometer, and indoor tested light source. The
standard solar battery is used to adjust the radiation of tested light source. When AM 1.5
standard solar battery is tested, the radiation is adjusted by secondary-rank AM 1.5
standard. In nonstandard measurement, the radiation is only adjusted by AM 1.5 standard.
The accuracy of voltmeter is no less than class 0.5 and its internal resistance is no less than
20kQ2/V, generally using digital voltmeter. The accuracy of ammeter is no less than class 0.5
and its internal resistance should guarantee the tested voltage is no more than 3% of open
circuit voltage when short circuit current is tested. When better accuracy is necessary, it can
take advantage of voltage’s linear relationship with current to deduce short circuit current
when full short circuit is below 3% of open circuit voltage. The current can be measured by
measuring the voltage drop of sample resistance through digital millivolt meter.

The product of short circuit current and sample resistance is no more than 3% of open circuit
voltage. Load resistance can be adjusted from 0 to more than 10kW smoothly. Subsequent
power volume should be guaranteed to the accuracy, which is influenced by heating power
produced by electricity. When the variable resistance can’t meet condition above, an equal
electron variable load should be adopted. The error of thermometer or thermometric
coefficient is no more than +0.5°C. Response time of the testing system is no more than 1s.
The radiation, uneven extent of radiation, stability, accuracy, and spectral distribution must
meet some demand.

c) Testing items

The testing items include open circuit current (Vo) short circuit current (I), optimum
operating voltage (Vm), optimum operating current (In), maximum output (Pw),
photoelectric conversion efficiency( #), filling factor (FF), I—V characteristic curve, short
circuit current temperature coefficient (a), open circuit voltage temperature coefficient (j3),
internal series connection resistance (R), internal parallel connection resistance (Rgp).

d) Basic testing method

Of the above testing items, open circuit voltage and short circuit current are tested by
ammeter directly, and the other parameters are calculated through voltage current
characteristics. The voltage current characteristics of solar battery is tested under standard
sunshine, solar simulator or other equal solar simulators.
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e) Convert nonstandard testing condition into standard testing condition

When the testing temperature and radiation differs from the standard condition, it can be
corrected according to the following equations:

I
12:11+Isc[1ﬂ—1]+a(T2—Tl) (1)
MR

Vz:Vl—RS(IZ—Il)—kIZ(TZ—T1)+,B(T2—Tl) (2)

Where 1;, Vi: Tested voltage, tested current or the parameter to be corrected; I, Va:
Corrected result; Is: Short circuit current; Inr: Short circuit current of standard battery under
practical condition; Ti: Testing temperature; T»: Standard testing temperature; Rs: The
internal series electric resistance of tested battery; k: Curve correction factor, which can be
set as 1.25x10°Q/°C; a: Short circuit current temperature coefficient under standard
radiation condition and certain temperature window; : Open circuit voltage temperature
coefficient under standard radiation condition and certain temperature window.

3.4 Experimental data analysis
3.4.1 Experimental apparatus

The apparatus needed in the experiment for solar panel PV/T heat collector consists of
distributed solar panel PV collector, TRM-PD artificial solar panel simulator, 10mm outer
diameter of rubber tube, 18W pump, 12VDC electrical source, K thermocouple, data
acquisition card, Agilent 34970A data acquisition and a computer.

3.4.2 Data analysis

The experimental data are collected and recorded by data acquisition system, and exported
to CSV format or excel charts. Different variation curve corresponding temperature, current,
and the voltage are as follows.

The relationship between current and voltage, and the history of voltage and current
changing with the surface temperature are shown as Fig. 12 and Fig. 13 (a) and (b)
respectively. It can be seen from Fig. 12 that the current curve and voltage curve merged
gradually with the changing of time, and they combined at last. The current and voltage
affected each other, and the current has the same trend as the voltage, i.e., when voltage
goes up or down, the current also goes up and down. As shown in Fig. 12, the current curve
is steady, so that no matter how the flux of cooling water varies, the voltage curve is almost
without any effect. The current drops down immediately at the data point of 333, and after
this point, the current is around 0.12A. There are some abnormal points in Fig. 12, which are
assumed due to the random error [11,13],

As shown in Fig. 13 (a) and (b), the higher the surface temperature, the lower the output
voltage. However, the curve is relatively gentle. It is obvious that the higher the surface
temperature the lower the output current. There are some abnormal points due to error.
And then, it can be seen that the generating efficiency of solar panel is greatly influenced by
surface temperature of solar panel. Furthermore, the higher the surface temperature it has,
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the lower the generating efficiency. It agrees well with the initial hypothesis of the
experiment. Through data analysis, the stable data can be chosen from each flux part. The
average data at each flux are shown as table 3.
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Fig. 12. Relationship between current and voltage
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Fig. 13. The history of voltage and current changing with surface temperature

Due to the limited range of the data acquisition instrument, the streaming triage method is
used to collect the data. An electric resistance with the same resistance value as that of the
data acquisition instrument is paralleled into the data collection section to share the electric
current. The diagram is shown as Fig. 14.

It can be attained from Fig. 14:
ui = ur = utotul (3)
Itotul = Ii +Ir = Ii +utotul / R (4)

Where Uy is the voltage of the cell plate, U; and U; are the voltage of collector and the
voltage between the two ends of the parallel resistance respectively; Lot is the current of the
panels; [; and I; are the current flowing through the collector and the parallel resistance; R is
the parallel resistance, 10€2.
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Therefore, generating power of the solar panels is calculated as follows:

2

pttal:PiJ’_Pr:ui.Ii—i_uT (5)

0

Based on the data in table 3, according to eq. (5), it can get Piota1 and Payerage shown in table 4.

Flux (L/h) 2.647 | 3.103 |7.895|15.000{27.692|36.000
Inlet temperature (°C) 28.809 | 29.155 |27.808|28.012|28.088|28.049
gl‘;t;tnts:;}f’iz?er?ocf) 39.206 | 42.445 |34.967|32.021/31.905(30.026
Outlet temperature (°C) 45.718 | 50.780 [38.633(34.551(34.271|31.356
Heat-absorbing plate Temperature (°C) 52.507 | 64.114 |51.873|50.649|52.356(50.082
Glass Cover-Plate Temperature (°C) 63.945 | 66.650 |68.197(55.286(68.084|66.934

Back surface Temperatureof solar Panel (°C) | 67.014 | 69.870 |70.851|72.231|72.604|71.927
Front surface Temperature of solar Panel (°C)| 67.262 | 69.591 |71.242|72.582|73.084|72.128

Atmospheric temperature (°C) 29.581 | 30.258 (29.770{30.506|30.169|30.409
Voltage (V) 10.083 | 10.088 | 9.940 | 9.962 |10.152|10.176
Current (A) 0.1246 | 0.1170 {0.1216|0.1201|0.1176|0.1167

Table 3. Average Tested Data

Q. (L/h) 2.647 3.103 7.895 15.000 27.692 36.000
P total (W) 11.423 11.357 11.089 11.117 11.500 11.543
Paverage (W) 11.34

Table 4. The Piotal and Paverage at different Qy
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Fig. 14. The diagram of data acquisition circuit
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The light intensity of solar simulator that the system adopts is 800W and the effective area
used in the system is 400 x 300 mma2. Therefore, the input power of the solar panels can be
calculated as following.

Pinlet =800W / m2 X 0121’112 =96W (6)

The utilization efficiency of solar system can be calculated as following:

P
— [, 100% = 11.8% ?

inlet

The generation powers corresponding to the above flux are shown as Fig. 15.

Fig. 15. The generation power changing with the flux

It can be seen from Fig. 15 that generating power of the solar panels decreased and then
increased with the increasing of the cooling water flow. This may be because the board surface
temperature is not high when the panels start to work, and the battery plate board surface is of
higher photoelectric conversion efficiency. But with the increasing of the working hours,
accumulation of heat on the plate is increasing more and more, and at the same time the
cooling water flowing on the back surface of the solar panels is so small that it can’t transfer
heat of the battery plate board’s surface out well, which makes solar panels generating power
present a downward trend at this stage. When the cooling water flow rate on the back surface
of the panels increased to 10L/h or so, the generation power of panels began to increase with
the increasing flow rate of cooling water and when the flow rate reached up to 30L/h or so, the
curve of the generation power of the panels becomes stable. This shows that when flow rate of
the cooling water is between 10L/h and 30L/h, the effect of cooling panels is better, which
makes the temperature of battery plate board surface be controlled, so that the generating
power of the solar panels gradually increased. When flow rate of the cooling water is higher
than 30L/h, the generation power of the solar panel hardly changes with the flow rate, and it
can be inferred that 30L/h is the best flow rate for the cooling water.

In the experiment, power output of the solar panel is 20W, radiation intensity of the solar
simulator is 800W, and the rated power output of the solar panel is calibrated with the solar
radiation output at 1000W. The output power of the solar panel is basically linear with
photovoltaic intensity, so the power output under 800W of radiation intensity is



Research and Application of Solar Energy Photovoltaic-Thermal Technology 279

Pyoo = 20 x 800W / 1000W = 16W ®)

Paverage, the calculated average power output of the generation system, equals to 11.34 W,
which is 4.66W less than the output power when radiation intensity is at 800W, that is to
say, the actual power output of the generation system is 70.88% of the rated power output.

4. Solar air-conditioning/heating system

At present, the solar energy air-conditioning becomes the key research and development of
the energy projects in some countries [14 151, In the late 1970s, with the development of solar
energy technology, solar air conditioning technology emerged. The research on using solar
energy to provide heating and cooling for the buildings has been developed rapidly in many
ways. New industrial district of solar energy has been born in many countries and many
solar energy devices have been commercialized. International and regional academic,
exhibition and cooperation have become frequently and many countries allocated money to
subsidize solar energy utilization every year. However solar air-conditioning industry is still
in the developing stage [16.17], and the market still needs time to be mature.

The solar energy air conditioning is developed well mainly in Italy, Spain, Germany, the
United States, Japan, Korea, Singapore, and Hong Kong [18]. China mainland has conducted
a lot of research on the usage of solar heating and cooling. The first small-scale solar energy
building was built in Gansu, China in 1977, mainly for heating. And a practical large-scale
solar water heating and air conditioning system was built in Jiangmen, by Guangzhou
Institute of Energy in 1998, but the use of solar energy cooling in summer and heating in
winter and providing hot water for living in the transition seasons is still in its initial stage.
Furthermore, with improvement of living standard and formation of high income class, the
demand on the indoor and outdoor environment of constructions is gradually increasing, so
that the combination of solar and villa construction have a bright prospect of development
because of its non-pollution characteristics [19].

In summer, the hot water heated by heat collector goes to the storage tank. When the water
temperature reaches a certain value, the storage tank provides water, the heat medium, to
the refrigeration machine. When hot water comes out of the refrigeration machine, its
temperature drops and as the heat medium, it goes back to the storage tank to be heated by
the solar collector. Refrigerating machine produces chilled water for air conditioning box to
achieve the purpose of air conditioning. When solar radiation is insufficient to provide
enough heat for high temperature hot medium water, the auxiliary heat source is turned on.
In winter, hot water heated by solar collector goes to storage tank, and when its temperature
reaches a certain value, the heat storage water tank directly provides hot water to air
conditioner box. When heat provided by solar radiation is not sufficient, the auxiliary heat
source will switch on. During the transition season, the hot water heated by the collector
flows through the heat exchanger into the hot water tank, to heat water in it.

4.1 The purpose of the research on solar air conditioning / heating system

With the improvement of living standard, human demand for energy is increasing day by
day. But along with the price of the coal and demand of air pollution emission controls
gradually increase, the cost of electricity has arisen. So the development of efficient,
environmentally friendly and safe energy has great prospects.
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At present, there are two main ways to use solar energy, i.e., photovoltaic and solar thermal.
PV is no good chance to develop due to its high costs. Photo-thermal is fairly popular in
people’s living by using solar water heater [13l. However solar water heater only plays a
small part for living energy supply. Furthermore, currently the solar cells of single crystal
and polycrystalline silicon on the market have an average efficiency of around 15%.

The design of the solar air conditioning /heating system in this chapter occupies little
electricity, using clean energy to cool in the summer and heat in the winter. It makes full use
of light energy, through photovoltaic and photo thermal effects to produce heat and power
generation at the same time. The gravity heat pipe is installed on the back surface of a solar
panel, so that heat from the solar panel can be transferred to the house. Thus, the
photovoltaic efficiency of the solar cell is obviously improved without changing its solar
board structure.

Traditional heating and heat preservation facilities are adopted for the solar panels and solar
collector individually. But solar energy density is so low that considerable area of the
collection and conversion equipment are often required to get some conversion power,
whose cost is very high. In fact, how to make good use of solar energy for building energy
saving, and some passive solar application facilities, which combine heating in winter with
heat insulation in summer, are even now continuing to be studied [20].

Currently, many organizations have developed the system similar to solar air-conditioning
system, but the actual mature technology of solar air conditioning is still very rare [211.

A solar air conditioning/heating system has been developed in this chapter, and the
efficiency of photovoltaic solar panel system increases 6% and output power of the
simulated system in the experiment is 558.66w. In heat supply conditions in winter, the heat
exchanger can output 467w heat to the house. It can accomplish the combination of heating
in winter and cooling in summer, and it can save energy and improve the efficiency of
photovoltaic solar panels on the market. Based on the photovoltaic and photoelectric effects,
the system applies solar radiation as the energy source so that it can reduce energy
consumption and become a heating-cooling two-way solar air conditioning / heating
system.

4.2 Experimental study on solar air conditioning / heating system
4.2.1 Description of the solar air conditioning / heating system
The solar air conditioning / heating system in this chapter is as the following:

1. The solar air conditioning / heating system in this chapter has the function of cooling in
the summer and heating in the winter using clean energy, with a little or without
electricity.

2. The system makes full use of light energy. It applies photovoltaic effect to generate
electricity as well as photo thermal effect to produce heat. The gravity heat pipe is
installed in the back surface of the solar panel, so that heat from the solar panel can be
guided into the house.

3. The system can obviously improve the efficiency of the solar photovoltaic on the market
without changing the structure of solar panel.
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4.2.2 The structure of the system

The solar air conditioning / heating system is shown as Fig. 16, and it consists of the solar
panels, heating pump, gravity heat pipe, indoor and outdoor heat exchanger. The working
principle of the system is that under normal working conditions of the solar cell, the heat of
battery panel is taken away by the flow of the working fluid, water and water vapor, in the
gravity heat pipe made of copper materials. In the wind tunnel, the heat is exchanged
between pipe and fin by convection. Through the density difference between hot and cold
air, the hot air is brought into indoor to heat the room. In summer, solar radiation are so
abundant that electricity generated by the solar panels can drive heat pumps to accomplish
endothermic cooling.

|
il

1. Solar panels 2. Outdoor air heat exchanger 3. Power supply 4. Compressor 5. A warm air outlet
6. Expansion valve 7. Air heat exchanger 8. Power supply 9. Heat pipe and fin 10. Cold wind inlet

Fig. 16. The structure of solar air conditioning / heating system

4.2.3 The system processing
a. The heat exchanger composed of heat pipe and fin

Heat pipe is a high efficient heat transfer element, which can transfer large amount of heat
with a small area. The heat of the solar battery plate can be concentrated by the heat pipe
through its one-way heat conduction. Gravity heat pipe without a capillary structure has the
advantages of simple structure and convenient manufacturing process, and liquid returns
naturally to the evaporator by gravity, so the working fluid flow is stable and reliable. At
the same time, it’s flexible for piping arrangements. Compared with the capillary structure
of heat pipe, it is easier to design and its cost is much lower. So it can adapt to most
situations, however the position of the condenser must be higher than the evaporation end.
The schematic diagram of heat exchanger composed of heat pipes and fins is shown as
Fig. 17.
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1. Solar panel 2. Cooling section 3. Warm air 4. Fins 5. Hot air channel 6. The cold wind

Fig. 17. Schematic diagram of heat exchanger composed of heat pipes and fins

b. The connection between solar panels and heat pipes

The gravity heat pipe cooling mode is adopted in the system and water is the working
substance. For the heat pipe, the design of evaporation end is an important part, which
directly affects its ability to deal with the heat produced in solar concentrator photovoltaic
cells and the ability to control its temperature. A good design of the evaporation end should
ensure evaporation end transfer enough heat to make the operating temperature of the solar
concentrator photovoltaic cell as low as possible, not exceeding the critical temperature,
enabling it to continue working properly. The evaporation end of the heat pipe contacts the
concentrator solar cells, and its temperature field has an obvious effect on performance of
the battery and efficiency of the heat pipe. In this chapter, the evaporation end is designed
as a cuboid with the dimensions of length 100mm, width 100mm and height 30mm. The
diagram of the heat pipe on solar evaporation end is shown as Fig. 18.

1. Gravity heat pipe 2 Layer of metal thermal conductivity 3 the back surface of solar panels

Fig. 18. The connection diagram of solar panels and heat pipes
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c. Throttle switch

In summer, the air damper is put downward, which separates the vertical air channel from
the horizontal air channel, letting the hot air directly emit into the atmosphere. While in the
winter, the air damper is put upward, so the vertical and horizontal air channels are
connected, letting the system heat the indoor room.

4.3 The theoretical analysis of experimental data on the solar energy air conditioning /
heating system

4.3.1 Cases in the summer

The photoelectric conversion efficiency of solar panels on the market is 16%, and it drops
about 0.5% with each 1°C rising of the temperature. In this chapter, TRM-PD artificial sun
simulation emitter, whose light intensity ranges from 0 to 800 W/m?, is adopted, from
which the solar panels receive the simulated illumination.

The parameters of the equipment are as follows:

a. The heat-absorbing plate: 1 mm thickness of copper plate painted black to reduce the
reflection to enhance absorption effect

b. The transparent cover: ordinary glass with dimension of 505 x 490 x 4 mm

The thermal insulation layer: glass silk, with around 5 cm of thickness

d. The solar panels: its power is 20 W, working voltage 17.6 V, working current 1.14 A ,
open circuit voltage 21.6 V, short-circuit current 1.33 A, with dimension of 426 x406
x30 mm

)

The average values of the measured data of the solar panels are shown as Table 5.

n
Z P Totul

Provnee = =17.18W )

average —
n

The light intensity output of solar energy simulator in the experimental system is 800W, and
the effective area of the solar energy panels is 400 mm x 300 mm, so the input power of
panels is:

Pier =96W (10)

Without a cooling device, the solar energy utilization n; is:

P
7y =~ 2 100% = 11.8% (11)

inlet

Adding the cooling device, the solar energy utilization 1 is :

P
17y =~ 100% = 17.8% (12)

inlet
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It can be inferred that after adding the cooling device, the solar energy utilization rate is
increased A =7, —n; =6% . Under this condition, with solar panels area of 8m?, the electric

power output is

P =558.66WW (13)
Flux Inlet Outlet teriurefrzctire Atmospheric
., | Temperature | temperature P temperature | Voltage(V) | Current(A)
(L/min) ) ) of battery )
board (°C)
2.647 28.809 45.718 57.262 29.581 10.083 0.1246
3.103 29.155 50.780 59.591 30.258 10.088 0.1170
7.895 27.808 38.633 61.242 29.770 9.940 0.1216
15.000 28.012 34.551 62.582 30.506 9.962 0.1201
27.692 28.088 34.271 63.084 30.169 10.152 0.1176
36.000 28.049 31.356 62.128 30.409 10.076 0.1167

Table 5. The average of the measured data during each flow period

4.3.2 Cases in the winter

The winter condition is also designed according to performance parameters of the solar
battery and the heat pipe installation model as mentioned above. It is assumed that the solar
radiation intensity is 400 W/m?, the average temperature of solar panels is 55 °C, the

average temperature of the heat pipe and fins t'f =40°C, inlet temperature t'f =10°C, heat

length is 2.5m, and air flow velocity u,, =2m /s .

Heat exchanging unit of this system is shown as Fig. 19.

Assuming air temperature at the outlet t} =25°C, then the qualitative temperature
ty=(10+25)°C/2=175°C, and the corresponding physical parameters of air are
/1 0.0276W / (m-K), v=16.96x10°m? /s, Pr; =0.699, and 7, =19.1x10°Pa-s .

It can be inferred that

ud
Re; =—=11793 >10" (14)

The air flow in the turbulent field,

Nu; =0.023Re}* Pry* =30.752 (15)

yl
hf:NufE:8.7W/(m2-K) (16)
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Solar unurg}'l l l

Fig. 19. Heat exchanging unit of this system

According to the assumed exit temperature, the logarithmic mean temperature difference of
air flow along the total tube length is equal to

tr—ty
At, = , - =2246°C (17)

According to the surface heat transfer coefficient, the quantity of convective heat transfer
can be calculated as

®, =h41LAL, =522 (18)

According to the flow rate and the temperature rising from inlet to outlet, the total heat
exchanging can be calculated as

D, =q,,c,(t; —t;) = 4453W (19)

The results of two total heat exchanging don't match each other because the assumed outlet
temperature is not correct. Through the iterative computation to eliminate deviation, the
result is:

hy =832W /(m*-K), t;=224°C, ®=467W (20)

Under winter heating condition, the reachable heat output of exchanger is 467 W.

5. Research on the solar drying system

In some countries, such as in China, sometime clothes are suspended outside the window
to dry, which are uneven in length, affecting the scene of the city, and the water drop may
either wet passers-by or commodities. At the same time, domestic appliances are getting
more various to meet the modern living, making it possible to design a novel device to
combine the existed domestic appliances to dry the clothes besides their existing
functions.
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In this chapter, a novel device is designed to connect with solar energy collector, and it can
also be connected to domestic solar water heater to effectively use excess energy of the solar
water heater. The device mainly consists of insulation shell, heat transfer system, ventilation
system, drainage system, temperature humidity control system, ultraviolet radiation
sterilization disinfection system and some auxiliary systems. Compared with the published
patents, this device just needs a small area, and it can work under a complete indoor
situation of natural environment. It is installed with ultraviolet disinfection lights and
hollowed aromatherapy box, so it may sterilize clothes and fresh the air during drying
clothes so as to achieve better results than clothes are dried outside the window. This device
may be effectively applied to lots of occasions, such as families, hotels, schools and so on. It
shows high practical value and economic and social benefits.

5.1 Backgrounds of the solar drying system

The high price of the house and apartment is an outstanding issue in modern society, so that
small living space becomes very popular in some regions. To save space, the clothes are
suspended outside the window to dry. If a sudden rain happens, clothes will be wet and
dirty again. In order to solve this problem to help people living more convenient, some
devices using solar energy to dry clothes have been on the market, while they can only be
used outdoor. The authors have designed a kind of solar drying system, which occupies a
small area so that it may be installed in the house, and has the same drying effect as the
clothes are put outside the window,.

