USGS

science for a changing world

Techniques of Water-Resources Investigations of the United States Geological Survey

Book 4, Hydrologic Analysis and Interpretation

Chapter A3

Statistical Methods
in Water Resources

By D.R. Helsel and R.M. Hirsch



U.S. DEPARTMENT OF THE INTERIOR
GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY
Charles G. Groat, Director

September 2002

The use of firm, trade, and brand names in this report is for identification purposes only and does
not constitute endorsement by the U.S. Geological Survey.

Publication available at:
http://water.usgs.gov/pubs/twri/twri4a3/



Table of Contents

Preface

Chapter 1 Summarizing Data
1.1 Characteristics of Water Resources Data

1.2 Measures of Location
1.2.1  Classical Measure -- the Mean
1.2.2  Resistant Measure -- the Median
1.2.3  Other Measures of Location
1.3 Measures of Spread
1.3.1 Classical Measures
1.3.2  Resistant Measures
1.4 Measures of Skewness
1.4.1  Classical Measure of Skewness
1.4.2  Resistant Measure of Skewness
1.5 Other Resistant Measures
1.6 Outliers

1.7 Transformations
1.7.1 'The Ladder of Powers

Chapter 2 Graphical Data Analysis

2.1 Graphical Analysis of Single Data Sets
2.1.1 Histograms
2.1.2  Stem and Leaf Diagrams
2.1.3  Quantile Plots
2.1.4 Boxplots
2.1.5 Probability Plots

2.2 Graphical Comparisons of Two or More Data Sets
2.2.1 Histograms
2.2.2 Dot and Line Plots of Means, Standard Deviations
2.2.3  Boxplots
2.2.4  Probability Plots
2.2.5 Q-Q Plots

2.3 Scatterplots and Enhancements

X1

O O 0 1 1 & Ul W W N =

—_ =
- O O

—_ =
NS

17

19
19
20
22
24
26

35
35
35
38
40
41

45



il

2.3.1 Evaluating Linearity 45

2.3.2  Evaluating Differences in Location on a Scatterplot 47
2.3.3  Evaluating Differences in Spread 50
2.4 Graphs for Multivariate Data 51
2.4.1 Profile Plots 51
2.4.2  Star Plots 53
2.4.3  Trilinear Diagrams 56
2.4.4  Plots of Principal Components 58
2.4.5 Other Multivariate Plots 59
Chapter 3 Describing Uncertainty 65
3.1 Definition of Interval Estimates 66
3.2 Interpretation of Interval Estimates 67
3.3 Confidence Intervals for the Median 70
3.3.1  Nonparametric Interval Estimate for the Median 70
3.3.2 Parametric Interval Estimate for the Median 73
3.4 Confidence Intervals for the Mean 74
3.4.1  Symmetric Confidence Interval for the Mean 75
3.4.2  Asymmetric Confidence Interval for the Mean 76
3.5. Nonparametric Prediction Intervals 76
3.5.1 Two-Sided Nonparametric Prediction Interval 77
3.5.2  One-Sided Nonparametric Prediction Interval 78
3.6 Parametric Prediction Intervals 80
3.6.1 Symmetric Prediction Interval 80
3.6.2  Asymmetric Prediction Intervals 80
3.7 Confidence Intervals for Percentiles (Tolerance Intervals) 82
3.7.1  Nonparametric Confidence Intervals for Percentiles 83
3.7.2  Nonparametric Tests for Percentiles 84
3.7.3 Parametric Confidence Intervals for Percentiles 88
3.7.4 Parametric Tests for Percentiles 90
3.8 Other Uses for Confidence Intervals 90
3.8.1 Implications of Non-Normality for Detection of Outliers 90
3.8.2 Implications of Non-Normality for Quality Control 91
3.8.3 Implications of Non-Normality for Sampling Design 93
Chapter 4 Hypothesis Tests 97
4.1 Classification of Hypothesis Tests 99
4.1.1 Classification Based on Measurement Scales 99

4.1.2 Classification Based on the Data Distribution 100



4.2 Structure of Hypothesis Tests
4.2.1 Choose the Appropriate Test
4.2.2 Establish the Null and Alternate Hypotheses
4.2.3 Decide on an Acceptable Error Rate ot
4.2.4 Compute the Test Statistic from the Data
4.2.5 Compute the p-Value
4.2.6 Make the Decision to Reject Hp or Not
4.3 The Rank-Sum Test as an Example of Hypothesis Testing

4.4 Tests for Normality

Chapter 5 Differences Between Two Independent Groups

5.1 The Rank-Sum Test
5.1.1  Null and Alternate Hypotheses
5.1.2 Computation of the Exact Test
5.1.3 'The Large Sample Approximation
5.1.4  The Rank Transform Approximation
5.2 The t-Test
5.2.1 Assumptions of the Test
5.2.2 Computation of the t-Test
5.2.3 Modification for Unequal Variances
5.2.4  Consequences of Violating the t-Test's Assumptions
5.3  Graphical Presentation of Results
5.3.1 Side-by-Side Boxplots
532  Q-Q Plots
5.4 Estimating the Magnitude of Differences Between Two Groups
5.4.1 The Hodges-Lehmann Estimator
5.4.2 Confidence Interval for A
5.4.3 Difference Between Mean Values
5.4.4 Confidence Interval for X -y

Chapter 6 Matched-Pair Tests
6.1 The Sign Test
6.1.1  Null and Alternate Hypotheses
6.1.2  Computation of the Exact Test
6.1.3 'The Large Sample Approximation
6.2 The Signed-Rank Test
6.2.1  Null and Alternate Hypotheses
6.2.2 Computation of the Exact Test
6.2.3 The Large Sample Approximation
6.2.4 The Rank Transform Approximation

101
101
104
106
107
108
108

109
113

117

118
118
119
121
123

124
124
125
125
127
128
128
129
131
131
132
134
134

137

138
138
138
141

142
142
143
145
147

1ii



iv

6.3 The Paired t-Test
6.3.1 Assumptions of the Test
6.3.2 Computation of the Paired t-Test
6.4 Consequences of Violating Test Assumptions
6.4.1 Assumption of Normality (t-Test)
6.4.2  Assumption of Symmetry (Signed-Rank Test)
6.5 Graphical Presentation of Results
6.5.1 Boxplots
6.5.2  Scatterplots With X=Y Line
6.6  Estimating the Magnitude of Differences Between Two Groups
6.6.1 The Median Difference (Sign Test)
6.6.2 The Hodges-Lehmann Estimator (Signed-Rank Test)
6.6.3 Mean Difference (t-Test)

Chapter 7 Comparing Several Independent Groups

7.1  Tests for Differences Due to One Factor

7.1.1  The Kruskal-Wallis Test

7.1.2  Analysis of Variance (One Factor)
7.2 Tests for the Effects of More Than One Factor

7.2.1  Nonparametric Multi-Factor Tests

7.2.2  Multi-Factor Analysis of Variance -- Factorial ANOVA
7.3 Blocking -- The Extension of Matched-Pair Tests

7.3.1  Median Polish

7.3.2  'The Friedman Test

7.3.3 Median Aligned-Ranks ANOVA

7.3.4  Parametric Two-Factor ANOVA Without Replication
7.4 Multiple Comparison Tests

7.4.1  Parametric Multiple Comparisons

7.4.2  Nonparametric Multiple Comparisons
7.5 Presentation of Results

7.5.1  Graphical Comparisons of Several Independent Groups

7.5.2  Presentation of Multiple Comparison Tests

Chapter 8 Correlation

8.1 Characteristics of Correlation Coefficients
8.1.1 Monotonic Versus Linear Correlation

8.2 Kendall's Tau
8.2.1 Computation
8.2.2 Large Sample Approximation
8.2.3 Cotrection for Ties

147
147
148
149
149
150
150
151
151
153
153
153
155

157
159
159
164
169
170
170
181
182
187
191
193
195
196
200
202
202
205

209

210
210
212
212
213
215



8.3 Spearman's Rho

8.4 Pearson's r

Chapter 9 Simple Linear Regression

9.1 The Linear Regression Model
9.1.1 Assumptions of Linear Regression

9.2 Computations
9.2.1 Properties of Least Squares Solutions

9.3 Building a Good Regression Model

9.4 Hypothesis Testing in Regression
9.4.1 Test for Whether the Slope Differs from Zero
9.4.2 Test for Whether the Intercept Differs from Zero
9.4.3 Confidence Intervals on Parameters
9.4.4 Confidence Intervals for the Mean Response
9.4.5 Prediction Intervals for Individual Estimates of y
9.5 Regression Diagnostics
9.5.1 Measures of Outliers in the x Direction
9.5.2  Measures of Outliers in the y Direction
9.5.3 Measures of Influence
9.5.4 Measures of Serial Correlation
9.6 Transformations of the Response (y) Variable
9.6.1 To Transform or Not to Transform?
9.6.2 Consequences of Transformation of y
9.6.3 Computing Predictions of Mass (Load)
9.64 An Example

9.7  Summary Guide to a Good SLR Model

Chapter 10  Alternative Methods to Regression

10.1 Kendall-Theil Robust Line
10.1.1 Computation of the Line
10.1.2 Properties of the Estimator
10.1.3 Test of Significance
10.1.4 Confidence Interval for Theil Slope

10.2  Alternative Parametric Linear Equations
1021 OLSof X on'Y
10.2.2 Line of Organic Correlation
10.2.3 Least Normal Squares
10.2.4 Summary of the Applicability of OLS, LOC and LNS

10.3 Weighted Least Squares
10.4 Iteratively Weighted Least Squares

217
218

221

222
224

226
227

228

237
237
238
239
240
241
244
246
246
248
250
252
252
253
255
257

201

265

206
206
267
272
273
274
275
276
278
280

280
283



vi

10.5

Smoothing
10.5.1 Moving Median Smooths
10.5.2 LOWESS
10.5.3 Polar Smoothing

Chapter 11 Multiple Linear Regression

11.1
11.2
11.3

11.4

11.5

11.6

11.7
11.8

Why Use MLR?
MILR Model

Hypothesis Tests for Multiple Regression
11.3.1 Nested F Tests
11.3.2 Overall F Test
11.3.3 Partial F Tests
Confidence Intervals
11.4.1 Variance-Covariance Matrix
11.4.2 Confidence Intervals for Slope Coefficients
11.4.3 Confidence Intervals for the Mean Response
11.4.4 Prediction Intervals for an Individual y
Regression Diagnostics
11.5.1 Partial Residual Plots
11.5.2 Leverage and Influence
11.5.3 Multi-Collinearity
Choosing the Best MLLR Model
11.6.1 Stepwise Procedures
11.6.2 Overall Measures of Quality
Summary of Model Selection Criteria

Analysis of Covariance
11.8.1 Use of One Binary Variable
11.8.2 Multiple Binary Variables

Chapter 12 Trend Analysis

12.1

12.2

12.3

General Structure of Trend Tests
12.1.1 Purpose of Trend Testing
12.1.2 Approaches to Trend Testing
Trend Tests With No Exogenous Variable
12.2.1 Nonparametric Mann-Kendall Test
12.2.2 Parametric Regression of Y on T
12.2.3 Comparison of Simple Tests for Trend
Accounting for Exogenous Variables
12.3.1 Nonparametric Approach
12.3.2 Mixed Approach

285
285
287
291

295
296
296

297
297
298
298
299
299
299
300
300
300
301
301
305
309
310
313
315

316
316
318

323
324
324
325
326
326
328
328
329
334
335



12.3.3 Parametric Approach
12.3.4 Comparison of Approaches
12.4 Dealing With Seasonality
12.4.1 The Seasonal Kendall Test
12.4.2 Mixture Methods
12.4.3 Multiple Regression With Periodic Functions
12.4.4 Comparison of Methods
12.4.5 Presenting Seasonal Effects
12.4.6 Differences Between Seasonal Patterns
12.5 Use of Transformations in Trend Studies
12.6 Monotonic Trend versus Two Sample (Step) Trend

12.7 Applicability of Trend Tests With Censored Data

Chapter 13 Methods for Data Below the Reporting Limit

13.1 Methods for Estimating Summary Statistics
13.1.1 Simple Substitution Methods
13.1.2 Distributional Methods
13.1.3 Robust Methods
13.1.4 Recommendations
13.1.5 Multiple Reporting Limits

13.2 Methods for Hypothesis Testing
13.2.1 Simple Substitution Methods
13.2.2 Distributional Test Procedures
13.2.3 Nonparametric Tests
13.2.4 Hypothesis Testing With Multiple Reporting Limits
13.2.5 Recommendations

13.3 Methods For Regression With Censored Data
13.3.1 Kendall's Robust Line Fit
13.3.2 Tobit Regression
13.3.3 Logistic Regression
13.3.4 Contingency Tables
13.3.5 Rank Cotrrelation Coefficients
13.3.6 Recommendations

Chapter 14 Discrete Relationships
14.1 Recording Categorical Data

14.2 Contingency Tables (Both Variables Nominal)
14.2.1 Performing the Test for Independence
14.2.2 Conditions Necessary for the Test
14.2.3 Location of the Differences

14.3 Kruskal-Wallis Test for Ordered Categorical Responses

335
336

337
338
340
341
342
343
344

346
348
352

357

358
358
360
362
362
364

366
366
367
367
369
370
371
371
371
372
373
373
374

377
378

378
379
381
382

382

vii



viii

14.3.1 Computing the Test
14.3.2 Multiple Comparisons
14.4 Kendall's Tau for Categorical Data (Both Variables Ordinal)
14.4.1 Kendall's T}, for Tied Data
14.4.2 Test of Significance for T,

14.5 Other Methods for Analysis of Categorical Data

Chapter 15 Regression for Discrete Responses

15.1 Regression for Binary Response Variables
15.1.1 Use of Ordinary Least Squares

15.2 Logistic Regression
15.2.1 Important Formulae
15.2.2 Computation by Maximum Likelihood
15.2.3 Hypothesis Tests
15.2.4 Amount of Uncertainty Explained, R2
15.2.5 Comparing Non-Nested Models

15.3 Alternatives to Logistic Regression
15.3.1 Discriminant Function Analysis
15.3.2 Rank-Sum Test

15.4 Logistic Regression for More Than Two Response Categories
15.4.1 Otrdered Response Categories
15.4.2 Nominal Response Categories

Chapter 16 Presentation Graphics
16.1 The Value of Presentation Graphics

16.2 Precision of Graphs
16.2.1 Color
16.2.2 Shading
16.2.3 Volume and Area
16.2.4 Angle and Slope
16.2.5 Length
16.2 6 Position Along Nonaligned Scales
16.2.7 Position Along an Aligned Scale

16.3 Misleading Graphics to be Avoided
16.3.1 Perspective
16.3.2 Graphs With Numbers
16.3.3 Hidden Scale Breaks
16.3.4 Overlapping Histograms

References

383
385
385
385
388

390

393

394
394

395
395
396
397
398
398

402
402
402
403

403
405

409
410

411
412
413
416
417
420
421
423
423
423
426
427
428

433



Appendix A
Appendix B
Appendix C
Appendix D

Index

Construction of Boxplots
Tables
Data Sets

Answers to Exercises

451

456

468

469

503

ixX






Preface

This book began as class notes for a course we teach on applied statistical methods to
hydrologists of the Water Resources Division, U. S. Geological Survey (USGS). It reflects our
attempts to teach statistical methods which are appropriate for analysis of water resources data.
As interest in this course has grown outside of the USGS, incentive grew to develop the material
into a textbook. The topics covered are those we feel are of greatest usefulness to the practicing
water resources scientist. Yet all topics can be directly applied to many other types of
environmental data.

This book is not a stand-alone text on statistics, or a text on statistical hydrology. For example,
in addition to this material we use a textbook on introductory statistics in the USGS training
course. As a consequence, discussions of topics such as probability theory required in a general
statistics textbook will not be found here. Derivations of most equations are not presented.
Important tables included in all general statistics texts, such as quantiles of the normal
distribution, are not found here. Neither are details of how statistical distributions should be
fitted to flood data -- these are adequately covered in numerous books on statistical hydrology.

We have instead chosen to emphasize topics not always found in introductory statistics
textbooks, and often not adequately covered in statistical textbooks for scientists and engineers.
Tables included here, for example, are those found more often in books on nonparametric
statistics than in books likely to have been used in college courses for engineers. This book
points the environmental and water resources scientist to robust and nonparametric statistics,
and to exploratory data analysis. We believe that the characteristics of environmental (and
perhaps most other 'real’) data drive analysis methods towards use of robust and nonparametric
methods.

Exercises are included at the end of chapters. In our course, students compute each type of
analysis (t-test, regression, etc.) the first time by hand. We choose the smaller, simpler examples
for hand computation. In this way the mechanics of the process are fully understood, and
computer software is seen as less mysterious.

We wish to acknowledge and thank several other scientists at the U. S. Geological Survey for
contributing ideas to this book. In particular, we thank those who have served as the other
instructors at the USGS training course. Ed Gilroy has critiqued and improved much of the
material found in this book. Tim Cohn has contributed in several areas, particularly to the
sections on bias correction in regression, and methods for data below the reporting limit.
Richard Alexander has added to the trend analysis chapter, and Charles Crawford has
contributed ideas for regression and ANOVA. Their work has undoubtedly made its way into
this book without adequate recognition.



xii

Professor Ken Potter (University of Wisconsin) and Dr. Gary Tasker (USGS) reviewed the
manuscript, spending long hours with no reward except the knowledge that they have improved
the work of others. For that we are very grateful. We also thank Madeline Sabin, who carefully
typed original drafts of the class notes on which the book is based. As always, the responsibility
for all errors and slanted thinking are ours alone.

Dennis R. Helsel

Robert M. Hirsch

Reston, VA USA
June, 1991

Citations of trade names in this book are for reference purposes only, and do not reflect endorsement by the

authors or by the U. S. Geological Survey



Summarizing Data

When determining how to appropriately analyze any collection of data, the first consideration
must be the characteristics of the data themselves. Little is gained by employing analysis
procedures which assume that the data possess characteristics which in fact they do not. The
result of such false assumptions may be that the interpretations provided by the analysis are
incorrect, or unnecessarily inconclusive. Therefore we begin this book with a discussion of the
common characteristics of water resources data. These characteristics will determine the

selection of appropriate data analysis procedures.

One of the most frequent tasks when analyzing data is to describe and summarize those data in
forms which convey their important characteristics. "What is the sulfate concentration one
might expect in rainfall at this location"? "How variable is hydraulic conductivity"? "What is
the 100 year flood" (the 99th percentile of annual flood maxima)? Estimation of these and
similar summary statistics are basic to understanding data. Characteristics often described
include: a measure of the center of the data, a measure of spread or variability, a measure of the
symmetry of the data distribution, and perhaps estimates of extremes such as some large or small

percentile. This chapter discusses methods for summarizing or describing data.

This first chapter also quickly demonstrates one of the major themes of the book -- the use of
robust and resistant techniques. The reasons why one might prefer to use a resistant measure,

such as the median, over a more classical measure such as the mean, are explained.



2 Statistical Methods in Water Resources

The data about which a statement or summary is to be made are called the population, or
sometimes the target population. These might be concentrations in all waters of an aquifer or
stream reach, or all streamflows over some time at a particular site. Rarely are all such data
available to the scientist. It may be physically impossible to collect all data of interest (all the
water in a stream over the study period), or it may just be financially impossible to collect them.
Instead, a subset of the data called the sample is selected and measured in such a way that
conclusions about the sample may be extended to the entire population. Statistics computed
from the sample are only inferences or estimates about characteristics of the population, such as
location, spread, and skewness. Measures of location are usually the sample mean and sample
median. Measures of spread include the sample standard deviation and sample interquartile
range. Use of the term "sample" before each statistic explicitly demonstrates that these only
estimate the population value, the population mean or median, etc. As sample estimates are far
more common than measures based on the entire population, the term "mean" should be
interpreted as the "sample mean", and similatly for other statistics used in this book. When

population values are discussed they will be explicitly stated as such.

1.1 Characteristics of Water Resources Data

Data analyzed by the water resources scientist often have the following characteristics:

1. Alower bound of zero. No negative values are possible.

2. Presence of 'outliers', observations considerably higher or lower than most of the data,
which infrequently but regularly occur. outliers on the high side are more common in water
resources.

3. Positive skewness, due to items 1 and 2. An example of a skewed distribution, the
lognormal distribution, is presented in figure 1.1. Values of an observation on the
horizontal axis are plotted against the frequency with which that value occurs. These
density functions are like histograms of large data sets whose bars become infinitely narrow.
Skewness can be expected when outlying values occur in only one direction.

4. Non-normal distribution of data, due to items 1 - 3 above. Figure 1.2 shows an important
symmetric distribution, the normal. While many statistical tests assume data follow a
normal distribution as in figure 1.2, water resources data often look more like figure 1.1. In
addition, symmetry does not guarantee normality. Symmetric data with more observations
at both extremes (heavy tails) than occurs for a normal distribution are also non-normal.

5. Data reported only as below or above some threshold (censored data). Examples include
concentrations below one or more detection limits, annual flood stages known only to be
lower than a level which would have caused a public record of the flood, and hydraulic
heads known only to be above the land surface (artesian wells on old maps).

6. Seasonal patterns. Values tend to be higher or lower in certain seasons of the year.
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7. Autocorrelation. Consecutive observations tend to be strongly correlated with each other.
For the most common kind of autocorrelation in water resources (positive autocorrelation),
high values tend to follow high values and low values tend to follow low values.

8. Dependence on other uncontrolled variables. Values strongly covary with water discharge,

hydraulic conductivity, sediment grain size, or some other variable.

Methods for analysis of water resources data, whether the simple summarization methods such
as those in this chapter, or the more complex procedures of later chapters, should recognize

these common characteristics.

1.2 Measures of Location

The mean and median are the two most commonly-used measures of location, though they are
not the only measures available. What are the properties of these two measures, and when

should one be employed over the other?

1.2.1 Classical Measure -- the Mean
The mean (X) is computed as the sum of all data values X, divided by the sample size n:
- X
X=73 0 [1.1]
i=1
For data which are in one of k groups, equation [1.1] can be rewritten to show that the overall
mean depends on the mean for each group, weighted by the number of observations n; in each
group:
- & — N
X=2X — [1.2]
.

where X, is the mean for group i. The influence of any one observation Xj on the mean can be

seen by placing all but that one observation in one "group", or

= = (n-1 1
X= X(j)( )+Xj.H'
_ 5 T .1
= Xpt X=X q- [1.3]

where X (j)is the mean of all observations excluding XJ Each observation's influence on the
overall mean X is (X] — X)), the distance between the observation and the mean excluding

that observation. Thus all observations do not have the same influence on the mean. An
'outlier' observation, either high or low, has a much greater influence on the overall mean X
than does a more 'typical’ observation, one closer to its X .
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Another way of illustrating this influence is to realize that the mean is the balance point of the
data, when each point is stacked on a number line (figure 1.3a). Data points further from the
center exert a stronger downward force than those closer to the center. If one point near the
center were removed, the balance point would only need a small adjustment to keep the data set
in balance. But if one outlying value were removed, the balance point would shift dramatically
(figure 1.3b). This sensitivity to the magnitudes of a small number of points in the data set
defines why the mean is not a "resistant" measure of location. It is not resistant to changes in

the presence of, or to changes in the magnitudes of, a few outlying observations.

When this strong influence of a few observations is desirable, the mean is an appropriate
measure of center. This usually occurs when computing units of mass, such as the average
concentration of sediment from several samples in a cross-section. Suppose that sediment
concentrations closer to the river banks were much higher than those in the center. Waters
represented by a bottle of high concentration would exert more influence (due to greater mass
of sediment per volume) on the final concentration than waters of low or average concentration.
This is entirely appropriate, as the same would occur if the stream itself were somehow

mechanically mixed throughout its cross section.

0 10 20 a0 40

Figure 1.3a  The mean (triangle) as balance point of a data set.

! i 1
0 10 20

el L

o 40

Figure 1.3b  Shift of the mean downward after removal of outlier.

1.2.2 Resistant Measure -- the Median

The median, or 50th percentile P, ., is the central value of the distribution when the data are
ranked in order of magnitude. For an odd number of observations, the median is the data point
which has an equal number of observations both above and below it. For an even number of

observations, it is the average of the two central observations. To compute the median, first
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rank the observations from smallest to largest, so that X is the smallest observation, up to X ,

the largest observation. Then
median (P ) = X(n+1)/2 when n is odd, and

median (P ) = % (X(n/Z) + X(n/2)+1) when n is even. [1.4]

The median is only minimally affected by the magnitude of a single observation, being
determined solely by the relative order of observations. This resistance to the effect of a change
in value or presence of outlying observations is often a desirable property. To demonstrate the
resistance of the median, suppose the last value of the following data set (a) of 7 observations
were multiplied by 10 to obtain data set (b):

Example 1:
(a) 24891111 12 X= 81 P55=9
(b) 248911 11 120 X = 236 P5o=9

. : (7+1) .
The mean increases from 8.1 to 23.6. The median, the N th or 4th lowest data point,

is unaffected by the change.

When a summary value is desired that is not strongly influenced by a few extreme observations,
the median is preferable to the mean. One such example is the chemical concentration one
might expect to find over many streams in a given region. Using the median, one stream with
unusually high concentration has no greater effect on the estimate than one with low
concentration. The mean concentration may be pulled towards the outlier, and be higher than

concentrations found in most of the streams. Not so for the median.

1.2.3 Other Measures of Location

Three other measures of location are less frequently used: the mode, the geometric mean, and
the trimmed mean. The mode is the most frequently observed value. It is the value having the
highest bar in a histogram. It is far more applicable for grouped data, data which are recorded
only as falling into a finite number of categories, than for continuous data. It is very easy to
obtain, but a poor measure of location for continuous data, as its value often depends on the

arbitrary grouping of those data.

The geometric mean (GM) is often reported for positively skewed data sets. It is the mean of
the logarithms, transformed back to their original units.

GM = exp (Y), where Yj = In (Xj) [1.5]
(in this book the natural, base e logarithm will be abbreviated In, and its inverse e* abbreviated
exp(x) ). For positively skewed data the geometric mean is usually quite close to the median. In

fact, when the logarithms of the data are symmetric, the geometric mean is an unbiased estimate


jkmonson
`

jkmonson
`
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of the median. This is because the median and mean logarithms are equal, as in figure 1.2. When
transformed back to original units, the geometric mean continues to be an estimate for the

median, but is not an estimate for the mean (figure 1.1).

Compromises between the median and mean are available by trimming off several of the lowest
and highest observations, and calculating the mean of what is left. Such estimates of location are
not influenced by the most extreme (and perhaps anomalous) ends of the sample, as is the mean.
Yet they allow the magnitudes of most of the values to affect the estimate, unlike the median.
These estimators are called "trimmed means", and any desirable percentage of the data may be
trimmed away. The most common trimming is to remove 25 percent of the data on each end --
the resulting mean of the central 50 percent of data is commonly called the "trimmed mean", but
is more precisely the 25 percent trimmed mean. A "0% trimmed mean" is the sample mean
itself, while trimming all but 1 or 2 central values produces the median. Percentages of trimming
should be explicitly stated when used. The trimmed mean is a resistant estimator of location, as
it is not strongly influenced by outliers, and works well for a wide variety of distributional shapes

(normal, lognormal, etc.). It may be considered a weighted mean, where data beyond the cutoff

'window' are given a weight of 0, and those within the window a weight of 1.0 (see figure 1.4).

8% tritntned

— ﬁ“a?eight SR trimrmed ;
| %]

aff data withirn window

Data Walue

Figure 1.4. Window diagram for the trimmed mean

1.3 Measures of Spread

It is just as important to know how variable the data are as it is to know their general center or

location. Variability is quantified by measures of spread.

1.3.1 Classical Measures
The sample variance, and its square root the sample standard deviation, are the classical

measures of spread. Like the mean, they are strongly influenced by outlying values.
o (X -X)?
2 =3 Y

- (=D

sample variance [1.6]
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s =\/s 2 sample standard deviation [1.7]

They are computed using the squares of deviations of data from the mean, so that outliers
influence their magnitudes even more so than for the mean. When outliers are present these
measures are unstable and inflated. They may give the impression of much greater spread than
is indicated by the majority of the data set.

1.3.2 Resistant Measures

The interquartile range (IQR) is the most commonly-used resistant measure of spread. It
measures the range of the central 50 percent of the data, and is not influenced at all by the 25
percent on either end. Itis therefore the width of the non-zero weight window for the trimmed

mean of figure 1.4.

The IQR is defined as the 75th percentile minus the 25th percentile. The 75th, 50th (median)
and 25th percentiles split the data into four equal-sized quatters. The 75th percentile (P -¢), also
called the upper quartile, is a value which exceeds no more than 75 percent of the data and is
exceeded by no more than 25 percent of the data. The 25th percentile (P 55) or lower quartile is
a value which exceeds no more than 25 percent of the data and is exceeded by no more than 75
percent. Consider a data set ordered from smallest to largest: Xj, 1 =1,..n. Percentiles (P]) are

computed using equation [1.8]
Pj = X(n+1)ej [1.8]

where n is the sample size of Xj, and
j is the fraction of data less than or equal to the percentile value (for the 25th, 50th
and 75th percentiles, j= .25, .50, and .75).

Non-integer values of (n+1)¢j imply linear interpolation between adjacent values of X. For the
example 1 data set given earlier, n=7, and therefore the 25th percentile is X(7+1)._2 5 or Xy =4,
the second lowest observation. The 75th percentile is X , the 6th lowest observation, or 11.
The IQR is therefore 11-4 = 7.

One resistant estimator of spread other than the IQR is the Median Absolute Deviation, or

MAD. The MAD is computed by first listing the absolute value of all differences |d| between

each observation and the median. The median of these absolute values is then the MAD.
MAD (Xj) = median |dj], where dj = Xj — median (Xj) [1.9]

Comparison of each estimate of spread for the Example 1 data set is as follows. When the last
value is changed from 12 to 120, the standard deviation increases from 3.8 to 42.7. The IQR
and the MAD remain exactly the same.
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data 2 4 8 9 11 11 12 IQR=11-4=7
Xi-X)2 372 168 001 081 841 841 152 2 =(3.8)>

|di =X;-Pgq| 7 5 1 0 2 2 3 MAD=median | dj| =2
data 2 4 8 9 11 11 120 IQR=11-4=7
Xi— X)2 372168 001 081 841 841 12522 52 = (@42.7)>
|di=X~Psy| 7 5 1 0 2 2 111  MAD=median|d;j|=2

1.4 Measures of Skewness

Hydrologic data are typically skewed, meaning that data sets are not symmetric around the mean
or median, with extreme values extending out longer in one direction. The density function for
a lognormal distribution shown previously as figure 1.1 illustrates this skewness. When extreme
values extend the right tail of the distribution, as they do with figure 1.1, the data are said to be
skewed to the right, or positively skewed. Left skewness, when the tail extends to the left, is

called negative skew.

When data are skewed the mean is not expected to equal the median, but is pulled toward the
tail of the distribution. Thus for positive skewness the mean exceeds more than 50 percent of
the data, as in figure 1.1. The standard deviation is also inflated by data in the tail. Therefore,
tables of summary statistics which include only the mean and standard deviation or variance are
of questionable value for water resources data, as those data often have positive skewness. The
mean and standard deviation reported may not describe the majority of the data very well. Both
will be inflated by outlying observations. Summary tables which include the median and other
percentiles have far greater applicability to skewed data. Skewed data also call into question the
applicability of hypothesis tests which are based on assumptions that the data have a normal
distribution. These tests, called parametric tests, may be of questionable value when applied to
water resources data, as the data are often neither normal nor even symmetric. Later chapters

will discuss this in much detail, and suggest several solutions.

1.4.1 Classical Measure of Skewness
The coefficient of skewness (g) is the skewness measure used most often. It is the adjusted third
moment divided by the cube of the standard deviation:

& (x,-X)

. n
&7 (n—l)(n—z)g‘ 5 1101
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A right-skewed distribution has positive g; a left-skewed distribution has negative g. Again, the
influence of a few outliers is important -- an otherwise symmetric distribution having one outlier
will produce a large (and possibly misleading) measure of skewness. For the example 1 data, the
g skewness coefficient increases from —0.5 to 2.6 when the last data point is changed from 12 to
120.

1.4.2 Resistant Measure of Skewness
A more resistant measure of skewness is the quartile skew coefficient qs (Kenney and Keeping,
1954):
~(P75-P50)-P50-P2s)
* P75-P s

the difference in distances of the upper and lower quartiles from the median, divided by the

[1.11]

IQR. A right-skewed distribution again has positive qs; a left-skewed distribution has negative
gs. Similar to the trimmed mean and IQR, gs uses the central 50 percent of the data. For the
example 1 data, gqs = (11-9) — (9-4) / (11-4) = —=0.43 both before and after alteration of the
last data point. Note that this resistance may be a liability if sensitivity to a few observations is

important.

1.5 Other Resistant Measures

Other percentiles may be used to produce a series of resistant measures of location, spread and
skewness. For example, the 10 percent trimmed mean can be coupled with the range between

the 10th and 90th percentiles as a measure of spread, and a corresponding measure of skewness:

Po9p-P50)-P50-P10)
Pop-P10

qS.10 = [112]

to produce a consistent series of resistant statistics. Geologists have used the 16th and 84th
percentiles for many years to compute a similar series of robust measures of the distributions of
sediment particles (Inman, 1952). However, measures based on quartiles have become generally
standard, and other measures should be clearly defined prior to their use. The median, IQR, and
quartile skew can be easily summarized graphically using a boxplot (see Chapter 2) and are

familiar to most data analysts.
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1.6 Outliers

Obutliers, observations whose values are quite different than others in the data set, often cause
concern or alarm. They should not. They are often dealt with by throwing them away prior to
describing data, or prior to some of the hypothesis test procedures of later chapters. Again, they
should not. Outliers may be the most important points in the data set, and should be

investigated further.

It is said that data on the Antarctic ozone "hole", an area of unusually low ozone concentrations,
had been collected for approximately 10 years prior to its actual discovery. However, the
automatic data checking routines during data processing included instructions on deleting
"outliers". The definition of outliers was based on ozone concentrations found at mid-latitudes.
Thus all of this unusual data was never seen or studied for some time. If outliers are deleted, the

risk is taken of seeing only what is expected to be seen.

Outliers can have one of three causes:
1. ameasurement or recording error.
2. an observation from a population not similar to that of most of the data,
such as a flood caused by a dam break rather than by precipitation.

3. arare event from a single population that is quite skewed.

The graphical methods of the Chapter 2 are very helpful in identifying outliers. Whenever
outliers occur, first verify that no copying, decimal point, or other obvious error has been made.
If not, it may not be possible to determine if the point is a valid one. The effort put into
verification, such as re-running the sample in the laboratory, will depend on the benefit gained
versus the cost of verification. Past events may not be able to be duplicated. If no error can be
detected and corrected, outliers should not be discarded based solely on the fact that they
appear unusual. Outliers are often discarded in order to make the data nicely fit a pre-
conceived theoretical distribution such as the normal. There is no reason to suppose that they
should! The entire data set may arise from a skewed distribution, and taking logarithms or some
other transformation may produce quite symmetrical data. Even if no transformation achieves
symmetry, outliers need not be discarded. Rather than eliminating actual (and possibly very
important) data in order to use analysis procedures requiring symmetry or normality, procedures
which are resistant to outliers should instead be employed. If computing a mean appears of little
value because of an outlier, the median has been shown to be a more appropriate measure of
location for skewed data. If performing a t-test (described later) appears invalidated because of

the non-normality of the data set, use a rank-sum test instead.

In short, let the data guide which analysis procedures are employed, rather than altering the data

in order to use some procedure having requirements too restrictive for the situation at hand.
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1.7 Transformations

Transformations are used for three purposes:
1. to make data more symmetric,
2. to make data more linear, and

3.  to make data more constant in variance.

Some water resources scientists fear that by transforming data, results are derived which fit
preconceived ideas. Therefore, transformations are methods to 'see what you want to see' about
the data. But in reality, serious problems can occur when procedures assuming symmetry,
linearity, or homoscedasticity (constant variance) are used on data which do not possess these
required characteristics. Transformations can produce these characteristics, and thus the use of
transformed variables meets an objective. Employment of a transformation is not merely an

arbitrary choice.

One unit of measurement is no more valid a priori than any other. For example, the negative
logarithm of hydrogen ion concentration, pH, is as valid a measurement system as hydrogen ion
concentration itself. Transformations like the square root of depth to water at a well, or cube
root of precipitation volume, should bear no more stigma than does pH. These measurement
scales may be more appropriate for data analysis than are the original units. Hoaglin (1988) has
written an excellent article on hidden transformations, consistently taken for granted, which are
in common use by everyone. Octaves in music are a logarithmic transform of frequency. Each
time a piano is played a logarithmic transform is employed! Similarly, the Richter scale for
earthquakes, miles per gallon for gasoline consumption, f-stops for camera exposures, etc. all
employ transformations. In the science of data analysis, the decision of which measurement
scale to use should be determined by the data, not by preconceived criteria. The objectives for
use of transformations are those of symmetry, linearity and homoscedasticity. In addition, the
use of many resistant techniques such as percentiles and nonparametric test procedures (to be
discussed later) are invariant to measurement scale. The results of a rank-sum test, the
nonparametric equivalent of a t-test, will be exactly the same whether the original units or

logarithms of those units are employed.

1.7.1 'The Ladder of Powers

In order to make an asymmetric distribution become more symmetric, the data can be
transformed or re-expressed into new units. These new units alter the distances between
observations on a line plot. The effect is to either expand or contract the distances to extreme
observations on one side of the median, making it look more like the other side. The most
commonly-used transformation in water resources is the logarithm. Logs of water discharge,

hydraulic conductivity, or concentration are often taken before statistical analyses are performed.
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Transformations usually involve power functions of the form y = 0, where x is the
untransformed data, y the transformed data, and 0 the power exponent. In figure 1.5 the values
of 0 are listed in the "ladder of powers" (Velleman and Hoaglin, 1981), a useful structure for

determining a proper value of 6.

As can be seen from the ladder of powers, any transformations with 0 less than 1 may be used
to make right-skewed data more symmetric. Constructing a boxplot or Q-Q plot (see Chapter 2)
of the transformed data will indicate whether the transformation was appropriate. Should a
logarithmic transformation overcompensate for right skewness and produce a slightly left-
skewed distribution, a 'mildet’ transformation with 0 closer to 1, such as a square-root or cube-
root transformation, should be employed instead. Transformations with 6 > 1 will aid in

making left-skewed data more symmetric.

Figure 1.5
"LADDER OF POWERS"
(modified from Velleman and Hoaglin, 1981)

Use 0 Transformation Name Comment
- . higher powers can be used
for (=) .
skewness 3 x3 cube
2 x2 square
1 X original units ————  no transformation ——
1/2 ’\/_X square root commonly used
1/3 ia)/_x cube root commonly used
0 log(x) logarithm commonly used. Holds the
for (+) place of x0
skewness
-1/2 -1 /’\/_X reciprocal root the minus sign preserves
order of observations
-1 -1/x reciprocal
-2 —1/x2

. lower powers can be used
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However, the tendency to search for the 'best' transformation should be avoided. For example,
when dealing with several similar data sets, it is probably better to find one transformation which
works reasonably well for all, rather than using slightly different ones for each. It must be
remembered that each data set is a sample from a larger population, and another sample from
the same population will likely indicate a slightly different 'best' transformation. Determination

of 'best' in great precision is an approach that is rarely worth the effort.
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Exercises

1.1

1.2

1.3

Yields in wells penetrating rock units without fractures were measured by Wright (1985),
and are given below. Calculate the

a) mean

b) trimmed mean

€) geometric mean

d) median

e) compare these estimates of location. Why do they differ?

Unit well vields (in gal/min/ft) in Virginia (Wright, 1985)
0.001 0.030 0.10 0.003 0.040 0.454

0.007 0.041 0.49 0.020 0.077 1.02

For the well yield data of exercise 1.1, calculate the
a) standard deviation
b) interquartile range
c) MAD
d) skew and quartile skew.

Discuss the differences between a through c.

Ammonia plus organic nitrogen (in mg/L) was measured in samples of precipitation by
Oltmann and Shulters (1989). Some of their data are presented below. Compute
summary statistics for these data. Which observation might be considered an outlier?
How should this value affect the choice of summary statistics used

a) to compute the mass of nitrogen falling per square mile.

b) to compute a "typical" concentration and variability for these data?

0.3 0.9 0.36 0.92 0.5 1.0
0.7 9.7 0.7 1.3






Graphical Data Analysis

Perhaps it seems odd that a chapter on graphics appears at the front of a text on statistical
methods. We believe this is very appropriate, as graphs provide crucial information to the data
analyst which is difficult to obtain in any other way. For example, figure 2.1 shows eight
scatterplots, all of which have exactly the same correlation coefficient. Computing statistical
measures without looking at a plot is an invitation to misunderstanding data, as figure 2.1
illustrates. Graphs provide visual summaries of data which more quickly and completely

describe essential information than do tables of numbers.

Graphs are essential for two purposes:
1. to provide insight for the analyst into the data under scrutiny, and

2. to illustrate important concepts when presenting the results to others.

The first of these tasks has been called exploratory data analysis (EDA), and is the subject of this
chapter. EDA procedures often are (or should be) the 'first look' at data. Patterns and theories
of how the system behaves are developed by observing the data through graphs. These are
inductive procedures -- the data are summarized rather than tested. Their results provide

guidance for the selection of appropriate deductive hypothesis testing procedures.

Once an analysis is complete, the findings must be reported to others. Whether a written report
or oral presentation, the analyst must convince the audience that the conclusions reached are
supported by the data. No better way exists to do this than through graphics. Many of the same
graphical methods which have concisely summarized the information for the analyst will also

provide insight into the data for the reader or audience.

The chapter begins with a discussion of graphical methods for analysis of a single data set. Two
methods are particularly useful: boxplots and probability plots. Their construction is presented
in detail. Next, methods for comparison of two or more groups of data are discussed. Then
bivariate plots (scatterplots) are presented, with an especially useful enhancement called a

smooth. The chapter ends with a discussion of plots appropriate for multivariate data.
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Figure 2.1 Eight scatterplots all with correlation coefficient r = 0.70

(Chambers and others, 1983).
© PWS-Kent Pub. Used with permission.
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Throughout sections 2.1 and 2.2 two data sets will be used to compare and contrast the
effectiveness of each graphical method. These are annual streamflow (in cubic feet per second,
or cfs) for the Licking River at Catawba, Kentucky, from 1929 through 1983, and unit well yields
(in gallons per minute per foot of water-bearing material) for valleys without fracturing in
Virginia (Wright, 1985).

2.1 Graphical Analysis of Single Data Sets

2.1.1 Histograms

Histograms are familiar graphics, and their construction is detailed in numerous introductory
texts on statistics. Bars are drawn whose height is the number nj, or fraction n;j/n, of data falling
into one of several categories or intervals (figure 2.2). Iman and Conover (1983) suggest that,

for a sample size of n, the number of intervals k should be the smallest integer such that 2k > q,

Histograms have one primary deficiency -- their visual impression depends on the number of
categories selected for the plot. For example, compare figure 2.2a with 2.2b. Both are
histograms of the same data: annual streamflows for the Licking River. Comparisons of shape
and similarity among these two figures and the many other possible histograms of the same data
depend on the choice of bar widths and centers. False impressions that these are different
distributions might be given by characteristics such as the gap around 6,250 cfs. Itis seen in
2.2b but not in 2.2a.

Histograms are quite useful for depicting large differences in shape or symmetry, such as
whether a data set appears symmetric or skewed. They cannot be used for more precise
judgements such as depicting individual values. Thus from figure 2.2a the lowest flow is seen to
be larger than 750 cfs, but might be as large as 2,250 cfs. More detail is given in 2.2b, but this
lowest observed discharge is still only known to be somewhere between 500 to 1,000 cfs.

For data measured on a continuous scale (such as streamflow or concentration), histograms are
not the best method for graphical analysis. The process of forcing continuous data into discrete
categories may obscure important characteristics of the distribution. However, histograms are
excellent when displaying data which have natural categories or groupings. Examples of such
data would include the number of individual organisms found at a stream site grouped by
species type, or the number of water-supply wells exceeding some critical yield grouped by

geologic unit.
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Figure 2.2a. Histogram of annual streamflow for the Licking River
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Figure 2.2b. Second histogram of same data, but with different interval divisions.
2.1.2 Stem and Leaf Diagrams

Figure 2.3 shows a stem and leaf (S-L) diagram for the Licking River streamflow data with the

same divisions as in figure 2.2b. Stem and leaf diagrams are like histograms turned on their side,



Graphical Data Analysis 21

with data magnitudes to two significant digits presented rather than only bar heights. Individual
values are easily found. The S-L profile is identical to the histogram and can similarly be used to
judge shape and symmetry, but the numerical information adds greater detail. One S-L could

function as both a table and a histogram for small data sets.

An S-L is constructed by dividing the range of the data into roughly 10 intervals, and placing the
first digit corresponding to these intervals to the left of the vertical line. This is the 'stem’,
ranging from 0 to 7 (0 to 7000+ cfs) in figure 2.3. Each observation is then represented by one
digit to the right of the line (the 'leaves'), so that the number of leaves equals the number of
observations falling into that interval. To provide more detail, figure 2.3 has two lines for each
stem digit, split to allow 5 leaf digits per line (0-4 and 5-9). Here an asterisk (*) denotes the stem
for leaves less than 5, and a period (.) for leaves greater than or equal to 5. For example, in
figure 2.3 four observations occur between 2000 and 2500 cfs, with values of 2000, 2200, 2200
and 2400 cfs.

The lowest flow is now seen to be between 900 and 1,000 cfs. The gap between 6,000 to 6,500
cfs is still evident, and now the numerical values of the three highest flows are presented.
Comparisons between distributions still remain difficult using S-L plots, however, due to the

required arbitrary choice of group boundaries.

range in cfs)

(

( 500- 999) +0.]9
(1000-1499) 1*| 2
(1500-1999) 1.|59
(2000-2499) 2% 0224
(2500-2999) 2. 66889
(3000-3499) 3% 01122
(3500-3999) 3./55678889
(4000-4499) 4% 000124
(4500-4999) 4./ 5566777
(5000-5499) 5% 01123334
(5500-5999) 5./ 56899
(6000-6499) 6*
(6500-6999) 6.8
(7000-7499) 7*| 2
(7500-7999) 7.7

Figure 2.3 Stem and Leaf Plot of Annual Streamflow
(Leaf digit unit = 100 1|12 represents 1200)
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2.1.3 Quantile Plots
Quantile plots visually portray the quantiles, or percentiles (which equal the quantiles times 100)
of the distribution of sample data. Quantiles of importance such as the median are easily
discerned (quantile, or cumulative frequency = 0.5). With experience, the spread and skewness
of the data, as well as any bimodal character, can be examined. Quantile plots have three
advantages:

1. Arbitrary categories are not required, as with histograms or S-L's.

2. All of the data are displayed, unlike a boxplot.

3. Every point has a distinct position, without overlap.

Figure 2.4 is a quantile plot of the streamflow data from figure 2.2. Attributes of the data such
as the gap between 6000 and 6800 cfs (indicated by the nearly horizontal line segment) are
evident. The percent of data in the sample less than a given cfs value can be read from the

graph with much greater accuracy than from a histogram.
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Figure 2.4 Quantile plot of the Licking R. annual streamflow data

2.1.3.1 Construction of a quantile plot

To construct a quantile plot, the data are ranked from smallest to largest. The smallest data
value is assigned a rank i=1, while the largest receives a rank i=n, where n is the sample size of
the data set. The data values themselves are plotted along one axis, usually the horizontal axis.
On the other axis is the "plotting position", which is a function of the rank i and sample size n.

As discussed in the next section, the Cunnane plotting position p; = (i-0.4)/(n+0.2) is used in
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this book. Below are listed the first and last 5 of the 55 data pairs used in construction of figure
2.4. When tied data values are present, each is assigned a separate plotting position (the plotting

ositions are not averaged). In this way tied values are portrayed as a vertical "cliff" on the plot.
p g y p Yy p

q; = Licking R. streamflow, in cfs pi = plotting position
i CTH o' i i i i 9 bi
1 994.3 .01 5 2006.0 .08 52 59373 .93
2 1263.1 .03 . 53 6896.0 .95
3 1504.2 .05 . 54 7270.1 .97
4 1949.5 .07 51 5907.0 .92 55 7730.7 .99

Quantile plots are sample approximations of the cumulative distribution function (cdf) of a
continuous random variable. The cdf for a normal distribution is shown in figure 2.7. A second
approximation is the sample (or empirical) cdf, which differs from quantile plots in its vertical
scale. The vertical axis of a sample cdf is the probability i/n of being less than or equal to that
observation. The largest observation has i/n = 1, and so has a zero probability of being
exceeded. For samples (subsets) taken from a population, a nonzero probability of exceeding
the largest value observed thus far should be recognized. This is done by using the plotting
position, a value less than i/n, on the vertical axis of the quantile plot. As sample sizes increase,

the quantile plot will more closely mimic the underlying population cdf.

2.1.3.2 Plotting positions
Variations of quantile plots are used frequently for three purposes:
1. to compare two or more data distributions (a Q-Q plot),
2. to compare data to a normal distribution (a probability plot), and

3. to calculate frequencies of exceedance (a flow-duration curve).

Unfortunately, different plotting positions have traditionally been used for each of the above

three purposes. It would be desirable instead to use one formula that is suitable for all three.

Numerous plotting position formulas have been suggested, most having the general formula
p=(@G-2)/(n+1-2a)

where a varies from 0 to 0.5. Five of the most commonly-used formulas are:

Reference a Formula
Weibull (1939) 0 i /(a+1)
Blom (1958) 0.375 (i-0.375) / (n + 0.25)
Cunnane (1978) 0.4 i-04) / (n+0.2)
Gringorten (1963) 0.44 i-0.44) / (n+0.12)
Hazen (1914) 0.5 i-0.5 / n

The Weibull formula has long been used by hydrologists in the United States for plotting flow-
duration and flood-frequency curves (Langbein, 1960). It is used in Bulletin 17B, the standard
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reference for determining flood frequencies in the United States (Interagency Advisory
Committee on Water Data, 1982). The Blom formula is best for comparing data quantiles to
those of a normal distribution in probability plots, though all of the above formulas except the
Weibull are acceptable for that purpose (Looney and Gulledge, 1985b). The Hazen formula is
used by Chambers and others (1983) for comparing two or more data sets using Q-Q plots.

Separate formulae could be used for the situations in which each is optimal. In this book we
instead use one formula, the Cunnane formula given above, for all three purposes. We do this
in an attempt to simplify. The Cunnane formula was chosen because
1. itis acceptable for normal probability plots, being very close to Blom.
2. itis used by Canadian and some European hydrologists for plotting flow-
duration and flood-frequency curves. Cunnane (1978) presents the
arguments for use of this formula over the Weibull when calculating

exceedance probabilities.

For convenience when dealing with small sample sizes, table B1 of the Appendix presents

Cunnane plotting positions for sample sizes n = 5 to 20.

2.1.4 Boxplots
A very useful and concise graphical display for summarizing the distribution of a data set is the
boxplot (figure 2.5). Boxplots provide visual summaries of

1) the center of the data (the median--the center line of the box)

2) the variation or spread (interquartile range--the box height)

3) the skewness (quartile skew--the relative size of box halves)

4) presence or absence of unusual values ("outside" and "far outside" values).

Boxplots are even more useful in comparing these attributes among several data sets.

Compare figures 2.4 and 2.5, both of the Licking R. data. Boxplots do not present all of the
data, as do stem-and-leaf or quantile plots. Yet presenting all data may be more detail than is
necessary, or even desirable. Boxplots do provide concise visual summaries of essential data
characteristics. For example, the symmetry of the Licking R. data is shown in figure 2.5 by the
similar sizes of top and bottom box halves, and by the similar lengths of whiskers. In contrast,
in figure 2.6 the taller top box halves and whiskers indicate a right-skewed distribution, the most
commonly occurring shape for water resources data. Boxplots are often put side-by-side to

visually compare and contrast groups of data.

Three commonly used versions of the boxplot are described as follows (figure 2.6 a,b, and c).

Any of the three may appropriately be called a boxplot.



Graphical Data Analysis 25

8000
LARGEST PT WITHIN 1 STEP ABOVE BOX

¢y 6000 |

[

Q

pr 75th PERCENTILE

g 4000 MEDIAN (50th PCTILE)

T

=

< 25th PERCENTILE

L

o

@ 2000 |
SMALLEST PT WITHIN 1 STEP BELOW BOX

0 -

LICKING RIVER

Figure 2.5 Boxplot for the Licking R. data

2.1.4.1 Simple boxplot

The simple boxplot was originally called a "box-and-whisker" plot by Tukey (1977). It consists
of a center line (the median) splitting a rectangle defined by the upper and lower hinges (very
similar to quartiles -- see appendix). Whiskers are lines drawn from the ends of the box to the

maximum and minimum of the data, as depicted in graph a of figure 2.6.

2.1.4.2 Standard boxplot

Tukey's "schematic plot" has become the most commonly used version of a boxplot (graph b in
tigure 2.6), and will be the type of boxplot used throughout this book. With this standard
boxplot, outlying values are distinguished from the rest of the plot. The box is as defined above.
However, the whiskers are shortened to extend only to the last observation within one step
beyond either end of the box ("adjacent values"). A step equals 1.5 times the height of the box
(1.5 times the interquartile range). Observations between one and two steps from the box in
cither direction, if present, are plotted individually with an asterisk ("outside values"). Outside
values occur fewer than once in 100 times for data from a normal distribution. Observations
farther than two steps beyond the box, if present, are distinguished by plotting them with a small
circle ("far-out values"). These occur fewer than once in 300,000 times for a normal
distribution. The occurrence of outside or far-out values more frequently than expected gives a

quick visual indication that data may not originate from a normal distribution.
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2.1.4.3 Truncated boxplot

In a third version of the boxplot (graph c of figure 2.6), the whiskers are drawn only to the 90th
and 10th percentiles of the data set. The largest 10 percent and smallest 10 percent of the data
are not shown. This version could easily be confused with the simple boxplot, as no data appear
beyond the whiskers, and should be clearly defined as having eliminated the most extreme 20

percent of data. It should be used only when the extreme 20 percent of data are not of interest.

In a variation on the truncated boxplot, Cleveland (1985) plotted all observations beyond the
10th and 90th percentile-whiskers individually, calling this a "box graph". The weakness of this
style of graph is that 10 percent of the data will always be plotted individually at each end, and so

the plot is far less effective than a standard boxplot for defining and emphasizing unusual values.

Further detail on construction of boxplots may be found in the appendix, and in Chambers and
others (1983) and McGill and others (1978).

a b c

0.8+

0.6+

0.4~

WELL YIELD, IN GAL/MIN/FT.

0.21

SIMPLE STANDARD TRUNCATED

Figure 2.6 Three versions of the boxplot (unit well yield data).

2.1.5 Probability Plots
Probability plots are used to determine how well data fit a theoretical distribution, such as the

normal, lognormal, or gamma distributions. This could be attempted by visually comparing
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histograms of sample data to density curves of the theoretical distributions such as figures 1.1
and 1.2. However, research into human perception has shown that departures from straight
lines are discerned more easily than departures from curvilinear patterns. By expressing the
theoretical distribution as a straight line, departures from the distribution are more easily

perceived. This is what occurs with a probability plot.

To construct a probability plot, quantiles of sample data are plotted against quantiles of the
standardized theoretical distribution. In figure 2.7, quantiles from the quantile plot of the
Licking R. streamflow data (lower scale) are overlain with the S-shaped quantiles of the standard
normal distribution (upper scale). For a given cumulative frequency (plotting position, p),
quantiles from each curve are paired and plotted as one point on the probability plot, figure 2.8.
Note that quantiles of the data are simply the observation values themselves, the pth quantiles
where p = (i-0.4)/(n+0.2). Quantiles of the standard normal distribution ate available in table
form in most textbooks on statistics. Thus, for each observation, a pair of quantiles is plotted in
figure 2.8 as one point. For example, the median (p=0.5) equals O for the standard normal, and
4079 cfs for the Licking R. data. The point (0,4079) is one point included in figure 2.8. Data
closely approximating the shape of the theoretical distribution, in this case a normal distribution,

will plot near to a straight line.

To illustrate the construction of a probability plot in detail, data on unit well yields (yi) from
Wright (1985) will be plotted versus their normal quantiles (also called normal scores). The data
are ranked from the smallest (i=1) to largest (i=n), and their corresponding plotting positions pj
= (i-0.4)/(n + 0.2) calculated. Normal quantiles (Zp) for a given plotting position pj may be
obtained in one of three ways:

a. from a table of the standard normal distribution found in most statistics textbooks

b. from table B2 in the Appendix, which presents standard normal quantiles for the

Cunnane plotting positions of table Bl
c. from a computerized approximation to the inverse standard normal distribution

available in many statistical packages, or as listed by Zelen and Severo (1964).

Entering the table with p; = .05, for example, will provide a Zp = —1.65. Note that since the
median of the standard normal distribution is 0, Zp will be symmetrical about the median, and
only half of the Zp values must be looked up:
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Figure 2.7 Overlay of Licking R. and standard normal distribution quantile plots
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Figure 2.8 Probability plot of the Licking R. data
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Unit well yields (in gal/min/ft) for valleys without fracturing (Wright, 1985)

yi = yield pi = plotting position Zp = normal quantile of p
iy p 4p iy  p Zp iy  p Zp
1 0001 .05 -1.65 5 0.030 .38 -.31 9 0.10 .70 52
2 0.003 .13 -1.13 6 0.040 .46 -10 10 0.454 .79 .80
3 0.007 21 -0.80 7 0.041 .54 10 11 0.49 .87 1.13
4 0.020 .30 -0.52 8 0.077 .62 31 12 1.02 .95 1.65

For comparison purposes, it is helpful to plot a reference straight line on the plot. The solid line
on figure 2.8 is the normal distribution which has the same mean and standard deviation as do
the sample data. This reference line is constructed by plotting y as the y intercept of the line
(Zp=0), so that the line is centered at the point (0, ¥), the mean of both sets of quantiles. The
standard deviation s is the slope of the line on a normal probability plot, as the quantiles of a
standard normal distribution are in units of standard deviation. Thus the line connects the
points (0,y) and (1,7+ s).

2.1.5.1 Probability paper

Specialized 'probability papet' is often used for probability plots. This paper simply retransforms
the linear scale for quantiles of the standard distribution back into a nonlinear scale of plotting
positions (figure 2.9). There is no difference between the two versions except for the horizontal
scale. With probability paper the horizontal axis can be directly interpreted as the percent
probability of occurrence, the plotting position times 100. The linear quantile scale of figure 2.8
is sometimes included on probability paper as 'probits,' where a probit = normal quantile + 5.0.
Probability paper is available for distributions other than the normal, but all are constructed the

same way, using standardized quantiles of the theoretical distribution.

In figure 2.9 the lower horizontal scale results from sorting the data in increasing order, and
assigning rank 1 to the smallest value. This is commonly done in water-quality and low-flow
studies. Had the data been sorted in decreasing order, assigning rank 1 to the largest value as is
done in flood-flow studies, the upper scale would result -- the percent exceedance. Either

horizontal scale may be obtained by subtracting the other from 100 percent.
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Figure 2.9 -- Probability plot of Licking R. data on probability paper

2.1.5.2 Deviations from a linear pattern

If probability plots do not exhibit a linear pattern, their nonlinearity will indicate why the data do
not fit the theoretical distribution. This is additional information that hypothesis tests for
normality (described later) do not provide. Three typical conditions resulting in deviations from
linearity are: asymmetry or skewness, outliers, and heavy tails of the distribution. These are

discussed below.

Figure 2.10 is a probability plot of the base 10 logarithms of the Licking R. data. The data are
negatively (left) skewed. This is seen in figure 2.10 as a greater slope on the left-hand side of the
plot, producing a slightly convex shape. Figure 2.11 shows a right-skewed distribution, the unit
well yield data. The lower bound of zero, and the large slope on the right-hand side of the plot
produces an overall concave shape. Thus probability plots can be used to indicate what type of
transformation is needed to produce a more symmetric distribution. The degree of curvature
gives some indication of the severity of skewness, and therefore the degree of transformation

required.
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Outliers appear on probability plots as departures from the pattern of the rest of the data.
Figure 2.12 is a probability plot of the Licking R. data, but the two largest observations have
been altered (multiplied by 3). Compare figures 2.12 and 2.8. Note that the majority of points
in figure 2.12 still retain a linear pattern, with the two outliers offset from that pattern. Note
that the straight line, a normal distribution with mean and standard deviation equal to those of
the altered data, does not fit the data well. This is because the mean and standard deviation are

inflated by the two outliers.

The third departure from linearity occurs when more data are present in both tails (areas furthest
from the median) than would be expected for a normal distribution. Figure 2.13 is a probability
plot of adjusted nitrate concentrations in precipitation from Wellston, Michigan (Schertz and
Hirsch, 1985). These data are actually residuals (departures) from a regression of log of nitrate
concentration versus log of precipitation volume. A residual of 0 indicates that the
concentration is exactly what would be expected for that volume, a positive residual more than
what is expected, and negative less than expected. The data in figure 2.13 display a
predominantly linear pattern, yet one not fit well by the theoretical normal shown as the solid
line. Again this lack of fit indicates outliers are present. The outliers are data to the left which
plot below the linear pattern, and those above the pattern to the right of the figure. Outliers
occur on both ends in greater numbers than expected from a normal distribution. A boxplot for
the data is shown in figure 2.14 for comparison. Note that both the box and whiskers are
symmetric, and therefore no power transformation such as those in the "ladder of powers"
would produce a more nearly normal distribution. Data may depart from a normal distribution
not only in skewness, but by the number of extreme values. Excessive numbers of extreme
values may cause significance levels of tests requiring the normality assumption to be in error.
Therefore procedures which assume normality for their validity when applied to data of this type

may produce quite inaccurate results.
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Figure 2.10 -- Probability plot of a left-skewed distribution (logs of Licking R. data)
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Figure 2.11 -- Probability plot of a right-skewed distribution (unit well yields)
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Figure 2.12 -- Probability plot of data with high outliers
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Figure 2.13 -- Probability plot of a heavy-tailed data set
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Figure 2.14 -- Boxplot of a heavy-tailed data set

2.1.5.3 Probability plots for comparing among distributions

In addition to comparisons to a normal distribution, quantiles may be computed and probability
plots constructed for any two-parameter distribution. The distribution which causes data to be
most like a straight line on its probability plot is the one which most closely resembles the
distributional shape of the data. Data may be compared to a two-parameter lognormal
distribution by simply plotting the logarithms of the data as the data quantiles, as was done in
figure 2.10. Vogel (1986) demonstrated the construction of probability plots for the Gumbel
(extreme-value) distribution, which is sometimes employed for flood-flow studies. Vogel and
Kroll (1989) cover the use of probability plots for the two-parameter Weibull distribution, used
in fitting low-flow data. Again, the best fit is obtained with the distribution which most closely
produces a linear plot. In both references, the use of a test of significance called the probability
plot correlation coefficient augmented the visual determination of linearity on the plot. This test

will be covered in detail in Chapter 4.

Use of three-parameter distributions can also be indicated by probability plots. For example, if
significant right-skewness remains after logarithms are taken, the resulting concave shape on a
lognormal probability plot indicates that a log-Pearson III distribution would better fit the data.
Vogel and Kroll (1989) demonstrate the construction of a probability plot for the log-Pearson
III distribution using a Wilson-Hilferty transformation.
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2.2 Graphical Comparisons of Two or More Data Sets

Each of the graphical methods discussed thus far can be, and have been, used for comparing
more than one group of data. However, each is not equally effective. As the following sections
show, histograms are not capable of providing visual comparisons between data sets at the same
level of detail as boxplots or probability plots. Boxplots excel in clarity and easy discrimination
of important distributional characteristics, even for comparisons between many groups of data.
A newer type of plot, the quantile-quantile (Q-Q) plot, provides additional information about
the relationship between two data sets.

Each graphic will be developed for the same data set, a comparison of unit well yields in Virginia
(Wright, 1985). These are small data sets: 13 wells are from valleys underlain by fractured rocks,

and 12 wells from valleys underlain by unfractured rocks.

2.2.1 Histograms

Figure 2.15 presents histograms for the two sets of well yield data. The right-skewness of each
data set is easily seen, but it is difficult to discern whether any differences exist between them.
Histograms do not provide a good visual picture of the centers of the distributions, and only a
slightly better comparison of spreads. Positioning histograms side-by-side instead of one above
the other provide even less ability to compare data, as the data axes would not be aligned.
Unfortunately, this is commonly done. Also common are overlapping histograms, such as in
figure 2.16. Overlapping histograms provide poor visual discrimination between multiple data

sets.

2.2.2 Dot and Line Plots of Means, Standard Deviations

Figure 2.17 is a "dot and line" plot often used to represent the mean and standard deviation (or
standard error) of data sets. Each dot is the mean of the data set. The bars extend to plus and
minus either one standard deviation (shown), or plus and minus one or more standard errors
(s.e. = s/ \/;1 ), beyond the mean. This plot displays differences in mean yields, but little else.
No information on the symmetry of the data or presence of outliers is available. Because of this,
there is not much information given on the spread of the data, as the standard deviation may
describe the spread of most of the data, or may be strongly influenced by skewness and a few

outliers.
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Figure 2.16 Overlapping histograms of the unit well yield data
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Figure 2.17 Dot and line plot for the unit well yield data

To emphasize the deficiencies of dot and line plots such as these, figure 2.18 presents three data
sets with very different characteristics. The first is a uniform distribution of values between 0
and 20. Itis symmetric. The second is a right-skewed data set with outliers. The third is a
bimodal distribution, also symmetric. All three have a mean of 10 and standard deviation of
06.63. Therefore each of the three would be represented by the same dot and line plot, shown at
the right of the figure.

Dot and line plots are useful only when the data are actually symmetric. If skewness or outliers
are present, as with data set 2, neither the plots (or a table of means and standard deviations)
indicate their presence. Even for symmetric distributions, differences such as those between

data sets 1 and 3 will not be evident. Far better graphical methods are available.
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Figure 2.18 Number lines of 3 dissimilar groups of data, all having

an identical dot and line plot (shown at right).

2.2.3 Boxplots

Figure 2.19 presents boxplots of the well yield data. The median well yield is seen to be higher

for the areas with fractures. The IQR of wells with fractures is slightly larger than that for wells

without, and the highest value for each group is similar. Both data sets are seen to be right-

skewed. Thus a large amount of information is contained in this very concise illustration. The

mean yield, particularly for wells without fractures, is undoubtedly inflated due to skewness, and

differences between the two groups of data will in general be larger than indicated by the

differences in their mean values.
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Figure 2.19 Boxplots of the unit well yield date

In figure 2.20, boxplots of the three data sets given in figure 2.18 are presented. The skewness
of data set 2 is clear, as is the symmetry of 1 and 3. The difference in shape between 1 and 3 is
evident. The minute whiskers of data set 3 illustrate that over 25 percent of the data are located

essentially at the upper and lower quartiles -- a bimodal distribution.

The characteristics which make boxplots useful for inspecting a single data set make them even
more useful for comparing multiple data sets. They are valuable guides in determining whether
central values, spread, and symmetry differ among groups of data. They will be used in later
chapters to guide whether tests based on assumptions of normality may be employed. The
essential characteristics of numerous groups of data may be displayed in a small space. For
example, the 20 boxplots of figure 2.21 were used by Holtschlag (1987) to illustrate the source
of ammonia nitrogen on a section of the Detroit River. The Windmill Point Transect is
upstream of the U. S. city of Detroit, while the Fermi Transect is below the city. Note the
marked changes in concentration (the median lines of the boxplots) and variability (the widths of
the boxes) on the Michigan side of the river downstream of Detroit. A lot of information on

streamwater quality is succinctly summarized in this relatively small figure.
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Figure 2.20 Boxplots of the 3 dissimilar groups of data shown in figure 2.18

2.2.4 Probability Plots

Probability plots are also useful graphics for comparing groups of data. Characteristics evident
in boxplots are also seen using probability plots, though in a different format. Comparisons of
each quantile, not just the boxplot quartiles, can be made. The straightness of each data set also

allows quick comparisons to conformity with the theoretical distribution.

Figure 2.22 is a probability plot of the two well yield data sets. The right-skewness of each data
set is shown by their concave shapes. Wells without fractures have greater skewness as shown
by their greater concavity on the plot. Quantiles of the wells with fractures are higher than those
without, indicating generally higher yields. Figure 2.22 shows that the lowest yields in each
group are similar, as both data sets approach zero yield. Also seen are the similarity in the
highest yield for each group, due to the outlier for the without fractures group. Comparisons
between median values are simple to do -- just travel up the normal quantile = 0 line.

Comparisons of spreads are more difficult -- the slopes of each data set display their spread.

In general, boxplots summarize the differences between data groups in a manner more quickly
discerned by the viewer. When comparisons to a particular theoretical distribution such as the
normal are important, or comparisons between quantiles other than the quartiles are necessary,
probability plots are useful graphics. Either have many advantages over histograms or dot and

line plots.
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Figure 2.21 Boxplots of total ammonia nitrogen concentrations (mg/L as N) at two transects
on the Detroit River (from Holtschlag, 1987)

2.25 Q-Q Plots

Direct comparisons can be made between two data sets by graphing the quantiles (percentiles)
of one versus the quantiles (percentiles) of the second. This is called a quantile-quantile or Q-Q
plot (Chambers et al., 1983). If the two data sets came from the same distribution, the quantile
pairs would plot along a straight line with Yp = Xp, where p is the plotting position and Yp is
the pth quantile of Y. In this case it would be said that the median, the quartiles, the 10th and
90th percentiles, etc., of the two data sets were equal. If one data set had the same shape as the
second, differing only by an additive amount (each quantile was 5 units higher than for the other
data set, for example), the quantile pairs would fall along a line parallel to but offset from the
Yp=Xp line, also with slope =1. If the data sets differed by a multiplicative constant
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(Yp =5 * Xp, for example), the quantile pairs would lie along a straight line with slope equal to
the multiplicative constant. More complex relationships will result in pairs of quantiles which do
not lie along a straight line. The question of whether or not data sets differ by additive or

multiplicative relationships will become important when hypothesis testing is conducted.
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Figure 2.22 Probability plot of the unit well yield data

Figure 2.23 is a Q-Q plot of the well yield data. Several aspects of the relationship between the
two data sets are immediately seen. First, the lowest 9 quantile pairs appear to fall along a
straight line with a slope greater than 1, not parallel to the Yp = Xp line shown as a
reference. This indicates a multiplicative relation between the data, with Y = 4.4¢X, where 4.4 is
the slope of those data on the plot. Therefore, the yields with fractures are generally 4.4 times
those without fractures for the lowest 75 percent of the data. The 3 highest quantile pairs return
near to the Y = X line, indicating that the higher yields in the two data sets approach being
equal. The hydrologist might be able to explain this phenomenon, such as higher yielding wells
are deeper and less dependent on fracturing, or that some of the wells were misclassified, etc.
Therefore the Q-Q plot becomes a valuable tool in understanding the relationships between data

sets prior to performing any hypothesis tests.
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Figure 2.23 Q-Q plot of the unit well yield data

2.2.5.1 Construction of Q-Q plots
Q-Q plots are similar to probability plots. Now instead of plotting data quantiles from one
group against quantiles of a theoretical distribution such as the normal, they are plotted against

quantiles of a second data group.

When sample sizes of the two groups are identical, the x's and y's can be ranked separately, and
the Q-Q plot is simply a scatterplot of the ordered data pairs (x1 , y1).....Xp, Yn)- When
sample sizes are not equal, consider n to be the sample size of the smaller data set and m to be
the sample size of the larger data set. The data values from the smaller data set are its pth
quantiles, where p = (i-0.4)/(n+0.2). The n corresponding quantiles for the larger data set are
interpolated values which divide the larger data set into n equally-spaced parts. The following

example illustrates the procedure.

For the well yield data, the 12 values without fractures designated xj, 1 = 1,....n are themselves
the sample quantiles for the smaller data set. Repeating the without fractures data given earlier

in the chapter:
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Unit well yields, in gal / min / ft (Wright, 1985)

xj = yield without fractures pi = plotting position yi = yields with fractures
i X P Y i X PP Y S < o ¢
1 0001 .05 - 5 0.030 .38 - 9 0.10 .70 -
2 0.003 .13 - 6 0.040 .46 - 10 0.454 .79 -
3 0.007 .21 - 7 0.041 54 - 11 049 .87 -
4 0.020 .30 - 8 0.077 .62 - 12 1.02 .95 -

The .05 quantile (5th percentile) value of 0.001, for example, is to be paired on the Q-Q plot
with the .05 quantile of the yields with fractures. To compute the corresponding y quantiles for
the second data set, p = (j — 0.4)/(m + 0.2), and therefore j must be:

(-0.4) (i-0.4)

m+02 ~ (n+02 *°F

+0.2) ¢ (i-04
= (n—BO.(Zl) L+ 04 2.1]

If j is an integer, the data value yj itself is plotted versus xj. Usually, however, j will lic between

two integers, and the y quantile must be linearly interpolated between the y data corresponding
to the ranks on either side of j:

b AR UR DEIC(FEVR D [2.2]
where j' = integer (j)

For example, the well yield data with fractures are the following:
0.020 0.031 0.086 0.130 0.160 0.160 0.180 0.300 0.400 0.440 0.510 0.720 0.950.

Therefore n =12 m=13 and from eq. 2.1, = 1.081 - 0.03 .
The first of the 12 quantiles to be computed for the data with fractures is then:
i=1 j=1.05 i'= yj = y1 +0.05° (yp -y1)

0.020 + 0.05 =+ (.031 - .020)
= 0.021
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All 12 quantiles are similarly interpolated:

i i interpolated Vi i 1 Vi
1 1.05 0.021 7 7.53 0.245
2 213 0.038 8 8.61 0.362
3 3.21 0.095 9 9.69 0.428
4 4.29 0.139 10 10.77 0.495
5 5.37 0.160 11 11.85 0.692
6 6.45 0.169 12 12.93 0.939

These interpolated values are added to the table of quantiles given previously:

xj = yields without fractures pi = plotting position yj = yields with fractures

i X pi Yj- i X pi Yj- i X pi Yj-
1 0001 .05 0.021 5 .030 .38 0.160 9 010 .70 0.428
2 0.003 .13 0.038 6 .040 46 0.169 10 0.454 .79  0.495
3 0.007 .21  0.095 7 .041 54 0.245 11 049 .87 0.692
4 0.020 .30 0.139 8 .077 .62  0.362 12 1.02 .95 0.939

These (xj ,yj) pairs are the circles which were plotted in figure 2.23.

2.3 Scatterplots and Enhancements

The two-dimensional scatterplot is one of the most familiar graphical methods for data analysis.
It illustrates the relationship between two variables. Of usual interest is whether that
relationship appears to be linear or curved, whether different groups of data lie in separate
regions of the scatterplot, and whether the variability or spread is constant over the range of
data. In each case, an enhancement called a "smooth" enables the viewer to resolve these issues
with greater clarity than would be possible using the scatterplot alone. The following sections

discuss these three uses of the scatterplot, and the enhancements available for each use.

2.3.1 Evaluating Linearity

Figure 2.24 is a scatterplot of the mass load of transported sand versus stream discharge for the
Colorado R. at Lees Ferry, Colorado, during 1949-1964. Are these data sufficiently linear to fit a
linear regression to them, or should some other term or transformation be included in order to
account for curvature? In Chapters 9 and 11, other ways to answer this question will be
presented, but many judgements on linearity are made solely on the basis of plots. To aid in this

judgement, a "smooth" will be superimposed on the data.

The human eye is an excellent judge of the range of data on a scatterplot, but has a difficult time

accurately judging the center -- the pattern of how y varies with x. This results in two difficulties
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with judging linearity on a scatterplot as evident in figure 2.24. Outliers such as the two lowest
sand concentrations may fool the observer into believing a linear model may not fit.
Alternatively, true changes in slope are often difficult to discern from only a scatter of data To
aid in seeing central patterns without being strongly influenced by outliers, a resistant center line
can be fit to the data whose direction and slope varies locally in response to the data themselves.
Many methods are available for constructing this type of center line -- probably the most familiar
is the (non-resistant) moving average. All such methods may be called a "middle smooth", as
they smooth out variations in the data into a coherent pattern through the middle. We discuss
computation of smooths in Chapter 10. For now, we will merely illustrate their use as aids to
graphical data analysis. The smoothing procedure we prefer is called LOWESS, or LOcally
WEighted Scatterplot Smoothing (Cleveland and McGill, 1984b; Cleveland, 1985).
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Figure 2.24 Suspended sand transport at Lees Ferry, Arizona, 1949-1952

Figure 2.25 presents the Lees Ferry sediment data of figure 2.24, with a superimposed middle
smooth. Note the nonlinearity now evident by the curving smooth on the left-hand side of the
plot. The rate of sand transport slows above 6600 (€8-8) cfs. This curvature is easier to see with
the superimposed smooth. It is important to remember that no model, such as a linear or
quadratic function, is assumed prior to computing a smooth. The smoothed pattern is totally
derived by the pattern of the data, and may take on any shape. As such, smooths are an
exploratory tool for discerning the form of relationship between y and x. Seeing the pattern of
figure 2.25, a quadratic term might be added, a piecewise linear fit used, or a transformation
stronger than logs used prior to performing a linear regression of concentration versus
discharge (see Chapter 9).
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Middle smooths should be regularly used when analyzing data on scatterplots, and when
presenting those data to others. As no model form is assumed by them, they let the data
describe the pattern of dependence of y on x. Smooths are especially useful when large amounts
of data are to be plotted, and several groups of data are placed on the same plot. For example,
Welch and others (1988) depicted the dependence of log of arsenic concentration on pH for
thousands of groundwater samples throughout the western United States (figure 2.26). By using
middle smooths, data from one physiographic province was seen to differ from the other three

provinces in its relationship between pH and arsenic.

2.3.2  Evaluating Differences in Location on a Scatterplot

Figure 2.27 is a scatterplot of conductance versus pH for samples collected at low-flow in small
streams within the coal mining region of Ohio (data from Helsel, 1983). Each stream was
classified by the type of land it was draining -- unmined land, lands mined and later reclaimed,
and lands mined and then abandoned without reclamation. These three types of upstream lands

are plotted with different symbols in figure 2.27.

To see the three locations more clearly, a smooth can be constructed for each group which
encloses either 50 or 75 percent of the data. This type of smooth is called a polar smooth
(Cleveland and McGill, 1984b), and its computation is detailed in Chapter 10. Briefly, the data
are transformed into polar coordinates, a middle or similar smooth computed, and the smooth is
re-transformed back into the original units. In figure 2.28. a polar smooth enclosing 75 percent
of the data in each of the types of upstream land is plotted. These smooths are again not limited

to a prior shape or form, such as that of an ellipse. Their shapes are determined from the data.

Polar smooths can be a great aid in exploratory data analysis. For example, the irregular pattern
for the polar smooth of data from abandoned lands in figure 2.28 suggests that two separate
subgroups are present, one with higher pH than the other. Using different symbols for data
from each of the two geologic units underlying these streams shows indeed that the basins
underlain by a limestone unit have generally higher pH than those underlain by a sandstone.
Therefore the type of geologic unit should be included in any analysis or model of the behavior

of chemical constituents for these data.