At present, there is no similar device on the market yet, and sometime warm air blower or
electrical heater is used to dry clothes for emergencies, which consumes a lot of energy and
seriously damages the clothes, so it is not a good choice for a long time.

Solar energy water heater are widely used in lots of region, so if we can link solar energy
water heater with a drying oven, using its original power cycle system to make hot water
circulate in the designed oven and the heat flow through the pipe to distribute inside the
box, the clothes will be dried quickly with the convection of hot air. The device can
accomplish this function in small indoor space. It can not only make full use of the solar
energy water heater during idle time, but also can shorten the drying time, so it may
increase the solar energy utilization efficiency and improve the quality of people's daily life.

5.2 Technical requirements on the solar drying system

For the solar energy dryer, due to its small working area, long working hours, and strong
dependence on the weather, the following specifications are required:

1. Materials with good heat conduction performance are used to manufacture the pipe in
the oven, so that they can absorb the maximum quantity of heat from hot water to
ensure a high constant temperature of the oven.

2. Ultraviolet disinfection lamp is installed in the oven to sterilize the clothes, which can
make the dryer arrive at the unique advantage of drying out of the window as far as
possible.

3. A small fan is installed in the oven. It not only accelerates the wet loss of moisture,
making humid air quickly spread to the external to increase dryness of the internal air,
but also strengthens the flow of hot air to improve drying efficiency.
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4. A hollowed aromatherapy box is specially installed inside the oven, so that the clothes
will have a light faint scent, making our body more comfort.

5. The probes of thermometer and humid meter are installed inside the oven, which can
readily record the temperature and humidity. The flow valves at the bottom of the box
may be adjusted to control the heat transfer according to the feedback of temperature
and humidity together with the materials of the clothes.

6. Thermal insulation material is installed up and down and back and forth of the dryer to
prevent heat loss. The left and right sides are made of movable glass, so it is easy to put
the clothes into the oven, and adjust ventilation rate according to temperature and
humidity.

7. The drying oven and solar energy collector share one set of power cycle system.

5.3 Design scheme of solar drying system

5.3.1 The main body structure of solar drying system

The solar drying system not only needs to solve the city image problem due to clothes being
hanged to dry outdoor, but also needs to simulate the situation of drying outdoor as far as
possible. For example, the sterilization of outdoor sunlight and other characteristics need to
be reflected in the design, making it come from the nature and be better than the natural

1. Heat transfer conduit 2. Thermo-humidometer 3. Heat preservation box shell 4. Movable glass door
5. Fan 6. The regulator

Fig. 20. Main body structure design of solar drying oven

The main body structure of the solar drying device is shown as Fig. 20. It demonstrates that
the main body of the solar drying device includes ultraviolet disinfection system, ventilation
system, temperature and humidity control system, drainage system, heat transfer system
and additional system.
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5.3.2 Heat transfer and ventilation system

Heat transfer system is the main system of the drying device. In order to increase the
relative area of the heat transfer, three rows of pipe with staggered pattern are added within
limited space conditions, dividing the oven into two parts so as to let clothes be hanged
between the pipe rows. The heat transfer system is shown as Fig. 21(a). Hot water flows in
the pipe and convection heat transfer happens between pipelines, heat transfer between
pipeline walls is conduction, and heat is transferred to the clothes in the oven through
thermal radiation and convection. Because the hot water in the unceasing cycle ensures the
heat supply, and the pipe made of good thermal conductivity material has good heat
transfer characteristics, the heat loss is strongly reduced to the minimum to increase the heat
transfer efficiency.

The ventilation system is necessary in the drying device. It is confirmed through a large
number of experiments that during clothes drying, because the air is too wet, movable glass
of drying device are full of water mist so that drying effect is greatly reduced. To solve this
problem, a small speed-adjustable fan is installed, which can not only appropriately speed
up the wet loss of air according to the practical situation, but also accelerate the hot air
convection. Ventilation system is shown as Fig. 21(b). In addition, both sides of movable
glass walls can regulate ventilation rate according to the specific situation.

(a) The heat transfer system (b) The ventilation system

Fig. 21. The diagram of the heat transfer and ventilation system

5.3.3 Temperature and humidity control system

In order to achieve better drying effect and reflect people-oriented design concept, a
temperature and humidity control system is installed with the probes of the thermometer
and humidity meter being inserted into the oven. The probes can sensitively detect the
internal temperature and air humidity and digitally display on the external side of the box.
The flow control valves at the bottom of the oven is adjusted by evaluating data on the
meters, the material of the clothes and its drying difficulty level to change the hot water
velocity, in turn, change the heat flux. Temperature and humidity control system is shown
as Fig. 22.
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5.3.4 Drainage system

The clothes are now usually washed by washing machine, and then most water is
eliminated by a spin-drier, so that the water remaining in the clothes is relatively low, and
the clothes would be much easier to dry. However, not all the clothes are washed with a
washing machine, especially those small ones in the summer are usually washed by hand.
Based on this consideration, the bottom of this drying machine is designed as four corners
so that dripping water can deviate from the drain outside the oven by their own gravity.
Drainage system is shown as Fig. 23.

5.3.5 Ultraviolet sterilization system

Except for the limited indoor space, the main reason people hang clothes out in the sun is to
get the sterilization effect of the ultraviolet rays in sunlight to make clothes more clean and
fresh. In order to simulate outdoor conditions completely, two ultraviolet disinfection tubes
are installed on the top side inside the dryer so as to reach natural ultraviolet ray
sterilization effect.

5.3.6 Auxiliary system

In order to let solar drying machine more considerate to provide more practical assistance to
people’s life, a hollow aromatherapy box is installed inside the oven, which makes the
clothes more pure and fresh during drying. And the hollow box is removable, and people
can replace box spices according to their favorite tastes.

Fig. 22. Thermo-humido-control system
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Fig. 23. Drainage system

Fig. 24. Solar drying machine system

5.4 Device characteristics

The invented solar drying machine can illustriously combine with solar water heater, adjust
the heat flux and ventilation rate, accommodate all kinds of clothes, and dry quickly. It has a
good performance to work for a long time in good sunlight, and it has a high stability,
reliability, and strong practicability. The whole system is shown as Fig. 24.
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6. Summary

As one kind of inexhaustible, safe, energy saving, environmental protective new energy,
solar energy is getting more and more attention in this world and it has a huge development
potential. Through the research of solar flat-plate collector, staged solar photovoltaic and
thermal collector, solar air-conditioning system and solar drying system, the authors explore
a research and developing approach of solar energy.
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1. Introduction

Dislocation clusters have been shown to constitute the main efficiency reducing factor for
multicrystalline silicon solar cells (Sopori et al. 2005). Multicrystalline silicon is made under
less ideal conditions compared to monocrystalline silicon, in the sense that thermal fields
and the lack of seeding create material with increased density of crystal defects, but also
since the direct contact between crystal/melt and crucible/coating provides a rapid channel
for impurity contamination. These two factors make multicrystalline silicon inferior
compared to monocrystalline silicon in terms of solar cell efficiency (Green et al. 2009). It has
been shown by Kveder et al. (Kveder et al. 2001) that the interaction between dislocation
levels and impurity levels in the band gap may provide very efficient recombination
channels, thus enhancing the efficiency reduction both of the dislocations and the
impurities. Furthermore it has been shown that gettering of impurities is far less efficient in
regions of high dislocation density (Bentzen et al. 2006).

Measures to reduce dislocation density in multicrystalline silicon is therefore of high
interest. Interesting methods have been proposed to create more ideal conditions during
solidification, such as seeding (Stoddard et al. 2008) and control of the nucleation conditions
(Fujiwara et al. 2006); these conditions have also been shown to influence dislocation density
(Stokkan 2010; Usami et al. 2010).

It appears however very difficult to avoid or restrict the generation of dislocation clusters
during solidification. Models have been proposed to explain the observed dislocation
patterns from grain boundary sources (Ryningen et al. 2008; Takahashi et al. 2010; Usami et
al. 2010). Therefore the possibility of improving dislocated structures by the process of
recovery (Cahn et al. 1996) which has been shown to be very efficient for other materials
such as aluminium and iron, may be investigated. Investigations by Patel on recovery in
bent monocrystalline silicon rods indicated that a prolonged annealing times of 48 hours
was necessary to achieve noticeable recovery at a temperature of 1300°C(Patel 1958). In
contrast to this observation, more recent experiments performed on String Ribbon
multicrystalline silicon indicated that it was possible to significantly reduce the dislocation
density by a high temperature annealing step of the wafer (Hartman et al. 2008; Bertoni et al.
2010). These results were compared to models proposed by Kuhlmann (Kuhlmann 1951)
and Nes (Nes 1995) and suggested to be explained by pairwise annihilation of dislocations.
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Further work by the same group indicated that residual or applied stress was a key factor
for achieving the reported reduction in dislocation density (Bertoni et al. 2011).

Multicrystalline silicon wafers grown by the directional solidification technique (Bridgman
or HEM-type furnace) are however principally different from the String Ribbon samples
investigated in (Hartman et al. 2008; Bertoni et al. 2010; Bertoni et al. 2011), as well as the
bent silicon rods of (Patel 1958). In this material dislocations exist in clusters that extend
parallel to the growth direction, possibly starting at the bottom of the ingot and remaining
all the way to the top, as shown e.g. by (Ryningen et al. 2011). The dislocation clusters, as
observed by etch pits on wafer surfaces typically attain geometric shapes where etch pits
align in particular crystallographic directions (Ryningen et al. 2011), examples of which are
shown in Figure 1. Such configurations may be indicative of multiplication, in which case
residual stress may remain, or of recovery as observed by (Patel 1958), in which case low
energy configurations have already been achieved. The dislocation lines in the clusters also
preferentially align in the growth direction, and when wafers are cut perpendicular to this, it
is very possible that dislocations extend from one face of the wafer to the other. The forces
imposed by the surfaces will significantly affect the mobility of dislocations in this
configuration. An investigation of high temperature annealing of dislocations in
directionally solidified multicrystalline silicon in a different configuration is therefore
justified. This is a report of such an experiment.

2. Background theory

The term recovery refers to all changes to a deformed structure that reduces the stored
energy in the system, which does not involve sweeping of high angle grain boundaries
(Cahn et al. 1996). This can involve the activation of point defects, line defects and planar
defects, characterised by increasing activation energy. Since multicrystalline silicon is cooled
very slowly after crystallisation, it is not likely that much of the stored energy is due to point
defects. In this case we are interested in the mechanisms involving dislocations, and the
interesting effect in question is reducing the impact of dislocations on carrier recombination
(Rinio et al. 2002; Stokkan et al. 2007), therefore also processes that do not directly influence
the actual dislocation density, but only their configuration are of interest.

Fig. 1. Typical etch pit geometries as observed on wafers. Note that such geometries cannot
be observed on vertically cut samples, as are shown e.g. in Figure 4 and Figure 5.
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The recovery mechanisms which may be in effect to reduce dislocation density or influence
the recombination properties are: Elimination of stable dislocation dipoles (parallel,
opposite dislocations with a small spatial separation), pairwise annihilation of dislocations
of opposite sign, also called network growth, rearrangement of dislocations into stable
configurations and increase in subgrain size.

Dislocation dipoles are created by interaction of gliding dislocations with either other
dislocations or other obstacles (Nabarro 1987). They are therefore likely to be present in
areas of high dislocation density and little symmetry in the dislocation arrangements, i.e.
dislocation tangles. They are stable at the temperature they are created, but activation of
other mechanisms such as climb and cross slip at higher temperature will allow the
reduction of stored energy by their annihilation. Since the separation of dipoles is small, this
is the process which is expected to be affecting the dislocation density first. Dipoles are
observed in strained silicon (Jacques et al. 2000), but it is not clear to which extent such
dipoles constitute a significant part of the total dislocation density, i.e. if their recovery will
produce a noticeable reduction in dislocation density.

A general model for recovery by network growth in combination with growing subgrains
has been formulated by Nes (Nes 1995) where recovery is analysed in terms of rate
controlling mechanism: glide, cross slip, climb or solute drag. For dislocations to annihilate,
the opposite sign dislocations need to glide on parallel slip planes into a favourable position
and then migrate into the same slip plane, either by climb or cross slip. Silicon has a very
low stacking fault energy of ~50 mJ/mm?2 which leads to the well known dissociation of
dislocations into Shockley partial dislocations. It has been a subject of debate whether this
dissociation appears during the glide process, or when the dislocations come to rest.
Investigations by Sato and Sumino (Sumino 1994) indicate that dislocations are dissociated
during glide. The resulting stacking fault makes both climb and cross slip difficult (Cahn et
al. 1996; Jacques et al. 2000) so we may well expect these mechanisms to be rate controlling
in a possible recovery process by network growth (pairwise annihilation). Cross slip is a
thermally activated process with activation energy 5.5 eV (Moller et al. 1979), and if there is
no supersaturation of vacancies or interstitials, climb is also a thermally activated process
with activation energy equal to that of self diffusion, i.e. 3.6 eV for temperature below 1250
K and 5 eV above 1300 K (Siethoff 1984). The different values are explained by different
diffusing species in the temperature ranges: Vacancies at lower and interstitials at higher
temperature. For the climb process it is the diffusion of these point defects from sources to
sinks that are rate limiting.

Arranging the dislocations into more energetically favourable positions may to some degree
happen only by gliding of a dislocation in one glide plane. To reduce stored energy further,
dislocations also need to move out of the primary slip plane by climb or cross slip.

It must also be mentioned that the degree to which recovery may happen by the processes
described above depends very much on the thermal history and the type of sources active in
the generation of dislocations. For instance a Frank-Read source will create dislocation loops
where the opposite sides of the loop have opposite sense but same Burgers’ vector; a
configuration well suited for pairwise annihilation and network growth. Other sources may
primarily generate dislocations of one sign only, like in the model of Kuhlmann (Kuhlmann
1951). An example of this may be a grain boundary source.
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In this context it should also be mentioned that directionally solidified multicrystalline
silicon is routinely subjected to an annealing phase following the crystallisation and before
cooling down to room temperature. This anneal is performed at a temperature higher than
the brittle to ductile transition temperature, commonly between 1000 and 1200°C. It was
historically introduced to reduce long range residual stresses which would result in the
material cracking upon being subjected to mechanical impact (sawing) after cooling to room
temperature (Hukin) and is appropriately termed stress relief. The equipment used today
offers more ideal thermal conditions than the early equipment, and the need for stress relief
may not be as high as it was.

Recent TEM investigations (Kivambe et al. 2011) on dislocation clusters which show the above
mentioned alignment of etch pits along crystallographic directions have shown that the
dislocations have an edge component, and that the alignment is perpendicular to the direction
of the Burgers’ vector, i.e. the slip plane. This result indicates that the dislocations have aligned
in order to reduce their total energy, i.e. some degree of recovery has already occurred during
growth, and the dislocations have already attained low energy configurations, which may
make further recovery difficult. This indicates that the residual stresses believed to be
responsible for the dislocation density reduction reported in (Bertoni et al. 2011) may already
have been relieved in directionally solidified multicrystalline silicon.

The above discussion indicates that recovery by the process of dipole annihilation and
arranging into more stable configurations are likely to occur when silicon is annealed,
depending on to which degree the already existing dislocation structures are already a
result of recovery. The process of pairwise annihilation involves processes of higher
activation energy and it is therefore more questionable if this recovery process will occur
and at which rate it will be effective.

Another process that may change the configuration of dislocations is when they move under
the influence of image forces (Hirth and Lothe 1992). Image forces are used to describe the
forces between dislocations and crystal surfaces and interfaces. The simplest case is the
interaction between a dislocation and a free surface. In this case the force can be modelled
by extending the crystal lattice on the other side of the surface and placing a dislocation of
opposite sign at the same distance from the surface. These dislocations attract each other,
and the dislocation will be attracted by the surface. If the surface is not free, but rather an
interface to a different medium, the properties will be changed accordingly. The governing
parameter is the elastic modulus E; the smaller the difference in stiffness between the silicon
and the other medium, the smaller is the attraction. If the other medium is stiffer than the
silicon, the dislocation will be repulsed from the surface.

Image forces from the surface may influence the dislocation density near the sample surface
during annealing if dislocations are attracted towards the surface, as shown in Figure 2.
Depending on the dislocation distance from the surface, it may annihilate at the surface or
change its direction to lower the total length and reduce its energy. Further into the sample
the effect may not be so efficient, primarily since the attractive force is inversely
proportional to the distance, but also because of screening by other dislocations. Since the
dislocations annihilate at any point they meet the surface, they can in principle move
towards the surface only by glide if the slip plane is favourably oriented. The high activation
energy processes of climb and cross slip should therefore be of less importance than for
pairwise annihilation discussed above.
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A native oxide on the sample surface is only 1-2 nm thick (Zhang 2001) and will not
influence the image forces very much. If a layer is deliberately added to the surface, like a
diffusion barrier, or if a thermal oxide builds up on the surface during the process, the
situation may be different.

Lastly the work of Siethoff et al. should be mentioned, who in a series of reports (Siethoff
and Schroter 1978; Siethoff and Schroter 1983; Siethoff 1984; Siethoff et al. 1984; Siethoff et
al. 1986) investigated the mechanisms of dynamic recovery. Dynamic recovery differs
from the process studied here in that it describes reduction of stored energy during hot
working (Cahn et al. 1996), i.e. under an applied stress. Nevertheless much information
about the mechanisms for dislocation movement is gained from this work, as will be
discussed later.

a) b)
Surface %/ %/
/ Dislocation 2 /

Dislocation 2

Dislocation 1

/ Slip plane /%

Fig. 2. Illustration of the effect of image forces on dislocations moving in a slip plane
crossing the sample surface. a) Before annealing. b) After annealing. Dislocation 1 close to
the surface has disappeared while dislocation 2 further away from the surface has changed
direction to reduce its total energy.

3. Experimental work

Slices of approximately 2 mm thickness were cut from two different multicrystalline silicon
ingots (A and B) produced in a pilot scale directional solidification furnace. In this type of
furnace, crystal growth proceeds by heterogeneous nucleation at several points on the
interface between the crucible lining and the melt, followed by dendritic growth in a
supercooled part of the melt close to the crucible bottom. This growth is largely parallel to
the crucible bottom, and directional solidification proceeds on top of this solidified layer.
The size of the ingots produced in this particular furnace is 100-120 mm high and 250 mm in
diameter. The slices were cut parallel to the growth direction to avoid the direct interaction
between dislocations extending in the growth direction, and the surfaces. They were
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subjected to a series of surface preparation techniques, measurements, high temperature
treatment, followed by surface preparation and measurements again, all detailed in Table 1.

The sample was ground and polished as a prerequisite for the defect delineation by etching,
but also as preparation for measurements of Carrier lifetime and substitutional carbon and
interstitial oxygen. The lifetime was measured with Carrier Density Imaging (CDI) (Isenberg
et al. 2003; Schubert et al. 2003). The surfaces were not passivated, so only relative
differences in lifetime could be observed. However since the surfaces were polished, optical
measurement problems (Schubert et al. 2007) could be avoided and high quality images
were obtained. The interstitial oxygen and substitutional carbon level was measured with
Fourier Transform Infrared Spectroscopy (FTIR).

Step | Purpose Procedure

1| sample surtace preparation | 71 rinding grinding mechanical polishing
2 Characterisation CDI, FTIR

3 Defect delineation Sopori etch 30 s

4 Characterisation PVScan, dislocation counting

5 Removal of defect delineation | Polishing, chemical mechanical polishing

6 Thermal ramp up 20°C/min (A) and 7°C/min (B)

7 Anneal 4hat1350°C

8 Thermal cool down 7°C/min

Grinding and/ or polishing, chemical mechanical

9 Removal of surface deposit polishing

10 Characterisation CDI, FTIR

11 Defect delineation Sopori etch 30 s

12 Characterisation PVScan, dislocation counting

Table 1. Sequence of the experiments

Dislocations are delineated by the use of the Sopori etch, which creates large etch pits (~5
pum, round or elliptical depending on whether the dislocation line penetrates the surface
perpendicular or at an angle (Sopori 1984). This property can be used to substantiate the
hypothesis that dislocations lines primarily run in the direction parallel to the growth
direction, i.e. parallel to the sample surface here, since this should cause a higher occurrence
of elliptical etch pits compared to an etched wafer surface. PVScan is a tool designed to
provide a quantitative measurement of etch pit density on samples etched with this solution
(Sopori et al. 2000). The quantitative measurement of etch pit density is interpreted as
dislocation density. Dislocation density is however defined as total length of dislocation
lines inside a volume divided by the volume, and the justification of this interpretation
depends on the angle of the dislocation lines to the etched surface. Thus in this case the
measurement probably provides an underestimate. To achieve measurements of higher
spatial resolution and to be able to study the dislocation structures in detail, the entire
samples were photographed in an optical microscope with an automated xy-stage and
image capture control. By this method images of magnification 80x were obtained.
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All traces of the defect delineation had to be removed from the sample before the thermal
treatment; this was done by mechanical polishing followed by chemical mechanical
polishing.

The thermal treatment was performed at atmospheric pressure in an alumina tube furnace
flushed with high purity argon (5.0), the samples resting horizontally on an alumina boat
supporting the long edges of the sample. Two different furnaces were used. The furnace
used for sample A was expected to be heavily contaminated by Titanium, whereas the
second, used for sample B was expected to provide a cleaner atmosphere. No external stress
was applied to the samples during the heat treatment. After the heat treatment, the samples
were covered by a thick film, apparently thicker for the side facing towards the support.
This film was removed by polishing, and then the samples were subjected to the same
sample preparation and characterisation as before.

4. Results

Figure 3 shows the dislocation density measured by PVScan before heat treatment as well as
lifetime measured before heat treatment for sample A. It is seen that apart from the top
region, low dislocation density and high lifetime corresponds well and vice versa. After heat
treatment, however the lifetime is reduced below measurable levels.

L}

B g B

Fig. 3. Dislocation density (a) and lifetime (b) measured before heat treatment of sample A.
The poor sample preparation leads to higher apparent values than realistic in low
dislocation density areas, however high dislocation density areas are clearly visible. The
lifetime measurements were performed on an unpassivated sample, thus the lifetime is not a
true bulk lifetime. The scaling is in mm , and the colour bars are in cm* and microseconds
for a) and b) respectively.
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Optical microscopy shows that the general etch pit pattern is the same before and after
annealing, and no particular dislocation patterns arose from the mechanical support. However
some areas received an etch pit density reduction after the anneal (Berg et al. 2009). This effect
was most profound in areas of initial high dislocation density. In order to investigate the
nature of this effect, 50 % of the sample thickness was removed before it was polished and
etched again. This procedure shows to which extent the interior of the sample was influenced
by the heat treatment. A result from a high dislocation density area is shown in Figure 4. Since
the grain structure changes considerably by moving 1 mm horizontally in the sample, it is not
possible to compare dislocation density for small clusters. Therefore a general overview of the
entire pictured area is considered, and it appears that the etch pit density is comparable to the
situation before heat treatment. This is substantiated by quantitative measurements on five
such areas, obtained by a combination of automatic and manual counting of etch pits, shown
in Table 2. The area pictured in Figure 4 is area 1 in the table.

500 pm
S

Fig. 4. Optical micrographs of defect etched areas. a) Surface before heat treatment. b)
Surface after heat treatment. c) Interior, 1 mm below the surface parallel to the growth
direction, after heat treatment.

Dislocation density
Area Distance to ingot | Before heat After heat treatment After heat
bottom (mm) treatment (surface) treatment (interior)
1 83 1.5x10° 1x10° 3.1x10°
2 66 1.5x 105 1.7 x 105 29x105
3 80 0.9 x 10° 1x10° 1.9x10°
4 84 1.7 x10° 1.5x10° 2.7x10°
5 78 1.2x10° 0.9 x10° 22x10°

Table 2. Etch pit density measurements before and after heat treatment of 5 selected areas of
initial high dislocation density in sample A

The density after heat treatment in the interior is a factor 2 higher than at the surface before
heat treatment. This is probably explained by inferior etching conditions before heat
treatment, which resulted in larger etch pits than normally expected; etch pits overlap when
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the dislocation density becomes large and cannot be discriminated by the counting
procedure, and these larger etch pits overlap at a lower dislocation density than normal.
This may also explain the apparently slightly increasing etch pit density for two of the areas.

Even though these results show a clear etch pit density reduction close to the surface, but
not in the interior, it became clear that the varying etching conditions made it difficult to
quantify the changes accurately. The experiment was therefore repeated with sample B, this
time in a different furnace. Quantitative results are shown in Table 3.

Dislocation density
Area Distance to ingot Before heat After heat Remaining amount of
bottom (mm) treatment (cm3) | treatment (cm-) etch pits (%)
1 96 2x10° 1.9 x 105 95
2 82 4.6 x 105 4.5x 105 97
3 56 6.1 x 105 5.6 x 105 91
4 96 2.6 x 105 2.4 x105 90
5 82 1.4 x 105 0.7 x 105 54
6 56 7.7 x 105 4.7 x 105 61

Table 3. Etch pit density before and after high temperature treatment of sample B. Areas 1-3
are from the side facing downwards in the furnace whereas 4 - 6 face upwards.

It can be seen that the surface etch pit density is reduced similarly to sample A. It is also
seen that the side facing towards the centre of the furnace receives a higher reduction than
the side facing towards the support. The side with higher reduction in dislocation density
also had a thinner film. The film was chemically analysed by EDS, which showed peaks
corresponding to Silicon, Aluminium and Oxygen.

To investigate if an effect to the sample interior could be observed, a particular area showing
initial high etch pit density both at the front and back surface was selected. This area was
expected to consist of one large, relatively homogeneous dislocation cluster and was
therefore ideal for comparisons of different faces. The sample was cut parallel to the growth
direction so that the cut made a cross section through the cluster. The cross section was
polished and etched and is shown in Figure 5 a. It shows a relatively homogeneous etch pit
density, but a slight decrease in area of less than 50 um from the edges (i.e. less than 50 pm
depth) is observed. The etch pits were counted in four different areas, which are compared
to the situation before and after heat treatment at the surface in Table 4.

The etch pit density in the interior is very similar to the density at the surfaces before heat
treatment. This shows that we do not see any recovery effect of dislocations in the sample
interior. The observed variations are probably caused by local variations in the crystal not
related to the heat treatment.

Finally the ratio of round versus oval etch pits was investigated to study the angle at which
the dislocations penetrate the surface. This was done in order to identify an effect from
image forces, as dislocations that have aligned orthogonal to the surface (such as dislocation
2 in Figure 2) will change the etch pit shape from round to oval. The investigation was done
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by automatic counting of particles using a roundness criterion and counting only areas
outside of the dense clusters, and the results are shown in Table 5. The amount of oval etch
pits is reduced for all but one area. The results for sample A indicated a larger reduction in
oval etch pit density, but the different etch pit size before and after heat treatment for this
sample makes this comparison less reliable.

25 um
—

Fig. 5. a) Etch pit density of cross section through sample, normal to grain growth. Areas
where etch pit density was counted are marked as white squares. The front surface is
towards the left. b) Etch pits inside clusters in sample, Top. c) Middle. d) Bottom.
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Area Etch pit density
Front surface before annealing 7.7x105
Front surface after annealing 4.7x105
Areal 17.5x105
Area 2 11.2x105
Area 3 10.1x105
Area 4 7.3x105
Back surface Similar to front surface

Table 4. Etch pit density on cross section and front and back surface. The areas are marked
in Figure 5 a.

Portion oval etch pits (%)
Area | O o (o) | trosment | Aflrheattreament | (A
1 96 223 226 -1.3
2 82 279 243 129
3 56 17.6 15.2 13.6
4 96 24.8 244 1.6
5 82 284 18.9 48.2
6 56 24.7 12.8 33.5

Table 5. Ratio of round vs. oval etch pits for sample B.

Interestingly, the amount of oval etch pits inside clusters seem to follow an increasing trend
towards the top, as can be seen in Figure 5 b, c and d.

Fourier Transform Infrared Absorption analysis showed that the concentration of interstitial
oxygen was of maximum 10-12 ppma for sample A and of maximum 6 ppma for sample B.

5. Discussion

Although a general trend towards the reduction in etch pit density at the surface is
observed, our results show that this is not translated into a reduction in the interior. Rather,
Figure 5 a indicates that only a small region close to the surface is affected. This indicates
that the dislocations are affected by image forces caused by their proximity to the surface
(Hirth and Lothe 1992). Since no apparent dislocation density reduction is achieved in the
bulk of the samples, it appears that the driving force for reduction of stored energy by this
process is too low at the temperature applied. This is probably connected to three factors:
The low dislocation density in this material, which does not provide long ranging forces
between the dislocations, the low stacking fault energy of silicon which creates high
activation energy for the processes of climb and cross glide and finally the slow growth rate
(10 - 20 mm/h) the silicon was produced at, which results in the material already having
seen high temperatures for an extended period with the resulting rearrangement into low
energy dislocation configurations.
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The multicrystalline silicon investigated in this study has a relatively low dislocation density
ranging from ~10* cm? in good areas to 108 cm- in the very dense clusters, whereas the
dislocation density after cold working of metals is in the range 100 to 1012 cm- (Nes 1995;
Cahn et al. 1996). Since the force F. between parallel dislocation segments is inversely
proportional to their distance, e.g. given by

e
2xr

F

: @
for a screw dislocation, where G is the shear modulus, b is the magnitude of the Burgers’
vector and r is the distance between the segments, the driving force for network growth is
expected to be much lower in the case of multicrystalline silicon. However, considering the
observation in Figure 5 a) that image forces may operate down to a depth of ~50 um, the forces
in high dislocation areas (>10¢ cm=3) should be adequate to generate motion in the slip planes.
But although dislocations are highly mobile in the slip planes at the temperature applied in
this experiment, not being restricted by the lattice resistance (Argon 2007), climb and cross
glide are essential for network growth of dislocations and may be expected to be rate limiting.

Cross slip has indeed been observed in silicon at lower temperature than applied in this
experiment by several authors (Moller et al. 1979; Jacques et al. 2000). Jacques et al. (Jacques
et al. 2000) subjected silicon to stresses in the range of 10 MPa at temperatures between 975
and 1075 K. The force on the dislocations, calculated by

E =1b, @

where 71 is the applied stress, is F, = 0.00384 Nm-! for a force of 10 MPa and Burgers’ vector
of 0.384 nm, whereas the attractive force between parallel, opposite screw dislocations
calculated from equation 1 is F, = 0.0015 Nm for a dislocation density of p = 106 cm2, using
the elastic constants of (Burenkov and Nikanorov 1974) at 973 K. These numbers are of
similar magnitude, therefore cross slip could be expected to occur, in spite of the high
activation energy. Cross slip was also observed by Moller et al. (Moller et al. 1979) without
applied load at a temperature of T>1170 K, the driving force in this case being image force
from the sample surface.

Siethoff and Schréter (Schroter and Siethoff 1984; Siethoff 1984) argue that during dynamic
recovery, stage III of the stress-strain curve, which corresponds to the first recovery stage at
lower strains, the rate controlling mechanism is that of diffusion of vacancies connected to a
climb process. The diffusion D constant is given by

_u
D=Dye "' . @3)

In silicon, analysis of the self diffusion parameters Dy and U point to two different diffusion
mechanisms being operative at different temperature: a vacancy mechanism below 1250°C and
an interstitial mechanism above 1300°C (Siethoff 1984). For the low temperature regime Dy =
0.35 cm?s and U = 3.9; for high temperature Dy = 1460 cm?s-1 and U =5 eV . Using the latter, a
diffusion constant D = 4.3*10-13 cm?/s is calculated (it can be noted that the parameters
calculated for the vacancy mechanism, if used in the calculation at 1350°C will give a value of
D =2.9*1013, not very different from the interstitial mechanism). The expression
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L, =Dt )

for diffusion length gives a value Ls = 0.8 pm for 4 hours annealing at 1350°C. The sources
and sinks for point defects are grain boundaries and other dislocations which are a distance
from 10 pm up to several mm away from the dislocation. This shows that diffusion of point
defects to support climb may very well be a rate limiting process for this defect geometry,
impeding the recovery by network growth.

It should be noted that in regions of very high dislocation density (~108 cm?3), forces
between dislocations will increase and distance between sources and sinks of point defects
will decrease. Changes in such areas are not detectable by this experimental technique
because of the overlapping etch pits. We may therefore not rule out the possibility of
reduction of dislocation density in such regions by the observations and discussion above.

Interestingly, another element with low stacking fault energy, copper, shows very little
response to recovery (Cahn et al. 1996; Martin et al. 1997) , as appears to be the case also for
silicon in this experiment.

Migration towards the surfaces under the influence of image forces is not dependent on
these rate limiting processes to the same extent if slip planes are favourably oriented, and it
is therefore not surprising to see that this occurs, an effect observed both by the reduction in
dislocation density in the proximity of the surface and in the transformation of oval etch pits
to round. Different orientation of slip planes towards the surface may be a factor influencing
the varying degree of reduction experienced in different areas.

For sample B there is a correlation between the amount of reduction of dislocation density,
the change from oval to round etch pits and the amount of oval vs. round etch pits in
clusters as a function of distance from the ingot bottom. This can be seen by comparing the
data in Table 3, Table 5 and Figure 5. This again points to the image forces as the main
driving force for dislocation density reduction near the surface.

Another factor influencing the efficacy of the surface in reducing dislocation density is the
formation of a surface film during the heat treatment. After this film forms, the surface is no
longer to be regarded as a free surface; the film may reduce the attraction to the surface, the
governing factors being the elastic modulus and the thickness. For sample B a possible
correlation was observed between the increased thickness of the layer and the reduced
attraction of the surface for the two different sides, which can be explained by this influence.
Another possible explanation is that the samples had to be polished different periods of time
to remove the surface film, and this may also have influenced how much of the sample was
polished away.

We do not find a simple correlation between the reduction in dislocation density and the
oxygen values. For sample A a higher degree of reduction was experienced towards the top
of the sample, whereas for sample B a trend towards a more efficient reduction towards the
bottom is observed. The solubility of oxygen at 1350°C is 35 ppma (Pajot 1999), higher by a
factor of 3 than the highest measured value in the samples studied here. Any oxygen
precipitates on the dislocations should therefore be dissolved and not influence the mobility
of the dislocations during the heat treatment.
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6. Conclusion

We have shown that by performing an anneal of 4 h at 1350°C on bulk silicon samples, a
quantifiable reduction in etch pit density is observed. This reduction is however only visible
near the sample surface. A region in the range of less than 50 pm from the surface seems to
be affected. No true bulk recovery is observed; the effect is attributed to image forces from
the surface. The observations correspond well to theoretical predictions based on forces
between dislocations at the given dislocation densities and restrictions to dislocation
mobility by the process of climb and possibly also cross slip. These restrictions are caused by
the low stacking fault energy of silicon which through the dissociation of dislocations into
Shockley partials creates high activation energies for these processes.

It is very likely that the dislocations have already undergone recovery during the cooling of
the ingot in the production process, at even higher temperatures than applied in this
experiment. Thus the potential for lowering the total energy by dislocation migration is low
in this material.

Since the image forces appear to be effective down to a thickness comparable to current
wafer thickness, one can imagine a process where this force is utilised to reduce dislocation
density of wafers. It is then important to take into account the orientation of the dislocation
lines compared to the surface. Since dislocation clusters seem to follow the crystalline
structure of directionally grown multicrystalline silicon, one may suggest that wafers cut
parallel to the growth direction may be more receptive to such treatment than the current
method of cutting parallel to the growth interface. This suggestion of course does not take
into account other benefits of the currently preferred cutting direction. It should also be
mentioned that if a diffusion barrier is applied to the surface to prevent contamination, the
elastic modulus of this material may influence the magnitude of the image force.
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1. Introduction
1.1 Background and motivation

In 2010, the United States consumed 36.96 quadrillion BTUs (39 quadrillion kJ) of liquid
petroleum fuels (EIA, 2011). Even assuming the adoption of more stringent fuel economy
standards and unconventional vehicle technologies, this number is expected to grow
steadily with rising population and corresponding demand in the transportation sector. As
the economies of developing countries strengthen, the global spread of industrialization and
personal transportation will cause the demand for liquid fuel to rise dramatically in regions
of historically low consumption. According to studies conducted by the Energy Information
Administration, from 2007 to 2035, growth in the transportation sector accounts for 87
percent of the total increase in world liquid fuel consumption (EIA, 2010). Figure 1 displays
this projected growth of liquid fuel consumption by various energy consuming sectors.
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Fig. 1. World liquid fuels consumption by sector, 2007-2035 (EIA, 2010).
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The strength of the US economy depends heavily on its ability to transport goods and
services from producers to consumers. The price of oil reached a record of $145/barrel in the
summer of 2008 (EIA, 2011), crippling business activities and marking the beginning of a
global recession. Similar price spikes during the energy crises of 1973, 1979, and 1990 were
followed by periods of economic distress. Taking these events as a whole, the price volatility
of petroleum fuels presents a clear threat to economic stability and American prosperity.

In addition, concerns over climate change have put reducing fossil fuel combustion
emissions at the forefront of environmental policy. Since the industrial revolution, the
concentration of carbon dioxide in the atmosphere has increased by 36% to approximately
390 ppm in early 2011 (Conway & Tans, 2011). Human activities outpace the planet’s natural
ability to remove the excess carbon, and the concentration of carbon dioxide continues to
increase by approximately 1.9 ppmv each year. As atmospheric carbon dioxide
concentration reaches its highest point in at least the last 650,000 years, it cannot be denied
that industrialization has significantly altered the makeup of the Earth’s atmosphere
(Soloman, et al.,, 2007). The global focus on limiting Greenhouse Gas Emissions (GHG)
suggests impending environmental regulation and possible carbon taxes on industries
consuming fossil fuels. These forthcoming policies will serve to raise already steep fuel
prices and put further strain on the global economy.

To meet the expected demand for energy without threatening national security, the
economy, or the environment, a new portfolio of fuels must be adopted that can be
produced inexpensively, domestically, and in extremely large quantities. The United States
transportation sector alone consumed 26.7 x 1015 BTUs of liquid petroleum fuel in 2010,
equivalent to over 4.6 billion barrels of crude oil (731 million m?) (EIA, 2011). Based on
energy content, over 205 billion gallons (776 million m3) of biodiesel must be produced each
year to meet consumption. As most alternative fuels contain less combustible energy per
unit volume, fuel from other unconventional sources would be required in even higher
quantities. Figure 2 compares the most common alternative transportation fuels and their
respective energy content as given by their higher heating value.
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Fig. 2. Energy content of various fuels by Higher Heating Value (HHV) (EERE, 2011).
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Recent innovations in electrically powered vehicles have led to a minority of drivers to
consume less petroleum fuel. However, the low energy density of most batteries entails
large battery packs, frequent recharging, and limited mileage. In addition, widespread
adoption of this technology would put significant strain on the existing electric grid and
potentially displace the demand for oil with that for the rare metals necessary for battery
production, such as platinum, cadmium, and lithium (Hiibner, 2010). Both the current
infrastructure and the power requirements of heavy transportation, aviation, and maritime
shipping necessitate a fuel that is both liquid and energy dense. Alternative fuels that meet
these requirements include biodiesel, ethanol, methanol, and more recently, biobutanol,
Fischer-Tropsch diesel, and hydrogenation-derived renewable diesel. However, the latter
three fuels exist only in immature stages of development and will not likely be viable in the
short to medium term (EERE, 2011).

The use of biodiesel in place of conventional petroleum diesel in compression ignition
engines holds benefits for the economy, national security, and the environment. In 2000,
biodiesel became the only commercially available alternative fuel to successfully pass the
EPA-required Tier I and II health effects testing under the Clean Air Act. Burning biodiesel
results in a significant reduction in the release of harmful emissions, such as sulfur oxides,
carbon monoxide, and particulate matter. In addition, the US Department of Energy
reported that replacing conventional diesel with biodiesel resulted in a 78.5% reduction in
carbon dioxide emissions (National Biodiesel Board, 2009).

Biodiesel can be produced from any animal or vegetable oil, all of which are biodegradable,
nontoxic, and renewable. Virgin soy bean oil and recycled cooking grease represent the most
common domestic feedstock for biofuel production. However, current quantities of these
readily available sources can provide only enough biodiesel to displace roughly 5% of the
on-road diesel used in the United States (EERE, 2011). Increasing the cultivation of
agricultural feedstock to meet the production of significantly more biodiesel would require
unrealistic quantities of arable land, water, fertilizers, herbicides, and pesticides, all of which
would be diverted from food production. To meet the current fuel demand, new feedstocks
must be pursued.

1.2 Algal biofuel production history

In 1978, the National Renewable Energy Lab’s landmark Aquatic Species Program began a
twenty-five year investigation on the potential for microalgal biodiesel to solve the
impending energy crisis. The program was motivated by the following: (i) lignocellulosic
ethanol cannot substitute for energy dense diesel and aviation fuels; (ii) renewable oil
sources are insufficient to meet the demand for diesel fuel; and (iii) the unprecedented
environmental threat presented by global climate change. Over the course of twenty-five
years, $25 million was spent to collect and screen microalgae, study the physiological and
biochemical aspects of various species and the role of genetic engineering to optimize
desired characteristics, refine the process engineering aspects of cultivation, harvesting, and
extraction, and finally, to develop outdoor mass culture systems with the intention of large
scale biofuel production. Although the program ended in 1996, the NREL'’s analysis and the
progress made in the phycology field, particularly in the area of genetic modification of the
algae’s metabolic pathways, laid the groundwork for future research (Sheehan, et al., 1998).
The study’s conclusions revealed that the Southwest United States holds ample resources in
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the form of land, water, and CO; for the production of more than 30 billion gallons of
biodiesel. However, challenges remained as the relatively low price of oil in 1996 made the
high capital cost of the production process hard to justify. Biological productivity remains
the most important factor for determining the final fuel cost. While open ponds on low cost
land were deemed the most viable option for growth facilities, their low productivities
presented a significant hurdle. Areas for improvement were identified as the need to find a
market for the biomass residue after oil extraction, water and nutrients should be recycled,
research should continue to search for an ideal strain, and a lower cost, easily accessible
source of supplementary CO, must be found (Jarvis E. E., 2008).

In 2006, 10,000 dry tons of algal biomass were produced worldwide (Schulz, 2006). Although
commercial production of nutritional supplements comprised the vast majority, private
companies and research organizations around the world have been working to build on the
findings of the NREL's Aquatic Species Program to develop an economical method for the
growth, harvesting, and processing of algae for fuel. In a significant strategy shift in 2009,
ExxonMobil announced a partnership with Synthetic Genomics, a biotechnology company,
that would allocate $600 million over the course of five to six years for the development of
biofuel from algae (Howell K., 2009). This accelerated research initiative and a renewed global
interest in developing a viable alternative fuel suggest that the many obstacles identified by
the Aquatic Species Program may soon be overcome.

1.3 Algal biofuel production portfolio

Several methods exist for the production of fuel from algae: (i) generation of hydrogen
during the growth stage, (ii) fermentation of carbohydrates and sugars into alcohols, (iii)
transesterification of intracellular lipids into biodiesel, and (iv) gasification of the residual
biomass. Figure 3 illustrates these various pathways and their constituent metabolic
precursors.
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Fig. 3. Possible energy products from algae (Morweiser, et al., 2010).
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1.3.1 Biohydrogen production

Biological hydrogen production has received attention in recent years as a safe and
renewable energy source for a wide variety of applications, including the replacement of
liquid fuel in the transportation sector. Remarkably, certain algal strains possess the ability
to switch metabolic pathways and produce hydrogen during respiration. In a sealed, sulfur
depleted environment, algae will stop oxidizing water, thus ending the supply of oxygen.
When the remaining oxygen is consumed, the algae begin metabolizing stored compounds
in an alternative respiration system from which hydrogen is evolved as the product (Melis &
Melnicki, 2006). The catalysts for this reaction are either the hydrogenase or the nitrogenase
enzymes, whose activities are inhibited by elevated oxygen levels in the environment.
Moreover, the concentration of H* and electrons, which are obtained either directly from
photosynthetic water splitting or indirectly through the degradation of starch, affects the
productivity of this reaction (Kruse & Hankamer, 2010). While this process holds great
promise for hydrogen production in general and fuel cell coupling in particular, research is
still in its infancy and costs remain high.

1.3.2 Bioalcohol production

The Energy Policy Act of 2005 mandated an increase in the amount of biofuel blended into
conventional gasoline, the vast majority of which has been met by corn ethanol (DOE, 2010).
However, ethanol production from terrestrial plants such as corn, sugarcane, and
lignocellulosic grasses requires large areas of arable land and huge volumes of potable
water. Furthermore, the low energy density of ethanol cannot address the needs of the
transportation sector in its entirety. Despite these issues, the market for ethanol remains
large, as 23% of American the corn yield during the 2010/2011 growth season was diverted
to ethanol production (USDA, 2011).