Polar smooths are especially helpful when there is a large amount of data to be plotted on a
scatterplot. In such situations, the use of different symbols for distinguishing between groups
will be ineffective, as the plot will be too crowded to see patterns in the locations of symbols.
Indeed, in some locations it will not be possible to distinguish which symbol is plotted. Plots
presenting small data points and the polar smooths as in figure 2.28, or even just the polar

smooths themselves, will provide far greater visual differentiation between groups.
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Figure 2.25 Data of figure 2.24 with superimposed lowess smooth
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Figure 2.26 Dependence of log(As) on pH for 4 areas in the western U.S.
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Figure 2.27 Scatterplot of water-quality draining three types of upstream land use
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2.3.3 Evaluating Differences in Spread

In addition to understanding where the middle of data lie on a scatterplot, it is often of interest
to know something about the spread of the data as well. Homoscedasticity (constant variance) is
a crucial assumption of ordinary least-squares regression, as we will see later. Changes in
variance also invalidate parametric hypothesis test procedures such as analysis of variance. From
a more exploratory point of view, changes in variance may be as important or more important
than changes in central value. Differences between estimation methods for flood quantiles, or
between methods of laboratory analysis of some chemical constituent, are often differences in
repeatability of the results and not of method bias. Graphs again can aid in judging differences

in data variability, and are often used for this purpose.

A major problem with judgements of changing spread on a scatterplot is again that the eye is
sensitive to seeing the range of data. The presence of a few unusual values may therefore
incorrectly trigger a perception of changing spread. This is especially a problem when the
density of data changes across a scatterplot, a common occurrence. Assuming the distribution
of data to be identical across a scatterplot, and that no changes in variablility or spread actually
occur, areas where data are more dense are more likely to contain outlying values on the plot,
and the range of values is likely to be larger. This leads to a perception that the spread has
changed.

One graphical means of determining changes in spread has been given by Chambers et al.
(1983). First, a middle smooth is computed, as in figure 2.25. The absolute values of differences
|di| between each data point and the smooth at its value of x is a measure of spread.

[di| = |vi-li] where lj is the value for the lowess smooth at xj [2.3]

By graphing these absolute differences |dj| versus xj, changes in spread will show as changes in
absolute differences. A middle smooth of these differences should also be added to make the
pattern more clear. This is done in figure 2.29, a plot of the absolute differences between sand
concentration and its lowess smooth for the Lees Ferry data of figure 2.25. Note that there is a
slight decrease in |dj|, indicating a small decrease of variability or spread in concentration with

increasing discharge at that site.
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Figure 2.29 Absolute residuals show whether the spread changes with changing x -- sediment

concentrations at Lees Ferry, Arizona

2.4 Graphs for Multivariate Data

Boxplots effectively illustrate the characteristics of data for a single variable, and accentuate
outliers for further inspection. Scatterplots effectively illustrate the relationships between two
variables, and accentuate points which appear unusual in their x-y relationship. Yet there are
numerous situations where relationships between more than two variables should be considered
simultaneously. Similarities and differences between groups of observations based on 3 or more
variables are frequently of interest. Also of interest is the detection of outliers for data with
multiple variables. Graphical methods again can provide insight into these relationships. They
supplement and enhance the understanding provided by formal hypothesis test procedures.
Two multivariate graphical methods already are widely used in water-quality studies -- Stiff and
Piper diagrams. These and other graphical methods are outlined in the following sections. For
more detailed discussions on multivariate graphical methods, see Chambers et al. (1983), or the
textbook by Everitt (1978).

2.4.1 Profile Plots
Profile plots are a class of graphical methods which assign each variable to a separate and

parallel axis. One observation is represented by a series of points, one per axis, which are
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connected by a straight line forming the profile. Each axis is scaled independently, based on the
range of values in the entire data set. Comparisons between observations are made by

comparing profiles.

As an example, assume that sediment loads are to be regionalized. That is, mean annual loads
are to be predicted at ungaged sites based on basin characteristics (physical and climatic
conditions) at those sites. Of interest may be the interrelationships between sites based on their
basin characteristics, as well as which characteristics are associated with high or low annual
values. Profile plots such as the one of site basin characteristics in figure 2.30 would effectively

illustrate those relationships.
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e DTN e Annual Precip
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Figure 2.30 Profile plot of selected basin characteristcs, Cow Creek near Lyons, Kansas (data
from Jordan, 1979).

2.4.1.1 Stiff diagrams

Stiff diagrams (Hem, 1985) are the most familiar application of profile plots in water resources.
In a Stiff diagram, the milliequivalents of major water-quality constituents are plotted for a single
sample, with the cation profile plotted to the left of the center line, and anion profile to the right
(tigure 2.31). Comparisons between several samples based on multiple water-quality
constituents is then easily done by comparing shapes of the Stiff diagrams. Figure 2.32 shows
one such comparison for 14 groundwater samples from the Fox Hills Sandstone in Wyoming
(Henderson, 1985).
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Figure 2.31 Stiff diagram for a groundwater sample from the Columbia River Basalt aquifer,
Oregon (data from Miller and Gonthier, 1984).

2.4.2 Star Plots

A second method of displaying multiple axes is to have them radiate from a central point, rather
than aligned parallel as in a profile plot. Again, one observation would be represented by a point
on each axis, and these points are connected by line segments. The resulting figures resemble a
star pattern, and are often called star plots. Angles between rays of the star are 360°/k, where k
is the number of axes to be plotted. To provide the greatest visual discrimination between
observations, rays measuring related characteristics should be grouped together. Unusual
observations will stand out as a star looking quite different than the other data, perhaps having
an unusually long or short ray. In figure 2.33, the basalt water-quality data graphed using a Stiff
diagram in figure 2.31 is displayed as a star plot. Note that the cations are grouped together on
the top half of the star, with anions along the bottom.

2.4.2.1 Kite diagrams

A simplified 4-axis star diagram, the "kite diagram", has been used for displaying water-quality
compositions, especially to portray compositions of samples located on a map (Colby, 1956).
Cations are plotted on the two vertical axes, and anions on the two horizontal axes. The
primary advantage of this plot is its simplicity. Its major disadvantage is also its simplicity, in
that the use of only four axes may hide important characteristics of the data. One might need to
know whether calcium or magnesium were present in large amounts, for example, but that could
not be determined from the kite diagram. There is no reason why a larger number of axes could
not be employed to give more detail, making the plot a true star diagram. Compare for example

the basalt data plotted as a star diagram in figure 2.33 and as a kite diagram in figure 2.34.
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Figure 2.32 Stiff diagrams to display areal differences in water quality
(from Henderson, 1985)
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Figure 2.33 Star diagram of the basalt water-quality data
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Figure 2.34 Kite diagram of the basalt water-quality data
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One innovative use of the kite diagram was made by Davis and Rogers (1984). They plotted the

quartiles of all observations taken from each of several formations, and at different depth ranges,

in order to compare water quality between formations and depths (figure 2.35). The kite plots in
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this case are somewhat like multivariate boxplots. There is no reason why the other multivariate
plots described here could not also present percentile values for a group of observations rather

than descriptions of individual values, and be used to compare among groups of data.
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Figure 2.35 Kite diagram of quartiles of composition from an alluvial formation in Montana
(from Davis and Rogers, 1984).

2.4.3 Trilinear Diagrams
Trilinear diagrams have been used within the geosciences since the early 1900's. When three
variables for a single observation sum to 100 percent, they can be represented as one point on a
triangular (trilinear) diagram. Figure 2.36 is one example -- three major cation axes upon which
is plotted the cation composition for the basalt data of figure 2.31. Each of the three cation
values, in milliequivalents, is divided by the sum of the three values, to produce a new scale in
percent of total cations:

ci =mj/ (m] + m2 + m3)

where the ¢j is in percent of total cations, and mj are the milliequivalents of cation i.

For the basalt data, Ca = 0.80 meq, Mg = 0.26 meq, and Na+K = 0.89 meg. Thus

%Ca = 41, %Mg = 13, and %[Na + K] = 46. As points on these axes sum to 100 percent, only
two of the variables are independent. By knowing two values c1 and c2, the third is also known:
c3 = (100 - c1 - c2).
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Figure 2.36 Trilinear diagram for the basalt cation composition

(units are percent milliequivalents).

2.4.3.1 Piper diagrams

Piper (1944) applied these trilinear diagrams to both cation and anion compositions of water
qualtiy data. He also combined both trilinear diagrams into a single summary diagram with the
shape of a diamond (figure 2.37). This diamond has four sides, two for cations and two for
anions. However, it also has only two independent axes, one for a cation (say Ca + Mg), and
one for an anion (say Cl + SO4). If the (Ca + Mg) percentage is known, so is the (Na + K)
percentage, as one is 100% minus the other, and similarly for the anions. The collection of these

three diagrams in the format shown in figure 2.37 is called a Piper diagram.

Piper diagrams have the advantage over Stiff and star diagrams that each observation is shown
as only one point. Therefore, similarities and differences in composition between numerous
observations is more easily seen with Piper diagrams. Stiff and star diagrams have two
advantages over Piper diagrams: 1) they may be separated in space and placed on a map or
other graph, and 2) more than four independent attributes (two cation and two anion) can be
displayed at one time. Thus the choice of which to use will depend on the purpose to which
they are put.

Envelopes have been traditionally drawn by eye around a collection of points on a Piper diagram
to describe waters of "similar" composition. Trends (along a flow path, for example) have
traditionally been indicated by using different symbols on the diagram for different data groups,

such as for upgradient and downgradient observations, and drawing an arrow from one group to
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the other. Recently, both of these practices have been quantified into significance tests for
differences and trends associated with Piper diagrams (Helsel, 1992). Objective methods for
drawing envelopes (a smoothed curve) and trend lines on a Piper diagram were also developed.
The envelope drawn on figure 2.37 is one example. Smoothing procedures are discussed in
more detail in Chapter 10.

80

Figure 2.37 Piper diagram of groundwaters from the Columbia River Basalt aquifer in Oregon
(data from Miller and Gonthier, 1984)

2.4.4 Plots of Principal Components
One method for viewing observations on multiple axes is to reduce the number of axes to two,
and then plot the data as a scatterplot. An important dimension reduction technique is principal

components analysis, or PCA (Johnson and Wischern, 1982).

Principal components are linear combinations of the p original variables which form a new set

of variables or axes. These new axes are uncorrelated with one another, and have the property
that the first principal component is the axis that explains more of the variance of the data than
any other axis. The second principal component explains more of the remaining variance than

any other axis which is uncorrelated with (orthogonal to) the first. The resulting p axes are thus
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new "variables", the first few of which often explain the major patterns of the data in
multivariate space. The remaining principal components may be treated as residuals, measuring

the "lack of fit" of observations along the first few axes.

Each observation can be located on the new set of principal component (pc) axes. For example,
suppose principal components were computed for four original variables, the cations Ca, Mg,

Na and K. The new axes would be linear combinations of these variables, such as:

pcl =0.75 Ca + 0.8 Mg +0.1 Na +0.06 K a "calcareous" axis ?
pc2 =0.17 Ca + 0.06 Mg +0.6 Na + 0.8 K a "Na + K" axis?
pc3 =0.4Ca-0.25Mg-0.1Na+0.1K a "Ca vs. Mg" axis?
pc4 =0.05Ca-0.1 Mg+ 0.1 Na+ 02K residual noise

An observation which had milliequivalents of Ca = 1.6, Mg = 1.0, Na = 1.3 and K = 0.1 would
have a value on pcl equal to (0.6 *1.6 + 0.8 #1.0 + 0.1 #1.3 + 0.06 *0.1) = 1.9, and similarly for
the other new "variables". At this point no reduction in dimensions has taken place, as each

observation still has values along the p=4 new pc axes, as they did for the 4 original axes.

Now, however, plots can be made of the locations of observations oriented along the new
principal components axes. Most notably, a scatterplot for the first two components (pcl vs.
pc2) will show how the observations group together along the new axes which now contain the
most important information about the variation in the data. Thus groupings in multivariate
space have been simplified into groupings along the two most important axes, allowing those
groupings to be seen by the data analyst. Waters with generally different chemical compositions
should plot at different locations on the pc scatterplot. Data known to come from two different
groups may be compared using boxplots, probability plots, or Q-Q plots, but now using the first
several pc axes as the measurement "variables". Additionally, plots can be made of the last few
pc axes, to check for outliers. These outliers in multivariate space will now be visible by using
the "lack of fit" principal components to focus attention at the appropriate viewing angle.
Outliers having unusually large or small values on these plots should be checked for
measurement errors, unusual circumstances, and the other investigations outliers warrant.
Examples of the use of plots of components include Xhoffer et al. (1991), Meglen and Sistko
(1985), and Lins (1985).

2.4.5 Other Multivariate Plots

2.4.5.1 3-Dimensional rotation

If three variables are all that are under consideration, several microcomputer packages now will
plot data in pseudo-3 dimensions, and allow observations to be rotated in space along all three
axes. In this way the inter-relationships between the three variables can be visually observed,

data visually clustered into groups of similar observations, and outliers discerned. In figure 2.38
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two of the many possible orientations for viewing a data set were output from MacSpin
(Donoho et al., 1985), a program for the Apple Macintosh. The data are water qualtity variables

measured at low flow in basins with and without coal mining and reclamation (Helsel, 1983)

Conductance
Conduckance
T ' _ Suifate -
Sulfake

Figure 2.38 Two 3-dimensional plots of a water-quality data set

Note the u-shaped pattern in the data seen in the right-hand plot. There is some suggestion of
two separate groups of data, the causes of which can be checked by the analyst. This pattern is
not evident in the left-hand orientation. By rotating data around their three axes, patterns may
be seen which would not be evident without a 3-dimensional perspective, and greater insight

into the data is obtained.

2.4.5.2 Scatterplot matrix

Another method for inspecting data measured by p variables is to produce a scatterplot for each
of the p*(p-1)/2 possible pairs of variables. These are then printed all on one screen or page.
Obviously, little detail can be discerned on any single plot within the matrix, but variables which
are related can be grouped, linear versus nonlinear relationships discerned, etc. Chambers et al.
(1983) describe the production and utility of scatterplot matrices in detail.

Figure 2.39 is a scatterplot matrix for 5 water-quality variables at low-flow from the coal mining
data of Helsel (1983). On the lowest row are histograms for each individual variable. Note the
right skewness for all variables except pH. All rows above the last contain scatterplots between
each pair of varables. For example, the single plot in the first row is the scatterplot of

conductance (cond) versus pH. Note the two separate subgroups of data, representing low and

high pH waters. Evident from other plots are the linear association between conductance and
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sulfate (SO4), the presence of high total iron concentrations (TFe) for waters of low alkalinity
(ALK) and pH, and high TFe for waters of high sulfate and conductance.
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Figure 2.39 Scatterplot matrix showing the relationships between
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2.4.5.3 Methods to avoid

Two commonly-used methods should usually be avoided, as they provide little ability to
compare differences between groups of data. These are stacked bar charts and pie charts. Both
allow only coarse discrimination to be made between segments of the plot. Figure 2.40, for
example, is a stacked bar chart of the basalt water-quality data previously shown as a Stiff (figure
2.31) and star (figure 2.33) plot. Note that only large differences between categories within a bar
are capable of being discerned. For example, it is much easier to see that chloride (Cl) is larger
than sulfate (SO4) on the Stiff diagram than on the stacked bar chart. In addition, stacked bar
charts provide much less visual distinction when comparing differences among many sites, as in
tigure 2.32. Stiff or star diagrams allow differences to be seen as differences in shape, while
stacked bar charts require judgements of length without a common datum, a very difficult type
of judgement. Multiple pie charts require similarly imprecise and difficult judgements. Further

information on these and other types of presentation graphics is given in the last chapter.
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Figure 2.40 Stacked bar chart of the basalt data
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Exercises

2.1

2.2

2.3

Annual peak discharges for the Saddle River in New Jersey are given in Appendix C1.
For the peaks occuring from 1968-1989, draw

a) a histogram

b) a boxplot

¢) a quantile plot (using (i-.4)/(n + .2))
What transformation, if any, would make these data more symmetric?

Arsenic concentrations (in ppb) were reported for ground waters of southeastern New
Hampshire (Boudette and others, 1985). For these data, compute

a) a boxplot

b) a probability plot

Based on the probability plot, describe the shape of the data distribution. What

transformation, if any, would make these data more symmetric?

1.3 1.5 1.8 2.6 2.8 3.5 4.0 4.8

8 9.5 12 14 19 23 41 80
100 110 120 190 240 250 300 340
580

Feth et al. (1964) measured chemical compositions of waters in springs draining differing
rock types. Compare chloride concentrations from two of these rock types using a Q-Q
plot. Also plot two other types of graphs. Describe the similarities and differences in

chloride. What characteristics are evident in each graph?

Chloride concentration, in mg /L

Granodiorite 6.0 0.5 0.4 0.7 0.8 6.0
5.0 0.6 1.2 0.3 0.2 0.5
0.5 10 0.2 0.2 1.7 3.0
Qtz Monzonite 1.0 0.2 1.2 1.0 0.3 0.1
0.1 0.4 3.2 0.3 0.4 1.8

0.9 0.1 0.2 0.3 0.5
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The following chemical and biological data were reported by Frenzel (1988) above and
below a waste treatment plant (WTP). Graph and compare the two sets of multivariate
data. What effects has the WTP appeared to have?

Above Below units
Chironomidae 2500 3200 ave # per substrate
Simuliidae 3300 230 ave # per substrate
Baetidae 2700 2700 ave # per substrate
Hydropsychidae 440 88 ave # per substrate
Native trout 6.9 7.9 # per 10,760 sq. ft.
Whitefish 140 100 # per 10,760 sq. ft.
Nongame fish 54 180 # per 10,760 sq. ft.
Aluminum in clays 1950 1160 ug/g
Organic Carbon 4.2 2.1 g/kg

Ammonia 0.42 0.31 mg/L as N
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The mean nitrate concentration in a shallow aquifer under agricultural land was calculated as 5.1
mg/L. How reliable is this estimate? Is 5.1 mg/L in violation of a health advisory limit of 5
mg/L? Should it be treated differently than another aquifer having a mean concentration of 4.8
mg/L?

Thirty wells over a 5-county area were found to have a mean specific capacity of 1 gallon per
minute per foot, and a standard deviation of 7 gallons per minute per foot. A new well was
drilled and developed with an acid treatment. The well produced a specific capacity of 15
gallons per minute per foot. To determine whether this increase might be due to the acid
treatment, how likely is a specific capacity of 15 to result from the regional distribution of the
other 30 wells?

An estimate of the 100-year flood, the 99th percentile of annual flood peaks, was determined to
be 10,000 cubic feet per second (cfs). Assuming that the choice of a particular distribution to
model these floods (Log Pearson Type III) is correct, what is the reliability of this estimate?

In chapter 1 several summary statistics were presented which described key attributes of a data
set. They were sample estimates (such as % and s2) of true and unknown population parameters
(such as (L and 62). In this chapter, descriptions of the uncertainty or reliability of sample
estimates is presented. As an alternative to reporting a single estimate, the utility of reporting a
range of values called an "interval estimate" is demonstrated. Both parametric and
nonparametric interval estimates are presented. These intervals can also be used to test whether

the population parameter is significantly different from some pre-specified value.
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3.1 Definition of Interval Estimates

The sample median and sample mean estimate the corresponding center points of a population.
Such estimates are called point estimates. By themselves, point estimates do not portray the
reliability, or lack of reliability (variability), of these estimates. For example, suppose that two
data sets X and Y exist, both with a sample mean of 5 and containing the same number of data.
The Y data all cluster tightly around 5, while the X data are much more variable. The point
estimate of 5 for X is much less reliable than that for Y because of the greater variability in the X
data. In other words, more caution is needed when stating that 5 estimates the true population
mean of X than when stating this for Y. Reporting only the sample (point) estimate of 5 fails to
give any hint of this difference.

As an alternative to point estimates, interval estimates are intervals which have a stated
probability of containing the true population value. The intervals are wider for data sets having
greater variability. Thus in the above example an interval between 4.7 and 5.3 may have a 95%
probability of containing the (unknown) true population mean of Y. It would take a much wider
interval, say between 2.0 and 8.0, to have the same probability of containing the true mean of X.
The difference in the reliability of the two estimates is therefore clearly stated using interval
estimates. Interval estimates can provide two pieces of information which point estimates
cannot:
1. A statement of the probability or likelihood that the interval contains the true population
value (its reliability).
2. A statement of the likelihood that a single data point with specified magnitude comes
from the population under study.

Interval estimates for the first purpose are called confidence intervals; intervals for the second
purpose are called prediction intervals. Though related, the two types of interval estimates are

not identical, and cannot be interchanged.

In sections 3.3 and 3.4, confidence intervals will be developed for both the median and mean.
Prediction intervals, both parametric and nonparametric, will be used in sections 3.5 and 3.6 to
judge whether one new observation is consistent with existing data. Intervals for percentiles

other than the median will be discussed in section 3.7.
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If interest is in:

I

Sections Sections Section
3.3and 3.4 3.5 and 3.6 3.7

3.2 Interpretation of Interval Estimates

Suppose that the true population mean [ of concentration in an aquifer was 10. Also suppose
that the true population variance o2 equals 1. As these values in practice are never known,
samples are taken to estimate them by the sample mean % and sample variance s2. Sufficient
funding is available to take 12 water samples (roughly one per month) during a year, and the
days on which sampling occurs are randomly chosen. From these 12 samples X and s2 are
computed. Although in reality only one set of 12 samples would be taken each year, using a
computer 12 days can be selected multiple times to illustrate the concept of an interval estimate.
For each of 10 independent sets of 12 samples, a confidence interval on the mean is computed

using equations given later in section 3.4.1. The results are shown in table 3.1 and figure 3.1.

N Mean St. Dev. 90 % Confidence Interval
1 12 10.06 1.11 (9.49 to  10.64)
2 12 10.60 0.81 *(10.18 to  11.02)
3 12 9.95 1.26 (9.29 to  10.60)
4 12 10.18 1.26 (9.52 to  10.83)
5 12 10.17 1.33 (9.48 to  10.85)
6 12 10.22 1.19 (9.60 to  10.84)
7 12 9.71 1.51 (8.92 to  10.49)
8 12 9.90 1.01 (9.38 to 10.43)
9 12 9.95 0.10 (9.43 to  10.46)
10 12 9.88 1.37 (9.17 to 10.59)

Table 3.1 Ten 90% confidence intervals around a true mean of 10. Data follow a normal

distribution. The interval with the asterisk does not include the true value.

These ten intervals are "90% confidence intervals" on the true population mean. That is, the
true mean will be contained in these intervals an average of 90 percent of the time. So for the

10 intervals in the table, nine are expected to include the true value while one is not. This is in


jkmonson

jkmonson


68 Statistical Methods in Water Resources

fact what happened. Of course when a one-time sampling occurs, the computed interval will
either include or not include the true, unknown population mean. The probability that the
interval does include the true value is called the confidence level of the interval. The
probability that this interval will not cover the true value, called the alpha level (00, is computed
as

o = 1 — confidence level.

The width of a confidence interval is a function of the shape of the data distribution (its
variability and skewness), the sample size, and of the confidence level desired. As the
confidence level increases the interval width also increases, because a larger interval is more
likely to contain the true value than is a shorter interval. Thus a 95% confidence interval will be

wider than a 90% interval for the same data.

10

Figure 3.1 Ten 90% confidence intervals for normally-distributed data

with true mean = 10

Symmetric confidence intervals on the mean are commonly computed assuming the data follow
a normal distribution (see section 3.4.1). If not, the distribution of the mean itself will be
approximately normal as long as sample sizes are large (say 50 observations or greater).
Confidence intervals assuming normality will then include the true mean (1-0)% of the time. In
the above example, the data were generated from a normal distribution, so the small sample size
of 12 is not a problem. However when data are skewed and sample sizes below 50 or more,
symmetric confidence intervals will not contain the mean (1-0)% of the time. In the example
below, symmetric confidence intervals are incorrectly computed for skewed data (figure 3.2).
The results (figure 3.3 and table 3.2) show that the confidence intervals miss the true value of 1

more frequently than they should. The greater the skewness, the larger the sample size must be

3.1]
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before symmetric confidence intervals can be relied on. As an alternative, asymmetric
confidence intervals can be computed for the common situation of skewed data. They are also

presented in the following sections.

N Mean St. Dev. 90 % Confidence Interval
1 12 0.784 0.320 *(0.018 to  0.950)
2 12 0.811 0.299 *(0.656 to  0.960)
3 12 1.178 0.700 (0.815 to  1.541)
4 12 1.030 0.459 (0.792 to  1.267)
5 12 1.079 0.573 (0.782 to  1.376)
6 12 0.833 0.363 (0.644 to  1.021)
7 12 0.789 0.240 *(0.664 to  0.913)
8 12 1.159 0.815 (0.736 to  1.581)
9 12 0.822 0.365 *(0.633 to  0.992)
10 12 0.837 0.478 (0.589 to  1.085)

Table 3.2 Ten 90% confidence intervals around a true mean of 1. Data do not follow a normal

distribution. Intervals with an asterisk do not include the true value.

o

o © 00 NO o A WOWDN =

—

Frequency of Occurrence

Figure 3.2 Histogram of skewed example data. L =1.0 o =0.75.
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N g
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~/

1.0
(True Value)

Figure 3.3 Ten 90% confidence intervals for skewed data with true mean = 1.0

3.3 Confidence Intervals for the Median

A confidence interval for the true population median may be computed either without assuming
the data follow any specific distribution (section 3.3.1), or assuming they follow a distribution

such as the lognormal (section 3.3.2).

Confidence Intervals for the
Center of Data

Interest in median Interest in mean
“typical value" “center of mass"

Sec. 3.4.2

Sec. 3.4.1

Sec. 3.3.2

3.3.1 Nonparametric Interval Estimate for the Median

A nonparametric interval estimate for the true population median is computed using the
binomial distribution. First, the desired significance level o is stated, the acceptable risk of not
including the true median. One-half (01/2) of this risk is assigned to each end of the interval
(figure 3.4). A table of the binomial distribution provides lower and upper critical values x' and
x at one-half the desired alpha level (0./2). These critical values are transformed into the ranks
Rj and Ry, corresponding to data points Cj and C; at the ends of the confidence interval.
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PROBABILITY OF
INCLUDING THE
TRUE MEDIAN

o 9%5% = 1-«

| Interval estimate I

0 ¢ C,
DATA VALUE

Figure 3.4  Probability of containing the true median P 5 in a 2-sided interval estimate. P s

will be below the lower interval bound (Cj) 0./2% of the time, and above the upper
interval bound (Cy) 01/2% of the time.

For small sample sizes, the binomial table is entered at the p=0.5 (median) column in order to
compute a confidence interval on the median. This column is reproduced in Appendix Table B5
-- it is identical to the quantiles for the sign test (see chapter 6). A critical value x' is obtained
from Table B5 corresponding to 0/2, or as close to 0./2 as possible. This critical value is then
used to compute the ranks Ry and Rj corresponding to the data values at the upper and lower
confidence limits for the median. These limits are the Rjth ranked data points going in from
each end of the sorted list of n observations. The resulting confidence interval will reflect the

shape (skewed or symmetric) of the original data.

R| = x'+1 3.2]

Ry = n—x"=x for x' and x from Appendix Table B5 [3.3]

Nonparametric intervals cannot always exactly produce the desired confidence level when
sample sizes are small. This is because they are discrete, jumping from one data value to the
next at the ends of the intervals. However, confidence levels close to those desired are available

for all but the smallest sample sizes.

Example 2
The following 25 arsenic concentrations (in ppb) were reported for ground waters of

southeastern New Hampshire (Boudette and others, 1985). A histogram of the data is shown in
figure 3.5. Compute the 00=0.05 interval estimate of the median concentration.

1.3 1.5 1.8 2.6 2.8 3.5 4.0 4.8 8

9.5 12 14 19 23 41 80 100 110

120 190 240 250 300 340 580




72 Statistical Methods in Water Resources
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Figure 3.5 Histogram of Example 2 arsenic concentrations (in ppb)

The sample median concentration C 0.5 = 19, the 13th observation ranked from smallest to
largest. To determine a 95% confidence interval for the true median concentration Co s, the
tabled critical value with an entry nearest to 0,/2 = 0.025 is x' = 7 from Table B5. The entry
value of 0.022 is quite near 0.025, and is the equivalent to the shaded area at one side of figure
3.4. From equations 3.2 and 3.3 the rank Rj of the observation corresponding to the lower
confidence limit is 8, and Ry; corresponding to the upper confidence limitis 25—7 = 18.

For this confidence interval the alpha level o0 = 2¢0.022 = 0.044. This is equivalent to a 1-0.044
or 95.6% confidence limit for Cq 5, and is the interval between the 8th and 18th ranked
observations (the 8th point in from either end), or

C1=48=Cp5=110=Cy ata =0.044
The asymmetry around 6 0.5 = 19 reflects the skewness of the data.

An alternative method for computing the same nonparametric interval is used when the sample
size n>20. This large-sample approximation utilizes a table of the standard normal distribution
available in every basic statistics textbook to approximate the binomial distribution. By using
this approximation, only small tables of the binomial distribution up to n=20 need be included
in statistics texts. A critical value z¢ /2 from the normal table determines the upper and lower

ranks of observations corresponding to the ends of the confidence interval. Those ranks are
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n— Za/2JZ

Ry = . [3.4]
n+ < /ZJZ
0= i [3.5]

The computed ranks Ry and Rj are rounded to the nearest integer when necessary.

Example 2, cont.
For the n=25 arsenic concentrations, an approximate 95 percent confidence interval on the true

median Cp 5 is computed using zg /2 = 1.96 so that

25-1.96+4/25
- 2

25 + 1.96 *~[25
Ry = > \/_+1

the "7.6th ranked observation" in from either end. Rounding to the nearest integer, the 8th and

Ry =76

=18.4

18th ranked observations are used as the ends of the 0=0.05 confidence limit on Cy 5, agreeing

with the exact 95.6% confidence limit computed previously.

3.3.2 Parametric Interval Estimate for the Median

As mentioned in chapter 1, the geometric mean of x (GMy) is an estimate of the median in
original (x) units when the data logarithms y = In(x) are symmetric. The mean of y and
confidence interval on the mean of y become the geometric mean with its (asymmetric)
confidence interval after being retransformed back to original units by exponentiation (equations
3.6 and 3.7). These are parametric alternatives to the point and interval estimates of section
3.3.1. Here it is assumed that the data are distributed as a lognormal distribution. The
geometric mean and interval would be more efficient (shorter interval) measures of the median
and its confidence interval when the data are truly lognormal. The sample median and its
interval are more appropriate and more efficient if the logarithms of data still exhibit skewness

and/or outliers.

GMx =exp (¥) where y =1In(x) and y= sample mean ofy. [3.6]

exp (y - l(a/z,n—l)v Si /n)S GM = exp (y - t(a/z,n—l)q Si /n) =7

2 . . .
where §'= sample variance of y in natural log units.
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Example 2, cont.
Natural logs of the arsenic data are as follows:

0.262 0.405 0.588 0.956 1.030 1.253 1.387 1.569 2.079
2.251 2.485 2.639 2.944 3.135 3.714 4.382 4.605 4.700
4.787 5.247 5.481 5.521 5.704 5.829 6.363

The mean of the logs = 3.17, with standard deviation of 1.96. From figure 3.6 the logs of the
data appear more symmetric than do the original units of concentration shown previously in
figure 3.5.

In of arsenic
concentration
OO PAAWN—-=O0O

0.0 2.0 4.0 6.0

Figure 3.6 Histogram of natural logs of the arsenic concentrations of Example 2

From equations 3.6 and 3.7, the geometric mean and its 95% confidence interval are:
GMe =exp (3.17) =238

exp(3.17 - 2.064 *\[1.962/25 ) < GM, < exp(3.17 + 2.064 ] 1.962/25
p C p
exp (236) < GMg < exp (3.98)
10.6 < GMC < 535

The scientist must decide whether it is appropriate to assume a lognormal distribution. If not,

the nonparametric interval of section 3.3.1 would be preferred.

3.4 Confidence Intervals for the Mean

Interval estimates may also be computed for the true population mean (L. These are appropriate
if the center of mass of the data is the statistic of interest (see Chapter 1). Intervals symmetric
around the sample mean X are computed most often. For large sample sizes a symmetric
interval adequately describes the variation of the mean, regardless of the shape of the data

distribution. This is because the distribution of the sample mean will be closely approximated by
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a normal distribution as sample sizes get larger, even though the data may not be normally
distributed?. For smaller sample sizes, however, the mean will not be normally distributed unless
the data themselves are normally distributed. As data increase in skewness, more data are
required before the distribution of the mean can be adequately approximated by a normal
distribution. For highly skewed distributions or data containing outliers, it may take more than
100 observations before the mean will be sufficiently unaffected by the largest values to assume

that its distribution will be symmetric.

3.4.1 Symmetric Confidence Interval for the Mean

Symmetric confidence intervals for the mean are computed using a table of the student's t
distribution available in statistics textbooks and software. This table is entered to find critical
values for t at one-half the desired alpha level. The width of the confidence interval is a
function of these critical values, the standard deviation of the data, and the sample size. When
data are skewed or contain outliers, the assumptions behind the t-interval do not hold. The
resulting symmetric interval will be so wide that most observations will be included in it. It may
also extend below zero on the lower end. Negative endpoints of a confidence interval for data
which cannot be negative are clear signals that the assumption of a symmetric confidence
interval is not warranted. For such data, assuming a lognormal distribution as described in

section 3.4.2 would be more appropriate.

The student's t statistic t(o/2, n—1) 18 used to compute the following symmetric confidence
b

interval:

X=to,/2, n-1) * \/s2/n < u < x4+ t(0,/2, n—1) * A/ s2/n [3.8]

Example 2, cont.

The sample mean arsenic concentration C = 98.4. This is the point estimate for the true

unknown population mean . An ¢ = 0.05 confidence interval on W is

98.4 — t(,025, 24) * \144.72/25 <u < 984 + €025, 24) * \/144.72/25

98.4 —2.064+289 =u= 984+ 2.064 *28.9
38.7 =u = 158.1

Thus there is a 95% probability that |l is contained in the interval between 38.7 and 158.1 ppb,
assuming that a symmetric confidence interval is appropriate. Note that this confidence interval
is, like C, sensitive to the highest data values. If the largest value of 580 were changed to 380,
the median and its confidence interval would be unaffected. C would change to 90.4, with a
95% interval estimate for W from 40.7 to 140.1.

T This property is called the Central Limit Theorem (Conover, 1980). It holds for data which follow a distribution
having finite variance, and so includes most distributions of interest in water resources.
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3.4.2 Asymmetric Confidence Interval for the Mean (for Skewed Data)

Means and confidence intervals may also be computed by assuming that the logarithms y = In(x)
of the data are symmetric. If the data appear more like a lognormal than a normal distribution,
this assumption will give a more reliable (lower variance) estimate of the mean than will

computation of the usual sample mean without log transformation.

To estimate the population mean [lx in original units, assume the data are lognormal. One-half
the variance of the logarithms is added to ¥ (the mean of the logs) prior to exponentiation
(Aitchison and Brown, 1981). As the sample variance szy is only an estimate of the true variance
of the logarithms, the sample estimate of the mean is biased (Bradu and Mundlak, 1970).
However, for small 52y and large sample sizes the bias is negligible. See Chapter 9 for more

information on the bias of this estimatot.

ft, =exp (y+05e szy) where y= In(x), [3.9]
y

= sample mean and 52y = sample variance of y in natural log units.

The confidence interval around fI_is not the interval estimate computed for the geometric mean
in equation 3.7. It cannot be computed simply by exponentiating the interval around y. An

exact confidence interval in original units for the mean of lognormal data can be computed,
though the equation is beyond the scope of this book. See Land (1971) and (1972) for details.

Example 2, cont.

To estimate the mean concentration assuming a lognormal distribution,
.= exp (3.17 + 0.5°1.96%) = 162.8..

This estimate does not even fall within the confidence interval computed eatlier for the
geometric mean (10.6 = GM = 53.5). Thus here is a case where it is obvious that the CI on
the geometric mean is not an interval estimate of the mean. It is an interval estimate of the

median, assuming the data follow a lognormal distribution.

3.5. Nonparametric Prediction Intervals

The question is often asked whether one new observation is likely to have come from the same
distribution as previously-collected data, or alternatively from a different distribution. This can
be evaluated by determining whether the new observation is outside the prediction interval
computed from existing data. Prediction intervals contain 100¢(1—-0t) percent of the data
distribution, while 100°0t percent are outside of the interval. If a new observation comes from

the same distribution as previously-measured data, there is a 100°0. percent chance that it will lie
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outside of the prediction interval. Therefore being outside the interval does not "prove" the
new observation is different, just that it is likely to be so. How likely this is depends on the
choice of o0 made by the scientist.

Prediction intervals are computed for a different purpose than confidence intervals -- they deal
with individual data values as opposed to a summary statistic such as the mean. A prediction
interval is wider than the corresponding confidence interval, because an individual observation is
more variable than is a summary statistic computed from several observations. Unlike a
confidence interval, a prediction interval takes into account the variability of single data points
around the median or mean, in addition to the error in estimating the center of the distribution.
When the mean * 2 standard deviations are mistakenly used to estimate the width of a
prediction interval, new data are asserted as being from a different population more frequently
than they should.

In this section nonparametric prediction intervals are presented -- intervals not requiring the data
to follow any particular distributional shape. Prediction intervals can also be developed
assuming the data follow a particular distribution, such as the normal. These are discussed in

section 3.6. Both two-sided and one-sided prediction intervals are described.

Prediction Intervals to
evaluate one new observation

Valid only
Valid only for when logs are
Valid for all data symmetric data symmetric

Sec. 3.5 Sec. 3.6.1 Sec. 3.6.2

It may also be of interest to know whether the median or mean of a new set of data differs from
that for an existing group. To test for differences in medians, use the rank-sum test of Chapter

5. To test for differences in means, the two-sample t-test of Chapter 5 should be performed.

3.5.1 Two-Sided Nonparametric Prediction Interval

The nonparametric prediction interval of confidence level o is simply the interval between the
0./2 and 1—(0./2) petcentiles of the distribution (figure 3.7). This interval contains 100°(1—0r)
percent of the data, while 1000t percent lies outside of the interval. Therefore if the new
additional data point comes from the same distribution as the previously measured data, there is

a 100+t percent chance that it will lie outside of the prediction interval and be incorrectly
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labeled as "changed". The interval will reflect the shape of the data it is developed from, and no

assumptions about the form of that shape need be made.

Plnp = Xo/2:n+1) t0 X[1—(01/2)]+(n+1) [3.10]

1 -«

Confidence level

m i <2 ZmMmZamm;
[ D T e e o S O 0 Y

- P2
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A Predicion Intervdl —— e U

Figure 3.7 Two-sided prediction interval. A new observation will be below X] o./2% and
above Xy 0/2% of the time, when the data distribution is unchanged.

Example 2, cont.

Compute a 90% (0. = 0.10) prediction interval for the arsenic data without assuming the data
follow any particular distribution.

The 5th and 95th percentiles of the arsenic data are the observations with ranks of (.05°26) and
(:95°20), or 1.3 and 24.7. By linearly interpolating between the 1st and 2nd, and 24th and 25th
observations, the 0. = 0.10 prediction interval is
X1+ 0.3 X2—X1) to X24+ 0.7 * (X25-X24)
1.3+03°02 to 340+ 0.7« 240
1.4 to 508 ppb
A new observation less than 1.4 or greater than 508 can be considered as coming from a
different distribution at a 10% risk level (ot = 0.10).

3.5.2 One-Sided Nonparametric Prediction Interval
One-sided prediction intervals are appropriate if the interest is in whether a new observation is
larger than existing data, or smaller than existing data, but not both. The decision to use a one-

sided interval must be based entirely on the question of interest. It should not be determined
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after looking at the data and deciding that the new observation is likely to be only larger, or only
smaller, than existing information. One-sided intervals use O rather than 0/2 as the etror risk,

placing all the risk on one side of the interval (figure 3.8).

one-sided PI np: new X < Xqe(n+1) » Of
new x > X[1_0q.<n+1) [3.11]
(but not either, or)

-«
Confidetwne level

Mo D ZmoomI T
MOZMIOID S o0

-4——— Predicton Interval L

Figure 3.8 Confidence level and alpha level for a 1-sided prediction interval Probability of
obtaining a new observation greater than Xy, when the distribution is unchanged
1s OL.

Example 2, cont.

An arsenic concentration of 350 ppb is found in a New Hampshire well. Does this indicate a
change to larger values as compared to the distribution of concentrations for the example 2
data? Use o0 = 0.10.

As only large concentrations are of interest, the new data point will be considered larger if it
exceeds the o0 = 0.10 one-sided prediction interval, or upper 90th percentile of the existing data.
X0.90¢26 = X23.4. By linear interpolation this corresponds to a concentration of

X023 + 0.44(Xp4—Xp3) = 300 + 0.4+(40) = 316.

In other words, a concentration of 316 or greater will occur approximately 10 percent of the
time if the distribution of data has not increased. Therefore a concentration of 350 ppb is

considered larger than the existing data at an ol level of 0.10.
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3.6 Parametric Prediction Intervals

Parametric prediction intervals are also used to determine whether a new observation is likely to
come from a different distribution than previously-collected data. However, an assumption is
now made about the shape of that distribution. This assumption provides more information
with which to construct the interval, as long as the assumption is valid. If the data do not

approximately follow the assumed distribution, the prediction interval may be quite inaccurate.

3.6.1 Symmetric Prediction Interval

The most common assumption is that the data follow a normal distribution. Prediction intervals
are then constructed to be symmetric around the sample mean, and wider than confidence
intervals on the mean. The equation for this interval differs from that for a confidence interval
around the mean by adding a term s = s, the standard deviation of individual

observations around their mean:

Pl = X—t (©/2,n-1)"* \/ 2+ (s2/n) to X+t (0/2,n-1)* A/ 82 + (s2/n) [3.12]

One-sided intervals are computed as before, using O rather than 0//2 and comparing new data to

only one end of the prediction interval.

Example 2, cont.
Assuming symmetty, is a concentration of 350 ppb different (not just larger) than what would be

expected from the previous distribution of arsenic concentrations? Use o = 0.10.

The parametric two-sided ot = 0.10 prediction interval is
984~ (03, 24 *\| 14472+ 144.72/25 10 984+ t (35, 24) *\| 14472 + 144.72/25

98.4—1.711+147.6 to 98.4 + 1.711 * 147.6
-154.1 to 350.9

350 ppb is at the upper limit of 350.9, so the concentration is not declared different at

o, = 0.10. The negative concentration reported as the lower prediction bound is a clear
indication that the underlying data are not symmetric, as concentrations are non-negative. To
avoid an endpoint as unrealistic as this negative concentration, an asymmetric prediction interval
should be used instead.

3.6.2 Asymmetric Prediction Intervals

Asymmetric intervals can be computed either using the nonparametric intervals of section 3.5,
or by assuming symmetry of the logarithms and computing a parametric interval on the logs of
the data. Either asymmetric interval is more valid than a symmetric interval when the undetlying

data are not symmetric, as is the case for the arsenic data of example 2. As stated in Chapter 1,
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most water resources data and indeed most environmental data show positive skewness. Thus
they should be modelled using asymmetric intervals. Symmetric prediction intervals should be
used only when the data are known to come from a normal distribution. This is because
prediction intervals deal with the behavior of individual observations. Therefore the Central
Limit Theorem (see first footnote in this chapter) does not apply. Data must be assumed non-
normal unless shown otherwise. It is difficult to disprove normality using hypothesis tests
(Chapter 4) due to the small sample sizes common to environmental data sets. It is also difficult
to see non-normality with graphs unless the departures are strong (Chapter 10). It is unfortunate
that though most water resources data sets are asymmetric and small, symmetric intervals are

commonly used.

An asymmetric (but parametric) prediction interval can be computed using logarithms. This
interval is parametric because percentiles are computed assuming that the data follow a

lognormal distribution. Thus from equation 3.12:

(— 2 2 — 2 2
PI = exp (y—t(alz’nfl)‘,sy +, /n) to exp (y+t(a/2,n7m/sy +5 /n)

where y = In(X), y is the mean and sj the variance of the logarithms. [3.13]

Example 2, cont.

An asymmetric prediction interval is computed using the logs of the arsenic data. A 90%

prediction interval becomes

In(PT): 3.17 = t (0,05, 24) w1962 + 1.962/25 to 3.17 + t (0.05, 24) *
A 1.962 + 1.962/25

317-171211 to 317+ 171211
0.44t0 6.78

which when exponentiated into original units becomes
1.55 to 880.1

As percentiles can be transformed directly from one measurement scale to another, the
prediction interval in log units can be directly exponentiated to give the prediction interval in
original units. This parametric prediction interval differs from the one based on sample
percentiles in that a lognormal distribution is assumed. The parametric interval would be
preferred if the assumption of a lognormal distribution is believed. The sample percentile
interval would be preferred when a robust interval is desired, such as when a lognormal model is

not believed, or when the scientist does not wish to assume any model for the data distribution.
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3.7 Confidence Intervals for Percentiles (Tolerance Intervals)

Quantiles or percentiles have had the traditional use in water resources of describing the
frequency of flood events. Thus the 100-year flood is the 99th percentile (0.99 quantile) of the
distribution of annual flood peaks. It is the magnitude of flood which is expected to be
exceeded only once in 100 years. The 20-year flood is of a magnitude which is expected to be
exceeded only once in 20 years (5 times in 100 years), or is the 95th percentile of annual peaks.
Similarly, the 2-year flood is the median or 50th percentile of annual peaks. Flood percentiles
are determined assuming that peak flows follow a specified distribution. The log Pearson Type
I11 is often used in the United States. Historically, European countries have used the Gumbel

(extreme value) distribution, though the GEV distribution is now more common (Ponce, 1989).

The most commonly-reported statistic for analyses of low flows is also based on percentiles, the
"7-day 10-year low flow" or 7Q10. The 7Q10 is the 10th percentile of the distribution of annual
values of Y, where Y is the lowest average of mean daily flows over any consecutive 7-day
period for that year. Y values are commonly fit to Log Pearson III or Gumbel distributions in
order to compute the percentile. Often a series of duration periods is used to better define flow
characteristics, ie. the 30Q10, 60Q10, and others (Ponce, 1989).

Recently, percentiles: water quality of water-quality records appear to be becoming more
important in a regulatory framework. Crabtree et al. (1987) among others have reported an
increasing reliance on percentiles for developing and monitoring compliance with water quality
standardsT. In these scenarios, the median, 95th, or some other percentile should not exceed (or
be below) a standard. As of now, no distribution is usually assumed for water-quality
concentrations, so that sample percentiles are commonly computed and compared to the
standard. In regulatory frameworks, exceedance of a tolerance interval on concentration is
sometimes used as evidence of contamination. A tolerance interval is nothing other than a
confidence interval on the percentile. The percentile used is the ‘coverage coefficient’ of the

tolerance interval.

In light of the ever increasing use of percentiles in water resources applications, understanding
of their variability is quite important. In 3.7.1, interval estimates will be computed without
assuming a distribution for the data. Estimates of peak flow percentiles computed in this way
will therefore differ somewhat in comparison to those computed using a Log Pearson III or

Gumbel assumption. Computation of percentile interval estimates when assuming a specific

T Data presented by Crabtree et al. (1987) shows that for each of their cases, percentiles of flow
and water-quality constituents are best estimated by (nonparametric) sample percentiles rather
than by assuming some distribution. However they come to a different conclusion for two
constituents (see their Table 2) by assuming that a parametric process is better unless proven
otherwise. In those two cases either could be used.
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distributional shape is discussed in section 3.7.3. In sections 3.7.2 and 3.7.4, use of interval

estimates for testing hypotheses is illustrated.

Confidence Intervals for percentiles

Valid only when a
distribution is
Valid for all data assumed

3.7.1 Nonparametric Confidence Intervals for Percentiles

Confidence intervals can be developed for any percentile analogous to those developed in
section 3.3 for the median. First the desired confidence level is stated. For small sample sizes a
table of the binomial distribution is entered to find upper and lower limits corresponding to
critical values at one-half the desired alpha level (0t/2). These critical values are transformed

into the ranks corresponding to data points at the ends of the confidence interval.

The binomial table is entered at the column for p, the percentile (actually the quantile) for which
a confidence interval is desired. So for a confidence interval on the 75th percentile, the p=0.75
column is used. Go down the column until the appropriate sample size n is found. The tabled
probability p* should be found which is as close to 0./2 as possible. The lower critical value xj is
the integer corresponding to this probability p*. A second critical value xy, is similarly obtained
by continuing down the column to find a tabled probability p' = (1-0t/2). These critical values
xj and x, are used to compute the ranks R] and Ry, corresponding to the data values at the upper
and lower ends of the confidence limit (equations 3.14 and 3.15). The resulting confidence level

of the interval will equal (p'—p*).

r—— [3.14]

Ry = xy [3.15]

Example 2, cont.

For the arsenic concentrations of Boudette and others (1985), determine a 95% confidence

interval on C(),20), the 20th percentile of concentration (p=0.2).

The sample 20th percentile C 0.20 = 2.9 ppb, the 0.20+(26) = 5.2 smallest observation, or two-
tenths of the distance between the 5th and 6th smallest observations. To determine a 95%
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confidence interval for the true 20th percentile C() 2(), the binomial table from a statistics text
such as Bhattacharyya and Johnson (1977) is entered at the p = 0.20 column. The integer x|
having an entry nearest to o,/2 = 0.025 is found to be 1 (p* = 0.027, the error probability for the
lower side of the distribution). From equation 3.14 the rank R} = 2. Going further down the
column, p'= 0.983 for an x; = Ry = 9. Therefore a 95.6% confidence interval (0.983-0.027 =
0.9506) for the 20th percentile is the range between the 2nd and 9th observations, or

1.5=<Cppo =8 ata =0.044
The asymmetry around é 0.20 = 2.9 reflects the skewness of the data.

When n>20, a large-sample (normal) approximation to the binomial distribution can be used to
obtain interval estimates for percentiles. From a table of quantiles of the standard normal
distribution, z¢; /2 and z[]_¢,/2] (the 0/2th and [1-0t/2]th normal quantiles) determine the
upper and lower ranks of observations corresponding to the ends of the confidence interval.

Those ranks are

Ry = np+zg/2*\np (1-p) +0.5 [3.16]
Ry= np+ 2[1-0/2] * \Jop (1-p) +0.5 [3.17]

The 0.5 terms added to each reflect a continuity correction (see Chapter 4) of 0.5 for the lower
bound and —0.5 for the upper bound, plus the +1 term for the upper bound analogous to

equation 3.5. The computed ranks Ry; and Rj are rounded to the nearest integer.

Example 2, cont.

Using the large sample approximation of equations 3.16 and 3.17, what is a 95% confidence

interval estimate for the true 0.2 quantile?

Using z¢, /2 = —1.96, the lower and upper ranks of the interval are
Rj= 2502+ (=1.96) *~/25°0.2 (1-0.2) +0.5 =5—1.96*2 +0.5 =1.0
Ry = 25°0.2+ 1.96°1/25°0.2 (1-0.2) +0.5 =54+1962+05 =94
After rounding, the 2nd and 9th ranked observations are found to be an approximate 0t=0.05

confidence limit on C() 2, agreeing with the exact confidence limit computed previously.

3.7.2 Nonparametric Tests for Percentiles

Often it is of interest to test whether a percentile is different from, or larger or smaller than,
some specified value. For example, a water quality standard X() could be set such that the
median of daily concentrations should not exceed X() ppb. Or the 10-year flood (90th percentile
of annual peak flows) may be tested to determine if it differs from a regional design value X{j.
Detailed discussions of hypothesis tests do not begin until the next chapter. However, a simple

way to view such a test is discussed below. It is directly related to confidence intervals.
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3.7.2.1 N-P test for whether a percentile differs from X() (a two-sided test)

To test whether the percentile of a data set is significantly different (either larger or smaller)
from a pre-specified value X(), compute an interval estimate for the percentile as described in
section 3.7.1. If X() falls within this interval, the percentile is not significantly different from Xy
at a significance level = o (figure 3.9). If X(y is not within the interval, the percentile
significantly differs from X at the significance level of o..

FROBABILITY OF
INCLUDNG THE | /0 95% = 1-« afo
TRUE Xp :

Interval estimate
A

DATA WALLIE

FROBABILITY OF

INCLUDMG THE o — -
TRUE Ko Afo O95% = 1-a ....Ci'_ll."g

Interval estimate

B.

0 A X, ﬁp X1
DATA WALUE

Figure 3.9 Interval estimate of pth percentile Xp as a test for whether Xp = X.
A. X inside interval estimate: Xp not significantly different from Xj.
B. X outside interval estimate: Xp significantly different from X.

Example 3
In Appendix C1 are annual peak discharges for the Saddle R. at Lodi, NJ from 1925 to 1967.

Of interest is the 5-year flood, the flood which is likely to be equalled or exceeded once every 5
years (20 times in 100 years), and S0 is the 80th percentile of annual peaks. Though flood
percentiles are usually computed assuming a Log Pearson Type 111 or Gumbel distribution
(Ponce, 1989), here they will be estimated by the sample 80th percentile. Is there evidence that
the 20-year flood between 1925-1967 differs from a design value of 1300 cfs at an o= 0.05?

The 80th percentile is estimated from the 43 values between 1925 and 1967 as the
0.8(44) = 35.2 value when ranked from smallest to largest. Therefore Q (g = 1672 cfs, 0.2
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of the distance between the 35th and 36th ranked peak flow. A two-sided confidence interval
on this percentile is (following equations 3.16 and 3.17):

Ry =np+zg/2° \lnp 1-p) + 0.5 Ry =n0p+2z[1—o/2] * \ap (I-p) +0.5
R = 43(0.8)-1.96+\/43+0.8 (0.2) + 0.5 Ry, = 43(0.8)+1.96%\[430.8 (0.2) + 0.5
= 29.8 = 40.0

The 0=0.05 confidence interval lies between the 30th and 40th ranked peak flows, or
1370 < Qq.8 < 1860
which does not include the design value X() = 1300 cfs. Therefore the 20-year flood does differ

from the design value at a significance level of 0.05.

3.7.2.2 N-P test for whether a percentile exceeds Xy (a one-sided test)

To test whether a percentile X significantly exceeds a specified value or standard X(), compute
the one-sided confidence interval of section 3.7.1. Remember that the entire error level O is
placed on the side below the percentile point estimate X p (figure 3.10). Xp will be declared
significantly higher than X{j if its one-sided confidence interval lies entirely above Xg).

PROBABILITY OF
INCLUDING THE o 1-«
TRUE Xp

A.

Interval estimate

DATA VALUE

PROBABILITY OF
INCLUDING THE
TRUE Xp

B.

o 1-0o

Interval estimate

0 Xo X| Q
DATA VALUE
Figure 3.10  One-sided interval estimate as a test for whether percentile Xp > X0p.

p

A. X inside interval estimate: Xp not significantly greater than Xj).
B. X below interval estimate: Xp significantly greater than X().
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Example 2, cont.

Suppose that a water-quality standard stated that the 90th percentile of arsenic concentrations in
drinking water shall not exceed 300 ppb. Has this standard been violated at the ot = 0.05
confidence level by the New Hampshire data of example 2?

The 90th percentile of the example 2 arsenic concentrations is
C9p = (25+1)°0.9th = 23.4th data point =300 + 0.4 (340-300)
= 316 ppb.

Following equation 3.16 but using o instead of 0/2, the rank of the obsetrvation cotresponding
to a one-sided 95% lower confidence bound on C g is
Ry =np+zg *\np (I-p) +0.5 = 250.9 + 20 o5 *V25°0.9 (0.1) +0.5
=225+ (-1.64)/2.25 + 0.5
=20.5
and thus the lower confidence limit is the 20.5th lowest observation, or 215 ppb, halfway
between the 20th and 21st observations. This confidence limit is less than X =300, and

therefore the standard has not been exceeded at the 95% confidence level.

3.7.2.3 N-P test for whether a percentile is less than X() (a one-sided test)
To test whether a percentile Xp is significantly less than X(), compute the one-sided confidence
interval placing all error o on the side above X p (tigure 3.11). Xp will be declared as

significantly less than X{j if its one-sided confidence interval is entirely below X{).

PROBABILITY OF
INCLUDING THE 1-o o
TRUE Xp

A.

Interval estimate

X
0 Qp 0 X

DATA VALUE

PROBABILITY OF
INCLUDING THE
TRUE Xp

B.

1—o

Interval estimate

0 Qp Xy Xo
DATA VALUE
Figure 3.11  One-sided interval estimate as a test for whether percentile Xp <X
A. X inside interval estimate: Xp not significantly less than Xg).
B. X above interval estimate: Xp significantly less than X{).



88 Statistical Methods in Water Resources

Example 4
The following 43 values are annual 7-day minimum flows for 19411983 on the Little Mahoning

Creek at McCormick, PA. Though percentiles of low flows are often computed using a Log
Pearson Type III distribution, here the sample estimate of the percentile will be computed. Is
the 7QQ10 low-flow (the 10th percentile of these data) significantly less than 3 cfs at o = 0.05?

0.69  0.80 1.30 1.40 1.50 1.50 1.80 1.80 2.10 250  2.80
290  3.00 3.10 3.30 3.70 3.80 3.80 4.00 4.10 420 430
440  4.80 4.90 5.70 5.80 5.90 6.00 6.10 7.90 8.00  8.00
9.70 ~ 9.80 10.00 11.00 11.00 12.00 13.00 16.00  20.00  23.00

The sample 10th percentile of the data is 4.4th observation, or 7AQ 10 = 1.4 cfs. The upper 95%
confidence interval for Q 1() is located (following equation 3.17 but using O) at rank Ry;:
Ry= np+ 2[1-0] * \/np (1-p) +05
= 430.1 +1.64 *1/430.1 (0.9) +0.5
= 8.0
So the upper 95% confidence limit equals 1.8 cfs. This is below the Xy of 3 cfs, and therefore
the 7Q10 is significantly less than 3 cfs at an o0 = 0.05.

3.7.3 Parametric Confidence Intervals for Percentiles

Confidence intervals for percentiles can also be computed by assuming that data follow a
particular distribution. Distributional assumptions are employed because there are often
insufficient data to compute percentiles with the required precision. Adding information
contained in the distribution will increase the precision of the estimate as long as the

distributional assumption is a reasonable one. However when the distribution which is assumed

does not fit the data well, the resulting estimates are less accurate, and more misleading, than if
nothing were assumed. Unfortunately, the situation in which an assumption is most needed,
that of small sample sizes, is the same situation where it is difficult to determine whether the

data follow the assumed distribution.

There is little theoretical reason why data should follow one distribution over another. As stated
in Chapter 1, most environmental data have a lower bound at zero and may have quite large
observations differing from the bulk of the data. Distributions fit to such data must posses
skewness, such as the lognormal. But few "first principles" can be drawn on to favor one
skewed distribution over another. Empirical studies have found that for specific locations and
variables certain distributions seem to fit well, and those have become traditionally used. Thus
the lognormal, Pearson Type III and Gumbel distributions are commonly assumed in water

resources applications.
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Computation of point and interval estimates for percentiles assuming a lognormal distribution
are straightforward. First the sample mean yand sample standard deviation sy of the

logarithms are computed. The point estimate is then

A

X p =P (¥ + zp*sy) [3.18]

where zp is the pth quantile of the standard normal distribution and y = In(x).

The interval estimate for the median was previously given by equation 3.7 assuming that data are
lognormal. For other percentiles, confidence intervals are computed using the non-central t-
distribution (Stedinger, 1983). Tables of that distribution are found in Stedinget's article, with
more complete entries online in commercial computer mathematical libraries. The confidence

interval on Xp is:

CI(Xp) = exp (7 + Coy2esy, 7+ {[1-as2]"sy) [3.19]

where (g2 is the 0./2 quantile of the non-central t distribution for the desired percentile with

sample size of n.

Example 2, cont.
Compute a 90% interval estimate for the 90th percentile of the New Hampshire arsenic

concentrations, assuming the data are loghormal.

The 90th percentile assuming concentrations are lognormal is as given in equation 3.18:
C o0 = exp §+z9p°sy) = exp (3.17 + 1.28+1.96)
= 292.6 ppb.
(which is lower than the sample estimate of 316 ppb obtained without assuming the data are

lognormal).

The corresponding 90% interval estimate from equation 3.19 is:
exp (7 + §p.05°sy) < Co0 < exp (7 + {p.95°sy)
exp (3.17 + 0.8981.96) < C 9 < exp(3.17 + 1.8381.96)
138.4 < Cg( < 873.5

This estimate would be preferred over the nonparametric estimate if it was believed that the data
were truly lognormal. Otherwise a nonparametric interval would be preferred. When the data

are truly lognormal, the two intervals should be quite similar.

Interval estimates for percentiles of the Log Pearson III distribution are computed in a similar

fashion. See Stedinger (1983) for details on the procedure.
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3.7.4 Parametric Tests for Percentiles

Analogous to section 3.7.2, parametric interval estimates may be used to conduct a parametric
test for whether a percentile is different from (2-sided test), exceeds (1-sided test), or is less than
(1-sided test) some specified value X(y. With the 2-sided test for difference, if X falls within the
interval having 0./2 on either side, the petcentile is not proven to be significantly different from
X If X falls outside this interval, the evidence supports Xp # X( with an error level of oL
For the one-sided tests, the error level ot is placed entirely on one side before conducting the

test, and X() is again compared to the end of the interval to determine difference or similarity.

Example 2, cont.

Test whether the 90th percentile of arsenic concentrations in drinking water exceeds 300 ppb at

the o = 0.05 significance level, assuming the data are lognormal.

The one-sided 95% lower confidence limit for the 90th percentile was computed above as 138.4
ppb. (note the nonparametric bound was 215 ppb). This limit is less than the p( value of 300,

and therefore the standard has not been exceeded at the 95% confidence level.

3.8 Other Uses for Confidence Intervals

Confidence intervals are used for purposes other than as interval estimates. Three common uses
are to detect outliers, for quality control charts, and for determining sample sizes necessary to
achieve a stated level of precision. Often overlooked are the implications of data non-normality

for the three applications. These are discussed in the following three sections.

3.8.1 Implications of Non-Normality for Detection of Outliers

An outlier is an observation which appears to differ in its characteristics from the bulk of the
data set to which it is assigned. It is a subjective concept -- different people may define specific
points as either outliers, or not. Outliers are sometimes deleted from a data set in order to use
procedures based on the normal distribution. One of the central themes of this book is that this
is a dangerous and unwarranted practice. Itis dangerous because these data may well be totally
valid. There is no law stating that observed data must follow some specific distribution, such as
the normal. Outlying observations are often the most important data collected, providing
insight into extreme conditions or important causative relationships. Deleting outliers is
unwarranted because procedures not requiring an assumption of normality are both available
and powerful. Many of these are discussed in the following chapters.

In order to delete an outlier, an observation must first be declared to be one. Rules or "tests"
for outliers have been used for years, as surveyed by Beckman and Cook (1983). The most

common tests are based on a t-interval, and assume that data follow a normal distribution.
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Usually equation 3.12 for a normal prediction interval is simplified by assuming the (s2/n) terms
under the square root sign are negligable compared to s2 (true for large n). Points beyond the

simplified prediction interval are declared as outliers, and dropped.

Real world data may not follow a normal distribution. As opposed to a mean of large data sets,
there is no reason to assume that they should. Rejection of points by outlier tests may not
indicate that data are in any sense in error, but only that they do not follow a normal distribution
(Fisher, 1922). For example, below are 25 observations from a lognormal distribution. When
the t-prediction interval is applied with 0t=0.05, the largest observation is declared to be an
outlier. Yet it is known to be from the same non-normal distribution as generated the remaining
observations.

0.150 0.244 0.339 0.408 0.434

0.595 0.728 0.776 0.832 0.836

0.900 0.924 1.074 1.136 1.289 DATA
' ' ' ' ' VALUE

1.709 1.889 2.217 2.755 2.886

2919 2939 3.166 4.282 7.049

NOOR~AWN—=O

OUTLIER

00 30 60 90
NO. OF OBSERVATIONS

Table 3.3 Lognormal data set with "outlier" more than +2 sd above the mean.

Multiple outliers cause other problems for outlier tests that are based on normality (Beckman
and Cook, 1983). They may so inflate the estimated standard deviation that no points are
declared as outliers. When several points are spaced at increasingly larger distances from the
mean, the first may be declared an outlier upon using the test once, but re-testing after deletion
causes the second largest to be rejected, and so on. Replication of the test may eventually
discard a substantial part of the data set. The choice of how many times to apply the test is
entirely arbitrary.

3.8.2 Implications of Non-Normality for Quality Control

A visual presentation of confidence intervals used extensively in industrial processes is a control
chart (Montgomery, 1991). A small number of products are sampled from the total possible at
a given point in time, and their mean calculated. The sampling is repeated at regular or random
intervals, depending on the design, resulting in a series of sample means. These are used to
construct one type of control chart, the xbar chart. This chart visually detects when the mean of

future samples become different from those used to construct the chart. The decision of
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difference is based on exceeding the parametric confidence interval around the mean given in
section 3.4.1.

Suppose a chemical laboratory measures the same standard solution at several times during a day
to determine whether the equipment and operator are producing consistent results. For a series
of n measurements at m time intervals, the total sample size N=n*m. The best estimate of the

concentration for that standard is the overall mean
N
— Xj
X=) N
i=1
X is plotted as the center line of the chart. A confidence interval on that mean is described by
equation 3.8, using the sample size n available for computing each individual mean value. Those
interval boundaries are also plotted as parallel lines on the quality control chart. Mean values
will on average plot outside of these boundaries only 0t*100% of the time if the means are
normally distributed. Points falling outside the boundaries more frequently than this are taken

to indicate that something in the process has changed.

If n is large (say 30 or more) the Central Limit Theorem states that the means will be normally
distributed even though the underlying data may not be. However if n is much smaller, as is
often the case, the means may not follow this pattern. In particular, for skewed data (data with
outliers on only one side), the distribution around the mean may still be skewed. The result is a
large value for the standard deviation, and wide confidence bands. Therefore the chart will have
lower power to detect departures or drifts away from the expected mean value than if the data

were not skewed.

Control charts are also produced to illustrate process variance. These either use the range (R
chart) or standard deviation (S chart). Both charts are even more sensitive to departures from
normality than is the X chart (Montgomery, 1991). Both will have a difficult time in detecting
changes in variance when the underlying data are non-normal, and the sample size n for each

mean is small.

In water quality studies the most frequent application of control charts is to laboratory chemical
analyses. As chemical data tend to be positively skewed, control charts on the logs of the data
are usually more applicable than those in the original units. Otherwise large numbers of samples
must be used to determine mean values. Use of logarithms results in the center line estimating
the median in original units, with multiplicative variation represented by the confidence bands of
section 3.3.2.
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Nonparametric control charts may be utilized if sample sizes are sufficiently large. These could
use the confidence intervals for the median rather than the mean, as in section 3.3.
Alternatively, limits could be set around the mean or median using the "F-psuedosigma" of
Hoaglin (1983). This was done by Schroeder et al. (1987). The F-psuedosigma is the
interquartile range divided by 1.349. It equals the standard deviation for a normal distribution,
but is not as strongly affected by outliers. It is most useful for characterizing symmetric data
containing outliers at both ends, providing a more resistant measure of spread than does the

standard deviation.

3.8.3 Implications of Non-Normality for Sampling Design

The t-interval equations are also used to determine the number of samples necessary to estimate
a mean with a specified level of precision. However, such equations require the data to
approximately follow a normal distribution. They must consider power as well as the interval
width. Finally, one must decide whether the mean is the most appropriate characteristic to

measure for skewed data.

To estimate the sample size sufficient for determining an interval estimate of the mean with a

specified width, equation 3.8 is solved for n to produce

t s 2
n= [ a/2.n—1 J [3.20]
A

where s is the sample standard deviation and A is one-half the desired interval width. Sanders et

al. (1983) and other authors have promoted this equation. As discussed above, for sample sizes
less than 30 to 50 and even higher with strongly skewed data, this calculation may have large
errors. Estimates of s will be inaccurate, and strongly inflated by any skewness and/or outliers.
Resulting estimates of n will therefore be large. For example, Hakanson (1984) estimated the
number of samples necessary to provide reasonable interval widths for mean river and lake
sediment characteristics, including sediment chemistry. Based on the coefficients of variation
reported in the article, the data for river sediments were quite skewed, as might be expected.

Necessary sample sizes for rivers were calculated at 200 and higher.

Before using such simplistic equations, skewed data should be transformed to something closer
to symmetry, if not normality. For example, logarithms will drastically lower estimated sample
sizes for skewed data, equivalent to equation 3.13. Samples sizes would result which allow the
median (geometric mean) to be estimated within a multiplicative tolerance factor equal to £2A

in log units.

A second problem with equations like 3.20 for estimating sample size, even when data follow a
normal distribution, is pointed out by Kupper and Hafner (1989). They show that eq. 3.20
underestimates the true sample size needed for a given level of precision, even for estimates of

n = 40. This is because eq. 3.20 does not recognize that the standard deviation s is only an
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estimate of the true value 0. They suggest adding a tolerance probability to eq. 3.20, akin to a
statement of power. Then the estimated interval width will be at least as small as the desired
interval width for some stated percentage (say 90 or 95%) of the time. For example, when n
would equal 40 based on equation 3.20, the resulting interval width will be less than the desired
width 2A only about 42% of the time! The sample size should instead be 53 in order to insure
the interval width is within tolerance range 90% of the time. They conclude that eq. 3.20 and
similar equations which do not take power into consideration "behave so poorly in all instances

that their future use should be strongly discouraged".

Sample sizes necessary for interval estimates of the median or to perform the nonparametric
tests of later chapters may be derived without the assumption of normality required above for t-
intervals. Noether (1987) describes these more robust sample size estimates, which do include
power considerations and so are more valid than equation 3.20. However, neither the normal-
theory or nonparametric estimates consider the important and frequently-observed effects of
seasonality or trend, and so may never provide estimates sufficiently accurate to be anything

more than a crude guide.
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Exercises

3.1

3.2

3.3

34

3.5

Compute both nonparametric and parametric 95% interval estimates for the median of

the granodiorite data of exercise 2.3. Which is more appropriate for these data? Why?

Compute the symmetric 95% interval estimate for the mean of the quartz monzonite
data of exercise 2.3. Compute the sample mean, and the mean assuming the data are

lognormal. Which point estimate is more appropriate for these data? Why?

A well yield of 0.85 gallons/min/foot was measured in a well in Virginia. Is this yield
likely to belong to the same distribution as the data in exercise 1.1, or does it represent
something larger? Answer by computing 95% parametric and nonparametric intervals.

Which interval is more appropriate for these datar?

Construct the most appropriate 95 percent interval estimates for the mean and median

annual streamflows for the Conecuh River at Brantley, Alabama (data in Appendix C2).

Suppose a water intake is to be located on the Potomac River at Chain Bridge in such a
way that the intake should not be above the water surface more than 10 percent of the
time. Data for the design year (365 daily flows, ranked in order) are given in Appendix
C3. Compute a 95% confidence interval for the daily flow guaranteed by this placement
during the 90% of the time the intake is below water.






Hypothesis Tests

Scientists collect data in order to learn about the processes and systems those data represent.
Often they have prior ideas, called hypotheses, of how the systems behave. One of the primary
purposes of collecting data is to test whether those hypotheses can be substantiated, with
evidence provided by the data. Statistical tests are the most quantitative ways to determine

whether hypotheses can be substantiated, or whether they must be modified or rejected outright.

One important use of hypothesis tests is to evaluate and compare groups of data. Water
resources scientists have made such comparisons for years, sometimes without formal test
procedures. For example, water quality has been compared between two or more aquifers, and
some statements made as to which are different. Historic frequencies of exceeding some critical
surface-water discharge have been compared with those observed over the most recent 10 years.
Rather than using hypothesis tests, the results are sometimes expressed as the author's educated
opinions -- "it is clear that development has increased well yield." Hypothesis tests have at least
two advantages over educated opinion:
1) they insure that every analyst of a data set using the same methods will arrive at
the same result. Computations can be checked on and agreed to by others.
2) they present a measure of the strength of the evidence (the p-value). The
decision to reject an hypothesis is augmented by the risk of that decision being

incorrect.

In this chapter hypothesis tests are classified based on when each is appropriate for use. The
basic structure of hypothesis testing is introduced. The rank-sum test is used to illustrate this
structure, as well as to illustrate the origin of tables of test statistic quantiles found in most
statistics textbooks. Finally, tests for normality are discussed. Concepts and terminology found
here will be used throughout the rest of the book.
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4.1 Classification of Hypothesis Tests

The numerous varieties of hypothesis tests often cause unnecessary confusion to scientists.

Tests can be classified into the five major types shown in figure 4.1, based on the measurement
scales of the data being tested. Within these types, the distributional shape of the data determine
which of two major divisions of hypothesis tests, parametric or nonparametric, are appropriate
for use. Thus the data, along with the objectives of the study, determine which test procedure
should be employed.

The terms response variable and explanatory variable are used in the following discussion. A
response variable is one whose variation is being studied. In the case of regression, for example,
the response variable is sometimes called the "dependent variable" or "y variable". An
explanatory variable is one used to explain why and how the magnitude of the response variable
changes. With a t-test, for example, the explanatory variable consists of the two categories of

data being tested.

4.1.1 Classification Based on Measurement Scales

In figure 4.1, five groupings of test procedures are represented by the five boxes. Each differs
only in the measurement scales of the response and explanatory variables under study. The
scales of measurement may be either continuous or categorical. Both parametric and

nonparametric tests may be found within a given box.

Tests represented by the three boxes in the top row of figure 4.1 are all similar in that the
response variable is measured on a continuous scale. Examples of variables having a continuous
scale are concentration, streamflow, porosity, and many of the other items measured by water
resources scientists. Tests represented by the two boxes along the bottom of figure 4.1, in
contrast, have response variables measured only on a categorical or grouped measurement scale.
These variables can only take on a finite, usually small, number of values. They are often
designated as letters or integer values. Categorical variables used primarily as explanatory
variables include aquifer type, month, land use group, and station number. Categorical variables
used as response variables include above/below a reporting limit (perhaps recorded as 0 or 1),

presence or absence of a particular species, and low/medium/high risk of contamination.

The top left box represents the two- and multi-sample hypothesis tests such as the rank-sum and
t-tests. The subject of Chapters 5 through 7, these tests determine whether a continuous
response variable (such as concentration) differs in its central value among two or more grouped

explanatory variables (such as aquifer unit).

The top right box represents two often-used methods -- linear regression and correlation. Both
relate a continuous response variable (the dependent or y variable) to a continuous explanatory

variable (the independent or x variable). Examples include regression of the 100-year flood
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magnitude versus basin characteristics, and correlations between concentrations of two chemical
constituents. Analysis of trends over time is a special case of this class of methods, where the

explanatory variable of primary interest is time.

The top center box is a blend of these two approaches, called analysis of covariance. A
continuous response variable is related to several explanatory variables, some of which are

continuous and some categorical. This is discussed in Chapter 11.

The bottom left box represents a situation similar to that for use of t-tests or analysis of
variance, except that the response variable is categorical. Examples include determining whether
the probability of finding a volatile organic above the reporting limit varies by land-use grouping.
Contingency tables appropriately measure the association between two such categorical

variables. Further information is found in Chapter 14.

The bottom right box shows that a regression-type relationship can be developed for the case of
a categorical response variable. Perhaps the proportion of pesticide or other data below the
reporting limit exceeds fifty percent, and it makes little sense to try to model mean or median
concentrations. Instead, the probability of finding a detectable concentration can be related to
continuous variables such as population density, percent of impervious surface, irrigation
intensities, etc. This is done through the use of logistic regression, one subject of Chapter 15.
Logistic regression can also incorporate categorical explanatory variables in a multiple regression

context, making it the equivalent of analysis of covariance for categorical response variables.

4.1.2 Classification Based on the Data Distribution

Hypothesis tests which assume that the data have a particular distribution (usually a normal
distribution, as in Fig. 1.2) are called parametric tests. This is because the information
contained in the data is summarized by parameters, usually the mean and standard deviation, and
the test statistic is computed using these parameters. This is an efficient process if the data truly
follow the assumed distribution. When they do not, however, the parameters may only pootly
represent what is actually occurring in the data. The resulting test can then reach an incorrect

conclusion, usually because it lacks sensitivity (power) to detect real effects.

Hypothesis tests not requiring the assumption that data follow a particular distribution are
called distribution-free or nonparametric tests. Information is extracted from the data by
comparing each value with all others (ranking the data) rather than by computing parameters. A
common misconception is that nonparametric tests "lose information" in comparison to
parametric tests because nonparametric tests "discard" the data values. Bradley (1968, p.13)
responded to this misconception: "Actually, the utilization of the additional sample information
[in the parameters| is made possible by the additional population 'information' embodied in the
parametric test's assumptions. Therefore, the distribution-free test is discarding information

only if the parametric test's assumptions are known to be true." Rather than discarding
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information, nonparametric tests efficiently extract information on the relative magnitudes
(ranks) of data without collapsing the information into only a few simple statistics. Both
parametric and nonparametric tests will be presented in the upcoming chapters for each category

of hypothesis tests.

4.2 Structure of Hypothesis Tests

Hypothesis tests are performed by following the structure discussed in the next six sections:

STRUCTURE OF HYPOTHESIS TESTS
1) Choose the appropriate test.
2) Establish the null and alternate hypotheses.
3) Decide on an acceptable error rate OL.
4) Compute the test statistic from the data.
5) Compute the p-value.
6) Reject the null hypothesis if p = o.

4.2.1 Choose the Appropriate Test

Test procedures are selected based on the data characteristics and study objectives. Figure 4.1
presented the first selection criteria -- the measurement scales of the data. The second criteria is
the objective of the test. Hypothesis tests are available to detect differences between central
values of two groups, three or more groups, between spreads of data groups, and for covariance
between two or more variables, among others. For example, to compare central values of two
independent groups of data, either the t-test or rank-sum test might be selected (see figure 4.2).
Subsequent chapters are organized by test objectives, with several alternate tests discussed in

each.

The third selection criteria is the choice between parametric or nonparametric tests. This should
be based on the expected distribution of the data involved. If similar data in the past were
normally distributed, a parametric procedure would usually be selected. If data were expected to
be non-normal, or not enough is known to assume any specific distribution, nonparametric tests
would be preferred. The power of parametric tests to reject Hy when Hy is false can be quite
low when applied to non-normal data, and type II errors commonly result (Bradley, 1968). This

loss of power is the primary concern when using parametric tests.

Sometimes the choice of test is based on a prior test of normality for that particular data set. If
normality is rejected a nonparametric test is chosen. Otherwise, a parametric test is used. This
can lead to two problems. First, with small data sets it is difficult to reject the null hypothesis of

normality because there is so little evidence on which to base a decision. Tests based on little
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data have little power. Thus a parametric test might easily be used when the underlying data are
actually non-normal. Nonparametric tests are particularly appropriate for small data sets unless
experience supports the assumption of normality. Second, small departures from normality not
large enough to detect with a test may be sufficiently large to weaken the power of parametric
tests. An example is given in Chapter 10. For nearly-normal data, such as produced by power

transformations to near-symmetry, the two classes of methods will often give the same result.

Test procedures should be selected that have greater power for the types of data expected to be
encountered. Comparisons of the power of two test procedures, one parametric and one
nonparametric, can be based on the tests' asymptotic relative efficiencies (ARE), a property of
their behavior with large sample sizes (Bradley, 1968, p.58). A test with larger ARE will have
generally greater power. For non-normal data the ARE of nonparametric tests can be many
times those of parametric tests(Hollander and Wolfe, 1973). Thus their power to reject Hy
when it is truly false is generally much higher in this case. When data are produced by a normal
distribution, nonparametric tests have generally lower (5-15%) ARE than parametric tests
(Hollander and Wolfe, 1973). Thus nonparametric tests are, in general, never much worse than
their parametric counterparts in their ability to detect departures from the null hypothesis, and
may be far, far better. As an example, the rank-sum test has a larger ARE (more power) than
the t-test for distributions containing outliers (Conover, 1980, p.225). Kendall and Stuart (1979,
p.540) show that for the gamma distribution (a skewed distribution commonly used in water
resources) a moderate skew of 1.15 produces an ARE of greater than 1.25 for the rank-sum
versus the t test. As skewness increases, so does the ARE. Therefore in the presence of
skewness and outliers, precisely the characteristics commonly shown by water resources data,

nonparametric tests exhibit greater power than do parametric tests.

One question which always arises is how non-normal must a distribution be in order for
nonparametric tests to be preferred? Blair and Higgins (1980) gave insight into this question.
They mixed data from two normal distributions, 95 percent from one normal distribution and 5
percent from a second normal distribution with quite different mean and standard deviation.
Such a situation could easily be envisioned when data result from low to moderate discharges
with occasional storm events, or from a series of wells where 5 percent are affected by a
contaminant plume, etc. A difference of 5 percent from truly normal may not be detectable by a
graph or test for normality. Yet when comparing two groups of this type, they found that the
rank-sum test exhibited large advantages in power over the t-test. As a result, data groups
correctly discerned as different by the rank-sum test could be found "not significantly different”

by the t-test. Their paper is recommended for further detail and study.

The greatest strengths of parametric procedures are in modeling and estimation, such as
performed with regression. Relationships among multiple variables can be described and tested

which are difficult, if not nearly impossible, with nonparametric methods. Statistical practice has
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historically been dominated by parametric procedures, due largely to their computational

elegance.

Transformations are sometimes used to make data more normally distributed, prior to
performing a parametric test. There is no guarantee that a given transformation, such as taking
logarithms, will produce data sufficiently close to a normal distribution. Often several attempts
to find a suitable transformation are required before the data appear approximately normal. The
primary pitfall in using transformations is that when two or more groups are to be compared, no
single transformation may provide neatly-normal data simultaneously for all groups. Groups
whose right-skewness was solved by transformation may be offset by relatively symmetric
groups which are now left-skewed. When several tests are performed, such as trend tests at
numerous locations, parametric tests might be appropriate in some cases but not in others.
Compatisons of results across sites are more difficult when test procedures and/or
transformations vary for each case. Nonparametric tests allow the freedom to use the identical
test procedure in all cases, without the requirement that the many individual data sets follow the
same distribution. Finally, transformations may produce nearly-symmetric data, but cannot
compensate for a heavy-tailed distribution -- the presence of more data near the extremes than

found in a normal distribution.

It should be noted that there are actually three versions of most nonparametric tests:

1. Exact test. Exact versions of nonparametric tests provide results (in the form of
p-values, defined soon) which are exactly correct . They are computed by comparing the
test statistic to a table of quantiles that is specific for the sample sizes present. Therefore an
extensive set of tables is required, one for every possible combination of sample sizes.
When sample sizes are small, only the exact version will provide accurate results.

2. Large sample approximation. To avoid the necessity for large books filled with tables of
test statistic quantiles, approximate p-values are obtained by assuming that the distribution
of the test statistic can be approximated by some common distribution, such as the normal.
This does not mean the data themselves follow that distribution, but only that the test
statistic does. For large sample sizes (30 or more observations per group, but sometimes
less) this approximation is very accurate. The test statistic is modified if necessary (often
standardized by subtracting its mean, and dividing by its standard deviation), and then
compared to a table of the common distribution to determine the p-value.

WARNING: Computer software predominantly uses large sample approximations when
reporting p-values, whether or not the sample sizes are sufficient to warrant using them. For
small sample sizes, p-values should be taken from exact tables rather than from the
computer printout.

3. Rank transformation test. In this approximation, parametric procedures are computed not
on the data themselves, but on the ranks of the data (smallest observation has rank=1,
largest has rank=N). Conover and Iman (1981) have shown this to adequately approximate

many exact nonparametric tests for large samples sizes. The rank-sum test would be
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approximated in this fashion by computing a t-test on joint ranks of the data. In fact, Iman
and Conover (1983) use the name "rank-sum test" for just this procedure. We would call
this version a

"t-test on ranks", reserving the traditional name for the first or second versions of the test
and more accurately describing what was done. Rank approximations are most useful when
performing nonparametric tests using statistics packages which contain only parametric
procedures. They are also very useful for situations where there is no equivalent

nonparametric analog, such as for multiple-factor analysis of variance.

In figure 4.2, exact and rank transform tests are aligned with their parametric counterparts, as a

guide to the use of hypothesis tests.

4.2.2 Establish the Null and Alternate Hypotheses
The null and alternate hypotheses should be established prior to collecting data. These
hypotheses are a concise summary of the study objectives, and will keep those objectives in

focus during data collection.

The null hypothesis (H) is what is assumed to be true about the system under study
prior to data collection, until indicated otherwise. It usually states the "null" situation -- no
difference between groups, no relation between variables. One may "suspect”, "hope", or "root
for" either the null or alternate hypothesis, depending on one's vantage point. But the null
hypothesis is what is assumed true until the data indicate that it is likely to be false. For example,
an engineer may test the hypothesis that wells upgradient and downgradient of a hazardous
waste site have the same concentrations of some contaminant. They may "hope" that
downgradient concentrations are higher (the company gets a new remediation project), or that
they are the same (the company did the original site design!). In either case, the null hypothesis

assumed to be true is the same: concentrations are similar in both groups of wells.

The alternate hypothesis (H;) is the situation anticipated to be true if the evidence (the
data) show that the null hypothesis is unlikely. It is in some cases just the negation of Hy,
such as "the 100-year flood is not equal to the design value." Hp may also be more specific than
just the negation of Hy -- "the 100-year flood is greater than the design value." Alternate
hypotheses come in two general types: one-sided, and two-sided. Their associated hypothesis

tests are called one-sided and two-sided tests. These are often confused and misapplied.

Two-sided tests occur when evidence in either direction from the null hypothesis (larger or
smaller, positive or negative) would cause the null hypothesis to be rejected in favor of the

alternate hypothesis. For example, if evidence that "the 100-year flood is smaller than the design
value" or "the 100-year flood is greater than the design value" would both cause doubt about the

null hypothesis, the test is two-sided. Most tests in water resources are of this kind.
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PARAMETRIC

NONPARAMETRIC
[exact]

RANK TRANSFORM
[approximation]

Two Independent Data Groups (Chapte

r 5)

two-sample t-test

rank sum test
or Mann-Whitney

or Wilcoxon-Mann-Whitney

t-test on ranks

Matched Pairs of Data (Chapter 6)

paired t-test

(Wilcoxon)

signed-rank test

t-test on signed ranks

More than Two Independent Data Groups (Chapter 7)

(ANOVA)

1-way Analysis Of Variance

Kruskal-Wallis test

1-way ANOVA on ranks

More than Two Dependent Data Groups (Chapter 7)

Analysis Of Variance

without replication

Friedman test

2-way ANOVA on ranks

Correlation between Two Continuous Variables (Chapter 8)

Pearson's r

or linear correlation

Kendall 's tau

Spearman's rho

(Pearson's r on ranks)

Relation between Two Continuous Variables (Chapters 9, 10)

Linear Regression

test for slope = 0

Mann-Kendall
test for slope = 0

regression on ranks:

test for monotonic

change

Figure 4.2 Guide to the classification of some hypothesis tests

One-sided tests occur when departures in only one direction from the null hypothesis

would cause the null hypothesis to be rejected in favor of the alternate hypothesis. With


ejswibas


ejswibas



106 Statistical Methods in Water Resources

one-sided tests, it is considered supporting evidence for Hy should the data indicate differences
opposite in direction to the alternate hypothesis. For example, suppose only evidence that the
100-year flood is greater than the previous design value is of interest, as only then must the
culvert be replaced. The null hypothesis would be stated as "the 100-year flood is less-than or
equal to the design flood", while the alternate hypothesis is that "the 100-year flood exceeds the
design value." Any evidence that the 100-year flood is smaller than the design value is

considered evidence for Hy.

If it cannot be stated prior to looking at any data that departures from Hj in only one
direction are of interest, a two-sided test should be performed. If one simply wants to look
for differences between two streams or two aquifers or two time periods, then a two-sided test is
appropriate. It is not appropriate to look at the data, find that group A is considerably larger in
value than group B, and perform a one-sided test that group A is larger. This would be ignoring
the real possibility that had group B been larger there would have been interest in that situation
as well. Examples in water resources where one-sided tests would be appropriate are:
1. testing for decreased annual floods or downstream sediment loads after
completion of a flood-control dam,
2. testing for decreased nutrient loads or concentrations due to a new sewage
treatment plant or best management practice,
3. testing for an increase in concentration when comparing a suspected

contaminated site to an upstream or upgradient control site.

4.2.3 Decide on an Acceptable Error Rate ot

The o-value, or significance level, is the probability of incorrectly rejecting the null hypothesis
(rejecting Hp when it is in fact true, called a "Type I error"). Figure 4.3 shows that this is one of
four possible outcomes of an hypothesis test. The significance level is the risk of a Type I error
deemed acceptable by the decision maker. It isa "management tool" dependent not on the data,
but on the objectives of the study. Statistical tradition uses a default of 5% (0.05) for ¢, but
there is no reason why other values should not be used. Suppose that an expensive cleanup
process will be mandated if the null hypothesis of "no contamination" is rejected, for example.
The o-level for this test might be set very small (such as 1%) in order to minimize the chance of
needless cleanup costs. On the other hand, suppose the test was simply a first cut at classifying
sites into "high" and "low" values prior to further analysis of the "high" sites. In this case the O
level might be set to 0.10 or 0.20, so that all sites with high values would likely be retained for
further study.
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Unknown True Situation
Hy is true Hy is false

Fail to
Reject Correct decision Type 11 error

Hop Prob(correct decision) = 1—-0t Prob(Type II error) =

A Reject Type I error Correct decision
Hop Prob (Type I error) = o Prob (correct decision) = 1-3
Significance level Power

Figure 4.3 Four possible results of hypothesis testing.

Since o represents one type of error, why not keep it as small as possible? One way to do this
would be to never reject Hy -- ot would then equal zero. Unfortunately this would lead to large
errors of a second type -- failing to reject Hy when it was in fact false. This second type of error
is called a Type II error, or lack of power (Fig. 4.3). Both errors are of concern to practitioners,
and both will have some finite probability of occurrence unless decisions to "always reject” or
"never reject" are made. Once a decision is made as to an acceptable Type I risk o, two steps
can be taken to concutrently reduce the risk of Type II error B:

1. Increase the sample size n.

2. Use the test procedure with the greatest power for the type of data being analyzed.

For water quality applications, null hypotheses are usually of "no contamination". Situations
with low power mean that actual contamination may not be detected. This happens with
simplistic formulas for determining sample sizes (Kupper and Hafner, 1989). Instead,
probabilities of Type II errors should be considered when setting sample size. Power is also
sacrificed when data having the characteristics outlined in Chapter 1 are analyzed with tests
requiring a normal distribution. Power loss increases as skewness and the number of outliers

increase.

4.2.4 Compute the Test Statistic from the Data

Test statistics summarize the information contained in the data. If the test statistic is not
unusually different from what is expected to occur if the null hypothesis is true, the null
hypothesis is not rejected. However, if the test statistic is a value unlikely to occur when Hy is
true, the null hypothesis is rejected. The p-value measures how unlikely the test statistic is when

Hy is true.
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4.2.5 Compute the p-Value

The p-value is the probability of obtaining the computed test statistic, or one even less likely,
when the null hypothesis is true. It is derived from the data, concisely expressing the evidence
against the null hypothesis contained in the data. It measures the "believability" of the null
hypothesis. The smaller the p-value, the less likely is the observed test statistic when Hy is true,
and the stronger the evidence for rejection of the null hypothesis. The p-value is also called the

"attained significance level", the significance level attained by the data.

How do p-values differ from ot levels? The 0i-level does not depend on the data, but states the
risk of making a Type I error that is acceptable a priori to the scientist or manager. The o-level is
the critical value which allows a "yes/no" decision to be made -- the treatment plant has
improved water quality, nitrate concentrations in the well exceed standards, etc.. The p-value
provides more information -- the strength of the scientific evidence. Reporting the p-value

allows someone with a different risk tolerance (different o) to make their own yes/no decision.

For example, consider a test of whether upgradient and downgradient wells have the same
expected contaminant concentrations. If downgradient wells show evidence of higher
concentrations, some form of remediation will be required. Data are collected, and a test
statistic calculated. A decision to reject at 00=0.01 is a statement that "remediation is warranted
as long as there is less than a 1 percent chance that the observed data would occur when
upgradient and downgradient wells actually had the same concentration." This level of risk was
settled on as acceptable, so that 1 percent of the time remediation would be performed when in
fact it is not required. Reporting only "reject” or "not reject” would prevent the audience from
distinguishing a case that is barely able to reject (p=0.009) from one in which Hy is virtually
certain to be untrue (p=0.0001). Reporting a p-value of 0.02, for example, would allow a later
decision by someone with a greater tolerance of unnecessary cleanup (0t = 5 percent, perhaps) to
decide for remediation.

4.2.6 Make the Decision to Reject H( or Not

Reject Hyp when: p-value < O-level.

When the p-value is less than the decision criteria (the O-level), Hy is rejected. When the p-
value is greater than o, Hg is not rejected. The null hypothesis is never "accepted", or proven
to be true. It is assumed to be true until proven otherwise, and is "not rejected" when there is

insufficient evidence to do so.
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4.3 The Rank-Sum Test as an Example of Hypothesis Testing

Suppose that aquifers X and Y are sampled to determine whether the concentrations of a
contaminant in the aquifers are similar or different. This is a test for differences in location or
central value, and will be covered in detail in Chapter 5. Two samples xj are taken from aquifer
X (n=2), and 5 samples yj from aquifer Y (m=>5) for a total of 7 samples (N = n+m = 7). Also
suppose that there is a prior reason to believe that X values tend to be lower than Y values:
aquifer X is deeper, and is likely to be uncontaminated. The null hypothesis (H() and alternative
hypothesis (H1) of this one-sided test are as follows:

Hp: xjand yj are samples from the same distribution, or
Hp: Prob (xj = yi) = 0.5.

H1: xjis from a distribution which is generally lower that of yj, or
Hi: Prob (xj = yi) <0.5.

Remember that with one-sided tests such as this one, data indicating differences opposite in
direction to Hy (xj frequently larger than yj) are considered supporting evidence for Hy. With

one-sided tests we can only be interested in departures from H in one direction.

Having established the null and alternate hypotheses, an acceptable error rate 0L must be set. As
in a court of law, innocence is assumed (i.e. concentrations are identical) unless evidence is
collected to show "beyond a reasonable doubt" that aquifer Y has higher concentrations (i.e. that
differences observed are not likely to have occurred by chance alone). The "reasonable doubt"

is set by 0, the significance level.

If the t-test were to be considered as the test procedure, each data group should be tested for
normality. However, sample sizes of 2 and 5 are too small for a reliable test of normality. Thus
the nonparametric rank-sum test is appropriate. This test procedure entails ranking all 7 values
(lowest concentration has rank=1, highest has rank=7) and summing the ranks of the 2 values
from the population with the smaller sample size (X). This rank-sum is the statistic W used in

the exact test.

Next, W would be computed and compared to a table of test statistic quantiles to determine the
p-value. Where do these tables come from? We will derive the table for sample sizes 2 and 5 as

an example.

What are the possible values W may take, given that the null hypothesis is true? The collection
of all of the possible outcomes of W defines its distribution, and therefore composes the table of
rank-sum test statistic quantiles. Shown below are all the possible combinations of ranks of the

two x values.
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1.2 1,3 1,4 1,5 1,6 1,7
23 24 2,5 2,6 2,7

34 35 3,6 37

45 4.6 4,7

5,6 5,7

6,7

If Hy is true, each of the 21 possible outcomes must be equally likely. That is, it is just as likely
for the two x's to be ranks 1 and 2, or 3 and 5, or 1 and 7, etc. Each one of the outcomes results
in a value of W, the sum of the two ranks. The 21 W values corresponding to the above

outcomes are

3 4 5 6 7 8
5 6 7 8 9

7 8 9 10

9 10 11

11 12

13

The expected value of W is the mean (and median) of the above values, or 8. Given that each

outcome is equally likely when Hy is true, the probability of each possible W value is:

W 3 4 5 6 7 8 9 10 11 12 13

Prob(W)| 1/21 1/21 2/21 2/21 3/21 3/21 3/21 2/21 2/21 1/21 1/21

What if the data collected produced 2 x values having ranks 1 and 4? Then W would be 5, lower
than the expected value E [W] = 8. If H{ were true rather than Hp, W would tend toward low
values. What is the probability that W would be as low as 5 or lower if Hy were true? It is the
sum of the probabilities for W = 3, 4, and 5, or 4/21 = 0.190 (see figure 4.4). This number is
the p-value for the test statistic of 5. It says that the chance of a departure from E [W] of at
least this magnitude occurring when Hy is true is 0.190, which is not very uncommon (about 1
chance in 5). Thus the evidence against Hy is not too convincing. If the ranks of the 2 x values
had been 1 and 2, then W = 3 and the p-value would be 1/21 = 0.048. This result is much less
likely than the previous case but is still not extremely rare. In fact, due to such a small sample
size the test can never result in a highly compelling case for rejecting Hy. Adding more data

would make it possible to attain lower p-values, providing a stronger case against Hy.
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Figure 4.4 Probabilities of occurrence for a rank-sum test with sample sizes of 2 and 5.

The p-value for a one-sided test equals the area shaded.

This example has considered only the one-sided p-value, which is appropriate when there is
some prior notion that x should be smaller than y (or the reverse). Quite often the situation is
that there is no prior notion of which should be lower. In this case a two-sided test must be
done. The two-sided test has the same null hypothesis as was stated above, but H1 is now that
xj and yj are from different distributions, or

Hi: Prob (xj = yi) # 0.5.

Suppose that W for the two-sided test were found to be 5. The p-value equals the probability
that W will differ from E [W] by this much or more, in either direction. Itis
Prob (W < 5) + Prob (W = 11). (see figure 4.5)
Where did the 11 come from? It is just as far from E [W] = 8 as is 5. The two-sided
p-value therefore equals 8/21 = 0.381, twice the one-sided p-value. Symbolically we could state:
Prob (| W—E [W] | > 3) = 8/21.

To summarize the subject of p-values: they describe how "far" the observed test statistic is from
that expected to occur if the null hypothesis were true. They are the probability of being that far
or farther given that the null hypothesis is true. The lower the p-value the stronger is the
case against the null hypothesis.

Now, lets look at an O-level approach. Return to the original problem, the case of a one-sided
test. Assume 0. is set equal to 0.1. This corresponds to a critical value for W, call it W*, such
that Prob (W = W*) = o. Whenever W=W*, Hy is rejected with no more than a 0.1 frequency
of error if Hy were always true. However, because W can only take on discrete, in fact integer,
values as seen above, a W* which exactly satisfies the equation is not usually available. Instead
the largest possible W* such that Prob (W = W*) =< o is used.
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Figure 4.5 Probabilities of occurrence for a rank-sum test with sample sizes of 2 and 5.

The p-value for a two sided-test equals the area shaded.

Searching the above table of possible W values and their probabilities, W* = 4 because Prob (W
=< 4) =0.095 = 0.1. Note the "lumpiness" of the relationship between ot and W*. If o0 =0.09
had been selected then W* would be 3. This lumpiness can be avoided by reporting p-values
rather than only "reject” or "not reject”.

For a two-sided test a pair of critical values W™ and Wy * is needed, where

Prob (W < W) + Prob (W > Wy < o and Wy*~ E [W] = E [W] — W
These upper and lower critical values of W are symmetrical around E [W] such that the
probability of W falling on or outside of these critical levels is as close as possible to O, without
exceeding it, under the assumption that Hy is true. In the case at hand, if
o = 0.1, then Wi *= 3 and W™= 13 because

Prob (W = 3) + Prob (W = 13) = 0.048 + 0.048 = 0.095 = 0.1.
Note that for a two-sided test, the critical values are farther from the expected value than in a
one-sided test at the same o level.

It should be recognized that p-values are also influenced by sample size. For a given magnitude
of difference between the x and y data, and a given amount of variability in the data, p values
will tend to be smaller when the sample size is large. In the extreme case where vast amounts of
data are available, it is a virtual certainty that p values will be small even if the differences

between x and y are what might be called "of no practical significance."

Most statistical tables are set up for one-sided tests. That is, the rejection region O or the p-
value is given in only one direction. When a two-sided test at significance level o is

performed, the tables must be entered using 0l/2. In this way rejection can occur with a
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probability of 01/2 on either side, and an overall probability of o.. Similarly, tabled p-values
must be doubled to get p-values for a two-sided test. Modern statistical software often
reports p-values with its output, eliminating the need for tables. Be sure to know whether it is

one-sided or two-sided p-values being reported.

4.4 Tests for Normality

The primary reason to test whether data follow a normal distribution is to determine if
parametric test procedures may be employed. The null hypothesis for all tests of normality is
that the data are normally distributed. Rejection of Hy says that this is doubtful. Failure to
reject Hy, however, does not prove that the data do follow a normal distribution, especially for
small sample sizes. It simply says normality cannot be rejected with the evidence at hand. Use
of a larger a-level (say 0.1) will increase the power to detect non-normality, especially for small

sample sizes, and is recommended when testing for normality.

The test for normality used in this book is the probability plot correlation coefficient (PPCC)
test discussed by Looney and Gulledge (19852). Remember from Chapter 2 that the more
normal a data set is, the closer it plots to a straight line on a normal probability plot. To test for
normality, this linearity is tested by computing the linear correlation coefficient between data
and their normal quantiles (or "normal scores", the linear scale on a probability plot). Samples
from a normal distribution will have a correlation coefficient very close to 1.0. As data depart
from normality, their correlation coefficient will decrease below 1. To perform a test of Hy: the
data are normal versus Hj: they are not, the correlation coefficient (r) between the data and
their normal quantiles is tested to see if it is significantly less than 1. For a sample size of n, if r
is smaller than the critical value r* of table B3 for the desired ot-level, reject Hy. Looney and
Gulledge (1985b) have shown this table, developed using the Blom plotting position, is also
valid for other plotting positions except the Weibull position i/(n+1). In order to use one
plotting position for all functions in this book, the Cunnane plotting position was adopted as
explained in Chapter 2.

To illustrate this test, probability plots of the unit well yield data from Chapter 2 are shown in
figures 4.6 and 4.7. For the valleys without fracturing, r = 0.805, the correlation coefficient
between yj and Zp in the left-hand side of Table 4.1.

From table B3 with n=12, if r is below the ot = 0.05 critical value of r* = .928, normality is
rejected. Therefore normality is rejected for the yields without fractures at o = 0.05. A p-value
for this test would be <0.005, as +=0.805 is less than the tabled r* of 0.876 for ®=0.005. Note
the nonlinearity of the data on the probability plot (figure 4.6). For the yields with fracturing,
n=13, r*is 0.932 at ot = 0.05, and the PPCC r = 0.943; therefore fail to reject normality at
00=0.05. The p-value for the yields with fracturing is just under 0.10 (normality would barely be
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rejected at 00=0.10). The probability plot, figure 4.7, shows a closer adherence to a straight line
than for figure 4.6.

Table 4.1. Unit well yields (in gal/min/ft) in Virginia (Wright, 1985)
yi = yield Zp = normal quantile

valleys without fracturing valleys with fracturing

Yi  Zp Yi  Zp yi Zp | i Zp yvi  Zp i Zp
0.001 -1.65  0.030 —.31 010 52| 0.020 -1.69 016 =39 040 .39
0.003 —-1.13 0040 —10  0.454 .80| 0.031 -1.17 016 —19 044 .60
0.007 —0.80  0.041 .10 049 1.13| 0.08 —0.85 0.8 .00 051 .85
0.020 —0.52 0077 .31 1.02 1.65 013 -0.60 030 .19 072 1.17
0.95 1.69

Computer packages use several methods for testing normality. Several are based on probability
plots. The most common is perhaps the Shapiro-Wilk test, as its power to detect non-normality
is as good or better than other tests (Shapiro et al., 1968). A table of quantiles for this test
statistic is available for n < 50 (Conover, 1980). Shapiro and Francia (1972) developed a
modification of the Shapiro-Wilk test useful for all sample sizes. It is essentially identical to the
PPCC test, as it is the 12 for a regression between the data and their normal scores. Therefore p-

values and power characteristics for the two tests should be essentially the same.

Tests for normality not related to probability plots include the Kolmogorov and chi-square tests,
described in more detail by Conover (1980). Both are general tests that may be used for data
which are ordinal (data recorded only as low/medium /high, etc) but do not possess a
continuous scale. This makes them less powerful than the probability plot tests, however, for

the specific purpose of testing continuous data for normality (Shapiro et al., 1968).

The important advantage of the PPCC test is its graphical analog, the probability plot, which
visually illustrates its results. The probability plot itself provides information on how the data

depart from normality, something not provided by any test statistic.

To make the PPCC test easy to perform by hand, normal quantiles for the Cunnane plotting
positions of table B1 are listed in table B2 of the Appendix. For the n=12 yields without
fracturing, for example, the upper six quantiles are easily found in the table. Lower quantiles are
mirror images around zero of the upper quantiles, and so equal the upper values multiplied by
—1. Table B2 quantiles were computed by first calculating the Cunnane plotting position to
more significant digits than found in table B1, and then looking up the corresponding normal

quantiles in a table of the normal distribution.
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Figure 4.6 Probability plot for the yields without fracturing, with PPCC r
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Figure 4.7 Probability plot for the yields with fracturing, with PPCC r
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Exercises

4.1 The following are annual streamflows for the Green R. at Munfordville, KY. Beginning

in 1969 the stream was regulated by a reservoir.

before after

1950 4910 1960 2340 1969 1350
1951 3660 1961 2600 1970 2350
1952 3910 1962 3410 1971 3140
1953 1750 1963 1870 1972 3060
1954 1050 1964 1730 1973 3630
1955 2670 1965 2730 1974 3890
1956 2880 1966 1550 1975 3780
1957 2600 1967 4060 1976 3180
1958 3520 1968 2870 1977 2260
1959 1730 1978 3430

1979 5290

1980 2870

Test both before and after data sets for normality using the PPCC test. If either are non-
normal, transform the data and re-test in order to find a scale which appears to be close

to a normal distribution.

4.2 Test the arsenic data and transformed data of Exercise 2.2 for normality.



Differences between Two
Independent Groups

Wells upgradient and downgradient of a hazardous waste site are sampled to determine whether
the concentrations of some toxic organic compound known to reside in drums at the site are
greater in the downgradient wells. Are they greater at the o = 0.01 significance level? If so, the

ground water is declared to be contaminated, and the site will need to be cleaned up.

Measurements of a biological diversity index are made on sixteen streams. Eight of the streams
represent "natural” conditions, while the other eight have received urban runoff. Is the

biological quality of the urban streams worse than that of the "natural" streams?

Unit well yields are determined for a series of bedrock wells in the Piedmont region. Some wells
tap areas where fracturing is prevalent, while other wells are drilled in largely unfractured rock.
Does fracturing affect well yields, and if so how?

These are examples of comparisons of two independent groups of data, to determine if one
group tends to contain larger values than the other. The data are independent in the sense that
there is no natural structure in the order of observations across groups -- there are no pairings of
data between observation 1 of group 1 and observation 1 of group 2, etc. Where such a pairing
does exist, methods like those of Chapter 6 should be used. In some cases it is known ahead of
time which group is expected to be larger (a one-sided test), and in other cases it is not (a two-
sided test). This chapter will present and discuss the rank-sum test, a nonparametric procedure
for determining whether two independent groups differ. In the special case where the data
within each group are known to be normally distributed, and the differences between the groups
are additive, the t-test may also be used. Graphical presentations of the test results will be
quickly surveyed. Finally, methods for estimating the magnitude of the difference between the
two groups are presented, including the Hodges-Lehmann estimator, one of a class of efficient

and resistant nonparametric estimators unfamiliar to many water resources scientists.
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5.1 The Rank-Sum Test

The rank-sum test goes by many names. It was developed by Wilcoxon (1945), and so is
sometimes called the Wilcoxon rank-sum test. It is equivalent to a test developed by Mann and
Whitney near the same time period, and the test statistics can be derived one from the other.
Thus the Mann-Whitney test is another name for the same test. The combined name of

Wilcoxon-Mann-Whitney rank-sum test has also been used.

5.1.1 Null and Alternate Hypotheses
In its most general form, the rank-sum test is a test for whether one group tends to produce
larger observations than the second group. It has as its null hypothesis:

Hp:  Prob [x>y] =0.5
where the x are data from one group, and the y are from a second group. In words, this states
that the probability of an x value being higher than any given y value is one-half. The alternative

hypothesis is one of three statements:

Hy:  Prob [x>y] #0.5 (2-sided test -- x might be larger or smaller than y).
Hj:  Prob [x >y] > 0.5 (1-sided test -- x is expected to be larger than y)
H3:  Prob [x>y] <0.5 (1-sided test-- x is expected to be smaller than y).

Note that no assumptions are made about how the data are distributed in either group. They
may be normal, lognormal, exponential, or any other distribution, They may be uni-, bi- or
multi-modal. In fact, if the only interest in the data is to determine whether one group tends to

produce higher observations, the two groups do not even need to have the same distribution!

Usually however, the test is used for a more specific purpose -- to determine whether the two
groups come from the same population (same median and other percentiles), or alternatively
whether they differ only in location (central value or median). If both groups of data are from
the same population, about half of the time an observation from either group could be expected
to be higher than that from the other, so the above null hypothesis applies. However, now it
must be assumed that if the alternative hypothesis is true, the two groups differ only in their
central value, though not necessarily in the units being used. For example, suppose the data
are shaped like the two lognormal distributions of figure 5.1. In the original units, the data have
different sample medians and interquartile ranges, as shown by the two boxplots. A rank-sum
test performed on these data has a p-value of <0.001, leading to the conclusion that they do
indeed differ. But is this test invalid because the variability, and therefore the shape, of the two
distributions differs? Changing units by taking logs, the boxplots of figure 5.2 result. The logs
of the data appear to have different medians, but similar IQR's, and thus the logs of the data
appear to differ only in central location. The test statistic and p-value for a rank-sum test

computed on these transformed data is identical to that for the original units! Nonparametric
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tests possess the very useful property of being invariant to power transformations such as those
of the ladder of powers. Since only the data or any power transformation of the data need be

similar except for their central location in order to use the rank-sum test, it is applicable in many

situations.
LT =
— 1 o
Figure 5.1 Boxplots of two lognormal distributions with

different medians and IQRs.

— [
—L T ]

Figure 5.2 Boxplots of the logarithms of the figure 5.1 data.
Medians still differ, while IQRs are the same.

5.1.2 Computation of the Exact Test

The exact form of the rank-sum test is given below. It is the only form appropriate for
comparing groups of sample size 10 or smaller per group. When both groups have samples
sizes greater than 10 (n, m > 10), the large-sample approximation may be used. Remember that
computer packages report p-values from the large sample approximation regardless of sample

size.
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Exact Version of the Rank-Sum test

Situation Two independent groups of data are to be compared. The sample size for the
smaller of the two groups xj, i=1,...n is designated n, while the larger sample size

¥j» j=1,...m is designated m.

Test Statistic Compute the joint ranks Rk .

Rk =1to (N =n + m), using average ranks in case of ties.

The exact test statistic
Wys = sum of ranks for the group having the smaller sample size,

= XR; i=1,n (use cither group when sample sizes are equal: n = m )

Decision Rule. To reject Hp: Prob [x > y] = 0.5
1. Hp: Prob [x >y] # 0.5 (the smaller data set tends to have cither higher or lower values
than the larger data set)
Reject Hp if Wyg = X*a/z’n’m or Wy 2 Xoy2,n,m from Table B4 of the
Appendix; otherwise do not reject Hy.

2. Hp: Prob [x >y] > 0.5 (the smaller data set tends to have higher values than the larger data
set)
Reject Hp if Wys 2 xounm from Table B4; otherwise do not reject H .

3. H3: Prob [x >y] < 0.5 (the smaller data set tends to have lower values than the larger data
set)
Reject Hp if Wyg = x*gu.n.m from Table B4; otherwise do not reject H .

Example 1.

Precipitation quality was compared at sites with different land uses by Oltmann and Shulters
(1989). A rank-sum test is used to determine if one of the constituents, ammonia plus organic

nitrogen, significantly differs (00 = 0.05) between the industrial and residential sites.

Hp: median concentration (industrial) = median concentration (residential)

H3: median concentration (industrial) # median concentration (residential).

The 10 observations at each site are assigned ranks from 1 to 20 as follows. Note that three
pairs of concentrations (at 0.7, 1.1, and 1.3 mg/L) are tied, and so are assigned tied ranks equal

to the average of their two individual ranks:
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Ammonia plus organic nitrogen concentration (in mg/L) in precipitation

X, ¥j = concentrations Rj = joint rank
industrial site residential site
xi. Rk X Rk ai Rk Y- Rk
0.59 4 1.3 14.5 0.3 1 0.9 8
0.87 7 1.6 16 0.36 2 0.92 9
1.1 11.5 1.7 17 0.5 3 1.0 10
1.1 11.5 3.2 18 0.7 5.5 1.3 14.5
1.2 13 4.0 19 0.7 5.5 9.7 20
Wys = sum of the 10 ranks for the residential site (n=m=10, so either could be used)
=78.5

For this two-sided test, reject H( if Wy < x*o/2.nm or Wrs 2 Xoy2,0,m’ From Table B4,
X*026,10,10 = 79 and x* 022 10,10 = 78. Interpolating halfway between these for Wys = 78.5,
the p-value for the two-sided test is 0.024¢2 = 0.048, and the decision would be to reject Hy at o
= 0.05. Reporting the p-value shows how very close the risk of Type I error is to 0.05. The
conclusion is therefore that ammonia plus organic nitrogen concentrations from industrial
precipitation are significantly different than those in residential precipitation at a p-value of
0.048.

5.1.3 The Large Sample Approximation

For the rank sum test, the distribution of the test statistic Wrg closely approximates a normal
distribution when the sample size for each group is 10 or above (figure 5.3). With n=m=10,
there are 184,756 possible arrangements of the data ranks. The collection of test statistics for
each of these comprises the exact distribution of Wyg, shown as bars in figure 5.3, with a mean
of 105. Superimposed on the exact distribution is the normal distribution which closely
approximates the exact values. This demonstrates how well the exact distribution of this test
can be approximated, even for relatively small sample sizes. The inset shows a magnified view
of the peak of the distribution, with the normal approximation crossing the center of the exact

distribution bars.

This approximation does not imply that the data are or must be normally distributed. Rather, it
is based on the near normality of the test statistic at large sample sizes. If there are no ties, Wyg

has a mean [y, and standard deviation Oy, when Hy is true of:

Hy = ne(N+1)/2 [5.1]
Oy = \ neme(N+1)/12 [5.2]

where N = n + m.
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Figure 5.3 Illustration of the distribution of Wyg and its fitted normal distribution.

The test statistic for the large sample approximation is computed by standardizing Wyg and
making a continuity correction. The continuity correction occurs because the normal
distribution fits halfway through the top of the bars of the exact test statistic distribution (figure
5.3). The correction moves the probability of occurrence from the outer edge of each bar to its
center prior to using the normal curve. It therefore equals d/2, where d is the minimum
difference between possible values of the test statistic (the bar width). For the rank-sum test
d=1, as the test statistic values change by units of one. Zys, the standardized form of the test

statistic, is therefore computed as

( d
WIS - _2 - My
er = 4 O ifWrs — mW [5.3]
d
WfS + _2 - mW
1f Wrs < mW

4 Sy

Zys i1s compared to a table of the standard normal distribution for evaluation of the test results.



Differences between Two Independent Groups 123

Example 1, cont.
The large-sample approximation is applied to the precipitation nitrogen data. Note that this is

inappropriate because there are three pairs of tied values. How close is the approximate to the

exact p-value? For the exact test above, Wrg = 78.5.

Wy = 1021)/2 = 105 Oy =\ 1010 (21)/12 =13.23
_ 785+1/2-105
Therefore er - 13.23 - _1.965

and p = 2¢0.025 = 0.05 from a table of the normal distribution such as Table A2 of Iman and
Conover (1983). This is very close to the exact test results, and errors decrease with increasing

sample sizes.

5.1.3.1 Correction for ties
Conover (1980) presents a further correction to Oy when ties occur, and tied ranks are assigned.
The formula below for Gy, should be used for computing the large sample approximation

rather than Oy when more than a few ties occut.

N nm(N +1)° _
Oyt = JN(N D kz: —4(N ) where N = n+m [5.4]

Example 1, cont.

The tie correction is applied to the large sample approximation for the precipitation

1 10021
nitrogen data. Gy, :J200109 2868.5 — %9) \/174.61 =13.21.

This is essentially identical to the value of 13.23 obtained without the tie correction. The
test statistic Zrg and its p-value are unchanged.

5.1.4 The Rank Transform Approximation

Another approximation to the exact rank-sum test is to compute the equivalent parametric test,
in this case the t-test, on the ranks Rj rather than on the original data themselves.

Computations will be illustrated in detail following the presentation of the t-test in the next
section. The rank-transform p-value calculated in that section for the precipitation nitrogen data
1s 0.042, close to but lower than the exact value, and not as close as the large sample
approximation. Rank transform approximations are not as widely accepted as are the large
sample approximations. This is due to the fact that the rank transform approximations can
result in a lower p-value than the exact test, while the large sample approximation will not. In

addition, the rank approximation is often not as close as the large-sample approximation for the
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same sample size. Statisticians prefer that an approximation never result in a lower p-value than
the exact test, as this means that Hy will be rejected more frequently than it should. However,
this problem only occurs for small sample sizes. For the sample sizes (conservatively, n and m
both larger than 25) at which the rank approximation should be used, it should perform well.

5.2 The t-Test

The t-test is perhaps the most widely used method for comparing two independent groups of
data. Itis familiar to most water resources scientists. However, there are five often overlooked
problems with the t-test that make it less applicable for general use than the nonparametric rank-
sum test. These are 1) lack of power when applied to non-normal data, 2) dependence on an
additive model, 3) lack of applicability for censored data, 4) assumption that the mean is a good
measure of central tendency for skewed data, and 5) difficulty in detecting non-normality and
inequality of variance for the small sample sizes common to water resources data. These
problems were discussed in detail by Helsel and Hirsch (1988), and will be evaluated here in
regard to the precipitation nitrogen data.

5.2.1 Assumptions of the Test

The t-test assumes that both groups of data are normally distributed around their respective
means, and that they have the same variance. The two groups therefore are assumed to have
identical distributions which differ only in their central location (mean). Therefore the t-test is a
test for differences in central location only, and assumes that there is an additive difference
between the two means, if any difference exists. These are strong assumptions rarely satisfied
with water resources data. The null hypothesis is stated as

Hp: ug = Hy the means for groups x and y are identical.
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5.2.2 Computation of the t-Test

Two Sample t-test

Situation Two independent groups of data are to be compared. Each group is normally
distributed around its respective mean value, and the two groups have the same

variance. The sole difference between the groups is that their means may not be

the same.
Test Statistic Compute the t-statistic:
-
A A
S, ’1/ n+1/m
where X is the sample mean of data in the first group xj i=1,n

y is the sample mean of data in the second group i j=1,m
and s is the pooled sample standard deviation, estimating the

standard deviation assumed identical in both groups:

J(n—l)sj+(m—1)sy2
‘=

n+m-2
. 2 2 .
The sample variances of both groups s~ and s are used to estimate s.

Decision Rule. To reject Hp: Uy = Hy

1. Hi: puy # Hy (the two groups have different mean values, but there is no prior
knowledge which of x or y might be higher)
Reject HO if t<-—t Oc/2,(n+m—2) or t>t Oc/2,(n+m—2) from a table
of the t distribution; otherwise do not reject H.

2. H2: U > Uy (prior to seeing any data, x is expected to be greater than y)
Reject H if t>t (n+m—2) from a table of the t distribution;
otherwise do not reject H .

3. H3: Mg <MWy (prior to seeing any data, y is expected to be greater than x)
Reject Hp if t <—t ¢ (n+m—2) from a table of the t distribution;
otherwise do not reject H( .

5.2.3 Modification for Unequal Variances
When the two groups have unequal variances the degrees of freedom and test statistic t should

be modified using Satterthwaite's approximation:
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Two Sample t-test with Unequal Variances

Situation The mean values of two independent groups of data are to be tested for
similarity. Each group is normally distributed around its respective mean value,

and the two groups do not have the same variance.

Test Statistic Compute the t-statistic:
Ty
\/ s In+s>Im
x y

t=

2. .

where s_ is the sample variance of the first group, and
2 . .

s, is the sample variance of the second group.

Also compute the approximate degrees of freedom df, where

(sz /n+s§/m)2

df =
(s>/n)? (S;/m)2

+
(n=1)  (m=1)

Decision Rule. To reject Hp: Uy = Hy

1. Hi: pug # Hy (the two groups have different mean values, but there is no prior
knowledge which of x or y might be higher)
Reject Hp if t < —t w2,df) Of t> oy (df from a table of the t

distribution; otherwise do not reject Hy.

2. H2: U > Wy (prior to seeing any data, x is expected to be greater than y)
Reject H if t>t (df) from a table of the t distribution;

otherwise do not reject H .

3. H3: Mg <Uy (prior to seeing any data, y is expected to be greater than x)
Reject Hp if t < —t ¢ df from a table of the t distribution; otherwise

do not reject Hy .

Example 1, cont.
The t-test is applied to the precipitation nitrogen data. Are the means of the two groups of data

equal? As the variance for the industrial data is 1.2 while for the residential data it is 8.1,

Satterthwaite's approximation is used rather than computing an overall variance:
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t 1.67 - 1.64 003, and d (1.17/10 + 8.12/10)2 s
= = U. n = .
A/ 1.17/10 + 8.12/10 > 8 (1.17/10)2 . (8.12/10)2
9 9

Therefore from a table of the t-distribution, the p-value is 0.98. The conclusion: fail to reject
Hq. There is essentially no evidence that the means differ using the t-test.

The "t-test on ranks" approximation to the rank-sum test is also computed. This t-test is

computed using the joint ranks Rj rather than the original data themselves:
13.15 - 7.85

t =
rank = 5 4~[1/10 + 1/10
where 13.15 is the mean rank of the x data, etc. Comparing this to t 3p5 1g = 2.10, H( is

=219

rejected with a p-value of 0.042. The medians are declared different.

5.2.4 Consequences of Violating the t-Test's Assumptions

Computing the probability plot correlation coefficient to test for normality of the two groups of
precipitation nitrogen data, the industrial group had a PPCC of 0.895, while the residential group
had a PPCC of 0.66. From Table B3 of the Appendix, both correlation coefficients are below
the critical value of 0.918 for an o of 0.05, and so both groups must be considered non-normal
(see Chapter 4 for details on the PPCC test). A t-test should not have been used on these data.
However, if the normality test results are ignored, the t-test declares the group means to be
similar, which is commonly interpreted to mean that the two groups are similar. The rank-sum

test finds the two groups to be significantly different. This has the following consequences:

1. This example demonstrates the lack of power encountered when a t-test is applied to
non-normal data. When parametric tests are applied to non-normal data, their power to
detect differences which are truly present is much lower than that for the equivalent
nonparametric test (Bradley, 1968). Thus the t-test is not capable of discerning the difference
between the two groups of precipitation nitrogen. The skewness and outliers in the data inflate
the sample standard deviation used in the t-test. The t-test assumes it is operating on normal
distributions having this standard deviation, rather than on non-normal data with smaller overall
spread. It then fails to detect the differences present.

2. As shown by the Q-Q plot of figure 5.5, these data do not exhibit an additive difference
between the data sets. A multiplicative model of the differences is more likely, and logs of the
data should be used rather than the original units in a t-test. Of course, this is not of concern to

the rank-sum test, as the test results will in either units be identical.

3. A t-test cannot be easily applied to censored data, such as data below the detection limit.
That is because the mean and standard deviation of such data cannot be computed without

either substituting some arbitrary values, or making a further distributional assumption about the
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data. This topic is discussed further in Chapter 13. It will only be noted here that all data below
a single detection limit can easily be assigned a tied rank, and a rank-sum test computed, without

making any distributional assumptions or assigning arbitrary values to the data.

4. The t-test assumes that the mean is a good measure of central tendency for the data
being tested. This is certainly not true for skewed data such as the precipitation nitrogen data.
The mean of the residential data is greatly inflated by the one large outlier (figure 5.4), making it
similar to the mean at the industrial site. The mean is neither resistant to outliers, nor near the

center (50th percentile) of skewed data. Therefore tests on the mean often make little sense.

5. When prior tests for normality are used to decide whether a nonparametric test is
warranted, departures from normality must be large before they are detected for the small
sample sizes (n<25 or 30) commonly investigated. In this example, departures were sufficiently
drastic that normality was rejected. For lesser departures from normality, computing both the
rank sum and t-test would protect against the potential loss of power of the t-test for non-

normal data. Alternatively, just the rank sum test could be used for analysis of small data sets.

5.3 Graphical Presentation of Results

In Chapter 2 a detailed discussion of graphical methods for comparisons of two or more groups
of data was presented. Overlapping and side-by-side histograms, and dot and line plots of
means and standard deviations, inadequately portray the complexities commonly found in water
resources data. Probability plots and quantile plots allow complexity to be shown, plotting a
point for every observation, but often provide too much detail for a visual summarization of
hypothesis test results. Two methods, side-by-side boxplots and Q-Q plots, are very well suited
to describing both the results of hypothesis tests, and visually allowing a judgement of whether
data fit the assumptions of the test being employed. This is illustrated by the precipitation

nitrogen data below.

5.3.1 Side-by-Side Boxplots

The best method for illustrating results of the rank-sum test is side-by-side boxplots. With
boxplots only a few quantiles are compared, but the loss of detail is compensated for by greater
clarity. In figure 5.4 are boxplots of the precipitation nitrogen data. Note the difference in
medians is clearly displayed, as well as the similarity in spread (IQR). The rejection of normality
by PPCC tests is seen in the presence of skewness (industrial) and an outlier (residential). Side-
by-side boxplots are an effective and concise method for illustrating the basic characteristics of

data groups, and of differences between those groups.
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Figure 5.4 Boxplots of the precipitation nitrogen data. Note the skewness and outliers.

5.3.2 Q-Q Plots

Another method for illustration of rank-sum results is the quantile-quantile (Q-Q) plot described
in Chapter 2. Quantiles from one group are plotted against quantiles of the second data group.
Chapter 2 has shown that when sample sizes of the two groups are identical, the x's and y's can
be ranked separately, and the Q-Q plot is simply a scatterplot of the ordered data pairs (x1 ,
y1)----(Xn, Yn). When sample sizes are not equal (n<m), the quantiles from the smaller data set

are used as is, and the n corresponding quantiles for the larger data set are interpolated.

It is always helpful in a Q-Q plot comparing two groups to plot the y = x line. Figure 5.5 1is a Q-
Q plot of the precipitation nitrogen data. Two important data characteristics are apparent.

First, the data are not parallel to the y = x line, and therefore quantiles do not differ by an
additive constant. Instead, they increasingly depart from the line of equality indicating a
multiplicative relationship. Note that the Q-Q plot shows that a t-test would not be applicable
without a transformation, because it assumes an additive difference between the two groups.
The rank-sum test does not make this assumption, and is directly applicable to groups differing

by a multiplicative constant (rank procedures will not be affected by a power transformation).

The magnitude of this relationship between two sets of quantiles on a Q-Q plot can be
estimated using the median of all possible ratios (YJ/ xj), 1=1,n and j=1,n. This is a type of



130 Statistical Methods in Water Resources

Hodges-Lehmann estimator, as discussed in the next section. The median ratio equals 0.58, and
the line residential = 0.58%industrial is drawn in figure 5.5. Note the resistance of the median

ratio to the one large outlier.
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Figure 5.5 Q-Q plot of the precipitation nitrogen data.

Second, the data are crowded together at low concentrations while spread further apart at higher
concentrations -- a pattern indicating right-skewness. To remedy both skewness and non-
additivity, a power transformation with @ < 1 was chosen, the base 10 log transform (8 = 0). A
Q-Q plot of data logarithms is shown in figure 5.6. Note that the data are now spread more
evenly from low to high concentrations, indicating skewness has decreased. The slope of the
quantiles is now parallel to the y = x line. Thus a multiplicative relationship in original units has
become an additive relationship in log units, with the Hodges-Lehmann estimate (see next
section) of the difference between log(x) and log(y) &equal t0—0.237. Note that Ais the log
of the Hodges-Lehmann estimate of the ratios in the original units, log1(0.58) = —0.237. The
line parallel to y=x, log(residential) = —0.237¢log(industrial), is plotted on figure 5.6. A t-test
would now be appropriate for the logarithms, assuming each group's transformed data were

approximately normal.

In summary, Q-Q plots of the quantiles of two data groups illustrate the reasonableness of
hypothesis tests (t-test or rank-sum), while providing additional insight that the test procedures

do not provide. Q-Q plots can demonstrate skewness, the presence of outliers, and inequality of
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variance to the data analyst. Perhaps most importantly, the presence of either an additive or
multiplicative relationship between the two groups can easily be discerned. Since the t-test
requires an additive difference between two groups, Q-Q plots can signal when transformations

to produce additivity are necessary prior to using the t-test.
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Figure 5.6  Q-Q plot of the logs of the precipitation nitrogen data.

5.4 Estimating the Magnitude of Differences Between Two Groups

After completion of an hypothesis test comparing two groups of data, the logical next step is to
determine by how much the two groups differ. The most well-known approach, related to the
two-sample t-test, is to compute the difference between the two group means (x—y ). A more
robust alternative, related to the rank-sum test, is one of a class of nonparametric estimators
known as Hodges-Lehmann estimators. These two estimators are compared in the following

sections.

5.4.1 The Hodges-Lehmann Estimator

One nonparametric estimate of the difference between two independent groups is a Hodges-
Iehmann estimator A (Hodges and Lehmann, 1963; Hollander and Wolfe, 1973, p. 75-77).
This estimator is the median of all possible pairwise differences between the x values and y

values

A= median [x; — i for xj, i=1,..n and yj, j=1,..m. [5.5]
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There will be n*m pairwise differences.

Example 2
For the following x's and y's , compute 15 -8 =7, 15—27 = —12, etc:
Xj v All Possible Differences (xj — Y])
15 8 7 9 17
17 27 -12 -10 -2
25 3 12 14 22
5 10 12 20

Ranked in order from smallest to largest, the 3°4 = 12 pairwise differences are
-12,-10,-2,7,9, 10,12, 12, 14, 17, 20, 22.

The median of these is the average of the 6th and 7th smallest values, or A = 11. Note that the

unusual y value of 27 could have been any number greater than 14 and the estimator A would

be unchanged. Thus A is resistant.

The A estimator is related to the rank-sum test, in that if A were subtracted from each of the x
observations, the rank-sum statistic Wg would provide no evidence for rejection of the null
hypothesis. In other words, a shift of size A makes the data appear devoid of any evidence of

difference between x and y when viewed by the rank-sum test.

A is a median unbiased estimator of the difference in the medians of populations x and y. That
is, the probability of underestimating or overestimating the difference between the median of x
and the median of y is exactly one-half. If the populations were both normal, it would be a
slightly less efficient estimator of differences in medians (or means) than would the parametric
estimator X —y . However, when one or both populations is substantially non-normal, it is a

more efficient (lower variance) estimator of this difference.

There is another logical nonparametric estimator of the difference in population medians -- the
difference between the sample medians (Xyned — Ymed)- For example 2, (Xped — Ymed) = 10.5.
Note that the difference in sample medians is not necessarily equal to the median of the
differences A. In addition, (Xmed — Ymed) 18 always somewhat more variable (less efficient)
than is A and so is less desirable.

A modified version of the A statistic is used as the estimate of the magnitude of the step trend
in the seasonal rank-sum test procedure described by Crawford, Slack, and Hirsch (1983, p. 74).

5.4.2 Confidence Interval for A
A nonparametric interval estimate for A illustrates how variable the difference between the

medians might be. No distribution is assumed for the pairwise differences. The interval is
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computed by a process similar to that for the confidence interval on the median described
earlier. The tabled distribution of the test statistic is entered to find upper and lower critical
values at one-half the desired alpha level. These critical values are transformed into ranks. After
ordering the n*m pairwise differences from smallest to largest, the differences corresponding to

those ranks are the ends of the confidence interval.

For small sample sizes, table B4 for the rank-sum test is entered to find the critical value x*
having a p-value nearest to 0./2. This critical value is then used to compute the ranks Ry and R}
corresponding to the pairwise differences at the upper and lower confidence limits for A. These
limits are the Rjth ranked data points going in from either end of the sorted list of N=n*m

pairwise differences.

(]
R :x*—n—%—Z [5.6]

Ry = N—Rj+1 for N = nem [5.7]

Example 2, cont.
The N=12 possible pairwise differences between x and y were:

-12,-10,-2,7,9, 10, 12,12, 14, 17, 20, 22.
The median of these (A) was 11.  To determine an o = 0.10 confidence interval for A, the
tabled critical value x* nearest to 0./2 = 0.05 is 7 (p=0.057). The rank R] of the pairwise

difference at the lower end of the confidence interval is therefore

34
Rj =7- %2 = 1 forn=3 and m=4.

Ry, the rank of the pairwise difference at the upper end of the confidence interval is
Ry = 12.

With such a small data set, the o0 = 2¢0.057 = 0.014 confidence limit for A is the range of the

entire data set (the 1st difference in from either end), or
-12< A <22,

When the latge-sample approximation to the rank-sum test is used, a critical value zg /2 from
the table of standard normal quantiles determines the upper and lower ranks of the pairwise

differences corresponding to the ends of the confidence interval. Those ranks are




134 Statistical Methods in Water Resources

N (n+m+1)
N-z3/0 3

R, = ! 5.8

N (n+m+1)
N+zy/0e 3

Ry = > +1 [5.9]

= N-Rj+1

Example 1 cont.

For the precipitation nitrogen data there were N = (10)(10) = 100 possible pairwise differences.
Awould be the average of the 50th and 51st ranked differences. For a 95 percent confidence
interval on A, zg/2 = 1.96 and

3

100 (10+10+1)
100 - 1.96 +
R = 5 = 24.1

Ry

100 — 24.1 +1 =76.9

the 24.1st ranked slope from either end. Rounding to the nearest integer, the 24th and 77th
ranked slopes are used as the ends of the o0 = 0.05 confidence limit on A. Note that using the
exact formula, from Table B4 the exact O level is determined to be 2¢0.026 = 0.052.

5.4.3 Difference Between Mean Values

As noted above, in the situation where the t-test is appropriate, the difference between the
means of both groups X —y is the most efficient estimator of the difference between the two
groups of data. Perhaps obvious is that when x and y are transformed prior to performing the t-
test, (X —y) does not estimate the difference between group means in their original units. Less
obvious is that a re-transformation of (X — ) back to original units also does not estimate the
difference between group means, but is closer to a function of group medians. For the log
transformation as an example, X —y retransformed would equal the ratio of geometric means of
the two groups. How close such a re-transformation comes to estimating the ratio of group

medians depends on how close the data are to being symmetric in their transformed units.

5.4.4 Confidence Interval for x—Yy
An interval estimate for the difference in means X — is also available. It is appropriate in

situations where the t-test may be used -- when both data groups closely follow a normal
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distribution. When the variances of the two groups are similar and the pooled standard

deviation s is used in the test, the confidence interval is

Cl= }—y + t06/2,(n+m—2) . S‘\’ 1/a+1/m ) [510]

When the standard deviations of the two groups are dissimilar and cannot be pooled, the

confidence interval becomes

Cl= x-y t toy2,(df) * ‘/sf/n +si/m [5.11]

where df is the approximate degrees of freedom used in the t-test.

Exercises

5.1 For the precipitation nitrogen data of Example 1, what would Wyg have been had the
industrial site been used rather than the arbitrary choice of the residential site. What is

the effect on the p-value?

5.2 Historical ground-water quality data for a shallow aquifer underlying agricultural land
shows the following nitrate concentrations (mg/L):
pre-1970 post-1970
1 2 4 1 5 14
1 3 5 2 8 15
1 3 5 2 10 18
2 4 10 4 11 23

Given that we wish to test for a change in concentration between the two periods,
should this be a one-sided or two-sided test?

5.3 Annual streamflows for the Green R. at Munfordville, KY were listed in Exercise 4.1.
Beginning in 1969 the stream was regulated by a reservoir.
a. Construct a Q-Q plot, and indicate whether the flows exhibit an additive or
multiplicative relationship, or neither.
b. Does there appear to be a relationship between (after—before) or (after/before) and
the magnitude of annual flow itself? If so, explain why this might occur.

a. Test whether flows after the reservoir came onstream are different.
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5.5

5.6

Statistical Methods in Water Resources

Consider the following small data set

X: 1.0, 2.0, 3.0, 4.0

Y: 1.5, 2.5, 3.5, 4.5, 5.5, 7.0, 10.0, 20.0, 40.0, 100.0
Using the Table B4, determine the two-sided p value for an additive difference between
the X and Y data using the exact rank-sum test. Then compute it using the large-sample
approximation. Then compute it using the t-test on ranks. Compute the expected
difference A between X and Y.

Unit well yields, in gallons per minute per foot of water-bearing material, were contrasted
for wells within valleys containing fracturing versus valleys with no fracturing (Wright,
1985). For the PPCC test for normality, r(with)=0.943 and r(without)=0.805. Perform the
appropriate 00 = 0.05 test to discern whether fracturing is associated with higher mean unit

well yield
Yields with fracturing Yields without

0.95 0.16 1.02 0.040
0.72 0.16 0.49 0.030
0.51 0.13 0.454 0.020
0.44 0.086 0.10 0.007
0.40 0.031 0.077 0.003
0.30 0.020 0.041 0.001
0.18

Assume that the unit well yield data are now trace organic analyses from two sampling
sites and that all values below 0.050 were reported as "< 0.05." Retest the hypothesis that
Ho : ux= Uy versus Hy : lx > [y using the rank-sum test. By how much does the test
statistic change? Are the results altered by presence of a detection limit? Could a t-test be

used in this situation?
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To determine the effectiveness of an acid solution in developing wells in carbonate rock, yields
of twenty wells were measured both before and after treatment of the wells with acid. Factoring
out the differences in yield between wells, have the yields changed as a result of using the acid?

What is the magnitude of this change?

Annual sediment loads are measured at two sites over a period of twenty-four years. Both
drainage basins are of essentially the same size, and have the same basin characteristics.
However, logging has occurred in one basin during the period, but not in the other. Can the
year to year variation in load (due to differences in precipitation) be compensated for, to

determine whether the site containing logging produced generally higher loads than the other?

Two laboratories are compared in a quality assurance program. Each lab is sent one of a pair of
30 samples split into duplicates in the field, to determine if one lab consistently over- or under-
estimates the concentrations of the other. If no difference between the labs is seen, their data
may be combined prior to interpretation. The differences between labs must be discerned above

the sample to sample differences.

As with the tests of Chapter 5, we wish to determine if one group tends to contain larger values
than the other. However, now there is a logical pairing of the observations within each group.
Further, there may be a great deal of variability between these pairs, as with the year-to-year
pairs of sediment data in the second example above. Both basins exhibit low yields in dry years,
and higher yields in wet years. This variability between pairs of observations is noise which
would obscure the differences between the two groups being compared if the methods of
Chapter 5 were used. Instead, pairing is used to block out this noise by performing tests on the
differences between data pairs. Two nonparametric tests are presented for determining whether
paired observations differ, the sign test and the signed-rank test. Also presented is the paired t-
test, the parametric equivalent which may be used when the differences between pairs are
known to be normally distributed. After surveying graphical methods to illustrate the test

results, estimators for the difference between the two groups are discussed.
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For paired observations (xi,yi), i=1,2,...n, their differences Dj = xj — yj are computed. The tests
in this chapter determine whether xj and yj are from the same population -- the null hypothesis -

- by analyzing the Dj. If there are differences, the null hypothesis is rejected.

When the Dj's have a normal distribution, a paired t-test can be employed. The paired t-test
determines whether the mean of the Dj's equals 0. This is equivalent to stating that the mean of
the xj and the yj are the same. If the Dj's are symmetric, but not necessarily normal, a signed-
rank test can be used. The signed-rank test determines whether the median of the the Dj's is
equal to 0. The assumption of symmetry made by the signed-rank test is much less restrictive
than that of normality, as there are many non-normal distributions which are symmetric. As a
result, the signed-rank test is a more generally applicable method than the t-test. If the
differences are asymmetric, the sign test may be used. The sign test does not require an
assumption of symmetry or normality. It tests a more general hypothesis than comparisons of
means or medians -- does x tend to be higher (or lower, or different) than y? The sign test is the
most generally applicable of the three methods. It is also appropriate when the magnitude of the
paired differences cannot be computed but one observation can be determined to be higher than
the other, as when comparing a <1 to a 3. (Analysis of data below the detection limit is
discussed in detail in Chapter 13. See also exercises 6.4 and 6.5 at the end of this chapter.)

6.1 The Sign Test

For data pairs (xj,yi) i=1,...n, the sign test determines whether x is generally larger (or smaller, or

different) than y, without regard to whether that difference is additive. The sign test may be

used regardless of the distribution of the differences, and thus is fully nonparametric.

6.1.1 Null and Alternate Hypotheses

The null and alternative hypotheses may be stated as follows:
Hp:  Prob [x>y] = 0.5,

versus one of the three possible alternative hypotheses:

Hy:  Prob [x>y] #0.5 (2-sided test -- x might be larger or smaller than y).
Hj:  Prob [x >y] > 0.5 (1-sided test -- x is expected to be larger than y)
H3:  Prob [x>y] <0.5 (1-sided test-- x is expected to be smaller than y).

6.1.2 Computation of the Exact Test
If the null hypothesis is true, about half of the differences Dj will be positive (xi > yj) and about

half negative (xj < yj). If one of the alternate hypotheses is true instead, more than half of the

differences will tend to be either positive or negative.

The exact form of the sign test is given below. It is the form appropriate when comparing 20 or

fewer pairs of samples. With larger sample sizes the large-sample approximation may be used.
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Remember that computer packages usually report p-values from the large sample approximation

regardless of sample size.

Exact form of the sign test
Situation Two paired groups of data are to be compared, to determine if one group tends
to produce larger (or different) values than the other group. No assumptions
about the distribution of the differences Dj = xj — yj, 1 = 1,...N are required.

This means that no assumption is made that all pairs are expected to differ by
about the same amount. Numerical values for the data are also not necessary, as

long as their relative magnitudes may be determined.

Tied data Ignore all tied data pairs (all Dj =0). Reduce the sample size of the test to the

number of nonzero differences n.

Computation Delete all Di= 0 (xj = yi). The test uses the n nonzero differences
n= N—[number of Dj=0]. Assign a + for all Dj > 0, and a — for all D; < 0.

Test Statistic ST = the number of +'s, the number of times x;j > yi, 1=1,.n.

geee

Decision Rule To reject Hp: Prob [x >y] = 0.5,
1. H1: Prob [x >y] # 0.5 (the x measurement tends to be either larger or smaller than the y

measurement).

+ +
Reject Hpif S Zxgp, of S =x'y/, from Table B5; otherwise do not reject
Ho.

2. Hp: Prob [x >y] > 0.5 (the x measurement tends to be larger than the y measurement).

_F
Reject Hoif S =2 xg n from Table B5; otherwise do not reject H .

3. H3: Prob [x>y] <0.5 (the x measurement tends to be smaller than the y measurement).

_%
Reject Hpif S =x'gn from Table B5; otherwise do not reject Hy .

Example 1.

Counts of mayfly nymphs were recorded in 12 small streams at low flow above and below
industrial outfalls. The mayfly nymph is an indicator of good water quality. The question to be
considered is whether effluents from the outfalls decreased the number of nymphs found on the
streambeds of that region. A Type I risk level o of 0.01 is set as acceptable. Figure 6.1a
presents a separate boxplot of the counts for the above and below groups. Both groups are
positively skewed. There is a great deal of variability within these groups due to the differences
from one stream to another, though in general the counts below the outfalls appear to be

smaller. A rank-sum test as in Chapter 5 between the the two groups would be inefficient, as it
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would not block out the stream to stream variation (no matching of the pair of above and below

Statistical Methods in Water Resources

counts in each stream). Variation in counts among the streams could obscure the difference

being tested for. The natural pairing of observations at the same stream can be used to block

out the stream to stream variability by computing the above—below differences in counts for

each stream (figure 6.1b). A test is then performed on these differences. Note the asymmetry of

the paired differences. They do not appear to all be of about the same magnitude.
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Figure 6.1 a) above and below counts. b) above — below differences.
Table 6.1 Mayfly nymph data.

Xj
12
15
11

41

xj = counts above outfalls,

Dj

yi = counts below outfalls

Dj. = difference xj — yj.

Xj
106
63
296
53

i
48
17
11
41

Dj
58
46
285
12

Xj

20
110
429

185

14
60
53
124

376
61
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The null hypothesis H() is that the counts above the outfalls are equally likely to be higher or
lower than counts below the outfalls. The one-sided alternate hypothesis H) is that the counts

below the outfalls are expected to be lower, in which case ST would be large.

Of the 12 pairs, 11 are increases, so ST = 11. Note that this statistic is very resistant to outliers,

as the magnitudes of the differences are not used in computing the test statistic. From Table B5
of the Appendix, the one-sided p-value for ST = 11 is 0.003. Therefore reject that counts above
and below the outfall are the same at o0 = 0.01.

6.1.3 The Large Sample Approximation

For sample sizes n>20 the exact sign test statistic can be modified so that its distribution closely
follows a standard normal distribution. Again, this does not mean that the data or their
differences require normality. It is only the modified test statistic which follows a normal
distribution.

The large sample approximation for the sign test takes the standardized form

(o 1
ST—=75 = Ug*t o
ot if ST > Ug+
+ L
ST+5 = ugt .
L ot if ST < pgt

1
where us+:% , and GS+:§\/n .

The 1/2 in the numerator of Z is again a continuity correction (see Chapter 5). Z7 is
compared to a table of the standard normal distribution to obtain the approximate
p-value. Using the mayfly data of Example 1, the approximate p-value of p = 0.005 is obtained

below. This is very close to the true (exact) p=0.003, and both are sufficiently small that the
decision to reject H() would not be altered by their difference.

Therefore, if accurate p-values are of primary concern, such as when p is close to the agreed-
upon risk O, and the sample size is 20 or smaller, perform the exact test to get accurate p-values.

Regardless of sample size, if p-values are not the primary interest and one must simply decide to
reject Hy or not, when p-values are much smaller (such as 0.001) or much larger (such as 0.50)
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than o the decision whether to reject Hy will be sufficiently clear from the approximate

procedure.

Example 1, cont.

For ST =11 u+:2 :6cs+:l 12 =173
» UsT =7 sT T2 '
11-1-6
T= —2— =200
1.73

And from a table of the normal distribution, the approximate one-sided p-value = 0.005.

6.2 The Signed-Rank Test

The signed-rank test was developed by Wilcoxon (1945), and is sometimes called the Wilcoxon
signed-rank test. Itis used to determine whether the median difference between paired
observations equals zero. It may also be used to test whether the median of a single data set is

significantly different from zero.

6.2.1 Null and Alternate Hypotheses
For Dj = xj —yj, the null hypothesis for the signed-rank test is stated as:
Hp:  median[D] = 0.

The alternative hypothesis is one of three statements:

Hi:  median[D] # 0 (2-sided test -- x might be larger or smaller than y).
Hj:  median[D] >0 (1-sided test -- x is expected to be larger than y)
H3:  median[D] <0 (1-sided test-- x is expected to be smaller than y).

The signed-rank test is usually stated as a determination of whether the x's and y's come from
the same population (same median and other percentiles), or alternatively that they differ only in
location (central value or median). If both groups are from the same population, regardless of
the shape, about half of the time their difference will be above 0, and half below 0. In addition,
the distribution of data above 0 will on average mirror that below 0, so that given a sufficient
sample size the differences will be symmetric. They may not be anything like a normal
distribution, however. If the alternative hypothesis is true, the differences will be symmetric
when x and y come from the same shaped distribution (whatever the shape), differing only in
central value (median). This is called an additive difference between the two groups, meaning
that the variability and skewness within each group is the same for both. Boxplots for the two
groups would look very similar, with the only difference being an offset of one from the other.
The signed-rank test determines whether this "offset", the magnitude of difference between
paired observations, is significantly different from zero. For additive differences (the
assumption of symmetric differences is valid), the signed-rank test has more power to detect

differences than does the sign test.



Matched-Pair Tests 143

In addition, the signed-rank test is also appropriate when the differences are not symmetric in
the units being used, but a logarithmic transformation of both data sets will produce
differences which are symmetric. In such a situation a multiplicative relationship is made into
an additive relationship in the logarithms. For example, figure 6.2 displays the differences
between two positively skewed distributions. A multiplicative relationship between x and y is
suspected, ie. x = c*y, where c is some constant. This is a common occurrence with water
resources data; data sets having higher median values also often have higher variances than
"background" sites with low median values. In the original units the Dj from such data are
asymmetric. Changing units by taking the logarithms of the data prior to calculating differences,
the boxplot of figure 6.3 results. The log transformation (8 = 0) changes a multiplicative
relationship to an additive one: log x = log ¢ + logy. The variances of the logs are often made
similar by the transformation, so that the logs differ only in central value. The DI, the
differences in log units, are therefore much more symmetric than the differences in the original
units. The median difference in the logs can then be re-transformed to estimate the median

ratio of the original units, ¢ = median [y/x] = exp (median [DI]).

S I S o o
t 1 t t t t diff
oo 5.0 1. 15. 0 20,0 25.0
Figure 6.2 Boxplot of asymmetric Dj = xj — yj
{ I e
. ' . . L0gH - Togy
-1.9 @.o 1.0 Z.0 3.0

Figure 6.3 Boxplot of symmetric DIj = log(xj) — log(yi)

6.2.2 Computation of the Exact Test

If the null hypothesis is true, the median [D] will be close to zero, and the differences will be
symmetric around zero. If one of the alternate hypotheses is true instead, the differences will
not have a median near zero, but show a symmetric distribution around a nonzero median.
Therefore more than half will be either positive or negative. The signed-rank test uses both the
signs of the differences as in the sign test, along with the ranks of the absolute values of those

differences. This latter information makes sense to use only when the differences are symmetric.

The exact form of the signed-rank test is given below. It is the only form appropriate for
comparing 15 or less pairs of samples. With larger sample sizes either large-sample or rank

transform approximations may be used.



144 Statistical Methods in Water Resources

Exact form of the Wilcoxon signed-ranks test
Situation Two paired groups of data are to be compared, to determine if their differences
Dj = xj —yj are significantly different from zero. The Dj are assumed to be

symmetric. This implies that the two groups differ only in central location.

,1=1..N. Rank the

| Dj | from smallest to largest. The test uses only nonzero differences, so

Computation Compute the absolute value of the differences | Dj

sample size n= N—[number of Dj=0]. Compute the signed rank
Ri,i=1,.n
Ri = rank of | Dj | for D; > 0, and
= — (rank of |Di|) for D; < 0.

Tied data If Dj= 0, delete. When two nonzero differences Dy's are tied, assign the average

of the ranks involved to all tied values.

Test Statistic The exact test statistic W is then the sum of all signed ranks Rj having a

positive sign:

n
+
W = 2 Ri&R;>0) where | signifies "given that".
i=1
Decision Rule To reject Hp: median[D] =0
1. H1: median[D] # 0 (the x measurement tends to be either larger or smaller than the y
measurement).

+ +
Reject Hpif W 2 xgp,, or W =x'y, from Table B6; otherwise do not
reject Ho.

2. Hp: median[D] > 0 (the x measurement tends to be larger than the y measurement).

+
Reject Hoif W' = xg n from Table B6; otherwise do not reject H .

3. H3: median[D] <0 (the x measurement tends to be smaller than the y measurement).

+
Reject Hpif W = x'g n from Table B6; otherwise do not reject Hp .
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Example 1, cont.
The differences Dj result in the signed-ranks Rj of table 6.2. From these

WT = the sum of the positive Rj's
= 72.
From Table B0, the one-sided p-value for n=12 and W™ = 721is 0.003. This is strong evidence
against the null hypothesis being true. However, the Dj are asymmetric, violating one of the
test's assumptions, and indicating that the differences between the two groups may not be an
additive one. Asymmetry can be expected to occur when large values tend to produce large
differences, and smaller values smaller differences. This indicates that a multiplicative
relationship between the data pairs is more realistic. So projecting that a multiplicative
relationship may have produced the skewed distribution of Dj's, the base 10 logs of the data
were calculated, and a new set of differences
DIj = log(x{) — log(yi)
are computed and presented in table 6.2 and figure 6.4. Comparing figures 6.4 and 6.1b, note
that these DIj are much more symmetric than those in the original units. Using the DIj,
W = the sum of the positive Rlj's
= 69
and the exact p-value from Table B6 is 0.008. This should be considered more correct than the
results for the untransformed data, as the differences are more symmetric, meeting the
requirements of the test procedure. Note that the p-values are not drastically changed, however,

and the conclusion to reject H() was not affected by the lack of a transformation.

Table 6.2 Mayfly nymph data.

Dj = difference xj —yj Rj = signed ranks of Dj
Dl; = difference of logs Rlj = signed ranks of DIj
Di Rj Dl R} Di Ri DI Rl Di Rj Dl R}
3 1 0.125 2 58 9 0344 8 6 25 0155 3
6 25 0222 5 46 7 0569 10 50 8 0.263 7
27 -6 -0.538 -9 285 11 1.430 12 376 12 0.908 11
17 5 0233 6 12 4 0.111 1 61 10 0174 4

6.2.3 The Large Sample Approximation

To avoid requiring a large table of exact signed-rank test statistics for all possible sample sizes,
the exact test statistic is standardized by subtracting its mean and dividing by its standard
deviation so that its distribution closely follows a standard normal distribution. This

approximation is valid for sample sizes of n>15.
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Figure 6.4 Boxplot for the differences of the base 10 logarithms of the mayfly data.

The large sample approximation for the signed-ranks test takes the standardized form

- L 1
WT =7 = Uyt .\
Oyt W™ > Wyt
ZerT = 0 W = g+
el
W™ + 5~ [V .
L Oyt W™ < Uyt
*(n+1 *(nt+1)*(2n+1
where [y + :ﬂf;_l , and Oyt :\/ n°(n 2)4( ntl)

The 1/2 in the numerator of Zgy T is the continuity correction. Zgy™ is compared to a table of
the standard normal distribution to obtain the approximate p-value for the signed-rank test. For
the logarithms of the mayfly data of Example 1, the approximate p-value of p = 0.01 is obtained

below. This is close to the exact value of 0.008, considering that the sample size of 12 is too
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small for use of the approximation. When the sample size is 15 or smaller, perform the exact

test to get accurate p-values.

Example 1, cont.
12¢(13 12+(13)+(25
For W = 69, Myt = 44—2 =39 Oyt = 474&—2 =12.75

N
Zsr+ = u =231
12.75

And from a table of the normal distribution, the approximate one-sided p-value = 0.010.

6.2.4 The Rank Transform Approximation

The rank transform approximation for the signed-rank test is computed by performing a paired
t-test on the signed ranks Rj (or Rlj, if the differences of the logs are more symmetric) rather

than on the original data. For this approximation the zero differences Dj = 0 are retained prior
to computing the test so that there are N, not n, signed ranks. This approximation should be
called a "t-test on signed ranks" rather than a signed-ranks test for the sake of clarity.
Computations will be given in detail following the presentation of the paired t-test in the next
section. The rank-transform p-value calculated in that section for the logs of the mayfly data is
0.005, close to the exact p-value of 0.008. The rank transform approximation should be

acceptable for sample sizes greater than 15.

6.3 The Paired t-Test

The paired t-test is the most commonly used test for evaluating matched pairs of data.
However, it should not be used without expecting the paired differences Dj to follow a normal

distribution. Only if the Dj are normal should the t-test be used. As with the signed-ranks test,
logarithms may be taken prior to testing for normality if a multiplicative relationship is
suspected. In contrast, all symmetric data, or data which would be symmetric after taking
logarithms, may be tested using the signed-ranks test regardless of whether they follow a normal

distribution.

6.3.1 Assumptions of the Test
The paired t-test assumes that the paired differences Dj are normally distributed around their
mean. The two groups of data are assumed to have the same variance and shape. Thus if they
differ, it is only in their mean (central value). The null hypothesis can be stated as

Ho : Bx = Uy the means for groups x and y are identical, or

Ho: U mp)=0 the mean difference between groups x and y equals 0.
When the Dj are not normal, and especially when they are not symmetric, the p-values obtained

from the t-test will not be accurate. When the Dj are asymmetric, the mean will not provide a
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good estimate of the center, as discussed in Chapter 1. Therefore U [D] will not be a good

estimate of the additive difference between x and y.

6.3.2 Computation of the Paired t-Test

Paired t-test

Situation Two paired groups of data are to be compared, to determine if their differences
Dj = xj —yj are significantly different from zero. These differences must be

normally distributed. Both x and y follow the same distribution (same variance)

b

except that [y and Hy might not be equal.

D+n

s

Test Statistic Compute the paired t-statistic: tp =

where D is the sample mean of the differences Dj D=

2.(D.-Dy

i=1

and s = , the sample standard deviation of the Dj's.

n-1

Decision Rule. To reject Hp: Uy = Hy

1. Hi: e # Hy (the two groups have different mean values, but there is no prior
knowledge which of x or y might be higher)
Reject Hp if tp < —t (1—=0/2),(n-1) Of > t(1-0y/2),(n—1) from a
table of the t distribution; otherwise do not reject H).

2. H2: Mg > Uy (prior to seeing any data, x is expected to be greater than y)
Reject Hp if tp >t (1-0),(n—1) from a table of the t distribution;

otherwise do not reject H .

3. H3: Mg <MWy (prior to seeing any data, y is expected to be greater than x)
Reject Ho if tp <—t (1—0),(n—1) from a table of the t distribution;

otherwise do not reject H( .

Example 1, cont.
Paired t-test on the mayfly data: The PPCC test for normality on the paired differences Dj

has r = 0.82, with an associated p-value of <0.005. Therefore it is highly unlikely that these data

come from a normal distribution, and the t-test cannot validly be run. In an attempt to obtain a
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distribution closer to normal, the logs of the data are computed. Again as with the signed-rank
test, this implies that a multiplicative rather than an additive relationship exists between x and y.
The PPCC test for normality of the differences between the logarithms DIj has r = 0.92, and a
p-value of 0.036. Therefore normality of the logarithms would still be rejected at o0 = 0.05, and
the t-test should still not be performed. One could try a series of power transformations,
selecting the one whose PPCC test coefficient is closest to 1.0. Howver, it may be difficult to
translate the results back into original units -- "the negative square root of differences is

statistically different". If the t-test performed on the logs, the following would result:

— 1.59 2
Dl= 0333, s= 1 = 0479, so tp=241.

Reject H in favor of H2 if tp >ty 95 11 = 1.80. Therefore reject that iy = Hy. The one-

sided p-value for tp is about 0.02. Note that this is higher than the signed-rank test's

p-value of 0.008, reflecting a probable slight loss in power for the t-test as computed on the

(non-normal) logarithms of the data.

Rank approximation to the signed-rank test (t-test on signed-ranks): The t-test is performed
on the signed-ranks of DIj, (see Table 6.2).