In the same way that carbohydrates generated by conventional ethanol feedstocks are
broken down into sugar and fermented, the starches and cellulose in algae biomass can be
used to produce ethanol. Depending on the strain of algae, the starch profile can include
simple sugars or complex chains which must be broken before fermentation. The biomass
can then be mixed with yeast or other fermentative microorganisms and fermented to
produce alcohol (Bush & Hall, 2006). As the yeast consume sugar, they produce CO, which
can be fed back into the growth system in a closed-loop process, as shown by Figure 4.

€0,

Starches

Fig. 4. Coproduction of ethanol and biodiesel from algae.
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Although a combination biodiesel-ethanol plant is technically feasible, ethanol is a relatively
inexpensive commodity and capital costs for such a facility are high. A more economically
attractive approach to coproduction may be to convert the carbohydrate and protein dense
biomass into a variety of high-value products, such as pigments, micronutrients, and omega-3
fatty acids in the form of EPA and DHA (Powell & Hill, 2009) (Singh & Gu, 2010). The
chemical makeup of the algae biomass being cultivated dictates this co-product portfolio.

1.3.3 Biodiesel production

To produce biodiesel from algae, cell walls are ruptured and a solvent such as hexane is
used to separate the intracellular lipids in the form of triacylglycerol (TAG) from the rest of
the biomass. Methanol then acts as a catalyst to break these long TAG chains into smaller
akyl ester chains, commonly known as biodiesel (Scott S. A., et al., 2010). In addition, this
reaction produces glycerol as a byproduct.

While biodiesel represents the most volumetrically energy dense fuel derived from algae,
the separation process of the TAG lipids from the residual biomass presents a costly and
inefficient bottleneck. Large amounts of solvent are needed for current techniques, while
contamination of the lipids from other cellular components remains an obstacle (Scott S. A.,
et al, 2010). Active research in this area has suggested the possibility of selective
decomposition of the cell wall using enzymes, electromagnetic waves, and sonic vibration
(Cooney, et al., 2009) (Andrade, et al., 2011). These novel methods seek to minimize the
quantity of solvent required and result in more complete extraction of the lipids.

Regardless of these process engineering challenges, the rapid growth rate, high lipid
content, and unique cultivation conditions of microalgae suggest it to be the only feedstock
with the potential to completely displace liquid fuels derived from petroleum (Chisti, 2007).
For the production of biodiesel, microalgal systems hold significant advantages over other
crops, including their higher photon conversion efficiency, their ability to be harvested
batch-wise nearly year-round, their utilization of salt and wastewater streams (Park, et al.,
2011), and their potential for CO, sequestration via flue gas coupling (Schenk, et al., 2008).
In terms of arable land usage, no other oil crop could provide the quantities needed for the
widespread adoption of biofuels without drastically altering the world’s current agricultural
landscape, as shown by Table 1.

Biodiesel Area to produce | Area required as e ——
Plant source Ty - global oil demand| percent global lobal areﬁ)le land
y (hectares x 10°) land mass &

Soybean 446 10,932 73.4 % 551.6 %

Rapeseed/canola 1,190 4,097 275 % 206.7 %
Jatropha 1,892 2,577 17.3 % 130 %

Oil palm 5,950 819 5.5 % 41.3 %
Algae (10 g m?2 day! 0 0

at 30 % TAG) 12,000 406 0.3 % 20.5 %
Algae (50 g m2 day-1 o o
at 50 % TAG) 98,500 49 0.3 % 25 %

Table 1. Comparison of crop-dependent biodiesel production from plant oils (Schenk, et al.,
2008).
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1.3.4 Biomethane production

Anaerobic digestion of organic waste produces a flammable gas mixture that can be burned
for heat or used to power a gas engine. Once this biogas has been processed, it can be used
in any conventional natural gas application. As the lipid fraction of algae ranges from 15-
77% of total cell contents (Chisti, 2007), a large quantity of biomass remains after the
extraction process. This organic biomass can be mixed with other forms of biowaste and
anaerobically digested to produce biogas. In addition, the digested matter can be
centrifuged and both the solid and liquid fraction used as fertilizers and soil conditioners.
Figure 5 presents a basic schematic for a biogas production facility.
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Fig. 5. Biogas production from energy crops, adapted from (Braun, et al., 2008).

The compaction of waste in landfills produces biogas naturally; however, if released freely
into the atmosphere, this gas presents a significant pollution threat due to its methane
content and combustibility when mixed with oxygen. Atmospheric methane is estimated to
be more than twenty-one times as intense a greenhouse gas than carbon dioxide. However,
when burned, biomethane is considered to be a relatively clean alternative fuel. Biomethane
can be processed from biogas produced by the anaerobic digestion of animal waste, sewage,
and crop waste from cellulosic and non-cellulosic plants. In the US, the potential annual
production of biomethane from these sources could be equivalent to 10 billion gallons of
gasoline. If this quantity of biomethane were substituted for conventional gasoline for
fueling vehicles, greenhouse gas production could be reduced by 500 million metric tons of
CO; per year (EERE, 2011). This reduction represents a 29% decrease in the rate of CO,
emissions attributed to the American transportation sector in 2009 (EPA, 2011).

Despite this large breadth of activity seeking to realize algae’s commercial potential, few
comprehensive comparisons have been made to address the energetic and economic
efficiency of these systems for biofuel production. The following sections analyze and
compare methods for the cultivation, harvesting, and processing of microalgae for the
production of biofuels. Particular emphasis is placed on the production of biodiesel due to
its high energy density and compatibility with current transportation infrastructure and
technology. A thermodynamic study identifies the most efficient production systems with
regard to conversion of solar energy and utilization of auxiliary energy, and an economic
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analysis highlights advantages of less efficient though potentially more profitable
technologies. In this manner, current technology for algal biodiesel production can be
assessed for its commercialization potential and utility to an energy consuming society.

2. Photobioreactor systems for biofuel production

Although the cultivation of algae began hundreds of years ago, only in recent decades have
attempts been made to grow these organisms at an industrial scale. As with any agricultural
system, as environmental control loosens, output becomes more erratic. Photobioreactors can
be classified in two primary categories, closed and open systems. In closed systems, the algae
are contained and culture conditions are highly regulated. In contrast, open systems dictate the
algae grow exposed to the environment, permitting less control and increasing vulnerability to
infection and invasion by predators. Although open systems present a higher risk of culture
loss and generally produce less concentrated algae slurry, they are far less expensive to
manufacture and operate than closed systems. Many have argued that open systems,
particularly in the popular raceway pond configuration, currently represent the most
economically viable method for producing algal biodiesel (Borowitzka, 2005) (Morweiser, et
al., 2010) (Rodolfi, et al., 2009) (Stephens, et al., 2010). However, because these systems
generate lower concentrations of biomass per liter, the concentration and extraction processes
become more energy and cost intensive (Chisti, 2007). To analyze the photobioreactors both as
singular units and part of the larger biofuel production system, this chapter examines closed
and open reactors for their solar conversion and thermodynamic efficiencies with and without
the inclusion of the harvesting and extraction processes.

2.1 Planktonic photobioreactors

Planktonic algae float or drift in a suspension of fresh or saline water. In the wild, these
algae form large blooms at or near the surface and act as a vital food source for many fish
and marine creatures. Planktonic photobioreactors serve to accommodate this type of algae
by providing a slow moving current in which the culture can drift. As most cultivated algae
strains exhibit this behavior, these photobioreactors have become extremely common while
still assuming many different configurations.

2.1.1 Open pond raceways

Open pond systems generally consist of a lined or unlined shallow tank in which water is
gently circulated via paddlewheels, as shown in Figure 6. The ponds are most commonly
constructed out of earth, plastic, or concrete, and water depths range from 10-50 cm to
optimize the absorption of light by the algae (Jorquera, et al, 2010). In the raceway
configuration, algae inoculant is fed to the pond in front of a rotating paddlewheel. The algae
mature as they circulate through the raceway and are harvested upon completing the path.

The relative technical simplicity and scalability compared to other PBR systems have made
raceway ponds the most common method for commercial production of algae products. The
largest algae growth system in the world utilizes this design, occupying over 440,000 m2 in
Southern California for the production of Spirulina sp., which is dried and sold as a
nutritional supplement (Earthrise® Nutrional, LLC, 2009).
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Fig. 6. Schematic of an open pond raceway system (Chisti, 2007).

Open ponds usually draw CO, from the atmosphere and receive unfiltered sunlight for
photosynthesis. Because the pond is open to the ambient environment, evaporation off the
surface helps to regulate its temperature. However, this evaporation also adds to the pond’s
high water consumption, and the exposure leaves the culture vulnerable to contamination
and invasion by foreign species. In addition, because light conditions are not regulated,
photoinhibition can be problematic. Finally, the large volumes of water required for these
systems result in a much less concentrated product upon harvesting, requiring a more
energy intensive dewatering processes. The cost of the final product ultimately depends on
the amount of auxiliary energy required and the productivity of the photobioreactor, both of
which are relatively low for open ponds in comparison to closed systems.

2.1.2 Tubular systems

Tubular systems can be oriented in horizontal, vertical, helical, or annular configurations
and consist of series of small plastic or glass tubes through which planktonic algae gently
circulate. In these systems, tubes are arranged parallel to each other and may be stacked to
increase the yield per unit area. Highly turbulent flow is maintained by mechanical or airlift
pumping to prevent algae sedimentation within the tubular array. Tubular photobioreactors
operate as continuous culture systems in which a reservoir is used to remove dissolved
oxygen and add CO» to the fluid before continuing the loop and repeating the process.
Additional carbon dioxide may be supplied at intervals along the tubes to maintain a
constant pH and ensure that photosynthesis is not interrupted by lack of carbon (Chisti,
2007). Figure 7 displays a basic schematic of a tubular photobioreactor.

Closed systems can achieve more than thirteen times the volumetric productivity than
raceway ponds systems as they allow better capture of incident radiation, protection from
contamination, more effective gas/liquid mass transfer, and a higher degree of control over
pond conditions (Chisti, 2007) (Jorquera, et al., 2010). In addition, closed systems have much
smaller areal footprints and require smaller volumes of water than open ponds, resulting in
more productive facilities and higher biomass concentrations at harvest (Chisti, 2007). As
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biomass concentration can be nearly 30 times greater than algae slurry harvested from
raceway systems, biomass recovery from tubular systems is generally less labor intensive.
However, tubular reactors can become expensive due to high power requirements for
mixing and gas/liquid transfer. While open pond systems may consume as little as 4 W/m3,
horizontal tubular systems of similar scale have been reported to require as much as 2000-
3000 W/m3 (Jorquera, et al., 2010) (Sierra, et al., 2008). Depending on the cost of processing
the harvested biomass and the market value of the final product, highly productive tubular
systems may be economically justified (Chisti, 2007).
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Fig. 7. Schematic of a tubular photobioreactor (Chisti, 2007).

2.1.3 Flat plate systems

Flat plate photobioreactors cultivate planktonic algae in vertical, translucent panels which
are illuminated from both sides and mixed by aeration (Sierra, et al., 2008). As in all
photobioreactors, these systems are developed in concert with the unique physiology of the
algae species under cultivation. In particular, light regime, temperature regulation, and
mass transfer represent important design parameters in the construction of these systems.
Flat plate systems have been in use since the 1950’s, and modern reactors have both reduced
the areal footprint of the cultivation system (Pulz, et al., 1995) and facilitated the guidance of
any desired light path through the use of laminated glass sheets (Hu & Richmond, 1996).
Figure 8 displays a schematic for a flat plate photobioreactor system. Flat plate systems are
usually constructed from glass or plastic panels held together by steel frames. Innovative
systems have utilized plastic bags within a wire netting support system, resulting in a
simpler construction than other designs (Tredici & Rodolfi, 2004).

In addition to the plate’s material transmissivity, location and orientation of flat plate
reactors largely determine the quantity and quality of incident solar radiation (Dulffie &
Beckman, 1980). For plates oriented in an East-West configuration at locations within 40° of
the equator, the quantity of intercepted global radiation becomes similar to that of
horizontal surfaces such as raceway ponds but with better homogenization of light
reception over the course of a year (Sierra, et al., 2008). To minimize light saturation, panels
can be placed in a North-South configuration to encourage a degree of mutual shading and
dilute high intensity light during the afternoon, reducing photoinhibition (Morweiser, et al.,
2010) (Carlozzi, 2003). Like tubular systems, the high surface area to volume ratio of flat
plate systems results in shorter light paths, high photosynthetic efficiencies, and
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consequently high productivities. Similar to their tubular counterparts, the energy
requirements of flat plate photobioreactors makes them more expensive than the more
technically crude open systems (Morweiser, et al., 2010).
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Fig. 8. Schematic of a flat plate photobioreactor (Jorquera, et al., 2010).

Flat plate reactors hold an advantage over tubular systems in that oxygen molecules
generally have a much shorter distance to travel before reaching a degassing station. If the
design of any closed system does not adequately account for this mass transfer, dissolved
oxygen released during photosynthesis can accumulate and potentially damage the algae
cells (Sierra, et al., 2008). Flat plate systems typically require approximately 40-50 W /m3 for
mixing, pumping, and mass transfer (Morweiser, et al., 2010). As discussed in the context of
the open pond system, this consumption is orders of magnitude lower than that for tubular
reactors of similar capacity, resulting in less costly operation. This lower power requirement
for flat plate systems also becomes advantageous as many algae species are damaged by
high levels of shear.

2.2 Benthic photobioreactors

Unlike planktonic organisms, benthic algae grow immobilized in a biofilm attached to a
substrate. Benthic photobioreactors accommodate these species by providing a large surface
upon which the algae can settle. These novel systems represent an alternative to the more
commonly available planktonic photobioreactors and serve to expand culture options to
include species that were once limited by cultivation method. Benthic photobioreactors have
taken many different forms, all of which seek to maximize the substrate surface area and
minimize water and auxiliary energy consumption and nutrient waste. In most systems,
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water is gently circulated over the biofilm, and drip systems are employed to deliver
nutrients. Figure 9 illustrates a novel benthic photobioreactor developed in The University
of Texas” Solar Energy and Biofuels lab for the production of Botryococcus braunii sp. This lab
scale system utilizes a carbonated concrete surface as the algae substrate and has
demonstrated productivities of up to 30.73 kg/m?3 with a lipid content of 26.8%. In addition,
this particular photobioreactor was shown to reduce the water requirement for cultivation
by up to 42 times that of raceway pond systems (Ozkan, et al., 2011).
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Fig. 9. Schematic of an algae biofilm photobioreactor (Ozkan, et al., 2011).

In addition to this carbonated concrete system, researchers have successfully immobilized
benthic algae on a wide variety of substrates, including calcium alginate gels (Baillez, et al.,
1985), agitated polystyrene foams (Johnson & Wen, 2010), and PVC bristle combs (Silva-
Aciares & Riquelme, 2008). Membrane systems have been coupled with fossil-fired power
plants in order to mitigate CO, emissions (Kremer, et al.,, 2006), and biofilms grown on
corrugated raceways and algal turf scrubbers have been tested for the removal and recovery
of nutrients from wastewater and animal waste effluent, respectively (Cragges, et al., 1997)
(Kebede-Westhead, et al., 2006) (Mulbry, et al.,, 2008)(Park, et al., 2011). Many of these
systems hold great promise for reducing the water, nutrient, and energy requirements of
cultivation that plague planktonic photobioreactors. However, productivities vary widely
between systems, and maximizing irradiance remains challenging. Further research will
continue investigating these issues, especially with regard to the technology’s potential
coupling with waste stream treatment.

3. Algal biodiesel production and energy usage
3.1 Photobioreactors as solar energy conversion systems

When comparing the energy conversion efficiency of any technology, analyses must
examine the utilization of freely available resources in addition to the auxiliary energy
supplied by manmade systems. In this section, the relative merit of different methods for
algal biodiesel production is determined based on their thermodynamic and solar energy
conversion efficiencies. The overall efficiency of a system, 7, can be defined as the net energy
out of the system in kilowatts, Py, relative to the energy input across the system boundary,
Pi,. Equation (1) illustrates this concept.
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The sun represents the primary energy source provided to the algae cultivation systems and is
supplemented by auxiliary power in the form of electricity for pumping and mixing. Energy
utilization is examined during algae growth, harvesting, and extraction, ie., during all
processes up to the state known as “biocrude,” at which the raw lipids can be refined into
biodiesel. Figure 10 defines the system’s control volume, with accompanying inputs and
outputs. Unfortunately, reliable data could not be found for all consecutive stages of growth,
harvesting, and processing for each photobioreactor system under study. Comprehensive
energy input information could only be obtained for the open pond system. However, because
the open pond demonstrated a lower biomass concentration in the harvested slurry, larger
volumes must be processed for the same biomass yield. Thus, extraction and harvesting are
expected to be more energy intensive. If the efficiency including harvesting and extraction for
the open pond are positive, it can be assumed that the efficiencies of systems generating more
highly concentrated slurries will be even more favorable.
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Fig. 10. Algae biofuel production process, adapted from (Beal, 2011).

P,ut is defined as energy available within the biocrude produced by the system in kilowatts.
This is calculated as:

Pout = xoilmalgaeEoil (2)
Where 1i1,,,, represents the rate of algae production by mass in kilograms per second, Xoi is

the mass fraction of lipids within the algae cell, and E,; is the energy content of the
produced lipid, equivalent to 37.6 megajoules per kilogram (Rebolloso-Fuentes, et al., 2001).

The net power produced by the system, P,.;, considers only the useful energy that crosses
the system boundary. Because the sun is widely available at no cost, P, disregards this
input, but takes into account auxiliary power, P, supplied to the system in the form of
electricity as:
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Pnet = Pout - Paux (3)
Furthermore, the closure bounds of what constitutes input power can be elaborated. To
assess the solar energy conversion efficiency, P, is equivalent to the full-spectrum of
incident solar energy (Psotr, fu). This enables a comparison to photovoltaic and solar thermal
technologies in illustrating total solar resource utilization.

This efficiency will be markedly low, as green plants only utilize the photosynthetically
active portion of the solar energy incident on Earth. Photosynthetically active radiation
consists of light with a wavelength from 400 - 700 nm, a range which comprises
approximately 46% of the full-spectrum (Larkum, 2003). Limiting the energy input to only
that part of the solar spectrum which is photosynthetically active gives a more
representative value of efficiency based on the organisms’ natural abilities. Thus, a second
calculation is considered with regard to the algae’s utilization of only photosynthetically
active radiation (PAR). In this calculation, P;, is redefined as P, par to represent only that
fraction of the spectrum that is photosynthetically active (xpar), as:

Psalur,PAR = Psolur,ﬁJlleAR (4)

Moreover, the technology must be analyzed with sole regard to auxiliary inputs to the
system. Because sunlight is free, abundant, and renewable, the production of fuel from this
primary energy source can be merited as long as auxiliary inputs do not outweigh the net
energy available in the final product. In this calculation, P;, is equivalent to P If this
auxiliary power utilization effectiveness () is found to be less than unity, the system
consumes more fuel than it produces and should not be implemented.

Finally, the thermodynamic efficiency is calculated based on the total energy input and
useful energy output. In this calculation, input energy includes both the auxiliary energy
supplied to the system and the full spectrum of incident solar energy. Table 2 summarizes
these efficiencies.

Solar Energy Conversion Efficiency, Mooy = —24 5)
Full Spectrum Pootar, ful
. . . P
Solar Energy Conversion Efficiency, Npag = —2ut 6)
PAR Psolar,PAR
.15 e e . P out — B aux
Auxiliary Power Utilization Effectiveness Equx = ~p_ )
aux
P.,-P
Thermodynamic Efficiency M = W 8)

Table 2. Energy conversion efficiency calculation methodology.

3.2 Parameters influencing energy output

To better understand the factors affecting photobioreactor productivity, a formulation was
put forth by Weyer et al. to determine the theoretical maximum and best case productivity
for open pond photobioreactors based on reactor design and the biochemical aspects of
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photosynthesis (Weyer, et al., 2010). While their study does not provide clear information
about energy consumption and thus cannot be used in a complete thermodynamic efficiency
calculation, their breakdown of losses in the conversion of solar energy to chemical energy
helps identify areas for potential design optimization. This section explains Weyer et al.’s
eleven term formulation in order to clarify why biomass output varies with design choice
and which factors limit productivity regardless of design.

3.2.1 Incident solar energy

The laws of thermodynamics represent the governing principles behind any efficiency
analyses, stating that the energy flux into a system is at all times greater than or equal to that
which can be stored within the system. Thus, for photobioreactor technologies, solar
irradiance represents the primary limitation to the generation of algae biomass.

The energy available from the full spectrum of light incident on Earth’s surface (E.r) varies as
a function of latitude and atmospheric conditions of the particular location under study.
Weyer et al. employed the NREL's Blue Clear Sky Model (Bird & Hulstrom, 1981) to
approximate atmospheric absorption assuming cloudless skies. Although this provided a
theoretical maximum annual solar irradiance of 11,616 MJ/m?2, the model does not account for
realistic climate conditions. For a more representative approximation of solar irradiance at a
given location, historical meteorological data was collected. A survey of six sites with latitudes
within 40 degrees of the equator gave values for annual solar irradience of 5,623-7,349 MJ/m?
(Weyer, et al., 2010). For the purposes of this paper, the location of the photobioreactor was
taken to be located in Eliat, Israel for better comparison to the experimental systems described
in Section 3.3. The average annual solar irradiance for this location was found to be 7,301
M]J/m?2, as documented by US Department of Energy (EERE, 2011).

More than 99% of the radiation entering the atmosphere have a wavelength less than 4000 nm.
However, photosynthesizing organisms can only utilize the portion of this spectrum
commonly known as Photosynthetically Active Radiation (PAR), which ranges from
approximately 400 - 700 nm (Szeicz, 1974). Figure 11 shows the incident solar radiation at the
top of the atmosphere, at sea level , and at 10 m below ocean surface. To accurately determine
the usable energy available to photosynthetic organisms, this reduction must be accounted for.