18.71 2

Rl =5, s=\/ [ =564 and =307

Reject H( in favor of H2 if ty >t 5 95 11 = 1.80. Therefore reject Hp. The one-sided

p-value equals 0.005, close to the exact p-value of 0.008. Note that the t-test on signed-ranks, as
a nonparametric test, ably overlooks the non-normality of the data. The paired t-test does not,
and is less able to distinguish the differences between the data logarithms (as shown by its higher

p-value) because those differences are non-normal.

6.4 Consequences of Violating Test Assumptions

6.4.1 Assumption of Normality (t-Test)

The primary consequence of overlooking the normality assumption underlying the

t-test is a loss of power to detect differences which may truly be present. The second
consequence is an unfounded assumption that the mean difference is a meaningful description
of the differences between the two groups.

For example, suppose a t-test was blindly conducted on the mayfly data without checking for
normality of the differences. The test statistic of t=2.08 has a one-sided p-value of 0.03. This is
one order of magnitude above the exact p-value for the (nonparametric) sign test of 0.003. Had
an ¢, of 0.01 been chosen, the t-test would be unable to reject H( while the sign test would easily
reject. The non-normality of the differences "confuses" the t-test by inflating the estimate of

standard deviation s, and making deviations from a zero difference difficult to discern.
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The mean difference D of 74.4 counts for the mayfly data is larger than 10 of the 12 paired
differences listed in table 6.1. It has little usefulness as a measure of how many more mayfly
nymphs are found above outfalls than below. The lack of resistance of the mean to skewness
and outliers heavily favors the general use of the median or Hodges-L.ehmann estimator.
Another drawback to the mean is that when transformations are used prior to computing a t-
test, re-transforming the estimate of the mean difference back into the original units does not

provide an estimate of the mean difference in the original units.

6.4.2 Assumption of Symmetry (Signed-Rank Test)

When the signed-rank test is performed on asymmetric differences, it rejects H) slightly more
often than it should. The null hypothesis is essentially that symmetric differences have a median
of zero, and asymmetry favors rejection as does a nonzero median. Some authors have in fact
stated that it is a test for asymmetry. However, asymmetry must be severe before a substantial
influence is felt on the p-value. While only one outlier can disrupt the t-test's ability to detect
differences between two groups of matched pairs, most of the negative differences must be
smaller in absolute value than are the positive differences before a signed-rank test rejects H()
due solely to asymmetry. One or two outliers will have little effect on the signed-rank test, as it
uses their rank and not their value itself for the computation. Therefore violation of the
symmetry assumption of the signed-rank test produces p-values only slightly lower than they
should be, while violating the t-test's assumption of normality can produce p-values much larger
than what is correct. Add to this the fact that the assumption of symmetry is less restrictive than
that of normality, and the signed-rank test is seen to be relatively insensitive to violation of its

assumptions as compared to the t-test.

Inaccurate p-values for the signed-rank test is therefore not the primary problem caused by
asymmetry. The p-values for the mayfly data, for example, are not that different (p = 0.003 for
the original units and 0.008 for the logs) before and after a transformation to achieve symmetry.
Both are similar to the p-value for the sign test, which does not require symmetry. However,
inappropriate estimates of the magnitude of the difference between data pairs will result from
estimating an additive difference when the evidence points towards a multiplicative relationship.
Therefore symmetry is especially important to check if the magnitude of the difference between
data pairs is to be estimated. Equally as important to check is the form of the relationship

between x and vy, using the scatterplots of the next section.

6.5 Graphical Presentation of Results

Methods for illustrating matched-pair test results are those already given in Chapter 2 for
illustrating a single data set, as the differences between matched pairs constitute a single data set.
A probability plot of the paired differences, for example, will show whether or not the data
follow a normal distribution. Of the methods in Chapter 2, the boxplot is the single graphic
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which best illustrates both the test results and the degree of conformity to the test's assumptions.
The equivalent graphic to a Q-Q plot for paired data is a scatterplot of the data pairs. The
addition of the x=y line and a smooth of the paired data will help illustrate the test results.

6.5.1 Boxplots

The best method for directly illustrating the results of the sign, sighed-rank or paired t-tests is a
boxplot of the differences, as in figure 6.1b. The number of data above and below zero and the
nearness of the median difference to zero are cleatly displayed, as is the degree of symmetry of
the Dj. Though a boxplot is an effective and concise way to illustrate the characteristics of the
differences, it will not show the characteristics of the original data. This can be better done

with a scatterplot.

6.5.2 Scatterplots With X=Y Line

Scatterplots illustrate the relationships between the paired data (figure 6.5). Each (x,y) pair is
plotted as a point. Similarity between the two groups of data is illustrated by the closeness of the
data to the x=y line. If x is generally greater than y, most of the data will fall below the line.
When y exceeds x, the data will lie largely above the x=y line. This relationship can be made
clearer for large data sets by superimposing a lowess smooth (see Chapter 10) of the paired data
onto the plot.

Data points (or their smooth) generally parallel to the x=y line on the scatterplot would indicate
an additive difference between the (x,y) data pairs. Therefore the line x =y + d could be plotted
on the figure to illustrate the magnitude of the difference between x and y, where d is the
appropriate estimate of the difference between x and y as described in the next section. In
figure 6.6 the line x = y + 31.5 is plotted, where 31.5 is the median difference. For an additive
relationship the data points would scatter around this line. Obviously the differences do not
appear to be additive.
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Figure 6.5 Scatterplot of the example 1 mayfly data.
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Figure 6.6 Mayfly data with ill-fitting additive relationship x = y+31.5.
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Figure 6.7 Mayfly data with multiplicative relationship x = y*1.76.

Alternatively, an increasing difference between the data and the x=y reference line indicates that

there is a multiplicative difference between x and vy, requiring a logarithmic transformation prior

to the signed-rank or t-test. For a multiplicative relation the line x = y*f~1(d) can be plotted as

an aid in visualizing the relation between x and y. For base 10 logs, f~1(d) = 10d while for

natural logs it is exp(d). The mayfly data of example 1 exhibit such a multiplicative relationship,

as shown in figure 6.7. There d = A , the Hodges-L.ehmann estimate in log units, resulting in the

line x = y*1.76.
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6.6 Estimating the Magnitude of Differences Between Two Groups

After testing for differences between matched pairs, a measure of the magnitude of that
difference is usually desirable. If outliers are not present, and the differences can be considered
normal, an efficient estimator is the mean difference D . This estimator is appropriate whenever
the paired t-test is valid. When outliers or non-normality are suspected, a more robust estimator
is necessary. The estimator associated with the signed-rank test is a Hodges-L.ehmann estimator
A (Hollander and Wolfe, 1973) . A is the median of all possible pairwise averages of the
differences. When the Dj are not symmetric and the sign test is used, the associated estimate of

difference is simply the median of the differences Dmed.

6.6.1 The Median Difference (Sign Test)

For the mayfly data of example 1, the median difference in counts is 31.5. As these data are
asymmetric, there is no statement that the two groups are related in an additive fashion. But
subtracting this median value from the x data (the sites above the outfalls) would produce data
having no evidence for rejection of H() as measured by the sign test. Therefore the median is
the most appropriate measure of how far from "equality" the two groups are in their original

units. Half of the differences are larger, and half smaller, than the median.

A confidence inteval on this difference is simply the confidence interval on the median

previously presented in Chapter 4.

6.6.2 The Hodges-Lehmann Estimator (Signed-Rank Test)
Hodges-Lehmann estimators are computed as the median of all possible appropriate

combinations of the data. They are associated with many nonparametric test procedures. For

the matched-pairs situation, A is the median of the n*(n+1)/2 possible pairwise averages:

A = median [Ajj] [6.1]
where Ajj = [Di+D;)/2] foralli=j

A is related to the signed-rank test in that subtracting A from all paired differences (or
equivalently, from the x's or y's, whichever is larger) would cause the signed-rank test to have
W close to 0, and find no evidence of difference between x and y. For the cases of symmetric
differences where the signed-rank test is appropriate, the Hodges-Lehmann estimator more
efficiently measures the additive difference between two data groups than does the sample

median of the differences Dmed. For the mayfly data, A of the logs = 0.245. The log of

upstream counts minus 0.245 estimates the log of the counts below the outfalls. Thus the
counts above the outfalls divided by 10 0-245 = 1,76 best estimates the counts below the outfalls
(the line X = 1.76 Y in figure 6.7).
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6.62.1 Confidence interval on A

A nonparametric interval estimate of the difference between paired observations is computed by
a process similar to that for the confidence interval for other Hodges-Lehmann estimators. The
tabled distribution of the test statistic is entered to find upper and lower critical values at one-
half the desired alpha level. These critical values are transformed into ranks. The pairwise
differences Ajj are ordered from smallest to largest, and those cortesponding to the computed

ranks are the ends of the confidence interval.

For small sample sizes, table B6 for the signed-rank test is entered to find the critical value x'
having a p-value nearest to /2. This critical value is then used to compute the ranks Ry and R}

corresponding to the pairwise averages Ajj at the upper and lower confidence limits for A.
These limits are the Rjth ranked Ajj going in from either end of the sorted list of n(n+1)/2

differences.
R} =¥ for x' = (0./2)th quantile of signed-rank test statistic [6.2]
Ry = x+1 for x = (1-0./2)th quantile of signed-rank test statistic [6.3]

Example 1, cont.
For the n=12 logarithms of the mayfly data, there are N=78 pairwise averages. For an

o = 0.05 confidence interval, x'=14 and x=64 from table B6 (ot =220.026 = 0.052). The
confidence interval is composed of the 14th and 65th ranked averages (the 14th average in from

either end.

For larger sample sizes where the large-sample approximation is used, a ctitical value zg /7 from

the table of standard normal quantiles determines the upper and lower ranks of the pairwise
averages Ajj corresponding to the ends of the confidence interval. Those ranks are

N =2 Vn (n+1)6(2n+l)

R = > [6.4]
N+ g/ Vn (n+1)6 (2n+1)
Ry = 5 +1 [6.5]

= N-Rj+1 where N = n(n+1)/2
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Example 1 cont.
For the mayfly data with N=78 and n=12, an approximate 0.=0.05 confidence interval is

between the 14th and 65th ranked averages, as computed below:

12 (13) (25
78 —1.96 ¢ 4_6M_2

R| = > =14.0

Ry=78—14 +1 = 65.

6.6.3 Mean Difference (t-Test)

For the situation where the differences are not only symmetric but normally distributed and the
t-test is used, the most efficient estimator of the difference between the two groups is the mean
difference D . However, D is only slightly more efficient than is A , so that when the data
depart from normality even slightly the Hodges-Lehmann estimator is just as efficient as D.
This mirrors the power characteristics of their associated tests, as the signed-rank test is as
efficient as the t-test for only slight departures from normality (Lehmann, 1975). Therefore

when using "real data" which is never "exactly normal" the mean difference has little advantage

AN AN
over A, while A is more appropriate in a wider number of situations -- for data which are

symmetric but not normal.

6.6.3.1 Confidence intetval on the mean difference
A confidence interval on the mean difference D is computed exactly like any confidence
interval for a mean:
— s
Cl =D + tOC/Z,(I‘l—l) % [66]

where s is the standard deviation of the differences D;.
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Exercises
6.1 Test the null hypothesis that the median of annual flows for the Conecuh R. at Brantley,
Ala. (data in Appendix C2) is 683 cfs for 1941 - 1960. The alternate hypothesis is that it
is less than 683 cfs, and alpha = 0.05.
6.2 Which of the following are not matched pairs?
a. analyses of same standard solutions sent to two different laboratories
b. daily sediment discharges above and below a reservoir
c.  nitrate analyses from randomly selected wells in each of two aquifers
d. all of the above are matched pairs.
6.3 The following values of specific conductance were measured on the two forks of the
Shenandoah River in Virginia (D. Lynch, personal communication).
a. State the appropriate null and alternate hypotheses to see if conductance values are
the same in the two forks.
b. Determine whether a parametric or nonparametric test should be used.
c. Compute an o0 = .05 test and report the results.
d. Ilustrate and check the results with a plot.
e. Estimate the amount by which the forks differ in conductance, regardless of the test
outcome.
Date South Fork  North Fork Date South Fork North Fork
5-23-83 194 255 2-22-84 194 295
8-16-83 348 353 4-24-84 212 199
10-05-83 383 470 0-04-84 320 410
11-15-83 225 353 7-19-84 340 346
1-10-84 266 353 8-28-84 310 405
6.4 Atrazine concentrations in shallow groundwaters were measured by Junk et al. (1980)
before (June) and after (September) the application season. The data are given in
Appendix C4. Determine if concentrations of atrazine are higher in groundwaters
following surface application than before.
6.5 Try performing the comparison of atrazine concentrations in 6.4 using a t-test, setting all

values below the detection limit to zero. Compare the results with those of 6.4. Discuss

why the results are similar or different.



Comparing Several
Independent Groups

Concentrations of volatile organic compounds are measured in shallow ground waters across a
several county area. The wells sampled can be classified as being contained in one of seven
land-use types: undeveloped, agricultural, wetlands, low-density residential, high-density
residential, commercial, and industrial/ transportation. Do the concentrations of volatiles differ

between these types of surface land-use, and if so, how?

Alkalinity, pH, iron concentrations, and biological diversity are measured at low flow for small
streams draining areas mined for coal. Each stream drains either unmined land, land strip-mined
and then abandoned, or land strip-mined and then reclaimed. The streams also drain one of two
rock units, a sandstone or a limestone formation. Do drainages from mined and unmined lands
differ in quality? What affect has reclamation had? Are there differences in chemical or
biological quality due to rock type separate and distinct from the effects due to mining history?

Three methods for field extraction and concentration of an organic chemical are to be compared
at numerous wells. Are there differences among concentrations produced by the extraction
processes? These must be discerned above the well-to-well differences in concentration which

contribute considerable noise to the data.

The methods of this chapter can be used to answer questions such as those above. These
methods are extensions of the ones introduced in Chapters 5 and 6, where now more than two
groups of data are to be compared. The classic technique in this situation is analysis of variance.
More robust nonparametric techniques are also presented for the frequent situations where data

do not meet the assumptions of analysis of variance.
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Suppose a set of continuous data, such as concentration or water levels, is collected. It is
suspected that one or more influences on the magnitude of these data comes from grouped

variables, variables whose values are simply "from group X". Examples include season of the

nn
b

year ("from summer","wintet", etc.), aquifer type, land-use type, and similar groups. Each

observation will be classified into one of these groups.

First consider the effect of only one grouped variable, calling it an explanatory variable
because it is believed to explain some of the variation in magnitude of the data at hand. This
variable is also called a factor. It consists of a set of k groups, with each data point belonging in
one of the k groups. For example, the data could be calcium concentrations from wells in one

of k aquifers, and the objective is to determine whether the calcium concentrations differ among
the k aquifers. Within each group (aquifer) there are nj observations (the sample size of cach

group is not necessatily the same). Observation yij is the ith of nj observations in group j, so
that iZl,...ni for the jth of k groups j=1,...k . The total number of observations N is thus

N =3 nj, which simplifies to N =ken
=1

when the sample size nj = n for all k groups (equal sample sizes).

The tests in this chapter determine if all k groups have the same central value (median or mean,
depending on the test), or whether at least one of the groups differs from the others. When data
within each of the groups are normally distributed and possess identical variances, an analysis of
variance (ANOVA) can be used. Analysis of variance is a parametric test, determining whether
each group's mean is identical. When there are only two groups, the ANOVA becomes identical
to a t-test. Thus ANOVA is like a t-test between three or more groups of data, and is restricted
by the same types of assumptions as was the t-test. When every group of data cannot be
assumed to be normally distributed or have identical variance, a nonparametric test should be
used instead. The Kruskal-Wallis test is much like a rank-sum test extended to more than two
groups. It compares the medians of groups differentiated by one explanatory variable (one

factor).

When the effect of more than one factor is to be evaluated simultaneously, such as both rock
type and mining history in one of the examples which began this chapter, the one-way tests can
no longer be used. For data which can be assumed normal, several factors can be tested
simultaneously using multi-factor analysis of variance. However, the requirements of normality
and equal variance now apply to data grouped by each unique combination of factors. This
becomes quite restrictive and is rarely met in practice. Therefore nonparametric alternatives are

also presented.

The following sections begin with tests for differences due to one factor. Subsequent sections

discuss tests for effects due to more than one factor. All of these have as their null hypothesis
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that each group median (or mean) is identical, with the alternative that at least one is different.
However, when the null hypothesis is rejected, these tests do not tell which group or groups are
different! Therefore sections also follow on multiple comparison tests -- tests performed after
the ANOVA or Kruskal-Wallis null hypothesis has been rejected, for determining which groups
differ from others. A final section on graphical display of results finishes the chapter.

7.1 Tests for Differences Due to One Factor

7.1.1 The Kruskal-Wallis Test

The Kruskal-Wallis test, like other nonparametric tests, may be computed by an exact method
used for small sample sizes, by a large-sample approximation (a chi-square approximation)
available on statistical packages, and by ranking the data and performing a parametric test on the
ranks. Tables for the exact method give p-values which are exactly correct. The other two
methods produce approximate p-values that are only valid when sample sizes are large, but do
not require special tables. Tables of exact p-values for all sample sizes would be huge, as there
are many possible combinations of numbers of groups and sample sizes per group. Fortunately,
large sample approximations for all but the smallest sample sizes are very close to their true
(exact) values. Thus exact computations are rarely required. All three versions have the same

objective, as stated by their null and alternate hypotheses.

7.1.1.1 Null and alternate hypotheses

In its most general form, the Kruskal-Wallis test has the following null and alternate hypotheses:
Hp:  All of the k groups of data have identical distributions, versus
Hi:  Atleast one group differs in its distribution.

No assumptions are required about the shape(s) of the distributions. They may be normal,
lognormal, or anything else. If the alternate hypothesis is true, they may have different
distributional shapes. In this form, the only interest in the data is to determine whether all
groups are identical, or whether some tend to produce observations different in value than the
others. This difference is not attributed solely to a difference in median, though that is one
possibility. Thus the Kruskal-Wallis test, like the rank-sum test, may be used to determine the

general equivalence of groups of data.

In practice, the test is usually performed for a more specific purpose -- to determine whether all
groups have the same median, or whether at least one median is different. This form requires
that all other characteristics of the data distributions, such as spread or skewness, are identical --
though not necessarily in the original units. Any data for which a monotonic transformation,
such as in the ladder of powers, produces similar spreads and skewness are also valid. This
parallels the rank-sum test (see Chapter 5). As a test for difference in medians, the Kruskal-
Wallis null and alternate hypotheses are:
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Hp:  The medians of the k groups are identical,
Hi: Atleast one median differs from the others. (a 2-sided test).

As with the rank-sum test, the Kruskal-Wallis test statistic and p-value computed for data that
are transformed using any monotonic transformation are identical to the test statiistic and p-
value using the original units. Thus there is little incentive to search for transformations (to

normality or otherwise) -- the test is applicable in many situations.

7.1.1.2 Computation of the exact test

The exact form of the Kruskal-Wallis test is required when comparing 3 groups with sample
sizes of 5 or less per group, or with 4 or more groups of size 4 or less per group (Lehmann,
1975). For larger sample sizes the large-sample approximation is sufficiently accurate. As there
are few instances where sample sizes are small enough to warrant using the exact test, exact
tables for the Kruskal-Wallis test are not included in this book. Refer to either Conover (1980)
or Lehmann (1975) for those tables.

Should the exact test be required, compute the exact test statistic K as shown in the large sample
approximation of the following section. K is computed identically for both the exact form or

large sample approximation. When ties occur, the large sample approximation must be used.

7.1.1.3 'The large-sample approximation

To compute the test, the data are ranked from smallest to largest, from 1 to N. At this point the
original values are no longer used; their ranks are used to compute the test statistic. If the null
hypothesis is true, the average rank for each group should be similar, and also be close to the
overall average rank for all N data. When the alternative hypothesis is true, the average rank for
some of the groups will differ from others, reflecting the difference in magnitude of its
observations. Some of the average group ranks will then be significantly higher than the overall
average rank for all N data, and some will be lower. The test statistic K uses the squares of the
differences between the average group ranks and the overall average rank, to determine if groups
differ in magnitude. K will equal O if all groups have identical average ranks, and will be positive
if group ranks are different. The distribution of K when the null hypothesis is true can be
approximated quite well by a chi-square distribution with k—1 degrees of freedom.

The degrees of freedom is a measure of the number of independent pieces of information used
to construct the test statistic. If all data are divided by the overall group mean to standardize the
data set, then when any k—1 average group ranks are known, the final (kth) average rank can be
computed from the others as
- N | k-l n
Rk L {1 % N RjJ
Therefore there are actually only k—1 independent pieces of information represented by the k

average group ranks. From these the kth average rank is fixed.
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Large Sample Approximation for the Kruskal-Wallis test

Situation Several groups of data are to be compared, to determine if their medians are
significantly different. For a total sample size of N, the overall average rank
will equal (N+1)/2. If the average rank within a group (average group rank)
differs considerably from this overall average, not all groups can be considered
similar.

Computation All N observations are jointly ranked from 1 to N, smallest to largest. These
ranks Rij are then used for computation of the test statistic. Within each

group, the average group rank i] is computed:

1
> Rij
i=1

nj

] =

Tied data When observations are tied, assign the average of their ranks to each.
Test Statistic  The average group rank Rj is compared to the overall average rank

R = (N+1)/2, squaring and weighting by sample size, to form the test

statistic K:
12 Lo N+1]?
I
NN +1) L 2

j=1
Decision Rule To reject Ho: all groups have identical distributions, versus
H1: atleast one distribution differs
Reject Hp if K 2 XZI—OL (k=1) the 1—0t quantile of a chi-square distribution

with (k—=1) degrees of freedom; otherwise do not reject Hy.

Example 1.

Fecal coliforms, in organisms per 100 ml, were measured in the Illinois River from 1971 to 1976
(Lin and Evans, 1980). A small subset of those data are presented here. Do all four seasons
exhibit similar values, or do one or more seasons differ? Boxplots for the four seasons are
shown in figure 7.1.
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Table 7.1  Selected fecal coliform data (from Lin and Evans, 1980).

[counts in organisms per 100 ml]

Summer Fall Winter Spring
100 65 28 22
220 120 58 53
300 210 120 110
430 280 230 140
640 500 310 320
1600 1100 500 1300
PPCC p-value 0.05 0.06 0.50 0.005
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Figure 7.1 Boxplots of Fecal Coliform Data from the Illinois River
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Should a parametric or nonparametric test be performed on these data? If even one of the four
groups exhibits non-normality, the assumptions of parametric analysis of variance are violated.
The consequences of this violation is an inability to detect differences which are truly present --
a lack of power. The PPCC test for normality rejects normality at ot =0.05 for two of the
seasons, summer and spring (table 7.1). Outliers and skewness for the fall samples also argue for
non-normality. Based solely on the skewness and outliers evident in the boxplot, a

nonparametric test should be used on these data.

Computation of the Kruskal-Wallis test is shown in table 7.2. This is compared to a table of the
chi-square distribution available in many statistics texts, such as Iman and Conover (1983). We
conclude that there is not enough evidence in these data to reject the assumption that fecal

coliform counts are distributed similarly in all four seasons.

Table 7.2  Kruskal-Wallis test for the fecal coliform data.

Summer Fall Winter Spring
Ranks Rij 6 5 2 1
12 8.5 4 3
15 1 8.5 7
18 14 13 10
21 19.5 16 17

24 22 19.5 23

R 16 13.3 10.5 10.2 R =125
K=2.69 XZ() 95 (3) = 7.815 p=0.44 so, do not reject equality of distributions.

7.1.1.4 The rank transform approximation

The rank transform approximation to the Kruskal-Wallis test is computed by performing a one-
factor analysis of variance on the ranks Rjj. This approximation compates the mean rank within
each group to the overall mean rank, using an F-distribution for the approximation of the
distribution of K. The F and chi-square approximations will result in very similar p-values. The

rank transform method should propetly be called an "analysis of variance on the ranks".

For the example 1 data, the rank transform approximation results in a p-value of 0.47, essentially
identical to that for the large sample approximation. Detailed computations are shown

following the discussion of ANOVA in the next section.
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7.1.2  Analysis of Variance (One Factor)

Analysis of variance is the parametric equivalent to the Kruskal-Wallis test. It compares the
mean values of each group with the overall mean for the entire data set. If the group means are
dissimilar, some of them will differ from the overall mean, as in figure 7.2. If the group means

are similar, they will also be similar to the overall mean, as in figure 7.3.

Treatment MS > Error MS
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Figure 7.2 Hypothetical data for three groups.

Treatment mean square > Error mean squarce.

Why should a test of differences between means be named an analysis of variance? In order to
determine if the differences between group means (the signal) can be seen above the variation
within groups (the noise), the total noise in the data as measured by the total sum of squares is

split into two parts:
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Total sum of squares = Treatment sum of squares + Error sum of squares
(overall variation) = (group means — overall mean) +  (variation within groups)
kO k kO
22 -2 = Y nj(5,-5)2 + 22 (5,-5,)2
Fl =l =1 Floi=l

If the total sum of squares is divided by N—1, where N is the total number of observations, it
equals the variance of the yjj's. Thus ANOVA partitions the variance of the data into two parts,
one measuring the signal and the other the noise. These parts are then compared to determine if

the means are significantly different.

7.1.2.1 Null and alternate hypotheses

The null and alternate hypotheses for the analysis of variance are:
Hp:  the k group means are identical W= Mo = = Wy .
H1:  atleast one mean is different.

Treatment MS = Error MS
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Figure 7.3 Hypothetical data for three groups.

Treatment mean square = Error mean square.
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7.1.2.2 Assumptions of the test

If ANOVA is performed on two groups, the I statistic which results will equal the square of the
two-sample t-test statistic F=t2, and will have the same p-value. It is not surprising, then, that
the same assumptions apply to both tests:

1. All samples are random samples from their respective populations.

2. All samples are independent of one another.

3. Departures from the group mean (yjj — 57]) are normally distributed for all j groups.

4. All groups have equal population variance 62 estimated for each group by sj2

2,75
sz _ =l

n- 1
Violation of either the normality or constant variance assumption results in a loss of ability to
see differences between means (a loss of power). The analysis of variance suffers from the same
five problems as did the t-test: 1) lack of power when applied to non-normal data, 2)
dependence on an additive model, 3) lack of applicability for censored data, 4) assumption that
the mean is a good measure of central tendency for skewed data, and 5) difficulty in assessing
whether the normality and equality of variance assumptions are valid for small sample sizes. See
Chapter 5 for a detailed discussion of these problems.

Difficulties arise when using prior tests of normality to "prove" non-normality before allowing
use of the nonparametric Kruskal-Wallis test. Small samples sizes may inhibit detecting non-
normality, as mentioned above. Second, transformations must be done on more than two
groups of data. It is usually quite difficult to find a single transformation which when applied to
all groups will result in each becoming normal with constant variance. Even the best
transformation based on sample data may not alleviate the power loss inherent when the
assumptions of ANOVA are violated. Finally, if all groups are actually from a normal
distribution, one or more may be "proven" non-normal simply by chance (there is an 01%
chance for each group). Thus the results of testing for normality can be quite inconclusive prior
to performing ANOVA. The value of nonparametric approaches here is that they are relatively

powerful for a wide range of situations.

7.1.2.3 Computation
Each obsetvation yjj can be written as a sum of the overall true mean [, plus the difference 0y
between [t and the true mean of the jth group Wj, plus the difference €jj between the individual
obsetvation yjj and the jth group mean Wj:

vij =M+ 04+ &,
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where: yij is the ith individual observation in group j, j=1,..k;
W is the overall mean (over all groups);
0 s the "group effect”, or (j — 1), and

gj are the residuals or "error" within groups.

If Ho is true, all j groups have the same mean equal to the overall mean [, and thus

aj = 0 for all j. If group means differ, 0j # 0 for some j. In order to detect a difference
between means, the variation within a group around its mean due to the €jj's must be sufficiently
small in comparison to the difference between group means so that the group means may be
seen as different (see figure 7.2). The variation within a group is estimated by the within-group
or error mean square (MSE), computed from the data. The variation between group means is

estimated by the treatment mean square (MST). Their computation is shown below.

Sum of Squares

The error or within-group sum of squares

kU
SSE = z 2 (yij _yj)z
o=l

estimates the total within-group noise using departures from the sample group mean
yj. Error in this context refers not to a mistake, but to the inherent variability within a group.

The treatment (between-group) sum of squares

k
SST =2 n(3,-)?
j=1

estimates the treatment effect using differences between group means and the overall mean of

the sample, weighted by sample size.

Degrees of freedom

Each of the sums of squares has an associated degrees of freedom, the number of independent
pieces of information used to calculate the statistic. For the treatment sum of squares this equals
k—1, as when k—1 of the group means are known, the kth group mean can be calculated. The
total sum of squares has N—1 degrees of freedom, the denominator of the formula for the
variance of yjj. The error sum of squares has degrees of freedom equal to the difference
between the above two, or N—k.

Mean Squares and the F-test

Dividing the sums of squares by their degrees of freedom produces the total variance, and the
mean squares for treatment (MST) and error (MSE). These mean squares are also measures of

the variance of the data.
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Mean Square Formula Estimates:
Variance of yj; = Total §S / N-1 Total variance of the data
MST = SST / k—1 Variance within groups +

variance between groups.
MSE

SSE / N-k Variance within groups.

If Hy is true, there is no variance between group means (no difference between means), and the
MST will on average equal the MSE (figure 7.3). As 0 = 0, all variation is simply around the
overall mean U, and the MST and MSE both estimate the total variance. However when H1 is
true, the MST is larger on average than the MSE (figure 7.2), as most of the noise is that
between groups. Therefore a test is constructed to compare these two estimates of variance,
MST and MSE. The F-ratio

F = MST / MSE
is computed and compared to quantiles of an F distribution. If MST is sufficiently larger than
MSE, F is large and H( is rejected. When H is true and there is no evidence for differences in
group means, F is expected to equal 1 (U = 1 when H is true). In other words, an F =1 has a
p-value near 0.50, varying with the degrees of freedom. If F were below 1, which could happen
due to random variation in the data, generally p > 0.50 and no evidence exists for differences

between group means.

The computations and results of an ANOVA are usually organized into an ANOVA table. For
a one-way ANOVA, the table looks like:

Source df SS MS F p-value
Treatment k=1) SST MST MST/MSE p
Error (N=k) SSE MSE

Total N-1 Total SS

Example 1, cont.
For the fecal coliform data from the Illinois River, the ANOVA table is given below. The F

statistic is quite small, indeed below 1. At 00=0.05 or any reasonable Oi-level, the mean counts

would therefore not be considered different between seasons.

Soutce df SS MS F p-value
Season 3 361397 120466 0.67 0.58
Error 20 3593088 179654

Total 23 3954485

However, this ANOVA has been conducted on non-normal data. Without knowing the results
of the Kruskal-Wallis test, concern should be expressed that the result of "no difference" may be

an artifact of the lack of power of the ANOVA, and not of a true equivalence of means. Some
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statisticians have recommended performing both tests. This may be unnecessary if the data
exhibit sufficient non-normality to suspect an inability of ANOVA to reject. Also assumed by
performing ANOVA is that group means are an appropriate data summary. For the obviously
skewed distributions found for all but the winter season, means will make little sense as
estimates of the values which might be expected to occur. Means would be useful when

estimating the mass of bacteria transported per season, but not in the hypothesis testing realm.

One factor analysis of variance
Situation Several groups of data are to be compared, to determine if their means are
significantly different. Each group is assumed to have a normal distribution

around its mean. All groups have the same variance.

Computation The treatment mean square and error mean square are computed as their sum
of squares divided by their degrees of freedom (df). When the treatment mean
square is larger than the error mean square as measured by an F-test, the group

means are significantly different.
k

2 1,5, -9

MST= = where k—1 = treatment degrees of freedom

k-1

n.
J

< 2
22 0,75
MSE = =

—_

where N—k = error degrees of freedom

N -k
Tied data No alterations necessary.

Test Statistic  The test statistic F:
F = MST / MSE

Decision Rule To reject H(: the mean of every group is identical, versus
H1: atleast one mean differs .
Reject Hp if F 2 Fl_a, k—1, N—k the 1-0t quantile of an F distribution with
k—1 and N—k degrees of freedom; otherwise do not reject Hy.

7.2 Tests for the Effects of More Than One Factor

It is quite common that more than one factor is suspected to be influencing the magnitudes of
observations. In these situations it is desirable to measure the influence of all factors

simultaneously. Sequential one-factor tests are an inadequate alternative to a single multi-factor




170 Statistical Methods in Water Resources

test. Even when only one factor is actually influencing the data and a one-way ANOVA for that
factor soundly rejects Hy, a second one-way test for a related factor may erroneously reject Hy
simply due to the association between the two factors. The test for the second factor should
remove the effect of the first before establishing that the second has any influence. By
evaluating all factors simultaneously, the influence of one can be measured while compensating
for the others. This is the objective of a multi-factor analysis of variance, and of the

nonparametric analogue.

7.2.1 Nonparametric Multi-Factor Tests

For two-factor and more complex ANOVA's where the data within one or more treatment
groups are not normally distributed and may not have equal variances, there are two possible
approaches for analysis. The first is a class of tests which include the Kruskal-Wallis and
Friedman tests as simpler cases. These tests, described by Groggel and Skillings (19806), do not
allow for interactions between factors. The tests reformat multiple factors into two factors, one
the factor being tested, and the other the collection of all other treatment groups for all
remaining factors. The data are then ranked within treatment groups for analysis, much as in a

Friedman test. The reader is referred to their paper for more detail.

The second procedure is a rank transformation test (Conover and Iman, 1981). All data are
ranked from 1 to N, and an ANOVA computed on the ranks. This procedure is far more
robust to departures from the assumptions of normality and constant variance than is an
ANOVA on the original data. The rank transformation produces values which are much closer
to meeting the two critical assumptions than are the original values themselves. The tests
determine whether the mean rank differs between treatment groups, rather than the mean. The
mean rank is interpreted as an estimate of the median. Multiple comparison procedures on the

ranks can then differentiate which groups ditfer from others.

Examples of the computation and performance of these rank transformation tests will be

delayed until after discussion of parametric factorial ANOVA.

7.2.2 Multi-Factor Analysis of Variance -- Factorial ANOVA

The effects of two or more factors may be simultaneously evaluated using a factorial ANOVA
design. A factorial ANOVA occurs when none of the factors is a subset of the others. If
subsetted factors do occur, the design includes "nested" factors and the equations for computing
the I test statistics will differ from those here (nested ANOVA is briefly introduced in a later
section). A two-factor ANOVA will be fully described -- more than two factors can be
incorporated, but are beyond the scope of this book. See Neter, Wasserman and Kutner (1985)

for more detail on higher-way and nested analysis of variance.
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For a two-factor ANOVA, the influences of two explanatory variables are simultaneously tested.
The first page of this chapter presented a two-factor ANOVA, the determination of chemical
concentrations among basins at low flow. The objective was to determine whether
concentrations differed as a function of mining history (whether or not each basin was mined,

and if so whether it was reclaimed) and of rock type.

7.2.2.1 Null and alternate hypotheses
Call the two factors A and B. There are i=1,...a = 2 categories of factor A, and j=1,..b = 2
categories of factor B. Treatment groups are defined as all the possible combinations of factors
A and B, so there are a*b treatment groups. Within each treatment group there are njj
observations. The test determines whether mean concentrations are identical among all the
a*b treatment groups, or whether at least one differs.

Ho : all asb treatment group means Wjj are equal W1q1= M1 = = Uyp

H1 : atleast one Hij differs from the rest.

The magnitude of any observation yijk can be affected by several possible influences:

Vik T Mt og [3] + Oc[?)ij + gjjk , where
o = influence of the ith category of A
[3] = influence of the jth category of B
OcBij = interaction effect between A and B beyond those of 0 and B]

separately for the ijth treatment group, and
&jk = residual error, the difference between the kth observation (kZl,...nij)

and the treatment group mean jj.

The null hypothesis states that treatment group means [jj all equal the overall mean .
Therefore 0 B] and Oc[.))ij all equal O -- there are no effects due to any of the factors or to their
interaction. If any one of 0y, [3]’ or OcBij are nonzero, the null hypothesis is rejected, and at least

one treatment group evidences a difference in its mean.

7.2.2.2 Interaction between factors

If OcBij = 0 in the equation above, there is no interaction present. Without interaction, the effect
of factor B is identical for all groups of factor A, and the effect of factor A is identical for all
groups of factor B. Suppose there are 3 groups of factor A (al, a2, and a3) and 2 groups of
factor B (b1 and b2), resulting in six treatment groups overall. Lack of interaction can be
visualized by plotting the means for all treatment groups as in figure 7.4. The parallelism of the
lines shows that no interaction is present. The effect of A going from al to a2 to a3 is identical
regardless of which B group is involved. The increase going from b1 to b2 for factor B is
identical for every group of factor A.

When interaction is present (OcBij # 0) the treatment group means are not determined solely by

the additive effects of factors A and B alone. Some of the groups will have mean values larger
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or smaller than those expected just from the results of the individual factors. The effect of
factor A can no longer be discussed without reference to which group of factor B is of interest,
and the effect of factor B can likewise not be stated apart from a knowledge of the group of
factor A. In a plot of the treatment group means, the lines are no longer parallel (figure 7.5).
The pattern of differences going from al to a2 to a3 depends on which group of factor B is of
interest, and likewise for the differences between b1 and b2 -- the pattern differs for the three A

Ob\zo/c
Factor B
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group al group a2 group a3

groups.

Concentration

Factor A

Figure 7.4 Six treatment group means with no interaction present
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Figure 7.5 Six treatment group means with interaction present
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Interaction can result from a synergistic or antagonistic effect. As an example, fish may not die
instream due only to higher water temperatures, or to slightly higher copper concentrations, but
combine the two and the result could be deadly. This type of interrelation between factors
results in a significant interaction effect. For k factors there are (k—1) possible interaction terms
between the factors. Unless it is known ahead of time that interactions are not possible,

interaction terms should always be included and tested for in multi-factor ANOVA models.

7.2.2.3 Assumptions for factorial ANOVA

Assumptions are the same as for a one-way ANOVA. Departures from each treatment group
mean Wjj (every combination of factors A and B) are assumed normally distributed with identical
variance. This is a consequence of the &ij, which are normally distributed and of variance (52,
being randomly distributed among the treatment groups. The normality and constant variance

assumptions can be checked by inspecting boxplots of the data for each treatment group.

7.2.2.4 Computation

The influences of factors A, B, and their interaction are evaluated separately by again
partitioning the total sums of squares into component parts due to each factor. After dividing
by their respective degrees of freedom, the mean squares for factors A, B, and interaction are
produced. As with a one-way ANOVA, these are compared to the error mean square (MSE)

using F-tests to determine their significance.

Sum of Squares
The equations for the sums of squares for factor A (SSA), factor B (S§SB), interaction (SSI), and

error, assuming constant sample size n per treatment group, are:

due to
b n a b n
& ( Y ( )’
ooy &Sy £55, -
n abn
a n a b n
VI IR I IS
SSB = 2 — z M]_M
an abn
SSI = 'Total SS — SSA — SSB — SSE Mij—(lli+llj)+ll
e & 3 o & X W
SSE= 2 2 2 7 - X X Vijk — Mij

n

a b

&, (a n y)?
Total SS= D, >, 2 (y) — 2 za‘bnz Vijk — M
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Mean Squares and the F-test

Dividing the sums of squares by their degrees of freedom produces the mean squares for factors
A, B, interaction, and error as in the ANOVA table below. If H is true and oy, [3], and OcBij all
equal 0, all variation is simply around the overall mean i. The MSA, MSB, and MSI will then all
be measures of the error variance, as is the MSE, and all three F-tests will have ratios not far
from 1. However when H1 is true, at least one of the mean squares in the numerators should be
larger than the MSE, and the resulting F-ratio will be larger than the appropriate quantile of the
F distribution. When F is large, H() can be rejected, and that influence be considered to
significantly affect the magnitudes of the data at a level of risk equal to O

The two-factor ANOVA table is as follows when there is an equal number of observations for

cach treatment (all njj = n).

Source df SS MS F p-value
Factor A (a—1) SSA SSA/(a-1) MSA/MSE

Factor B (b-1) SSB SSB/(b-1) MSB/MSE

Interaction (a—1) (b-1) SSI SS1/(a-1)(b-1) MSI/MSE

Error ab(n—1) SSE SSE/[ab(n-1)]

Total abn—1 Total SS

Multi-factor analysis of variance
Situation Two or more influences are to be simultaneously tested, to determine if either
cause significant differences between treatment group means. Each group is
assumed to have a normal distribution around its mean. All groups have the

same variance.

Computation Compute the sums of squares and mean squares as above.

Tied data No alterations necessary.
Test Statistic  To test factor A: To test factor B: To test for interaction:
FA = MSA / MSE FB = MSB / MSE F1 = MSI / MSE
with degrees of freedom for the numerator of:
dfn = (a—1) dfn = (b-1) dfn = (a—1)(b-1)
Decision Rule To reject H(: the mean of every group is identical (no treatment effects

for cither factor or interaction), versus
H1: at least one mean differs.
Reject Hpif F 2 Fl_o, dfn, ab(n—1) the 1—-ot quantile of an F distribution
with dfn and ab(n—1) degrees of freedom; otherwise do not reject Hy.
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Example 2

Iron concentrations were measured at low flow in numerous small streams in the coal-producing
areas of eastern Ohio (Helsel, 1983). Each stream drains either an unmined area, a reclaimed
coal mine, or an abandoned coal mine. Each site is also underlain by either a sandstone or
limestone formation. Are iron concentrations influenced by upstream mining history, by the

underlying rock type, or by both?

There are several scenarios which would cause H() to be rejected. Factor A (say mining history)
could be significant (0,iF 0), but factor B insignificant. Or factor B (rock type) could be
significant (Blaﬁ 0), but not A. Both factors could be significant (04, [3] # 0). Both factors could
be significant, plus an additional interaction effect because one or more treatment groups (say
unreclaimed sandstone basins) exhibited much different iron concentrations than those expected
from either influence alone (04, [3], OLBij # 0). Finally, both factor A and B could be not
significant (0, B] = 0) but concentrations be elevated for one specific treatment group (OcBij #
0). This would be interpreted as no overall mining or rock type effect, but one combination of

mining history and rock type would have differing mean concentrations.

Boxplots for a subset of the iron concentration data from Helsel (1983) are presented in figure
7.6. Note the skewness, as well as the differences in variance as depicted by differing box
heights. A random subset was taken in order to produce equal sample sizes per treatment
group, yet preserving the essential data characteristics. The subset data are listed in Appendix
C5. In the section 7.2.2.5, analysis of unequal sample sizes per treatment group will be

presented and the entire iron data set analyzed.

There are six treatment groups, combining the three possible mining histories (unmined,
abandoned mine, and reclaimed mine) and the two possible rock types (sandstone and
limestone). An analysis of variance conducted on this subset which has n=13 observations per
treatment group produced the following ANOVA table. Tested was the effect of mining history
alone, rock type alone, and their interaction (Mine*Rock). A*B is a common abbreviation for
the interaction between A and B.

ANOVA table for the subset of iron data

Source df SS MS F p-value
Rock 1 15411 15411 2.38 0.127
Mine 2 32282 16141 2.49 0.090
Rock*Mine 2 25869 12934 2.00 0.143
Error 72 466238 6476

Total 77 539801

None of the three possible influences is significant at the o0 = 0.05 level, as their p-values are all

larger than 0.05. However, the gross violation of the test's assumptions of normality and equal
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variance shown in the boxplots must be considered. Perhaps the failure to reject Hy is due not

to a lack of an influence evidenced in the data, but of the parametric test's lack of power to

detect these influences because of the violation of test assumptions. To determine whether this

is 5o, the equivalent rank transformation test is performed.
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Figure 7.6 A subset of the iron concentrations at low flow from Helsel (1983)

To compute the rank transformation test, the data are ranked from smallest to largest, 1 to
n=78. An analysis of variance is then performed on the ranks of the data. The ANOVA table is

below, while a boxplot of data ranks is shown in figure 7.7.

ANOVA table for the ranks of the subset of iron data

Source df SS MS F p-value
Rock 1 4121.7 4121.7 13.38 0.000
Mine 2 10933.9 5467.0 17.74 0.000
Rock*Mine 2 2286.2 1143.1 3.71 0.029
Error 72 22187.2 308.2

Total 77 39529.0
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Results for the rank transformation tests are startlingly different than those for the parametric
ANOVA. All three influences, mining history, rock type, and their interaction, are significant at
o, = 0.05. Gross violations of the assumptions of ANOVA by these data have clearly inhibited
the parametric test from detecting the influences of these factors. The rejection of Hy for the
rank test indicates that the median iron concentrations differ between treatment groups. Mean

concentrations will be distorted by the skewness and outliers present in most of the treatment

groups.

Analysis of variance on data ranks is an "asymptotically distribution-free" technique. That is, for
sufficiently large sample sizes it tests hypotheses which do not require the assumption of data
normality. For the cases where equivalent, truly nonparametric techniques exist such as the
Kruskal-Wallis and Friedman tests, the rank transformation procedures have been shown to be
large-sample approximations to the test statistics for those techniques. Where no equivalent
nonparametric methods have yet been developed such as for the two-way design, rank
transformation results in tests which are more robust to non-normality, and resistant to outliers

and non-constant variance, than is ANOVA without the transformation.

80
1
% 70_||||||||uuu-uu|.||||||||||||u||||||||||| INERLLLLELEY I uu||||||||||||||||.||||l|uu|uuuu|
—
é 60—.............................. [ e
-
=
8 BO = e dn g
= " -
< TP I s N N i B 0 N O
Z T
8 30—........................... ........... e o
L
g 20 = R _—
= "
<L
D
oS ’\. é A \.0 é 5’\.0(\é dg\ooé \Oﬂé dg\ooé
\\“\ 5@(\ A \\6\ g,a(\ A \\'G\ N &
€0 30t 4@ (0 e
W 0T e e (@O oo

Figure 7.7 Boxplots of the ranks of the iron data shown in Figure 7.6

A third option for analysis of the two-way design is ANOVA on data transformed by a power

transformation. The purpose of the power transformation is to produce a more nearly-normal
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and constant variance data set. As water resources data are usually positively skewed, the log
transformation is often employed. Using logarithms for ANOVA implies that the influences of
each factor are multiplicative in the original units, as the influences of the logarithms are
additive. The primary difficulty in using a power transformation is in producing a normally
distributed error structure for every treatment group. Groups which are skewed may be greatly
aided by a transformation, but be side-by-side with a group which was symmetric in the original
units, and is now asymmetric after transformation! Boxplots for each treatment group should be
inspected prior to performing the ANOVA to determine if each group is at least symmetric.
When only some of the treatment groups exhibit symmetry, much less normality, concerns over
the power of the procedure remain. F tests which appear to be not significant are always

suspect.

In figure 7.8, boxplots of the base 10 logarithms of the low-flow iron concentrations are
presented. Most of the treatment groups still remain distinctly right-skewed even after the
transformation, while the unmined limestone group appears less symmetric following
transformation! There is nothing magic in the log transformation -- any other transformation
going down the ladder of powers might also remedy positive skewness. It may also alter a
symmetric group into one that is left-skewed. The search for a transformation which results in

all groups being symmetric is often fruitless. In
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Figure 7.8 Boxplots of the base 10 logarithms of the iron data shown in Figure 7.6
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addition, the "best" power transformation will likely change going from one data set to another,
one location to another, and one time period to another. In comparison, the rank
transformation has simplicity, comparability among locations and time periods, and general
validity as being asymptotically distribution-free. When the assumptions of normality and
constant variance are questionable, the rank transformation is the most generally appropriate

alternative.

7.2.2.5 Unequal sample sizes
Equations presented in the previous section are appropriate only when the number of data per
treatment group is identical for each group. This is also called a "balanced" design.
Computations for unequal sample sizes ("unbalanced" designs) are more complex. Smaller
statistics software packages often encode tests valid only for balanced designs, though that is not
always obvious from their output. Yet water resources data rarely involve situations when all
sample sizes are equal. Sample bottles are broken, floods disrupt the schedule, etc. When data
are unbalanced, the sums of squares for the above equations no longer test

HO: 1 = M = . = Mk
but test instead an hypothesis involving weighted group means, where the weights are a function
of treatment group sample sizes. This is of little use to the practitioner. Some software will
output the (useless and incorrect) results valid only for equal sample sizes even when unbalanced
data are provided as input, with no warnings of their invalidity. Be sure that when unequal

sample sizes occur, tests which can incorporate them are performed.

To perform ANOVA on unbalanced data, a regression approach is necessary. This is done on
larger statistical packages such as Minitab or SAS. SAS's "type I" sums of squares (called
"sequential sums of squares" by Minitab) are valid only for balanced cases, but SAS's "type 111"
sums of squares (Minitab's "adjusted sums of squares") are valid for unbalanced cases as well.
Unbalanced ANOVAs are computed in the same fashion as nested F-tests for comparing
regression models in analysis of covariance, discussed in Chapter 11. Because the equations for
the sums of squares are "adjusted" for unequal sample sizes, they do not sum to the total sum of
squares as for balanced ANOVA. See Neter, Wasserman and Kutner (1985) for more detail on
the use of regression models for performing unbalanced ANOVA.

Example 2, continued
The complete 241 observations (Appendix C6) from Helsel (1983) are analyzed with an

unbalanced ANOVA. Boxplots for the six treatment groups are shown in figure 7.9. They are
quite similar to those in figure 7.6, showing that the subsets adequately represented all the data.
An ANOVA table for the complete iron data set is as follows. Note that the sums of squares do
not add together to equal the total sum of squares for this unbalanced ANOVA. Results for
these data would be incorrect if performed by software capable only of balanced ANOVA.
Conclusions reached (do not reject for all tests) agree with those previously given for ANOVA

on the data subset.
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ANOVA table for the complete (unbalanced) iron data

Source df SS MS F p-value
Rock 1 71409 71409 0.51 0.476
Mine 2 262321 131160 0.93 0.394
Rock*Mine 2 178520 89260 0.64 0.530
Error 235 32978056 140332
Total 240 34062640
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Figure 7.9 Iron concentrations at low flow from Helsel (1983)

7.2.2.6 Fixed and random factors

An additional requirement for the I tests previously given is that both factors are fixed. With a
tixed factor, the inferences to be made from the results extend only to the treatment groups
under study. For example, the influences of unmined, abandoned, and reclaimed mining
histories were previously compared. Differences in resulting chemical concentrations between
these three specific mining histories are of interest, and hence this is a fixed factor. A random
factor would result from a random selection of several groups out of a larger possible set to
represent the overall factor. Inferences from the test results would be extended beyond the
specific groups being tested to the generic factor itself. Thus there is little or no interest in
attributing test results to a specific individual group, but only in ascertaining a generic effect due
to that factor.
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As an example, suppose soil concentrations of a trace metal are to be compared between three
particle size fractions all across the state, to determine which of the three fractions is most
appropriate as a reconnaissance medium. Particle size is a fixed effect -- there is interest in those
specific sizes. However, there is only enough funding to sample sparsely if done all across the
state, so instead a random factor is incorporated to determine whether spatial differences occur.
Several counties are selected at random, and intensive sampling occurs within those counties.
No sampling is done outside of those counties. The investigator will determine not only which
size fraction is best, but whether this is consistent among the counties (the random effect),
which by inference is extended to the entire state. There is no specific interest in the counties

selected, but only as they represent spatial variability.

If every factor were random, F tests would use the mean squares for interaction as denominators
rather than the mean square for error. If a mix of random and fixed factors occurs (called a
"mixed effects" design) as in the example above, there would be a mixture of mean squares used
as denominators. In general the fixed factors in the design use the interaction mean squares as
denominators, and the random factors the error mean square, the reverse of what one might
intuitively expect! However, the structure of mixed effects F tests can get much more
complicated, especially for more than two factors, and texts such as Neter, Wasserman and
Kutner (1985) or Sokal and Rohlf (1981) should be consulted for the correct setup of F tests
when random factors are present. Note that computer software uses the MSE in the
denominator unless otherwise specified, and thus assumes that all factors are fixed. Therefore I
tests automatically produced will not be correct when random factors are present, and the

correct F ratio must be specifically requested and computed.

7.3 Blocking -- The Extension of Matched-Pair Tests

In Chapter 0, tests for differences between matched-pairs of observations were discussed. Each
pair of observations had one value in each of two groups, such as "before" versus "after". The
advantage of this type of design is that it "blocks out" the differences from one matched-pair to
another that is contributing unwanted noise. Such noise may mask the differences between the

two groups (the treatment effect being tested) unless matched-pairs are used.

Similar matching schemes can be extended to test more than two treatment groups. Background
noise is eliminated by applying the treatment to blocks (rather than pairs) of similar or identical
individuals. Only one observation is usually available for each combination of treatment and
block. This is called a "randomized complete block design", and is a common design in the

statistical literature.

The third example at the beginning of this chapter, detecting differences between three

extraction methods used at numerous wells, is an example of this design. The treatment effect is
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the extraction method, of which there are three types (three groups). The blocking effect is the
well location; the well-to-well differences are to be "blocked out". One sample is analyzed for

each extraction method at each well.

Four methods for analysis of a randomized complete block design will be presented. Each of
them attempts to measute the same influences. To do this, each observation yjj is broken down
into the effects of four influences:
vij =Wt og+ By + g,

where vij is the individual observation in block i and group j;

U is the overall mean or median (over all groups),

0j s the "jth group effect”, j=1,k

Bi is the "ith block effect", i=1,n

gj s the residual or "errot" between the individual observation and the

combined group and block effects.

Median polish provides resistant estimates of the overall median, of group effects and block
effects. Itis an exploratory technique, not an hypothesis test procedure. Related graphical tools
determine whether the two effects are additive or not, and whether the €jj are normal, as
assumed by an ANOVA. If not, a transformation should be employed to achieve additivity and
normality before an ANOVA is performed. The Friedman and median aligned ranks tests are
nonparametric alternatives for testing whether the treatment effect is significant in the presence
of blocking.

7.3.1 Median Polish

Median polish (Hoaglin et al., 1983) is an iterative process which provides a resistant estimate m
of the overall median W, as well as estimates aj of the group effects 0 and bj of the block effects
Bi. Its usefulness lies in its resistance to effects of outliers. The polishing is begun by
subtracting the medians of each row from the data table, leaving the residuals. The median of
these row medians is then computed as the first estimate of the overall median, and subtracted
from the row medians. The row medians are now the first estimates of the row effects. Then
the median of each column is subtracted from the residual data table and set aside. The median
of the column medians is subtracted from the column medians, and added to the overall median.
The column medians now become the first estimates of the column effects. The entire process
is repeated a second time, producing an estimated overall median m, row and column departures

from the overall median (estimates aj and bj), and a data table of residuals eij estimating the Ejj.

Example 3

Mercury concentrations were measured in periphyton at six stations along the South River,
Virginia, above and below a large mercury contamination site (Walpole and Myers, 1985).
Measurements were made on six different dates. Of interest is whether the six stations differ in

mercury concentration. Is this a one-way ANOVA setup? No, because there may be
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differences among the six dates -- the periphyton may not take up mercury as quickly during
some seasons as others, etc. Differences caused by sampling on six different dates are unwanted
noise which should be blocked out, hence date is a blocking effect. The data are presented in
table 7.3, and boxplots by station in figure 7.10. There appears to be a strong increase in
mercury concentration going downstream from station 1 to station 6, reflecting an input of

mercury along the way.

Table 7.3 Mercury Concentrations in Periphyton (Walpole and Myers, 1985)

Station: 1 2 3 4 5 6
Date
1 0.45 3.24 1.33 2.04 3.93 5.93
2 0.10 0.10 0.99 4.31 9.92 6.49
3 0.25 0.25 1.65 3.13 7.39 4.43
4 0.09 0.06 0.92 3.66 7.88 6.24
5 0.15 0.16 2.17 3.50 8.82 5.39
6 0.17 0.39 4.30 291 5.50 4.29
10
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Figure 7.10 Periphyton Mercury Upstream (1) to Downstream (6) of Input to River

The first step in median polish is to compute the median of each row (date), and subtract it from

that row's data. The residuals remain in the table.
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Table 7.4 Table 7.3 data aligned by subtraction of row medians

Station:

-,
[ao}
=
¢}

(S NN ) B I \ SR

1

-2.190
-2.550
-2.140
-2.200
-2.685
-3.430

2

0.600
-2.550
-2.140
-2.230
-2.675
-3.210

3

-1.310
-1.660
-0.740
-1.370
-0.665
0.700

4

-0.600
1.660
0.740
1.370
0.665

-0.690

5

1.290
7.270
5.000
5.590
5.985
1.900

6

3.290
3.840
2.040
3.950
2.555
0.690

row med
(bi)
2.64
2.65
2.39
2.29
2.84
3.60

Next the median of the row medians (2.64) is computed as the first estimate of the overall

median m. This is subtracted from each of the row medians:

Station: 1 2 3 4 5 6 row med

Date (bi)
1 -2.19 0.60 -1.31 -0.60 1.29 3.29 0.00

2 -2.55 -2.55 -1.66 1.66 7.27 3.84 0.01
3 -2.14 -2.14 -0.74 0.74 5.00 2.04 -0.25
4 -2.20 -2.23 -1.37 1.37 5.59 3.95 -0.35
5 -2.69 -2.68 -0.67 0.67 5.99 2.56 0.20
6 -3.43 -3.21 0.70 -0.69 1.90 0.69 0.96
m=2.64

The median of each column (station) is then computed and subtracted from that column's data.

The residuals from the subtractions remain in the table.

Station: 1 2 3 4 5 6 row med

Date (bi)
1 0.19 2.99 -0.29 -1.31 -4.01 0.37 0.00

2 -0.17 -0.16 -0.64 0.95 1.97 0.92 0.01

3 0.24 0.25 0.28 0.03 -0.30 -0.88 -0.25

4 0.18 0.16 -0.35 0.66 0.29 1.03 -0.35

5 -0.31 -0.29 0.35 -0.04 0.69 -0.36 0.20

6 -1.05 -0.82 1.72 -1.40 -3.40 -2.23 0.96
a; colmed:| -2.38 -2.39 -1.02 0.71 5.30 2.92 m=2.64

Then the median of the column medians (-0.106) is subtracted from each of the column medians,

and added to the overall median:
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Station: 1 2 3 4 5 6 row med

Date (bi)
1 0.19 2.99 -0.29 -1.31 -4.01 0.37 0.00

2 -0.17 -0.16 -0.64 0.95 1.97 0.92 0.01

3 0.24 0.25 0.28 0.03 -0.30 -0.88 -0.25

4 0.18 0.16 -0.35 0.66 0.29 1.03 -0.35

5 -0.31 -0.29 0.35 -0.04 0.69 -0.36 0.20

6 -1.05 -0.82 1.72 -1.40 -3.40 -2.23 0.96

aj colmed:| -2.22 -2.23 -0.86 0.87 5.46 3.08 |m=2.48

This table now exhibits the first "polish" of the data. Usually two complete polishes are

performed in order to produce more stable estimates of the overall median and row and column

effects. For the second polish, the above process is repeated on the table of residuals from the

first polish. After a second complete polish, little change in the estimates is expected from
further polishing. The table then looks like:

Station: 1 2 3 4 5 6 row med

Date (bi)
1 0.22 3.02 -0.19 -1.26 -3.77 0.31 0.03
2 -0.57 -0.56 -0.97 0.57 1.78 0.43 0.47
3 0.08 0.09 0.19 -0.11 -0.24 -1.12 -0.03
4 -0.08 -0.09 -0.54 0.42 0.24 0.69 -0.03
5 -0.17 -0.14 0.56 0.11 1.04 -0.31 0.12
6 0.15 0.38 2.99 -0.18 -1.98 -1.11 -0.18
aj colmed:| -2.18 -2.19 -0.89 0.89 5.29 320 |m=2.38

The above table shows that

1) The station effects are large in comparison to the date effects (the aj are much larger in

absolute magnitude than the by ).

2) There is a clear progression from smaller to larger values going downstream (aj generally

increases from stations 1 to 6), with the maximum at station 5.

3) A large residual occurs for station 5 at date 1 (smaller concentration than expected).

7.3.1.1 Plots related to median polish for checking assumptions

Median polish can be used to check the assumptions behind an analysis of variance. The first

assumption is that the residuals €jj are normally distributed. Boxplots of the residuals ¢jj in the

table provide a look at the distribution of errors after the treatment and block effects have been
removed. Figure 7.11 shows that for the periphyton mercury data the residuals are probably not

normal due to the large proportion of outliers, but at least are relatively symmetric:
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Figure 7.11 Residuals from the median smooth of periphyton mercury data

In addition, the additivity of the table can be checked. An ANOVA assumes that the treatment
and block effects are additive. In other words, if being in group 1 adds -2.18 units of
concentration to the overall mean or median, and if being at time 1 adds 0.03 units, these add
together for treatment group 1 at time 1. If this is not the case, a transformation of the data
prior to ANOVA must be performed to produce additivity. To check additivity, the
"comparison value" cjj (Hoaglin et al., 1983) is computed for each combination ij of block and
treatment group, where

cij = aj° bj / m.
A residuals plot of the tabled residuals ¢jj versus cjj will appear to have a random scatter around
0 if the data are additive. If not, the pattern of residuals will lead to an appropriate
transformation to additivity -- for a nonzero slope s, the data should be raised to the (1-s)
power in the ladder of powers. In figure 7.12, a residuals plot for the mercury median polish
indicate no clear nonzero slope (most of the data are clustered in a central cloud), and therefore

no transformation is necessary.
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Figure 7.12 Median polish residuals plot showing random scatter around eij:()
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7.3.2 The Friedman Test

The Friedman test is the most common nonparametric test used for the randomized complete
block design. It computes the ranks of the data only within each block, not making cross-
comparisons between blocks. Treatment effects are determined from the within-block ranks
each treatment has received. The Friedman test is an extension of the sign test, and reduces to
the sign test when comparing only two treatment groups. Its advantages and disadvantages in
comparison to the analysis of variance are the same as that of the sign test to the t-test. When
the errors €jj can be considered normal, the ANOVA should be preferred. For the many
situations where the errors are not normal, the Friedman test will generally have equal or greater
power to detect differences between treatment groups, and should be performed. The
Friedman test is especially useful when the data can be ranked but differences between

observations cannot be computed, such as when comparing a <1 to a 5.

7.3.2.1 Null and alternate hypotheses
The Friedman test is used to determine whether
H(: the median values for k groups of data are identical, or
H1: atleast one median is significantly different.
As with the Kruskal-Wallis test, the test does not provide information on which medians are
significantly different from others. That information must come from a multiple comparison

test.

7.3.2.2 Computation of the exact test

Rank the data within each block from 1 to k, from smallest to largest. If the null hypothesis is
true, the ranks within each block will vary randomly with no consistent pattern. Summing across
blocks, the average rank for each treatment group will be similar for all groups, and also be close
to the overall average rank. When the alternative hypothesis is true, the ranks in most of the
blocks for one or more of the groups will be consistently higher or lower than others. The
average group rank for those groups will then differ from the overall average rank. A test
statistic Xf is constructed which uses the square of the differences between the average group

ranks and the overall rank, to determine if groups differ in magnitude.

The exact test statistic for the Friedman test is a function of both the number of blocks and
treatments. Iman and Davenport (1980) state that the exact test should be used for all cases
where the number of treatment groups plus the number of blocks (k + n) is

< 9. For larger sample sizes a large sample approximation is sufficiently accurate for use. When
the number of blocks n is small, the F approximation should be preferred over the chi-square

approximation (see the next section).

Should the exact test be required, compute the exact test statistic Xf as shown for the large
sample approximation of the following section. Xf is computed identically for both the exact

form and large sample approximation. When ties occur, either a corrected large sample
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approximation must be used, or the rank transform (I approximation) calculated. The rank

transform may be easier to compute.

7.3.2.3 Large sample approximation

For years the Friedman test statistic was approximated using a chi-square distribution with k—1
degrees of freedom. This is the approximation used by statistics packages, and is presented here
because of its common use. However, it does not take into account the number of blocks in the
data set, and can be in serious error for small n and small o (00 < 0.1) (Iman and Davenport,
1980). An F approximation which is more accurate for small n is also available. It can be
computed from the chi-square approximation, or directly from the data as a rank transform

method (an analysis of variance on the within-block ranks Rjj).

The box on the next page outlines the computation process for the large sample approximation

to the Friedman test statistic.

Example 3, continued.

The Friedman test is used to determine if the median concentration of periphyton mercury
differs for the 6 stations along the South River of Virginia. The boxplots of this data were
shown in figure 7.10, and the data given in table 7.3. The within-block ranks are given below.
For 6 blocks (date) and 6 stations, sample sizes are large enough to employ an approximation,

so the preferred I approximation is computed.

Table 7.5 Within-Block Ranks of the Table 7.3 data

Station: 1 2 3 4 5 6
Date

1 1 4 2 3 5 6
2 1.5 1.5 3 4 6 5
3 1.5 1.5 3 4 6 5
4 2 1 3 4 6 5
5 1 2 3 4 6 5
6 1 2 5 3 6 4
Izi 1.33 2.0 3.17 3.67 .8 5.0

overall median = (k+1)/2 = 3.5
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Situation

Computation

Test Statistic

Tied data

The Friedman test
Measurements of k treatment groups are performed on the same or related sets
of subjects, called blocks. There are n blocks. One observation is made on

each group-block combination (N = ken).

Within each block, observations are ranked from 1 to k, smallest to largest.
These within-block ranks Rjj are then used to compute the average group rank

ﬁj for each of the j=1,k treatment groups:

n
2. Rij
= =1

]~ n
The average group rank PT] is compared to the overall average rank
R = (k+1)/2 in the test statistic Xf:

(__l2n k [_. k+1} 2

XM=10rn 2827 -

=1

Xf is compared either to an exact table or approximated by a chi-square

distribution with (k—1) degrees of freedom. However, a better approximation
is available which is compared to an F distribution (Iman and Davenport,

1980). This form is more accurate for small n.

__(n-1) Xf
F= e - XF

When observations are tied within a block, assign the average of their ranks to

each. Xf must be corrected when more than a few ties occur.
121 k [_ k+1} 2

Kt - oy X 2 6%) 7
i=1 j=1
where tj equals the number of ties of extent j in row i. The test statistic f is
then computed from this corrected Xf as above. An alternative to computing

Xfand then f is the rank transform ANOVA (next section).

Decision Rule To reject Hq: the median of every group is identical, versus

H1: atleast one median differs
Exact test: Reject H( if Xf > xqy, the (1-0f)th quantile of the Friedman test
statistic distribution from table B7 of the Appendix; otherwise do not reject
Hpo.
F-approximation: Reject Hpif £ = Floo, k-1, (n=1) (k1) the 1—-0t quantile
of an F distribution with k—1 and (n—1)(k—1) degrees of freedom; otherwise
do not reject Hp.
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There are only two ties, so ignoring the formula for the tie correction to the variance,

162((76))2 { = 2Y 2192+ (152 + (0337 + 0172 + 2337 + (157

_12
= + 1478

= 25.33 . This can be compared to a chi-square distribution having k—1 = 5 df.

To be more exact, the tie correction will be computed. For rows i=1,4,5,6 there are no ties. So
for j=1, ;=0 (there are 6 "ties" of extent 1), and for j=2 to 6, tjj = 0 (no true ties). For these

four rows

k
2 (tij (]3—])) = 6(1-1)+0(8—2)+0(27-3)+0(64—4)+0(125—-5)+0(216—6) = 0.
=1

Rows without ties will always add to zero. Also note that "ties" of extent 1 will always
contribute 0 to the sum, as 131 = 0. For rows i=2 and 3 there is one pair of tied values per
row. Thus for j=1 , tij = 4 (4 single values); for j=2, tj =1 (1 tie of extent 2), and for j=3 to 0,

tij = = 0 (no triplicates, etc.). For each of these two rows

k

D (tij (j3—j)) = 4(1-1)+1(8-2)+0(27-3)+0(64—4)+0(125-5)+0(216—6) = ©.
=1

n k

Therefore », (tij (j3—j)) = 0+6+6+0+0+0 =12, and
i=1j=1
126

Xf = - 1 14.78 = 25.58

6 () -512

which can be compared to a chi-square distribution with 5 degrees of freedom.

The better approximation is the F approximation, or

5) 25.58
= %(Bm = 28.94 , which is compared to Fj 95 5 o5 =4.5

Therefore reject Hy that the medians are the same with a p-value of <0.0001.

7.3.2.4 Rank transform approximation: analysis of variance: on within-block ranks

Again an approximation to the exact test statistic may be computed by performing the
parametric two-factor ANOVA on the ranks. For the Friedman test, the appropriate ranks are
the within-block ranks of table 7.5. Ties are automatically corrected for by assigning the average
rank to all ties within a block. A two-factor ANOVA on the within-block ranks has an
ANOVA table as in section 7.3.4. The resulting F statistic, the ratio of the MST for the
treatment group over the MSE, is the same as the statistic f derived from the chi-square
approximation above. Thus the ANOVA on within-block ranks gives a better approximation
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than does Xf for the cases (00 < 0.1 and small n) where the chi-square approximation is
inaccurate (Groggel, 1987).

Example 3, continued.
The ANOVA table for the within-block ranks of table 7.5 is:

Source df SS MS P p-value
Date (block) 5 0.000 0.000

Station 5 88.667 17.733 28.93 <0.0001
Error 25 15.333 0.613

Total 35 104.000

Note that all differences between blocks have been nullified by transforming the data to the
identical within-block ranks, 1 to k. As the blocks all have the same values within them, the
block sum of squares equals 0. Also note that the I statistic is identical to that previously
calculated from the large-sample approximation after tie correction. Therefore the ANOVA on
within-block ranks provides a convenient way to avoid the complicated tie correction to the

Friedman statistic.

7.3.3 Median Aligned-Ranks ANOVA

The Friedman test is the multi-treatment equivalent of the sign test. In Chapter 6 the signed-
rank test was presented in addition to the sign test, and was favored over the sign test when the
differences between the two treatments were symmetric. In this section a multi-treatment
equivalent to the signed-rank test is presented, called the Median Aligned-Ranks ANOVA
(MARA). MARA is one of several possible extensions of the signed-rank test; others include
Quade's test (Conover, 1980). Groggel (1987) and Fawcett and Salter (1984) have shown that an
aligned-rank method has substantial advantages in power over other possible signed-rank

extensions.

Friedman's test avoids any comparisons across blocks, just as the sign test avoids comparisons of
the magnitudes of paired differences across blocks. This avoids the confusion produced by
block-to-block differences, but does not take advantage of the information contained in such
comparisons. MARA allows comparisons between blocks by first subtracting the within-block
median from all of the data within that block. This "aligns" the data across blocks to a common
center. Itis equivalent to the ranking of block-to-block differences done in the signed-ranks
test. To derive the benefits of cross-block comparisons, a cost is incurred. This is an
assumption that the residuals €jj are symmetric. Symmetry can be evaluated by estimating the

residuals using median polish, and producing a boxplot as in figure 7.11.

Note that just as for the Friedman's test and two-way ANOVA without replication there are
(k—=1)(n—1) error degrees of freedom, (n—1) less than a one-way ANOVA. MARA is a two-
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factor analysis, with alignment contributing the block effect. However, MARA is computed
using a one-way ANOVA on the aligned ranks, so the correct F-test will differ from that
performed automatically by a computerized analysis. The error degrees of freedom must be
(k—=1)(n—1), not k(n—1) as for a one-way ANOVA. MARA is identical to the aligned ranks
procedure of Fawcett and Salter (1984), except that the block median is used for alignment

rather than the block mean.

The Median Aligned-Ranks ANOVA test
Situation Measurements of k treatment groups are performed on the same or related sets
of subjects, called blocks. There are n blocks. One observation is made on

each group-block combination (N = ken).

Computation Within each of the n blocks, the observations are aligned by subtracting the
block median, forming the aligned Ofj.
ojj = (yij - bj), where block median bj = [median(yij), i=1,..K]
The ojj are then ranked from 1 to N, forming aligned ranks ARjj:
ARij = rank (Oij) .

Test Statistic ~ One-way analysis of variance is computed on the ARjj However, the F statistic
is F = MST/MSE, where the etror degtees of freedom are (n—1) less than in a
one-way ANOVA because of the alignment procedure. The ANOVA table is:

Source df SS MS F
Treatment k=1) SST SST/(k-1) MST/MSE
Error (k=1)(n—1) SSE SSE/[(k=1)(n—1)]
Total n(k—1) Total SS

Tied data Average ranks are assigned to all tied ojj.

Decision Rule To reject H(: the median of every group is identical, versus

H1: atleast one median differs
Reject Hoif F 2 F1_g -1 (n—1)(k—1) the 1—-ot quantile of an F distribution
with k=1 and (n—1)(k—1) degrees of freedom; otherwise do not reject H.

7.3.3.1 Null and alternate hypotheses
The null and alternate hypotheses are identical to those of the Friedman test
H(: the median values for k groups of data are identical, or
Hj1: atleast one median is significantly different.
Herte, however, it is assumed that the residuals €jj are symmetric. MARA does not provide
information on which medians are significantly different from others. That must come from a

multiple comparison test.
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7.3.3.2 Computation
MARA is a rank transform approximation test; p-values for an exact test have not been

computed.

Example 3, continued
The aligned ojj for the petiphyton mercury data were computed during the first step of the

median polish, and listed in table 7.4. These ojj are then ranked from 1 to N=36 to form aligned
ranks, which are presented in table 7.6:

Table 7.6 Aligned Ranks of the Table 7.4 data

Station: 1 2 3 4 5 6
Date

1 9 19 14 18 24 30
2 5.5 5.5 12 26 36 31
3 10.5 10.5 15 23 33 28
4 8 7 13 25 34 32
5 3 4 17 20 35 29
6 1 2 22 16 27 21

A one-way analysis of variance is conducted on these aligned ranks. However, the computerized
F-test is ignored, as the error degrees of freedom used were n(k—1)=30, and do not reflect the
alignment process. The appropriate ANOVA table and F-test are below, and the p-value shows
that Hy is to be rejected. Significant differences are found between treatment group medians:

Source df SS MS P p-value
Station 5 3290.3 658.1 27.71 <0.0001
Error 25 593.7 23.8

Total 30 3884.0

7.3.4 Parametric Two-Factor ANOVA Without Replication

The traditional parametric test for the randomized complete block design is again an analysis of
variance -- a two-factor ANOVA without replication. One factor is the contrast between
treatment groups while the second is the block effect. There is one observation (no replicates)
per treatment-block combination. The block effect is of no interest except to remove its

masking of the treatment effect, so no test for its presence is required.
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7.3.4.1 Null and alternate hypotheses
The hypotheses are similar to those of the Friedman and MARA tests, except that treatment
group means, rather than medians, are being tested.

Ho: the k treatment group means are identical, | = [lp = ... = U, versus

Hj1: atleast one mean is significantly different.

The ANOVA model is identical to that for all of the tests of this section:

vij = R0+ Bi+ e,
where vij is the individual observation in block i and group j;

W is the overall mean,

0 is the "jth group effect”, j=1,k

Bi is the "ith block effect", i=1,n

gj is the residual or "errotr" between the individual observation and the

combined group and block effects.

Herte, however, it is assumed that the residuals €ij follow a normal distribution. ANOVA does
not provide information on which means differ from others. That must come from a multiple

comparison test.

7.3.4.2 Computation
As with other analysis of variance procedures, the treatment and error mean squares are
computed, and their ratio forms the F statistic to be compared to a table of the F distribution for

evaluation of its significance. Again there are k treatment groups and n blocks.

In comparison to a one-way ANOVA without blocking, the error sum of squares SSE is split
into two parts, the SSE and the sum of squares for the block effect SSB. The variation due to
differences between blocks is thereby removed from the background noise (MSE). If there is an
appreciable block effect, removal of the SSB lowers the SSE and MSE in comparison to their
values for a one-way ANOVA. This produces a higher F statistic, allowing the treatment effect

to be more easily discerned.

Example 3, continued
An analysis of variance is calculated directly on the periphyton mercury data. The ANOVA

table is:

Source df SS MS P p-value
Date 5 3.26 0.65

Station 5 230.13 46.03 26.15 <0.0001
Error 25 44.02 1.76

Total 35 277.40
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The null hypothesis is again soundly rejected. The treatment group means are declared different
at any reasonable alpha level. As in all of the tests applied to this data set, the block effect

(Date) is minimal.

Two-factor ANOVA without replication
Situation Measurements of k treatment groups are performed on the same or related sets
of subjects, called blocks. There are n blocks. One observation is made on

each group-block combination (N = ken).

Computation Sums of squares for treatment, block and error are computed using the
following formula. These are divided by their appropriate degrees of freedom

to form mean squares.

S5 23 s3] 23

SST = - SSB = -
n kn k kn
k n 2
A DY
SSE = Total SS — SST — SSB Total SS = D, >y — p
n

Test Statistic  The F statistic is computed as F = MST/MSE,. The ANOVA table is:

Source df SS MS F p-value
Treatment k-1 SST SST/(k-1) MST/MSE
Block n—1 SSB SSB/(n—1)
Error (k=1)(n—1) SSE SSE/[(k=1)(n—1)]
Total N-1 Total SS
Tied data No corrections necessary.
Decision Rule To reject H(: the mean of every group is identical, versus

H1: atleast one mean differs
Reject Hoif F =2 F1_g -1 (n—1)(k—1) the 1-ot quantile of an F distribution
with k=1 and (n—1)(k—1) degrees of freedom; otherwise do not reject H.

7.4 Multiple Comparison Tests

In most cases the analyst is interested not only in whether group medians or means differ, but
which differ from others. This is information not supplied by the tests presented in the previous
sections, but by methods called multiple comparison tests (MCTs). MCTs compare all possible

pairs of treatment group medians or means, and are performed only after the null hypothesis of
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"all medians or means identical" has been rejected. Of interest is the "pattern" of group medians
ofr means:

group A = group B < < group C,
etc. MCT's are not efficient methods for contrasting specific sets of groups known to be of
interest before an ANOVA or Kruskal-Wallis test is done, such as a treatment versus a control.
Other tests are available for making specific contrasts. Instead, MCTs compare all possible
combinations of treatment group centers, ranking the centers in order and indicating which are

similar or different from others.

Stoline (1981) reviews the many types of parametric multiple comparison tests. Campbell and

Skillings (1985) discuss nonparametric multiple comparisons.

7.4.1 Parametric Multiple Comparisons
Parametric MCT's compare treatment group means. They often calculate a "least significant
range" or LSR, the distance between any two means which must be exceeded in order for the

two groups to be considered significantly different at a significance level .

It |§1 —§2|> LSR =R Sz/ n., il and iz are significantly different.

The statistic R is analogous to the t-statistic in a t-test. R depends on the test used (is some
function of either a t- or studentized range statistic q), the error degrees of freedom from the
ANOVA, and on o. The variance s is just the MSE from the ANOVA. Parametric MCTSs can
be classified into four types, based on their method of computation and on whether a pairwise

or overall o level is used (figure 7.13).

ol pairwise a overall
. *
MST Duncans Multiple Range test REGWQ
(equal n only) SNK REGWF *
SIM *
Fisher's t-tests (LSD) Tukey
(equal or Schefte
unequal n) Bonferroni

Figure 7.13 Types of Parametric Multiple Comparison Tests

Methods with an asterisk * in figure 7.13 have the most power to detect differences between
group means of those methods using the overall error rate. The REGW methods are the most
powerful (have the smallest LSR) for equal sample sizes, though Tukey's test is close in power.

For unequal sample sizes, Tukey's method is the most powerful of those listed. Therefore
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Tukey's method is a generally applicable and powerful multiple comparison test for a variety of

situations.

Multiple-stage tests, MST, are valid only when group sample sizes are equal. Examples are the
Duncan's, Student-Newman-Keuls (SNK), and REGW tests. Their R statistic varies for each
pairwise comparison as a function of the number of group means in between the two being
compared. A new least significant range (y] — yp) must then be computed for each pairwise
comparison of means. If sample sizes were unequal, test results could be non-intuitive, as in:
A>B, B> C, but A =C where "A > B" means that A is larger and significantly different from
B, and "A = C" means A is not significantly different from C. This could arise if B had a large
sample size so that comparisons involving it had a lower LSR than those not involving B. Thus

MSTs are valid only for equal sample sizes within all groups.

Simultaneous inference methods, SIM, are valid for both equal and unequal group sample sizes.
Examples are Tukey's, Sheffe's, and Fisher's t-tests. These tests use one R value to calculate a

single least significant range for all pairwise comparisons. The harmonic mean
2n1np
harmonic mean of nq and ny = np +

is substituted for n in the case of unequal group sample sizes. So for unequal sample sizes a SIM
should be used.

The second classification criteria for MCTSs is based on the type of error rate o used for
comparisons (figure 7.13). One class of tests uses the stated o level for each pairwise
comparison (Ocp: pairwise error rate). When there are multiple comparisons each having a
pairwise error rate of 0, the overall probability of declaring at least one false difference (the
overall error rate O,) is much greater than 0. This overall error rate is the error rate for the
"pattern" of group means, and is more often of interest than a pairwise error rate in water
resources applications. For example, when comparing six group means, there are (6°5)/2 = 15
pairwise comparisons. If Oy = 0.05 is used for each test, then there will be an overall error rate
Oy = 1-(1- Ocp)15 = 0.54 of making at least one error in the overall comparisons of the six

group means.

Unfortunately, the distinction between the overall and pairwise error rates is often not
understood, and pairwise rates are presented as if they were overall rates. The pairwise rate is
much like the probability of being robbed today, while the overall rate is like the probability of
ever being robbed in your lifetime. To claim that the (very small) probability of being robbed
today is actually the probability of ever being robbed leads to a false sense of security. Similarly,
citing that according to a Duncan's multiple range test, A > B = C = D > E = F with an error
rate of o = 0.05 when in fact 0.05 was used for each test, also presents a false sense of security
in the results.
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Duncan's test is often used in this incorrect fashion. Individual paired differences found at the
o, = 0.05 level results in the overall rate of at least one error in the pattern of group means at
something higher, such as the 0.54 chance for the 6 groups above. When the primary interest is
in the overall pattern and its accuracy, methods which set the error rate equal to the overall @,

such as Tukey's test, should be performed.

Some authors report only results of a MCT, usually Duncan's multiple range test, skipping the
required priort ANOVA F-tests. NEVER DO THIS! The likely reason that this has been done
is that ANOVA did not find significant differences at a true (overall) significance level of 0.05,
but the Duncan's test did find differences. Why does this occur? Duncan's test was performed
at a pairwise significance level of 0.05, but at an overall level of something much higher (0.54 for
the six means above). An overall error level of 0.54 states there a 54 percent chance that two
means will be declared significantly different when in fact they are not. An ANOVA at o0 = 0.54
would also be "significant" (the p-value is somewhere below 0.54), but a test having this large an
error rate is essentially useless! ANOVA should always be performed first as the appropriate
test for determining whether any differences occur between group means. If they do not, stop
there. By performing only a MCT, an 00=0.54 test is conducted while declaring it to be an o =
0.05 test of whether differences occur. This is quite misleading.

7.4.1.1 Assumptions

All MCTs discussed thus far have the same assumptions as does ANOVA -- data within each
treatment group are normally distributed, and each treatment group has equal variance.
Violations of these assumptions will result in a loss of power to detect differences which are

actually present.

7.4.1.2 Computation of Tukey's test

Two group means y; and yj can be considered different if

=3 > 9 (1=, ko Nesc VVSE 7

where q is the studentized range statistic from Neter, Wasserman and Kutner
(1985),
o is the overall significance level,
k is the number of treatment group means compared,
N-k are the degrees of freedom for the MSE, and
n is the sample size per group.

For unequal sample sizes

+ n;
_ _ ng ]
|yf—yj = 9(1~0), k, Nk * \/MSE° 20 0

where n has been replaced with the harmonic mean of the unequal sample sizes for the two

roups being compared, n; and n;. For only two groups, q becomes the student's t statistic, and
group g p i j y groups, q
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Tukey's test is identical to Fishert's all-possible t-tests. Formulas for other MCT's can be found
in SAS Institute (1985).

Example 4
Knopman (1990) tested wells located in the Appalachian mountains of Pennsylvania to see if

their specific capacities differed among four rock types -- dolomites, limestones, siliciclastics
(sandstones, shales, etc.), and metamorphic plus igheous rocks. To make the data more nearly
normal, the natural log of specific capacity was used. A subset of 200 observations across the
four rock types were randomly selected from the over 4000 original observations. This subset is
presented in Appendix C7. Boxplots are shown in figure 7.14. The ANOVA table below
indicates that the log specific capacities differed significantly between the four rock types.

Source df SS MS F p-value
Rock type 3 54.03 18.010 4.19 0.007
Error 196 842.15 4.297
Total 199 896.18
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Figure 7.14 Natural logs of specific capacity of wells in four rock types, Pennsylvania

Since the null hypothesis is rejected, Tukey's test can be computed. The four group means ate :
y [dolomite] = y4 = 0.408 Y [limestone] =y =-0.688
y [siliciclastic] = yg =-0.758 y [metamorphic] = ym =-0.894
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The least significant range LSR is computed as:
LSR = 90,95, 4, 196) *¥4.297/50 = 90.95,4,) ° A 4297 /50 = 3.630.293

= 1.06
Therefore, any group means of log specific capacity which differ by more than 1.06 are
significantly different by the Tukey's multiple comparison test. y{ is then seen to be
significantly different and larger than the other three groups, which are not significantly different

from each other, or:
¥yd > Y1 = Ys = ¥Ym

REGWQ could also be computed because sample sizes in each subset group are equal. The
choice of REGWQ versus Tukey's would largely depend on which were available. First the k
group means are ordered by magnitude (yd, Y1, ¥s, ¥ m)- The first comparison is made
between the extremes, y d versus y m. The studentized range is again used, accounting for the
number of means between and including the two being compared; k=4 in this first case. If this
test proves to be significant, the two possible comparisons with p =k—1 intervening group
means are made — y d versus y g and y ] versus y m. Continue working inward until an
insignificant difference is found. No comparisons of group means contained between means

already found to be insignificant need be made.

For REGWQ, two group means differ at an overall significance level ot if :
yi—Yyj > qap,p,N_pw/ MSE / n
where 0y = 1= (10 P/K for p < (k1)
=q forp = (k-1).

Using the log specific capacity data, comparing y d versus y m using o, = 0= 0.05:

the least significant range = q ) 5,4,196° \/W/SO = 1.06, identical to Tukey's LSR.
Therefore y 4 > ¥y m. Next, compare y d versus y g and y] versus ¥ m. Both of these have
p=3and an LSR of 4 (5, 3 197 *\/ 4297 / 50 = 3.3140.293 = 0.97. Therefore
¥yd>Ysand Y] = Y m. Since the limestone and metamorphic group means are not

significantly different there is no reason to test the siliciclastic versus the metamorphic group
means. For the final comparison, y d is compared to y]. The LSR is based on p=2 and

ap = 1-(0.95)2/4=0.025. Therefore LSR = q  0p5. 5, 198 *\ 4297 / 50 = 3.31:0.293 =
0.97. So yd > y]and the overall pattern is again:

Yd> Y1l = Ys = Ym

7.4.2 Nonparametric Multiple Comparisons
Statisticians are actively working in this area (see Campbell and Skillings, 1985). The simplest
procedures for performing nonparametric multiple comparisons are rank transformation tests.

Ranks are substituted for the original data, and a multiple comparison test such as Tukey's is
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performed on the ranks. These are logical follow-ups to the rank transform approximation

approaches to the Kruskal-Wallis, Friedman, and two-way ANOVA tests previously presented.

For the one-way situation, Campbell and Skillings (1985) recommend a multiple-stage test using
the Kruskal-Wallis (KW) statistic. The process resembles the REGWQ test above. After a
significant KW test occurs for k groups, place the groups in order of ascending average rank.
Perform new KW tests for the two possible comparisons between p = (k—1) groups, noting that
this involves re-ranking the observations each time. If significant results occur for one or both
of these tests, continue attempting to find differences in smaller subsets of p < (k—1). In order
to control the overall error rate, follow the pattern of REGWQ for the critical alpha values:

o, =1-(1-0)P/k for p < (k1)

=o for p = (k—1)

Example 4 continued
First, Tukey's test will be performed on the ranks of the Pennsylvania log specific capacity data.

Then a second nonparametric MCT, the multiple-stage Kruskal-Wallis (MSKW) test using
REGWQ alpha levels, is performed.

The ANOVA table for testing data ranks shows a strong rejection of H:

Source df SS MS P p-value
Rock type 3 38665 12888 4.02 0.008
Error 196 627851 3203

Total 199 066515

The four group mean ranks are :
R [dolomite] = R4 =124.11 R [limestone] = R = 94.67

R [siliciclastic] = Rg = 95.06 R [metamorphic] = Ry = 88.16

The least significant range LSR for a Tukey's test on data ranks is computed as:

ISR = q(O 95, 4, 196) '\/ 3203/50 = q(O o5 «\/ 3203/50 = 3.63°8.00

= 29.06
Pairs of group mean ranks which are at least 29.06 units apart are significantly different.
Therefore (within 0.01) Rg>Rs= R = Rm.

4, o)

To compute the MSKW test, the first step is merely the Kruskal-Wallis test on the four groups.
The overall mean rank R equals 100.5. Then

K=11.54 Xzo =7.815 p=0.009 so, reject equality of group medians.

95,(3)
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Proceeding, new Kruskal-Wallis tests are performed between the two sets of three contiguous
treatment groups: R d vs. E} vs. R s and R 1 vs. R g VS. R m - This requires that the
data all be re-ranked each time. Their respective test statistics are denoted Kdls and Kjsm. The
significance level is as in REGWQ, so for (k—1) = 3 groups, oy =0 = 0.05.

Kdls = 8.95 XZO 05.2) =5.99 p=0.012 so, reject equality of group medians.

Kilsm = 0.61 p=0.74 group medians not significantly different.

Finally, the k=2 = 2 group comparisons are performed. There is no need to do these for the
limestone versus siliciclastic and siliciclastic versus metamorphic comparisons, as the 3-group
Kruskal-Wallis test found no differences among those group medians. Therefore the only
remaining 2-group comparison is for dolomite versus limestone. The 2-group Kruskal-Wallis
test is performed at a significance level of

ap = 1-(0.95) 2/4=0.025.

Kdr =5.30 r2 5.02 p=0.021 so, reject equality of group medians.

0.975,(1)
The pattern is the same as for the other MCT's,

mediang > median] = mediang = median,.

7.5 Presentation of Results

Following the execution of the tests in this chapter, results should be protrayed in an easily-
understandable manner. This is best done with figures. A good figure provides a visual
confirmation of the outcome of the hypothesis test. Differences between groups are clearly
portrayed. A poor figure gives the impression that the analyst has something to hide, and is
hiding it effectively! The following sections provide a quick survey of good and bad figures for

illustrating differences between three or more treatment groups.

7.5.1 Graphical Comparisons of Several Independent Groups

Perhaps the most common method used to report comparisons between groups is a table, and
not a graph. Table 7.7a is the most common type of table in water resources, one which
presents only the mean and standard deviations. As has been shown several times, the mean and
standard deviation alone do not capture much of the important information necessary to
compare groups, especially when the data are skewed. Table 7.7b provides much more

information -- important percentiles such as the quartiles are listed as well.

Table 7.7a A simplistic table comparing the four groups of log specific capacity data
Mean  Std.Dev.

Dolomite 0.408 2.557

Limestone -0.688 2.360
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Siliciclastics -0.758 1.407
Metamorphic -0.894 1.761

Table 7.7b A more complete table for the log specific capacity data

N Mean Median Std.Dev. Min Max P25 P75
Dolomite 50 0.408 0.542 2.557 -4.605 5298  -1.332  2.264
Limestone 50  -0.688 -0.805 2.360 -4.605 5.649  -2.231  0.728
Siliciclastics 50  -0.758 -0.777 1.407 -3.507 1.723  -1.787  0.381
Metamorphic 50  -0.894 -1.222 1.761 -3.912 4317  -2.060  0.178

However, neither table provides quick intuitive insight into the data structure. Neither
sufficiently illustrates the differences between groups found by the hypothesis tests in example 4,
or how they differ.

Histograms are commonly used to display the distribution of one or more data sets, and have
been employed to attempt to illustrate differences between three or more groups of data. They
are not usually successful. The many crossing lines, coupled with an artificial division of the data
into categories, results in a cluttered and confusing graph. Figure 7.15 displays four overlapping
histograms, one for each of the data groups. It is impossible to discern anything about the
relative characteristics of any of the data groups from this figure. Overlapping histograms
should be avoided unless one is purposefully trying to confuse the audience! In figure 7.16, side-
by-side bar charts display the same information. This too is confusing and difficult to interpret.
From the graph one could not easily say which group had the highest mean or median, much
less anything about the groups' variability or skewness. Many business software packages allow

speedy production of such useless graphs as these.

Figure 7.17 shows a quantile plot of the same four data groups. The quantile plot far exceeds
the histogram and bar chart in clarity and information content. The dolomite group stands apart
from the other three throughout most of its distribution, illustrating both the ANOVA and
multiple comparison test results. An experienced analyst can look for differences in variability
and skewness by looking at the slope and shapes of each group's line. A probability plot of the
four groups would have much the same content, with the additional ability to look for

departures from a straight line as a visual clue for non-normality.
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Figure 7.15 Overlapping histograms fail to differentiate between four groups of data
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Figure 7.16 Side-by-side bars fail to clearly differentiate between four groups of data
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Compare figures 7.15 to 7.17 with boxplots of the log specific capacity data shown previously in
figure 7.14. Boxplots clearly demonstrate the difference between the dolomite and other group
medians. Variability is also documented by the box height, and skewness by the heights of the
top and bottom box halves. See Chapter 2 for more detail on boxplots. Boxplots illustrate the
results of the tests of this chapter more clearly than commonly-used alternate methods such as

histograms.
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Figure 7.17 Quantile plots differentiate between four groups of data

7.5.2 Presentation of Multiple Comparison Tests

Suppose a multiple comparison test resulted in the following:

Yy1=5y2 Y1#V3 Y1+ V4 (=: not significantly different)
y2=5y3 Y2 F V4 (# : significantly different)
y3=y4

for four treatment groups having y1 > y2 > y3> y4.

The results are often presented in one of the two following formats:

1. Letters
1 y2 y3 V4
A AB BC C
Treatment group means are ordered, and those having the same letter underneath them are not

significantly different. The convenience of this presentation format is that letters can easily be
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positioned somewhere within side-by-side boxplots, illustrating the results of a MCT as well as

the overall test for equality of all means or medians (see figure 7.18).

AB

MCT results: Boxes with same letter are
not significantly different.

Figure 7.18 Boxplots with letters showing the results of a MCT.

2. Lines

In this presentation format, group means connected by a single unbroken line are not
significantly different. This format is suited for inclusion in a table listing group means or

medians.
A third method is somewhat more visual:

3. Shaded Boxes
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These shaded boxes can be thought of as thick versions of the lines presented above. Group
means with boxes shaded along the same row are not significantly different. Shaded boxes
allow group means to be ordered by something other than mean or median value. For example,
the order of stations going upstream to downstream might be 3,1,2,4. Boxes put in that order
show a significant increase in concentration between 3 and 1 and a significant drop off again
between 2 and 4. So in addition to displaying multiple comparison test results, the shaded

boxes below also illustrate the pattern of concentration levels of the data.

Downstream _—
y3 < i y2 > V4

Figure 7.19 Shaded boxes for illustration of a multiple comparison test.

Station means not significantly different have boxes shaded within the same row.
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Exercises

7.1 Discharge from pulp liquor waste may have contaminated shallow groundwater with
caustic, high pH effluent (Robertson, et al., 1984). Determine whether the pH of
samples taken from three sets of piezometers are all identical -- one piezometer group is
known to be uncontaminated. If not, which groups are different from others? Which

are contaminated?

pH of samples taken from piezometer groups

BP-1 7.0 7.2 7.5 7.7 8.7 7.8
BP-2 6.3 6.9 7.0 0.4 6.8 6.7
BP-9 8.4 7.6 7.5 7.4 9.3 9.0
7.2 In addition to the waters from granitic terrain given in Exercise 2.3, Feth et al. (1964)

measured chloride concentrations of ephemeral springs. These additional data are listed
below (use the zero value as is). Test whether concentrations in the three groups are all
identical. If not, which differ from others?

Chloride concentration, in mg/L.

Ephemeral Springs 0.0 0.9 0.1 0.1 0.5 0.2
0.3 0.2 0.1 2.0 1.8 0.1
0.6 0.2 0.4
7.3 The number of Corbicula (bottom fauna) per square meter for a site on the Tennessee

River was presented by Jensen (1973). The data are found in Appendix C8. Perform a
median polish for the data of strata 1. Graph the polished estimates of year and seasonal

effects. Is any transformation suggested by the residuals?

7.4 Test the Corbicula data of strata 1 to determine whether season and year are significant

determinants of the number of organisms.

7.5 Test for significant differences in the density of Corbicula between seasons and strata for
the 1969 data.
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Concentrations of atrazine and nitrate in shallow groundwaters are measured in wells over a
several county area. For each sample, the concentration of one is plotted versus the
concentration of the other. As atrazine concentrations increase, so do nitrate. How might the

strength of this association be measured and summarized?

Streams draining the Sierra Nevada mountains in California usually receive less precipitation in
November than in other months. Has the amount of November precipitation significantly
changed over the last 70 years, showing a gradual change in the climate of the area? How might
this be tested?

The above situations require a measure of the strength of association between two continuous
variables, such as between two chemical concentrations, or between amount of precipitation and
time. How do they co-vary? One class of measures are called correlation coefficients, three of
which are discussed in this chapter. Also discussed is how the significance of that association
can be tested for, to determine whether the observed pattern differs from what is expected due
entirely to chance. For measurements of correlation between grouped (non-continuous)

variables, see Chapter 14.

Whenever a correlation coefficient is calculated, the data should be plotted on a scatterplot. No
single numerical measure can substitute for the visual insight gained from a plot. Many different
patterns can produce the same correlation coefficient, and similar strengths of relationships can
produce differing coefficients, depending on the curvature of the relationship. In Chapter 2,
figure 2.1 presented eight plots all with a linear correlation coefficient of 0.70. Yet the data were
radically different! Never compute correlation coefficients and assume the data look like those

in h of figure 2.1.
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8.1 Characteristics of Correlation Coefficients

Correlation coefficients measure of the strength of association between two continuous
variables. Of interest is whether one variable generally increases as the second increases,
whether it decreases as the second increases, or whether their patterns of variation are totally
unrelated. Correlation measures observed co-variation. It does not provide evidence for causal
relationship between the two variables. One may cause the other, as precipitation causes runoff.
They may also be correlated because both share the same cause, such as two solutes measured at
a variety of times or a variety of locations. (Both are caused by variations in the source of the
water). Evidence for causation must come from outside the statistical analysis -- from the

knowledge of the processes involved.

Measures of correlation (here designated in general as p) have the characteristic of being
dimensionless and scaled to lie in the range —1 = p = 1. When there is no correlation between
two variables, p = 0. When one variable increases as the second increases, p is positive. When
they vary in opposite directions, p is negative. The significance of the correlation is evaluated
using a hypothesis test:

Hp: p =0 versus Hy: p # 0.
When one variable is a measure of time or location, correlation becomes a test for temporal or
spatial trend.

8.1.1 Monotonic Versus Linear Correlation

Data may be correlated in either a linear or nonlinear fashion. When y generally increases or
decreases as x increases, the two variables are said to possess a monotonic correlation. This
correlation may be nonlinear, with exponential patterns, piecewise linear patterns, or patterns
similar to power functions when both variables are non-negative. Figure 8.1 illustrates a non-
linear monotonic association between two variables -- as x increases, y generally increases by an
ever-increasing rate. This nonlinearity is evidence that a measure of linear correlation would be
inappropriate. The strength of a linear measure will be diluted by nonlinearity, resulting in a
lower correlation coefficient and less significance than a linear relationship having the same

amount of scatter.

Three measures of correlation are in common use -- Kendall's tau, Spearman's tho, and
Pearson's r. The first two are based on ranks, and measure all monotonic relationships such as
that in figure 8.1. They are also resistant to effects of outliers. The more commonly-used
Pearson's r is a measure of linear correlation (figure 8.2), one specific type of monotonic
correlation. None of the measures will detect nonmonotonic relationships, where the pattern
doubles back on itself, like that in figure 8.3.
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8.2 Kendall's Tau

Tau (Kendall, 1938 and Kendall, 1975) measures the strength of the monotonic relationship
between x and y. Tau is a rank-based procedure and is therefore resistant to the effect of a small
number of unusual values. It is well-suited for variables which exhibit skewness around the

general relationship.

Because tau (T) depends only on the ranks of the data and not the values themselves, it can be
implemented even in cases where some of the data are censored, such as concentrations known
only as less than the reporting limit. This is an important feature of the test for applications to

water resources. See Chapter 13 for more detail on analysis of censored data.

Tau will generally be lower than values of the traditional correlation coefficient r for linear
associations of the same strength (figure 8.2). "Strong" linear correlations of 0.9 or above
correspond to tau values of about 0.7 or above. These lower values do not mean that tau is less
sensitive than r, but simply that a different scale of correlation is being used. Tau is easy to
compute by hand, resistant to outliers, and measures all monotonic correlations (linear and
nonlinear). Its large sample approximation produces p-values very near exact values, even for
small sample sizes. As itis a rank correlation method, tau is invariant to monotonic power
transformations of one or both variables. For example, T for the correlation of log(y) versus

log(x) will be identical to that of y versus log(x), and of y versus x.

8.2.1 Computation

Tau is most easily computed by first ordering all data pairs by increasing x. If a positive
correlation exists, the y's will increase more often than decrease as x increases. For a negative
correlation, the y's will decrease more often than increase. If no correlation exists, the y's will

increase and dectrease about the same number of times.

A two-sided test for correlation will evaluate the following equivalent statements for the null

hypothesis Hy, as compared to the alternate hypothesis Hy:

Hp: a) no correlation exists between x and y (T = 0), or
b) xand y are independent, or
¢) the distribution of y does not depend on x, or
d)  Prob (yj <y; fori<j)=1/2.

Hi:  a) xandy are correlated (T # 0), or
b) xand y are dependent, or
c) the distribution of y (percentiles, etc.) depends on x, or
d)  Prob (yj <y; fori<j)#1/2.
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The test statistic S measures the monotonic dependence of y on x. Kendall's S is calculated by
subtracting the number of "discordant pairs" M, the number of (x,y) pairs where y decreases as
x increases, from the number of "concordant pairs" P, the number of (x,y) pairs where y

increases with increasing x:
[8.1]
where P = "number of pluses", the number of times the y's increase as the x's increase,
or the number of yj < i foralli <j,
M = "number of minuses," the number of times the y's decrease as the x's increase, or
the number of y; > i fori<j.
foralli =1,..n—1) and j = (i+1),....n.

Note that there ate n(n—1)/2 possible comparisons to be made among the n data pairs. Ifally
values increased along with the x values, S = n(n—1)/2. In this situation, the cortelation
coefficient T should equal +1. When all y values decrease with increasing x, S = —n(n—1)/2 and
T should equal —1. Therefore dividing S by n(n—1)/2 will give a value always falling between —1
and +1. This then is the definition of T, measuring the strength of the monotonic association

between two variables:

Kendall’s tau correlation coefficient

S
=
n(n—1)/2

[8.2]

To test for significance of T, S is compared to what would be expected when the null hypothesis
is true. Ifitis further from O than expected, H() is rejected. For n = 10 an exact test should be
computed. The table of exact critical values is found in table B8 of the Appendix.

8.2.2 Large Sample Approximation
For n > 10 the test statistic can be modified to be closely approximated by a normal distribution.
This large sample approximation Zg is the same form of approximation as used in Chapter 5 for
the rank-sum test, where now
d = 2 (S can vary only in jumps of 2),
Ug = 0, and
oq =  (0/18)*(n-1)*(2n+5).
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8.3]

The null hypothesis is rejected at significance level 0L if | Zg| > Z¢yir where Zyie is the value of

the standard normal distribution with a probability of exceedance of /2. In the case where

some of the x and/or y values are tied the formula for Gg must be modified, as discussed in the

next section.

Example 1: 10 pairs of x and y are given below, ordered by increasing x:

y | 122 220 480
2 24 99
SO@R@En T+

Eyuinining

prauinining

2.64
632

234 484

2.96

3452 6587 53,170

% =@

Figure 8.4 Example 1 data showing one outlier present.

To compute S, first compare y1= 1.22 with all subsequent y's (y, ,j>1).

2.20 > 1.22, so scote a +
4.80 > 1.22, score a +
1.28 > 1.22, score a +
1.97 > 1.22, score a + etc.

All subsequent y's are larger, so there are 9 +'s for i=1.

Move on to i=2, and compare yp =2.20 to all subsequent y's.

o=
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4.80 > 2.20, so score a +
1.28 < 2.20, score a —
1.97 < 2.20, score a —
1.46 < 2.20, score a— etc.

There are 5 +'s and 3 —'s for i=2. Continue in this way, until the final compatison of y,_1 =

4.84 to yp. It is convenient to write all +'s and —'s below their respective y,, as below:

Y, 1.22 220 480 128 197 146 264 234 484 296
+ — — + — + —

- - + + +

+ +

+

+ 4+ +++
++ + +

+++ A+t
+ 4+ + |
+

In total there are 33 +'s (P = 33) and 12 —'s (M = 12). Therefore S = 33 — 12 = 21.
There are 1029/2 = 45 possible comparisons, so T = 21/45 = 0.47.
Turning to table B8, for n=10 and S=21, the exact p-value is 2¢0.036 = 0.072.

The large sample approximation is
Zs= (21-1) /\/ (10/18)+(10-1)*(20+5)
= 20/(11.18) = 1.79.
From a table of the normal distribution, the 1-sided quantile for 1.79 = 0.963
so that p=2-+(1-.963) = 0.074

8.2.3 Correction for Ties
To compute T when ties are present, tied values of either x or y produce a O rather than + or —.
Ties do not contribute to either P or M. S and T are computed exactly as before. An adjustment

is required for the large sample approximation Zg , however, by correcting the Gg formula.

In order to compute Og in the presence of ties, both the number of ties and the number of
values involved in each tie must be counted. Consider for example a water quality data set (in
units of ug/L) of 17 values (n=17) shown here in ascending order.

<1, <1, <1, <1, <1, 2, 2, 2, 3, 5, 5, 7, 9, 10, 10, 14, 18.

There are a total of 4 tied groups in the data set. The largest tied group in the data set is of 5
values (tied at <1 ug/L), there are no tied groups of 4, there is 1 tied group of 3 (at 2 ug/L), and
there ate 2 tied groups of 2 (at 5 and 10 pg/L). For completeness note that there are 5 "ties" of
extent 1 (untied values at 3,7, 9, 14, and 18 ug/L). These appropriately never add to the
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correction because (i—1) always equals zero. Kendall (1975) defined the variable tj as the
number of ties of extent i. For this data set t5 = 1 (1 tie of extent 5), t4 = 0 (no ties of extent 4),
t3 = 1 (1 tie of extent 3), ty = 2 (2 ties of extent 2) and t; = 5 (5 "ties" of extent 1). For i>5, i
= 0. Kendall's correction to Og in the presence of ties is:

(-1 @a+5- S0 6-1)Qi+5)]
>
G5 = e 8.4]

So for the example water quality data:

Og = [17°16239 - 5¢120¢7 - 2¢2¢149 - 1¢302¢11 - 1+5¢4¢15] / 18

or 6g =4/567 = 23.81. Notice that if the data set could have been measured with sufficient
precision (including a lower detection limit) so that no ties existed, then
Og =1/589.333 = 24.28. Thus the ties here represent a rather small loss of information.

Example 2:

The example 1 data are modified to include ties, as follows:
y 122220 480 128 197 197 2064 234 484 296

X 2 24 99 99 377 544 632 3452 6587 53,170
Using a 0 to denote a tie, the comparisons used to compute P, M, and S are:
+ + 0x  + oy  + - + -
+ - - + ¥ + + +
+ - - + + + +
+ - - + + +
+ + - + + Ox: tiein x
+ + + + Oy: teiny
+ + -
+ +
+

In total there are 33 +'s (P=33) and 10 —'s (M=10). Therefore S = 33—10 = 23, and
T= 23/45=0.51. The exact two-sided p-value from table B8 is 2¢0.023 = 0.046. For the
large sample approximation, there are 2 ties of extent 2, so that

Og = \[[1029225 - 2¢2+1+9] / 18 =+ 123 = 11.09
whereas without the tie 6g was 11.18. Computing Zs,

Zs= (23-1)/~[123

= 22/(11.09) = 1.98.

From a table of the normal distribution, the 1-sided quantile for 1.98 = 0.976
so that p=2+ (1-.976) = 0.048 .
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8.3 Spearman's Rho

Spearman's rho is an alternative rank correlation coefficient to Kendall's tau. Kendall's tau is
related to the sign test -- all positive differences between data pairs are assigned a +1 without
regard to the magnitude of those differences. With Spearman's rho, differences between data
values ranked further apart are given more weight, similar to the signed-rank test. Rho is
perhaps easiest to understand as the linear correlation coefficient computed on the ranks of the
data. Thus rho can be computed as a rank transform method. Rho and tau use different scales
to measure the same correlation, much like Centigrade and Fahrenheit measures of temperature.
Though tau is generally lower than rho in magnitude, their p-values for significance should be

quite similar when computed on the same data.

To compute rho, the data for the two variables are ranked independently among themselves. For

the ranks of x (Rxj) and ranks of y (Ryj), tho can be computed from the equation:
n 2
n+l1
Rx Ry )—n
z ( i yl) [ 2 )

tho = =

n(n”—1)/12 155]

where (n+1)/2 is the mean rank of both x and y. Ties in x or y are assigned average ranks. This
equation can be derived from substituting Rxj and Ryj for xj and yj in equation 8.6 for Pearson's
r, and simplifying. If there is a positive correlation, the higher ranks of x will be paired with the
higher ranks of y, and their product will be large. For a negative correlation the higher ranks of
x will be related to lower ranks of y, and their product will be small. When there is no
correlation, there will be nothing other than a random pattern in the association between x and y
ranks, and their product will be similar to the product of their average rank, the second term in

the numerator of equation 8.5. Thus rho will be close to zero.

Bhattacharyya and Johnson (1977) present the exact and large sample approximation versions of
the hypothesis test for Spearman's rho. However, it is easiest to rank the two variables and
compute the hypothesis test for Pearson's r -- the rank transform method. It is important to
note that the large sample and rank approximations for rho do not fit the distribution of the test
statistic well for small sample sizes (n<20), in contrast to Kendall's tau. This is one reason tau is

often preferred over rho.

Example 1, continued

For the example 1 data, the data ranks are
Ry 1 5 9 2 4 3 7 6 10 8
Rx 1 2 3 4 5 6 7 8 9 10

Solving for rho, multiplying the ranks above gives,
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®xi*Ry)| 1 10 27 8 20 18 49 48 90 80, ¥ =351
~ 351-10(5.5)> 485

Rh -
© 1099/12 825

= 0.588, exact p-value = 0.04 from table 13 of Bhattacharyya and Johnson (1977).

The approximate significance test for Pearson's r on the data ranks (as described in the next
section) has a p-value = 0.074, not too close to the exact value. Whenever using Spearman's rho

for sample sizes less than 20, exact p-values should be used.

8.4 Pearson'sr

The most commonly-used measure of correlation is Pearson's r. It is also called the linear
correlation coefficient because r measures the linear association between two variables. If the
data lie exactly along a straight line with positive slope, then r = 1. This assumption of linearity
makes inspection of a plot even more important for r than for rho or tau because a non-
significant value of r may be due to curvature or outliers as well as to independence. As in figure
8.1, x and y may be strongly related in a nonlinear fashion, while the resulting r may be small and

insignificantly different from zero.

Pearson's r is not as resistant to outliers as was tau and rho because it is computed using non-
resistant measures -- means and standard deviations. It assumes that the data follow a bivariate
normal distribution. With this distribution, not only do the individual variables x and y follow a
normal distribution, but their joint variation also follows a specified pattern. This assumption
rules out the use of r when the data have increasing variance, as in figure 8.1. Skewed variables
often demonstrate outliers and increasing variance. Thus r is often not useful for describing the

correlation between untransformed hydrologic variables.

Pearson's r is invariant to scale changes, as in converting streamflows in cubic feet per second
into cubic meters per second, etc. This dimensionless property is obtained by standardizing,
dividing the distance from the mean by the sample standard deviation, as shown in the formula

for r, below.

Lo Z XXy -y

n—17_ S s,

[8.6]

The significance of r can be tested by determining whether r differs from zero. The test statistic
ty is computed by equation 8.7, and compared to a table of the t distribution with n—2 degrees of

freedom.

L L 8.7]



Correlation 219

Example 1, continued

For the example 1 data, means and standard deviations are:

X AY
mean 65086 2.57
s 165316 1.31
1 & [x-65086)(y —2.57
Then r= —, |— %, = 0.174
9 < | 165316 1.31

To test for whether r is significantly different from zero, and therefore y is linearly dependent on

X

>

0.174 V8

= 0.508,
Jl —(0.174)*

with a p-value of 0.63 from a table of the t-distribution. Therefore H(): r=0 is not rejected, and y

is not linearly dependent (or related) to x as measured by r. This differs from the results using
rho and tau, whose p-values of 0.04 and 0.07 respectively did indicate an association between y
and x. Figure 8.4 provides an intuitive explanation of why r differs from rho and tau -- r is

strongly affected by the one outlying observation, even though the overall trend is a linear one.
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Exercises

8.1 Are uranium concentrations correlated with total dissolved solids in the following

groundwater samples? If so, describe the strength of the relationship.

Utranium conc. TDS, Uranium conc. TDS,
in ppb in mg/L in ppb in mg/L
682.65 0.9315 1240.81 6.8559
819.12 1.9380 538.35 0.4806
303.76 0.2919 607.75 1.1452
1151.40 11.9042 705.89 6.0876
582.42 1.5674 1290.57 10.8823
1043.39 2.0623 526.09 0.1473
634.84 3.8858 784.68 2.6741
1087.25 0.9772 953.14 3.0918
1123.51 1.9354 1149.31 0.7592
688.09 0.4367 1074.22 3.7101
1174.54 10.1142 1116.59 7.2446
599.50 0.7551
8.2 Compute the other two correlation coefficients not chosen in Exercise 8.1. Are all

coefficients equally appropriate?

8.3 For the data on Corbicula densities in the Tennesse River found in Appendix C8,
compute Kendall's tau for all pairs of data in the same strata and season, but one year

apart. Is this correlation significant? How should this result be interpreted?



Simple Linear Regression

The relationship between two continuous variables, sediment concentration and stream
discharge, is to be investigated. Of interest is the quantification of this relation into a model
form for use as a predictive tool during days in which discharge was measured but sediment
concentration was not. Some measure of the significance of the relationship is desired so that
the analyst can be assured that it is in fact composed of more than just background noise. A

measure of the quality of the fit is also desired.

Sediment concentrations in an urban river are investigated to determine if installation of
detention ponds throughout the city have decreased instream concentrations. Linear regression
is first performed between sediment concentration and river discharge to remove the variation in
concentrations which are due to flow variations. After subtracting this linear relation from the
data, the residual variation before versus after the installation of ponds can be compared to
determine their effect.

Regression of sediment concentration versus stream discharge is performed to obtain the slope
coefficient for the relationship. This coefficient is tested to see if it is significantly different than
a value obtained 5 years before using a rainfall-runoff model of the basin.

The above examples all perform a linear regression between the same two variables, sediment
concentration and water discharge, but for three different objectives. Regression is commonly
used for at least these three objectives. This chapter will present the assumptions, computation

and applications of linear regression, as well as its limitations and common misapplications by
the water resources community.
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Ordinary Least Squares (OLS), commonly referred to as linear regression, is a very important
tool for the statistical analysis of water resources data. It is used to describe the covariation
between some variable of interest and one or more other variables. Regression is performed

to

1) learn something about the relationship between the two variables, or

2) remove a portion of the variation in one variable (a portion that is not of interest) in
order to gain a better understanding of some other, more interesting, portion of the
variation, or

3) estimate or predict values of one variable based on knowledge of another variable, for

which more data are available.

This chapter deals with the relationship between one continuous variable of interest, called the
response variable, and one other variable -- the explanatory variable. The name "simple
linear regression" is applied because one explanatory variable is the simplest case of regression
models. The case of multiple explanatory variables is dealt with in Chapter 11 -- multiple

regression.

9.1 The Linear Regression Model

The model for simple linear regression is:

vi = Bo + B1xi T & i=1,2,...n
where
Vi is the ith observation of the response (or dependent) variable
Xj is the ith observation of the explanatory (or independent) variable
Bo is the intercept
By is the slope
g is the random error or residual for the ith observation, and
n is the sample size.

The error around the linear model ¢ is a random variable. That is, its magnitude is not
controlled by the analyst, but arises from the natural variability inherent in the system. ¢ has a
mean of zeto, and a constant variance 62 which does not depend on x. Due to the latter, ; is

independent of x;.

Regtression is performed by estimating the unknown true intercept and slope B, and By with by
and by, estimates derived from the data. As an example, in figure 9.1 the true linear relationship
between an explanatory variable x and the response variable y is represented by a solid line.
Around the line are 10 observed data points which result from that relationship plus the random

error g; inherent in the natural system and the process of measurement. In practice the true line
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is never known -- instead the analyst measures the 10 data points and estimates a linear
relationship from those points. The OLS estimate developed from the 10 measurements is

shown as the dashed line in figure 9.2.
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Figure 9.1 True linear relation between x and y, and 10 resultant measurements.
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Figure 9.2 True and estimated linear relation between x and y.
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If 10 new data points resulting from the same true (solid line) relationship are measured and
their OLS line computed, slightly different estimates of by and by result. If the process is
repeated several times, the results will look like figure 9.3. Some of the line estimates will fall
closer to the true linear relationship than others. Therefore a regression line should always be

considered as a sample estimate of the true, unknown linear relationship.
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Figure 9.3 True and several estimated linear relations between x and y.

Another way of describing the linear regression model is as an estimate of the mean of y, given
some particular value for x. This is called a conditional distribution. If x takes on the value x,
then y has a conditional mean of B, + Byx( and conditional variance 6. The mean is
"conditioned", or depends on, that particular value of x. Itis the value expected for y given that
x equals x(. Therefore:

the "expected value" of y given x E [y |xo] =By *+ B1xo

the variance of y given x, Var [y|xo] = o2

9.1.1 Assumptions of Linear Regression
There are five assumptions associated with linear regression. These are listed in table 9.1. The
necessity of satisfying them is determined by the purpose to be made of the regression equation.

Table 9.1 indicates for which purposes each is needed.
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Purpose
Predict y Predict y and | Obtain best [Test hypotheses,
given x a variance for | linear estimate
the unbiased confidence or
prediction estimator of | prediction
Assumption y intervals

(1) + + + +
Model form is correct: y is
linearly related to x

@) + + + +
Data used to fit the model
are representative of data of
interest.

3) + + +
Variance of the residuals is
constant (is homoscedastic).
It does not depend on x or
on anything else (e.g. time).

4 + +
The residuals are
independent.

5) +

The residuals are normally
distributed.

Table 9.1 Assumptions necessary for the purposes to which OLS is put.

+: the assumption is required for that purpose.

The assumption of a normal distribution is involved only when testing hypotheses, requiring the

residuals from the regression equation to be normally distributed. In this sense OLS is a

parametric procedure. No assumptions are made concerning the distributions of either the

explanatory or response variables. The most important hypothesis test in regression is whether

the slope coefficient is significantly different from zero. Normality of residuals is required for

this test, and should be checked by a boxplot or probability plot. The regression line, as a

conditional mean, is sensitive to the presence of outliers in much the same way as a sample

mean is sensitive to outliers.
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9.2 Computations

Linear regression estimation is nothing more than a minimization problem. It can be stated as
follows: find two numbers b() and by such that
2 (y, —y,)? is minimized, where , is the OLS estimate of y:
i=1
yi=bo+bixj.
This can be solved for by and by using calculus. The solution is referred to as the normal

equations. From these come an extensive list of expressions used in regression:

Formula Name
— 0 xj
x= 7 mean x
i=1
_ by
y= 2, meany
1=1
n n
Ssy = (v, -y) 2 = > Yiz - n(;)z sums of squares y = Total SS
5 i=1
n n
SS¢ = (x,—X) 2 = > ij - n(x )2 sums of squares x
=1 i=1
n n
Sxy = (x, —)-c)(yi -y) =Y (xjy) —n XYy sums of X y cross products
=1 i=1
by = Sy / S8 the estimate of By (slope)
by= y—by X the estimate of B, (intercept)

N
y i=bg + byxj the estimate of y given x;
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Formula Name
e =vyi— § i the estimated residual for obs. 1
¢ .2

SSE =Y e error sum of squares

=1
$ = (SSy = by Sxy) / (n=2) The estimate of 2, also called

n

=3 2/ (0-2) mean square error (MSE).
i=1

s =\ s> standard error of the regression or

standard deviation of residuals

SEB1) = s /A/ SSx standard error of By
1 x
SEBg) = s |—+—— standard error of B
nSS
r = SXy / SSXSSy the correlation coefficient
= b4/ SSx / SSy
R?= [SSy — §? (n=2)] / SSy coefficient of determination, or
=1-(SSE/ SSy) fraction of the variance explained
=12 by regression

9.2.1 Properties of Least Squares Solutions

1) If assumptions 1 through 4 are all met, then the estimators b() and bq are the minimum
variance unbiased estimators of () and B1.

2) The mean of the residuals (ej's) is exactly zero.

3) The mean of the predictions (y's) equals the mean of the observed responses (y's).

4) The regression line passes through the centroid of the data ( X ,y).

5) The variance of the predictions (y's) is less than the variance of the observed responses

(vi's) unless RZ = 1.0.
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9.3 Building a Good Regression Model

A common first step in performing regression is to plug the data into a statistics software
package and evaluate the results using R2.  Values of R close to 1 are often incorrectly deemed
an indicator of a good model. This is a dangerous, blind reliance on the computer software. An
R2 near 1 can result from a poor regression model; lower R2 models may often be preferable.
Instead of the above, performing the following steps in order will generally lead to a good

regression model.

The following sections will use the total dissolved solids (TDS) concentrations from the
Cuyahoga River at Independence, Ohio, 1974-1985 as an example data set. The data are found
in Appendix C9. These concentrations will be related to stream discharge (Q).
1) First step -- PLOT THE DATA!

Plot y versus x and check for two things

1a) does the relationship look non-linear?

1b) does the variability of y look markedly different for different levels of x?

800+
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200 | | T |
0 2000 4000 6000 8000

DISCHARGE, IN CFS

Figure 9.4 Scatterplot of the Cuyahoga R. TDS data

If the problem is curvature only (1a), then try to identify a new x which is a better linear

predictor (a transform of the original x or another variable altogether). When possible, use the
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best physically-based argument in choosing the right x. It may be appropriate to resort to
empirically selecting the x which works best (highest R?) from among a set of reasonable

explanatory variables.

If the problem is non-constant variance, (also called heteroscedasticity, 1b above) or both
curvature and heteroscedasticity, then transforming y, or x and y, may be called for. Mosteller
and Tukey (1977) provided a guide to selecting power transformations using plots of y versus x
called the "bulging rule". Going "up" the ladder of powers means 8 >1 (x2, etc.) and "down"
the ladder of powers means 6 <1 (log x, 1/x, \/? , etc.).

y up 1\ T y up
x down X up
- —_—
x down X up
y down l/ l, y down

Figure 9.5 The bulging rule for transforming curvature to linearity.
(after Mosteller and Tukey, 1977).

The non-linearity of the TDS data is obvious from figure 9.4, and some type of transformation
of the x variable (discharge, denoted Q) is necessary. The base 10 log of Q) is chosen, as the plot
has the shape of the lower left quadrant of the bulging rule, and so 8 <1. Figure 9.6 presents the
TDS data versus the log of Q. Linearity is achieved. There is some hint of greater variance
around the line at the lower Q's, but notice that there are also far more data at lower discharges.
The range of values can be expected to be greater where there is more data, so non-constant
variance is not proven. Therefore this transformation appears acceptable based on the first set
of plots.

2) Having selected an appropriate x and y, compute the least squares regression statistics,
saving the values of the residuals for further examination. In the regression results,
focus on these things:

2a) The coefficients, by and by: Are they reasonable in sign and magnitude? Do they lead to
predictions of unreasonable values of y for reasonable values of x (e.g., negative flows or

concentrations)?
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Figure 9.6 Scatterplot with regression line after transformation of x

The Cuyahoga TDS data have the following regression results:

TDS = 1125 - 242 log10 Q

n=80 s=7555 RZ = 0.57 SS¢ =10.23

Parameter Estimate Std.Exr(B) t-ratio p
Intercept B 1125.5 66.9 16.8 0.000
Slope B4 —241.6 23.6 -10.2 0.000

Table 9.2 Regression statistics for the Cuyahoga TDS data

It appears reasonable that TDS concentrations should be diluted with increasing stream
discharge, producing a negative slope. No negative concentrations result from

reasonable values for Q at this site.

2b) The R2: Does the regression explain much variance? Is the amount of variance
explained substantial enough to make it worthwhile to use the regression, given the risk
that the form of the model is likely to be imperfect? There is no general rule for what is

too low an R? for a useful regression equation.
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2c)

3a)

For the Cuyahoga data, 57% of the variance of total dissolved solids is explained by the
effect of log Q.

Look at the t-ratio (or t-statistics) on the two coefficients. These are the test statistics
needed for testing the null hypothesis that the coefficient is equal to zero. In particular,
look at the t-ratio on Bq. If |t|>2, reject ;=0 at a=0.05 for reasonably large sample
sizes and therefore assert there is a statistically significant linear relationship between x
and y. If the t-ratio is between —2 and +2, the observed relationship is no stronger than
what is likely to arise by chance alone in the absence of any real linear relationship. If
this is the case one should go back to step 1 or give up on the use of regression with this
data set. (The formalities of these hypothesis tests are given in a later section).

Both the intercept and slope of the TDS regression are significant at any reasonable o, as

shown by the large t-statistics and small p-values of table 9.2.

Examine adherence to the assumptions of regression using residuals plots. Three types
of residuals plots will clearly present whether or not the regression model adheres

sufficiently to the assumptions to be used.

Residuals versus predicted (e vs.y). Look for two possible problems: curvature and
heteroscedasticity. These are exactly the same problems described in step 1. However,
plotting residuals enhances the opportunity to see these problems as compared to
plotting the original data. The solutions to the problems are the same. Figure 9.7
presents an example of a good residuals plot, one where the residuals show no curvature
or changing variance. Figure 9.8, on the other hand, is a residuals plot which shows both
curvature and changing variance, producing the typical "horn" pattern which is often

correctable by taking the logarithms of y.

It is possible to read too much into these plots, however. Beware of "curvature"
produced by a couple of odd points or of error variance seeming to both grow and
shrink one or more times over the range of § . Probably neither of these can or should
be fixed by transformation but may indicate the need for the robust procedures of
Chapter 10.

In figure 9.9, the residuals from the Cuyahoga TDS regression are plotted versus its
predicted values. There is an indication of heteroscedasticity, though again there are
more data for the larger predicted values. There also appears to be a bow in the data,
from + to — and back to + residuals. Perhaps a transformation of the TDS
concentrations are warranted, or the incorporation of additional variables into the

regression equation.
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RESIDUALS

RESIDUALS
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Figure 9.7 Example of a residuals plot for a good regression model
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Figure 9.8 Residuals plot showing curvature and changing variance.
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RESIDUALS PLOT FOR C vs 1/(0.001*Q)
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Figure 9.9 Residuals plot of the Cuyahoga data.

3b) Residuals versus time (e vs. t). If there is any time or space order to the observations
(relating to time of collection, time of measurement, or map location), plot the residuals
versus time or season or time of day, or versus the appropriate 1- or 2-dimensional space
coordinate to see if there is a pattern in the residuals. A good residuals pattern, one with
no relation between residuals and time, will look similar to figure 9.7 -- random noise.
If on the other hand structure in the pattern over time is evident, seasonality, long-term
trend, or correlation in the residuals may be the cause. Trend or seasonality suggest
adding a new term to the regression equation (see Chapter 12). Correlation between

residuals over time or space require one of the remedies listed in section 9.5.4.

Correlation between residuals over time or space may not be evident from the ej versus
§ residuals plot (figure 9.10a), but will stand out on a plot of ej versus time (9.10b). The
nonrandomness is evident in that positive residuals clump together, as do negative -- a
positive correlation. Plotting the ith versus the (i-1)th residual shows this pattern more
strongly (9.10c). If time or space are measured as categorical variables (month, etc.), plot
boxplots of residuals by category and look for patterns of regularity. Where no
differences occur between boxes, the time or space variable has no effect on the

response variable.
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N
a) Residual ¢j vs y plot shows no hint of correlation over time
b) Time series of residuals shows ¢ related to time

c) Correlation of e vs. e(i-1)

In figure 9.11, boxplots of TDS residuals by month show a definite seasonality, with generally

high residuals occurring in the winter months, low residuals in the summer, and unusually high

values in September. Thus the regression equation will underpredict concentrations in the
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winter and overpredict in the summer. This pattern may be due to washoff of road de-icing salts
in the winter. The unknown cause of the September anomalies should be investigated further.
To better mimic the seasonal variation, other explanatory variables must be added. This will be
discussed in Chapter 12.
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Figure 9.11 Residual of TDS concentrations by month. Note the seasonality.

3c) Normality of residuals. Examine the distribution of residuals using a boxplot, stem and
leaf, histogram, or normal probability plot. If they depart very much from a normal
distribution, then the various confidence intervals, prediction intervals, and tests
described below will be inappropriate. Specifically,
(i) hypothesis tests will have low power (slopes or explanatory variables will falsely be
declared insignificant), and
(i) confidence or prediction intervals will be too wide, as well as giving a false

impression of symmetry.

A boxplot of residuals from the TDS-logQ) regression shown in figure 9.12 is mildly
right-skewed, with several outliers present. A probability plot of the residuals (figure
9.13) shows a slight departure from normality. If these were the only problems,

transformation of the y variable might not be warranted. But combined with the
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problems already noted above of curvature and heteroscedasticity, further work is

required.
— T .
-140 -7 @ 70 140 1@

Figure 9.12 Boxplot of the TDS regression residuals

For further attempts to find an appropriate transformation of the Cuyahoga data,

see problem 9.1 at the end of this chapter.
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Figure 9.13 Probability plot of the TDS regression residuals

3d) Residuals versus other explanatory variables. To determine whether other explanatory

variables should be included into a multiple regression model, boxplots of residuals by
categorical explanatory variables or scatterplots versus continuous variables should be
plotted. If something other than a random pattern occurs, that variable or one like it
may be appropriate for adding to the regression equation. Figure 9.14 for example might
result from plotting residuals from a regression of radon concentrations in water versus
uranium content of rocks. using different symbols for wells and springs. The residuals
for wells tend to be larger than those for springs, as also shown by the boxplots at the

side. Incorporating an additional explanatory variable for "water source" into the
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regression equation using the techniques of Chapter 11 explains more of the noise in the

data, improving the model.
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Figure 9.14 Residuals plotted by an additional explanatory variable.

4) Use the regression diagnostics of section 9.5 to ensure that one or two observations are
not strongly influencing the values of the coefficients, and to determine the quality of
predicted values. These diagnostics duplicate much of what can be seen with plots for a
single explanatory variable, but become much more important when performing multiple

regression.

9.4 Hypothesis Testing in Regression

9.4.1 Test for Whether the Slope Differs from Zero
The hypothesis test of greatest interest in regression is the test for a significant slope (B).
Typically, the null hypothesis is
Hy: B1=0
versus the alternative hypothesis
Hy: B1#0.

The null hypothesis also states that the value of y does not vary as a linear function of x. Thus
for the case of a single explanatory variable this also tests for whether the regression model has
statistical significance. A third interpretation is as a test for whether the linear correlation

coefficient significantly differs from zero. The latter two interpretations are not applicable for
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multiple explanatory variables. The test statistic computed is the t-ratio (the fitted coefficient
divided by its standard error):

b1 ~ry/n2
TS ASSy Af1a2

Hy is rejected if | t]|> terit , whete terit is the point on the Student's t distribution with n—2

degrees of freedom, and with probability of exceedance of o./2.
Note that when 0=0.05 and n>30 terit = 2.0
and when 0=0.01 and n>30 terit = 2.6.

For the Cuyahoga TDS example the t-statistic for f; was much greater than 2, and indeed was
significant at the oo = 0.0001 level. Therefore a strong linear correlation exists between TDS and

log1( of Q.

This test for nonzero slope can also be generalized to testing the null hypothesis that B; =P

where B;" is some pre-specified value. For this test the statistic is defined as

b1 - bl*

BN S

9.4.2 Test for Whether the Intercept Differs from Zero
Tests on the intercept by can also be computed. The test for

Hp: bg=0
is usually the one of interest. The test statistic is
bo
t=
S
S\ n "SS,

Hy is rejected if |t|> tcrit where terit is defined as in the previous test. From table 9.2 the
intercept for the TDS data is seen to be highly significantly different from 0.

It can be dangerous to delete the intercept term from a regression model. Even when the
intercept is not significantly different from zero, there is little benefit to forcing it to equal zero,
and potentially great harm in doing so. Regtession statistics such as R2 and the t-ratio for B lose
their usual meaning when the intercept term is dropped (set equal to zero). Recognition of a
physical reason why y must be zero when x is zero is not a sufficient argument for setting b =
0. Probably the only appropriate situation for fitting a no-intercept model is when all of the

following conditions are met:


jkmonson
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1) the x data cover several orders of magnitude,
2) the relationship cleatly looks linear from zero to the most extreme x values,
3) the null hypothesis that B = 0 is not rejected, and

4) there is some economic or scientific benefit to dropping the intercept.

9.4.3 Confidence Intervals on Parameters

Confidence intervals for the individual parameters By, By, and 62 indicate how well these can be
estimated. The meaning of the (1-0)*100% confidence interval is that, in repeated collection of
new data and subsequent regressions, the frequency with which the true parameter value would
fall outside the confidence interval is o. For example, oo = 0.05 confidence intervals around the
estimated slopes of the regression lines in figure 9.3 would include the true slope 95% of the

time.
For the slope B the confidence interval (C.1.) is

ts ts
(blk/ssx ’ b“ﬂ/ssX j

where t is the point on the student's t-distribution having n—2 degrees of freedom with a

probability of exceedance of o./2.

For the intercept B the C.I. is

1 % 1 x
by—ts |—+—=.b,+ s |— +——
n SSX n SSx

where t is defined as above.

For the variance 62 (also called the mean square error MSE), the C.1. is

(n=2)s* (n-2)s’
ZZ ’ 2

l—a/2 al2

where sz is the quantile of the chi-square distribution having n—2 degrees of freedom with
exceedance probability of p.

As an example, the 95% confidence intervals for the Cuyahoga TDS data are:

1.99¢ 75.6 1.99+ 75.6

For pi:[241.6 - ——=== | 241.6 + === | = (-288.6,-194.6
Orm( 1023 ° \10.23 ) ( : )

1 2812 1, 2812
For B0: | 1125.5 - 1.99°75.6 "\ [ g5 + T0.03 » 11255+ 1.99°75.6"\ /30 * 1023

= (991.8, 1258.7)
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(78) 5708 (78) 5708
1043 > 555

For ¢ ( ) = (4269 , 8022)

9.4.4 Confidence Intervals for the Mean Response

There is also a confidence interval for the conditional mean of y given any value of x. If xis a
specified value of x, then the estimate of the expected value of y at x() is

§ = by *+bq x(, the value predicted from the regression equation. But there is some uncertainty
to this, associated with the uncertainty for the true parameters B and By. The (1-0)*100%

confidence interval for the mean y is then

T N TS
YIS |—+ — Y+ | —+ ————
n SSX n SSX

where t is the quantile of the students' t-distribution having n—2 degrees of freedom with
probability of exceedance of 0/2. Note that the confidence interval is two-sided, requiring a
t-statistic of o./2 for either side. Also note from the formula that the farther x) is from X the
wider the interval becomes. That is, the model is always "bettet" near the middle of the x values

than at the extremes.

To continue the Cuyahoga TDS example, the confidence interval for the mean y is calculated for
two values of x(, 3.0 (near X ) and 3.8 (far from Xx):

2 2
1 3.0-2.81 1 3.0-2.81
for x5 = 3.0: 399 - 1.99¢75.6 307t GU-281)7 , 399 + 1.99¢75.6 202807 j

10.23 80 " 1023
= (380, 418)
2 2
~ 1 (3.82.81) 1 (3.8:2.80)
forxg =38 |2054-1.9975.6\ |55+ 103 » 2054+ 1.9975.6\ |55+ 1003 j
= (155.9, 254.9)

a confidence interval of width 38 at x; = 3.0, and a width of 99 at x; = 3.8.

When the confidence interval for each logQ) value is connected together, the characteristic
"bow" shape of regression confidence intervals can be seen (figure 9.15). Note that this shape
agrees with the pattern seen in figure 9.3 for randomly generated regression lines, where the

positions of the line estimates are more tightly controlled near the center than near the ends.
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Figure 9.15 Confidence intervals for mean TDS for the Cuyahoga River data.

9.4.5 Prediction Intervals for Individual Estimates of y

The prediction interval, the confidence interval for prediction of an estimate of an individual y,
is often confused with the confidence interval for the mean. This is not surprising, as the best
estimate for both the mean of y given x and for an individual y given x) are the same -y .
However, their confidence intervals differ. The formulas are identical except for one very
important term. The prediction interval incorporates the unexplained variability of y (62) in
addition to uncertainties in the parameter estimates By and . The (1-0)*100% prediction

interval for a single response is

. EC R 1 (x,=X)
y —tsl+—+—"——, J +is[l+—+—"—
n SS n SS

X

X

where all of the terms are as defined previously. Note that these intervals widen as x( departs
from x, but not nearly as markedly as the confidence intervals do. In fact, a simple rough
approximation to the prediction interval is just (§f\ —ts, yA + ts), two parallel straight lines. This
is because the second and third terms inside the square root are negligible in comparison to the
tirst, provided the sample size is large. These prediction intervals should contain approximately
1-02(100)% of the data within them, with a,/2¢(100)% of the data beyond each side of the

intervals. They will do so if the residuals are approximately normal.
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The prediction intervals for the Cuyahoga TDS data are plotted in figure 9.16. They are
computed below for x5 = 3.0 and 3.8.

for x5 = 3.0:
2 2
1 (3.0-2.81) 1 (3.0-2.81)

(399 —1.99°75.6\/1+ 30 + 10.23 , 399 + 1.99'75.6\/1 + 30 + 1023 ]

= (247.4,550.0)
for xj = 3.8:

2 2
1 (3.8-2.81) 1 (3.8-2.81)

(205.4—1.99°75.6\/1+ 30 + 1023 , 205.4 + l.99°75.6\/1 + 30 + 1023 )

= (47.0, 363.8)

a prediction interval of width = 303 at x; = 3.0, and a width of 317 at xj = 3.8. Note that the
prediction intervals are much wider than the confidence intervals, and that there is only a small
difference in width between the two prediction intervals as x( changes. Also note from figure
9.16 that the data appear skewed, with all of the values found beyond the prediction intervals
falling above the upper interval.
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Figure 9.16 Prediction intervals for an individual TDS estimate -- Cuyahoga River.
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9.4.5.1 Nonparametric prediction interval
There is also a nonparametric version of the prediction interval. This might be used when the
x,y data display a linear relationship and residuals have constant variance (homoscedastic), but
the distribution of the residuals appears non-normal. Typically, such departures from normality
take the form of skewness or an excessive number of outside or far outside values (as seen in a
boxplot). The nonparametric prediction interval is

(V +ews ¥ +ew)
where e and e(y) are the 1-0/2 and a,/2th quantiles of the residuals.

In other words, e is the Lth ranked residual and e(y is the Uth ranked residual, where
L= (nt+1)e0/2and U = (n+1)*(1-0/2). When L and U are not integers either the integer
closest to I. and U can be chosen, or (1) and e(u) can be interpolated between adjacent

residuals.

For the Cuyahoga TDS data, .= 81.025 = 2.025 and U= 81+.975 = 78.975. Either the 2nd and
79th ranked residual can be selected, or values interpolated between the 2nd and 3rd, and the
78th and 79th residual. These are then added to the regression line (y). In figure 9.17 the
nonparametric prediction interval is compared to the one previously developed assuming
normality of residuals. Note that the nonparametric interval is asymmetric around the central
regression line, reflecting the asymmetry of the data.
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Figure 9.17 Nonparametric and parametric prediction intervals for the TDS data.
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9.5 Regression Diagnostics

One common mistake in regression analysis is to base decisions about model adequacy solely on
the regression summary statistics--principally R2, s and the F- or t-test results. RZ is 2 measure
of the percent of the variation in the response (y) variable that is accounted for by the variation
in the explanatory variables. The s (standard error of the regression or standard deviation of the
residuals) is a measure of the dispersion of the data around the regression line. Most regression
programs also perform an overall F-test to determine if the regression relationship is statistically
significant, ie. that the apparent relationship between y and x is not likely to arise due to chance
alone. Some programs also do a t-test for each explanatory variable to determine if the

coefficient for that variable is significantly different from zero.

These statistics provide substantial information about regression results. An equation that
accounts for a large amount of the variation in the response variable and has coefficients that are
statistically significant is highly desirable. However, decisions about model adequacy cannot
be made on the basis of these criteria alone. A large R2 or significant F-statistic does not
guarantee that the data have been fitted well. Figure 9.18 (Anscombe, 1973) illustrates this
point.

The data in the four graphs have exactly the same summary statistics and regression line (same
bo, b1, s, Rz). In 9.18a is a perfectly reasonable regression model, an evidently linear
relationship having an even distribution of data around the least-squares line. The strong
curvature in 9.18b suggests that a linear model is highly inadequate and that some
transformation of x would be a better explanatory variable, or that an additional explanatory
variable is required. With these improvements perhaps all of the variance could be explained.
Figure 9.18c illustrates the effect of a single outlier on regression. The line mis-fits the data, and
is drawn towards the outlier. Such an outlier must be recognized and carefully examined to
verify its accuracy if possible. If it is impossible to demonstrate that the point is erroneous, a
more robust procedure than regression should be utilized (see Chapter 10). The regression slope
in 9.18d is strongly affected by a single point (the high x value), with the regression simply
connecting two "points", a single point plus a small cluster of points. Such situations often
produce R2 values close to 1, yet may have little if any predictive power. Had the outlying point
been in a different location, the resulting slope would be totally different. For example, the only
difference between the data of figure 9.19a and 9.19b is the rightmost data point. Yet the slopes
are entirely different! Regression should not be used in this case because there is no possible
way to evaluate the assumptions of linearity or homoscedasticity without collecting more data in
the gap between the point and cluster. In addition, the slope and R? are totally controlled by the

position of one point, an unstable situation.
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Figure 9.18 Three key pathologies in regression (after Anscombe, 1973).

© American Statistical Association. Used with permission.

The three key pathologies can be referred to by simple names: curvature (9.18b), outlier or large
residual (9.18c¢), and high influence and leverage (9.18d). They are generally easy to identify
from plots (y vs. x, of e vs. y ) in a linear regression with one explanatory variable. However, in
multiple linear regression they are much more difficult to visualize or identify, requiring plots in
multi-dimensional space. Thus numerical measures of their occurrence, called "regression

diagnostics", have been developed.

Equations for diagnostics useful in identifying points of leverage, influence, or outliers are given
here in terms of the two dimensions (x,y) applicable to simple linear regression (SLR). Each can
be generalized using matrix notation to a larger number of dimensions for multiple linear
regression (MLR). Further references on regression diagnostics are Belsley, Kuh, and Welsch
(1980), Draper and Smith (1981), and Montgomery and Peck (1982).
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9.5.1 Measures of Outliers in the x Direction

9.5.1.1 Leverage

Leverage is a measure of an "outlier" in the x direction, as in graph 9.18a. Itis a function of the
distance from the ith x value to the middle (mean) of the x values used in the regression.
Leverage is usually denoted as hj, the ith diagonal term of the "hat" matrix X (X'X)"1 X', or for
SLR
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Figure 9.19 Influence of location of a single point on the regression slope.

A high leverage point is one where hj > 3p/n where p is the number of coefficients in the model
(p=21in SLR, b and b1). Though leverage is concerned only with the x direction, a high
leverage point has the potential for exerting a strong influence on the regression slope. If the
high leverage point falls far from the regression line that would be predicted if it were absent
from the data set, then it is a point with high influence as well as high leverage (figure 9.19b).

9.5.2 Measures of Outliers in the y Direction

9.5.2.1 Standardized residual
One measure of outliers in the y direction is the standardized residual egi. It is the actual

. A . .
residual ej = yj — y i standardized by its standard error.

10
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!

eSi:s«/l—hi

An extreme outlier is one for which |egi|>3. There should be only an average of 3 of these in
1,000 observations if the residuals are normally distributed. |egi|>2 should occur about 5 times
in 100 observations if normally distributed. More than this number indicates that the residuals
do not have a normal distribution.

9.5.2.2 Prediction residuals and the PRESS statistic

A very useful form of residual computation is the prediction residual e(j). These are computed
as e(i) = vi- ?(1) where /};(1) is the regression estimate of yj based on a regression equation
computed leaving out the ith observation. The (i) symbolizes that the ith observation is left out
of the computation. These are easily calculated using leverage statistics without having to

perform n separate regressions:

ey =ei/ (1 —hyp.

One of the best measures of the quality of a regression equation is the "PRESS" statistic, the

"PRediction Error Sum of Squares."

n
PRESS = 2 e(i)2
1=1

PRESS is a validation-type estimator of error. Instead of splitting the data set in half, one-half
to develop the equation and the second to validate it, PRESS uses n—1 observations to develop
the equation, then estimates the value of the one left out. It then changes the observation left
out, and repeats the process for each observation. The prediction errors are squared and
summed. Minimizing PRESS means that the equation produces the least error when making
new predictions. In multiple regression it is a very useful estimate of the quality of possible

regression models.

9.5.2.3 Studentized residuals
Studentized residuals (TRESIDs) are used as an alternate measure of outliers by some texts and

computer software. They are often confused with standardized residuals.
€ej e 1-hj
sy TFhi - s0)

(n-p)sZ-[e®?/ (1-hj]
() n-p-1

TRESID;

where
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TRESIDs are often similar to the standardized residuals egj, but are computed using a variance
sz(j) which does not include their own observation. Therefore an unusually large observation
does not inflate the estimate of variance used to determine whether that observation is unusual,
and outliers are more easily detected. Under a correct model with normal residuals, TRESIDs
have the theoretical advantage that they should follow a t-distribution with n—p—1 degrees of

freedom.

9.5.3 Measures of Influence
Observations with high influence are those which have both high leverage and large outliers
(figure 9.19b). These exert a stronger influence on the position of the regression line than other

observations.

9.5.3.1 Cook's D

One of the most widely used measures of influence is "Cook's D" (Belsley et al., 1980).
oo ehi o epPhi

PiT 2wz T2

The ith observation is consideted to have high influence if Dj > F(p+1 n—p) at ¢=0.1 where p is
again the number of coefficients. Note that, for SLR with more than about 30 observations, the
critical value for Dj would be about 2.4, and for MLR with several explanatory variables the
critical value would be in the range of 1.6 to 2.0. Finding an observation with high Cook's D
should lead to a very careful examination of the data value for possible errors or special
conditions which might have prevailed at the time it occurred. If it can be shown that an error
occutrred, the point should be corrected if possible, or deleted if the error can't be corrected. If
no error can be proven, two options can be considered. A more complex model which fits the
point better is one option. The second option is to use a more robust procedure such as that
based on Kendall's T (for one x variable) or weighted least squares (for more than one x

variable). These methods for "robust regression” are discussed in Chapter 10.

9.5.3.2 DFFITS
The second influence diagnostic, related to TRESIDs, is the DFFITS:
cin/ hi e/ hi
sy (1hi)  — sgi
An observation is considered to have high influence if | DFFITS;| = 2 m .

DFFITS; =

The identification of outliers can be done with either standardized or studentized tesiduals, and
the identification of highly influential points can be done with either DFFITS or Cook's D. The
leverage statistic identifies observations unusual in x. PRESS residuals are rarely used except to

sum into the PRESS statistic, in order to compare competing multiple regression models.
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Example 1

The data of figure 9.19a were analyzed by regression, and the above diagnostics calculated.
These data exhibit high leverage but low influence, as removal of the one outlier in the x
direction will not appreciably alter the slope of the regression line. The regression results are
given in Table 9.3. The only unusual value is the leverage statistic h; for the last point, the one
which plots to the right on the graph. A value of

3p/n = 0.6, so the 0.919 for this point shows it to be one of high leverage.

y = 2.83 + 0.60 x

a=10 s =0.43 RZ = 0.94

Parameter Estimate Std.Exr(B) t-ratio _p

Intercept B 2.828 0.195 14.51 0.000

Slope B4 0.596 0.054 10.98 0.000

OBS# ej hj e(i) e std estud DFFITS Dj

1 —-0.377 0.188 —0.465 —-0.974 —-0.970 —0.467 0.110
2 0.085 0.131 0.098 0.213 0.200 0.077 0.003
3 0.804 0.126 0.920 1.997 2.640 1.005 0.289
4 —0.219 0.122 -0.249 -0.543 —-0.518 -0.193 0.020
5 —0.484 0.104 -0.541 -1.189 —-1.226 —-0.419 0.082
6 0.204 0.104 0.228 0.501 0.476 0.162 0.014
7 0.380 0.101 0.423 0.931 0.922 0.309 0.048
8 0.059 0.100 0.066 0.146 0.136 0.045 0.001
9 —0.462 0.101 —-0.514 -1.132 —-1.156 —0.388 0.072

—_
)

0.010 0.919 0.132 0.087 0.081 0.276 0.043

Table 9.3 Regression statistics for the data of Figure 9.19a

Table 9.4 presents the analysis of the data for figure 9.19b. Note that the equation and ensuing
R are quite different. Only y for the 10th observation was changed from its previous value.
Note also that the influence statistics DFFITS and D;j are large. The 10th observation is one of
high influence, showing that the line computed with this point deleted is quite different than the
one with it included. This is also demonstrated by the prediction residual e(j), whose absolute
value is also large. The leverage statistic is unchanged from 9.19a, as the x position has not

changed.

It is also quite important to note the values for the 10th observation which are not large -- the
residual itself (ej) and the standardized residual (e std). These statistics do not indicate the

magnitude of the problem. Therefore residuals plots which use ej or
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e std may not display influential observations as such, because the line has been so drawn near to

the outlier that its residual does not appear unusual.

9.5.4 Measures of Serial Correlation
One of the assumptions of regression is that the residuals ej are independent. Many hydrologic
data sets on which regression is performed are actually pairs of time series -- precipitation and
flow, flow and concentration, concentration of one constituent versus concentration of another.
These series often exhibit serial correlation, the dependence or correlation in time sequence
between residuals, violating the assumption of independence (figure 9.10). If the sampling
frequency is high enough, serial correlation of the residuals is virtually certain to exist. If serial
correlation occurs, the following two problems ensue:
1) The estimates of the regression coefficients are no longer the most efficient estimates
possible, though they remain unbiased, and

2) The value of s2 may setiously underestimate the true 2.

This means that all of the hypothesis tests are wrong (H() is rejected too easily) and that

confidence and prediction intervals are too narrow.

V¢ = 3.65 + 0.11 x*

n=10 s = 0.60 RZ = 0.21
Parameter Estimate Std.Err(B) t-ratio _p
Intercept B 3.648 0.270 13.53 0.000
Slope B4 0.111 0.075 1.48 0.000
OBS# ej hj e(i) e std estud DFFITS Dj

1 —1.096 0.188 —-1.350 —=2.042 -=-2.761 —-1.330 0.483

2 —0.166 0.131 —-0.192 -0.300 —-0.282 —0.109 0.006

3 0.599 0.126 0.687 1.077 1.090 0.415 0.084

4 —-0.370 0.122 -0.421 -0.663 —0.638 —0.238 0.030

5 —0.325 0.104 -0.363 —0.576 —0.551 —0.188 0.019

6 0.373 0.104 0.417 0.662 0.637 0.217 0.025

7 0.680 0.101 0.757 1.204 1.245 0.417 0.081

8 0.534 0.100 0.594 0.945 0.938 0.313 0.049

9 0.099 0.101 0.110 0.176 0.165 0.055 0.001

10 —0.329 0919 —4.117 -1.955 -2.531 -8.579 21.961

Table 9.4 Regression statistics for the data of Figure 9.19b

One can search for the presence of serial correlation in two ways. The first is graphical: plotting

ej versus i or a measure of time (figure 9.10b). If there is a tendency for the data to "clump,"
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positives follow positives, negatives follow negatives, this may mean there is dependence. The
clumping could arise for four different reasons: long-term trend, seasonality, dependence on
some other serially correlated variable which was not used in the model, serial dependence of
residuals, or some combination of these. Examination of a graph of ej versus time should help
to reveal trend or seasonality if they exist. If there is reason to believe it is trend or seasonality
(or both), then steps should be taken to remove these features from the residuals by adding
additional explanatory variables. Similarly, if there is an important variable missing from the
model, plots of ej versus this variable should show it, and incorporating this new variable may
remove the clumpiness of the residuals. This is particularly likely if this new explanatory variable
exhibits serial dependence, seasonality, or trend. The residuals from these new regressions can
be plotted again to see what effect this had.

9.5.4.1 Durbin-Watson statistic
There are also statistics for evaluating the dependence of residuals. The standard one is the
Durbin Watson statistic (Durbin and Watson, 1951). It is very closely related to a serial

correlation coefficient. The statistic is
n

Y lei - e-1))?
i=2

A small value of d is an indication of serial dependence. The H that the ej are independent is
rejected in favor of serial correlation when d<dp, which is tabled in time-series texts. The value
of dy, depends on the size of the data set, the number of explanatory variables, and o. However,
a low value of d will not give any clue as to its cause. Thus, the graphical approach is vital, and
the test is only a check. The Durbin Watson statistic requires data to be evenly spaced in time

and with few missing values.

9.5.4.2 Serial correlation coefficient

Serial correlation can also be measured by the correlation coefficient between a data point and
its adjacent point. As a linear relationship between pairs of points cannot be assumed, the
Kendall's or Spearman's coefficients will provide robust measures of serial dependence. To

compute whether this serial dependence is in fact significant,

1) Compute the regression between y and x.

2) Order the resulting residuals by the relevant time or space variable t; to tp.
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3) Offset or "lag" the vector of residuals to form a second vector, the lagged residuals. The
residuals pairs then consist of (ej, ej—1) for all i from t to tn. Figure 9.10c plots one such
set of data pairs, illustrating their correlation.

4) Compute Kendall's tau (or Spearman's tho) between the pairs (ej, ej—1). If the

correlation is significant, the residuals are serially correlated.

9.5.4.3 What to do if serial correlation is present
If serial dependence cannot be removed by adding new variables, and one wants to make
inferences about parameters, then these three options are available.

1) Sample from the data set. For example, if the data set is quite large and the data are
closely spaced in time (say less than a few days apart), then simply discard some of the
data in a regular pattern. The dependence that exists is an indication of considerable
redundancy in the information, so not a great deal is lost in doing this.

2) Group the data into time periods (e.g., weeks, months) and compute a summary statistic
for the period such as a time-weighted mean or median, a volume-weighted mean or
median, and then use these summary statistics in the regression. This should only be
done when the sampling frequency has remained unchanged over the entire period of
analysis.

3) Use much more sophisticated estimation methods, specifically Box and Jenkins (1976)

transfer function models, or regression with autoregressive errors Johnston (1984).

9.6 Transformations of the Response (y) Variable

The primary reason to transform the response variable is because the data are heteroscedastic --
the variance of the residuals is a function of x. This situation is very common in hydrology. For
example, suppose a rating curve between stage (x) and discharge (y) at a stream gage has a
standard error of 10 percent. This means that whatever the estimated discharge, the standard
error is 10 percent of that value. The absolute magnitude of the variance around the regression
line between discharge and stage therefore increases as estimated discharge increases. The ideal
variance stabilizing transformation in these cases is the logarithm because a multiplicative
relationship, such as standard error = 0.10*estimate, becomes a constant additive relationship
after log transformation. This satisfies the regression assumptions. The two topics that require
careful attention when transforming y are:

1) deciding if the transformation is appropriate, and

2) interpreting resulting estimates.

9.6.1 To Transform or Not to Transform?
The decision to transform y should generally be based on graphs. First develop the best possible

non-transformed model. This should entail considering all sorts of transformations of x (or
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multiple x variables) to get a good and reasonable fit. Then plot ¢j vs. § i to check for
heteroscedasticity, do a probability plot for ej to check for normality, and examine the function
for unreasonable results (i.e., predictions of negative values for variables that can't go negative).
If serious problems arise for any of these reasons, transform y and repeat the process. If both
the transformed and untransformed scales have problems, then either look for a different

transformation or accept the lesser of two evils.

Two methods are available to numerically judge whether or not to transform y. The first is to
perform a series of transformations, perform regressions, and choose the transformation which
maximizes the probability plot correlation coefficient (PPCC) for the regression residuals. This
optimizes the normality of residuals. The second method is similar, optimizing for linearity. It
searches for the minimum sum of squared errors SSE from a series of regressions using
transformed and scaled y variables (Montgomery and Peck, 1982, p.94). The transformations
used are scaled versions of the ladder of powers called "Box-Cox transformations". Scaling is
required in order to compare the errors among models with differing units of y. Either
numerical method can be a useful guide to selecting several candidate transformations from

which to choose. However, the final choice should be made only after looking at residuals plots.

The key thing to note here is that comparisons of R2, s, or F statistics between transformed
and untransformed models cannot easily be used to choose among them. Fach model is
attempting to predict a different variable (y, log(y), 1/y, etc.). The above statistics therefore
measure how well different variables are predicted, and so cannot be directly compared.

Instead, the appropriate response variable is one which fits the assumptions of regression well --
linear and homoscedastic, having a good residuals plot. Once a hydrologist has developed some
experience with certain kinds of data sets, it is quite reasonable to go directly to the appropriate
transformation without a lot of investigation. One helpful generalization is that any y variable
that covers more than an order of magnitude of values in the data set, as sediment discharge or

bacterial densities typically do, probably needs to be transformed.

9.6.2 Consequences of Transformation of y
Let's take a particular, but rather common, case of a transformed regression problem. The

model is
InL) =B+ P11nQ +e

where In is the natural log, L is constituent load (tons/day), and Q is discharge (cubic feet per

second). Let us further assume that the ¢ values are normal with mean zero and variance o2.