The second term in Weyer et al.’s study calculated the photosynthetically active fraction of
the solar spectrum. Terrestrial solar energy as a function of wavelength, Esu(1), is taken
proportional to the full spectrum (approximated by zero to 4000 nm wavelengths) as:

400 Esolar (ﬂ’) di
XpAR = 40()61 o (9)
[ e () dA

J-700nm

0 solar

By this measure, the percentage of photosynthetically active radiation comes to
approximately 45.8% of the full spectrum (Ewu). However, while this percentage is
technically classified as photosynthetically active, chlorophyll better utilize the red and blue
light on the far ends of the spectrum. Thus, treating the entire spectrum of visible light
equally results in an overestimation of the energy input to the organic system (Larkum,
2003). A more accurate calculation can be made based on the light action spectra of the
particular microalgae under study.
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Fig. 11. Global solar irradiance (Spectral Irradience Monitor)

The usable incident radiation can then be analyzed for its energy density by examining the
number of photons within the PAR range incident on the surface and their associated
energy content. The wavelength-weighted average photon energy (Ephown) can be found
using the calculation of Eq(d) and Planck’s Law, which states that the energy associated
with a wave is inversely proportional to its wavelength, given by Equation (10) where h
represents Planck’s constant (6.63 x 103 J/s) and ¢ represents the speed of light (2.998 x 108

m/s).

— 1 J-700nm hc (10)

photon — 3% 1071 J400nm 7

Using the wavelength-weighted average photon energy, the Photon Flux Density (PFD)
incident on a surface can be calculated as:

PFD = Dot Xear (11)
photon

3.2.2 Design specific losses

The first design-specific reduction in productive potential relates the losses in incident solar
energy to the construction and geometry of the photobioreactor. The following two
variables comprise this reduction: (i) reflection off the surface and (ii) the magnitude of
radiation depending on the latitude, time of day, and day of the year. To determine this
Photon Transmission Efficiency (ypr), these two variables are multiplied and summed
(Weyer, et al., 2010).
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In the case of flat systems such as ponds or panels, the magnitude of radiation and the
reflection off the surface of the photobioreactor can be calculated from the angle of
incidence, which is based on the location of the surface and the solar time. These can be
calculated based on the methodologies outlined by Duffie and Beckman (Duffie & Beckman,
1980).

Reflective losses take place when (i) there is an appreciable difference between the indices of
refraction and (ii) the angle of incidence on the interface is large. Using the angle of
incidence and Fresnel’s equations for reflection of unpolarized radiation passing through a
medium, the reflective losses can be calculated. By combining the magnitude of incident
radiation with the reflected losses and integrating over the course of a day, the losses in
photon transmission due to reflection can be found. Equation (12) illustrates this concept,
where r(f;) represents reflectivity as a function of solar time in hours, and G,(f;) represents
the magnitude of global solar irradiance in MJ/m? per day.

[ r(1)G, (1),
Npr = 24hrs (12)

[ G (1),

Figure 12 displays the reflected incident solar radiation for an open pond as it varies by
latitude and time of year. For the best case scenario, losses due to reflection average about
5% of the total incident solar radiation, with increased losses during winter at locations far
from the equator. If production is to continue year-round, losses due to reflection can be
minimized by choosing an appropriate location nearer to the equator or inclining the
systems with respect to the angle of the latitude. Although for pond systems this is not
possible, for flat plate and benthic systems the angle of inclination can be adjusted to
minimize reflection losses. The calculation for photon transmission efficiency becomes more
complicated with flat plate, tubular, and bagged systems as the reflectivity and
transmissivity of the container material must be accounted for.

20%
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.Jllllt
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Fig. 12. Reflected solar radiation in an open pond by latitude and solstice (Weyer, et al.,
2010).
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The photon utilization efficiency (1pu) represents the second photobioreactor design-specific
reduction in energy output. Although an adequate quantity of photons may be incident
upon the photobioreactor’s surface, sub-optimal culture conditions will limit the cells’
ability to utilize these photons. In particular, temperature and irradiance have significant
effect on photosynthetic efficiency. Photoinhibition occurs under high irradience, slowing
photosynthesis and potentially damaging cells. This can be particularly troublesome for
horizontal systems exposed to unfiltered sunlight, such as in open ponds (Franklin, et al.,
2003). Photon utilization efficiency can range from 50-90% under low light conditions; in a
high light environment with photoinhibition occurring, efficiency drops to as low as 10-30%
(Goldman, 1979). A median value of 50% was used by Weyer et al. to represent a best-case
scenario for photon utilization efficiency. However, this may be high due to the almost
unavoidable effects of photoinhibion in uncovered raceway systems (Weyer, et al., 2010).

3.2.3 Chemical conversion and biological process losses

Inevitable losses occur in the conversion of photons into chemical energy in the form of
sugar. The overall chemical reaction for the photosynthetic conversion of carbon dioxide
and water into sugar can be given as:

CO, + H,0 +8 photons — CH,0 +0, (13)

The eight photons needed for this reaction represent the “quantum requirement” (QR) for
one mole of carbon dioxide and one mol of water to be converted into sugar and oxygen.
This general formulation for photosynthesis represents the combination of two chemical
reactions: light reactions where photons are converted to ATP and electron carriers in the
two photosystems, and dark reactions where carbon dioxide is fixed in the Calvin cycle
(Weyer, et al., 2010). Under ideal conditions, this process would require three photons at the
lowest usable energy level (700 nm), as dictated by the energy requirement for the formation
of sugar, CH>O. However, due to the high energy levels required to split water molecules,
plants have adapted two photosystems through which to transfer electrons. The
combination of these systems divides the potential energy requirement, facilitating the
conversion by using more photons at lower energies. In this process, commonly known as
the Z-scheme for the characteristic shape of the electron transfer path, researchers have
generally accepted that eight moles of photons are required per mole of CO; fixed. However,
this may be conservative under realistic conditions. In Equation (13), CH,O represents the
simplest form of carbohydrate energy produced by photosynthesis, whose energy content of
482.5 kJ /mol is accounted for in the term Ecus.

The biomass accumulation efficiency (ama) represents the loss in biomass production in
exchange for other cellular functions. This “cost of living” efficiency varies drastically
between different species and environments. Manipulating culture conditions to stress the
cells has shown to increase lipid production in some species. In others, varying the nitrogen
input and temperature have shown to affect biomass production. The general principles
governing this phenomenon are not well understood, but a median value of 50% was
estimated for a best-case scenario in which culture conditions are optimized to reduce the
loss in biomass due to respiration (Weyer, et al., 2010).
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Combining these terms with the energy content of the biomass produced (Epu), which is
taken as the heat of combustion as a weighted average based on the cellular composition,
the biomass growth rate (11, ) can be obtained, as demonstrated in Equation (14). In Weyer
et al.’s calculation, Epy was taken to be 21.9 MJ/kg biomass to represent the median value of
the energy content during the growth stage rather than in the oil laden state just before
harvest. This may be an underestimate, as the biomass energy content for Nannochloropsis
sp. has been reported to contain up to 33.5 MJ/kg biomass (Jorquera, et al., 2010). However,
for this theoretical calculation, the algae species is not specified and 21.9 MJ/kg represents a
conservative estimate.

Ecarb PFD
EppQR

The percent oil content of the cell is used to determine the rate of lipid production in the
algae culture. A theoretical maximum for percentage oil has yet to be determined, with
experimental values ranging from 15-77% of total cell contents (Chisti, 2007). However, the
values were likely obtained using gravimetric analysis, which accounts for the total lipid
quantity within the cell rather than that which is usable. Thus, these experimental values
may be optimistic (Weyer, et al., 2010). In addition, cells which produce large quantities of
lipids often grow at slower rates. Pursuit of a natural or genetically engineered algae strain
must continue to balance these trade-offs. Using the lipid fraction (x,;) and the algal oil’s
density (poir), the volumetric lipid production rate can be calculated as:

1igps = Nprlpullema (14)

V. = Xoit B0 15
oil
Poil

The density of algal oil was taken to be similar to that of soybean oil, which is
approximately 918 kg/m3 (Weyer, et al., 2010).Using the mass rate of biomass production
and the energy content of the oil, the energy output of the algal biofuel production system
can be obtained. Equation (2) shows this calculation for P, This value can then be inserted
into Equations (5) thru (8) to determine the system’s solar conversion and thermodynamic
efficiency. The energy content of lipids extracted from Nannochloropsis sp. was taken to
contain 37.6 MJ/kg, which is assumed to be representative of oil from most algae strains
(Rebolloso-Fuentes, et al., 2001).

Puuf = xoilmBMEoil (16)

Table 3 summarizes the assumptions made in the calculation of theoretical best case oil
productivity for an open pond system.

3.3 Survey of actual energy output

To compare realistic productivity to the theoretical formulation proposed by Weyer et al., data
was collected from three operating facilities. A 2010 study by Jorquera et al. compiled
literature data from an open raceway pond (Richmond & Cheng-Wu, 2001), a vertical flat plate
system (Cheng-Wu, et al,, 2001) (Richmond & Cheng-Wu, 2001), and a horizontal tubular
system (Chini Zittelli, et al., 1999). Baseline productivity was taken as uniform at 100,000 kg of
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biomass per year to facilitate comparisons. Each photobioreactor cultivated the algal strain
Nannochloropsis sp., whose oil content was assumed to be 29.6% dw, an average value based on
reported ranges of 20-40% depending on culture conditions and maturity (Rodolfi, et al., 2009).

Table 4 summarizes the relevant productivity data for each of these systems.

Term Value

1. Full-spectrum solar energy, Esar 7301.13 MJ/mz2-yr

2. Photosynthetic portion of spectrum, xpar 45.8%

3. Average photon energy, Epnoton 225.3E-3 MJ/mol

4. Photon transmission efficiency, #pr 95%

5. Photon utilization efficiency, 17pu 50%

6. Quantum requirement, QR 8

7. Carbohydrate energy content, Ec.p 482.5 kJ/mol

8. Biomass accumulation efficiency, #ama 50%

9. Biomass energy content, Epy 21.9E-3 kJ/kg

10. Cell oil content, x,; 29.6%

11.  Oil density, poi 918 kg/m3

Best case areal biomass productivity 97,078 kg/ha-yr

Best case areal oil productivity 31,302 L/ha-yr

Best-case areal energy production from lipids 1080.44 M]/ha-yr

Area required to produce 100,000 kg biomass 10,301 m?
Table 3. Best case assumptions and productivities for a raceway pond (Weyer, et al., 2010).

Open Raceway Flat Plate Tubular

Annual biomass productivity (kg/yr) 100,000 100,000 100,000

Areal footprint (m?) 25,988 10,147 10,763

Biomass concentration (g/1 or kg/m3) 0.35 2.7 1.02

Areal biomass productivity (kg/ha-yr) 38,479 98,551 92,909

Areal oil productivity (L/ha-yr) 12,407 31,777 29,958

Areal energy productivity from lipids 42896 1,096.83 1,034.04

(MJ/ha-yr)

Table 4. Production data for photobioreactors (Jorquera, Kiperstock, Sales, Embirucu, &

Ghirardi, 2010).

3.4 Solar energy input

The calculation for solar energy supplied to the systems was based on the respective
location of each photobioreactor. These included Eilat, Israel for the raceway pond and flat
plate photobioreactor and Florence, Italy for the tubular system. Historical meteorological
averages for global solar radiation were used for the full spectrum solar power input (Psar,
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full spectrum), Which was then used to calculate the photosynthetically active portion of the
incident radiation (Psuar, Par), as discussed in Section 3.2.1. Global solar radiation includes
both direct beam and diffuse radiation. Table 5 lists values for average global irradiance by
location.

Average global irradiance Av.eragzr; global
(full spectrum) trradiance
(PAR)
Eilat, Israel (29°32'N, 34°57’E) 231.5W/m?2 (7301 M]/yr) |108.3 W/m2 (3417 M]/yr)
Florence, Italy (43°47'N, 11°11'E) | 130.3 W/m?2 (4110 M]J/yr) | 61.0 W/m?2 (1923 M]/yr)

Table 5. Average global solar irradiance by photobioreactor location (EERE, 2011).

3.5 Auxiliary power inputs

Operational data was compiled for the systems under study by Jorquera et al. in order to
compare each facility’s Net Energy Ratio (NER) in its utilization of supplied auxiliary
power. For this analysis, the data for total energy consumption for each system is used for
Py in the calculation of auxiliary power utilization effectiveness and thermodynamic and
solar efficiencies. Energy consumption data in the photobioreactor systems includes only
that for air pumping, mixing, and liquid/gas mass transfer (Jorquera, et al., 2010). As
consumption data for the tubular system was not reported by the operators, the power
required for air pumping was assumed to be similar to that of other tubular facilities at 2500
W/m3 (Sierra, et al, 2008). Table 6 summarizes the auxiliary energy required on a
volumetric and total annual consumption basis.

Open Raceway | Flat Plate Tubular
Volumetric energy consumption (W/m?) 3.72 53 2500
Total energy consumption (MJ/yr) 378,450 698,940 15,895,800

Table 6. Comparative energy consumption for photobioreactor systems (Jorquera, et al., 2010).

4. Efficiency results and other considerations
4.1 Solar conversion and thermodynamic efficiencies

Applying the data shown in Tables 4 thru 6 to Equations (5) thru (8), thermodynamic and
solar efficiencies and auxiliary power utilization effectiveness for the systems can be found.

The results of these calculations are summarized in Table 7.

Raceway | Flat Plate | Tubular
Solar energy conversion efficiency, full spectrum 0.59% 1.50% 2.52%
Solar energy conversion efficiency, PAR 1.28% 3.28% 5.49%
Thermodynamic efficiency 0.39% 0.55% -24.58%
Auxiliary power utilization effectiveness 1.94 0.59 -0.93

Table 7. Solar conversion and thermodynamic efficiencies and auxiliary power utilization

effectiveness for photobioreactor systems.
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The efficiency calculations presented in Table 7 assumed the energy out of the system only
included that available in the extracted lipids. However, as was mentioned in Section 1.3’s
discussion of algal fuels, the residual biomass may be fermented into ethanol or processed
as biogas. The total energy content of the generated biomass is taken to be 31.55 MJ/kg
(Jorquera, et al, 2010). Table 8 recalculates the solar conversion and thermodynamic
efficiencies and auxiliary energy utilization effectiveness to include the total energy
available from the biomass and lipids generated by the system.

Raceway | Flat Plate | Tubular
Solar conversion efficiency, full spectrum 1.66% 4.26% 7.13%
Solar conversion efficiency, PAR 3.63% 9.30% 15.57%
Thermodynamic efficiency 1.46% 3.28% -21.19%
Auxiliary power utilization effectiveness 7.34 3.51 -0.80

Table 8. Solar conversion and thermodynamic efficiencies and auxiliary power utilization
effectiveness including the total energy available in the biomass.

Of the three photobioreactors, the tubular system utilized incident solar energy most
efficiently. As singular systems, perfectly efficient organisms can theoretically convert
photosynthetically active solar energy into biomass at an efficiency of about 26.7% (Weyer,
et al., 2010). However, due to losses also observed in the photobioreactor systems, photon
transmission, photon utilization, and biomass accumulation reduce this photosynthetic
conversion efficiency of solar energy into biomass to an approximate maximum of only 1-
4% (Jorquera, et al., 2010). When including the total recoverable energy available in the
biomass, the efficiency values in Table 8 are consistent with those for terrestrial plants, with
distinctly higher efficiencies in the case of the flat plate reactor and tubular reactors.

The thermodynamic efficiency for each system was found to be low, and became highly
negative in the case of the closed tubular reactor. However, as solar energy is assumed to be
free, renewable, and abundant, a more economically important factor for the successful
adoption of these technologies examines how well the facilities utilize auxiliary energy
supplied to the system. Of the three photobioreactors, the energetic output from the raceway
pond almost doubled the required auxiliary energy when solely accounting for lipid
production, increasing to more than seven fold when including the energy available in the
biomass. Though not as productive, the flat plate system had a positive thermodynamic
efficiencies and high auxiliary energy utilization effectiveness as well. The tubular system,
however, proved in both cases to require far too much auxiliary energy to justify large scale
implementation.

The theoretical best case production for a raceway pond described in Section 3.2 would have
the same efficiencies for the thermodynamic system if baseline production was taken to be
100,000 kg and similar auxiliary energy inputs were assumed. However, the areal
productivity shown by the theoretical production calculation for a raceway pond was close
to that of a flat plate or tubular system, as can be seen in Tables 3 and 4. This implies that
raceway ponds can achieve productivities similar to that of closed systems, with better land
utilization and potentially lower construction and operational costs. However, values used
for photon utilization and biomass utilization efficiencies in the theoretical best case scenario
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may be unrealistically high with regards to current technology for industrial production.
Maintaining precise culture conditions in an open order to minimize losses in photon
utilization and biomass accumulation efficiencies remains difficult.

4.2 Harvesting and processing energy costs

While the efficiency values for the raceway and flat plate systems appear encouraging, they
account only for the growth phase of the biofuel production cycle, as was shown in Figure
11 in Section 3.1. Biomass harvest, lipid extraction, and processing require significant
amounts of energy, which generally scales with the biomass concentration of the harvested
liquid. The high volumes of water required by open raceway systems result in a
significantly lower concentration of biomass in the harvested algae slurry than apparent in
either of the closed systems, as shown in Table 4 of Section 3.3. Based on biomass
concentration, the flat plate system produced the most favorable harvested product in terms
of ease of extraction and processing. Although the data compiled for these systems did not
include energy consumption during either of these phases, the energetic costs of harvesting
and processing have been extensively documented for the more common cultivation
method of raceway ponds. As the biomass concentration in the harvested slurry is reported
to be lower for open ponds than for closed systems, raceway pond production can be judged
as the most energetically and economically expensive method in terms of downstream
processing.

Although many methods of harvesting and lipid separation exist, most can be classified as
sedimentation or filtration based processes. Sedimentation processes depend on differences
in the specific density of algae particles, while filtration methods exploit algae size and
surface properties (Morweiser, et al., 2010). Centrifugation has proved popular for small
scale algae cultivation operations and consumes roughly 5 kWh/m3 at flow rates of 1 m3/hr.
Scaling up may reduce the energy consumption of centrifugation to approximately 1-3
kWh/m3 (Morweiser, et al., 2010) (Molina Grima, et al., 2003). Although membrane filtration
requires significantly less power than centrifugation methods, its success primarily relies on
the algae strain’s physiological properties and thus is not suitable in all algae cultivation
scenarios (Schenk, et al., 2008). In addition, fouling of the membrane and pressure drops
across the interface pose problems (Gregor & Gregor, 1978).

Data compiled for the energetic cost of harvesting and processing algae from a raceway
pond cultivation system is listed in Table 9. The study in question was undertaken by Dr.
Yusuf Chisti, and assumed a lipid fraction of 20% dw, biomass productivity of 0.025 kg/m?2-
day, and biomass concentration of 1 kg/m3. These energy costs can be applied to the open
raceway pond system described in Section 3.3 to achieve a more comprehensive
representation of the thermodynamic efficiency and auxiliary power utilization efficiency
for the biofuel production process. However, it should be noted that Chisti’s analysis
assumes a much higher biomass concentration than that cited by Jorquera et al., and thus
harvesting costs are likely underestimated when applied to the open pond production
scenario. For construction, 80.4 MJ/m?2 was assumed for the facility area, divided by a 20
year productive life of the facility and by the mass of annual oil production. Energy costs of
equipment, including that required for biogas production, were estimated to be 27.2 MJ/ton
of machinery required, also divided by a 20 year lifespan and the mass of annual oil
production. Table 10 displays these recalculated efficiencies including the energy
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consumption of harvesting and processing, as well as the co-production of biogas from
residual biomass.

Input Energy (MJ/kg oil produced)
Harvesting 0.30
Oil recovery 3.17
Biogas production 0.88
Facility construction (including maintenance) 4.00
Energy embodied in equipment (including maintenance) 62.8 x 10-¢

Table 9. Harvesting and biofuel production energy costs (Chisti, 2008).

Cultivation only Complete process
Thermodynamic efficiency 1.46% 1.33%
Auxiliary power utilization 7.34 4.04

Table 10. Thermodynamic efficiency and auxiliary power utilization effectiveness for an
open raceway pond during the growth stage compared to those for the complete biofuel
production process.

While the inclusion of energy costs from downstream processing lowers the thermodynamic
efficiency and auxiliary power utilization effectiveness, calculated values still suggest the
process to be energetically positive. Energy consumption by harvesting and processing may
be minimized by scaling the operation; however, increases in biomass concentration would
have more dramatic effects on downstream costs (Stephens, et al., 2010). In the near term,
the co-production of biogas or high value products from the residual biomass is likely as oil
commodity prices remain low. With this in mind, biomass concentration plays an important
role in both decreasing processing costs and increasing the production of profitable
commodities more so than any substantial increase in the strain’s lipid fraction (Stephens, et
al., 2010). If auxiliary power requirements for closed system cultivation can be reduced, their
generation of high concentration algal slurry could result in a commercially viable
production process.

4.3 Water and nutrient usage

Facility and operation costs often scale with water and nutrient consumption. In an ideal
system, water consumption would be kept to a minimum and losses due to evaporation
would be negligible. However, open pond systems generally are located in hot, arid climates
where incident solar energy levels are high and culture temperature can be maintained.
Depending on pond composition, wind speed, ambient temperature, and relative humidity,
evaporative losses in open ponds can reach levels of 1 cm/day (Sheehan, et al., 1998). For a
large production facility, this daily loss in water depth would have to be compensated for by
the continued addition of new culture medium. Fortunately, algae can utilize water that
would not be suitable for human consumption or agriculture due to high salinity or waste
contamination. However, these large volumes of water imply intensive pumping, which
translates into higher costs. Table 11 reviews the biomass concentrations cited by Jorquera et
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al’s study and the corresponding water volume required by each facility, assuming no
evaporation or water recycling.

Raceway Flat Plate Tubular
Biomass concentration (kg/m3) 0.035 0.27 0.56
Water required (m?3) 2,857,142 370,370 178,571
Water required (gal) 754,777,142 97,841,481 47,173,571

Table 11. Water requirements based on biomass concentration from each photobioreactor
system (Jorquera, et al., 2010)

As shown in each photobioreactor system, water consumption scales directly with biomass
concentration. The raceway pond demonstrates the lowest concentration and thus the
highest corresponding water consumption. Although empirical data was not available, it
can be assumed that water consumption in the open pond would be even greater due to
high rates of evaporation. Closed systems hold a significant advantage in terms of water
consumption and lower rates of evaporation, in addition to having the capability to recycle
70-80% of the water used in each growth cycle (Subhadra, 2010).

A study by Clarens et al. found that biodiesel production from microalgae in an open pond
system consumed up to 12 times the water required by biodiesel production from canola on
the same scale. However, by coupling production to wastewater treatment, the water
consumed by the algal biodiesel production process can be reduced by 89% (Clarens, et al.,
2010). In addition, coupling algae cultivation to wastewater treatment plants allows the
algae to remove and recover nutrients that must otherwise be supplied via fertilizer.