Figure 9.20 illustrates a data set typical of such L vs. Q data, shown here as a log-log plot. The
lines results from a SLR done in log units. The middle line is the regression line and the 50%

and 95% prediction intervals are shown. Note that, because of the normality assumption, the
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prediction intervals are symmetric about the regression line. For any given Q) value the five lines
on the graph represent five different percentage points on the conditional distribution of In(L).
They are the 2.5, 25, 50 (median), 75, and 97.5 percentage points. The median also happens to
be the conditional mean for In(L)) because when normality is assumed the median = mean. So

the regression line falls on both the conditional median and mean value for In(L).

Figure 9.21 takes each of these data points and lines and replots them in the original units (L
versus Q). The five curves remain the 2.5, 25, 50, 75, and 97.5 percentage points on the
conditional distribution. Now however this distribution of L. conditional on Q) is lognormal, not
a normal distribution. Note the asymmetry of the curves around the regression line. Fora
lognormal distribution the mean is not equal to the median. While the central line remains the
conditional median following transformation, the conditional mean of L will always lie

somewhere above the regression line.

100000

10000

Legend
o DATA

MEDIAN

95% P.|.

50% P.I.

1000

LOAD

100

95% P.|.

100 400
DISCHARGE

Figure 9.20 Prediction intervals and log-log regression in log units.



Simple Linear Regression 255

100000+
80000
n 60000 o
g 5 Legend
h
40000- ° © DATA
MEDIAN
° "““- - g‘ﬁ?’:ol IIPIIIIIII i
' 50%Pl.__
0% Pl
L g‘ﬁ?’:ol IIPIII v
10 60 110 160 210 260 310
DISCHARGE

Figure 9.21 Prediction intervals and log-log regression re-expressed in original units.

9.6.3 Computing Predictions of Mass (Load)

9.6.3.1 Median or "rating curve" estimate of mass

When the objective is estimating the mass of sediment (or nutrient or contaminant) entering a
lake, reservoir, or estuary, the mean for each of many short time periods can be estimated by
regression and summed to estimate the total (or mean) mass over a longer time period. This is
appropriate because the sum of the means equals the mean of the sum. However, simply
transforming estimates from a log-regression equation back into the original units for y provides
a median estimate of L, not a mean. Unfortuantely, this has been the traditionally-used method
since Miller (1951). The sum of these medians provides an estimate of the mean of L. which is
biased low. As the sum of the medians is not the median of the sum, it is difficult to state what
the sum of these median values represents, except that it underestimates the long-term mean
load.

Ferguson (19806) points out for some very realistic cases that using the median or rating curve

estimate for loads:

L m = exp [bo + b1 In(Qq)]
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will result in underestimates of the mean by as much as 50%. The question then is how to
compensate for this bias. The following two methods, one assuming a normal distribution of
the logs and the other a nonparametric method, attempt to correct for this bias of the median
estimate.

9.6.3.2 Parametric or "MLE" estimate of mass

If the residuals in natural log units were known to be normal and the parameters of the model
(Bo, B1, 02) were known without error, the theory of the lognormal distribution (Aitchison and
Brown, 1981) provides the following results:

Median of L given Qg =exp [Bo + B1 In(Qo)] =Lm
= exp [Bo] *+ QP!

Mean of L given Qq =E [L]Qq] =exp [B0 *+ B1 In(Qp) + 0.5 (52]
= Lm * exp [0.5 62]

Variance of L given Qq =V [L|Qo] = [Lm *exp(0.5 62)]2 * [exp(c?) — 1]
These equations would differ if base 10 logarithms were used (Ferguson, 1980).

Unfortunately the true population values By, B1, and o2 are never known in practice. All that is
available are the estimates bg, b1, and s2. Ferguson (1986) assumed these estimates were the true

values for the parameters. His estimate of the mean is then
AN

Lyig = exp [by + by In(Qq) + 0.5 s2]

When n is large (>30) and o is small (<0.5), ﬁ MLE 1s a very good approximation. However,
when n is small or ¢ is large, it can overestimate the true mean -- it overcompensates for the
bias. There is an exact unbiased solution to this problem which was developed by Bradu and
Mundlak (1970). Itis not given here due to the complexity of the formula. Its properties are
discussed in Cohn (1988). Even so, the validity of Bradu and Mundlak's solution depends on

the normality of the residuals which can never be assured in practice.

9.6.3.3 Nonparametric or "smearing" estimate of mass

There is an alternative approach which only requires the assumption that the residuals are
independent and homoscedastic. They may follow any distribution. This is the "smearing"
estimate of Duan (1983). In the case of the log transform it is

n
Y exp [ej]

i=1
Lp = exp [bo + b1 In(Qo)]
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The smearing estimator is based on each of the residuals being equally likely, and "smears" their
magnitudes in the original units across the range of x. This is done by re-expressing the residuals
from the log-log equation into the original units, and computing their mean. This mean is the
"bias-correction factor" to be multiplied by the median estimate for all xg. Even when the
residuals in log units are normal, the smearing estimate performs very nearly as well as Bradu
and Mundlak's unbiased estimator. It avoids the overcompensation of Ferguson's approach. As
it is robust to the distribution of residuals, it is the most generally-applicable approach.

The smearing estimator can also be generalized to any transformation. If Y = f(y) where y is the
response variable in its original units and f is the transformation function (e.g., square root,

inverse, or log), then

n
Z £1 (o + b1 X0 + ¢

A _ 1i=1

YD - n

where b() and b1 are the coefficients of the fitted regression and ej are the residuals
Yi=bo+b1 X)+ej,f -1 is the inverse of the selected transformation (e.g., square, inverse,

or exponential, respectively) and X() is the specific value of X for which we want to estimate y.

9.6.4 An Example

Total phosphorus loads are to be estimated for the Illinois River at Marseilles, Illinois, drainage
area 8259 square miles, for the period 1972-1985. The data are contained in Appendix C10.
The 96 measurements of load are plotted in figure 9.22 as a function of discharge. As loads
were not sampled for each day during this time period, estimates of load for unsampled days are

to be obtained from a regression equation as a function of discharge.
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Figure 9.22 Total phosphorous load and stream discharge for the Illinois River

The first question is whether a log transform of load is necessary to develop a good prediction
equation. From figure 9.22, the variance appears to greatly increase as discharge increases.
Therefore a log transformation of phosphorus is attempted. This results in a curvilinear pattern,
so the log of discharge is computed and used as the explanatory variable. As seen in figure 9.23,
the transformation of both load and discharge results in a linear, homoscedastic relationship. A
residuals plot in figure 9.24 shows little evidence of structure, indicating that the units are
appropriate. Therefore these units are used for the regression. Table 9.5 gives the relevant

regression statistics.

In() = 0.80 + 0.76 In(Q)

n=96 s=0339  R%=0068
Parameter Estimate Std.Err(B) t-ratio _p
Intercept By 0.799 0.114 7.03 0.000
Slope B 0.761 0.054 14.10 0.000

Table 9.5 Regression statistics for the Illinois River phosphorus data
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Figure 9.23 Log-log relation between phosphorous and discharge for the Illinois River
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Figure 9.24  Residuals plot for In(phosphorous) versus In(discharge)

259

To illustrate the bias in phosphorus loads for the rating curve method, and the bias correction

capabilities of the other two methods, estimates of all three will be computed here for the 96
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days for which data exist. These values can then be compared to the "true" loads computed

from the observed data.

The results from this regression are these Mean Ioad Error
true =12.64 -
median estimate =11.72 -7.3%
MLE estimate =1241 -1.8%
smearing estimate =12.44 -1.6%

The median estimate is biased low, while the MLE and smearing estimates are close to each
other and to the true value (figure 9.25). The MLE and smearing estimates should be expected
to be similar here, as the residuals are fairly symmetric, n is large and s is small. These are the
conditions under which the MLE works well. Had s been large (>1) or n small (<30) the MLE
would probably have had a positive bias, and only the smearing estimate would have come close

to the true value.
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Figure 9.25 ILoad estimate curves with and without bias correction for Illinois R. data
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9.7 Summary Guide to a Good SLR Model

1) "Should x be transformed, and if so, how?" Considerable help can come from a statistic
such as R2 (maximize it), or s (minimize it), but these numbers alone do not insure a good
model. Many transformations can be rapidly checked with such statistics, but always look at
a residual versus predicted plot before making a final decision. Transform x if the residuals
plot appears non-linear but constant in variance, always striving for a linear relation between

y and x.

2) "Should y be transformed, and if so, how?" Visually compare the transformed-y model to
the untransformed-y model using their residuals plots (residual versus predicted). The better
model will be more:

1) linear,
2) homoscedastic, and

3) normal in its residuals.

The statistics RZ, s, t-statistics on B1, etc. will not provide correct information for deciding if

a transformation of y is required.

Should estimates of mass (loads) be developed using an equation having transformed-y units,
the transformation bias inherent in the process must be compensated for by use of the

smearing estimate, or MLE estimate when appropriate.

When there are multiple explanatory variables, more guidelines are required to choose between
the many possible combinations of adding, deleting and transforming the various x variables.
These are discussed in Chapter 11.
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Exercises

9.1

9.2

9.3

Bedinger (1961) graphically related median grain size of alluvial aquifer materials in the
Arkansas River Valley to their yield, in gallons per day per square foot. This enabled
estimates of yield to be made at other locations based on measured grain-size analyses.

Compute a regression equation to predict yield, based on the data in Appendix C11.

Estimate the mean yield in gallons per day per square foot available from four wells
which together compose the public supply of a small town in the Arkansas River Valley.
The wells have screens with identical cross-sectional areas. Median grain sizes for the
units they draw from are: 0.1, 0.2, 0.4 and 0.6 millimeters.

Find a transformation of discharge for the Cuyahoga River TDS example which might
improve on the log () transformation used throughout the chapter. The data are found
in Appendix C9. Obvious candidates include the ladder of power transformations.
Another class of transformations that has been shown to work well for surface-water
chemistry is the hyperbolic transformations (see Johnson, et al., 1969). The form of this
transformation is x=1/(1+kQ) where k is some constant supplied by the hydrologist.
Some general advice about selecting k is that it's not worth the effort to try and get it
"right" to a precision better than
about half an order of magnitude. A good range to work in is

1/(100(Q) < k < 100/(Q)

where (Q) is the mean discharge.

The questions you should answer are:

a) What is a good transformation of QQ to use in estimating TDS? (There is no "best"
transformation, but there are several good ones.)

b) Describe your preferred model and indicate some reasons you might be concerned
about it and might want to take steps to "fix" it in some fashion. (You will get a
chance to later.)

c) What does it tell you about TDS behavior in the Cuyahoga River?

d) A question for the mathematically inclined. If k is set to some very large value (say
around 100/Q ), what other model does the hyperbolic approximate? If b is set to

some very small value (say around 1/100Q ), what other model does it approximate?
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9.4

Objections have been raised to regressions such as load (L) versus stream discharge (Q)
because Q is used to calculate L. This "spurious correlation" between Q and L can be
avoided by using concentration (C) instead of load as the dependent variable. Loads
would then be predicted from the estimated C. What do you think? How will the
results using C compare to those using L as the regression's response variable? To
answer this, perform the regression for the Illinois phosphorus data of section 9.6.4 and
produce the 96 load estimates using In(C in mg/L) instead of In(L in tons per day). The
data are found in Appendix C10. Note that the units of QQ (thousands of cfs) mean that
L = 2.7 Q+C. What happens to the regression coefficients and the associated statistics
such as R2, s, t-ratios, etc., when In(C) rather than In(L) is used? What is the appropriate

conclusion to this controversy?






Alternative Methods for Regression

Concentrations appear linearly related to distance down-dip in an aquifer. OLS regression
shows the residuals to be of generally constant variance. However, several outliers in the data
set inflate the standard error, and what appears graphically as a strong linear relationship tests as
being insignificant due to the outliers' influence. How can a more robust linear fit be obtained
which is not overly sensitive to a few outliers, and describes the linear relation between

concentration and distance?

A water supply intake is to be located in a stream so that water elevation (stage) is below the
intake only 5 percent of the time. Monitoring at the station is relatively recent, so OLS relating
this and a nearby site having a 50 year record is used to generate a pseudo 50-year stage record
for the intake station. The 5th percentile of the pseudo record is used as the intake elevation.
Given that OLS estimates are reduced in variance compared to actual data, this elevation
estimate will not be as extreme as it should be. What alternatives to OLS would provide better

estimates?

The mass of a radionuclide present within the aquifer of one county was computed by
performing a regression of concentration versus log of the hydraulic conductivity measured at 20
wells. This equation was used to generate estimates at 100 locations of known hydraulic
conductivity, which are then multiplied by the volumes of water, and summed. However, the
regression equation shows a marked increase in variance of concentration with increasing
conductivity, even though the relationship is linear. Transformations may produce a nonlinear
relationship, with probable transformation bias. An alternative to OLS is therefore required to

account for heteroscedasticity without employing a transformation.

Situations such as the above frequently arise where the assumptions of constant variance and
normality of residuals required by OLS regression are not satisfied, and transformations to
remedy this are either not possible, or not desirable. In addition, the inherent reduction in
variance of OLS estimates is not appropriate when extending records. In these situations,
alternative methods are better for fitting lines to data. These include nonparametric rank-based

methods, lines which minimize other than the squared residuals, and smooths.
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10.1 Kendall-Theil Robust Line

The significance of a linear dependence between two continuous variables Y and X or their
transforms may be tested by determining whether the regression slope coefficient for the
explanatory variable is significantly different from zero. This is equivalent to the test for
significance of the linear correlation coefficient r between Y and X. In a similar fashion,
Kendall's rank correlation coefficient tau (see Chapter 8) may be used to test for any monotonic,
not just linear, dependence of Y on X. Related to tau is a robust nonparametric line applicable
when Y is linearly related to X. This line will not depend on the normality of residuals for
validity of significance tests, and will not be strongly affected by outliers, in contrast to OLS

regression.

The robust estimate of slope for this nonparametric fitted line was first described by Theil
(1950). An estimate of intercept is also available (Conover, 1980, p. 267). Together these define
an estimate of a complete linear equation of the form:

¢ =hg +b; °X
This line is closely related to Kendall's tau, in that the significance of the test for
Hy: slope 31=0 is identical to the test for Hy: tau=0.

10.1.1 Computation Of the Line

The Theil slope estimate Bl is computed by comparing each data pair to all others in a pairwise
fashion. A data set of n (X,Y) pairs will result in n(n—1)/2 pairwise compatisons. For each of
these compatisons a slope AY/AX is computed (figure 10.1)* The median of all possible

pairwise slopes is taken as the nonparametric slope estimate bl .
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Figure 10.1 A. All possible pairwise slopes between six data points.

B. All possible slopes rearranged to meet at a common origin
The thick line is the median of the 15 slopes.
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%1 = median %(]_%11)) foralli <j andi=1,2,..(n—1) j=2,3,..n. [10.1]
Example 1
For example, given the following seven (X,Y) data pairs:
Y: 1 2 3 4 5 16 7
X 1 2 3 4 5 6 7
Slopes: +1 +1 +1 +1  +11 -9 There are (7)(6)/2 = 21 pait-
+1 +1 +1 +6 +1 wise slopes. Comparing
+1 +1 +43 +1 points 2 and 1, slope = +1.
+1 +3.5 +1 Going down the column
+3 +1 under point 1, comparing
+1 points 3 and 1, slope = +1.

For points 4 and 5 vs 1, slopes = +1. Compating points 6 and 1, slope = (15/5) = +3, etc.
After computing all possible slopes, they are put into ascending order:
-9, 41, +1, +1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +1 +3 +35 +43 +6 +11
The median of these 21 values is the 11th smallest, or +1, so that Bl = +1.

The intercept is defined as follows

by = Ymed = b1 * Xmed [10.2]
where Xnedq and Yoeq are the medians of X and Y respectively. This formula assures that the
fitted line goes through the point (Xmed , Ymed). This is analogous to OLS, where the fitted line

always goes through the point (x,y). For the Example 1 data above, Xeq = 4 and Yimed= 4,
so that by =4 —1+4 = 0.

Other estimates of intercept have been suggested. One is the median of all possible intercepts

computed by solving the Kendall line using b and each data point (Dietz, 1989). However, the

estimate of intercept produced by placing the line through the data medians was found by Dietz
to be efficient in the presence of outliers and non-normal residuals, while also being simple to
compute. Itis the estimate recommended here, due to its robustness and efficiency, simplicity,

and analogy to OLS.

10.1.2 Properties Of the Estimator

OLS regression for the example 1 data would produce a slope by of 1.71. This differs
substantially from the Theil estimate %1 of 1, due to the strong effect on the regression slope of
the one outlying Y value of 16. This effect can be seen by changing the 6th Y value from 16 to
6. The regression slope would change from 1.71 to 1, but %1 would be unchanged. Similarly, if
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the data value were changed from 16 to 200, by would be greatly inflated while %1 would again

remain at 1. The estimator by is cleatly resistant to outliers. It responds to the bulk of the data.

%1 is an unbiased estimator of the slope of a linear relationship, and by from OLS is also an
unbiased estimator. However, the variance of the estimators differ. When the departures from
the true linear relationship (true residuals) are normally distributed, OLS is slightly more efficient
(has lower variance) than the Kendall-based line. When residuals depart from normality (are
skewed or prone to outliers), then f)l can be much more efficient than the OLS slope. The
efficiency of the Theil estimate to the OLS slope is the same as that for the Hodges-Lehmann
estimator in comparison to the mean (Sen, 1968), as the Theil estimate is one of the class of
Hodges-Lehmann estimators. The Kendall-Theil line has the desirable properties of a
nonparametric estimator: almost as "good" (efficient) as the parametric estimator when all

assumptions of normality are met, and much better when those assumptions are not met.

One commonly-asked question is "how much of a departure from a normal distribution is
necessary before a nonparametric test has an advantage over its parametric counterpart?”. In
the case of the Theil and OLS slope estimates, how non-normal must residuals be before the
Theil estimate should be used? Are there advantages even in cases where the departure from
normality is so small that visual inspection of the data distribution, or formal tests of normality,
are unlikely to provide evidence for the lack of normality? Hirsch et al. (1991) tested the two
slope estimators under one type of departure from normality, a mixture of two normal
distributions. The predominant distribution had a mean of 10 and a standard deviation of 1;
the second distribution had a mean of 11 and a standard deviation of 3. Figure 10.2 displays the
two individual distributions and figure 10.3 displays a mixture of 95 percent from the first
distribution and 5 percent from the second. Visual examination of figure 10.3 reveals only the
slightest departure from symmetry. Given sampling variability that would exist in an actual data
set it would be exceedingly unlikely that samples from this distribution would be identified as
non-normal. Figure 10.4 displays a more substantial departure from normality, a mixture of 80
percent of the first distribution and 20 percent of the second. There is a difference in the shape
of the two tails of the distribution, but again the non-normality is not highly noticeable.

Random samples were generated from each of several different mixture distributions containing
between 0 and 20 percent of the second distribution. Data from each mixture were treated as a
separate response variable in a regression versus a random order x. The true population slope is
therefore zero. Both OLS and the Theil slope estimators were computed, and their standard
deviations around zero recorded as root mean square error (RMSE). The results are given in
figure 10.5 as the ratio of RMSE for the Theil estimator to the RMSE of the regression
estimator (Hirsch et al., 1991). A value larger than 1 shows an advantage to OLS; smaller than
1 indicates the Theil estimate to be superior. For the larger sample size (n=306) the OLS

estimator was more efficient (by less than 10 percent) when the data are not mixed and
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therefore normal. With even small amounts of mixtures the Theil estimator quickly becomes
more efficient. At a 20 percent mixture the Theil estimator was almost 20 percent more
efficient. When the sample size was very small (n=0, smaller than typically used in a case study),

efficiencies of the two methods were virtually identical.

These results reinforce that when the data or their transforms exhibit a linear pattern, constant
variance and near-normality of residuals, the two methods will give nearly identical results. The
advantages of familiarity and availability of diagnostics, etc. favor using OLS regression.
However, when residuals are not normally distributed, and especially when they contain outliers,
the Kendall method will produce a line with greater efficiency (lower variability and bias) than
does OLS. Only small departures from normality (not always sufficient to detect with a test or
histogram of residuals) favor using a robust approach. Certainly one should check all outliers
for error, as discussed in Chapter 1. Do these represent a condition different from the rest of
the data? If so, they may be the most important points in the data set. Perhaps another
transformation will make the data more linear and residuals near-normal. But outliers cannot
automatically be deleted, and often no error can be found. Robust methods like Kendalls or
weighted least squares (discussed in sections 10.3 and 10.4) provide protection against

disproportionate influence by these distinctive, but perhaps perfectly valid, data points.

For analysis of a small number of data sets, detailed searches for transformations to meet the
assumptions of OLS are feasible. OLS is particularly informative in more complex applications
requiring incorporation of exogenous effects using multiple regression (see Chapter 11). Cases
aren't unusual, however, where no power transformations can produce near-normality due to
heavy tails of the distribution. Perhaps the two greatest uses for Kendall's robust fit are 1) in a
large study where multiple variables are tested for linear fits at multiple locations without the
capability for exhaustive checking of distributional assumptions or evaluations of the sensitivity
of results to outliers, and 2) by practitioners not trained in residuals plots and use of
transformations to stabilize skewness and heteroscedasticity. A third use is for fitting lines to

data which one does not wish to transform.
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Figure 10.2. Two normal distributions, the first with mean = 10 and standard deviation = 1;

the second with mean = 11 and standard deviation = 3
(from Hirsch et al., 1991).
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Figure 10.3. A mixture of data from distribution 1 (95 percent) and distribution 2 (5 percent)
shown in figure 10.2 (from Hirsch et al., 1991).
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Figure 10.4. A mixture of data from distribution 1 (80 percent) and from distribution 2 (20
percent) shown in figure 10.2 (from Hirsch et al., 1991).
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Figure 10.5. Relative efficiency of the Theil slope estimator as compared with the OLS slope.
Efficiency is the ratio of the Theil RMSE to the OLS RMSE, expressed as a function of
population mixture and record length (from Hirsch et al., 1991).
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Example 2
Figure 10.6 shows an OLS and Kendall-Theil fit to trends in total phosphorus concentrations

from 1975 to 1989 in the St. Louis R. at Scanlon, MN. The outliers ate accurate values from
floods, and therefore cannot be ignored or deleted. The question is whether there is a significant
linear trend in concentration over this 14 year period. Here linear fits of concentration versus
time are used to test for trend (see Chapter 12 for more on trend tests). The OLS slope is
affected by the outliers present. Although the magnitude of the OLS estimate is similar to the
Theil slope, the OLS slope does not test as significantly different from zero (p=0.43). This is
due to inflation of the standard error by outliers in violation of the assumed normality of
residuals. The Theil slope is highly significantly different from zero (p<<0.0001). The Kendall-

Theil line is not dependent on assumptions of normality which the data strongly violate.

10.1.3 Test of Significance
The test for significance of the Kendall-Theil linear relationship is the test for Hy: T = 0. This
involves computation of Kendall's S statistic (equation 8.1 of Chapter 8). For n>10, the large
sample approximation (equation 8.3 of Chapter 8) may be used. The Theil slope estimator %1 is
closely related to Kendall's S and 7T in the following ways.

1. S is the sum of the algebraic signs of the possible pairwise slopes.

2. If the amount (l;l X) is subtracted from every Y value, the new Y values will have an S

and T very close to zero, indicating no correlation.

If X is a measure of time, as it is for a trend test, subtracting (b, X) yields a trend-free version of
the Y data set.
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o |
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%’ : S o oa o o
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Figure 10.6. Total phosphorus concentrations with OLS and Kendall-Theil fitted lines for the
St. Louis River at Scanlon, MN, 1975-1989.
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Example 1, cont.
For the example 1 data set, the test of significance is computed as follows. S equals the sum of

the signs of pairwise slopes already computed. There are n(n—1)/2 =21 slopes, 20 of which are
positive and 1 negative, so that S = 20—-1 = 19. Tau = 19/21 = 0.90. Using table B8 of the
Appendix due to the small sample size, the exact two-sided p-value for an S of 19 and n=7 is
20.0014 = 0.003. (Inappropriately using the large sample approximation for such a small data
set, the approximate p-value is 0.007.) Thus Y is significantly related to X in a linear fashion.

10.1.4 Confidence Interval for Theil Slope

Confidence intervals may be computed for the Theil slope %1 with procedures parallel to those
used for other Hodges-Lehmann type estimators of eatlier chapters. As before, the tabled
distribution of the test statistic, in this case table B8 for the exact Kendall's test statistic or a table
of standard normal quantiles for the large-sample approximation, is entered to find upper and
lower limits corresponding to critical values at one-half the desired alpha level. These critical
values are transformed into the ranks corresponding to data points at the ends of the confidence

interval.

For small sample sizes, table B8 is entered to find the critical value Xy, having a p-value nearest
to 0/2. This critical value is then used to compute the ranks Ry and Ry corresponding to the
slope values at the upper and lower confidence limits for %1 . These limits are the Rjth ranked
data points going in from either end of the sorted list of N = ne(n—1)/2 pairwise slopes. The

resulting confidence interval will reflect the shape (skewed or symmetric) of the original data.

Xu

Ry = % [10.3]
-Xy

R = % +1 (10.4]

Example 1, cont.
The N=21 possible pairwise slopes between the n=7 data pairs for example 1 were:

-9, +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 +1 +3 +35 +43 +6 +11.
%1 was the median or 11th largest slope. To determine a confidence interval for Abl with
o = 0.05, the tabled critical value Xy nearest to o/2= 0.025 is found to be 15 (p=0.015). The
rank Ry of the pairwise slope corresponding to the upper confidence limit is therefore

21 + 15
Ru = KTZ =18 for N=21 and X,=15.
The rank Rj of the pairwise slope corresponding to the lower confidence limit is

21-15
R| :£T2+1 = 4.

b b
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So an o0 = 2¢0.015 = 0.03 confidence limit for %1 is the interval between the 4th and 18th
ranked pairwise slope (the 4th slope in from either end), or

+1<by <435,
The asymmetry around the estimate %1 = 1 reflects the low probability that the slope is less than
1, based on the data.

When the latge-sample approximation is used, the critical value zg /2 from a table of standard
normal quantiles determines the upper and lower ranks of the pairwise slopes corresponding to

the ends of the confidence interval. Those ranks are

Ry = 18 +1 10.5]

2

N Zszn(n— D(2n +5)

Nez ‘/n(n—l)(zn+5)
R| = o . 18 [10.6]

As an example, for n=20 pairs of data there would be N=(20)(19)/2 = 190 possible pairwise
slopes. by is the average of the 95th and 96th ranked slopes. For a 95 percent confidence
interval on by, zg /2 = 1.96 and

190 + 1.96 *~/950

~ 190 -1.96 *4/ 950
R] = >

the 64.8th ranked slope from either end. Rounding to the nearest integer, the 126th and 65th

1 =126.2

= 64.8

ranked slopes are used as the ends of the 0=0.05 confidence limit on bl .

Further discussion of these equations is in Hollander and Wolfe (1973), pp. 207-208.

10.2 Alternative Parametric Linear Equations

Hirsch and Gilroy (1984) described additional methods for fitting straight lines to data whose
slopes and intercepts are computed using moment statistics. These lines differ from the OLS
line of Chapter 9, and are more appropriate than that line for certain situations. For example,
when X is to be predicted from Y using OLS, the resulting line differs from the OLS line
predicting Y from X. This has implications for calibration. When many predictions are to be
made and the distribution of those predictions is important (percentiles or spreads are of
interest, as well as the mean), the Line of Organic Correlation (LOC) should be used instead of
OLS. When describing a functional relationship between two variables without trying to predict
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one from the other, LOC is again more appropriate than OLS. When some geographic
trajectory is to be computed, the Least Normal Squares (LNS) line should be used.

10.2.1 OLSofXonY

The OLS regression of Chapter 9 considered the situation where a response variable Y was to be
modeled, enabling estimates of Y to be predicted from values of an explanatory variable X.
Estimates of slope and intercept for the equation were obtained by minimizing the sum of
squares of residuals in units of Y. Thus its purpose was to minimize errors in the Y direction

only, without regard to errors in the X direction. The equation may be written as:

_ N _
Yi=Y+r = (X -X) [10.7]
S

X

where r is Pearson's linear cotrelation coefficient, sy and sy are the standard deviations of the Y
and X variables, and (r sy/sx) = (t~/SSy /A /SSX) = by, the OLS estimate of slope (see Chapter

9). Assuming the linear form of the model is correct and that X and Y are measured without
error, OLS will lead to estimates of Yj for any given Xj which are unbiased and have minimum
variance. This means that OLS is the preferred method of estimating a single value of Y given a

value of X, where X is measured without error.

In contrast, situations occur where it is just as likely that X should be predicted from Y, or that
the two variables are equivalent in function. One classic example is in geomorphology, where
relations between the depth and width of a stream channel are to be related. It is as reasonable
to perform a regression of depth on width as it is of width on depth. A second example is the
relation between dissolved solids concentration and "residue on evaporation" or ROE, an
alternate measure of the amount of dissolved material in a water sample. Either could be chosen
to model as a function of the other, and usually a description of their relationship is what is of

most interest.

It is easy to show, however, that the two possible OLS lines (Y on X and X on Y) differ in slope
and intercept. Following equation [10.7], reversing the usual order and setting X as the response

variable, the resulting OLS equation will be
— s -
Xi=X+r—= (Y -Y) [10.8]
s
y

which when solved for Y becomes

- 1 —
Yi=Y+= = (X, -X) [10.9]
r s

Letby'=(1/r+ sy/sx), the slope of X on Y re-expressed to compare with slope by. Contrasting
[10.7] and [10.9], the slope coefficients bj# b1'. Thus the two regtession lines will differ unless



276 Statistical Methods in Water Resources

the correlation coefficient r equals 1.0. In figure 10.7, these two regression lines are plotted for
the dissolved solids and ROE data of Appendix C12.

The choice of which, if either, of the OLS lines to use follows a basic guideline. If one is to be
predicted from the other, the predicted variable should be assigned as the response variable Y.
Errors in this variable are being minimized by OLS. However, when only a single line
describing the functional relationship between the two variables is of interest, neither OLS line is
the appropriate approach. Neither OLS line uniquely or adequately describes that relationship.
A different linear model having a unique solution should be used instead -- the line of organic

correlation.

10.2.2  Line of Organic Correlation
The line of organic correlation (LOC) was proposed as a linear fitting procedure in hydrology by
Kritskiy and Menkel (1968) and applied to geomorphology by Doornkamp and King (1971). Its
theoretical properties were discussed by Kruskal (1953). The line also has been called the
"geometric mean functional regression" (Halfon, 1985), the "reduced major axis" (Kermack and
Haldane, 1950), the "allometric relation" (Teisser, 1948) and "Maintenance of Variance -
Extension" or MOVE (Hirsch, 1982). It possesses three characteristics preferable to OLS in
specific situations:
a) LOC minimizes errors in both X and Y directions.
b) It provides a unique line identical regardless of which variable, X or Y, is used as
the response variable, and
¢) The cumulative distribution function of the predictions, including the variance
and probabilities of extreme events such as floods and droughts, estimates those

of the actual records they are generated to represent.

OLS y:TDS o

75 T
OLS
v :ROE

ROE
50 T

TDS

Figure 10.7 Three straight lines fit to the same data.



Alternative Methods for Regression 277

The LOC minimizes the sum of the areas of right triangles formed by horizontal and vertical
lines extending from observations to the fitted line (figure 10.8). By minimizing errors in both
directions it lies between the two OLS lines on a plot of Y versus X (see figure 10.7). The slope
of the LOC line equals the geometric mean of the Y on X and X on Y OLS slopes:

s
b1" =~/ b1 by = sign[t] e g}X{

where by" is the slope of the LOC line

Y; _b "+ : EX .
1 = 0b0 slgn[r] . Sx .Xl [1010]

So the correlation coefficient in the equation for OLS slope is replaced by the algebraic sign
(+ or —) of the correlation coefficient with LOC. The magnitude of the LOC slope b1" is
determined solely by the ratio of standard deviations sy/sx. Performing LOC of X on'Y will
give the identical line as does the LOC of Y on X .

LOC is therefore used for two purposes, corresponding to the three above attributes:
a,b)  tomodel the correct functional relationship between two variables, both of which
are measured with error.
¢)  to produce a series of estimates Y i from observed Xj whose distributional
properties are similar to those expected had the Yj been measured. Such
estimates are important when the probability distribution (variance or percentiles)
of the estimates, and not just the mean or an individual estimate, are to be

interpreted and used.

Examples of the first use for LOC include the geomorphic relationships cited above,
describing the relation between bioaccumulation and octanol-water partition coefficients
(Halfon, 1985), or other applications where the slope is to take on physical meaning rather

than interest in prediction of values of one variable.

One example of the second use for LOC is the extension or fill-in of missing observations.
This use for record extension has been the major application of LOC to water resources thus
far. As an example, suppose two nearby sites overlap in their gaged record. The streamflow
for the site with the shorter record is related to that at the longer (the "base") site during the
overlap period. Using this relationship, a series of streamflow data at the shorter site is
estimated during an ungaged period based on flows at the base site. If the OLS equation
were used to estimate streamflows, the variance of the resulting estimates would be smaller
by a factor of R2 than it should be. OLS reduces the variance of estimates because the OLS
slope is a function not only of the ratio of the standard deviations sy/sx, but also of the
magnitude of the correlation coefficient r. Only when |r| =1 do OLS estimates posses the
same variance as would be expected based on the ratio of variances for the original data. To

see this more clearly, take the extreme case where r=0, and there is no relationship between
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Y and X. The slope then equals 0, and all OLS estimates would be identical and equal to Y.
The variance of the estimates is also zero. As R2 decreases from 1 to 0, the vatiance of OLS
estimates is proportionately reduced. This variance reduction is eliminated from LOC by
eliminating the correlation coefficient from the equation for slope. The estimates resulting
from the LOC have a variance in proportion to the ratio of the variances sy2 /sx2 from the

original data.

When multiple estimates are to be generated and statements made about probabilities of
exceedance, such as flood-flow probabilities, probabilities of low-flows below a water supply
intake, or probabilities of exceeding some water-quality standard, inferences are made which
depend on the probability distribution of the estimated data. In these cases LOC, rather than
OLS, should be used to generate data. OLS estimates would substantially underestimate the
variance because they do not include the variability of individual values around the regression
line (Hirsch, 1982). As a consequence, the frequency of extreme events such as floods,

droughts, or exceedance of standards would be underestimated by OLS.

Variations on using LOC for hydrologic record extension have been published by Vogel and
Stedinger (1985) and Grygier et al. (1989).

All three of the lines discussed thus far have two identical characteristics. They are invariant to
scale changes, so that changing the Y or X scale (from English to metric units, for example) will
not change the estimates of slope or intercept after re-expressing them back into their original
scales. However, if the X and Y axes are rotated and lines re-computed, the second set of
estimates will differ from the first following re-expression into the original orientation. This
second property is not desirable when the original axes are of arbitrary orientation, such as for
latitude and longitude. The line discussed in the next section can be fit when invariance to

spatial orientation is desired.

10.2.3 Least Normal Squares
Least normal squares is the line which minimizes the squared distances between observed points
and the line, where distances are measured perpendicular (normal) to the line. The slope can be

expressed as in figure 10.8

Vri+ A2 1ls s
b= A+ L2 where A = =| = -2 | [10.11]

r 2ls s
y x
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Method Minimizes: Slope Scale Change Rotation
OLS YonX o by = 5, invariant changes
! ,
OLS XonY % by' = 15 invariant changes
rs
LOC invariant changes

NS \. Vri+ A? changes invariant
L} b=—A+—mm
-

where A =
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Figure 10.8 Characteristics of four parametric methods to fit straight lines to data

An appealing property of LNS is its invariance to rotation of axes. This is desirable when the
coordinate system in which the data are measured is arbitrary. The most common example of
this is where X and Y are physical locations, such as latitude and longitude. If the axes are
rotated, the X and Y coordinates of the data recomputed, and the LNS line recomputed, it will
coincide exactly with the LNS line for the data prior to rotation. This is not so with OLS or
LOC. However, the LNS line is not invariant to scale changes. The LNS line expressed in any
scale will differ depending on the scale in which the calculations were made. For example, the
LNS line relating concentration in mg/L to streamflow in cubic feet per second will differ from
the LNS line for the same data using streamflow in cubic meters per second. This attribute
makes LNS poorly suited to describe the relation between most common water resources
variables. Where LNS is appropriate is in computing trajectories minimizing distances between
observed points in space. Kirby (1974) thus used LNS to compute the straight line traverse of a

ship from a set of coordinate locations taken along its trip.
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10.2.4 Summary 0f the Applicability of OLS, LOC and LNS

To summarize the application of each of the above parametric procedures:

1. To estimate individual values of one variable from another variable, use OLS (assuming
the data are linear and homoscedastic). This holds regardless of causality, and regardless
of whether there are errors in measurement of the explanatory variable.

2. To estimate multiple values of one variable from another variable in order to make
statements about the probability distribution, use LOC. This preserves the
characteristics of the entire distribution, avoiding the downward bias in variance of the
OLS estimates.

3. To describe the functional relationship between two variables with the primary interest
in the slope coefficient, use LOC.

4. To determine the geographic trajectory which minimizes the differences from observed
data, use LNS.

10.3 Weighted Least Squares

Data may exhibit a linear pattern yet have non-

constant variance (heteroscedasticity -- see o
figure 10.9). Corrections for non-constant
variance involving a power transformation will o

often alter the linear pattern to one which is : o o

curved. Also, transformation into differing o 2 a

units may not be desirable, due to o o
retransformation bias of the estimates (see ) o °
Chapter 9). Finally, the data may have known

inherent differences in their variances, such as

when means or other summary statistics based

<

on unequal-sized data sets are used as the _ )

. Figure 10.9 Heteroscedastic data.
explanatory variable. When the constant

variance assumption of OLS is violated, an alternate method called weighted least squares (WLS)

should instead be employed.

With WLS, each squared residual (Yi — Y% D2 s weighted by some weight factor wj in such a way
that observations with greater variance have lesser weight. Thus "less reliable" observations
have less influence on the resulting linear equation than "more reliable" observations. The fitted
WLS equation minimizes the squares of the weighted residuals. To evaluate whether this
weighting has corrected for heteroscedasticity, a weighted residuals plot should be drawn. In
this plot the weighted residuals, e¢; \/?1 are plotted versus % i W . The pattern of
weighted residuals can be interpreted as with any other residuals plot.
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One common use of WLS in water resources arises when basin characteristics are used to
estimate flood percentiles (Tasker, 1980). For example, estimates of the 100-year flood at
ungaged sites can be made from a log-log regression of sample estimates of 100-year floods for
gaged sites within a region versus drainage area. The flood flows used to construct the
regression will have differing variances for different sites, depending on their record lengths n.
Sample estimates based on longer records are more reliable, and will have lower variance, than
for stations with less data. Therefore estimates from longer records should be given a stronger
effect on the regression line. If all original observations are assumed to have constant variance
G 2, then the weights wj for the weighted regression will be proportional to the record lengths nj

at each station.

Further weighting could reflect any spatial correlation between the sites. This is called
generalized least squares, and is applied to hydrology by Stedinger and Tasker (1985). An
example of weighting in response to differential sampling within a stratified sampling design is
given by DuMouchel and Duncan (1983).

A more empirical method of weighting occurs by setting weights inversely proportional to the

sample variance of the response variable at that location. This variance is rarely known ahead of

time, so that weights are computed based on residuals from an ordinary least squares regression

(OLS) in the following manner:

1) OLS regression is computed for Y versus X. Residuals are plotted against ¥ , and
nonconstant variance is seen.

2)  Observations with similar X's are grouped, and the variance of the observations in each
group sy2 is calculated. These variances are plotted versus Xj for each group.

3)  Assign sy2 to each observation in group i. Weights w; = 1/ sy2 .

Weighted least squares can be computed using software for unweighted multiple regression by
employing a data transformation Y;' = ¢; Y; , where each observation Yj is multiplied by the
square root of the weight for that point (cj = W =1/sy). The Xj must also be weighted as
X;' = ¢;X;. A weighted intercept term must also be included as a new "variable" Ij', consisting
of a vector of ¢i's, one per observation. The transformed Y;' are then related by multiple
regression to X' and ' using the "no intercept" option (the I' column is the weighted intercept).

The resulting coefficients are the coefficients of the weighted least squares line.

Example 3
Total dissolved solids (TDS) from Appendix C12 are plotted versus time, and an increasing

variance is seen (figure 10.10). Regression of TDS versus time produces:
TDS = —1627 + 0.844¢Time, t-statistic = 4.62 p = <0.001

where Time is in years. A residuals plot would also show increasing variance.
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However, this equation puts undue emphasis on the more recent data, which have the largest
variability. The variability seems to increase after 1985, therefore the data are split into two

periods, and the variance of TDS is computed separately for each period.

g0 4 o o . . ®
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Figure 10.10 TDS data with non-constant variance (heteroscedasticity).

The variance for the pre-1985 period is 24.18, while after 1985 it is 71.80. The reciprocal of
these values is assigned as the weight function for each observation in the respective groups, and

a weighted least squares regression is performed. This results in:

TDS = —1496 + 0.778 * Time. t-statistic = 4.10 p = <0.001
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Figure 10.11 Weighted residuals plot of the TDS data.

A plot of the weighted residuals versus predicted values is shown in figure 10.11. The
weighted residuals have constant variance. Thus the weighted least squares line should be
preferred to the unweighted line, because it more closely conforms to one of the assumptions of

least squares regression -- constant variance of residuals.
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10.4 TIteratively Weighted Least Squares

OLS regression can be thought of as a "linear mean", with both desirable and undesirable
properties similar to a mean. One undesirable property is that outliers can "pull" the location of
the line (estimates of slope and intercept) in their direction, much in the same fashion as the
sample mean is affected by an outlier. The resulting residuals corresponding to the outlying
point may be small, making that point difficult to discern as unusual. Such outliers must be
detected using influence statistics (see Chapter 9). In addition to detecting outliers, it may be
desirable to limit their influence on the regression line, similar in objective to the Kendall-Theil
method given in section 10.1. A second method for doing so, somewhat analogous to a
trimmed mean, is a robust regression method called iteratively weighted least squares IWLS).

Unlike Kendall-Theil, IWLS is applicable in the multiple regression context.

The goal of any robust regression is to fit a line not strongly influenced by outliers. This leaves
large residuals for the outliers, but a better fit to most other points. IWLS produces models
similar to OLS when the underlying residuals distribution is normal, where OLS would have
been reasonable to use. Alternate methods of robust regression to IWLS include "least median
of squares" and "least absolute value" (Rousseeuw and Leroy, 1987), both of which minimize a

more robust measure of error than least squares.

With IWLS, weights are derived from the data. An OLS is first computed -- all weights are
initially set equal to one. Points nearest the OLS line are then given weights near one, while
points further away have lesser weight. A weighted least squares is computed, and the process
repeated. After about two iterations the weights become stabilized, and the final iteratively

weighted least squares line results.

There are several weight functions which have been used to compute weights. A common and

useful one is the bisquare weight function (Mosteller and Tukey, 1977):

(1—ui2)2 for |uj| =1 17
Wi
wi =
0 for |uj| > 1 0.54
R Yi _ Yi 0+ / — P S )
Where BN — C‘S _1 0 1
u .
c = constant, and 1
S = some robust measure Figure 10.12 Bisquare Weight Function

of spread of the residuals (Y; — ¥ D

The purpose of the divisor ¢S is to make uj invariant to scale changes.
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Common choices for ¢ and S are

a.  c¢=3and S = the IQR of the residuals. For a normal distribution IQR = 4/3 G, so that
when ¢ = 3, c*S =40. This is a margin sufficiently wide to include most or all
observations when the distribution is near-normal, and yet protect against outliers when
the distribution is markedly non-normal.

b. ¢=06andS = the MAD, the median absolute deviation from the previous line, or
median |residuals|. Again c*S =46 (MAD =2/3 ¢ for a normal distribution).

Note that since the sample standard deviation is strongly distorted by outliers, it would be a poor
choice as the measure of spread S. This highlights the failing of all parametric tests for outliers:
if the criteria for declaring a value as an outlier is strongly influenced by those same outliers, it
will be inflated to the point of declaring too few data as outliers. Either the MAD or IQR are

more appropriate than the standard deviation for this purpose.

After calculating the IQR or MAD of residuals from an OLS, the first set of weights are
produced. These weights are used in the first weighted least squares, from which new residuals
are used to compute new weights. The process is repeated until the weights stabilize -- in most

cases only two iterations are required.

Example 3

TCE concentrations were measured in wells from the Upper Glacial Aquifer, Long Island, NY.,
and related to population density (Eckhardt et al., 1989). Below are listed the percent of wells
with TCE concentrations above the detection limit (% DET), by population density of the
surrounding land (POPDEN). Compute the robust regression equation (2 iterations) to predict
detection percentage from population density.

%DET 0.64 480 1020 2250 2500 25.00 67.00 38.00 31.30

POPDEN 1 2 3 5 6 8 9 11 13
" T -
DETECTS
TCE urtweighted OLS line
1stWLS
2nd WLS
i+ .
| .
L]
0 & } } } }
n.o 3n 6.0 a.0 12.0
popden

Figure 10.13 TCE concentrations on Long Island (Eckhardt, 1989)
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The OLS (unweighted) regression equation is % DET = 2.00 + 3.56 * POPDEN

with a t-statistic of 2.86. This line is pulled up by the one outlier at a population density of 9
which doesn't fit the rest of the data very well (figure 10.13). The residuals ej from this OLS line
are used to establish bisquare weights for the first WLS line.

e —0414 -0345 -0.191  0.199  0.120 -0.404 2478 —0.253 —1.545

wiz 0929 0945 0982 0978 0992 0913  0.000 0971  0.326

The outlying point is sufficiently far from the line that it receives a weight of zero. The first
weighted regression equation is then %DET = 0.93 + 3.23°POPDEN, with a

t-statistic of 6.93. This is shown as "1st WLS" in figure 10.13. Again, residuals are computed
from this equation, and a new set of weights computed:

wi: 0.945 0970 0999 0872 0903 0986  0.000 0989  0.489

The 2nd iteration weighted regression equation is then %DET = 1.24 + 3.10ePOPDEN,
similar to the previous iteration, with a t-statistic of 6.63. Figure 10.13 shows this line as "2nd
WLS". The residual for the outlying point remains large, while the line fits the majority of the

data quite well. This is the objective of a robust regression.

10.5 Smoothing

Smoothing differs in purpose and form from the previous methods. It is an exploratory
technique, having no simple equation or significance tests associated with it. 'The most common
smooths estimate the center of the data -- the conditional mean or median of Y as X changes.
The lack of an equation is a strength in the sense that a smooth is not constrained by some prior
assumption as to the mathematical function of the relationship. Rarely are there theoretical
grounds for choosing one function over another in modeling Y versus X. For large data sets it is
common to visually identify departures from a simple function which could only be modelled by
incorporating several high order terms. This can cause instability near or beyond the range of

the data. The shape of a smooth is not specified « priori, but is determined solely by the data.

Middle smooths allow the data to dictate the location of a smooth curve which goes through the
middle of the data. They are used to highlight trends or patterns in the data on a scatterplot.
These patterns are often difficult to see. The human eye only pootly follows the central
tendency of a scatterplot; the range of data dominates visual impression. Adding a line through
the middle draws attention to the center of the plot, aiding judgement of whether the pattern is

linear, indicating where breaks in slope occur, etc.

10.5.1 Moving Median Smooths
The simplest smooths are moving averages or medians. Data are smoothed by calculating the

mean or median of a portion of the total data within some 'window' of influence around a given
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Xp- This is repeated while setting Xy equal to nearly every X value in the data set. As before,
outliers will influence moving averages (means) more strongly than medians, so that moving
averages are more erratic than medians in the vicinity of outliers. Moving medians therefore are

more resistant to outliers than are moving averages.

Suppose a 5-point moving median is to be computed. A 'window' of width equal to 5 data
points is begun at the left of the X-Y plot. The median of the 5 Y values within the window is
computed, and plotted at the center of the window (X = 3rd point from the left) to form the
first value of the smooth. Data outside the window have no influence on the smoothed value.
The X window is shifted to the right by one data point, a new median of the 2nd through 6th
points calculated, and this value plotted at the new X, = 4th point from the left. This shifting
and computation progressively continues through the final window, composed of the rightmost

5 points. All medians are then connected by straight lines to form the moving-median smooth.

Figure 10.14 shows an 11-point moving median smooth for sand concentrations in the Colorado
River at Lees Ferry, Arizona. Moving medians are convenient for hand computation, but
produce a "rough" pattern unless the window size is quite large. Large windows result in the
undesirable characteristic that data far from Xy influence the resulting value as much as data

nearby. To avoid this, more complex smoothing routines are now performed by computer.

20—
18+
2
5 16+
O
S
py 14+ .,
%
&
= 124 &
- %
10_ B S
8 | 1 1 1 1
7 8 9 10 11 12

LN OF STREAMFLOW

Figure 10.14 11 point moving median of sand concentrations in the Colorado River
at Lees Ferry, Arizona, 1949-1970.
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LN OF STREAMFLOW
Figure 10.15 11 point moving median and LOWESS smooths of the Lees Ferry data

These allow the data nearer the center of the window to influence the smoothed value more
than those further away. They also allow the smoothness of the final fit to be adjusted to the
needs of the data analyst. One of the most flexible and useful smoothing algorithms is called
LOWESS. In figure 10.15 the 11 point moving median smooth is compared to a LOWESS
smooth for the Lees Ferry data.

10.5.2 LOWESS
LOWESS, or LOcally WEighted Scatterplot Smoothing (Cleveland et al., 1979) is
computationally intensive. It involves fitting at least 21 weighted least squares equations. At
every X, a Y s computed from a WLS regression whose weights are a function of both the
distance from X, and the magnitude of the residual from the previous regression (an iterative
procedure). The robust regression weights wj are computed by

Wi = WX{ * Wtj
where wx;j, the distance weight, is a function of the distance between the center of the window
X; and all other X. The residuals weight wr; is a function of |Y; -9 i|, the distance in the Y
direction between the observed Y; and the value predicted from the previous WLS equation. A
point will receive a small weight, and therefore have little influence on the smoothed Y, if it is
either far from the center of the window in the X direction or has a large residual in the Y
direction. The measure of how quickly weights decrease as distances increase in the X and Y
directions is determined by the weight function. For a point at (Xj,Y;), the bisquare weight is

determined as
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1

(1—uiZ)2 for |uj| =1

Wr.

wtj = 1
0 for |uj| > 1 =
.20
A 205
Yi-Y; o
where uj = - x =
6 * median of all | Y] -Yj]| =
2 04
S 1 0 1
(a7 u.
(1-vi32  for |vj| <1 g
wX{ = 11
0 for |vi| > 1 -
=
.20
%X 8 0.5
where Vi:d—x §
s 04 L o .
w2
B 1 0 . 1

«—dy—>f

where dy = half width of window = mth largest | Xj — X|
m = Nf
N = sample size
f = smoothness factor specified at outset.

Smoothness of LOWESS is varied by altering the window width, as controlled by the
smoothness factor f (figure 10.16). As fis increased, the window size is increased, and more
points influence the magnitude of Y . Selection of an appropriate f is determined subjectively

according to the purpose for which the smooth is used.
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Figure 10.16 'Three smooths of the same data with differing smoothness factors f.

Three examples of situations in which LOWESS smooths greatly aid data analysis are:

1.

To emphasize the shape of the relationship between two variables on a scatterplot of
moderate to large sample size. Adding a line through the middle draws attention to the
center of the plot, aiding judgement of how the two variables are related.

To compare and contrast multiple large data sets. Plotting all data points with differing
symbols per group does not provide the clarity necessary to distinguish similarities and
differences between groups. Instead, computing and plotting LOWESS smooths without
the data may give great insight into group characteristics. For example, Welch et al. (1988)
used LOWESS to describe the relationship between arsenic and pH in four physiographic
regions of the Western United States (figure 2.26 in Chapter 2). Thousands of data points
were involved; a scatterplot would have shown nothing but a blob of data. The smooths
clearly illustrated that in three regions arsenic concentrations increased with increasing pH,
while in the fourth no increase was observed. Smooths were also used by Schertz and
Hirsch (1985) to illustrate regional patterns in atmospheric precipitation chemistry. They
used one smooth per station to display simultaneous changes in sulfate and other chemical
concentrations occuring over broad regions of the country (figure 10.17). These
relationships would have gone unnoticed using scatterplots -- the underlying patterns would

have been obscured by the proliferation and scatter of the data.
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Figure 10.17 Smooths of sulfate concentrations at 19 stations, 1978-83
(from Schertz and Hirsch, 1985).

3. To remove the effect of an explanatory variable without first assuming the form of the
relation (linear, etc.). In situations equivalent to multiple regression where several variables
may affect the magnitude of a response variable (Y), removal of one variable's (X) effects
may be accomplished by computing a LOWESS smooth of Y versus X and using the
residuals from the smooth in subsequent analyses. An example is when removing the effects
of discharge or precipitation volume from chemical concentration data prior to performing a
trend analysis (see Chapter 12). LOWESS allows the analyst to be unconcerned as to
whether the relation between Y and X is linear or nonlinear. In contrast, linearity would

have to be established prior to using regression.
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Two additonal lines are sometimes plotted along with the LOWESS middle smooth. These are
upper and lower smooths (Cleveland and McGill, 1984b), which function as smoothed versions
of upper and lower quartiles of the conditional distribution of Y as a function of X. They are
constructed by computing additional LOWESS smooths on the positive residuals and negative
residuals, respectively, from the middle LOWESS smooth. These values are then added to the
middle smooth, and connected with straight line segments. Upper and lower smooths are useful
for showing how the spread and/or symmetry of the conditional distribution of Y changes as a
function of X. Figure 10.18 is one example. It shows how the spread of nitrate concentrations
changes with depth for groundwaters under Long Island, NY. The spread or "running IQR" is
indicated by the distance between the upper and lower smooths, shown as dashed lines in the

plot.

30

NITRATE CONCENTRATION, in mg/L as N

0 20 40 60 80 100 120
SCREEN DEPTH BELOW WATER TABLE, in feet

Figure 10.18 Nitrate concentrations versus depth in the upper Glacial Aquifer, Long Island NY
(data from Eckhardt et al., 1989).

10.5.3 Polar Smoothing

Polar smooths (Cleveland and McGill, 1984b) are variations on lowess smooths. They are
polygons describing the two-dimensional locations of data groups on a scatterplot (see figure
2.28 in Chapter 2). Comparisons of differences in location of several data groups is made much
easier by comparing polar smooths rather than comparing symbols for each data point on a
scatterplot, as in figure 2.27. Polar smooths are used as a visual 'discriminant analysis' in two

dimensions.
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To compute a polar smooth, first center the data at the median of X and median of Y. All data
points are then described in terms of their angle and radius from this center, placing the data
into polar coordinates. A lowess smooth is computed while in polar coordinates, and then is re-
transformed back into original units. The smooth, which while in polar coordinates had 50
percent of the data below it, upon re-transformation envelops those same 50 percent within it
An analogous "upper smooth' which in polar coordinates had 75 percent of the data below it

becomes an 'outer smooth' containing 75 percent of the data in original units.

Polar smooths can be a great aid to exploratory data analysis. They are not constrained a priori
to be an ellipse or any other shape, but take on the characteristics of the data. This can lead to
new insights difficult to see by plotting the original observations. For example, in figure 2.28
smooths enclosing 75% of the conductance versus pH data for three types of upstream land use
are plotted. The irregular pattern for the smooth of abandoned mine data suggests that two
separate subgroups are present, one with higher pH than the other.
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Exercises

10.1

10.2

10.3

10.4

For the data below,

a) compute the Kendall slope estimator,

b) compute Kendall's 7,

¢) compute the non-parametric regression equation.

d) compute the significance level of the test.
Y 10 40 30 55 62 56
X 1 2 3 4 5 6

One value has been altered from the 10.1 exercise. Again compute the slope estimate,
intercept, T and significance level. By how much have these changed in response to the

one (large) change in Y? Also compute a 95% confidence interval on the slope estimate.
Y 10 40 30 55 200 56
X 1 2 3 4 5 6

Compute the robust IWLS equation (2 iterations) for the Exercise 10.2 data.

Williams and Wolman (1984) relate the lowering of streambed elevation downstream of
a major dam to years following its installation. Calculate a linear least-squares regression
of bed lowering (L) as the response variable, versus years (Yrs) as the explanatory
variable, and compute its R2.

Yrs Lowering (m) Yrs L Yrs L
0.5 —0.65 8 —4.85 17 -5.05
1 -1.20 10 —4.40 20 —5.10
2 —2.20 11 —4.95 22 —5.65
4 —2.60 13 —5.10 24 —5.50
6 -3.40 15 —4.90 27 —5.65

Calculate a 5-point moving median smooth of the data. Plot the smooth and regression

line along with a scatterplot of the data. Describe how well each represents the data.
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10.5

10.6

Statistical Methods in Water Resources

Record Extension

Monthly discharges for September at two rivers are given in Appendix C13 (units of
million cubic meters per month). The most recent 20 years are available for "Short"
(ignore the data in italics), and 50 years at "Base". The two sites are close enough that
the data are reasonably well correlated with each other. Using the 20 years of joint
record and the additional 30 years of record at "Base", produce a 50-year-long record at

"Short" for use in a water supply simulation model.

you estimate

T S |

Base I | I
| | |

Year | I I
0

First use regression and then repeat the process using the LOC. Take the extended
record (the 30-year estimates plus the known 20 years) produced by the two methods at
"Short" and plot them to illustrate the differences (a boxplot or probability plot are
recommended). Compare these to each other and to a plot of the flows which actually
occurred (the true flows are given in italics in Appendix C13). Which technique is
preferable if the objective is to estimate water supply shortage risks? Which technique is
preferable if the objective is to estimate the true September flow in each year? Quantify

your conclusion about this.

The pulp liquor waste contamination of shallow groundwater (see Exercise 7.1) is
revisited. Now the relationship between pH and COD in samples taken from the
piezometers is of interest. Calculate a straight line which best describes the relationship
between these two chemical constituents. Should this line be used by the field
technician to predict COD from the pH measured on-site?

pH  COD pH  COD pH  COD
7.0 51 6.3 21 8.4 283
7.2 60 6.9 17 7.6 2170
7.5 51 7.0 34 7.5 6580
7.7 3600 6.4 43 7.4 3340
8.7 6900 6.8 34 9.3 7080

7.8 7700 6.7 43 9.0 10800



Multiple Linear Regression

The 100-year flood is to be estimated for locations without streamflow gages using basin
characteristics at those locations. A regression equation is first developed relating the 100-year
flood to several basin characteristics at sites which have a streamflow gage. Each characteristic
used is known to influence the magnitude of the 100-year flood, has already been used in
adjoining states, and so will be included in the equation regardless of whether it is significant for
any individual data set. Values for the basin characteristics at each ungaged site are then input to

the multiple regression equation to produce the 100-year flood estimate for that site.

Residuals from a simple linear regression of concentration versus streamflow show a consistent
pattern of seasonal variation. To make better predictions of concentration from streamflow,
additional explanatory variables are added to the regression equation, modeling the pattern seen
in the data.

As an exploratory tool in understanding possible causative factors of groundwater
contamination, data on numerous potential explanatory variables are collected. Each variable is
plausible as an influence on nitrate concentrations in the shallowest aquifer. Stepwise or similar
procedures are performed to select the "most important” variables, and the subsequent
regression equation is then used to predict concentrations The analyst does not realize that this

regression model is calibrated, but not verified.

Multiple linear regression (MLR) is the extension of simple linear regression (SLR) to the case of
multiple explanatory variables. The goal of this relationship is to explain as much as possible of
the variation observed in the response (y) variable, leaving as little variation as possible to
unexplained "noise". In this chapter methods for developing a good multiple regression model
are explained, as are the common pitfalls such as multi-collinearity and relying on R2. The
mathematics of multiple regression, best handled by matrix notation, will not be extensively
covered here. See Draper and Smith (1981) or Montgomery and Peck (1982) for this.



296 Statistical Methods in Water Resources

11.1 Why Use MLR?

When are multiple explanatory variables required? The most common situation is when
scientific knowledge and experience tells us they are likely to be useful. For example, average
runoff from a variety of mountainous basins is likely to be a function both of average rainfall
and of altitude; average dissolved solids yields are likely to be a function of average rainfall,
percent of basin in certain rock types, and perhaps basin population. Concentrations of
contaminants in shallow groundwater are likely to be functions of both source terms (application
rates of fertilizers or pesticides) and subsurface conditions (soil permeability, depth to

groundwater, etc.).

The use of MLR might also be indicated by the residuals from a simple linear SLR. Residuals
may indicate there is a temporal trend (suggesting time as an additional explanatory variable), a
spatial trend (suggesting spatial coordinates as explanatory variables), or seasonality (suggesting
variables which indicate which season the data point was collected in). Analysis of a residuals
plot may also show that patterns of residuals occur as a function of some categorical grouping
representing a special condition such as: on the rising limb of a hydrograph, at cultivating time,
during or after frontal storms, in wells with PVC casing, measurements taken before 10:00 a.m.,
etc. These special cases will only be revealed by plotting residuals versus a variety of variables --
in a scatterplot if the variable is continuous, in grouped boxplots if the variable is categorical.
Seeing these relationships should lead to definition of an appropriate explanatory variable and its

inclusion in the model if it significantly improves the fit.

11.2 MLR Model

The MLR model will be denoted:
y = Bo—i-Bl X1+ B2X2+....+ kak-i-ﬁ
where  y  is the response variable
Bo is the intercept
B1 s the slope coefficient for the first explanatory variable
B2 is the slope coefficient for the second explanatory variable
Bk s the slope coefficient for the kth explanatory variable, and

€  is the remaining unexplained noise in the data (the error).

To simplify notation the subscript i, referring to the i=1,2,..,n observations, has been omitted

from the above. There are k explanatory variables, some of which may be related or correlated
to each other (such as the previous 5-day's rainfall and the the previous 1-day rainfall). Itis
therefore best to avoid calling these "independent” variables. They may or may not be
independent of each other. Calling them explanatory variables describes their purpose: to

explain the variation in the response variable.
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11.3 Hypothesis Tests for Multiple Regression

11.3.1 Nested F Tests
The single most important hypothesis test for MLR is the F test for comparing any two nested
models. Let model "s" be the "simpler" MLR model

ys = PBo +Bpxp +Baxp o Pxi +gg.
It has k+1 parameters including the intercept, with degrees of freedom (dfg) of n—(k+1). Again,
the degrees of freedom equals the number of observation minus the number of parameters

estimated, as in SLR. Its sum of squared errors is SSE.

Let model "c" be the more complex regression model
ye=Bo+B1x1 +Baxo+ o + Broxc + Pkt Xkt 1 o F B xm F Ec -
It has m+1 parameters and residual degrees of freedom (df.) of n—(m+1). Its sum of squared

errors is SSE..

The test of interest is whether the more complex model provides a sufficiently better
explanation of the variation in y than does the simpler model. In other words, do the extra
explanatory variables x| 41 to x, add any new explanatory power to the equation? The models
are "nested" because all of the k explanatory variables in the simpler model are also present in
the complex model, and thus the simpler model is nested within the more complex model. The
null hypothesis is

Ho: Br+1 = Br+2 = - = Bm = 0 versus the alternative

Hj: atleast one of these m—k coefficients is not equal to zero.

If the slope coefficients for the additional explanatory variables are all not significantly different
from zero, the variables are not adding any explanatory power in comparison to the cost of
adding them to the model. This cost is measured by the loss in the degrees of freedom = m—k,

the number of additional variables in the more complex equation.

The test statistic is
(SSEq - SSE. ) / (dfg - dfy)
- (SSE / dfy)
If F exceeds the tabulated value of the F distribution with (dfg — df;) and df. degrees of
freedom for the selected o (say 0t=0.05), then Hy is rejected. Rejection indicates that the more

where (dfg — df.) = m—k.

complex model should be chosen in preference to the simpler model. If F is small, the
additional variables are adding little to the model, and the simpler model would be chosen over

the more complex.
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Note that rejection of H() does not mean that all of the K+1 to m variables have coefficients
significantly different from zero. It merely states that some of the coefficients in the more
complex model are significant, making that model better than the simpler model tested. Other
simpler models having different subsets of variables may need to be compared to the more

complex model before choosing it as the "best".

11.3.2 Overall F Test
There are two special cases of the nested I test. The first is of limited use, and is called the
overall F test. In this case, the simpler model is

ys = Po + &5, where = y.
The rules for a nested F test still apply: the dfy = n—1 and SSEg equals (n—1) times the sample
variance of y. Many computer packages give the results of this F-test. It is not very useful
because it tests only whether the complex regression equation is better than no regression at all.

Of much greater interest is which of several regression models is best.

11.3.3 Partial F Tests

The second special case of nested F tests is the partial I test, which is called a Type III test by
SAS. Here the complex model has only 1 additional explanatory variable over the simpler
model, so that m=k+1. The partial I test evaluates whether the mth variable adds any new
explanatory power to the equation, and so ought to be in the regression model, given that all the
other variables are already present. Note that the F statistics on a coefficient will change
depending on what other variables are in the model. Thus the simple question "does variable m
belong in the model?" cannot be answered. What can be answered is whether m belongs in the

model in the presence of the other variables.

With only one additional explanatory variable, the partial F test is identical in results to a t-test
on the coefficient for that variable. In fact, 2 = F, where both are the statistics computed for
the same coefficient for the partial test. Some computer packages report the I statistic, and
some the t-test, but the p-values for the two tests are identical. The partial t-test can be easily
performed by comparing the t statistic for the slope coefficient to a students t-distribution with
n—(m+1) degrees of freedom. H is rejected if |t]|> t—(o/2)" For a two-sided test with

o = 0.05 and sample sizes n of 20 or more, the critical value of tis |t|= 2. Larger t-statistics (in
absolute value) for a slope coefficient indicate significance. Squaring this, the critical partial F

value is near 4.

Partial tests guide the evaluation of which variables to include in a regression model, but are not
sufficient for every decision. If every |t|>2 for each coefficient, then it is clear that every
explanatory variable is accounting for a significant amount of variation, and all should be
present. When one or more of the coefficients has a |t| <2, however, some of the variables

should be removed from the equation, but the t values are not a certain guide as to which
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ones to remove. These partial t or F tests are precisely the tests used to make automatic
decisions for removal or inclusion in "stepwise" procedures: forward, backward, and stepwise
multiple regression. These procedures do not guarantee that some "best" model is obtained, as

discussed later. Better procedures are available for doing so.

11.4 Confidence Intervals

Confidence intervals can be computed for the regression slope coefficients Bk, and for the mean
response y at a given value for all explanatory variables. Prediction intervals can be similarly
computed around an individual estimate of y. These are entirely analogous to the SLR situation,
but require matrix manipulations for computation. A brief discussion of them follows. More
complete treatment can be found in many statistics textbooks, such as Montgomery and Peck
(1982), Draper and Smith (1981), and Walpole and Myers (1985), among others.

11.4.1 Variance-Covariance Matrix
In MLR, the values of the k explanatory variables for each of the n observations, along with a

vector of 1s for the intercept term, can be combined into a matrix X:

1 x11 x21 . . X1k ]
1 x120 x00 . . X0k
X =
L 1 xp1 Xp2 . . Xpk

X is used in MLR to compute the variance-covariance matrix o2« (X'X)" 1,
where (X'X)™1 is the "X prime X inverse" matrix. Elements of (X'X)™1 for three explanatory

variables are as follows:
Coo Cot Coz Cpz 7]
Cio Ci1 Ci2 Cys

x)-1 = 11.1
(KX) Cx Co1 Cpp Cp3 1

L C30 C31 Czp Csz A

When multiplied by the error variance 62 (estimated by the variance of the residuals, s2), the
diagonal elements of the matrix Cg through C33 become the variances of the regression

coefficients, while the off-diagonal elements become the covariances between the coefficients.
Both (X'X)~1 and s2 can be output from MLR software.

11.4.2 Confidence Intervals for Slope Coefficients
Interval estimates for the regression coefficients By through P are often printed by MLLR

software. If not, the statistics necessary to compute them are. As with SLR it must be assumed
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that the residuals are normally distributed with variance o2 A
100+(1-00)% confidence interval on [3] is

bj=t@/2,0-p) VG = B = bj+ (/2 np) Vs [11.2

where Cjj is the diagonal element of xX'x)~1 corresponding to the jth explanatory variable.
Often printed is the standard error of the regression coefficient:

se (bj) =4/s2 Gjj - [11.3]

Note that Cjj is a function of the other explanatory variables as well as the jth. Therefore the
interval estimate, like b j and its partial test, will change as explanatory variables are added to or
deleted from the model.

11.4.3 Confidence Intervals for the Mean Response
A 1002(1-01)% confidence interval for the expected mean response LL(y() for a given point in
multidimensional space x) is symmetric around the regression estimate y . These intervals also

require the assumption of normality of residuals.

~ 2 1 (] -1 A 2 [ 1 -1
yo—t(mz’nfp)Js X, (X'X) x, SWyg = y,+ t(mz,nfp)\/s X, (X'X) x, [11.4]

The variance of the mean is the term under the square root sign. It changes with x), increasing
as X, moves away from the multidimensional center of the data. In fact, the term x;'(X'X) " 1x,

is the leverage statistic h;, expressing the distance that x is from the center of the data.

11.4.4 Prediction Intervals for an Individual y

A 1002(1—-00)% prediction interval for a single response yj), given a point in multidimensional
space X, is symmetric around the regression estimate y (. It requires the assumption of
normality of residuals.

- t(t)llz,,F[?)‘/s2 <1+ xo'(X'X)’lx()) <yo< P+ t((llz,m[))\/Lv2 <1+ xo'(X'X)’lxo) [11.5]

11.5 Regression Diagnostics

As was the case with SLR, it is important to use graphical tools to diagnose deficiencies in MLR.
The following residuals plots are very important: normal probability plots of residuals, residuals
versus predicted (to identify curvature or heteroscedasticity), residuals versus time sequence or
location (to identify trends), and residuals versus any candidate explanatory variables not in the
model (to identify variables, or appropriate transformations of them, which may be used to
improve the model fit).
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11.5.1 Partial Residual Plots

As with SLR, curvature in a plot of residuals versus an explanatory variable included in the
model indicates that a transformation of that explanatory variable is required. Their relationship
should be linear. To see this relation, however, residuals should not be plotted directly against
explanatory variables; the other explanatory variables will influence these plots. For example,
curvature in the relationship between e and xq may show up in the plot of e versus xp,
erroneously indicating that a transformation of x) is required. To avoid such effects, partial

residuals plots (also called adjusted variable plots) should be constructed.

The partial residual is
.* — — - .
b Y70
where 0 is the predicted value of y from a regression equation where X is left out of the

model. All other candidate explanatory variables are present.

This partial residual is then plotted versus an adjusted explanatory variable
X =X
where X(]) is the X predicted from a regression against all other explanatory variables. So X is
treated as a response variable in order to compute its adjusted value. The partial plot (e versus
) describes the relationship between y and the jth explanatory variable after all effects of the
other explanatory variables have been removed. Only the partial plot accurately indicates

whether a transformation of X is necessary.

11.5.2 Leverage and Influence

The regression diagnostics of Chapter 9 are much more important in MLR than in SLR. It is
very difficult when performing multiple regression to recognize points of high leverage or high
influence from any set of plots. This is because the explanatory variables are multidimensional.
One observation may not be exceptional in terms of each of its explanatory variables taken one
at a time, but viewed in combination it can be very exceptional. Numerical diagnostics can

accurately detect such anomalies.

The leverage statistic hj = x'(X'X)™ 1x0 expresses the distance of a given point x() from the
center of the sample observations (see also section 11.4.3). It has two important uses in MLR.
The first is the direct extension of its use in SLR -- to identify points unusual in value of the
explanatory variables. Such points warrant further checking as possible errors, or may indicate a

poor model (transformation required, relationships not linear, etc.).

The second use of hj is when making predictions. The leverage value for a prediction should
not exceed the largest hj in the original data set. Otherwise an extrapolation beyond the
envelope surrounding the original data is being attempted. The regression model may not fit
well in that region. It is sometimes difficult to recognize that a given x for which a predicted y

is attempted is outside the boundaries of the original data. This is because the point may not be
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beyond the bounds of any of its individual explanatory variables. Checking the leverage statistic
guards against an extrapolation that is difficult to detect from a plot of the data.

Example 1

Variations in chemical concentrations within a steeply dipping aquifer are to be described by
location and depth. The data are concentrations (C) plus three coordinates: distance east (DE),
distance north (DN), and well depth (D). Data were generated using C = 30 + 0.5 D + €. Any
acceptable regression model should closely reproduce this true model, and should find C to be
independent of DE and DN. Three pairwise plots of explanatory variables (figure 11.1) do not
reveal any "outliers" in the data set. Yet compared to the critical leverage statistic hj=3p/n=0.6,
and critical influence statistic DFFITSZZ’\IPTI =0.9, the 16th observation is found to be a
point of high leverage and high influence (table 11.1). In figure 11.2 the axes have been rotated,
showing observation 16 to be lying outside the plane of occurrence of the rest of the data, even

though its individual values for the three explanatory variables are not unusual.

Obs.# DE DN D C hi DFFITS
1 1 1 4.2122 30.9812 0.289433 -0.30866
2 2 1 8.0671 33.1540 0.160670 -0.01365
3 3 1 10.7503 37.1772 0.164776 0.63801
4 4 1 11.9187 35.3864 0.241083 -0.04715
5 1 2 11.2197 35.9388 0.170226 0.42264
6 2 2 12.3710 31.9702 0.086198 -0.51043
7 3 2 12.9976 34.9144 0.087354 -0.19810
8 4 2 15.0709 36.5436 0.165040 -0.19591
9 1 3 12.9886 38.3574 0.147528 0.53418

10 2 3 18.3469 39.8291 0.117550 0.45879
11 3 3 20.0328 40.0678 0.121758 0.28961
12 4 3 20.5083 37.4143 0.163195 -0.47616
13 1 4 17.6537 35.3238 0.165025 -0.59508
14 2 4 17.5484 34.7647 0.105025 -0.77690
15 3 4 23.7468 40.7207 0.151517 0.06278
16 4 4 13.1110 42.3420 0.805951 4.58558
17 1 5 20.5215 41.0219 0.243468 0.38314
18 2 5 23.6314 40.6483 0.165337 -0.08027
19 3 5 24.1979 42.8845 0.160233 0.17958
20 4 5 28.5071 43.7115 0.288632 0.09397

Table 11.1 Data and diagnostics for Example 1
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Figure 11.1 Scatterplot matrix for the 3 explanatory variables

(obs. 16 is shown as a square)
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Figure 11.2 Rotated scatterplot showing the position of the high leverage point

(obs. 16 is shown as a square)
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The depth value for observation 16 was set as a "typographical error", and should be 23.111

instead of 13.111. What does this error and resulting high leverage point do to a regression of
concentration versus the three explanatory variables? From the t-ratios of table 11.2 it is seen
that DN and perhaps DE appear to be significantly related to Conc, but that depth (D) is not.

This is exactly opposite of what is known to be true.

Conc =289 + 0.991 DE + 1.60 DN + 0.091 D

n=20 s=2.14 RZ =071
Parameter Estimate Std.Err( ﬁ ) t-ratio p
Intercept BO 28.909 1.582 18.28 0.000
Slopes By
DE 0.991 0.520 1.90 0.075
DN 1.596 0.751 2.13 0.049
D 0.091 0.186 0.49 0.632

Table 11.2 Regression statistics for Example 1

One outlier has had a severe detrimental effect on the regression coefficients and model
structure. Points of high leverage and influence should always be examined before accepting a
regression model, to determine if they represent errors. Suppose that the "typographical error”

was detected and corrected. Table 11.3 shows that the resulting regression relationship is

drastically changed:
C=292-0419 DE-0.82 DN + 0.710 D
n=20 s =191 RZ=0.77

Parameter Estimate Std.Err( ﬁ ) t-ratio p

Intercept BO 29.168 1.387 21.03 0.000

Slopes By

DE —-0.419 0.833 —-0.50 0.622

DN —0.816 1.340 —0.61 0.551

D 0.710 0.339 2.10 0.052
Table 11.3 Regression statistics for the corrected Example 1 data

Based on the t-statistics, DE and DN are not significantly related to C, while depth is related.
The intercept of 29 is close to the true value of 30, and the slope for depth (0.7) is not far from
the true value of 0.5. For observation 16, hi = 0.19 and DFFITS = 0.48, both well below their

critical values. Thus no observations have undue influence on the regression equation. Since
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DE and DN do not appear to belong in the regression model, dropping them produces the
equation of table 11.4, with values very close to the true values from which the data were
generated. Thus by using regression diagnostics to inspect observations deemed unusual, a poor

regression model was turned into an acceptable one.

Conc = 29.0+0.511 D

n=20 s =1.83 R%=0.77
Parameter Estimate Std.Err(B) t-ratio _p
Intercept Py 29.036 1.198 24.23 0.000
Slope D 0511 0.067 7.65 0.000

Table 11.4 Final regression model for the corrected Example 1 data

11.5.3 Multi-Collinearity

It is very important that practitioners of MLR understand the causes and consequences of multi-
collinearity, and can diagnose its presence. Multi-collinearity is the condition where at least one
explanatory variable is closely related to one or more other explanatory variables. It results in
several undesirable consequences for the regression equation, including:

1) Equations acceptable in terms of overall F-tests may have slope coefficients with
magnitudes which are unrealistically large, and whose partial I or t-tests are found to
be insignificant.

2) Coefficients may be unrealistic in sign (a negative slope for a regression of streamflow
vs. precipitation, (etc). Usually this occurs when two variables describing
approximately the same thing are counter-balancing each other in the equation,
having opposite signs.

3) Slope coefficients are unstable. A small change in one or a few data values could
cause a large change in the coefficients.

4) Automatic procedures such as stepwise, forwards and backwards methods produce
different models judged to be "best".

Concern over multi-collinearity should be strongest when the purpose is to make inferences
about coefficients. Concern can be somewhat less when only predictions are of interest,

provided that these predictions are for cases within the observed range of the x data.

An excellent diagnostic for measuring multi-collinearity is the variance inflation factor (VIF)
presented by Marquardt (1970). For variable j the VIF is
VIF; = 1/(1-R}?) [11.6]

where Rjz is the R2 from a regression of the jth explanatory variable on all of the other
explanatory variables -- the equation used for adjustment of xj in partial plots. The ideal is VIF;
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=1, corresponding to Rjz = 0. Serious problems are indicated when
VIF; > 10 (R]2 > 0.9). A useful interpretation of VIF is that multi-collinearity "inflates" the

width of the confidence interval for the jth regression coefficient by the amount
N VIFj compared to what it would be with a perfectly independent set of explanatory

variables.

11.5.3.1 Solutions for multi-collinearity
There are four options for working with a regression equation having one or more high VIF

values.

1) Center the data. A simple solution which works in some specific cases is to center the
data. Multi-collinearity can arise when some of the explanatory variables are functions of
other explanatory variables, such as for a polynomial regression of y against x and x2. When
x is always of one sign, there may be a strong relationship between it and its square.
Centering redefines the explanatory variables by subtracting a constant from the original
variable, and then recomputing the derived variables. This constant should be one which
produces about as many positive values as negative values, such as the mean or median.
When all of the derived explanatory variables are recomputed as functions (squares,

products, etc.) of these centered variables, their multi-collinearity will be reduced.

Centering is a mathematical solution to a mathematical problem. It will not reduce multi-
collinearity between two variables which are not mathematically derived one from another.
It is particularly useful when the original explanatory variable has been defined with respect
to some arbitrary datum (time, distance, temperature) and is easily fixed by resetting the
datum to roughly the middle of the data. In some cases the multi-collinearity can be so
severe that the numerical methods used by the statistical software fail to perform the
necessary matrix computations correctly. Such numerical problems occur frequently when
doing trend surface analysis (e.g., fitting a high order polynomial of distances north of the
equator and west of Greenwich) or trend analysis (e.g., values are a polynomial of years).
This will be demonstrated in Example 2.

2) Eliminate variables. In some cases prior judgment suggests the use of several different
variables which describe related but not identical attributes. Examples of this might be: air
temperature and dew point temperature, the maximum 1-hour rainfall, and the maximum 2-
hour rainfall, river basin population and area in urban land use, basin area forested and basin
area above 6,000 feet elevation, and so on. Such variables may be strongly related as shown
by their VIFs, and one of them must eliminated on judgmental grounds, or on the basis of

comparisons of models fit with one eliminated versus the other eliminated, in order to lower
the VIF.
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3)

4)

Collect additional data. Multi-collinearity can sometimes be solved with only a few
additional but strategically selected observations. Suppose some attributes of river basins are
being studied, and small basins tend to be heavily forested while large basins tend to be less
heavily forested. Discerning the relative importance of size versus the importance of forest
cover will prove to be difficult. Strong multi-collinearity will result from including both
variables in the regression equation. To solve this and allow the effects of each variable to
be judged separately, collect additional samples from a few small less forested basins and a
few large but heavily-forested basins. This produces a much more reliable model. Similar
problems arise in ground-water quality studies, where rural wells are shallow and urban wells
are deeper. Depth and population density may show strong multi-collinearity, requiring

some shallow urban and deeper rural wells to be sampled.

Perform ridge regression. Ridge regression was proposed by Hoerl and Kenard (1970).
Montgomery and Peck (1982) give a good brief discussion of it. It is based on the idea that
the variance of the slope estimates can be greatly reduced by introducing some bias into

them. Itis a controversial but useful method in multiple regression.

Example 2 -- centering

The natural log of concentration of some contaminant in a shallow groundwater plume is to be

related to distance east and distance north of a city. The city was arbitrarily chosen as a

geographic datum. The data are presented in table 11.5.

Since the square of distance east (DESQ) must be strongly related to DE, and similarly DNSQ
and DN, and DE*DN with both DE and DN, multi-collinearity between these variables will be
detected by their VIFs. Using the rule that any VIF above 10 indicates a strong dependence
between variables, table 11.6 shows that all variables have high VIFs. Therefore all of the slope

coefficients are unstable, and no conclusions can be drawn from the value of 10.5 for DE, or

15.1 for DN, etc. This cannot be considered a good regression model, even though the R? is

large.
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Obs. # C In(C) DE DN DESQ DNSQ DE<DN

1 14 2.63906 17 48 289 2304 816
88 4.47734 19 48 361 2304 912

3 249 5.51745 21 48 441 2304 1008
4 14 2.63906 23 48 529 2304 1104
5 29 3.36730 17 49 289 2401 833
6 147 4.99043 19 49 361 2401 931
7 195 5.27300 21 49 441 2401 1029
8 28 3.33220 23 49 529 2401 1127
9 21 3.04452 17 50 289 2500 850
10 276 5.62040 19 50 361 2500 950
11 219 5.38907 21 50 441 2500 1050
12 40 3.68888 23 50 529 2500 1150
13 22 3.09104 17 51 289 2601 867
14 234 5.45532 19 51 361 2601 969
15 203 5.31320 21 51 441 2601 1071
16 35 3.55535 23 51 529 2601 1173
17 15 2.70805 17 52 289 2704 884
18 115 4.74493 19 52 361 2704 988
19 180 5.19296 21 52 441 2704 1092
20 16 2.77259 23 52 529 2704 1196

Table 11.5 Data for Example 2

DE and DN are centered by subtracting their medians. Following this, the three derived
variables DESQ, DNSQ and DEDN are recomputed, and the regression rerun. Table 11.7 give
the results, showing that all multi-collinearity is completely removed. The coefficients for DE
and DN are now more reasonable in size, while the coefficients for the derived variables are
exactly the same. The t-statistics for DE and DN have changed because their uncentered values
were unstable and t-tests unreliable. Note that the s and R2 are also unchanged. In fact, this is
exactly the same model as the uncentered equation, but only in a different and centered

coordinate system.
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In(C) =—-479 + 10.5DE + 15.1 DN —0.264 DESQ - 0.151 DNSQ + 0.0014 DEDN

n =20
Parameter
Intercept B
Slopes By
DE
DN
DESQ
DNSQ
DEDN

s =027 R% =0.96

Estimate Std.Err(B) t-ratio

—479.03 91.66 —5.23

10.55 1.12 9.40

15.14 3.60 420

~0.26 0.015 ~17.63

~0.15 0.04 423

0.001 0.02 0.07

_—p
0.000

0.000
0.001
0.000
0.001
0.943

Table 11.6 Regression statistics and VIFs for Example 2

1751.0
7223.9

501.0
7143.9
1331.0

In(C) = 5.76 + 0.048 DE + 0.019 DN - 0.264 DESQ — 0.151 DNSQ + 0.001 DNDE

n =20
Parameter
Intercept B
Slopes By
DE
DN
DESQ
DNSQ
DEDN

s =027 RZ% = 0.96
Estimate  Std.Err(B) t-ratio
5.76 0.120 48.15
0.048 0.027 1.80
0.019 0.042 0.44
—0.264 0.015 ~17.63
~0.151 0.036 —423
0.001 0.019 0.07

N o I
0.000

0.094
0.668
0.000
0.001
0.943

Table 11.7 Regression statistics and VIFs for centered Example 2 data

VIF

1.0
1.0
1.0
1.0

11.6 Choosing the Best MLR Model

One of the major issues in multiple regression is the appropriate approach to variable selection.

The benefit of adding additional variables to a multiple regression model is to account for or

explain more of the variance of the response variable. The cost of adding additional variables is

that the degrees of freedom decreases, making it more difficult to find significance in hypothesis

tests and increasing the width of confidence intervals. A good model will explain as much of the

variance of y as possible with a small number of explanatory variables.

The first step is to consider only explanatory variables which ought to have some effect on the

dependent variable. There must be plausible theory behind why a variable might be expected to

influence the magnitude of y. Simply minimizing the SSE or maximizing R are not sufficient

criteria. In fact, any explanatory variable will reduce the SSE and increase the R? by some small

amount, even those irrelevant to the situation (or even random numbers!). The benefit of
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adding these unrelated variables, however, is small compared to the cost of a degree of freedom.
Therefore the choice of whether to add a variable is based on a "cost-benefit analysis", and
variables enter the model only if they make a significant improvement in the model. There are
at least two types of approaches for evaluating whether a new variable sufficiently improves the
model. The first approach uses partial F or t-tests, and when automated is often called a
"stepwise" procedure. The second approach uses some overall measure of model quality. The

latter has many advantages.

11.6.1 Stepwise Procedures

Stepwise procedures are automated model selection methods in which the computer algorithm
determines which model is preferred. There are three versions, usually called forwards,
backwards, and stepwise. These procedures use a sequence of partial I or t-tests to evaluate the
significance of a variable. The three versions do not always agree on a "best" model, especially
when multi-collinearity is present. They also do not evaluate all possible models, and so cannot
guarantee that the "best" model is even tested. They were developed prior to modern computer
technology, taking shortcuts to avoid running all possible regression equations for comparison.

Such shortcuts are no longer necessary.

Forward selection starts with only an intercept and adds variables to the equation one at a time.
Once in, each variable stays in the model. All variables not in the model are evaluated with
partial F¥ or t statistics in comparison to the existing model. The variable with the highest
significant partial F or t statistic is included, and the process repeats until either all available
variables are included or no new variables are significant. One drawback to this method is that
the resulting model may have coefficients which are not significantly different from zero; they
must only be significant when they enter. A second drawback is that two variables which each
individually provide little explanation of y may never enter, but together the variables would

explain a great deal. Forward selection is unable to capitalize on this situation.

Backward elimination starts with all explanatory variables in the model and eliminates the one
with the lowest partial-F statistic (lowest |t|). It stops when all remaining variables are
significant. The backwards algorithm does ensure that the final model has only significant
variables, but does not ensure a "best" model because it also cannot consider the combined

significance of groups of variables.

Stepwise regression combines the ideas of forward and backward. It alternates between adding
and removing variables, checking significance of individual variables within and outside the
model. Variables significant when entering the model will be eliminated if later they test as

insignificant. Even so, stepwise does not test all possible regression models.
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Example 3:
Haan (1977) attempted to relate the mean annual runoff of several streams (ROFF) with 9 other

variables: the precipitation falling at the gage (PCIP), the drainage area of the basin (AREA), the
average slope of the basin (SLOPE), the length of the drainage basin (LEN), the perimeter of
the basin (PERIM), the diameter of the largest circle which could be inscribed within the
drainage basin (DI), the "shape factor" of the basin (Rs), the stream frequency -- the ratio of the
number of streams in the basin to the basin area (FREQ), and the relief ratio for the basin (Rr).
The data are found in Appendix C14. Haan chose to select a 3-variable model (using PCIP,
PERIM and Rr) based on a levelling off of the incremental increase in R2 as more variables were
added to the equation (see figure 11.3).

What models would be selected if the stepwise or overall methods are applied to this data? If a
forwards routine is performed, no single variables are found significant at

o = 0.05, so an intercept-only model is declared "best". Relaxing the entry criteria to a larger @,
AREA is first entered into the equation. Then Rr, PCIP, and PERIM are entered in that order.
Note that AREA has relatively low significance once the other three variables are added to the
model (Model 4).

Forwards Model 1 Model 2 Model 3 Model 4
AREA B 0.43 0.81 0.83 —-0.62
t 1.77 4.36 4.97 -1.68
Rr B 0.013 0.011 0.009
t 3.95 3.49 4.89
PCIP B 0.26 0.54
t 1.91 5.05
PERIM J 1.02
t 4.09

The backwards model begins with all variables in the model. It checks all partial t or I statistics,
throwing away the variable which is least significant. Here the least significant single variable is
AREA. So while forwards made AREA the first variable to bring in, backwards discarded
AREA first of alll Then other variables were also removed, resulting in a model with Rr, PCIP,
PERIM, DI and FREQ remaining in the model. Multi-collinearity between measures of
drainage basin size, as well as between other variables, has produced models from backwards
and forwards procedures which are quite different from each other. The slope coefficient for
DI is also negative, suggesting that runoff decreases as basin size increases. Obviously DI is

counteracting another size variable in the model (PERIM) whose coefficient is large.
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Figure 11.3 Magnitude of o2, R2, Cp and F as a function of the number of explanatory

variables, for the best k explanatory variable model.

Stepwise first enters AREA, Rr, PCIP and PERIM. At that point, the t-value for AREA drops
from near 5 to —1.6, so AREA is dropped from the model. DI and FREQ are then entered, so
that stepwise results in the same 5-variable model as did backwards.

Stepwise = Model 1 Model2  Model3  Model4  Model5  Model 6  Model 7

AREA B 0.43 0.81 0.83 —0.62
t 1.77 4.36 497 -1.68

Rr B 0.013 0.011 0.009 0.010 0.010 0.011
t 3.95 3.49 4.89 5.19 5.02 6.40

PCIP B 0.260 0.539 0.430 0.495 0.516
t 1.91 5.05 4.62 5.39 6.71

PERIM J 1.021 0.617 0.770 0.878
t 4.09 8.24 6.98 8.38

DI B -1.18 -1.30
t -1.75 -2.32

FREQ B 0.36
t 2.14
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11.6.2  Overall Measures of Quality
Three newer statistics can be used to evaluate each of the 2K regressions equations possible from

k candidate explanatory variables. These are Mallow's Cp, the PRESS statistic, and the adjusted
R2,

Mallow's Cp, is designed to achieve a good compromise between the desire to explain as much
variance in y as possible (minimize bias) by including all relevant variables, and to minimize the
variance of the resulting estimates (minimize the standard error) by keeping the number of
coefficients small. The Cp statistic is
(n-p) * (sp2 - 09

o2

where n is the number of observations, p is the number of coefficients (number of explanatory
variables plus 1), sp2 is the mean square error (MSE) of this p coefficient model, and 62is the
best estimate of the true error, which is usually taken to be the minimum MSE among the 2k
possible models. The best model is the one with the lowest Cp value. When several models
have nearly equal Cp values, they may be compared in terms of reasonableness, multi-
collinearity, importance of high influence points, and cost in order to select the model with the

best overall properties.

The second overall measure is the PRESS statistic. PRESS was defined in Chapter 9 as the sum
of the squared prediction errors e(i). By minimizing PRESS, the model with the least error in
the prediction of future observations is selected. PRESS and Cp generally agree as to which

model is "best", even though their criteria for selection are not identical.

A third overall measure is the adjusted R2 (R2,). This is an R2 value adjusted for the number of
explanatory variables (or equivalently, the degrees of freedom) in the model. The model with
the highest R2, is identical to the one with the smallest standard error (s) or its square, the mean
squared error (MSE). To see this, in Chapter 9 R2 was defined as a function of the total (SSy)
and error (SSE) sum of squares for the regression model:

RZ=1-(SSE/SSy) [11.8]

The weakness of R2 is that it must increase, and the SSE decrease, when any additional variable
is added to the regression. This happens no matter how little explanatory power that variable
has. RZ, is adjusted to offset the loss in degrees of freedom by including as a weight the ratio of

total to error degrees of freedom:
(n-1) SSE MSE

2 — _ — [ o
Rf% = 1=y s, L= 88/ [11.9]
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As (SSy/ (n—1)) is constant for a given data set, R2, increases as MSE decreases. Either
maximize R2, or minimize MSE as an overall measure of quality. However, when p is
considerably smaller than n, R2, is a less sensitive measure than either PRESS or Cp. PRESS

has the additional advantage of being a validation criteria.

Opverall methods use the computer to perform large computations (such as Cp and PRESS for
many models), letting the scientist judge which model to use. This allows flexibility in choosing
between models. For example, two "best" models may be nearly identical in terms of their Cp,
R2, and/or PRESS statistics, yet one involves variables that are much less expensive to measure
than the other. The less expensive model can be selected with confidence. In contrast, stepwise
procedures ask the computer to judge which model is best. Their combination of inflexible
criteria and inability to test all models often results in the selection of something much less than
the best model.

Example 3, continued

Instead of the stepwise procedures run on Haan's data, models are evaluated using the overall
statistics Cp and PRESS. Smaller values of Cp and PRESS are associated with better models.
Computing PRESS and Cp for the 29 =512 possible regression models can be done with
modern statistical software. A list of these statistics for the two best k-variable models, where
best is defined as the highest R2, is given in table 11.8.

Based on Cp, the best model would be the 5 variable model having PCIP, PERIM, DI, FREQ
and Rr as explanatory variables -- the same model as selected by stepwise and forwards.
Remember that there is no guarantee that stepwise procedures regularly select the lowest Cp or
PRESS models. The advantage of using an overall statistic like Cp is that options are given to
the scientist to select what is best. If the modest multi-collinearity (VIF=5.1) between PERIM
and DI is of concern, with its resultant negative slope for DI, the model with the next lowest Cp
that does not contain both these variables (a four-variable model with Cp= 3.6) could be
selected. If the scientist decided AREA must be in the model, the lowest CP model containing
AREA (the same four-variable model) could be selected. Cp and PRESS allow model choice to
be based on multiple criteria such as prediction quality (PRESS), low VIF, cost, etc..
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# of
Vars R-sqg
22.
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69.
68.
90.
80.
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93.
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Table 11.8 Statistics for several multiple regression models of Haan's data

PRESS

47.3
49.3
20.6
24.7
10.0
19.3
8.0
7.7
6.9
7.2
6.3
10.0
7.5
6.4
53.7
10.2
59.7
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11.7 Summary of Model Selection Criteria

Rules for selection of linear regression models are summarized in the 5 steps below:

Max VIF
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1) Should y be transformed? To decide whether to transform the y variable, plot residuals

versus predicted values for the untransformed data. Compare this to a residuals plot for the best

transformed model, looking for three things:

1) constant variance across the range of y ,

2) normality of residuals, and
3) alinear pattern, not curvature.

The statistics RZ, SSE, Cp, and PRESS are not appropriate for comparison of models having

different units of y.

2) Should x (ot several x's) be transformed? Transformation of an x variable should be

made using partial plots. Check for the same three patterns of constant variance, normality and
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linearity. Considerable help can be obtained from statistics such as R2 (maximize it), or SSE or
PRESS (minimize it). Many transformations can be rapidly checked with such statistics, but a

residuals plot should always be inspected prior to making any final decision.

3) Which of several models, each with the same y and with the same number of
explanatory variables, is preferable? Use of R2, SSE, or PRESS is appropriate here, but back
it up with a residuals plot.

4) Which of several nested models, each with the same y, is preferable? Use the partial F
test between any pair of nested models to find which is best. One may also select the model

based on minimum Cp or minimum PRESS.

5) Which of several models is preferable when each uses the same y variable but are not

necessarily nested? Cp or PRESS must be used in this situation.

11.8 Analysis of Covariance

Often there are factors which influence the dependent variable which are not appropriately
expressed as a continuous variable. Examples of such grouped or qualitative variables include
location (stations, aquifers, positions in a cross section), or time (day & night; winter & summer;
before & after some event such as a flood, a drought, operation of a sewage treatment plant or
reservoir). These factors are perfectly valid explanatory variables in a multiple regression
context. They can be incorporated by the use of binary or "dummy" variables, essentially

blending regression and analysis of variance into an analysis of covariance.

11.8.1 Use of One Binary Variable
To the simple one-variable regression model

Y = BO +B1 X +e [11.10]
(again with subscripts i assumed), an additional factor is believed to have an important influence
on 'Y for any given value of X. Perhaps this factor is a seasonal one: cold season versus warm
season -- where some precise definition exists to classify all observations as either cold or warm.

A second variable, a binary variable Z, is added to the equation where
0 if i is from cold season
Zi :{
1if iis from warm season
to produce the model
Y = BO +B1X+Bzz+€. [11.11]

When the slope coefficient 3 is significant, model 11.11 would be prefered to the SLR model
11.10. This also says that the relationship between Y and X is affected by season.
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Consider Hp: B2 = 0 versus Hy: B2 # 0. The null hypothesis is tested using a student's t-test
with (n—3) degrees of freedom. There are (n—3) because there are 3 betas being estimated. If
the partial |t |A2 tor/2> Ho is rejected, inferring that there are two models:
Y =bp+b X for the cold season (Z = 0), and
SA( =bg+ b1 X + b for the warm season (Z = 1), or
= (bp +by) + by X.
Therefore the regression lines differ for the two seasons. Both seasons have the same slope,

but different intercepts, and will plot as two parallel lines (figure 11.4).

[ )
o
o o O Winter

® Summer

X

Figure 11.4 Regression lines for data differing in intercept between two seasons

Suppose that the relationship between X and Y for the two seasons is suspected not only to
differ in intercept, but in slope as well. Such a model is written as:

Y:B0+B1X+ B22+B3ZX + € [11.12]
or Y =@o+P2Z)+Br1+Bs3Z) X +e

The intercept equals g for the cold season and B +[3, for the warm season; the slope equals
B1 for the cold season and B1 + B3 for the warm season. This model is referred to as an
"interaction model" because of the use of the explanatory variable Z X, the interaction

(product) of the original predictor X and the binary variable Z .

To determine whether the simple regression model with no Z terms can be improved upon by
model 11.12, the following hypotheses are tested:
Ho: B2 =PB3=0 versus Hy: By and/or 3 # 0.

(SSEs - SSE¢ ) / (dfs - dfc)
A nested I statistic is computed F = (SSEc / dfg)

where s refers to the simpler (no Z terms) model, and c refers to the more complex model. For
the two nested models 11.10 and 11.12 this becomes
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_ (SSE11.10-SSE11.12) / 2
a MSEq1.12

where MSE11.12 = SSE11.12 /(n—4), tejecting Ho if F > FOL,Z, n—4 -

If Hy is rejected, model 11.12 should also be compared to model 11.11 (the shift in intercept
only model) to determine whether there is a change in slope in addition to the change in
intercept, or whether the rejection of model 11.10 in favor of 11.12 was due only to a shift in
intercept. The null hypothesis Hp': B3 = 0 is compared to Hy'": B3 # 0 using the test statistic

_ (SSEq1.11-SSE11.12) / 1
a MSEq1.12

rejecting Hp' if F> Foy 1 4.

Assuming Hy and Hy' are both rejected, the model can be expressed as the two separate
equations (see figure 11.5):

SA{ =bg+ b X cold season

Y = (bg + bp) + (by + b3) X warm season
Furthermore, the coefficient values in these two equations will be exactly those computed if the
two regressions were estimated by separating the data, and computing two separate regression
equations. By using analysis of covariance, however, the significance of the difference between

those two equations has been established.

o © O Winter
® Summer

X

Figure 11.5 Regression lines differing in slope and intercept for data from two seasons

11.8.2 Multiple Binary Variables
In some cases, the factor of interest must be expressed as more than two categories:
4 seasons, 12 months, 5 stations, 3 flow conditions (rising limb, falling limb, base flow), etc. To

illustrate, assume there are precise definitions of 3 flow conditions so that all discharge (Xj) and



Multiple Linear Regression 319

concentration (Yj) pairs are classified as either rising, falling, or base flow. Two binary variables
are required to express these three categories -- there is always one less binary variable required
than the number of categories.

1if iis a rising limb observation
LetR; =
0 otherwise
1 if i is falling limb observation
Let Dj =

0 otherwise

so that category value of R value of D
rising 1 0
falling 0 1
base flow 0 0

The following model results:
Y:B0+B1X+B2R+B3D+€ [11.13]

To test Hy: B2 = B3 =0 versus Hy: Bz and/or B3 # 0, F tests comparing simpler and more
complex models are again performed. To compare model 11.13 versus the SLR model 11.10

with no rising or falling terms,

(SSE11.10 - SSE11.13) / 2
- MSE1113 where MSE11,13 = SSE11.13 / (n—4),

rejecting Hp it F > Fy 4 .

To test for differences between each pair of categories:
1. Is rising different from base flow? This is tested using the t-statistic on the coefficient By.
If |t|>tg,/» on n—4 degrees of freedom, reject Hy where Ho: B2 = 0.

2. Is falling different from base flow? This is tested using the t-statistic on the coefficient 3.
If |t| >t 2 with n—4 degrees of freedom, reject Hy where Ho: B3 =0.

3. Isrising different from falling? There are two ways to determine this.
(a) the standard error of the difference (bp—b3) must be known. The null hypothesis is
Ho: (B2 — B3) = 0. The estimated variance of by—b3,
Var(by—b3) = Var(bp) + Var(bz) — 2Cov(bp, b3)

where Cov is the covariance between by and b3. To determine these terms, the matrix

X'X)~1 and s2 (s2 is the mean square error) are required. Then
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Var(by) = Cpp * 52, Var(bs) = C33*s2, and Cov(bp,b3) = Cp3*s2.
The test statistic is t = (bp—b3)/ [/ Var (ba-b3) . If |t]| >ty » with n—4 degrees of

freedom, reject Hy.

(b) The binary variables can be re-defined so that a direct contrast between rising and
falling is possible. This occurs when either is set as the (0,0) "default" case. This will give
answers identical to (a).

Ever greater complexity can be added to these kinds of models, using multiple binary variables
and interaction terms such as

Y=B0+B 1 X+B2R+B3D+PsRX+PsDX +e. [11.14]

The procedures for selecting models follow the pattern described above. The significance of an
individual B coefficient, given all the other s, can be determined from the t statistic. The
comparison of two models, where the set of explanatory variables for one model is a subset of
those used in the other model, is computed by a nested I test. The determination of whether
two coefficients in a given model differ significantly from each other is computed either by re-
defining the variables, or by using a t test after estimating the variance of the difference between
the coefficients based on the elements of the (X'X)~! matrix and s2.
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Exercises

11.1  In Appendix C15 are data from 42 small urban drainage basins located in several cities
around the United States (Mustard et al., 1987). The dependent variable is the log of the
total nitrogen load for the basin -- the y transformation decision has already been made.
There are eight possible explanatory variables to use for prediction purposes. The

definitions of all nine variables are as follows.

LOGTN log total nitrogen load

LOGCA log contributing area

LOGIMP log impervious area

MMJTEMP mean minimum January temperature
MSRAIN mean seasonal rainfall

PRES percentage of area residential
PNON percentage of area non-urban
PCOMM percentage of area commercial
PIND percentage of area industrial

Don't bother with transformations of the x variables either -- use these variables as they
are. Pay special attention to multi-collinearity. Try one or more of the approaches
described in this chapter to select the best model for predicting LOGTN from these

explanatory variables.

11.2 Analysis of Covariance. The following 10 possible models describe the variation in
sand-size particles (0.125 — 0.250 mm) in the Colorado River at Lees Ferry, AZ. Select
the best model from this set of 10 and interpret its meaning. The basic model describes
a quadratic relationship between concentration and discharge (X). Do intercept and/or
slope vary with the three seasons (summer S, winter W, or other)? Use ot = 0.05 for all
hypothesis tests.

Basic model Y =Bo+ B1 X + B X2
where Y = In (concentration of suspended sands)
X = In (discharge)

Month
Binary Variables 1 2 3 4 5 6 7 8 9 10 11 12
S 0 0 0 0 0 0 1 1 1 1 0 0

W 1 1 0 0 0 0 0 0 0 0 1 1
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Model # Explanatory variables SSE df(error)
1 X, X2 69.89 124
2 X, X2,8 65.80 123
3 X, X2, S, SX 65.18 122
4 X, X2 S, SX, SX2 64.84 121
5 X, X2, W 63.75 123
6 X, X2, W, WX 63.53 122
7 X, X2, W, WX, WX2 63.46 121
8 X, X2 S, W 63.03 122
9 X, X2, S, W, SX, WX 62.54 120
10 X, X2 S, W, SX, WX, SX2, WX2 61.45 118

11.3  The Ogallala aquifer was investigated to determine relationships between uranium and
other concentrations in its waters. Construct a regression model to relate uranium to
total dissolved solids and bicarbonate, using the data in Appendix C16. What is the

significance of these predictor variables?

114 You are asked to estimate uranium concentrations in irrigation waters from the Ogallala
aquifer for a local area. Four supply wells pump waters with the characteristics given
below. The relative amounts of water pumped by each well are also given below. Using
this and the regression equation of Exercise 11.3, estimate the mean concentration of

uranium in the water applied to this area.

Well # Relative volume of water used TDS Bicarbonate
1 2 500 < 50%
2 1 900 < 50%
3 1 400 > 50%
4 2 600 > 50%
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Concentrations and loads of phosphorus have been observed at numerous tributaries to an
important estuary over a 20-year period. Have concentrations and/or loads changed over time?
Have concentrations changed when changing flow conditions are taken into account (the early
years were during a very dry period), or are all changes simply due to more precipitation in the
latter years? Is there an observable effect associated with a ban on phosphorus compounds in

detergents which was implemented in the middle of the period of record?

Groundwater levels were recorded for many wells in a study area over 14 years. During the
ninth year development of the area increased withdrawals dramatically. Is there evidence of

decreasing water levels in the region's wells after versus before the increased pumpage?

Benthic invertebrate and fish population data were collected at twenty stations along one
hundred miles of a major river. Do these data change in a consistent manner going
downstream? What is the overall rate of change in population numbers over the one hundred

miles?

Procedures for trend analysis build on those in previous chapters on regression and hypothesis
testing. The explanatory variable of interest is usually time, though spatial or directional trends
(such as downstream order or distance downdip) may also be investigated. Tests for trend have
been of keen interest in environmental sciences over the last 10-15 years. Detection of both
sudden and gradual trends over time with and without adjustment for the effects of
confounding variables have been employed. In this chapter the various tests are classified, and

their strengths and weaknesses compared.
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12.1 General Structure of Trend Tests

12.1.1 Purpose of Trend Testing

A series of observations of a random variable (concentration, unit well yield, biologic diversity,
etc.) have been collected over some period of time. We would like to determine if their values
generally increase or decrease (getting "better" or "worse"). In statistical terms this is a
determination of whether the probability distribution from which they arise has changed over
time. We would also like to describe the amount or rate of that change, in terms of changes in
some central value of the distribution such as a mean or median. Interest may be in data at one
location, or all across the country. Figure 12.1 presents an example of the results of trend tests

for bacteria at sites throughout the United States.

EXPLANATION

— — — Boundary of Regional Drainage Basin

Trend in Flow-Adjusted Concentration
A Increase
U Decrease
. No Trend

Figure 12.1 Trends in flow-adjusted concentrations of fecal streptococcus bacteria,
1974-1981 (from Smith et al., 1987).

The null hypothesis: Hy) is that there is no trend. However, any given test brings with it a
precise mathematical definition of what is meant by "no trend", including a set of background
assumptions usually related to type of distribution and serial correlation. The outcome of the
test is a "decision" -- either H() is rejected or not rejected. Failing to reject H) does not mean
that it was "proven" that there is no trend. Rather, it is a statement that the evidence available is
not sufficient to conclude that there is a trend. Table 12.1 summarizes the possible outcomes of

a statistical test in the context of trend analysis.
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True Situation

Decision No trend. Hy true. Trend exists. H) false.
Fail to reject Hy. Probability = (Type 1I error)
"No trend" 1-a B
Reject Ho. (Type I error) (Power)
"Trend" significance level o 1-B

Table 12.1 Probabilities associated with possible outcomes of a trend test.
o = Prob (reject Ho |Ho true) and 1—B = Prob (reject Ho| Ho false)

The power (1-P) for the test can only be evaluated if the nature of the violation of Hy that
actually exists is known. This is never known in reality (if it were we wouldn't need a test), so a
test must be found which has high power for the kind of data expected to be encountered. If a
test is slightly more powerful in one instance but much less powerful than its alternatives in
some other reasonable cases then it should not be used. The test selected should therefore be
robust -- it should have relatively high power over all situations and types of data that might
reasonably be expected to occur. Some of the characteristics commonly found in water

resources data, and discussed in this chapter, are:

Distribution (normal, skewed, symmetric, heavy tailed)

Outliers (wild values that can't be shown to be measurement error)
Cycles (seasonal, weekly, tidal, diurnal)

Missing values (a few isolated values or large gaps)

Censored data (less-than values, historical floods)

Serial Correlation

12.1.2 Approaches to Trend Testing
Five types of trend tests are presented in table 12.2. They are classified based on two factors.
The first, shown in the rows of the table, is whether the test is entirely parametric, entirely
nonparametric, or a mixture of procedures. The second factor (columns) is whether there is
some attempt to remove variation caused by other associated variables. The table uses the
following notation:

Y = the random response variable of interest in the trend test,

X = an exogenous variable expected to affect the value of Y,

R = the residuals from a regression or LOWESS of Y versus X, and

T = time (often expressed in years).

Simple trend tests (not adjusted for X) are discussed in section 12.2. Tests adjusted for X are

discussed in section 12.3.
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Not Adjusted for X Adjusted for X

Nonparametric Mann-Kendall trend test | Mann-Kendall trend test on

onY residuals R from LOWESS
of Yon X

Mixed Mann-Kendall trend test on

— residuals R from regression
of YonX

Parametric Regression of Y on T Regression of Y
onXand T

Table 12.2 Classification of five types of tests for trend

If the trend is spatial rather than temporal, T will be downstream order, distance downdip, etc.

Examples of X and Y include the following:

For trends in surface water quality, Y would be concentration, X would be streamflow,
and R would be called the flow-adjusted concentration;

For trends in flood flows, Y would be streamflow, X would be the precipitation amount,
and R would be called the precipitation-adjusted flow (the duration of precipitation used
must be appropriate to the flow variable under consideration. For example, if Y is the
annual flood peak from a 10 square mile basin then X might be the 1-hour maximum
rainfall, whereas if Y is the annual flood peak for a 10,000 square mile basin then X
might be the 24-hour maximum rainfall).

For trends in groundwater levels, Y would be the change in monthly water level, X the
monthly precipitation, and R would be called the precipitation-adjusted change in water

level.

12.2 Trend Tests With No Exogenous Variable

12.2.1 Nonparametric Mann-Kendall Test
Mann (1945) first suggested using the test for significance of Kendall's tau where the X variable

is time as a test for trend. This was directly analogous to regression, where the test for

significance of the correlation coefficient r is also the significance test for a simple linear

regression. The Mann-Kendall test can be stated most generally as a test for whether Y values

tend to increase or decrease with T (monotonic change).

Hp:  Prob [Yj >7Yij] = 0.5, where time Tj > Tj.
Hy: Prob [Yj>Yj] #0.5  (2-sided test).
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No assumption of normality is required, but there must be no serial correlation for the resulting
p-values to be correct. Typically the test is used for a more specific purpose -- to determine
whether the central value or median changes over time. The spread of the distribution must
remain constant, though not necessarily in the original units. If a monotonic transformation
such as the ladder of powers is all that is required to produce constant variance, the test statistic
will be identical to that for the original units. For example, in figure 12.2 a lognormal Y variable
is plotted versus time. The variance of data around the trend is increasing. A Mann-Kendall
test on Y has a p-value identical to that for the data of figure 12.3 -- the logarithms of the
figure 12.2 data. The logs show an increasing median with constant variance. Only the central
location changes. The Mann-Kendall test possesses the useful property of other nonparametric
tests in that it is invariant to (monotonic) power transformations such as those of the ladder of
powers. Since only the data or any power transformation of the data need be distributed
similarly over T except for their central location in order to use the Mann-Kendall test, it is

applicable in many situations.
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Figure 12.3 Logarithms of Y versus Time. The variance of Y is constant over time.
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To perform the test, Kendall's S statistic is computed from the Y, T data pairs (see Chapter 8).
The null hypothesis of no change is rejected when S (and therefore Kendall's T of Y versus T) is
significantly different from zero. We then conclude that there is a monotonic trend in Y over

tme.

An estimate of the rate of change in Y is also usually desired. If Y or some transformation of Y
has a linear pattern versus T, the null hypothesis can be stated as a test for the slope coefficient

B1 = 0. Bq is the rate of change in Y, or transformation of Y, over time.

12.2.2 Parametric Regression of Y on T
Simple linear regression of Y on T is a test for trend

Y =Bo+P1eT +¢
The null hypothesis is that the slope coefficient f; = 0. Regression makes stronger assumptions
about the distribution of Y over time than does Mann-Kendall. It must be checked for
normality of residuals, constant variance and linearity of the relationship (best done with
residuals plots -- see Chapter 9). If Y is not linear over time, a transformation will likely be
necessary. If all is ok, the t-statistic on by is tested to determine if it is significantly different
from 0. If the slope is nonzero, the null hypothesis of zero slope over time is rejected, and we
conclude that there is a linear trend in Y over time. Unlike Mann-Kendall, the test results for

regression will not be the same before and after a transformation of Y.

12.2.3 Comparison of Simple Tests for Trend

If the model form specified in a regression equation were known to be correct (Y is linear with
T) and the residuals were truly normal, then fully-parametric regression would be optimal (most
powerful and lowest error variance for the slope). Of course we can never know this in any real
world situation. If the actual situation departs, even to a small extent, from these assumptions
then the Mann-Kendall procedures will perform either as well or better (see Chapter 10, and
Hirsch et. al., 1991, p.805-800).

There are practical cases where the regression approach is preferable, particularly in the multiple
regression context (see next section). A good deal of care needs to be taken to

insure it is correctly applied and to demonstrate that to the audience. When one is forced, by
the sheer number of analyses that must be performed (say a many-station, many-variable trend
study) to work without detailed case-by-case checking of assumptions, then nonparametric
procedures are ideal. They are always nearly as powerful as regression, and the failure to edit
out or correctly transform a small percentage of outlying data will not have a substantial effect

on the results.
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Example 1
Appendix C10 lists phosphorus loads and streamflow during 1974-1985 on the Illinois River at

Marseilles, IL.. The Mann-Kendall and regression lines are plotted along with the data in figure
12.4. Both lines have slopes not significantly different from zero at

o = 0.05. The large load at the beginning of the record and non-normality of data around the
regression line are the likely reasons the regression is considerably less significant.

Improvements to the model are discussed in the next sections.
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Figure 12.4 Mann-Kendall and regression trend lines (data in Appendix C10).

Regression: Load = 16.8 — 0.46°time t=-1.09 p=0.28

Mann-Kendall: Load = 12.2 - 0.33°time tau = —0.12 p = 0.08.

12.3 Accounting for Exogenous Variables

Variables other than time trend often have considerable influence on the response variable Y.
These "exogenous" variables are usually natural, random phenomena such as rainfall,
temperature or streamflow. By removing the variation in Y caused by these variables, the
background variability or "noise" is reduced so that any trend "signal" present can be seen. The
ability (power) of a trend test to discern changes in Y with T is then increased. The removal
process involves modelling, and thus explaining, the effect of exogenous variables with
regression or LOWESS (for computation of LOWESS, see Chapter 10). This is the rationale
for using the methods in the right-hand column of table 12.2.
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For example, figure 12.5a presents a test for trend in dissolved solids at the James River in
South Dakota. No adjustment for discharge was employed. The p-value for the test equals
0.47, so no trend is able to be seen. The Theil estimate of slope is plotted, showing the line

DISSOLVED SOLIDS
JAMES RIVER NEAR SCOTLAND, SD

SLOPE =13.8 mg/L/YR, p=0.47
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Figure 12.5 Trend tests a) before adjustment for flow. b) after adjustment for flow.
(from Hirsch et al., 1991)

to be surrounded by a lot of data scatter. In figure 12.5b, the same data are plotted after using

regression to remove the variation due to discharge. Note that the amount of scatter has
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decreased. The same test for trend now has a p-value of 0.0001; for a given magnitude of flow,

dissolved solids are increasing over time.

When removing the effect of one or more exogenous variables X, the probability distribution of
the Xs is assumed to be unchanged over the period of record. Consider a regression of Y
versus X (figures 12.6a and 6b). The residuals R from the regression describe the values for the
Y variable "adjusted for" exogenous variables (figure 12.6¢). In other words, the effect of other
variables is removed by using residuals -- residuals express the variation in Y over and above
that due to the variation caused by changes in the exogenous variables. A trend in R implies a
trend in the relationship between X and Y (figure 12.6d). This in turn implies a trend in the
distribution of Y over time while accounting for X. However, if the probability distribution of
the Xs has changed over the period of record, a trend in the residuals may not necessarily be

due toatrendinY.
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Figure 12.6b. Ln of concentration vs. exogenous variable: In of streamflow (Q).

Strong linear relation shown by regression line.

Expect higher concentrations at higher flows.
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Figure 12.6c. Residuals from 12.6b regression over time. Trend much easier to detect

than in 12.6a, as effect of Q has been removed by using residuals.
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Figure 12.6d. Trend in fig. 6¢ can also be seen as an increase in the InC vs InQ relationship

over time. For a given value of Q, the value for C increases over time.

What kind of variable is appropriate to select as an exogenous variable? It should be a measure
of the driving force behind the process of interest, but must be free of changes in human
manipulation. Thus a streamflow record that spans a major reservoir project, new diversion, or
new operating policy on an existing system would be unacceptable, due to human alteration of
the probability distribution of X during the period of interest. A streamflow record which
reflects some human influence is acceptable, provided that the human influence is consistent
over the period of record. Where human influence on streamflow records makes them
unacceptable as X variables, two major alternatives exist. The first is to use flow at a nearby
unaffected station which could be expected to be correlated with natural flow at the site of
interest. The other alternative is to use weather-related data: rainfall over some antecedent
period, or model-generated streamflows resulting from a deterministic watershed model that is
driven by historical weather data.
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Where Y is streamflow concentration, a great deal of the variance in Y is usually a function of
river discharge. This comes about as a result of two different kinds of physical phenomena.
One is dilution: a solute may be delivered to the stream at a reasonably constant rate (due to a
point source or ground-water discharge to the stream) as discharge changes over time. The
result of this situation is a decrease in concentration with increasing flow (see figure 12.7). This
is typically seen in most of the major dissolved constituents (the major ions). The other process
is wash-off: a solute, sediment, ot a constituent attached to sediment can be delivered to the
stream primarily from overland flow from paved areas or cultivated fields, or from streambank
erosion. In these cases, concentrations as well as fluxes tend to rise with increasing discharge
(see fig. 12.8). Some constituents can exhibit combinations of both of these kinds of behavior.
One example is total phosphorus. A portion of the phosphorus may come from point sources
such as sewage treatment plants (dilution effect), but another portion may be derived from
surface wash-off and be attached to sediment particles (see fig. 12.9). The resulting pattern is an

initial dilution, followed by a stronger increase with flow due to washoff.

DISSOLVED SOLIDS CONCENTRATION
SUSQUEHANNA RIVER AT HARRISBURG, PA
300
250 +
200 +
150 +

100 +
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mg/L

1 10 100 1000
DISCHARGE, IN THOUSANDS OF CUBIC FEET PER SECOND
Figure 12.7 Dilution of dissolved solids with discharge (from Hirsch et al., 1991).
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SUSPENDED SEDIMENT CONCENTRATION
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Figure 12.8 Washoff of suspended sediment with discharge (from Hirsch et al., 1991).
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Figure 12.9 Dilution and subsequent washoff of total phosphorus as discharge increases (from
Hirsch et al., 1991).

12.3.1 Nonparametric Approach
The smoothing technique LOWESS (LOcally WEighted Scatterplot Smooth) describes the
relationship between Y and X without assuming linearity or normality of residuals. It is a robust

description of the data pattern. Numerous smooth patterns result whose form changes as the
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smoothing coefficient is altered. The LOWESS pattern chosen should be smooth enough that it
doesn't have several local minima and maxima, but not so smooth as to eliminate true changes
in slope. Given t/l\le LOWESS fitted value Y the residuals R are computed as

R=Y-Y.
Then the Kendall S statistic is computed from the R,T data pairs, and tested to see if it is
significantly different from zero. The test for S is the test for trend.

12.3.2 Mixed Approach: Mann-Kendall on Regression Residuals
To remove the effect of X on Y prior to performing the Mann-Kendall test, a linear regression
could be computed between Y and one or more Xs:

Y =B+ P1eX+e
Unlike LOWESS, the adequacy of the regression model (is B1 significant, should X be
transformed due to lack of linearity or constant variance?) must be checked. When all is OK,
the residuals R are computed as observed minus predicted values:

R:Y—bo—bl'X.
Then the Kendall S statistic is computed from the R, T data pairs, and tested to see if it is

significantly different from zero.

The Mann-Kendall test on residuals is a hybrid procedure -- parametric removal of effects of
the exogenous variables, followed by a nonparametric test for trend. Care must be taken to
insure that the model of Y versus X is reasonable (residuals should have no extreme outliers, Y
is linear with X, etc.). The fully nonparametric alternative using LOWESS given in 12.3.1

avoids the necessity for close checking of assumptions.

Alley (1988) showed that this two-stage procedure resulted in lower power than an alternative
which is analogous to the partial plots of Chapter 9. His "adjusted variable Kendall test"
performs the second stage as a Mann-Kendall test of R versus T* rather than R versus T, where
T* are the residuals from a regression of T versus X:

T =bgy+ by*X + T*
In this way the effect of a drift in X over time is removed, so that the R versus T* relationship is
totally free of the influence of X. This test is a Mann-Kendall test on the partial plot of Y
versus T, having removed the effect of all other exogenous variable(s) X from both Y and T by

regression.

12.3.3 Parametric Approach
Consider the multiple regression of Y versus time T and one or more Xs:
Y=Bo+ BT+ PrX+e.
The null hypothesis for the trend test is that 31 = 0. Therefore the t-statistic for B1 tests for
trend. This test simultaneously compensates for the effects of exogenous variables by including

them in the model. No two-stage process is necessary. The model must be checked for
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adequacy — for the correct form of relationship (linear in the Xs and T), normality of residuals,
and that by is significantly different from zero. If by is significantly different from zero (based
on the t-statistic) then the null hypothesis of no trend is rejected, and we conclude that there is a

linear trend in Y over T.

12.3.4 Comparison of Approaches

In general, the power and efficiency of any procedure for detecting and estimating the
magnitude of trends will be aided if the variance of the data can be decreased (figure 12.5). This
can be done by removing discharge effects either simultaneously or in stages. Simultaneous
modelling of trend and discharge has a small but distinct advantage over the equivalent
stagewise method (Alley, 1988). Thus parametric multiple regression has more power than a
stagewise regression. The adjusted Kendall test has a similar advantage over the Mann-Kendall
test on residuals R versus unadjusted T. We presume that a Mann-Kendall test of R on T*
where both are computed using LOWESS (Y on X and T on X) would have similar advantages

over the unadjusted method in section 12.3.1, though no data exists on this to date.

More important is whether the adjustment process should be conducted using a parametric or
nonparametric method. The choice between regression and LOWESS should be based on the
quality of the regression fit. LOWESS and linear regression fits of phosphorus concentration
and stream discharge are compared for Klamath River in Figure 12.10. LOWESS would be a
sensible alternative here due to the nonlinearity of the relationship. In studies where many data
sets are being analyzed, and individualized checking of multiple models is impractical, LOWESS
is the method of choice. It is also valuable when transformation of Y to achieve normality is
not desirable. Where detailed model checking is practical and where high-quality parametric
models can be constructed, multiple regression provides a one-step process with maximum

efficiency. It and the adjusted Kendall method should be used over stagewise procedures.

All methods incorporating exogenous X variables discussed thus far assume that the change in
the X,Y relationship over time is a parallel shift -- a change in intercept, no change in slope (see
figure 12.6d). Changes in both (a rotation) are certainly possible. However it will not be
possible to classify all such changes as uptrends or downtrends. For example, if the XY
relationship pivots counterclockwise over time, then for high X there is an uptrend in Y and for
low X there is a downtrend in Y. There is no simple way to generalize the Mann-Kendall test

on residuals to identify such situations.

However, regression could be used as follows:
Y = Bo+ B1eX + BoeT + P3eXeT + €

The X¢T term is an interaction term describing the rotation. One could compare this model to

the "no trend" model (one with no T or XT terms) using an F test. It can also be compared to
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the simple trend model (one with an X and a T term but no X*T term) using a partial I test.
The result will be selection of one of three outcomes: no trend, trend in the intercept, or trend

in slope and intercept (rotation).
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Figure 12.10 Comparison of LOWESS (dashed line) and linear regression (solid line) fits of

concentration to stream discharge. From Hirsch, et al. (1991).

12.4 Dealing With Seasonality

There are many instances where changes between different seasons of the year are a major
source of variation in the Y variable. As with other exogenous effects, seasonal variation
must be compensated for or "removed" in order to better discern the trend in Y over time.
If not, little power may be available to detect trends which are truly present. We may also be
interested in modeling the seasonality to allow different predictions of Y for differing

seasons.

Most concentrations in surface waters show strong seasonal patterns. Streamflow itself almost
always varies greatly between seasons. This arises from seasonal variations in precipitation
volume, and in temperature which in turn affects precipitation type (rain versus snow) and the
rate of evapotranspiration. Some of the observed seasonal variation in water quality may be
explained by accounting for this seasonal variation in discharge. However, seasonality often
remains even after discharge effects have been removed (Hirsch et al. 1982). Possible additional
causes of seasonal patterns include biological activity, both natural and managed activities such
as agriculture. For example, nutrient concentrations vary with seasonal application of fertilizers

and the natural pattern of uptake and release by plants. Other effects are due to different
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sources of water dominant at different times of the year, such as snow melt versus intense
rainfall. Seasonal rise and fall of ground water can also influence water quality. A given
discharge in one season may derive mostly from ground water while the same discharge during
the another season may result from surface runoff or quick flow through shallow soil horizons.

The chemistry and sediment content of these sources may be quite different.

Techniques for dealing with seasonality fall into three major categories (table 12.3). One is fully
nonparametric, one is a mixed procedure, and the last is fully parametric. In the first two
procedures it is necessary to define a "season". In general, seasons should be just long enough
so that there is some data available for most of the seasons in most of the years of record. For
example, if the data are primarily collected at a monthly frequency, the seasons should be
defined to be the 12 months. If the data are collected quarterly then there should be 4 seasons,
etc. Tests for trend listed in table 12.2 have analogs which deal with seasonality. These are
presented in table 12.3.

Not Adjusted for X Adjusted for X
Nonparametric Seasonal Kendall test for Seasonal Kendall trend test
trend on Y (Method I) on residuals from LOWESS
of Y on X (Method I)
Mixed Regression of deseasonalized | Seasonal Kendall trend test
Y on T (Method II) on residuals from
regression of Y on X
(Method I)
Parametric Regression of Y on T and Regression of Y on X, T, and
seasonal terms (Method I1I) seasonal terms (Method III)

Table 12.3 Methods for dealing with seasonal patterns in trend testing

12.4.1 The Seasonal Kendall Test

The seasonal Kendall test (Hirsch et al., 1982) accounts for seasonality by computing the Mann-
Kendall test on each of m seasons separately, and then combining the results. So for monthly
"seasons", January data are compared only with January, February only with February, etc. No
comparisons are made across season boundaries. Kendall's S statistic Sj for each season ate

summed to form the overall statistic Sk.
m
Sk= > Sj [12.1]
i=1
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When the product of number of seasons and number of years is more than about 25, the
distribution of Sk can be approximated quite well by a normal distribution with expectation
equal to the sum of the expectations (zero) of the individual Si under the null hypothesis, and
variance equal to the sum of their variances. Sk is standardized (eq. 12.2) by subtracting its
expectation [k = 0 and dividing by its standard deviation Gg. The result is evaluated against a

table of the standard normal distribution.

S -1
if S, >0
O
7Sk = 0 if S, =0 [12.2]
S +1
k if S, <0
O
where Ug =0,
m
Oy = Z(ni/lS)‘(ni—l)'(Zni—l-S) , and
i=1
nj = number of data in the ith season.

The null hypothesis is rejected at significance level 0t if | ZSk| > Zcrit where Zcrit is the value
of the standard normal distribution with a probability of exceedance of 0./2. When some of the
Y and/or T values are tied the formula for Gg). must be modified, as discussed in Chapter 8.
The significance test must also be modified for serial correlation between the seasonal test
statistics (see Hirsch and Slack, 1984).

If there is variation in sampling frequency during the years of interest, the data set used in the
trend test may need to be modified. If variations in sampling frequency are random (for
example if there are a few instances where no value exists for some season of some year, and a
few instances when two or three samples are available for some season of some year) then the
data can be collapsed to a single value for each season of each year by taking the median of the
available data in that season of that year. If, however, there is a systematic trend in sampling
frequency (monthly for 7 years followed by quarterly for 5 years) then the following type of
approach is necessary. Define the seasons on the basis of the lowest sampling frequency. For
that part of the record with a higher frequency define the value for the season as the
observation taken closest to the midpoint of the season. The reason for not using the median
value in this case is that it will induce a trend in variance, which will invalidate the null
distribution of the test statistic.
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An estimate of the trend slope for Y over time T can be computed as the median of all slopes
between data pairs within the same season (figure 12.11). Therefore no cross-season slopes

contribute to the overall estimate of the Seasonal Kendall trend slope.

CONCENTRATION

- -w--------Median

TIME

A. B.
Figure 12.11  A. All pairwise slopes used to estimate the Seasonal Kendall trend slope
(two seasons -- compare with figure 10.1).

B. Slopes rearranged to meet at a common origin

To accommodate and model the effects of exogenous variables, directly follow the methods of
section 12.3 until the final step. Then apply the Seasonal Kendall rather than Mann-Kendall test
on residuals from a LOWESS of Y versus X and T versus X

(R versus T*).

12.4.2° Mixture Methods

The seasonal Kendall test can be applied to residuals from a regression of Y versus X, rather
than LOWESS. Keep in mind the discussion in the previous section of using adjusted variables
T* rather than T. Regression would be used only when the relationships exhibit adherence to

the appropriate assumptions.

A second type of mixed procedure involves deseasonalizing the data by subtracting seasonal
medians from all data within the season, and then regressing these deseasonalized data against
time. One advantage of this procedure is that it produces a description of the pattern of the
seasonality (in the form of the set of seasonal medians). However, this method has generally
lower power to detect trend than other methods, and is not prefered over the other alternatives.
Subtracting seasonal means would be equivalent to using dummy variables for m—1 seasons in a
fully parametric regression. Either use up m—1 degrees of freedom in computing the seasonal

statistics, a disadvantage which can be avoided by using the methods of the next section.
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12.4.3 Multiple Regression With Periodic Functions
The third option is to use periodic functions to describe seasonal variation. The simplest case,

one that is sufficient for most purposes, is:
Y = Bo + Byesin@nT) + Poecos2nT) + B3+T + other terms + € [12.3]

where "other terms" are exogenous explanatory variables such as flow, rainfall, or level of some
human activity (e.g. waste discharge, basin population, production). They may be continuous,
ot binary "dummy" variables as in analysis of covariance. The trend test is conducted by
determining if the slope coefficient on T ([ 3) is significantly different from zero. Other terms
in the equation should be significant and appropriately modeled. The residuals € must be

approximately normal.

Time is commonly but not always expressed in units of years. Table 12.4 lists values for 2T

for three common time units: years, months and day of the year.

The expression  2nT = 06.2832¢t when t is expressed in years.
= 0.5236°m when m is expressed in months.
= 0.0172d when d is expressed in day of year.

Table 12.4 Three values for 2T useful in regression tests for trend

To more meaningfully interpret the sine and cosine terms, they can be re-expressed as the
amplitude A of the cycle (half the distance from peak to trough) and the day of the year Dp at
which the peak occurs:

Bissin(2nt) + Boecos@nt) = Asin[2z(t+1,)] [12.4]

where A =4 [312 +[322 [12.5]

The phase shift 7, = tan_l(ﬁz /B1) >

1,' = 1, £ 21 if necessary to get f, within the interval 0 < 7, < 21 = 6.2832

and  Dp = 58019 (1.5708 — 1,") [12.6]
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Example 2: Determining peak day and amplitude

+
1982.10 1982.40 1982.70 1983.00 1983.30

Figure 12.12 Data showing seasonal (sine and cosine) pattern.

The data in figure 12.12 were generated using coefficients by = 0.8 and by = 0.5.
From equations 12.4 through 12.6, the amplitude A = 0.94, ¢ = 0.559, 7' = 0.559,
and so the peak day = 59 (February 28).

After including sine and cosine terms in a multiple regression to account for seasonality, the
residuals may still show a seasonal pattern in boxplots by season, or in a Kruskal-Wallis test by
season. If this occurs, additional periodic functions with periods of 1/2 or 1/3 or other
fractions of a year (multiple cycles per year) may be used to remove additional seasonality.
Credible explanations for why such cycles might occur are always helpful. For example, the
following equation may be appropriate:

Y = B0+ B1esin@nt) + Boecos(2nt) + P3esin(4nt) + P4ecos(4nt) + other terms + €

One way to determine how many terms to use is to add them, two at a time, to the regression
and at each step do an F test for the significance of the new pair of terms. As a result one may,
very legitimately, settle on a model in which the t-statistics for one of a pair of coefficients is not
significant, but as a pair they are significant. Leaving out just the sine or just the cosine is not a
sensible thing to do, because it forces the periodic term to have a completely arbitrary phase
shift, rather than one determined by the data.

12.4.4 Comparison of Methods
The Mann-Kendall and mixed approaches have the disadvantages of only being applicable to
univariate data (either original units or residuals from a previous analysis) and are not amenable

to simultaneous analysis of multiple sources of variation. They take at least two steps to
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compute. Multiple regression allows many variables to be considered easily and simultaneously

by a single model.

Mann-Kendall has the usual advantage of nonparametrics: robustness against departures from
normality. The mixed method is perhaps the least robust because the individual seasonal data
sets can be quite small and the estimated seasonal medians can follow an irregular pattern. In
general this method has far more parameters than either of the other two methods and fails to
take advantage of the idea that geophysical processes have some degree of smoothness in the
annual cycle. That is: it is unlikely that April will be very different from May, even though the

sample statistics may suggest that this is so.
p y sugg

Regression with periodic functions takes advantage of this notion of smoothness and thereby
involves very few parameters. However, the functional form (sine and cosine terms) can
become a "straight jacket". Perhaps the annual cycles really do have abrupt breaks associated
with freezing and thawing, or the growing season. Regression can always use binary variables as
abrupt definitions of season (G=1 for "growing season", G=0 otherwise). Observations can be
assigned to a season based on conditions which may vary in date from year to year, and not just
based on the date itself. Regression could also be modified to accept other periodic functions,
perhaps ones that are much more squared off. To do this demands a good physically-based

definition of the timing of the influential factors, however.

All three methods provide a description of the seasonal pattern. Regression and mixed methods
automatically produce seasonal summary statistics. However, there is no difficulty in providing
a measure of seasonality consistent with Mann-Kendall by computing seasonal medians of the

data after trend effects have been removed.

12.4.5 Presenting Seasonal Effects

There are many ways of characterizing the seasonality of a data set (table 12.5). Any of them
can be applied to the raw data or to residuals from a LOWESS or regression that removes the
effects of some exogenous variable. In general, graphical techniques will be more interpretable

than tabular, although the detail of tables may sometimes be needed.
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GRAPHICAL METHODS TABULAR METHODS
BEST Boxplots by season, or LOWESS of | List the amplitude and peak day of the
data versus time of year cycle
NEXT BEST List of seasonal medians and seasonal

interquartile ranges, or list of

distribution percentage points by season

WORST Plot of seasonal means with List of seasonal means, standard
standard deviation or standard error deviations, or standard errors

bars around them

Table 12.5 Rating of methods for dealing with seasonality

12.4.6 Differences Between Seasonal Patterns

The approaches described above all assume a single pattern of trend across all seasons. This
may be a gross over-simplification and can fail to reveal large differences in behavior between
different seasons. It is entirely possible that the Y variable exhibits a strong trend in its summer
values and no trend in the other seasons. Even worse, it could be that spring and summer have
strong up-trends and fall and winter have strong down-trends, cancelling each other out and
resulting in an overall seasonal Kendall test statistic stating no trend. Another situation might
arise where the X-Y relationship (e.g. rainfall-runoff, flow-concentration) has a substantially

different slope and intercept for different seasons.

No overall test statistic will provide any clue of these differences. This is not to suggest they are
not useful. Many times we desire a single number to characterize what is happening in a data
set. Particulatly when dealing with several data sets (multiple stations and/or multiple
variables), breaking the problem down into 4 seasons or 12 months simply swamps us with
more results than can be absorbed. Also, if the various seasons do show a consistent pattern of
behavior there is great strength in looking at them in one analysis. For example in a seasonal
Kendall analysis each month viewed by itself might show a positive S value, none of which is
significant, but the overall Seasonal Kendall test could be highly significant. Yet in detailed
examinations of individual stations it is often useful to perform and present the full, within-
season analysis on each season. Figure 12.13 is a good approach to graphically presenting the

results of such multi-season analyses.
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Figure 12.13 Illustration of seasonal and annual step trends on the Green River
(from Liebermann and others, 1989)

In the approaches using Method I above, one can also examine "contrasts" between the
different seasonal statistics. This provides a single statistic which indicates whether the seasons
are behaving in a similar fashion (homogeneous) or behaving differently from each other
(heterogeneous). The test for homogeneity is described by van Belle and Hughes (1984).

For each season i (i=1,2,..m) compute Z; = S; / 4/ Var(S;) . Sum these to compute the "total"

chi-square statistic, then compute "trend" and "homogeneous" chi-squares:

m
o) = 2 Zi [12.7]
i=1
m
2%
2 _ 2 S ol S
X (trend) — M*Z where Z= — [12.8]

Xz(homogeneous) - Xz(total) - Xz(trend) [12.9]
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The null hypothesis that the seasons are homogeneous with respect to trend
(ty =1, =...=1,) is tested by comparing Xz(homogeneous) to tables of the chi-square
distribution with m—1 degrees of freedom. If it exceeds the critical value for the pre-selected @,

reject the null hypothesis and conclude that different seasons exhibit different trends.

12.5 Use of Transformations in Trend Studies

Water resources data commonly exhibit substantial departures from a normal distribution.
Surface-water concentration, load, and flow data are often positively skewed, with many
observations lying close to a lower bound of zero and a few observations one or more orders of
magnitude above the lower values. If only a test for trend is of interest, then the decision to
make some monotonic transformation of the data (to render them more nearly normal) is of no
consequence provided that a nonparametric test is used. Nonparametric trend tests are
invariant to monotonic power transformations (such as the logarithm or square root). In terms
of significance levels the test results will be identical whether the test was applied to the raw data

or the transformed data.

The decision to transform data is, however, highly important in terms of any of the procedures
for removing the effects of exogenous variables (X), for computing significance levels of a
parametric test (figure 12.14), and for computing and expressing slope estimates. Trends which
are nonlinear (say exponential or quadratic) will be poorly described by a linear slope coefficient,
whether from regression or a nonparametric method. Itis quite possible that negative
predictions may result for some values of time or X. By transforming the data so that the trend
is linear, a Mann-Kendall or regression slope can later be re-expressed back into original units.
The resulting nonlinear trend will better fit the data than the linear expression, even though
their nonparametric significance tests are identical. Thus, it may be appropriate to run analyses

on transformed Y values, even if the analysis is a nonparametric one.

One way to ensure that the fitted trend line will not predict negative values is to take a log
transformation of the data prior to trend analysis. The trend slope will then be expressed in log
units. A linear trend in log units translates to an exponential trend in original units, which can
then be re-expressed in percent per year to make the trend easier to interpret. If bq is the
estimated slope of a linear trend in natural log units then the percentage change from the
beginning of any year to the end of that year will be (ebl — 1)¢100. If slopes in original units
are preferred, then instead of multiplying by 100, multiply by some measure of central tendency

in the data (mean or median) to express the slope or step-trend in original units.
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Figure 12.14 No trend evident in concentration (p=0.432 for regression slope). After log
transformation, there is a statistically significant decline (p=0.001).

Regression on logs shown as solid line. (from Hirsch et al., 1991).

In general, more resistant and robust results can be obtained if log transformations are used for
variables that typically have ranges of more than an order of magnitude. With variations this
large, transformations should be used in conjunction with both parametric and nonparametric
tests. However, in multiple record analyses the decision to transform should be made on the
basis of the characteristics of the class of variables being studied, not on a case-by-case basis.
Variables on which log transforms are typically helpful include: flood flows, low flows, monthly
or annual flows in small river basins, concentrations of sediment, total concentration (suspended
plus dissolved) for a constituent when the suspended fraction is substantial (for example
phosphorus and some metals), concentrations or counts of organisms, concentrations of
substances that arise from biological processes (such as chlorophyll), and downstream load for

virtually any constituent.

Some argue that data should always be transformed to normality, and parametric procedures
computed on the transformed data. Transformations to normality are not always possible, as
some data are non-normal due not to skewness but to heavy tails of the distribution (see Schertz
and Hirsch, 1985). The strongest argument for transformations are that regression methods
allows simultaneous consideration of the effects of multiple exogenous variables along with
temporal trend. Such simultaneous tests are more difficult with nonparametric techniques.
Multivariate smoothing methods are available (Cleveland and Devlin, 1988) which at least allow
removal of multiple exogenous effects in one step, but they are not implemented yet in any

commercial software.
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The weakest situations for parametric techniques on transformed data are for analyses of
multiple data sets. The transformation appropriate to one data set may not be appropriate to
another. If different transformations are used on different data sets then comparisons among
results is difficult, if not impossible. Also, there is an element of subjectivity in the choice of
transformation. The argument of the skeptic that: "You can always reach the conclusion you
want if you manipulate the data enough" is not without merit. The credibility of results is
enhanced if a single statistical method is used for all data sets in a study, and this is next to
impossible with the several judgements of model adequacy required for parametric methods.
Nonparametric procedures are therefore well suited to multi-record trend analysis studies. In
analyses of individual records, use of transformations with parametric methods can be very

appropriate.

12.6 Monotonic Trend versus Two Sample (Step) Trend

Study of long term changes in hydrologic variables can be carried out in either of two modes.
Up to this point "monotonic trends" were discussed, gradual and continuing changes over time.
The Mann-Kendall test and regression are the two basic tools used in this case. The other mode
compares two non-overlapping sets of data, an "eatly" and "late" period of record. Changes
between the periods are called "step trends", as values of Y step up or down from one time
period to the next. Testing for differences between these two groups involves procedures
similar or identical to those described in other chapters, including the rank-sum test, two-sample
t-tests, and analysis of covariance. Each of them also can be modified to account for

seasonality.

The basic parametric test for step trends is the two-sample t-test. See Chapter 5 for its
computation. The magnitude of change is measured by the difference in sample means between
the two periods. Helsel and Hirsch (1988) discuss the disadvantages of using a t-test for step
trends on data which are non-normal -- loss of power, inability to incorporate data below the
detection limit, and an inappropriate measure of the step trend size. The primary nonparametric
alternative is the rank-sum test and associated Hodges-Lehmann (H-L) estimator of step-trend
magnitude (see Chapter 5, and Hirsch, 1988). The H-L estimator is the median of all possible
differences between data in the "before" and "after" periods. Table 12.6 summarizes the step-
trend approaches not considering seasonality and 12.7 summarizes those which consider
seasonality. The rank-sum test can be implemented in a seasonal manner just like the Mann-
Kendall test, called the seasonal rank-sum test. It computes the rank-sum statistic separately for
each season, sums the test statistics, their expectations and variances, and then evaluates the
overall summed test statistic. The H-L estimator can be similarly modified by considering only

data pairs within a given season.
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Not Adjusted for X Adjusted for X
Nonparametric Rank-sum test on Y Rank-sum test on residuals
from LOWESS of Y on X
Mixed Rank-sum test on residuals
--- from regression of Y on X
Parametric Two sample t-test Analysis of covariance of Y

on X and group

Table 12.6 Step-trend tests (two-sample) which do not consider seasonality

(note "group" refers to a dummy variable O for "before" and 1 for "after")

Not Adjusted for X Adjusted for X
Nonparametric Seasonal rank-sum test on Y Seasonal rank-sum test on
residuals from LOWESS of
Y on X
Mixed Two-sample t test on Seasonal rank-sum test on
deseasonalized Y residuals from regression of
Y on X
Parametric Analysis of covariance of Y Analysis of covariance of Y

on seasonal terms and

ar Oup

on X, seasonal terms, and

ar Oup

Table 12.7 Step-trend tests (two-sample) which do consider seasonality

(note "group" refers to a dummy variable O for "before" and 1 for "after")

Step trend procedures should be used in two situations. The first is when the record (or

records) being analyzed are naturally broken into two distinct time periods with a relatively long

gap between them. There is no specific rule to determine how long the gap should be to make

this the preferred procedure. If the length of the gap is more than about one-third the entire

period of data collection, then the step trend procedure is probably best (see figure 12.15). In

general, if the within-period trends are small in comparison to the between-period differences,

then step-trend procedures should be used.
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Figure 12.15 Significant (p=0.085) step trend as measured by rank-sum test.
Solid lines are group medians. Monotonic trend test is not significant (p=0.167). Modified
from Hirsch et al., 1991,

The second situation to test for step-trend is when a known event has occurred at a specific
time during the record which is likely to have changed water quality. The record is first divided
into "before" and "after" periods at the time of this known event. Example events are the
completion of a dam or diversion, the introduction of a new source of contaminants, reduction
in some contaminant due to completion of treatment plant improvements, or the closing of
some facility (figure 12.16). It is imperative that the decision to use step-trend procedures not
be based on examination of the data (i.e. the analyst notices an apparent step but had no prior
hypothesis that it should have occurred), or on a computation of the time which maximizes the
difference between periods. Such a prior investigation biases the significance level of the test,
finding changes which are not really there. Step-trend procedures require a highly specific

situation, and the decision to use them should be made prior to any examination of the data.

If there is no prior hypothesis of a time of change or if records from a variety of stations are
being analyzed in a single study, monotonic trend procedures are most appropriate. In multiple
record studies, even when some of the records have extensive but not identical gaps, the
monotonic trend procedures are generally best because comparable periods of time are more
easily examined among all the records. In fact, the frequent problem of multiple starting dates,
ending dates, and gaps in a group of records presents a significant practical problem in trend
analysis studies. In order to correctly interpret the data, records examined in a multiple station

study must be concurrent. For example it is pointless to compare a 1975-1985 trend at one
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station to a 1960-1980 trend at another. The difficulty arises in selecting a period which is long

enough to be meaningful but does not exclude too many shorter records.

SUSPENDED SEDIMENT
CONCENTRATION
GREEN RIVER NEAR JENSEN, UTAH
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Figure 12.16 A weakly significant (p=0.105) reduction in suspended sediment after completion

of the Flaming Gorge reservoir (located 93 miles upstream of the station) in late 1962 as

measured by a rank-sum test. From Hirsch et al., 1991.

A fturther difficulty involves deciding just how complete a record must be to be included in the

analysis. For example, if the study is for 1970-1985 and there is a record that runs from 1972

through 1985 it is probably prudent to include it in the study. A one- or two-year gap in the

middle of the record should not disqualify a station from the analysis. More difficult are

questions such as inclusion of a 1976-1984 record, or inclusion of a record that covers 1970-

1975 and 1982-1985. One reasonably objective rule for deciding whether to include a record is:

1) divide the study period into thirds (three periods of equal length),

2) determine the coverage in each period (e.g. if the record is generally monthly, count

the months for which there are data),

3) if any of the thirds has less than 20 percent of the total coverage then the record

should not be included in the analysis. See Schertz (1990) for an application of these

kinds of approaches.
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12.7 Applicability of Trend Tests With Censored Data

Censored samples are records in which some of the data are known only to be "less than" or
"greater than" some threshold (see Chapter 13). The two most common examples in hydrology
are constituent concentrations less than the detection limit and floods which are known to be
less than some threshold of perception (e.g. the annual flood of 1887 was not sufficiently large
that local record keepers bothered to record the maximum stage). The existence of censored
values complicates the use of the previously discussed parametric procedures and all of the
procedures involving removal of the effect of an exogenous variable. Any arbitrary choice of a
value to represent the censored values (e.g., zero or the reporting limit) can give inaccurate
results for hypothesis tests and biased estimates of trend slopes (Helsel, 1990).

A parametric approach to the detection of trends in censored data is the estimation of the
parameters of a linear regression model relating Y to T, or Y to T and X, through the method of
maximum likelihood estimation (MLE), also referred to as Tobit estimation (Hald, 1949; Cohen,
1950). These effects can be modeled simultaneously in this approach as can be done in a
conventional multiple regression. Because the MLLE method assumes a linear model with
normally distributed errors, transformations (such as logarithms) of Y and X are frequently
required to make the data more nearly normal and improve the fit of the MLE regression.
Failure of the data to conform to these assumptions will tend to lower the statistical power of
the test, and give unreliable estimates of the model parameters. The Type I error of the test is,

however, relatively insensitive to violations of the normality assumption.

An extension of the MLE method was developed by Cohen (19706) to provide estimates of
regression model parameters for data records with multiple censoring levels. An adjusted MLE
method for multiply-censored data that is less biased in certain applications than the MLE
method of Cohen (1976) was also recently developed by Cohn (1988). The availability of
multiply-censored MLE methods is noteworthy for the analysis of lengthy water-quality records
with censored values since these records frequently have multiple reporting limits that reflect
improvements in the accuracy of analytical methods (and reductions in reporting limits) with
time. Similarly, the multiply-censored case can arise in flood studies in that some very old
portion of a flood record may contain estimates of only the very largest floods while a more
recent part of the record (when flood plain development was more intense and record keeping

more complete) may contain estimates of floods exceeding a more moderate threshold.

The Mann-Kendall test can be used without any difficulty when only one censoring threshold
exists. Comparisons between all pairs of observations are possible. All the "less thans" are less
than the other values and are considered to be tied with each other. Thus the S statistic and T
are easily computed using the tie correction for the standard deviation (see Chapter 8) in the

large-sample approximation. Equation 8.4 for the corrected standard deviation is repeated here.



Trend Analysis 353

-1 @n+5- Y60 G-1)@+5]

~ i=1
oy = 18 [12.10]

When more than one detection limit exists, the Mann-Kendall test can not be performed
without further censoring the data. Consider the data set: <1, <1, 3, <5,7. How can a <1 and
<5 be compared? A 3 and a <5? These ambiguities make the test impossible to compute. The
only way to perform a Mann-Kendall test is to censor and recode the data at the highest
detection limit. Thus, these data would become: <5, <5, <5, <5, 7. There is certainly a loss of
information in making this change, and a loss of power to detect any trends which may exist.
Other nonparametric tests incorporating multiple detection limits are briefly discussed in
chapter 13. None can be performed when the change in detection limits is a function of the
process being tested for, such as time. When this occurs, the change in censoring limit over
time will induce the test to find a change in Y over time more often than it actually occurs (0

will actually be larger than that which was stated for the test).

Although the sign of the estimated Theil trend slope is accurate for highly censored data
records, the magnitude of the slope estimate is likely to be in error. Substitution of an arbitrarily
chosen value between zero and the reporting limit for all censored values will likely give biased
estimates of the trend slope. While the amount of bias cannot be stated precisely, the presence
of only a few nondetected values in a record (less than about five percent) is not likely to affect

the accuracy of the trend slope magnitude significantly.

Table 12.8 classifies monotonic trend tests for data sets with censored data.

Not Adjusted for X Adjusted for X
Nonparametric Mann-Kendall test for trend No test yet available
onY
Fully Parametric Tobit regression of Y Tobit regression of Y
onT onXand T

Table 12.8 Classification of monotonic trend tests for censored data
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Exercises

12.1

12.2:

During the period 1962-1969 the Green River Dam was constructed about 35 miles
upstream of a gaging station on the Green River at Munfordville, Kentucky. Itis a
flood control dam, thus it regulates flow (changes the flow duration curve) but has little

or no effect on total annual runoff from this 1660 square-mile basin.

The question is this--over the period of record 1952-1972 (which includes pre-dam,
transition, and regulated periods) has there been a monotonic trend in sediment
transport? The data available in Appendix C17 are the year, suspended sediment load in

thousands of tons per year, and the annual discharge in cfs-days.

Using each of the four trend analysis approaches described in the chapter, what would
you conclude about suspended sediment trends?

Seasonal Kendall Test with censored data
The following data are dissolved lead concentrations (in mg/L) for the Potomac River at
Chain Bridge at Washington, D.C.

Winter Spring Summer Fall
1973 - 4 3 -
1974 - 3 2 6
1975 4 5 5 11
1976 2 3 6 4
1977 16 2 18 17
1978 26 7 4 -
1979 5 3 9 6
1980 <2 <2 <2 <2
1981 5 <2 <2 <2
1982 <2 2 - 2
1983 2 3 <2 5
1984 3 5 <2 <2
1985 <2 3 - <2

Compute Kendall's S and Var [§] for each season and perform a Mann-Kendall test for
each season, reporting p-values. Then compute the Seasonal Kendall statistic and its

variance and report the p-value for the Seasonal Kendall test.
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12.3

12.4

12.5

The Maumee River, Ohio is a major tributary to Lake Erie. The control of phosphorus
inputs to the lake has been a major concern since the eatly 1970's. In Appendix C18 are
133 observations of instantaneous load and streamflow for the Maumee River from the
1972 through 1986. The variables in the date set are TIME (decimal time in years),
MONTH (month of the year), Q (discharge in thousands of cfs), and LOAD (total
phosphorus load in tons per day).

Using the various approaches listed in this chapter, describe the trend in the data set.
Try each of the approaches listed in table 12.2. For the nonparametric approaches

compute the seasonal-Kendall test.

Then using the model you select as most appropriate, estimate loads for the following
four cases:

(Q,TIME) = (11,1972.5), (1,1972.5), (11, 1986.5), (1, 1986.5).

Major ion chemistry of groundwater may be altered as it remains in contact with aquifer
materials. One common alteration is ion exchange of calcium with sodium. Carbon-14
can be used as a measure of the age of groundwater, with

C-14 (modern carbon) decreasing with increasing age. Compute the p-value and
determine whether there is a trend to lower calcium concentrations with increasing age
for the following data:

%Carbon-14 Calcium, in % meq %Carbon-14 Calcium, in % meq
(old) 124 20.16 48.9 16.56
19.5 0.46 52.0 22.88
23.9 4.18 55.6 12.64
25.3 28.95 57.7 14.26
28.2 20.00 58.1 13.37
31.5 0.57 06.2 35.22
33.1 1.84 67.1 24.43
33.4 13.99 (young) 71.8 00.24
38.6 18.02

A well screened in the middle aquifer in New Jersey is investigated to determine if
groundwater levels have declined over time as a result of pumpage. The data are given
in Appendix C19 (A. Pucci, written communication, U.S. Geological Survey, Trenton,
NJ). Conduct a trend analysis to determine whether a decline has occurred. Estimate

the rate of decline over the period of record.






Methods for Data Below
the Reporting Limit

To comply with environmental regulations, an industry must show that the daily mean copper
concentration in its wastewater discharge does not exceed the legal standard. Yet for many of
the wastewater samples taken at two hour intervals, concentrations are below the analytical
reporting limit of the laboratory. These "less-thans" make it impossible to compute a simple
mean concentration. When the industry substitutes a zero for each less-than, the standard is not
exceeded. When the regulatory agency substitutes a value equal to the reporting limit, the

standard is exceeded. Which is correct? Has the law been violated?

Ground-water quality is measured both upgradient and downgradient of a waste-disposal site.
Comparison of the two groups of data is performed to determine whether contamination of the
ground-water system has occurred. Usually t-tests are employed for this purpose, and yet the t-
test requires estimates of means and standard deviations which are impossible to obtain unless
numerical values are fabricated to replace any less-thans present in the data. By substituting one
number, the two groups appear the same. Substituting a second number causes H() to be

rejected, and the two groups to be declared different. Which is correct?

As trace substances in the world's soils, air and waters are increasingly investigated,
concentrations are more frequently being encountered which are less than limits deemed reliable
enough to report as numerical values. These less-than values -- values stated only as "<tl",
where 1l is called the "reporting limit" or "detection limit" or "limit of quantitation" (Keith et al.,
1983) -- present a serious interpretation problem for data analysts. Estimates of summary
statistics which best represent the entire distribution of data, both below and above the
reporting limit, are necessary to accurately analyze environmental conditions. Also needed are
hypothesis test and regression procedures that provide valid conclusions and models for such
data. These needs must be met using the only information available to the data analyst:
concentrations measured above one or more reporting limits, and the observed frequency of

data below those limits.
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This chapter discusses the most appropriate statistical procedures given that data have been
reported as less-thans. It does not consider the alternative of reporting numerical values for all
data, including those below reporting limits -- see ASTM (1983), Porter et al. (1988) and Gilliom
et al. (1984) for discussion of this alternative.

13.1 Methods for Estimating Summary Statistics

Methods for estimating summary statistics of data which include less-thans (statisticians call
these "censored data") can be divided into the three classes discussed below: simple
substitution, distributional, and robust methods. Recent papers have documented the relative
performance of these methods. Gilliom and Helsel (1986) and Gleit (1985) compared the
abilities of several estimation methods in detail over thousands of simulated data sets. Helsel
and Gilliom (1986) then applied these methods to numerous water-quality data sets, including
those which are not similar to the assumed distributions required by the distributional methods.
A single case study was reported by Newman and Dixon (1990). Helsel and Cohn (1988) dealt
with censoring at multiple reporting limits. Large differences were found in these methods'

abilities to estimate summary statistics for censored data.

Methods may be compared based on their ability to replicate true population statistics.
Departures from true values are measured by the root mean squared error (RMSE), which
combines both bias and lack of precision. The RMSE of the estimate of the mean x in
comparison to the true population value [ is shown in equation 13.1. Similar equations would

be used for estimation of other summary statistics.

RMSE = Z(X_ﬂ) / [13.1]

Methods whose estimates X ate closer to the true value L have lower RMSEs, and are

considered bettet.