Finally, the benthic photobioreactors discussed in Section 2.2 hold the potential to greatly
reduce the water required for algae cultivation. As the algae are immobilized on a substrate,
a relatively small volume of water circulates over the biofilm to enhance mass transfer of
nutrients and CO,. Lab scale operation of a carbonated concrete system has shown to
consume up to 42 times less water than algae cultivation in conventional systems (Ozkan, et
al., 2011).

4.4 Economics

A comprehensive study of the economic feasibility of the algal production process was
conducted by Gao et al. in 2009. In this report, a formulation devised by Molina Grima in
2003 for cost estimation based on direct experience with a closed, tubular system and
vendor quotes was refined and examined with a discount rate of 7% over ten years. Molina
Grima’s 100 hectare facility produced approximately 26.2 tons of biomass per hectare each
year for the purpose of extracting a high value product. Using a conservative co-production
estimate of 10% oil yield, costs of Molina Grima’s tubular system were compared to those of
a facility employing 192 hectares of open ponds on 384 hectares of land, as documented by
the U.S. Department of Energy. The total cost breakdown included the capital and operating
costs required to build a processing facility in which separation of lipids and
transesterification of TAGs would transform the raw extracted material into biodiesel. While
this study did not examine the energetic costs as documented by Jorquera’s 2010 or Chisti’s
2008 analyses, it provides a detailed representation of the economic costs of industrial scale
biodiesel production operations. Table 12 contains a summary of this analysis.
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Closed System Open System
Areal biomass production rate 26.2 tons/ha-yr 112 tons/ha-yr
Capital investment > $3 million/ha ~$100,000/ ha
Total annual operating cost $933,995/ yr $147,769/ yr
Biomass cost* $35,649/ton $1,319/ton
Biodiesel cost* $49.39/ gal $5.46/ gal

*Biomass and biodiesel costs accounts for expenditures associated with growth, harvesting, extraction,
and refining.

Table 12. Cost comparison for a tubular and open pond system in 2003 dollars (Gao, et al.,
2009, Molina Grima, et al., 2003).

With the cost of conventional diesel at approximately $1.51 for 2011/12, these numbers do
not encourage potential investors to fund algae based operations (Radich, 2004). However, a
closer examination can be made for advancements in closed and open cultivation system
and processing technologies. Table 13 contains the recalculated production costs per gallon
of biodiesel with oil yield improvements, reductions in the price of solvents and CO,, and
the application of existing U.S. tax credits made available by the American Recovery and
Reinvestment Act of 2008.

System |Scenario EE $/gal
Yield increased to 60% $33.13
Total capital + fixed cost of production reduced by 50% $26.18
Closed |60% yield; 50% capital/fixed cost reduction $17.65
Tubular (50% hexane recovery $49.28
60% yield; 50% capital/fixed cost reduction; 50% hexane recovery $17.54
Tax credits; 60% yield; 50% Capital costs; 50% Hexane recovery $16.54
Yield increased to 20% $4.24
Yield increased to 30% $3.02
CO2 price of $0.2/kg (from $0.47/kg) $3.29
CO2 price of $0.035/kg (from $0.47/kg) $1.96
50% Hexane recovery $5.34
Open 20% yield; $0.2/kg CO2 price $2.61
Raceway [30% yield; $0.2 kg CO2 price $1.94
Tax credits; yield increased to 20% $3.24
Tax credits; yield increased to 30% $2.02
Tax credits; CO2 price of $0.2/kg (from $0.47/kg) $2.29
Tax credits; 20% yield; $0.2/kg CO2 price $1.61
Tax credits; 30% yield; $0.2 kg CO2 price $0.94

Table 13. Costs for tubular and raceway systems with potential economic improvements and
tax incentives (Gao, et al., 2009).
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According to this study, cultivation of algae in closed tubular systems for biodiesel purposes
is prohibitively expensive, and technical progress to lower the capital cost and/or increase
oil yields, although making a significant difference, cannot come near competing
economically with other biodiesel sources. However, similar advances in open pond
technology can bring the costs of production down to only $1.94/ gallon biodiesel.

Despite these challenges, provisions for research in the American Recovery and
Reinvestment Act have strengthened the potential for commercialization of algal biodiesel.
With the passage of this act, $61 billion were earmarked for energy generation, of which
$800 million was specifically provided for biofuels (Voegele, 2009). In addition, existing tax
credits for producers range from $1/gallon for “agro-diesel,” $0.50/gallon for diesel made
from recycled cooking oil, and an additional $0.10/gallon credit for small producers of
biodiesel. An annual budget of $150 million has also been authorized for the FY2009 -
FY2012 to be used for loan guarantees and grants for the construction of biorefineries.
Import duties on ethanol also protect domestic producers of biofuels (Yacobucci, 2006).
While all of this demonstrates the government is interested in protecting domestic
producers of alternative fuels, none of the provisions specifically target to algal biofuels. If
the “agri-biodiesel” tax credits are applied to the study conducted by Gao et al. for open
ponds, the economic outlook becomes much more favorable.

5. Conclusions and outlook

The steady increase in liquid fuel consumption and the eventual depletion of petroleum
reserves necessitates the adoption of alternative fuels. Biodiesel from algae feedstock holds a
realistic potential to displace petroleum as the United States” transportation fuel due to
algae’s rapid growth rate and high oil content. Relative to other alternative fuels, biodiesel
has a high energy density and can be used in a wide variety of transportation applications.
Algae cultivation does not require the diversion of large portions of arable land from food
production and can be grown without the consumption of potable water. Finally, algae
cultivation with open pond and flat plate systems holds a positive energy balance in its
favorable solar conversion and thermodynamic efficiencies. All of these facts have been
recognized by industry and academia, and the research gaps identified by the NREL’s
historic Aquatic Species Program are quickly being filled. With this renewed interest,
technical improvements and existing government incentives can make the production of
biodiesel from algae economically justified.

By comparing Weyer et al.’s theoretical best case formulation with experimental data, the
parameters causing the discrepancy in productivity for open pond systems can be
identified. The land required by the best case scenario comes close to matching
productivities achieved in the closed systems. By concentrating on incorporating the design
advantages of each system, the best case scenario for open ponds described by Weyer et al.
may be achieved. In particular, photon transmission efficiency and photon utilization
efficiency represent important design parameters whose manipulation significantly affects
the system’s biomass output. Although photon transmission efficiency and photon
utilization efficiency were taken to be 95% and 50% respectively, realistic values are likely
much lower for open pond systems. Of the two parameters, photon utilization efficiency
had a much more negative effect on the final biomass productivity, indicating the
significance of maintaining optimal culture conditions. This control over the algae’s
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environment can also be translated into the losses in biomass accumulation efficiency, as
biomass losses due to respiration may be mitigated in certain species by applying different
environmental constraints. Both configurations of closed systems allow this variability, but
the current auxiliary energy costs outweigh the potential benefits of this technical
sophistication. Further research requires the development of a hybrid system in which
aspects of both closed and open designs can be featured. Passive temperature control and
use of atmospheric CO, must be combined with the lower water consumption and areal
footprint of closed systems in order to generate an algae slurry with a high biomass
concentration.

In addition to these design challenges, the theoretical study identified areas of biological
constraint that could potentially be resolved through strain selection or genetic
modification. In particular, expanding the portion of the solar spectrum usable for
photosynthesis can increase the solar conversion efficiency while pigment reduction in the
organisms can help reduce instances of photoinhibition, accelerating the biomass growth
rate and resulting in a more productive culture. Likewise, reducing the quantum
requirement through the modification of photosystems would allow for more efficient use
of incident PAR energy. While the fraction of usable lipids remains important for the
production of biodiesel from algae, biomass growth rate ultimately determines profitability,
particularly when incorporating the production of a portfolio of high value products with a
variety of algal fuels. In the short term, the coproduction of these high value products is
necessary to overcome the economic and energetic obstacles of this relatively immature
technology. However, as oil commodity prices continue to rise, the economics of algal
biodiesel are expected to strengthen. Algae biodiesel’s energy density and compatibility
with infrastructure provide significant advantages to current alternative fuels. As research
advances and production processes become less capital, energy, and water intensive, algae
biodiesel will surpass its competitors as the most viable alternative to petroleum fuel.
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1. Introduction

The development of non-imaging reflectors for circular-cylindrical solar energy receivers
has consisted primarily of investigations on symmetrical V-trough and compound parabolic
concentrator (CPC) designs, with the latter being favoured recently because of its superior
optical collection. However, it has since been realised that asymmetrical versions of such
reflectors may be developed and that they have their own limits of concentration and
ideality. It was shown that ideal asymmetrical reflectors could achieve substantially greater
peak concentration than symmetrical reflectors of the same acceptance angle (Mills and
Giutronich, 1979). An important difference, however, is that the performance of the
asymmetrical reflector is much higher at one solstice than another because the aperture is
adjusted with respect to the acceptance angle envelope. With an asymmetrical collector, the
possibility is presented of at least partial bias of the seasonal collector output toward the
maximum load period. Such a bias would reduce dumped solar energy in low load periods,
allowing a larger usable solar fraction of energy supplied. Phitthayarachasak
(Phitthayaratchasak et al.,, 2005) upgraded the solarization system process to increase its
efficiency by applying the asymmetrical compound parabolic concentrator (ACPC) to enable
the concentration of more solar radiation by an average of up to 2.5 times. It is convenient to
operate because there is no need to adjust the angle of the ACPC unit according to the
movement of the sun. The result showed that the soil temperatures at various depths were
high enough to inhibit the growth of microbes within a 5 day period. The solarization
operating time was distinctly decreased. The solarization system is then a suitable process
for destroying or inhibiting the growth of soil microbes which cause plant diseases
(Burrafato, 1998; Le Bihan et al., 1997; Bell; 1998). Even though this system is easy to
conduct, with less cost, and no pollution, it still needs 4-6 weeks to operate. Therefore, in
this study, the CPC combined with an ACPC unit was developed in order to decrease the
time for soil microbe inhibition to be closer to the time of traditional steaming methods.
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2. Aim

The aim of this work is to study solar system treatments: solarization with ACPC, and CPC
combined with ACPC and hot water. In addition, the effects on Erwinia cartoverora
population in the soil and tomato seedling growth are also studied.

3. Methods
3.1 Design of the asymmetry compound parabolic concentrator (ACPC)

In general, a symmetrical compound parabolic concentrator (CPC), as shown in Fig. 1,
comprises two identical parabolic reflectors which are usually oriented along an east-west
axis while an axis of the CPC points toward the sun. For such a system to achieve maximum
annual sunbeam on a focal plane, it requires an accurate sun tracking system and hence,
additional cost. Moreover, a north-south tracking angle adjustment is also needed
seasonally. With a modification of the traditional CPC, asymmetrical compound parabolic
concentrator (ACPC), on the other hand, has different height of a parabola reflector on each
side which allows for a longer time for incident solar irradiance beam on the reflectors
without tracking, and hence, more heat would be absorbed on the focal area.

Axis of

Parabola B

Axis of

Parabola A

Parabola B Parabola A

Focus of

Focus of
L/cos¢ Parabola B

Parabola A

Fig. 1. Typical symmetrical compound concentrator and incident irradiance with its
reflection beam on focal plane.

In this study, the ACPC is designed based on Bangkok location (latitude, ¢ = 14° N). Due to
the rotational axis of the earth with 23.45° inclination respect to the orbital plane around the
sun the angle of the sun above equatorial plane, declination angle, varies along with the day
of the year and can be determined by
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5 = 23.456in 36012241
365

Where

& = Declination (degree); —23.45° < § <23.45°
n = Julian day (January 1, n =1)

According to the setting position of ACPC and the declination axis, the sun position will be
at an angle of (5 + ¢) . Therefore, for Bangkok, the angle of incidence is in between -9.45° and
37.45°. In this research, the acceptance angle of APAC, 0. = 21° is selected to obtain a solar
incidence angle from -7° to 35° in the 2 periods: 13 Jan - 24 May and 22 June - 20 Dec
without the axis adjustment.

Theoretically, there are 3 possible cases for the reflections of radiation beams on the CPC

1. 6 <6, Radiation reflection in between the two focal points of CPC
2. 6 =40.Radiation reflection at the focus of CPC
3. 6> 6. Radiation reflection off the focus outside CPC

In this design, the angle of radiation incident beam and the axis of the CPC, 0., are
considered. As the angle of the radiation incident on one side of the CPC decreases (8 < 0.) it
will increase in the radiation on another side of the CPC. To gain more radiation reflection
on the soil the axis of the CPC is pointed to the sun and the focal point of CPC is moved into
the soil. The ACPC then has a large parabola on one side and a small one on the other side.
The design and calculation of the ACPC is shown as below.

1. Large Collector Design

In this design, the CPC has a flat receiver as shown in Fig. 2 for which all parameters can be
calculated using the following formula

al 1 1
H=— +
2| tand. tand.sind,

f=§(1+sinec)

A a

a = .
sin 6.,

With the given design parameters, the projected area of the solar radiation on the receiver, a
= L/cos@d with L =1 m and a latitude, @ of Bangkok = 14 degrees one can obtain H=5.09 m,
A, =288 mand f = 0.699 m. According to Fig. 2 (Duffie & Beckman, 1991), the relationship
between a ratio of receiving height and aperture area, H/ A,, and a concentration ratio, CR
with H/ A, = 1.77 results in CR = 2.80. Then, the edge of CPC was cut to fit the application
by theoretically reducing H/ A, to 50%, which is 0.885, and this gives CR=2.4. Afterwards,
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the CPC was tilted to & degree with a horizontal plane to obtain the focal point at Ltan =
0.25 m as depicted in Fig 3 (The CPC height reduced from 1.45 m to be 1.20 m with the

acceptance aperture is 1 m).

i

Fig. 2. Design parameters of Flat-Plate receiver CPC.

Fig. 3. An inclined CPC at angle J with horizontal plane to maximize the incident radiation.
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Radiation beams

<— Large CPC

Fig. 4. A reflection of beams from CPC when the radiation beam is incident on a reflector.

2. Small CPC Design

The key point of the design is that the focal point of the small CPC must be the same as that
of the large one while one of its curved sides is buried in soil angled at & with the ground
level. The depth (L/cos@) is 1 m. Consequently, the height of the small CPC reduces to 0.25
m. Then, the focus is horizontally adjusted until the edge of the large CPC reflector is onto
the edge of the receiver or at a distance of L from that of the large one on the soil surface.
The finished assembly of the ACPC, shown in Figs. 5 and 6 depicts the reflection path in
ACPC.

Large CPC

Slide the south side
receiver into the soil

L tan ¢
a) A South-side receiver is inclined and buried in the soil at the depth of Ltan .
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| /Large CPC

b) Move to the North for a distance L.

Move small CPC

. Large CPC
kY Small CPC !
l\‘

¢) Asymmetrical compound parabolic concentrator (ACPC).

Fig. 5. Asymmetrical Compound Parabolic Concentrator (ACPC) assemble procedures.

Soil surface level
Focus line

Fig. 6. Radiation beam and its reflections from asymmetrical CPC on soil surface.
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Fig. 7. Installation of ACPC.

3.2 Upgrading the ACPC unit with water boiler and CPC

The ACPC unit was capable of boiling water simultaneously while operating the
disinfection process by using the heat from the ACPC panel because the surface has a high
temperature. The process was operated by using copper tubes with the surface cut into a
semicircle in order to increase larger spaces to absorb the heat, and fix them at the back side
of the ACPC panel. A further step to increase the efficiency of the heating process, the hot
water from ACPC panel in the copper tube was treated by CPC before the hot water outlet
was fed into the soil plot.

When sunlight hits the ground it is partly reflected and partially absorbed by soil. The
absorbed heat increases the soil temperature and is then transferred down into a deeper
level. As soil has low heat conductivity the heat transfer is considerably poor. Increasing
temperature of water droplets can obtain higher soil temperatures at the deeper level from
the surface as water can diffuse through small pores and heat up the soil grains via
conduction and convection processes.

The solarization process normally takes 4-6 weeks for the temperature to increase and
induce lower levels of soil to be able to inhibit microbes which cause crop disease. In
consequence, the ACPC unit is introduced to collect solar energy to provide higher
temperature which can reduce the length of time of the solarization process down to 5
days. However, this time period is still not appropriate for industrial crops. Hence, the
need for further improvement of the ACPC unit’s capability to boil water simultaneously
while operating the process. The hot water is then used to drip into the soil. It also gives
moisture to the soil which absorbs the heat from the hot water to increase its own
temperature. Furthermore, because the dripping water is hot, it is guaranteed not to have
any microbes.
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3.3 Experimental design and soil treatment

All the experiments were carried out under sunlight. For soil solarized plots, transparent
polyethylene sheets 0.05 mm thick were used. Soil treatment was performed for 1 day
starting from 8:30 am to 4:45 pm in April. Soil temperatures at depths of 0 cm, 10 cm, 20 cm,
30 cm and 50 cm were monitored by means of shielded copper-constantan thermocouples.
The analog signals from the sensors were converted into digital signals. The output data
were printed continuously (24 h) on an hourly basis using a computer connected on-line
with the data acquisition system.

In this study, four vessels with diameters of 32 and 69 cm high were filled up with soil,
which was then watered and left for 2 days to prepare the soil ready for planting. The
thermocouples were set at the depth levels of 0, 5, 15, 30, and 50 cm in the centre of the
vessels. The 100 watts of electric light to replace solar radiation (due to the lamp’s heat is
almost the same heat level of the solar radiation effected to the soil surface) was set at the
height of 10 cm above the soil surface at the centre point of the vessels. The 60°C hot water
from the boiler (its temperature is almost the same as its effect from ACPC) was then
dropped at speeds of 12, 16 and 20 cc/min into the vessels number 2, 3, and 4, respectively
for 5 h as shown in Fig. 8.

Hot water 60 and 70 °C

(12 cc/min) (16 ch/min) (20 cc/min)

Fig. 8. Schematic diagram of hot water system for soil solarization (Phitthayaratchasak et al.,
2009).

A further step to increase the efficiency of the heating process is to use copper tubes, with
the surface cut into a semicircle in order to increase larger spaces to absorb the heat, and fix
them at the back side of the ACPC panel as shown in Fig. 9. The temperature at various
spots as shown in Figs. 10-11 was recorded every 5 min continuously for 5 h. There was no
water dropping during the first 30 min and the last 90 min. The same water dropping
process was repeated using the 70°C hot water (boiler).
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Fig. 11. Side-view of test apparatus setup showing positions of hot water nozzles and
thermocouples

3.4 Effect of the treatments on soil microorganisms

Bacterial suspension containing 4x107 cfu/ml prepared from culture of E. cartoverora strains
were mixed thoroughly with sterile soil. After heat treatment by non-solarization,
solarization, solarization with ACPC, solarization and CPC combined with ACPC and hot
water during 12.30 to 16.30 hour for 0, 1, 2 and 4 h incubation at soil surface and the soil at 5-
20 cm depth, the soils were counted for Erwinia spp. growing on culture medium compared
to the control (non-solarization).

3.5 Bacterial treatment

Bacterial suspension of E. cartoverora strains were mixed thoroughly with soil. The first set
where the sterile soil mixed with E. cartoverora suspension in sterile bags were placed at soil
surface soil, soil 5 cm, 10 cm, and 20 cm depth in non-solarization plot. The second set where
the soil was mixed with bacterial suspension of E. cartoverora strain and placed at soil
surface, soil 5 cm, 10 cm, and 20 cm depth in solarization plot. The third set where the soil
was mixed with bacterial suspension of E. cartoverora strain and placed at soil surface, soil 5
cm, 10 cm and 20 cm depth in solarization with ACPC plot. The fourth set where the soil
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was mixed with bacterial suspension of E. cartoverora strain and placed at soil surface, soil
5 cm, 10 cm and 20 cm depth in solarization with ACPC and hot water plot.

3.6 Plant materials and growth conditions

Tomato seeds (L. esculentum Mill) were sterilized with 0.5% HgCl, for 5 min, soaked for 6 h
in distilled water after being washed five times, then germinated at 25°C for 14 d in the soil
containing E. cartoverora with the solarization with ACPC treatment and control in
Erlenmeyer flask. Seeds of tomato were sown in sterile flasks, each containing sterile soil
used for growth of seedlings, twenty seeds were sown in each flask at equal distances and
watered as required to keep soil moist but not wet, all flasks were placed on a bench at room
temperature.

3.7 Soil treatment

One millilitre bacterial suspension containing 4x107 cfu prepared from an overnight culture
of E. cartoverora strains were mixed thoroughly with each gram of soil. Four sets of flasks,
each containing 4 bags, were used in this experiment. The first set where the sterile distilled
water was mixed with sterile soil. The second and third sets where the soil was mixed with
bacterial suspension of E. cartoverora strain and treated with solarization with ACPC and
solarization with CPC combined with ACPC and hot water, respectively, before sowing. The
forth set where the soil was mixed with bacterial suspension of E. cartoverora before sowing.
Twenty seeds were sown in each bag, then watered with sterile water and maintained at
room temperature. Two weeks after sowing, seedlings of each set were determined for
weight and germination.

3.8 Determination of plant fresh weight and dry weight

After 14 days of planting, plant fresh weight was directly measured using an electronic scale
and expressed as means of at least 20 tomato seedlings. For the determination of dry weight,
samples were harvested, then dried at 105°C for 10 min, and kept at 80°C until dry weight
remained constant. After cooling at room temperature, dry weights were weighed using an
electronic scale.

4. Results
4.1 Thermal performances of CPC and ACPC

To evaluate the thermal performance of the concentrating system, the collectors were
aligned with east-west axis. The large reflector of ACPC was oriented towards the south and
a small reflector faced north. The CPC was placed next to the small reflector of the ACPC.
Solar radiation at the middle point between the large and small reflectors of the ACPC, and
on a normal plane outside the ACPC was measured. Fig. 12 shows the measured solar
radiation.

As expected, the ACPC can increase the intensity of solar radiation within the range of 1.77
to 3.30 times during 9:30 a.m. - 5:30 p.m. and the average value is 2.5 times at 1:00 p.m. The
maximum solar intensities at the measured points on a normal plane outside the ACPC and
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between the ACPC reflectors were 938.50 W/m?2 and 3097.41 W/m? respectively. The inlet
and outlet temperatures of the ACPC were measured after flowing water through the
collectors from 1:00 - 5:00 p.m. The surface temperature of the ACPC reflector and the CPC
fin were also measured.
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Fig. 12. Solar intensities measured at normal plane outside ACPC and between the
reflectors.

Fig. 13 shows the measured inlet and outlet temperatures of ACPC and CPC during the test
period in which the solar radiation was in the range of 253.99 - 938.50 W/m?2 with the
average value of 643.8 W/m2. As a result, the water temperature difference between the
inlet and outlet of ACPC ranges from 4.6°C to 13°C. After passing the CPC, the water
temperature was increased in the range of 1.9 - 8.4°C, additionally.
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Fig. 13. Solar radiation and inlet/outlet temperature of ACPC and CPC.

Thermal efficiency of a solar thermal energy system is normally defined as the ratio of the
useful heat and the incident solar energy. As shown in Fig. 13 the thermal efficiency of
ACPC, based on the solar radiation in Fig. 14, is in the range of 46.42% - 51.58% (48% on
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average) while that of CPC ranges from 42.63% to 58.60% with 51.30% on average. It is
noted that efficiency of a solar thermal system varies according to solar radiation level and
environments at the time. Wind velocity is one of the key factors that influence hot water
production as it increases thermal loss while flows pass a collector.
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Fig. 14. Comparison of the efficiencies of CPC and ACPC.
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Fig. 15. Comparison of average soil temperature for all cases.



356 Solar Power

&) RO -
T e
50 A
=]
E
S 40 -
£ = § %
E AT 4
.u,. P
|_|
g-"; a0 —a— Solarization+ ACPC CPC+Hot Water (Surface Suoil)
E —— Solanzation+ACPC CPC+Hot Water {10 cm)
z 101 —a— Solarization+ACPC CPC+Flot Water (20 cm)
” T T T T T T T T T T T
Surface 10 20 30 40 el

Depth of Soil (cm)
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4.2 Application to reduce time to inhibit Erwinia in soil
4.2.1 Soil treatment

The maximum and average temperatures were always higher in solarized soil, solarized
with ACPC treated soil and solarization with CPC combined with ACPC and hot water
treated soil than bare soil during the experimental periods, regardless of the depth. The
temperatures for non-solarized and solarized soil, solarized with ACPC treated soil and
solarization with CPC combined with ACPC and hot water treated soil are shown in Fig. 17.

The temperatures for solarized ACPC treated soil and solarization with CPC combined with
ACPC and hot water treated soil are shown in Fig. 17. The maximum and mean soil
temperatures at 0 cm in the solarized ACPC treated soil were 60.3°C and 49.4°C,
respectively. In the solarization with CPC combined with ACPC and hot water, the soil
temperatures at 0 cm were 63.9°C and 52.3°C, respectively.

Table 1 shows effects of combined solar collector system of CPC and ACPC on soil surface
temperature. On average, maximum surface temperature of solarized with ACPC treated
soil and solarization with CPC combined with ACPC and hot water treated soil were
higher than non-solarized soil. In the experiment, maximum temperature of solarized
with ACPC treated soil and solarization with CPC combined with ACPC and hot water
treated soil were 21°C and 24.8°C higher than non-solarized soil, respectively. The
average temperature of solarized with ACPC treated soil and solarization with CPC
combined with ACPC and hot water treated soil were 15.7°C and 18.9°C higher than non-
solarized soil, respectively.
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Fig. 17. The temperature profile for non-solarized, solarized, solarized with ACPC treated
and solarization with CPC combined with ACPC and hot water treated soil of (A) surface
soil, (B) soil at 5 cm, (C) soil at 10 cm, (D) soil at 20 cm, (E) soil at 30 cm, (F) soil at 50 cm.
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Treatment Maximum soil surface Average soil surface
temperature (°C) temperature (°C)

Non-solarization 39.1 33.4
Solarization 42.7 38.3
Solarization and ACPC 60.3 494
Solarization with CPPC combined

with ACPC and hot water 63.9 523
Air temperature 36.9 32.6

Table 1. The effects of combined solar collector system of CPC and ACPC of the intensity of
light of 2044.4 W/m? on soil surface temperature (°C).

Soil depth (cm)
Treatment
5 10 20 30 50

Non-solarization 36.1 34.5 32.7 27.8 249
Solarization 41 38.1 34.5 29.1 25.8
Solarization and ACPC 46.9 434 394 34.0 29.2
solarization with CPC combined

with ACPC and hot water 55.4 488 444 37.3 30.5

Table 2. The effects of solarization with the combined solar collector system of CPC and
ACPC of the intensity of light of 2044.4 W/m?2 on maximum soil temperature (°C) at 5, 10,
20, 30 and 50 cm soil depths.

The temperatures for non-solarized soil, solarized soil, and the temperatures for ACPC with
solarized treated soil and solarization with CPC combined with ACPC and hot water treated
soil are shown in Fig. 17. The maximum and mean soil temperatures at different soil depth
are shown in Table 2 and Table 3.

Maximum soil temperatures at 5, 10, 20 and 30 cm were higher in the solarized with ACPC
treated soil and solarization with CPC combined with ACPC and hot water treated soil than
the non-solarized soil. The maximum soil temperatures at 50 cm for solarized with ACPC
treated soil and solarization with CPC combined with ACPC and hot water treated soil were
also significantly different. The maximum temperature of solarized soil was higher than
non-solarized soil. In the experiment, maximum temperature of solarized soil was 4.9, 3.6,
1.8, 1.3, 0.9°C higher than non-solarized soil at 5, 10, 20, 30 and 50 cm depth, respectively
(Table 2). The maximum temperature at 5 with 10, 20, 30 and 50 cm in the solarized with
ACPC treated plots differed by a maximum of 10.8, 8.9, 6.7, 6.2 and 4.3°C, respectively, on
any one day. The maximum temperature at 5 with 10, 20, 30 and 50 cm in the solarization
with CPC combined with ACPC and hot water treated plots differed by a maximum of 19.3,
14.3,11.7, 9.5 and 5.6°C, respectively, on any one day.

Average soil temperatures at 5, 10, 20 and 30 cm were higher in the solarized with ACPC
treated soil and solarization with CPC combined with ACPC and hot water treated soil than
the non-solarized soil. The average soil temperature at 50 cm for solarized with ACPC
treated soil and solarization with CPC combined with ACPC and hot water treated soil was
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also significantly different. In the experiment, average temperature of solarized soil was 6.2,
7.2,6.7,2.3, 0.7°C higher than non-solarized soil at 5, 10, 20, 30 and 50 cm depth, respectively
(Table 3). The average temperature at 5 with 10, 20, 30 and 50 cm in the solarized with
ACPC treated plots differed by a average of 11.2, 12.2, 11.5, 7.2 and 4°C, respectively. The
average temperature at 5 with 10, 20, 30 and 50 cm in the solarization with CPC combined
with ACPC and hot water treated plots differed by a average of 17.2, 16.2, 14.7, 9.8 and
5.7°C, respectively.

Soil depth (cm)
Treatment
5 10 20 30 50

Non-solarization 30.9 26.8 245 23.0 21.0
Solarization 37.1 34.0 31.2 25.3 21.7
Solarization and ACPC 421 39.0 36.0 30.2 25.0
solarization with CPC combined

with ACPC and hot water 48.1 43.0 39.2 32.8 26.7

Table 3. The effects of solarization with ACPC of the intensity of light of 2044.4 W/m?2 on
average soil temperature (°C) at 5, 10, 20, 30 and 50 cm soil depths.

Soil solarization is a climate-dependent method and therefore its effectiveness in a specific
region has to be assessed relative to the local climatological data. These studies that were
carried out during day time showed that a combined solar system significantly increased
soil temperature (Table 1-3).

Moreover, the highest increase was during when the highest temperatures were recorded,
suggesting that climatological data can be used for predicting the effectiveness of combined
solar collector system in a certain region. This might be related to soil temperature or the
environmental factors such as the number of hours expose to sun light. Combining methods
for improving pest control, especially when combining non-chemical methods, is the main
objective of integrated pest management (Katan, 2000). In our studies, combining
solarization with ACPC significantly improved the results in this experiment. This study
thus shows that in general, the combined solar collector system of CPC and ACPC can
increase soil temperature to reduce soil microbial population. However, the combined
treatments of solarization and the combined solar collector system of CPC and ACPC
showed a further improvement relative to the control, during which the highest
temperatures were recorded. Combined methods have the potential to improve pest control
but need to be optimized (Eshel et al.,, 2000). According to the results, the combinations
increased the maximum soil temperature over the untreated control. Given the above
considerations, the results illustrate the potential for combined application of ACPC with
solarization, in enhancing soil surface temperature and at different soil depths for
improving plant growth and in enhancing inhibition of soilborne pathogen yield.
Temperature was greater at soil surface and at 5 cm depth and it gradually decreased as the
soil depth increased. The maximum soil temperature treated with the combined solar
collector system at 5 cm was never below 40°C after 2 hour treatment and for 5 hours it was
close to 50°C.
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Lower temperatures between 34.5 and 48.8°C were recorded at the 10-cm depth. At the 20-
cm depth soil and 30-cm depth soil temperature fluctuated, between 29.3 and 36.4°C and
between 28.5 and 37.3°C, respectively, for most of the period that soil was covered with the
plastic sheets and ACPC. At the 50-cm depth soil temperature fluctuated, between 23 and
30.5°C. The temperature records in the experiment correspond to those reported by
Lamberti et al. (1999). They reported that soil temperature was never below 35°C and did
not exceed 40°C at 15 cm of depth of soil solarization during the summer while the
following year soil temperature at the 15-cm depth was between 35 and 37°C. Higher
temperature of soil solarization could be achieved by increasing the period of time exposed
to the sun light considering that the temperature approaches 40°C for the treatment
duration. However, in this experiment, the maximum soil temperatures treated the
combined solar collector system at 5- and 10-cm depths were 48.8-55.4°C during 9 hours of
the experimentation period. This level of temperature can be lethal for microorganism
populations in soil. So, high temperatures during soil treated with the combined solar
collector system were recorded in 5-10 —-cm soil profile and these depths and therefore could
inhibit soil microorganisms.

A significant observation arising from the field experiment was that the combined solar
collector system for 9 hours provided satisfactory to increased high temperature. Soil
solarization and the combined solar collector system resulted in high temperature at soil
surface and at soil depth 5 cm over the control. In these results in combination of solarization
with non-chemical control to enhance high temperature for control of microorganism wilts are
in agreement with those reported for combination of solarization with non-chemical control by
Giannakou (Giannakou et al., 2004), who reported that the combination of soil solarization
with the bio-nematicide improved the parasite control. The parasite increased in plots
compared to soil solarization and bio-nematicide plots by the end of the cropping season.

This could be partly due to the fact that soil solarization transforms soil physicochemical
characteristics and partly because the combined solar collector system also has an impact on
the soil microbial community. The combined solar collector system acts faster while soil
solarization acts slowly, but for a prolonged period of time.

In general, it could be concluded that the novel use in the present study showed promising
results by decreasing microorganism population. Soil solarization for longer time resulted in
low microorganism numbers. However, more detailed field studies are required to establish
the exact effects of soil solarization and on the microbial activity of soil and their impact on
decreasing microorganism population efficacy.

Solarization could play a role in integrated control of different soilborne diseases but alone
could not control the main soilborne diseases. Its adoption with the upgraded combined
solar collector system treatment may be used to reduce the period of solarization.
Solarization is mainly inconvenient by preventing use of the soil during the hot season, but
possesses great potential as an alternative to fumigation for soil disinfestation. Solarization
alone could control soilborne pathogens; however, the combination of soil solarization and
the combined solar collector system was effective against microorganism wilts even though
the solarization did not improve control of the individual pathogens. Moreover, at least in
one case, the combined solar collector system increased potential of inhibition of soilborne
pathogens of plants in plot area.
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4.2.2 Effect of the treatments on soil microorganisms

The responses are that solarization with CPC combined with ACPC and hot water increased
different temperature levels in the soil during the 4 hours in which the recorded temperatures
went over 61°C, 55°C and 50°C, at 0 cm, 5 cm and 10 cm soil depth, respectively, affecting the
E. cartoverora population (Table 4). The solarization with CPC combined with ACPC and hot
water had significant effects on the microbiological population in the soil. Solarization slightly
reduced the mean bacteria at 0 cm depth in 4 h about 15%. The populations of native Erwinia
spp. in non-solarization plot at 0 cm soil treated for 4 h did not reduce significantly. After half
an hour at 0-5 cm depth in the solarized with ACPC plots and solarization with CPC
combined with ACPC and hot water plot the bacterial cells were reduced and after one hour
the bacterial cell was undetectable. At 10 cm soil depth, the bacterial cells were reduced
constantly and significantly reduced after 1 h in solarization with CPC combined with ACPC
and hot water plot whereas at the 20 cm soil depth the bacterial cells were reduced constantly
and significantly reduced after 2 h of treatment.

Population of E. cartoverora (cfu g1)

TE}ISQ Non-solarization plot (cm) Solarization plot (cm)
0 5 10 20 0 5 10 20
Y2 |23x107 | 1.1x107 | 3.4x107 | 26x107 | 1.4x107 | 2.3 x107 | 2.2x107 | 2.6 x 107
21x107 | 64x107 | 23x107 | 3.2x107 | 1.6 x10¢ | 52x 107 | 4.7 x 107 | 4.4 x 107
35x107 | 1.7x107 | 42x107 | 51x107 | 1.2x105 | 23 x 106 | 53 x 107 | 2.7 x 107
64x107 | 22x107 | 1.6x107 | 24x107 | 1.4x105 | 1.6 x 106 | 1.9 x 107 | 2.9 x 107

Population of E. cartoverora (cfu g1)

Time
Solarization with CPC combined with
h . . .
(h) Solarization with ACPC plot (cm) ACPC and hot water plot (cm)

0 5 10 20 0 5 10 20

2 | 1.7x106 | 1.4x106 | 6.2x107 | 5.7x107 | 47x10¢ | 3.6 x105 | 1.4 x 107 | 2.6 x 107
1 [24x105|4.6x105 | 24x107 | 51x107 | 21x102 | 74 x103 | 4.5x 106 | 3.4 x 107
2 |51x104|65x105 | 4.7x105 | 1.6 x107 0 0 22x104 | 7.2x 100
4 |27x102|52x10% | 21x105 | 4.3 x 107 0 0 1.5x10% | 2.1 x 105

Table 4. Population of E. cartoverora at testing area, at varied time periods.

4.2.3 Effect of the treatments on seedling growth

There were significantly higher dry and fresh weights of tomato plants treated by
solarization with CPC combined with ACPC and hot water compared with the untreated
control. Treatment at soil surface with solarization with CPC combined with ACPC and hot
water for 2 hours resulted in 97.74% and 85.89% increases in dry and fresh weights of
tomato, respectively, compared to the untreated control. Treatment at soil 10 cm depth by
solarization with CPC combined with ACPC and hot water for 2 hours resulted in 45.25%
and 39.82% increases in dry and fresh weights of tomato, respectively, compared to the
untreated control (Table 5).



Effect of Solar Concentrator System on Disinfection
of Soil-Borne Pathogens and Tomato Seedling Growth 363

As in the present study, the combined solar collector system was found to increase soil
temperature, but not in toxic levels as reported in other disinfestation treatments, such as
fumigation, steaming, autoclaving and irradiation (Chen et al.,, 1991). The reductions in
microbial biomass and in the number of bacteria were expected, since the soil temperatures
that prevailed during the solarization and the combined solar collector system treatment
were high enough to cause the death of microorganisms. The data suggest that a
significantly smaller microbial population in the solarized soil compared to the non-
solarized plots. Soil disinfestations usually reduce the population of several species of
microorganism, although thermotolerant and antagonistic species may survive the
solarization treatment (Chen et al, 1991). Reductions of microorganism populations,
however, have been reported in the rhizosphere and roots of solarized plants (Gamliel and
Katan. 1992). Some bacteria are highly sensitive to soil solarization, which causes a
reduction in their population, but they rapidly recolonize the soil again (Katan and DeVay,
1991). The results obtained regarding the effect of soil solarization with ACPC on weeds
(Table 3) corroborate those of Elmore (Elmore, 1991) and Stapleton and DeVay (1995) who
have included the species Amaranthus spp. and E. indica among the ones that are susceptible
to soil solarization. In addition, it was also observed a reduction in infestation by P. oleracea
after soil solarization. The weed infestation reduction observed in the present work was
expected, considering the high soil temperatures that prevailed during soil solarization
treated with the combined solar system, especially in the surface layers. Our studies that
were carried out during day time showed that solarization treated with the combined solar
system, their effectiveness, significantly increased soil temperature and increased harvest
plant fresh weight (Table 2).

This study has demonstrated disease control and yield promotion by integrating
solarization with the combined solar system. The inoculum density of Erwinia spp. was
reduced after treatment by the combined solar system. This may be important in
circumstances when soil solarization alone is not effective. The significant interactions
between soil solarization and the combined solar collector system occurred probably
because ACPC reduced the disease in solarized areas. Solarization alone was not effective
for Erwinia at soil surface and soil 5 cm-depth for 4 hours. In the present work solarization
with ACPC had a short-term effect in the control of Erwinia population. The present work
showed that soil solarization with the combined solar collector system was suitable option
for the control of Erwinia population, in the short time during the day. Other beneficial
effects include a great reduction in weed infestation, especially in the soil surface layers,
probably due to decreases in the soil microbial population. Soil solarization and the
combined solar collector system enhance their economical viability and is an
environmentally safe technology. Some authors have been discouraged with respect to the
potential benefits of irradiation disinfection systems since they found that the efficient
removal of pathogens required high energy levels (Mavrogianopoulos et al., 2000). Increases
in soil temperature in the plot caused a decrease in Erwinia viability. Erwinia readily
decayed and lost viability when exposed for short periods under solarization and the
combined solar collector system at temperatures above 40°C. Among the solarization and
the combined solar collector systems tested, treatment at soil surface with solarization and
the combined solar collector system showed the most beneficial characteristics, as it
consistently suppressed the Erwinia cartoverora and also promoted increased plant fresh and
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dry weight compared to untreated control (Table 2). The use of treatment at solarization and
the combined solar collector system for increasing yield and for crop protection is an
attractive approach in the modern system in developing a sustainable agriculture.

Treatment Dry Percent Fresh Percent
Time (h) Depth (cm) weight (g) increase weight (g) increase
0 0 0.442 0.00 5.017 0.00
Ya 0 0.587 32.81 5.975 19.09
0 0.826 86.88 9.22 83.77
2 0 0.874 97.74 9.326 85.89
0 5 0.442 0.00 5.017 0.00
Y 5 0.594 34.39 6.172 23.02
5 0.796 80.09 8.428 67.99
5 0.847 91.63 8.952 78.43
10 0.442 0.000 5.017 0.000
Ya 10 0.494 11.77 5.297 5.58
1 10 0.573 29.64 6.474 29.04
2 10 0.642 45.25 7.015 39.82

Table 5. Effect of solarization with CPC combined with ACPC and hot water treated soil on
tomato growth response (as dry and fresh weight) as compared to untreated control.

The effects of high sub-lethal temperatures are influential in reducing Erwinia. During day
time solarization and the combined solar collector system treatment were effective in
reducing Erwinia viability as the Erwinia were subjected to sub-lethal temperatures. Soil
solarization and the combined solar collector system reduced Erwinia viability by 49.74-
89.22%. Reducing Erwinia viability in the top 5 cm of the soil would therefore ease disease
pressure in tomato crops. This study thus shows that in general, solarization and the
combined solar collector system can increase soil temperature to reduce Erwinia in the soil
and increase dry and fresh weight of plant. While the effects would not be as great deeper in
the soil, the Erwinia may still be weakened. The use of soil solarization to control crops will
be most suited to the plant growing regions. Trials are now required to determine the actual
reduction in plant afforded by this technique in the field. The combination of soil
solarization with combined solar collector system may provide more effective control of
crops than the use of soil solarization alone.

The present investigation confirmed the feasibility of controlling E. cartoverora in potato
growth by heat treatment by combined solar collector system of propagation material.
Critical time-temperature combinations were identified which resulted in a complete
inactivation of the internal bacterial population. Therefore, the heat treatments by combined
solar collector methods employed were chosen to provide a gentler form of heat to control
growth of soilborne pathogen.
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5. Conclusion

In the experimental approach it was attempted to use CPC combined with ACPC to increase
water temperature for soil disinfection and disinfestation. The system had great effects on
the microbiological population in the soil with higher heat transfer at deeper soil level and
resulting high yield of plant growth, with the advantage that it is compatible for a more
sustainable agriculture practice. The population of E. cartoverora was negative correlation of
time course of solarization with CPC combined with ACPC and hot water treatment while
increasing of tomato seedlings weight was positive correlation with the time course of the
treatment. The experiments carried out in real scale showed that the system presents
numerous advantages and pollution-free environment. Relatively high initial soil
temperatures can be achieved. In this way, the use of the solar system for a short time to
complement the CPC with ACPC application could reduce the energy required for soil
disinfestation. Increase in the soil temperature by using low cost and environment friendly
renewable energies for a short time period decrease the energy demand and could make the
system economically affordable for soil disinfestation.
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for Biofuel Synthesis and CCS
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1. Introduction

Cyanobacteria are a large group of oxygenic photoautotrophic bacteria and, like plants and
algae, can capture CO, via the Calvin-Benson cycle and convert it to a suite of organic
compounds. They are important primary producers of organic material and play significant
roles in biogeochemical cycles of carbon, nitrogen, and oxygen (Jansson and Northen 2010,
Sharma et al. 2010). Through their photosynthetic capacity cyanobacteria have been
tremendously important in shaping the course of evolution and ecological change
throughout Earth's history, and they continue to contribute to a large share of the total
photosynthetic harnessing of solar energy and assimilation of CO; to organic compounds.
For example cyanobacteria account for 30% of the annual oxygen production on Earth
(Sharma et al. 2010). Our oxygenic atmosphere was originally generated by numerous
cyanobacteria during the Archaean and Proterozoic Eras. Many cyanobacteria are
diazotrophs and can assimilate atmospheric N, and convert it to organic matter.
Cyanobacteria occupy a wide array of terrestrial, marine, and freshwater habitats, including
extreme environments such as hot springs, deserts, bare rocks, and permafrost zones. In
their natural environments, some cyanobacteria are often exposed to the highest rates of UV
irradiance known on our globe (Seckbach 2007). Cyanobacteria are Gram-negative bacteria
but they combine properties of both Gram-negative and Gram-positive bacteria (Stewart et
al. 2006); they contain an outer membrane and lipopolysaccharides (LPS), defining
characteristics of Gram-negative bacteria, and a thick, highly cross-linked peptidoglycan
layer similar to Gram-positive bacteria.

Cyanobacteria and eukaryotic microalgae exhibit a carbon-concentrating mechanism (CCM),
a biochemical system that allows the cells to raise the concentration of CO; at the site of the
carboxylating enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) up to
1000-fold over that in the surrounding medium (Fig. 1) (Badger and Price 2003, Jansson and
Northen 2010, Price et al. 2008). Details of the CCM differ between cyanobacteria but the
salient features include a series of bicarbonate (HCO;-) and CO; transporters and the
carboxysome, a protein-enclosed micro-compartment that houses (most of) the Rubisco
population and also contains the enzyme carbonic anhydrase (CA). Under low C; (as CO;
and HCOs) conditions the CCM is induced and activated, supporting active transport of
HCOs- across the outer and plasma membranes through HCOs-/Na* symports or ATP-
driven uniports, as well as diffusion of CO,, into the cytosol (Price et al. 2008). Uptake of
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CO; is facilitated by CA-harboring NADPH dehydrogenase (NDH) complexes on the
thylakoid and plasma membranes that converts the incoming CO, to HCOs- (reaction (1)).
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Fig. 1. The two modes of CO, uptake in cyanobacteria. Via photosynthesis, CO; is captured
and converted to organic compounds, which can be exploited as biofuels or other industrial
chemicals. In the calcification process, CO: is converted to inorganic CaCO;, e.g. as calcite,
which can be sequestered.

CO; + H,0 5 H* + HCOy )

Under these conditions, HCOs- is the predominant C; species taken up by the cells. The
cytosolic HCOs- subsequently enters the carboxysome where CA converts it to CO; for the
Rubisco reaction (Jansson and Northen 2010, Price et al. 2008). At non-limiting C;
concentrations the CCM recedes to a basic, constitutive level, characterized by mainly CO;
uptake (Price et al. 2008).

In addition to photosynthetic reduction of CO; to organic compounds, many cyanobacteria
can take up CO; and mineralize it to recalcitrant calcium carbonate (CaCOs) (see Section 3
below). Thus cyanobacteria present two different modes of CO, uptake, via photosynthesis
and the Calvin-Benson cycle, and via biomineralization (calcification) (Fig. 1).

2. Cyanobacteria as photosynthetic bioreactors for direct conversion of CO,
to hydrocarbon fuels

Cyanobacteria are well suited for synthetic biology and metabolic engineering approaches
for the phototrophic production of various desirable biomolecules, including ethanol,
butanol, alkylesters, and hydrocarbon biofuels. Phototrophic biosynthesis of high-density
liquid biofuels in cyanobacteria would serve as a nice complement to the microbial
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production of biodiesel and hydrocarbons in heterotrophic bacteria such as E. coli. Two
biofuels that are being considered in microbial production systems are alkanes and
isoprenoids. Alkanes of defined chain lengths can be used as injection fuel similar to
gasoline and jet fuel. Many cyanobacteria synthesize alkanes, albeit at minute quantities.
Optimizing the expression of the alkane biosynthesis genes and enhancing the carbon flux
through the fatty acid and alkane biosynthesis pathways should lead to the accumulation
and/or secretion of notable amounts of alkanes. It also becomes important to understand
how to control the chain lengths of the produced alkane molecules. Isoprenoids, e.g. the
monoterpene pinene and the sesquiterpene farnesene, are considered precursors for future
biodiesel or next-generation jet fuel. Cyanobacteria produce carotenoids and extending the
carotenoid biosynthetic pathways by introduction of constructs for appropriate terpene
synthases should allow the biosynthesis of selected mono- and sesquiterpenes.
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Fig. 2. Fatty acid and lipid biosynthesis in cyanobacteria. ACC, acetyl-coA carboxylase; ACP,
acyl carrier protein; AGPAT, acylglycerol-3-phosphate acyltransferase; FabA /FabZ, -
Hydroxyacyl-ACP dehydratase/isomerase; FabB $-Ketoacyl-ACP synthase I; FabD,
malonyl-CoA:ACP transacylase; FabF, 8-Ketoacyl-ACP synthase II; FabG, 8-Ketoacyl-ACP
reductase; FabH, 3-Ketoacyl-ACP synthase III; Fabl, enoyl-ACP reductase I; G3P, glycerol-3-
PGPAT, glycerol-r-P acyltransferase; PA, phosphatidic acid.
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Fig. 3. Fatty acid and lipid biosynthesis in plants. AAS, acyl-ACP synthetase; ACC, acetyl-
CoA carboxylase; ACP, acyl carrier protein; ACBP, acyl-CoA binding protein; ACS, acyl-
CoA synthase; ACD, acyl-CoA dehydrogenase; ACX, acyl-CoA oxidase; CDP-DAG, cytidine
diphosphate diacylglycerol; DAG, diacylglycerol; DGAT, diacylglycerol acyltransferase;
DHAP, dyhydroxyacetone phosphate; ER, endoplasmatic reticulum; G3P, glycerol-3-P;
GAP, glyceraldehyde 3-P; TAG, tryacylglyceride.

2.1 Biosynthesis of alkanes

The pathway for alkane synthesis in cyanobacteria is a two-step process downstream of
fatty acid (FA) synthesis and seems to proceed via decarbonylation of fatty aldehydes
(Schirmer et al. 2010), the major route for alkane synthesis in most organisms (Ladygina et
al. 2006). FA synthesis in bacteria is accomplished by a type II FA synthase (FASII), a
multienzyme system, utilizing a freely dissociable acyl carrier protein ACP. The products of
FASII are released as acyl-ACPs and may be directly incorporated into membrane lipids by
acyltransferases that attach a FA to the glycerol 3-phosphate backbone to form the key
intermediate, phosphatidic acid. This is in contrast to FA synthesis in eukaryotes, where
acyl-ACPs are either hydrolyzed by acyl-ACP thioesterases (TE; EC 3.1.2.14) to yield free
FAs, or directly transferred to CoA for generation of acyl-CoA. For example, in plants and
algae, where FA synthesis takes place on FASII complexes in the plastids, the release of free
FAs are required for transport across the plastid envelope. Upon arrival at the outer plastid
surface, the free FAs are re-activated by acyl-CoA synthetase (FadD; EC 6.2.1.3) to form acyl-
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CoA. Acyl-CoA is the starting substrate for synthesis of TAGs but can also be used for -
oxidation and for synthesis of membrane lipids.
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Fig. 4. Rationale for biosynthesis of alkane fuels in cyanobacteria. AAR; acyl-ACP reductase;
AAS, acyl-ACP synthetase; ACC, acetyl-CoA carboxylase; ACP, acyl carrier protein; FAD,
fatty acyl decarbonylase; FA, fatty acid; FASII, fatty acid synthase complex type II; FDH,
formate dehydrogenase; PHAS, polyhydroxyalkanoate synthase; PHB,
polyhydroxybutyrate; TE, thioesterase.

Most bacteria lack intracellular TEs that act on FA-ACPs, and the formation of free FAs
mainly occurs during recycling of membrane lipids or degradation of acylated proteins. E.
coli and other bacteria that can take up and metabolize exogenous FAs possess periplasmic
TEs (e.g. TesA in E. coli (Cho and Cronan 1994)) that liberate FAs for import. Heterologous
expression of TEs, primarily from plants, in bacteria has resulted in high production of free
FAs (Jha et al. 2006, Jones et al. 1995, Steen et al. 2010, Voelker and Davies 1994, Yuan et al.
1995). The concomitant decrease in acyl-ACP levels also relieves the rigorous feedback
inhibition of acetyl-CoA carboxylase (ACC; EC 6.4.1.2) (and other FA-biosynthesis enzymes)
exerted by this end product. ACC catalyzes the rate-limiting step in FA synthesis and thus
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expression of TEs in the cytosol of bacteria has the dual effect of producing free FAs and
enhancing FA synthesis.

The decarbonylation pathway implies the involvement of the Fatty acyl-CoA or Fatty acyl-
ACP reductase (FadR; EC 1.2.1.50), and Fatty aldehyde decarbonylase (FAD; EC 4.1.99.5)
(Walsh et al. 1998; Ladygina et al. 2006) (Fig. 2). Gene sequences for FadR and FAD have
recently been identified from several cyanobacteria (Schirmer et al. 2010). Interestingly, the
decarbonylation step in cyanobacterial alkane biosynthesis may involve the release of
formate (HCOO") rather than CO (Warui et al. 2011).

To generate alkanes of desired chain lengths (e.g., Cs, Cio, and Ci» saturated species) for
diesel, jet fuel or gasoline alternatives, cyanobacteria can be engineered to contain genes
encoding TEs (Fig. 4) with different substrate specificities. For example, FatB from
Arabidopsis (Accession NP_172327), FatB2 from Cuphea hookeriana (GenBank: U39834.1),
FatB1 (pCGN3822) from Umbellularia californica (GenBank: M94159.1), and FatB1 from C.
hookeriana (GenBank: Q39513.1). Another potential TE is the mature TES enzyme from E. coli
(Cho and Cronan 1994). In addition to inserting an appropriate TE, high-yield production of
free FAs in cyanobacteria also require additional optimization by increasing the carbon flux
towards FA synthesis. Such efforts can entail the insertion of extra copies of the gene for
ACC, which catalyzes the rate-limiting step in FA-ACP synthesis. ACC is a heterotetramer
consisting of AccA, AccB, AccC, and AccD. The genes for the different subunits are
distributed in most, if not all, cyanobacterial genomes. For the sake of increasing ACC
activity, an ACC operon can be constructed behind a strong promoter. Intuitively, another
optimizing step would be to inactivate the AAS gene to prevent re-thioesterification of free
FAs. However, since AAS rather than FadD may serve as the sole FA-activating enzyme in
cyanobacteria, the yield of metabolites downstream of acyl-ACP, like alkanes, might benefit
from increasing the copy number of AAS genes so as to speed up the activation of recycled
FAs from the degradation of membrane lipids (Figs. 2, 4). With few exceptions, AAS exists
as a single-copy gene in cyanobacteria, encoding an enzyme with broad substrate specificity
(Kaczmarzyk and Fulda 2010). For the single purpose of free FA production, a simultaneous
increase in AAC activity and inactivation of the gene for AAS is likely to improve the yield.

The physiological role(s) of alkanes in cyanobacteria is unknown. Not all cyanobacteria
synthesize alkanes and in those that do, alkanes accumulate in very small amounts. It is
possible that alkanes are required for proper membrane fluidity or function. Alternatively,
they serve as carbon storage compounds under excess carbon and/or nutrient deficiency
conditions. Although heptadecane (Cy7) is the predominant n-alkane among cyanobacteria,
many strains synthesize a wide array of linear, branched, and cyclic alkanes, some of which,
e.g. branched methyl- and ethylalkanes, are only found in these microorganisms (Dembitsky
et al. 2001, Jansson 2011). For example, the cyanobacterium Microcoleus vaginatus produces
four n-alkanes and more than 60 different branched alkanes (Dembitsky et al. 2001). Another
strain that merits emulation is Anabaena cylindrica, which was shown to form Co-Cis n-
alkanes under high NaCl stress conditions (Bhadauriya et al. 2008), presumably due to an
increase in short-chain FA during salt stress. It should be noted that Ci2-Cy6 n-alkanes are
particularly well suited as jet fuel. Whether the difference in alkane composition observed
between cyanobacterial strains and growth conditions reflect the existence of FAR and FAD
enzymes with different chain length specificities, or whether alkane chain length is
determined at the FA level, is not yet clear. In the latter case, FAR and FAD would be
expected to exhibit broad substrate specificities.
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Fig. 5. Rationale for biosynthesis of isoprenoid fuels in cyanobacteria. CDP-ME
diphosphocitidyl methylerythritol; CDP-MEP, diphosphocitidyl methylerythrotol 2-P; Chl,
chlorophyll; DMAPP, dimethylallyl diphosphate; DXP, deoxyxylose 5-P; DxS, DXP synthase;
DxR, DXP reductoisomerase; FPP, farnesyl diphosphate; G3P, Glyceraldehyde 3-P; Gepe
(IspG), HMBPP synthase; GPP, geranyl diphosphate; GGPP, geranylgeranyl diphosphate;
GPPS, GPP synthase; GGPS, GGPP synthase; HMBPP, hydroxymethylbutenul; IspD, CDP-ME
synthase; IspE, CDP-ME kinase; IspF, Me-cPP synthase; IspH, HMBPP reductase; IspS,
isoprene synthase; Ipi, IPP isomerase; IPP, isopentenyl diphosphate; ME-cPP, methylerythritol
2,4-cyclodiphosphate; MEP, methylerythritol 4-P; Pyr, pyruvate; TS, terpene synthase.

2.2 Biosynthesis of isoprenoids

Branched hydrocarbons, which have higher octane rating than n-alkanes, can be produced
by engineering the carotenoid pathway in cyanobacteria. While it is possible to use
carotenoids themselves to make gasoline, e.g. via hydrocracking (Hillen et al. 1982), many
carotenoids are solid at room temperature, complicating refining approaches. Cyanobacteria
contain genes for carotenoid synthesis and thus synthesize geranyl pyrophosphate (GPP),
farnesyl pyrophosphate (FPP), and geranylgeranyl pyrophosphate (GGPP), which are
precursors for monoterpenes, sesqui- and triterpenes, and di- and tetraterpenes, respectively
(Fig. 3). Most, if not all cyanobacteria produce sesquiterpenes such as geosmine, and
monoterpenes such as 2-methylisoborneol (Agger et al. 2008) but synthesis of isoprene in
naturally occurring cyanobacteria has not been reported. By introduction of an isoprene
synthase (IspS) gene based on the mature enzyme from the Kudzu plant (Pueraria montana;
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GenBank: AY316691), Lindberg et al., (2010) demonstrated the production of volatile
isoprene hydrocarbons in the cyanobacterium S. 6803 (Lindberg et al. 2010). The rationale
for engineering cyanobacteria for isoprene, monoterpene, or sesquiterpene synthesis is
straightforward as it involves the addition of a single gene, IspS or different terpene
synthases (TS). A desirable objective will be to extend the carotenoid pathway for synthesis
of pinene (a monoterpene), and farnesene (a sesquiterpene). Pinene is being considered for
next-generation jet fuel, and farnesene is being developed as precursors to diesel fuels (Rude
and Schirmer 2009). For example, synthetic gene constructs could be based on the mature
proteins of (-)-a-pinene synthase from Pinus taeda (GenBank: AF543527.1), and a-farnesene
synthase from Pyrus communis (GenBank: AY566286.1).

3. Cyanobacteria as catalysts for biomineralization of CO, to calcium
carbonate

Biomineralization offers the potential to utilize photosynthetic microorganisms like
cyanobacteria as solar-powered catalysts for the conversion of CO, to recalcitrant
carbonates, primarily calcium carbonate (CaCOs). If implemented at scale such calcifying
systems could conceivably be deployed for biological carbon capture and storage (CCS) by
sequestering point-source CO, (Jansson and Northen 2010). Microbial calcification, i.e.
formation and precipitation of CaCOs, is widespread in nature and among microorganisms,
and of vast ecological and geological importance. Spectacular manifestations of
cyanobacterial calcification are presented by stromatolites and whiting events (Jansson and
Northen 2010). Another magnificent illustration of microbial calcification is the White Cliffs
of Dover, which are mainly eukaryotic microalgal in origin.

Precipitation of CaCOj; can proceed by either or both the following reactions:
Ca2 + 2HCO3- 5 CaCO; + CO2 + HO )

Ca?* + COs2 5 CaCOs 3)
Bicarbonate (HCOs") is ubiquitous in water and is formed via dissolution of gaseous CO- at
pH values above about 6.0 at 25 °C:

CO, g H,O S H,COs3 (4)

H,CO5 5 HCOx + H* )

The concentration of carbonic acid (H>COs) is small in circumneutral pH waters, so the
dissolved CO; from reactions 3 and 4 occurs predominantly as HCOs-.

A fraction of HCOs- dissociates to form carbonate (COs):

HCOs 5 H* + COs2 (6)

Spontaneous calcification is often impeded by thermodynamic barriers, also in systems
supersaturated with Ca2* and COs? such as the oceans, (Berry et al. 2002). Cyanobacteria
catalyze the calcification reaction(s) on their cell surface, the exopolysaccharide substances
(EPS) layer, or the proteinaceous surface layer (S-layer), by one or both of two mechanisms
(Jansson and Northen 2010). The photosynthetic electron transport and the CA activity in
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the carboxysome (reaction (6)) both consume cytosolic H*, resulting in a net increase of OH-
in the cytosol. Neutralization of this imbalance, e.g. by the activity of a Ca2*/H* antiport,
generates an alkaline microenvironment on the outer cell surface. The alkaline pH shifts the
equilibrium of the bicarbonate buffer system (reactions (4) and (5)) to the right and promotes
localized regions of increased COs? concentrations at the cell exterior (Fig. 1). A second
means by which cyanobacteria can catalyze calcification is by the presence of Ca2*-binding
domains, e.g. glutamate and aspartate residues, or carboxylate and sulfonate groups, on the
cell surface, which, together with the export of Ca2* through the Ca2*/H* translocator, raises
the local Ca?* concentration and serve as nucleation sites for CaCOs precipitation.

The physiological or biochemical function(s) of calcification in cyanobacteria are unclear,
although some possibilities have been suggested (Jansson and Northen 2010). Since
calcification will remove Ca?* from chemical equilibria and may offer a means to sustain an
active efflux of Ca2* via the Ca?*/H* translocator, which, in turn, generates a H* gradient
that may enhance nutrient and HCO; uptake (McConnaughey and Whelan 1997). A
calcerous cell surface may also provide a protective layer against excessive light exposure.

In the context of evaluating the concept of cyanobacterial calcification for biological CCS,
there are several outstanding issues that need to be addressed. First, it should be recognized
that calcification as a natural phenomenon by marine or freshwater phytoplankton serves as
a CO; source rather than a sink, i.e., calcification releases CO; to the atmosphere (Riebesell
2004). This can most easily be appreciated by looking at reaction (1) but, because of the
HCOs- buffer system in oceans and lakes, it applies to reaction (2) as well (Frankignoulle
1994, Frankignoulle and Canon 1994). This global effect of calcification should not be
confused with its potential use for biological CCS. In such a scenario, the comparison should
be made between CO; in flue gas, e.g., from a coal-fired power plant, being released to the
atmosphere, or being partly captured by cyanobacteria and converted to CaCO; for
precipitation. Second, assuming biocalcification as a means to mitigate CO, emissions, the
question arises as to whether such a process can operate at a level that is industrially
relevant. Combining observations from whiting events in the Great Bahama Bank and
microcosm experiments with the marine Synechococcus 8806 (S. 8806), Lee et al. (Lee et al.
2006) suggested that S. 8806 is able to produce around 2.5 MT CaCOjs per year, which would
translate to a removal of half of the CO, emitted from a 500 MW coal-fired power plant.
Although these data would tend to imply that cyanobacterial calcification is a viable CCS
alternative, it is not immediately obvious from the calculations at what scale (e.g. the size of
the culture pond) such a system would need to run. A third question concerns the diurnal
fluctuations of the calcification process. If photosynthesis is required to maintain a necessary
alkaline pH at the cell surface for calcification to occur, it is not clear to what extent the
formed CaCO; is stable enough to prevent its dissolution during the night.

Another issue that also relates to the pH of the cyanobacterial culture is whether or not
calcification can operate at high CO; levels, e.g., in a pond infused with flue gas. In a high-
CO; environment, the activity of the CCM is low and cells will preferentially take up CO»
rather than HCOg3-. The conversion of CO; during transport to the cytosol (Fig. 1) produces
H* (reaction 6) that need to be neutralized, possibly via export to the medium (Price et al.
2008). This counterbalances the subsequent and opposite alkalinization reaction in the
carboxysome. Also, rapid infusion of gaseous CO, into a cyanobacterial pond will likely
lower the ambient pH, impeding alkalinization at the extracellular surface.
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Fig. 6. Model of the carbon concentrating mechanism (CCM) and calcification in a
cyanobacterial cell. CO; enters the cells mainly via active transport of HCOs- but also
through diffusion of CO,, which is converted to HCO;- during the uptake. Cytosolic HCOs-
is subsequently imported to the carboxysome. CA, carbonic anhydrase; C;, inorganic carbon;
EPS, exopolysaccharide substances; NDH, NADPH dehydrogenase; PET photosynthetic
electron transport. Modified from Jansson and Northen.

4. Conclusions

The employment of cyanobacteria as a biofuel platform offers great potential. Most of the
attention in the algal biofuel space is currently devoted to eukaryotic microalgae, mainly
because of their capacity to store large amounts of TAGs. However, recent demonstrations
of FA ethylesters (FAEE; a biodiesel) and hydrocarbon fuels biosynthesis in E. coli
(Kalscheuer et al. 2006; Beller et al. 2010; Schirmer et al. 2010; Steen et al. 2010) suggest that
similar strategies in pathway engineering should prove achievable also in cyanobacteria,
where photosynthesis, rather than organic feedstocks, will provide energy and carbon.
Furthermore, cyanobacteria have previously been engineered to produce alcohol-based fuels
such as ethanol and isobutanol (Deng and Coleman 1999; Atsumi et al. 2009).

The capacity of cyanobacteria to thrive in high CO, concentrations makes them an attractive
system for beneficial recycling of CO, from point sources such as coal-fired power plants via
biofuel synthesis, and for biological CCS via calcification. Since many cyanobacteria are
halophilic, cultivation ponds can be sited away from agricultural land making use of
seawater or various sources of saline wastewater.
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Non-arguably, much research is needed to address challenges associated with utilization of
cyanobacterial for biofuel synthesis or CCS. In addition to issues already discussed above,
two more concerns are worth pointing out. Since algal cultivation requires measures for
crop protection, it becomes important to learn how to construct robust consortia, or how to
prevent or mitigate contamination and grazing of monocultures in open pond systems.
Another hurdle in the algal biofuel industry is associated with harvesting and extraction,
steps that account for 25-30% of the total biomass production cost; and strategies that
facilitate, or obviate the need for, these steps need to be further developed. One solution is
to use filamentous or self-flocculating strains to expedite harvesting. Another approach is to
achieve release of the biofuel molecules to the medium, either through cell lysis or by
secretion. An example of the former is an inducible lysis system reported for S. 6803 (Curtiss
et al. 2011, Liu and Curtiss 2009). The feasibility of secretion was illustrated by the release of
free FAs from S. 6803 and Synechococcus elongatus PCC 7942 cells to the medium after
inactivation of the AAS gene (Kaczmarzyk and Fulda 2010).
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