13.1.1 Simple Substitution Methods

Simple substitution methods (Figure 13.1) substitute a single value such as one-half the reporting
limit for each less-than value. Summary statistics are calculated using both these fabricated
numbers along with the values above the reporting limit. These methods are widely used, but
have no theoretical basis. As Figure 13.1 shows, the distributions resulting from simple

substitution methods have large gaps, and do not appear realistic.
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Figure 13.1. Histograms for simple substitution methods.

Studies cited above determined that simple substitution methods performed poorly in
comparison to other procedures. Substitution of zero produced estimates of mean and median
which were biased low, while substituting the reporting limit resulted in estimates above the true
value. Results for the standard deviation and IQR, and for substituting one-half the reporting

limit, were also far less desirable than alternative methods. With the advent of powerful desktop
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computers to perform more complex calculations there appears to be no reason to use simple
substitution methods. As the choice of value to be substituted is essentially arbitrary without
some knowledge of instrument readings below the reporting limit, and as large differences may

occur in the resulting estimates, simple substitution methods are not defensible.

13.1.2 Distributional Methods

Distributional methods (Figure 13.2) use the characteristics of an assumed distribution to
estimate summary statistics. Data both below and above the reporting limit are assumed to
follow a distribution such as the lognormal. Given a distribution, estimates of summary statistics
are computed which best match the observed concentrations above the reporting limit and the
percentage of data below the limit. Estimation methods include maximume-likelihood estimation
or MLE (Cohen, 1959), and probability plotting procedures (Travis and Land, 1990). MLE
estimates are more precise (lower RMSE) than probability plotting, and both methods are
unbiased, when observations fit the assumed distribution exactly and when the sample size is
large. However, this is rarely the case in environmental studies. When data do not match the
observed distribution, both methods may produce biased and imprecise estimates. Thus the
most crucial consideration when using distributional methods is how well the data can be
expected to fit the assumed distribution. Even when distributional assumptions are correct,
MLESs have been shown to produce estimates with large bias and poor precision for the small
sample sizes of n=5, 10, and 15 (Gleit, 1985). MLE methods are commonly used in
environmental disciplines such as air quality (Owen and DeRouen, 1980) and geochemistry
(Miesch, 1967).

Assuming a lognormal distribution for concentrations, MLEs for larger (n=25, 50) data sets have
provided excellent estimates of percentiles (median and IQR) for a variety of data distributions
realistic for environmental studies, even those which are not lognormal. However, they have
not worked as well for estimating the mean and standard deviation (Gilliom and Helsel, 1986).

There are two reasons why this is so.

First, the lognormal distribution is flexible in shape, providing reasonable approximations to
data which are nearly symmetric and to some positively-skewed distributions which are not
lognormal. Thus the lognormal can mimic the actual shape of the data over much of the
distribution, adequately reproducing percentile statistics even though the data were not truly
lognormal in shape. However, the moment statistics (mean and standard deviation) are very
sensitive to values of the largest observations. Failure of the assumed distribution to fit these

observations will result in poor estimates of moments.

Second, there is a transformation bias in lognormal MLE inherent in computing estimates of the
mean and standard deviation for any transformation -- including logarithms -- and then
retransforming back to original units. Compensating for this bias often requires an assumption

about distributional shape. In Chapter 9 transformation bias was discussed in the context of
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regression. The same phenomena is present for estimates of the mean. Indeed, if no
explanatory variables are significant then a regression model simplifies to estimating the mean.

Percentiles, however, can be directly transformed between measurement scales without bias.

Maximum Likelihood (MLE) -- fits 'best' lognormal distribution to the data, and then
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Figure 13.2. Distributional (MLE) method for computing summary statistics.

Two less-frequently used distributional methods are a "fill-in with expected values" MLE
technique (Gleit, 1985) and a probability plot method which estimates the mean and standard
deviation by the intercept and slope, respectively, of a line fit to data above the reporting limit
(Travis and Land, 1990). Probability plot methods are easy to compute with standard statistics
software, an advantage for practitioners. Both methods suffer from transformation bias when

estimates are computed in one scale and then retransformed back into original units. Thus
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Travis and Land (1990) recommended the probability plot for estimating the geometric mean.
Its use for estimating the mean in original units would have to take transformation bias into

consideration. Both methods should be somewhat less precise than MLEs.

13.1.3 Robust Methods

Robust methods (Figure 13.3) combine observed data above the reporting limit with below-limit
values extrapolated assuming a distributional shape, in order to compute estimates of summary
statistics. A distribution is fit to the data above the reporting limit by either MLLE or probability
plot procedures, but the fitted distribution is used only to extrapolate a collection of values
below the reporting limit. These extrapolated values are not considered as estimates for specific
samples, but only used collectively to estimate summary statistics. The robustness of these
methods result primarily from their use of observed data rather than a fitted distribution above
the reporting limit. They also avoid transformation bias by performing all computations of

summary statistics in original units.

Robust methods have produced consistently small errors for all four summary statistics in
simulation studies (Gilliom and Helsel, 1986), as well as when applied to actual data (Helsel and
Gilliom, 1986). Robust methods have at least two advantages over distributional methods for
computation of means and standard deviations. First, they are not as sensitive to the fit of a
distribution for the largest observations because actual observed data are used rather than a
fitted distribution above the reporting limit. Second, estimates of extrapolated values can be
directly retransformed and summary statistics computed in the original units, avoiding

transformation bias.

13.1.4 Recommendations

In practice, the distributions of environmental data are rarely if ever known, and may vary
between constituents, time periods, and locations. Robust methods should therefore be used to
protect against the possibly large errors of distributional methods when estimating the mean and
standard deviation. Either robust probability plot or distributional MLE procedures have been
shown to perform well for estimating the median and IQR. Use of these methods rather than
simple substitution methods for environmental data should substantially lower estimation errors

for summary statistics.

As an alternative to estimating percentiles, sample values can sometimes be used. When less than
50% of the data are below the reporting limit, the sample median is known. Similarly, when less
than 25% of the data are censored, the sample IQR is known. Some information is available
about percentiles when even larger amounts of data lie below the reporting threshold, as shown
in the examples below. Unfortunately no similar process is available for sample estimates of

mean and standard deviation.
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"fill-in" values below the reporting limit.
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above the reporting limit to compute estimates of summary statistics
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Example 1
<1 <1 <1 <10 <10 <10 <50.

The mean and std deviation cannot be estimated by any method, as there are no data above the
reporting limit. For the median and IQR, a great deal of information is present. To compute a
median where all data are below one or more reporting limits and the sample size is odd, remove
the < sign, compute the sample median, and then restore the < sign. Therefore the median is
<10. The IQR must equal the sample 75th percentile, as the 25th percentile could equal zero.
Here the IQR is <10.

Example 2:
<1 <1 <1 <10 <20 <20

When all data are below one or more reporting limits and n is even, again remove the < signs.
The larger of the two center observations (the ([n/2]+1)th observation) is used as the median,
rather than the average of the two center observations as for uncensored data. Restore the <
sign. The median of the above 6 points is <10. The IQR is computed as in example 1, and here
would be <20.

Example 3:
<1<1<157 812 16 25

For data above and below one reporting limit, the sample median is known to be 7, as less than
50% of the data are censored. Because more than 25% of the data are censored, the sample
IQR must be computed as a range. If all the <1's are actually 0, the IQR = 14 — 0 = 14. If all
<1's are very close to 1, the IQR = 13. So the sample IQR could be reported as "13 to 14" if
that were of sufficient precision. Otherwise, the probability plot and maximum likelihood

methods must be used to estimate the moment and percentile statistics.

13.1.5 Multiple Reporting Limits

Data sets may contain values censored at more than one reporting limit. This commonly occurs
as limits are lowered over time at a single lab, or when data having different reporting limits are
combined from multiple laboratories. Estimation methods belonging to the above three classes
are available for this situation. A comparison of these methods (Helsel and Cohn, 1988)
concluded that robust methods again provide the best estimates of mean and standard deviation,
and MLE:s for percentiles. For example, in Figure 13.4 the error rates for six estimation
methods are compared to the error that would occur had all data been above the reporting limit
(shown as the 100% line). Figure 13.5 shows the same information when the data differ
markedly from a lognormal distribution. The simple substitution methods (ZE, HA and DL.:
substitution of zero, one-half and one times the reporting limit, respectively) have more error in
most cases than does the robust probability plot method MR. Where the substitution methods
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have lower RMSE, it is an artifact of constant, strongly biased estimates, also not a desirable
result. The maximum likelithood procedure MM and the MLE adjusted for transformation bias
AM show themselves to be excellent estimation methods for percentiles, but suffer from large

errors when estimating the mean and standard deviation.

In summary, use of MLE for estimation of percentiles, and the robust probability plot method
for estimating the mean and standard deviation, should greatly decrease errors as compared to

simple substitution methods for data with multiple reporting limits.

900%
:\7 800% '\;ETHOD
S 700% ZE  SIMPLE SUB
E 600% SIMPLE SUB
500%
R 400% SIMPLE SUB
A 300% PROB. PLOT
T 200%
| 100% MLE
0 4o ] AM  ADJ. MLE
MEAN ST. DEV. MEDIAN IQR
POPULATION STATISTIC ESTIMATED
Figure 13.4. Error rates (RMSE -- root mean square error) of six multiple-detection
methods divided by error rates for uncensored data estimates, in percent,
for data similar to a lognormal distribution (from Helsel and Cohn, 1988)
>1000%
1000% K A METHOD
R 900% B zE sivPLE suB
M 800% M
: 700% SIMPLE SUB
600% SIMPLE SUB
500%
i 400% PROB. PLOT
300%
IT 200% MLE
0 100% ADJ. MLE
0%

MEAN ST. DEV. MEDIAN IQR

POPULATION STATISTIC ESTIMATED
Figure 13.5. Error rates (RMSE -- root mean square error) of six multiple-detection
methods divided by error rates for uncensored data estimates, in percent,

for data not similar to a lognormal distribution. (from Helsel and Cohn, 1988)
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Example 4:

For data above and below multiple reporting limits, such as
<1<1<15 78 <10<10<10 12 16 25
it is unclear whether the <10's are below or above 1, or 5, etc. Therefore ordering the data from
smallest to largest is impossible. Instead, the probability plot method is used to compute the
mean and standard deviation, and the maximum likelihood method for the median and IQR
(Helsel and Cohn, 1988). These give the following:
mean = 7.8 median
stddev = 069 IQR

2.8
7.5.

13.2 Methods for Hypothesis Testing

Methods for hypothesis testing of censored data can also be classified into the three types of
procedures: simple substitution, distributional or parametric, and robust or nonparametric. The

advantages and disadvantages of each are summarized below.

13.2.1 Simple Substitution Methods

When censoring is present, values are often fabricated in order to perform parametric tests such
as t-tests. Problems caused by such substitution methods are illustrated below. Investigators
have also deleted censored data prior to hypothesis testing. This latter approach is the worst
procedure, as it causes a large and variable bias in the parameter estimates for each group. After
deletion, comparisons made are between the upper X% of one group versus the upper Y% of

another, where X and Y may be very different. Such tests have little or no meaning.

Example 5

As an example of hypothesis test methods for censored data, tests will be performed to
determine whether or not means or medians significantly differ between two groups. Two data
sets were generated from lognormal distributions having the same variance, but with differing
mean values. Sample statistics for the two data sets before and after censoring are given in
Table 13.1. Prior to any censoring, group means were found to be different by a t-test (p=0.04,
Table 13.2). The data were then censored at a reporting limit of 1 lg/L, so that all data below
1.0 were recorded as <1. This produced 14 less-than values (70%) in group A, and 5 less-than
values (23%) in group B.

The simple substitution method for comparing two groups of censored data is to fabricate data
for all less-than values, and include these "data" with detected observations when performing a
t-test. INo « priori arguments for fabrication of any particular value between 0 and the reporting
limit can be made. Substituting zero for all less-than values, the means are declared significantly
different (p = 0.01). Yet when the reporting limit of 1.0 is substituted, the means are not found
to be different (p = 0.19). The conclusion is thus strongly dependent on the value substituted!
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Fabrication of data followed by a t-test is an arbitrary process leading to ambiguous conclusions.
It should be avoided.

13.2.2 Distributional Test Procedutres
Parametric tests are also available which do not require substitutions for less-thans. Instead,
maximum likelihood methods are used to solve the relevant equations. Where the distributional

assumptions are appropriate, these relatively unknown tests have great utility.

The distributional method for a t-test situation is performed using a regression procedure for
censored data known as tobit regression (Judge et al, 1985). Tobit regression uses both the data
values above the reporting limit, and the proportion of data below the reporting limit, to
compute a slope coefficient by maximum likelithood. For a two-group test, the explanatory
variable in the regression equation is the binary variable of group number, so that data in one
group have a value of 0, and in the other group a value of 1. The regression slope then equals
the difference between the two group means, and the t-test for whether this slope differs from
zero 1s also a test of whether the group means differ. Tobit regression is discussed further in
section 13.3. One advantage to Tobit regression for hypothesis testing is that multiple reporting
limits may easily be incorporated. The caution for its use is that proper application does require
the data in both groups to be normally distributed around their group mean, and for the variance
in each group to be equal. For large amounts of censoring these restrictions are difficult to

verify.

13.2.3 Nonparametric Tests
With nonparametric tests, no fabrication of data values is required. All censored data are
represented by ranks which are tied at values lower than the lowest number above the reporting

limit. The rank-sum test compares the medians of two independent data groups (Chapter 5).

Prior to censoring, a rank-sum test on the example 5 data produced a much lower p-value
(p=0.003) than did the t-test (Table 13.2). This lower p-value is consistent with the proven
greater power of the nonparametric test to detect differences between groups of skewed data, as
compared to the t-test. To compute the rank-sum test on censored data, the 19 less-than values
are considered tied at the lowest value, with each assigned a rank of 10 (the mean of ranks 1-19).
The next highest value, the data point just above the reporting limit, obtains a rank of 20. All
data above the reporting limit will have ranks identical to those which would have been obtained
had no censoring been present. The resulting p-value is 0.002, essentially the same as for the
uncensored data, and the two groups are easily declared different. Thus in this example the
nonparametric method makes very efficient use of the information contained in the less-than
values, avoids arbitrary assignment of fabricated values, and accurately represents the lack of

knowledge below the reporting limit. Results do not depend on any distributional assumption.
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TABLE 13.1--Characteristics of Two Lognormal Data Groups (A and B)

8 _
- B
6 4
A +5 54
+ 4 Number 41
of data
T3 34
12 21
A Al | ‘ I |
0 0
0.4 1.0 1.6 2.2 2.8 0.4 1.0 1.6 2.2 2.8
A B
20 no. obsetrvations 22
1.00 mean 1.32
0.57 std. deviation 0.39
0.65 25th percentile 1.07
0.85 median 1.25
1.07 75th percentile 1.66
14 no. <tl 5
TABLE 13.2-- Significance Tests Between Groups A and B
Hypothesis test used test statistic p
Uncensored data
t-test (Satterthwaite approx.) -2.13 0.04
regression with binary variable =217 0.04
rank-sum test
—2.92 0.003
After imposing artificial reporting limit
t-test
less-thans = 0.0 —2.68 0.01
less-thans = 0.5 —2.28 0.03
less-thans = 1.0 -1.34 0.19
tobit regression with binary variable —2.28 0.03
rank-sum test -3.07 0.002

When severe censoring (near 50% or more) occurs, all of the above tests will have little power to
detect differences in central values. The investigator will be inhibited in stating conclusions
about the relative magnitudes of central values, and other characteristics must be compared. For

example, contingency tables (Chapter 14) can test for a difference in the proportion of data
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above the reporting limit in each group. The test can be used when the data are reported only as
detected or not detected. It may also be used when response data can be categorized into three
or more groups, such as: below detection, detected but below some health standard, and
exceeding standards. The test determines whether the proportion of data falling into each
response category differs as a function of different explanatory groups, such as different sites,

land use categories, etc.

13.2.4 Hypothesis Testing With Multiple Reporting Limits

More than one reporting limit is often present in environmental data. When this occurs,
hypothesis tests such as comparisons between data groups are greatly complicated. It can be
safely said that fabrication of data followed by computation of t-tests or similar parametric
procedures is at least as arbitrary with multiple reporting limits as with one reporting limit, and

should be avoided. The deletion of data below all reporting limits prior to testing should also be
completely avoided.

Tobit regression can be utilized with multiple reporting limits. Data should have a normal
distribution around all group means and equal group variances to use the test. These

assumptions are difficult to verify with censored data, especially for small data sets.

One robust method which can always be performed is to censor all data at the highest reporting
limit, and then perform the appropriate nonparametric test. Thus the data set

<1 <1 <1 57 8 <10 <10 <10 12 16 25
would become <10 <10 <10 <10 <10 <10 <10 <10 <10 12 16 25.
and a rank-sum test performed to compare this with another data set. Clearly this produces a
loss of information which may be severe enough to obscure actual differences between groups

(aloss of power). However, for some situations this is the best that can be done.

Alternatively, nonparametric score tests common in the medical "survival analysis" literature can
sometimes be applied to the case of multiple reporting limits (Millard and Deverel, 1988). These
tests modify uncensored rank test statistics to compare groups of data. The modifications allow
for the presence of multiple reporting limits. In the most comprehensive review of these score
tests, Latta (1981) found most of them to be inappropriate for the case of unequal sample sizes.
The Peto-Prentice test with asymptotic variance estimate was found by Latta (1981) to be the
least sensitive to unequal sample sizes. Another crucial assumption of score tests is that the
censoring mechanism must be independent of the effect under investigation (see box).

Unfortunately, this is often not the case with environmental data.
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Examples when a score test would be inappropriate.

Score tests are inappropriate when the censoring mechanism differs for the two groups.
That is, the probability of obtaining a value below a given reporting limit differs for the
two groups when the null hypothesis that the groups are identical is true.

1. Suppose a trend over time was being investigated. The first five years of data were produced
with a method having a reporting limit of 10 mg/L; the second five years used an improved
method with 1 mg/L as its reporting limit. A score test of the first half of the data versus the
second would not be valid, as the censoring mechanism itself varied as a direct function of time.
2. Two groups of data are compared as in a rank-sum test, but most of the data from group A
were measured with a chemical method having 1 as its reporting limit, while most of group B
were measured with a method having 10 as its reporting limit. A score test would not yield valid

results, as the censoring mechanism varies as a function of what is being investigated (the two

groups).

Examples when a score test would be appropriate.

A score test yields valid results when the change in censoring mechanism is not related
to the effect being measured. Stated another way, the probability of obtaining data below
each reporting limit is the same for all groups, assuming the null hypothesis of no trend or no
difference is true. Here a score test provides much greater power than artificially censoring all

data below the highest reporting limit before using the rank-sum test.

1. Comparisons were made between two groups of data collected at roughly the same times,
and analyzed by the same methods, even though those methods and reporting limits changed

over time. Score tests are valid here.

2. Differing reporting limits resulted from analyses at different laboratories, but the labs were
assigned at random to each sample. Censoring is thus not a function of what is being tested, but

is a random effect, and score tests would be valid.

13.2.5 Recommendations

Robust hypothesis tests have several advantages over their distributional counterparts when
applied to censored data. These advantages include: (1) the ability to disregard whether data
adhere to a normal distribution. Verifying normality is difficult to do with censored data; (2)
greater power for the skewed distributions common to environmental data; and (3) data below
the reporting limit are incorporated without fabrication of values or bias. Information contained

in less-than values is accurately used, not misrepresenting the state of that information.

Tests incorporating multiple reporting limits are more problematic, and should be an area of

future research. When adherence to a normal distribution can be documented, Tobit regression
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offers the ability to incorporate multiple reporting limits in a distributional test regardless of a
change in censoring mechanism. Nonparametric score tests require consistency in censoring

mechanism with respect to the effect being tested.

13.3 Methods For Regression With Censored Data

With censored data the use of ordinary least squares (OLS) for regression is prohibited.
Coefficients for slopes and intercept cannot be computed without values for the censored
observations, and substituting fabricated values may produce coefficients strongly dependent on
the values substituted. Four alternative methods capable of incorporating censored observations

are described below.

The choice of method depends on the amount of censoring present, as well as on the purpose of
the analysis. For small amounts of censoring (below 20%), either Kendall's line or the tobit line
may be used. Kendall's would be preferred if the residuals were not normally distributed, or
when outliers are present. For moderate censoring (20-50%), Tobit or logistic regression must
be used. With large amounts of censoring, inferences about concentrations themselves must be
abandoned, and logistic regression employed. When both the explanatory and response
variables are censored, tobit regression is applicable for small amounts of censoring. For larger

amounts of censoring, contingency tables or rank correlation coefficients are the only option.

13.3.1 Kendall's Robust Line Fit

When one censoring level is present, Kendall's rank-based procedure for fitting a straight line to
data can test the significance of the relationship between a response and explanatory variable
(Chapter 10). An equation for the line, including an estimate of the slope, is usually also
desirable. This can be computed when the amount of censoring is small. Kendall's estimate of
slope is the median of all possible pairwise slopes of the data. To compute the slope with
censoring, twice compute the median of all possible slopes, once with zero substituted for all
less-thans, and once with the reporting limit substituted. For small amounts of censoring the
resulting slope will change very little, or not at all, and can be reported as a range if necessary. If
the slope value change is of an unacceptable magnitude, tobit or logistic regression must be

performed.

Research is underway on methods based on scores similar to those for hypothesis tests with
multiply-censored data that may allow robust regression fits to data with multiple reporting
limits (McKean and Sievers, 1989).

13.3.2 Tobit Regression
Censored response data can be incorporated along with uncensored observations into a
procedure called tobit regression (Judge et al., 1985). It is similar to OLS except that the

coefficients are fit by maximum-likelihood estimation. MLE estimates of slope and intercept are
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based on the assumption that the residuals are normally distributed around the tobit line, with
constant variance across the range of predicted values. Again, it is difficult to check these
assumptions with censored data. Should the data include outliers, these can have a strong
influence on the location of the line and on significance tests (Figure 13.0), as is true with
uncensored OLS. Verification of linearity and constant variance assumptions should be
attempted when only small amounts of data are censored using residuals plots. Residuals for
uncensored observations would be plotted versus predicted values. For larger percentages of
less-thans, decisions whether to transform the response variable must often be made based on
previous knowledge ("metals always need to be log-transformed", etc.). Tobit regression is also
applicable when both the response and explanatory variables are censored, such as a regression
relationship between two chemical constituents. However, the amount of censoring must be
sufficiently small that the linearity, constant variance, and normality assumptions of the
procedure can be checked. Finally, Cohn (1988) as well as others have proven that the tobit

estimates are slightly biased, and have derived bias corrections for the method.

13.3.3 Logistic Regression

Here the response variable is categorical. No longer is a concentration being predicted, but a
probability of being in discrete binary categories such as above or below the reporting limit.

One response (above, for example) is assigned a value of 1, and the second response a 0. The
probability of being in one category versus the second is tested to see if it differs as a function of

continuous explanatory variable(s). Examples include predicting the probability of detecting
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Figure 13.6. Kendall's and tobit MLE lines for censored data with outliers.

Note the tobit line is strongly influenced by outliers.
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concentrations of some organic contaminant from continuous variables such as nitrate
concentrations, population density, percent of some appropriate land use variable, or of
irrigation intensity. Predictions from this regression-type relationship will fall between 0 and 1,
and are interpreted as the probability [p] of observing a response of 1. Therefore [1—p] is the
probability of a O response.

Logistic regression may be used to predict the probabilities of more than 2 response categories.
When there are m>2 ordinal (may be placed in an order) responses possible, (m—1) equations
must be derived from the data. For example, if 3 responses are possible (concentrations below
11 =0, above 1l but below health standards =1, and above health standards =2), two logistic
regressions must be computed. First, an equation must be written for the probability of being
nonzero (the probability of being above the 1l). Next the probability of a 2 (probability of being
above the health standard) is also modelled. Together, these two equations completely define
the three probabilities p(y=0), p(y=1), and p(y=2) as a function of the explanatory variables. See
Chapter 15 for more detail.

13.3.4 Contingency Tables

Contingency tables are useful in the regression context if both explanatory and response
variables contain censoring. For example, suppose the relationship between two trace metals in
soils (such as arsenic and aluminum) is to be described. The worst procedure would again be to
throw away the data below the reporting limits, and perform a regression. Figure 13.7 shows
that a true linear relationship with negative slope could be completely obscured if censored data
were ignored, and only data in the upper right quadrant investigated. Contingency tables
provide a measure of the strength of the relationship between censored variables -- the phi
statistic ¢ (Chapter 14), a type of correlation coefficient. An equation which describes this
relationship, as per regression, is not available. Instead, the probability of y being in one
category can be stated as a function of the category of x. For the Figure 13.7 data, the
probability of arsenic being above the reporting limit is 21/36 = 0.58 when aluminum is above
reporting limit, and 17/18 = 0.94 when aluminum is below the reporting limit.

13.3.5 Rank Correlation Coefficients

The robust correlation coefficients Kendall's tau or Spearman's rho (Chapter 8) could also be
computed when both variables are censored. All values below the reporting limit for a single
variable are assigned tied ranks. Rank correlations do not provide estimates of the probability of
exceeding the reporting limit as does a contingency table. So they are not applicable in a
regression context, but would be more applicable than contingency tables in a correlation
context. One such context would be in "chemometrics" (Breen and Robinson, 1985): the
computation of correlation coefficients for censored data as inputs to a principal components or

factor analysis.
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a+b =38
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Figure 13.7. Contingency table relationship between two censored variables.
(Ignoring censored data would produce the misleading conclusion that

no relationship exists between the two variables)

13.3.6 Recommendations

Relationships between variables having data below reporting limits can be investigated in a
manner similar to regression. Values should not be fabricated for less-thans prior to regression.
Instead, Table 13.3 summarizes alternative methods appropriate for censored data. For small
amounts of censoring and one reporting limit, Kendall's robust line can be fit to the data. For
moderate censoring and/or multiple reporting limits, tobit regression can be performed. For
more severe censoring of the dependent variable, logistic regression is appropriate. When both
response and explanatory variables contain severe censoring, contingency tables and rank

correlation coefficients can be performed.
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Estimation of Summary Statistics

Mean and Standard Deviation Percentiles
Robust Probability Plot Robust Probability Plot or MLE
Hypothesis Tests
One Reporting Limit Several Reporting Limits
Compare 2 groups: rank-sum test tobit regression
Compare >2 groups: Kruskal-Wallis test tobit regression
Severe Censoring (>50%): above tests, or —

contingency tables

Regression
Small % censoring Moderate % censoring Large % censoring
Kendall’s robust line tobit regression logistic regression
tobit regression logistic regression contingency tables

Table 13.3 Recommended Techniques for Interpretation of Censored Data
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Exercises

13.1

13.2

13.3

Below are concentrations of triphenyltin (TPT) measured in a sediment core by Fent and
Hunn (1991). Estimate the mean, standard deviaion, median and interquartile range for
these data.

Concentrations of TPT, in [1g/kg dry weight
51 29 71 69 34 56 83 <2 <2 107 35 <2
26 4 10 <2 2 <2

Below are depths (bottom of segment) for the 18 TPT concentrations of exercise 13.1.
Compute the significance of the relationship between concentration and depth for this
core.

Depth (cm) of bottom of sediment core
05 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
7 8 9 10 11 12

Silver concentrations in standard solutions were reported by several laboratories in an
inter-lab comparison [Janzer, 1986]. The 56 analyses included 36 values below one of 12
detection limits. One large outlier (a "far outside" value on a boxplot) of 560 ug/L was
also reported. Compute the mean, standard deviation, median and interquartile range
for the data presented below:

0.8 <25 <5 <0.2 <0.5 5.0 <0.3 <0.2 0.1

2.7 <0.1 <20 1.42.0 <2.5 2.0 2.0 <1
<10 <1 <0.2 1.0<10 <0.2 0.2 1.2 <1
1.0 <6 <1 0.7<1 <532 2.0 10.0
1.0 4.4 <1 <1<l <20 <5 <10 <10
90 1.5 <1 <2<10 560<5 0.1 <20

<1 <0.1



Discrete Relationships

Three aquifers are sampled to determine whether they differ in their concentrations of coppet.
In all three, over 40 percent of the samples were below the detection limit. What methods will
test whether the distribution of copper is identical in the three aquifers while effectively

incorporating data below the detection limit?

Counts of three macroinvertebrate species were measured in three stream locations to determine
ecosystem health. The three species cover the range of tolerance to pollution, so that a shift
from dominance of one species to another is an indication of likely contamination. Do the three

locations differ in their proportions of the three species, or are they identical?

This chapter presents methods to evaluate the relationship between two discrete (also called
categorical) variables. The tests are analogous to analysis of variance or t-tests where the
response variable is not continuous -- it is recorded only as a discrete number or category (see
Figure 4.1). When the response variable is ordinal (possible values can be ordered into a logical
sequence, such as low, medium and high) the familiar Kruskal-Wallis test can be used. When
the response variable is nominal (no ordering to the categories, such as with different species of
organism), contingency tables can assess association. When both variables are ordinal, Kendall's

tau can test for significance in association.



378 Statistical Methods in Water Resources

14.1 Recording Categorical Data

Categorical variables are those whose possible values are not along a continuous scale (such as
concentration), but may take on only one of a discrete number of values classed into one of
several categories. Examples of categorical variables used in water resources studies are:
presence or absence of a benthic invertebrate, whether an organic compound is above or below
the detection limit, soil type, land use group, and location variables such as aquifer unit, gaging
station, etc. To easily inspect the relationship between two categorical variables, the data are
recorded as a matrix of counts (Figure 14.1). The matrix is composed of two categorical
variables, one assigned to the columns and one to the rows. Both variables will take on several
possible values. The entries in the cells of the matrix are the number of obsetvations Ojj which

fall into the ith row and jth column of the matrix.

Variable 2
Variable 1 Group 1 Group 2 Group 3
Response 1 011 012 013
Response 2 021 022 023

Figure 14.1 Structure of a 2-variable matrix

14.2 Contingency Tables (Both Variables Nominal)

Contingency tables measure the association between two nominal categorical variables. Because
they are nominal there is no natural ordering of either variable, so that categories may be
switched in assignment from the first to the second row, etc. without any loss in meaning. The
purpose of contingency table analysis is to determine whether the row classification (variable 1,
here arbitrarily assigned to the response variable if there is one) is independent of the column
classification (variable 2, here assigned to the location or group-of-origin variable). The null
hypothesis Hg is that the two variables are independent -- that is, the distribution of data among
the categories of the first variable is not affected by the classification of the second variable.
Evidence may be sufficient to reject Hp in favor of Hi: the variables are dependent or related.

The statement that one variable causes the observed values for the second variable is not

necessarily implied, analogous to correlation. Causation must be determined by knowledge of
the relevant processes, not only mathematical association. For example, both variables could be

caused by a third underlying variable.
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Example 1

Three streams are sampled to determine if they differ in their macrobiological community
structure. In particular, the presence or absence of two species are recorded for each stream,
one species being pollution tolerant, and one not. If the streams differ in their proportion of
pollution-tolerant species, it is inferred that they differ in their pollution sources as well. Test
whether the streams are identical in (independent of) the proportion of pollution-tolerant

organisms, or whether they differ in this proportion (proportion is dependent on the stream).

Ho: the proportion of one species versus the second is the same for (is independent of) all 3
streams.

H1i: the proportion differs between (is dependent on) the stream.

Stream 1 Stream 2 Stream 3
Tolerant 011 012 013 A1 = 2(011+012+013)
Intolerant 021 022 023 A = 2(021+022+023)
C1= Co= Ca= N = (A1+A2)
2(011+021) 2(012+t022) XZ(013+023) = (C1+C2+C3)

14.2.1 Performing the Test for Independence
To test for independence, the observed counts Ojj (row i and column j) in each cell are summed
across rows to produce the row totals Aj, and down columns to produce column totals C;.
There are m rows (i=1,m) and k columns (j=1,k). The total sample size N is the sum of all
counts in every cell, or N =XAj =XCj =X0jj. The matginal probability of being in a given
row (aj) or column (cj), can be computed by dividing the row Aj and column C;j totals by N:

aj = Aj/N c¢j =Cj/N
If Ho is true, the probability of a new sample falling into row 1 (species tolerant of pollution) is
best estimated by the marginal probability a1 regardless of which stream the sample was taken

from. Thus the marginal probability for a row ignores any influence of the column variable.

The column variable is important in that the number of available samples may differ among the
columns. The probability of being in any column may not be (1/no. columns). Therefore, with
Hg true, the best estimate of the joint probability cij of being in a single cell in the table equals
the marginal probability of being in row 1 times the marginal probability of being in column |

€ij = ajeGj.

Finally, for a sample size of N, the expected number of observations in each cell given Hg is
true can be computed by multiplying each joint probability ejj by N:
Eij =Naj¢ | or
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Aj G
Eij = ?1 [14.1]

To test Ho, a test statistic Xct is computed by directly comparing the obsetved counts Ojj with
the counts Ejj expected when Hg is true. This statistic is the sum of the squared differences

divided by the expected counts, summed over all i%j cells:

O - Ei)2
Xct = M [14.2]
Ejj

=1

m
i=1

If Hy is not true, the observed counts Ojj will be very different from the Eij for at least one cell
and Xct will then be large. If Hg is true, the Oij = Hjj for all i*j cells, and Xct will be small. To
evaluate whether Xct is sufficiently large to reject Hp, the test statistic is compared to the (1—0or)
quantile of a chi-square distribution having (m—1)¢(k—1) degrees of freedom. Tables of the chi-

square distribution are available in most statistics texts.

To understand why there are (m—1)*(k—1) degrees of freedom, when the marginal sums Ajj and
Cjj are known, once (m—1)*(k—1) of the cell counts Ojj are specified the remainder can be

computed. Therefore, only (m—1)(k—1) entries can be "freely" specified.

Example 1 cont.

For the table of observed counts Ojj below, determine whether the streams differ significantly in

their proportion of pollutant-tolerant species.

Oii Stream 1 Stream 2 Stream 3
Tolerant 4 8 12 A1 =24
Intolerant 18 12 6 Ax =36
C1=22 C2=20 C3=18 N =60

To determine whether the proportion of pollutant-tolerant species is significantly different for
the three streams, a table of expected counts Ejj assuming Hg to be true is computed using

equation 14.1:
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Ejj Stream 1 Stream 2 Stream 3
Tolerant 8.8 8.0 7.2 Ap =24
Intolerant 13.2 12.0 10.8 Ay =36
Ci=22 Cy =20 Cy=18 60

Dividing these expected counts by N results in the table of expected probabilities
(eij = Eij / N):

eij Stream 1 Stream 2 Stream 3
Tolerant .148 132 120 ap =04
Intolerant 222 .198 .180 ap = 0.6
c=0.37 ¢y =0.33 ;=030 10

To perform the significance test:
(4.0-8.8)2 . (8-8.0)2 . (12-7.2)2

Xet = 7733 8.0 7.2 +
(18-13.2)2 (12-12)2 (6-10.8)2
13.2 T2 T 108
= 970

Ho should be rejected if Xct exceeds the (1-0) quantile of the chi-square distribution with 12 =
2 degrees of freedom. For o = 0.05, Xz(,95, 2) =5.99. Therefore, Hg is rejected. The
proportion of pollutant-tolerant species is not the same in all three streams. Thus the overall
marginal probability of 0.4 is not an adequate estimate of the probability of pollution-tolerant
species for all three streams.

14.2.2 Conditions Necessary for the Test

The chi-square distribution is a good approximation to the true distribution of Xct as long as
e all Ejj>1 and
* at least 80% of cells have Eij > 5 (Conover, 1980).

If either condition is not met,
* combine two or more rows or columns and recompute, or

* enumerate the exact distribution of Xct. See Conover (1980) for details.

A contingency table test is not capable of extracting the information contained in any natural
ordering of rows or columns. Contingency tables are designed to operate on nominal data
without this ordering. The columns or rows can be rearranged without changing the expected
values Eij, and therefore without altering the test statistic. When the response variable or both
variables have a natural scale of ordering, the test statistic should change as the ordinal variable

is rearranged. Methods more powerful than contingency tables should be used when one or
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both variables are ordinal. When only the response variable is ordinal, the Kruskal-Wallis test of
the next section will have more power to see differences between groups than will contingency
tables. When both variables are ordinal, Kendall's tau can measure the relationship as shown in
section 14.4.

14.2.3 Location 0f the Differences
When a contingency table finds an association between the two variables, it is usually of interest
to know how the two are related. Which cells are higher or lower in proportion than would be

expected had Hg been true? A guide to this are the individual cell chi-square statistics.

Cells having large values of Q% are the cells contributing most to the

rejection of the null hypothesis. The sign of the difference between Oii and Ejj indicates the
direction of the departure. For example, the individual cell chi-square statistics for the species

data of example 1 are as follows:

X2 Stream 1 Stream 2 Stream 3
Tolerant (4.0-8.8)2 (8-8.0)2 (12-7.2)2
=26 =0 =32
8.8 8.0 7.2
Intolerant|  (18-13.2)2 (12-12)2 (6-10.8)2
132 L7 2 0 108

Stream 3 has many more counts of the pollution-tolerant species than the number expected if all
three streams were alike, and stream 1 has many less. Therefore stream 1 appears to be the least

affected by pollution, stream 2 in-between, and stream 3 the most affected.

14.3 Kruskal-Wallis Test for Ordered Categorical Responses

In Chapter 5 the Kruskal-Wallis test was introduced as a nonparametric test for differences in
medians among 3 or more groups. The response variable in that case was continuous. In
Chapter 13 the test was applied to response data whose lower end of a continuous scale was
below a reporting limit. All censored data were treated as ties. Now the test will be applied to
data which are ordinal -- the response variable can only be recorded as belonging to one of
several ordered categories. All observations in the same response category (row) are tied with
each other. The test takes on its most general form in this situation, as a test for whether a shift
in the distribution has occurred, rather than as a test for differences in the median of continuous

data. The test may be stated as:
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Ho:  the proportion of data in each response category (row) is the same for each
group (column).

Hip:  the proportion differs among (is dependent on) the groups.

14.3.1 Computing the Test

The data are organized in a matrix identical to that for a contingency table, but the computations
at the margins differ (Figure 14.2). Once the row sums Aj are computed, ranks Rj are assigned
to each observation in the table in accord with levels of the response variable. Ranks for all
observations in the category with the lowest responses (response row 1 in Figure 14.2) will be
tied at the average rank for that row, or R 1 = (A1 +1)/2. All obsetvations in the row having
the next highest response are also assigned ranks tied at the average of ranks within that row,
and so on up to the highest row of responses. For response 2 in the Figure 14.2 the average
rank equals R2= A1 + (A2 +1)/2. For any row x of a total of m rows, the average rank will

equal

_ x-1
Ry = z A} + (Axt1)/2. [14.3]

=1

To determine whether the distribution of proportions differs among the k groups (the k

columns), the average column ranks Dj are computed as

— ZQ,JF; m
Dj= ZIT where Cj =Y Ojj . [14.4]
J i=1
Group 1 Group 2 Group 3
response 1 011 O12 013 A1 = 2(011+012+013)
response 2 021 022 023 A2 = 2(021+022+023)
D1 D> D3 N
where _ _ _ _ _ _
5 - (0“R1+021R 2) 5 . (OHR 1+O,_ R 2) 5 s = (013R 1+O, R 2)
011 + 021 012 + 022 013 + 023

Figure 14.2 2x3 matrix for Kruskal-Wallis analysis of an ordered response variable
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The Kruskal-Wallis test statistic is then computed from these average group ranks. If Hg is true,
the average ranks BJ will all be about the same, and similar to the overall average rank of
(N+1)/2. If Ho is not true, the average rank for at least one of the columns will differ. The
Kruskal-Wallis test statistic is computed using equation 14.5:

semy]
K= (N-1) jr:nl |: :r [14.5]

- N+1
Y (AR*)-N—
- i 2

where Gj is the number of observations in column j,
Dj is the average rank of observations in column j,
Aj is the number of observations in row i, and

R is the average rank of observations in row i.

To evaluate its significance, K is compared to a table of the chi-square distribution with k—1
degrees of freedom.

Example 2

An organic chemical is measured in 60 wells screened in one of three aquifers. The
concentration is recorded only as being either above or below the reporting limit (r]). Does the
distribution of the chemical differ among the three aquifers?

First, ranks are assigned to the response variable. There are 36 observations in the lower
category (below 1l), each with a rank equal to the mean rank of that group. The mean of
numbers 1 to 36 is (36+1)/2 = 18.5. The higher category contains 24 observations with ranks
37 to 60, so that their mean rank is 36 + (24+1)/2, or 48.5.

Aquifer 1 Aquifer 2 Aquifer 3 Aj Ri
below 1l 18 12 6 36 18.5
above 1l 4 8 12 24 48.5
D1 =527/22 Dy =610/20 D3 =(93/18
=24 =30.5 =38.5

2
61
> (220242 + 20030.52 + 18+38.52) - 60 [—2}

K = (59)
2
61
Y (24048.52 + 36+18.52) - 60 [7}
= 975
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The chi-square statistic x2('9 5,2) = 5.99. Thus Ho is rejected, and the groups are found to have
differing percentages of data above the reporting limit.

14.3.2 Multiple Comparisons
Once differences between the groups (columns) have been found, it is usually of interest to
determine which groups differ from others. This is done with multiple comparison tests as
stated in section 7.4. Briefly, multiple Kruskal-Wallis tests are performed between pairs of
columns. After a significant KW test occurs for k groups, place the groups in order of
ascending average rank. Perform new KW tests for the two possible comparisons between
groups which are p = (k—1) columns apart (the first versus the next-to-last column, and the
second versus the last). Note that the observations must be re-ranked for each test. If
significant results occur for one or both of these tests, continue attempting to find differences
between smaller subsets of any groups found to be significantly different. In order to control
the overall error rate, set the individual error rates for each KW test at O, below:

oy =1-(1-0)P/k for p < (k=1)

=a forp = (k-1)

14.4 Kendall's Tau for Categorical Data (Both Variables Ordinal)

When both row and column variables are ordinal, a contingency table would test for differences
in distribution of the row categories among the columns, but would ignore the correlation
structure of the data -- do increases in the column variable coincide with increases or decreases
in the row variable? This additional information contained in the correlation structure of ordinal

variables can be evaluated with a rank correlation test such as Kendall's tau.

14.4.1 Kendall's T}, for Tied Data

Kendall's correlation coefficient tau (T) must be modified in the presence of ties. In Chapter 8 a
tie modification was given for ties in the response variable only. Now there are many more ties,
the ties between all data found in the same row and column of a contingency table. Kendall
(1975) called this tie modification Ty, (tau-b).

S
b~ 1
37 (N2 - 88 (N2 - $8¢)

T [14.6]

The numerator S for Ty is P=M, just as in Chapter 8, the number of pluses minus the number of

minuses. Consider a contingency table structure with the lowest values on the upper left (the
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rows are ordered from lowest value on the top to the highest value on the bottom, and the
columns from lowest on the left to highest on the right -- see Figure 14.3). With this format, the
number of pluses are the number of comparisons with data in cells to the right and below each
cell (Figure 14.4). The number of minuses are the number of comparisons with data in cells to
the left and below (Figure 14.5). Data in cells of the same row or column do not contribute to

S. Therefore, summing over each cell of row x and column y,

S=P-M= Zoxy (Zosou[heast - 20 southwest)’ or

Xy

S = D> OO - X, D, OxyOjj [14.7]

i>x >y i<x j<y

allxy

The denominator for Ty, is not (n*n—1)/2 as it was for T, equal to the total number of
comparisons. Instead S is divided by the total number of untied comparisons. To compute this
efficiently with a contingency table, SS; and SS¢ (the sums of squares of the row and column
marginal totals, respectively) are computed as in equation 14.8, and then used in equation 14.6 to
compute Ty,.

low high

>

Col 1 Col 2 Col 3

low
Row 1

Row 2

hing Row 3

Figure 14.3 Suggested ordering of rows and columns for computing T,.

m k
SSa = D A $S¢ = Y i [14.8]
i=1 i=1
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Figure 14.5 3x3 matrix cells contributing to M (i<x and j<y).

Example 3

Pesticide concentrations in shallow aquifers were investigated to test whether their distribution
was the same for wells located in three soil classes, or whether concentrations differed with

increasing soil drainage. The laboratory reported concentrations for the pesticide when levels
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were above the reporting limit. The compound was reported only as "present” when

concentrations were between the reporting limit and the instrument detection limit (dl), and as

"<dI" if concentrations were below the detection limit. Compute Kendall's tau for this data.

Poor

Soil Drainage
Moderate

Concentration High Aj aj
<dl 18 12 7 37 0.47
"present” 5 10 8 23 0.29
> 1l 2 6 11 19 0.24
G 25 28 26 79
Cj 0.32 0.35 0.33 1.0
The number of pluses P = 18(10+8+6+11) + 12(8+11) + 5(6+11) + 10(11) = 1053

The number of minuses M = 12(5+2) + 7(5+10+2+06) + 10(2) + 8(2+0) = 329
So S =1053 322 = 731.

SS; =372+ 232+ 192 = 2259.
SSe = 252 + 282 + 262 = 2085.

To compute the denominator of Ty,

Lo 724 724 D
an — - — . .
T (79 —2259)(79° — 2085) 2034
2

14.4.2 Test of Significance for T

To determine whether Ty, is significantly different from zero, S must be divided by its standard
error Og and compared to a table of the normal distribution, just as in Chapter 8. Agresti (1984)
provides the following approximation to Gg which is valid for P and M larger than 100:

1 m k
g (-2 ) (1-2 %) = N3 [14.9]

i=1 i=1

Q

In

S

where aj and cj are the marginal probabilities of each row and column.

The exact formula for 6g (Kendall, 1975) is much more complicated. It is the square root of
equation 14.10:
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k

(n(0-1)@0+5) - 3 Ai(Ai-D) 2Ai+5) - ¥ G(Cj-1) (2Cj+5))
- i=1 =1
Os™ = 18 *
m k m k
(TAADA)(TGGDEC)  (Taiar) (XGEGD)
i=1 i=1 i=1 i=1
NNDND ' NN 10

If one variable were continuous and contained no ties, equation 14.10 would simplify to the

square of equation 8.4.

To test for significance of T, the test statistic Zg is computed as in Chapter 8:

S-1 if $>0
o
N
7s = 0 if §=0 [14.11]
+1
S if $<0
o

Zs is compated to the 01/2 quantile of the normal distribution to obtain the two-sided p-value

for the test of significance on Ty,

Example 3, cont.
Is the value of T}, = 0.306 significantly different from zero? From equation 14.9 the approximate

value of Og 1s

1
oy = \/5 « (1-(0.473+0.293+0.243)) +(1-(0.323+0.353+0.333) ) +793

0.86)#(0.89)+793
z\/< ) (9 ) = V42329 = 205.74

and from a table of the normal distribution the one-sided p-value is p = 0.0002. Therefore Ho:
Ty, = 0 is rejected, which means that pesticide concentrations increase (the distribution shifts to

a greater proportion of higher classes) as soil drainage increases.
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14.5 Other Methods for Analysis of Categorical Data

One other method is prominent in the statistical literature for analysis of all three situations
discussed in this chapter -- loglinear models (Agresti, 1984). Loglinear models transform the
expected cell probabilities ejj = aj*cj by taking logarithms to produce a linear equation In(ejj) = 1
+ In(aj) + In(cj), where [ is a constant. Models may be formulated for the completely nominal
case, as well as for one or more ordinal variables. Detailed contrasts of the probability of being
in column 2 versus column 1, column 3 versus 2, etc. are possible using the loglinear model.
Tests for higher dimensioned matrices (such as a 3-variable 3x2x4 matrix) can be formulated.
Interactions between the variables may be formulated and tested analogous to an analysis of
variance on continuous variables. Though the computation of such models is not discussed
here, Agresti (1984) provides ample detail.
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Exercises

14.1 Samples of water quality collected at USGS National Stream Quality Accounting Network
(NASQAN) stations from 1974 to 1981 show more frequent increases in chloride ion than
decreases. 245 stations were classified by Smith et al. (1987) by their trend analysis results
at o0 = 0.1. One reasonable cause for observed trends is road salt applications. Estimates
of tons of road salt applied to the 245 basins in 1975 and 1980 are used to place the
stations into into 3 groups: decreases (1980 is more than 20% less than 1975), increases
(1980 is more than 20% greater than 1975), and little or no change. The two variables are
then summarized by this 3x3 table:

Trend in C1- (1974-81, 0:=0.1)

14.2

A road salt appl. Down No trend Up Totals
Down 5 32 9 46
No change 14 44 25 83
Up 10 51 55 116

Totals 29 127 89 245

Test Ho: a basin's trend in chloride ion is independent of its change in road salt

application, versus the alternative that they are related.

a) using a contingency table. Interpret the test result.

b) using Kendall's tau. Interpret the test result.

c) which test is more appropriate, and why?

Fusillo et al. (1985) sampled 294 wells in New Jersey for volatile organic compounds. The
wells were classified by whether they were located in an outcrop location near the surface,
or whether they were further downdip and somewhat more protected from direct
contamination. Determine whether the probability of finding detectable levels of volatile
compounds differs based on the location of the well.

Location Non-detects Detect VOC Totals
Downdip 106 9 115
Outcrop 129 50 179
Totals 235 59 294
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14.3 Regulation of organo-tin antifouling paints for boats was announced in 1988 in
Switzetland. Concentrations of tributyltin (TBT, in ng/L) in unfiltered water samples
from Swiss marinas were measured in 1988 to 1990 (Fent and Hunn, 1991). Is there

evidence of a decrease in TBT concentrations in marina waters as these paints were being

taken off the market?

Number of samples

Year TBT=< 200 TBT>200 Totals
1988 2 7
1989 9 13
1990 10 10

Totals 51



Regression for Discrete Responses

Concentrations of a volatile organic chemical are measured in numerous wells across a large
study area. About 75% of the resulting samples are below the laboratory reporting limit. The
likelihood of finding concentrations above this limit is suspected to be a function of several
variables, including population density, industrial activity, and traffic density. What is the most
appropriate way to model the probability of being above the reporting limit using a regression-
like relationship?

Streams can be classified according to whether or not they meet some criteria for use set by a
regulatory agency. For example, a stream may be considered "fishable" or "not fishable",
depending on several concentration and esthetic standards. What is the probability that a stream
reach will meet the "fishable" criteria as a function of population density, distance downstream

from the nearest point source, and percentage of the basin used for crop agriculture?

The above situations involve fitting a model similar to OLS regression, in that the explanatory
variables are continuous. However the response variable is discrete -- it can be designated by an
integer value (see figure 4.1). Discrete (or categorical) response variables are often encountered
when the measurement process is not sufficiently precise to provide a continuous scale. Instead
of an estimate of concentration, for example, only whether or not a sample exceeds some
threshold, such as a reporting limit or health standard, is recorded. In water resources this
response is usually ordinal. Logistic regression is the most commonly-used procedure for this

situation. The equation predicts the probability of being in one of the possible response groups.
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Discrete response variables are commonly binary (two categories). For example, species of
organism or attribute of an organism are listed as either present or absent. Analysis of binary
responses using logistic regression is discussed in the following sections, beginning with 15.1.

Analysis of multiple response categories is discussed in section 15.4.

15.1 Regression for Binary Response Variables

With OLS regression, the actual magnitude of a response variable is modelled as a function of
the magnitudes of one or more continuous explanatory variables. When the response is a binary
categorical variable, however, it is the probability p of being in one of the two response groups
that is modelled. The response variable is coded by setting the larger of the two possible
responses (above or present) equal to 1, and the lower to 0. The predicted probability p is then
the probability of the response being a 1, with 1—p as the probability of the response being a 0.
The explanatory variables may be either continuous as in OLS regression, or a mixture of
continuous and discrete variables similar to analysis of covariance. If all explanatory variables
are discrete, logistic regression provides a multivariate alternative to the test for significance by
Kendall's tau used in Chapter 14.

15.1.1 Use of Ordinary Least Squares

In the case of a binary response, the attempt to predict }g = the probability of a response of 1
could be done with OLS regression. This would be a simple but incorrect approach. There are
three reasons why this is not appropriate (Judge, et al., 1985):

1. Predictions ﬁ may fall outside of the 0 to 1 boundary.

2. The variance of f) is not constant over the range of x's, violating one of the basic
assumptions of OLS. Instead, the variance of the binary response variable equals
p*(1-p), where p is the true probability of a 1 response for that x. Because this is not
constant over x, weighted least squares must be used to obtain minimum variance and
unbiased estimates of slope and intercept. See Draper and Smith (1981, pp. 108-116) for
the WLS approach. WLS is still not appropriate, however, if estimates go beyond the 0
to 1 boundary.

3. Residuals from the regression cannot be normally distributed. This renders tests on the

slope coefficients invalid.

OLS been used with discrete responses when multiple observations occur for all or most
combinations of explanatory variables. The responses (0 or 1) are first grouped by some range
of explanatory variable(s). This creates a new continuous y variable, the proportion of responses
which equal 1. Even so, least-squares regression fails the three criteria above, so that more

appropriate methods are warranted.
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15.2 Logistic Regression

Logistic regression, also called logit regression, transforms the estimated probabilities f) into a
continuous response variable with values possible from — to + infinity. The transformed
response is predicted from one or more explanatory variables, and subsequently retransformed
back to a value between 0 and 1. A plot of estimated probabilities has an S shape (figure 15.1).
The estimates of probability change most rapidly at the center of the data. Thus logistic
regression is most applicable for phenomena which change less rapidly as p approaches its limits
of 0 or 1. However, when the range of predicted probabilities does not get near its extremes,
the plot is one of mild curvature (figure 15.2). Thus the function is a flexible and useful one for
many situations. A review of this and other categorical response models is given by Amemiya

(1981).

Legend

POSITIVE SLOPE
NEGATIVE SLOPE /

05 H /

PROBABILITY

0 2 4 6 8 10 12 14
EXPLANATORY VARIABLE

Figure 15.1 Logistic regression equations with — and + slopes. Note that estimates change

more rapidly in the center than at the extremes.

15.2.1 Important Formulae
The odds ratio is defined as the ratio of the probability of obtaining a 1 divided by the
probability of obtaining a 0:

odds ratio = (1_% ) [15.1]

where p is the probability of a response of 1.
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The log of the odds ratio or logit transforms a variable constrained between 0 and 1, such as a
proportion, into a continuous and unbounded variable. The logit can then be modeled as a

linear function of one or more explanatory variables to produce logistic regression:

log (TP_p ) = b + bX [15.2]

where b() is the intercept, X is a vector of k explanatory vatiable(s), and bX includes the slope
coefficients for each explanatory vatiable so that bX = by Xy, bpXy, ... b X}

Thus the odds ratio is modelled as

(1—%) = exp (b + bX). [15.3]

To return the predicted values of the response variable to original units, the logistic

transformation (the inverse of the logit transformation) is used:

exp (bo + bX)
P~ [1+ exp (by + bX)]

[15.4]

For example, the mutliple logistic regression equation with two explanatory variables would look
like
exp (bo + lel + b2X2)
P~ [1+ exp (b + byXy + byXy)]

For a single x variable, the odds of obtaining a 1 response increase multiplicatively by eb1 for
every unit increase in X. The inflection point of the curve is at =bp/bq, which is the median of
the data. The slope of the estimated probability is greatest at this point. Equations are
analogous for multiple explanatory variables. Biologists call the inflection point the median
lethal dose (LD5()) when predicting the probability of death from some concentration (dose) of

toxicant. The animal has a 50% chance of survival at this dose.

15.2.2 Computation by Maximum Likelihood

Estimates bj of the j=1,...k slope coefficients could physically be computed by WLS when the
input data are proportions between 0 and 1 (but they should not -- see section 15.1.1).
However, the original data are most often coded only in the binary form, with replicates not
available for computing proportions. A more general method for computing slope coefficients,
valid for both binary and proportions as input data, is maximum likelihood estimation.
Maximum likelihood optimizes the likelihood that the observed data would be produced from a
given set of slopes. It is an iterative procedure available in the more complex statistical software

packages. A function called the log likelihood (I) of the overall regression model is written as:
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n
1= )" (yplnfpyl + (L-ypeinf1-py) [15.5]
i=1
for the i=1,n binary observations y; and p/r\edicted probabilities f) . When y; = 0, the second
term inside the brackets is nonzero, and a p is desirable which is close to 0. Wheny; =1, the
first term is nonzero and a f) close to 1 is desirable. The log of either f) or [1—}/; | will be
negative, and therefore 1 is a negative number which is maximized (brought closest to 0) by
iteratively substituting estimates of p derived from estimates of slopes and intercept. The log
likelihood may be alternately reported as the positive number G2, the —2 log likelihood, which
is minimized by the MLE procedure:

—2 log likelihood G2 = —2el, [15.6]

15.2.3 Hypothesis Tests

15.2.3.1 Test for overall significance
An overall test of whether a logistic regression model fits the observed data better than an
intercept-only model (where all slopes b; = 0), analogous to the overall I test in multiple
regression, is given by the overall likelihood ratio (Ir,):

Ity = 2+(-1p) = (G%, - G? [15.7]
where 1 is the log likelihood of the full model, ) is the log likelihood of the intercept-only
model, and GZO is the —2 log likelihood of the intercept only model.

The overall likelihood ratio Ir, can be approximated by a chi-square distribution with k degrees
of freedom, where k is the number of slopes estimated. Iflr, > sz,a then the null hypothesis
that all b; = 0 can be rejected. Should the null hypothesis not be rejected, the best estimate over
all X of the probability of a 1 is simply the proportion of the entire data set which equals 1.

15.2.3.2 Testing nested models
To compare nested logistic regression models, similar to the partial F tests in OLS regression,
the test statistic is the partial likelihood ratio lr:

Ir = 2¢(l. — 1g) = (G% — G%)) [15.8]

where 1. is the log likelihood for the more complex model, and
l¢ is the log likelihood for the simpler model.

The partial likelihood ratio is approximated by a chi-square distribution with (k.—k) degrees of
freedom, the number of additional coefficients in the more complex model. For the case where

only one additional coefficient is added, the chi-square with 1 degree of freedom equals the
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square of a t-statistic called Wald's t, computed from the estimated coefficient b divided by its
standard error. Degrees of freedom for the t-statistic are the number of observations n minus
the number of estimated slopes, or n—k. As with OLS regression, some computer software will
report the t-statistic, while others report the t2 = %2 value; p-values will be essentially the same

for either form of the test.

15.2.4 Amount of Uncertainty Explained, R2
A measure of the amount of uncertainty explained by the model, actually the proportion of log-

likelihood explained, is McFadden's R2, or the likelihood-R2,
1

RZ=1- I [15.9]
where 1 and 10 are as before. The likelihood—R2 is uncotrrected for the number of coefficients in

the model. much like R% in OLS regression.

A second measure of the amount of uncertainty explained by the model is the R2 between the

observed and predicted values of p, or Efron's R2

n
Y 6i-p)?
-
Efron's R2=1-"———— [15.10]

D 657
i=1

where p = 2 yj/n, the proportion = 1 for the entire data set. However, this version of RZ s
not as appropriate as the likelihood-R2 because the residuals (y; — p) are heteroscedastic due to
the binary nature of the y;.

15.2.5 Comparing Non-Nested Models

To compare two or more non-nested logistic regression models, partial likelihood ratios are not
appropriate. This is the situation in OLS regression where Mallow's Cp or PRESS is used. For
likelihood ratio tests, a statistic related to Mallow's Cp is Akaike's Information Criteria (AIC).
AIC includes both a measure of model error (—I) and a penalty for too many variables, the
number of explanatory variables k. Better models are those with small AIC. Akaike's

information criteria
AIC=-1+k [15.11]

AIC can also be written to expressly include the comparison of each candidate
model to the full model (the model which includes all possible explanatory
variables).
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AIC* =2 (f=1) = 2¢(kf— k)

= (G% — G2f) — 2+Adf

= Ir — 2°Adf
where If is the log likelihood of the full model, kf is the degrees of freedom of the full model,
Adf is the difference in the degrees of freedom between the model and the full model, and Ir is
the partial likelihood ratio comparing the candidate and full models. Either form should be

minimized to find the best model.

Related to the AIC is an adjusted R% which adjusts for the degrees of freedom in the model. It
penalizes a model which includes too many slope parameters. The adjusted R2 allows

comparisons between models with differing number of explanatory variables:

(-K 2:AIC
adjusted RZ = 1 - = 1- [15.12]
1 2
0 G%,

This adjusted R2 should be maximized.

Example 1

Eckhardt et al. (1989) reported the pattern of occurrence for several volatile organic compounds
in shallow groundwaters on Long Island, NY. TCE detections for 643 samples are listed in table
15.1 below, where 1 signifies a concentration above the reporting limit of 3 ppb. Logistic
regression between occurrence (1) or non-occurrence (0) as a function of population density

gives the following results:

Population Density no. 1s no. 0s N Yols
1 1 148 149 0.7

2 4 80 84 4.8

3 10 88 98 10.2

5 25 86 111 22.5

6 11 33 44 25.0

8 8 24 32 25.0

9 29 14 43 67.4

11 19 31 50 38.0
13 6 5 11 54.5
14 2 11 13 15.4
17 2 5 7 28.6
19 0 1 1 00
overall 117 526 643 18.2

Table 15.1 TCE data in the Upper Glacial Aquifer, Long Island

The log likelihood for the intercept-only model 1y = —305.0 (G2( = 610.0). To determine the
significance of population density (POPDEN) as an explanatory variable, the likelihood ratio is
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computed by subtracting the log likelihood of this one-variable model from that of intercept-
only model, and comparing to a chi-square distribution:
Ir = 610.0 = 533.0 = 77.0 with 1 df resulting in a p-value = 0.0001.

Table 15.2 gives the important statistics for the model. A plot of the logistic regression line

along with bars of £ 2 standard errors are shown in figure 15.2.

—2 log likelihood = 533.0

Explanatory variable Estimate Partial t-statistic p-value
INTERCEPT —2.80 -13.4 0.0001
POPDEN 0.226 8.33 0.0001

Table 15.2 Statistics for the popden model.
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Figure 15.2 Logistic regression line for the TCE data, with percent detections observed for
each population density.

The positive slope coefficient for popden means that the probability of a response =1
(concentration above the reporting limit) increases with increasing population density. Note that
the line did not fit the observed data well at popden= 9. A second variable, a binary indicator of
whether or not the area around the well was sewered, was added to the model in hopes of
improving the fit. Does this second variable help explain more of the variation observed? The

results are presented in table 15.3.
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—2 log likelihood = 506.3

Explanatory variable Estimate Partial t-statistic p-value
INTERCEPT —3.24 —12.47 0.0001
POPDEN 0.13 4.07 0.0001
SEWER 1.54 4,94 0.0001

Table 15.3 Statistics for the popden + sewer model.

The likelihood ratio test determines whether this model is better than an intercept-only model
Iry = 610.0 = 506.3 = 103.7  with 2 df resulting in a p-value = 0.0001.

Thus this logistic regression is significantly better than just estimating the proportion of data
above the detection limit without regard to the two variables. The positive slope estimate for
sewer means that the probability of detection of TCE increases with increasing proportion of
sewering around the well. Note that this does not prove that sewering itself is the cause -- this
could result from sewering as a surrogate for increasing urbanization or industrialization of the
area. The usefulness of sewer in comparison to the popden-only model is seen by the
significance of its partial t-statistic. It may also be measured by the difference in likelihood ratios
for the one and two-variable models:

Ir = 533.0 — 506.3 = 26.7 with 1 df resulting in a p-value = 0.0001.

Next a model with completely different explanatory variables was tried, relating TCE detections
to the amount of land near the well which was classified as industrial land (indlu), and to the
depth of the water below land surface. The results are given in table 15.4. As the partial t-
statistics are both significant, a logical question is which of the two 2-variable models is
preferable?

—2 log likelihood = 557.8

Explanatory variable Estimate Partial t-statistic p-value
INTERCEPT -1.07 —5.49 0.0001
INDLU 0.092 4.61 0.0001
DEPTH 0.008 —4.52 0.0001

Table 15.4 Statistics for the indlu + depth model.

As these models are not nested, they must be compared using AIC. Magnitudes of their partial
t-statistics will not help decide which to use. As seen is table 15.5, the AIC for the
population+sewer model is lower, and therefore is the preferable model between these two
candidates.
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Explanatory variables -1 k (# exp. vars.) AIC
POPDEN, SEWER 253.2 2 255.2
INDLU, DEPTH 278.9 2 280.9

Table 15.5 AIC for comparing two 2-variable logit models.

15.3 Alternatives to Logistic Regression

Two other methods have been used to relate one or more continuous variables to a binary
variable.-- discriminant function analysis (parametric), and the nonparametric rank-sum test. In

the following sections these methods are compared to logistic regression.

15.3.1 Discriminant Function Analysis

Discriminant function analysis is used as a multivariate classification tool, to decide in which of
several groups a response is most likely to belong (Johnson and Wichern, 1982). Probabilities of
being in each of the groups is computed as a function of one or more continuous variables. The
group having the highest probability is selected as the group most likely to contain that
observation. An equation (the discriminant function) is computed from data classified into
known groups, and used to classify additional observations whose group affiliation is unknown.
As each group is assigned an integer value, these objectives are identical to those of logistic

regression.

The primary drawback of discriminant analysis is that it makes two assumptions:

1) multivariate normality, and 2) that the variance of data within each group is identical for all
groups. Thus it requires the same assumptions as does a t-test or analysis of variance, but in
multiple dimensions when multiple explanatory variables are employed. It will be slightly more
efficient than logistic regression if these assumptions are true, but is much less robust (Press and
Wilson, 1978). Therefore logistic regression should be preferred when multivariate normality
and equality of variances cannot be assumed, as is the case for most of the data found in water

resources.

15.3.2 Rank-Sum Test

Dietz (1985) has shown that the rank-sum test is a powerful alternative to the more complicated
likelihood-ratio test for determining whether a binary response variable is significantly related to
one continuous explanatory variable. The responses of 0 and 1 are treated as two separate
groups, and the ranks of the continuous variable are tested for differences among the two
response groups. When the probabilities of a 0 or 1 differ as a function of x, the ranks of x will
differ between the two response variable groups. A slight modification to the rank-sum test is
necessary for small sample sizes (see Dietz, 1985). The rank-sum test is equivalent to the

significance test for Kendall's tau between the binary y variable and a continuous x.
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When software is not available to perform likelthood-ratio tests, the rank-sum test can be used
with little loss in power. However, it only considers the influence of one explanatory variable.
There also is no slope estimate or equation associated with the rank-sum test when the
responses are recorded as 0 or 1. When the responses are proportions between 0 and 1,
Kendall's robust line may be used to linearly relate logits to the explanatory variable, though

estimates below 0 or above 1 may result.

15.4 Logistic Regression for More Than Two Response Categories

In water resources applications, response variables may often be discretized into more than two
response categories. Extensions of logistic regression for binary responses are available to
analyze these situations. The method of analysis should differ depending on whether the
response variable is ordinal or simply nominal. Ordinal responses such as low, medium and high
are the most common situation in water resources. Here a common logit slope is computed,
with multiple thresholds differing by offset intercepts in logit units. When responses are not
ordinal, the possible response contrasts -- such as the probabilities of being in group 1 versus
group 2 and in group 2 versus 3 -- are independent. In this case independent logit models are fit
for each threshold.

15.4.1 Ordered Response Categories

Categorical response variables sometimes represent an underlying continuous variable which
cannot be measured with precision sufficient to provide a continuous scale. For example,
concentration data may be discretized into above and below a detection limit, or into three
categories based on two thresholds (see below). Biologic activity may be categorized as not
affected, slightly affected or severely affected by pollution. The resulting multiple responses y;,
1=1 to m are ordinal, so that y1<yp<...<ym.

For example, suppose 3 responses are possible:
0: concentrations are below the reporting limit,
1: concentrations are above the reporting limit but below a health standard, and

2: concentrations are above the health standard.

This corresponds to two thresholds, one below versus above the reporting limit (0 versus not 0)
and the second below versus above the health standard (not 2 versus 2). Figure 15.3 shows that
for y=2, a transformation of the underlying continuous concentration Y* can be developed such
that y=2 only when X>Y* for one explanatory variable X. Similarly, y>0 (above the reporting
limit) only when X>Y*—0, where 0 is the difference between the two thresholds in the

transformed scale. Therefore the upper threshold can be modeled as:
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Prob(y=2)
198 | Prob(y=0)+Prob(y=0)

) = Prob(X >Y*) = by + b X, [15.13]
where b() is the estimate of intercept and b, the estimate of slope. This is a standard logistic
regression identical to the binary case of not 2 versus 2. The probability of being above the
lower threshold (reporting limit) is modelled using

Prob(y=1)+Prob(y=2)
log( Prob(y=0) = ProbX >Y*-8) = Dby + by (X+9), [15.14]
= bov + b1X
=by+A+bX

where A=b, is a shift parameter that must be estimated (McCullagh, 1980). Because the
responses are ordered, the slope by is common to all thresholds, and represents the proportional
effect of X on the underlying and unobserved Y*. The resulting s-shaped curves for each
threshold are simply offset (figure 15.4). Unfortunately the method for efficiently estimating
these parameters is not available on many commercial statistics packages. McCullagh (1980)
discusses the mathematics. As an alternative, separate logistic regressions can be estimated for
each threshold (see below). This procedure is less efficient for the case of ordered responses,
being appropriate for nominal responses. Unfortunately, it is the best that is available to most

practitioners.

\}

Response Y

— j—>

Y*-§ Y* (transformed continuous Y)

Explanatory variable X

Figure 15.3 Diagram of continuous variable Y* underlying a discrete response variable
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Figure 15.4 Offset logistic curves for an ordered response variable.

15.4.2 Nominal Response Categories

For the situation where there is no natural ordering of the possible response categories, an
independent logistic regression must be performed for each possible contrast. Thus if there are
m response categories there must be m—1 logistic regressions performed. Coefficients of
intercept and slope are estimated independently for each. The econometrics literature has
treated this situation in depth -- see for example Maddala (1983). Econometrics categories are
often ones of choice -- to purchase one product or another, etc. Examples of unordered
variables for water resources applications are not as obvious. However, an understanding of the
equations appropriate for nominal responses is important, because these are used when most

commercial software is employed to perform logistic regression of ordinal responses.

When independent logistic regressions are computed to determine the likelihood of being below
versus above adjacent pairs of categories, no requirement of constant slope across thresholds is
made. The probabilities employed may take several forms, but the easiest to interpret are logits
of the cumulative probabilities of being below versus above each of the m—1 thresholds

> Prob (y > i)

logl o — .|, 1=1tom-1. [15.15]

Y Prob (y <)

These are called cumulative logits, as discussed by Agresti (1984) and Christensen (1990).
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For the situation of m=3 ordered responses (0, 1, and 2) corresponding to two thresholds
(reporting limit and health standard), m—1 or two logistic regressions must be performed. One
equation determines the probability of being at least 1 -- the probability of being above the
reporting limit:

1o, [ PLOPG=DFprob(y=2) ) _
L, —log( prob(y=0) =bg + b, X . [15.10]
A second equation describes the probability of being at least 2 -- the probability of being above
the health standard:

L, =1 prob(v=2) = ba' + b.X 15.17
2 7198 | prob(y=0)+proby=1) ) ~ "0 T P2* - 1>17]

Together, these two equations completely define the three probabilities as a function of the k

explanatory variables X.

Example 1, cont.
Suppose a second threshold at 10 plg/L were important for the TCE data of Eckhardt et al.

(1989). This could represent an action limit, above which remedial efforts must be taken to
clean up the water before use. Separate logistic regressions were performed for the probabilities
of being above the 3 lg/L reporting limit and the 10 pg/L action limit. A new binaty response
variable, 0 if TCE concentrations were below 10 and 1 if above, was regressed against
population density. The results are reported in table 15.6, and the curves plotted in figure 15.5.
Note that the two curves are not simply offsets of one another, but have differing slopes. This
situation could be viewed as an interaction, where the rate of increase in probability with unit X
is not the same for the two thresholds.

Response category b() bg Ir(y
Above 3 ng/L report. limit —2.80 0.226 77.0
Above 10 pg/L action limit -3.37 0.164 23.9

Table 15.6 Independent logistic regressions for two TCE thresholds.
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Figure 15.5 Independent logistic curves for two TCE thresholds.
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Exercises
15.1  Person and others (1983) evaluated the ability of four factors to predict whether a

surface impoundment was contaminated or not. Of particular interest was which of the
four factors, information for which must be collected in other areas in the future,

showed ability to predict contamination. The factors were:

Factor Possible scores
Unsaturated Thickness 0 (favorable) to 9 (unfavorable)
Yields: aquifer properties 0 (poor) to 6 (good)
Groundwater Quality 0 (poor) to 5 (excellent)
Hazard Rating for Source 1(ow) to 9 (high)

Each impoundment was rated as contaminated or uncontaminated. Using the data in
Appendix C20, compute a logistic regression to determine which of the four explanatory
variables significantly affects the probability of contamination. What is the best

regression equation using one or more of these variables?
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The data are collected, the analyses performed, the conclusions drawn, and now the results must
be presented to one or more audiences. Whether by oral presentations or written reports, more
information can be quickly conveyed using graphs than by any other method. A good figure is

truly worth a thousand table entries.

For oral presentations, rarely are tables effective in presenting information. Listeners are not
familiar with the data, and have not poured over them for many hours as has the presenter.
Numbers are often not readable further back than the second row. Instead, speakers should
take the time to determine the main points to be illustrated, and construct a figure from the data
to illustrate those points prior to the presentation. This both shows courtesy to the listeners,
and convinces them that the data do provide evidence for the conclusions the speaker has

reached.

In a written report, major conclusions are usually listed at the end of the final section, or at the
front in an executive summary. A figure illustrating each major conclusion should be contained
somewhere in the report. The reader should be able to quickly read an abstract, look at the
figures, and have a good idea of what the report is about. Figures should be a "visual abstract"
of the report, and are one of the best ways to convince someone to take enough time to read

your work. They again give evidence that the data do support the conclusions you have reached.

All graphs are not created equal. Some present quantitative information clearly and precisely.
Others are not as effective, and may even be misleading. Guidelines to the "level of precision”
for common types of graphics are presented in this chapter. Also presented are a collection of
misleading graphics which should be avoided. These come largely from experience, driven by
the impression that their use is becoming more common in graphics software on

microcomputers.
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Understanding the strengths and weaknesses of various types of graphs is important when
choosing the most appropriate way to present data. Three references stand out in their
evaluation of graphs for quantitative data: Cleveland (1985) discusses the ability of the human
eye-brain system to process information. Tufte (1983) describes the artistry involved in creating
graphics. Schmid (1983) is a handbook listing numerous examples of both good and bad

graphics. This chapter draws on ideas from these three and others.

16.1 The Value of Presentation Graphics

Graphs can clarify complex interrelationships between variables. They can picture the "signal"
over and above the "noise", letting the data tell its story. In Chapter 2, graphs for understanding
data were discussed. These same methods which provide insight to an investigator will also

illustrate important patterns and contrasts to an investigator's audience.

Tables simply do not allow easy extraction of a data signal. For example, Exner and Spalding
(1976) and Exner (1985) determined concentrations of nitrate in about 400 wells in the Central
Platte region of Nebraska ten years apart -- in 1974 and 1984. As little information is available
about changes in groundwater quality over time, these are important studies. Data were
displayed with maps and tables for each separate period. Comparisons between the periods
were done as narrative text, relying on the tables and maps. To better illustrate these data,
lowess smooths of nitrate concentration versus depth for the two time periods are shown in
Figure 16.1. This concise figure effectively illustrates the increases in nitrate at a given depth
over the ten year period, and the decrease in concentration with depth. It shows that increases
in concentration over the 10 years are much larger at shallow depths. For a specific nitrate
"action level" such as 8 mg/L, the increase in depth reached on average by this concentration
can be calculated. Perhaps the valley of lower concentration for the shallow system evident in
both time periods can be explained by physical factors, leading to an important new
understanding. Or perhaps the wells sampled at these depths were different in some
characteristic, leading the scientist to sample additional wells more like those at other depths. A
good graph will provide much more understanding than a table to the audience, whether they

are scientists or managers, often leading to new understanding or to better decisions.
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Figure 16.1 Nitrate concentrations in Nebraska groundwater.
Data from Exner and Spalding (1976) and Exner (1985).

16.2 Precision of Graphs

The purpose of a scientific graph is to display quantitative information in a clear and concise
manner, illustrating a major concept or finding. During the 1980s research was conducted to
determine how easily the human eye-brain system can perform various tasks of perceiving and
processing graphical information. The purpose was to rank tasks necessary in interpreting
common graphs, such as bar and pie charts, in order to understand which types of graphs are
most effective in presenting information. Prior to this time scientists had no objective means of
determining which graphs should be preferred over others, and choice was merely a matter of

preference.

The primary study was conducted by Cleveland and McGill (1984a). Their major precept was
stated as:
A graphical form that involves elementary perceptual tasks that lead to more
accurate judgments than another graphical form (with the same quantitative
information) will result in better organization and increase the chances of a

correct perception of patterns and behavior (pages 535-0).
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They then ranked perceptual tasks on the basis of accuracy, as determined by the number of
correct judgments of identical data displayed by different graphs. This ranking is given in Table
16.1. Their concept of accuracy might also be thought of as precision -- smaller trends or
differences between data groups can be discerned using more "accurate" tasks. Use of graphs
employing tasks higher in table 16.1 will allow smaller differences or trends to be seen. Tasks
lower in the table are sufficient to display only larger differences. These lower tasks are those
most commonly found in "business graphics", newspapers, and other popular illustrations. Thus
when deciding which types of graphs to use, both the precision needed and the expected
audience must be considered. When scientists are the main audience, graphs using tasks as high
in the table as possible are preferable. When less precision is required to illustrate the main
points and the audience is the general public or managers, some of the less precise business

graphics may communicate more easily.

More Precise Position along a common scale
. Positions along nonaligned scales
. Length, Slope, Angle
. Area
. Volume, Curvature

Less Precise Shading, Color saturation

Table 16.1 Precision of perceptual tasks (adapted from Cleveland and McGill, 1984a).

16.2.1 Color

Color can both enhance and interfere in the ability to precisely and accurately read graphs. It
can interfere in judgments of size between areas of different colors (Cleveland and McGill,
1983). From color theory it is known that "hotter" colors such as reds and oranges, and colors
of greater saturation will appear larger than "cooler" colors (blues) and pastels (lesser saturation).
Therefore areas shaded a bright red on a map, as is commonly done for computer-map output
of pollution studies, will appear larger than they would if shaded another color or with a pastel
such as light pink. The eye is drawn to these areas, and their impression is larger than the

proportion they would receive by area alone.

Pastels can therefore be used to minimize the biasing effect of both hotter and brighter colors.
The low saturation ("washed-out" color) minimizes differences between hotter and cooler

shades, and therefore put all areas on an equal footing. Of course this defeats the "newspaper
graphics" effect of attracting attention to the graph, but enhances the graph's ability to portray

information.

Color can also be quite helpful in presenting data when judgments of size are not being made.

When differentiating groups of data on a graph, for example, each group could be assigned a
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different color, as opposed to a different symbol or letter. Circles or dots of differing colors
allow greater visual discrimination than do differing symbols or letters (Lewandowsky and
Spence, 1989). Similarly, color lines allow better perception than solid versus patterned lines.
As color is not yet widely available in scientific publication media, its best use to date is in
presentations at conferences and lectures. Here color can greatly aid the viewers' precision in

differentiating points and lines representing data of different groups.

16.2.2 Shading

Figure 16.2 illustrates the most common use of shading -- shaded maps where the density of the
ink indicates the magnitude of a single variable. The maps may be of the entire country, a state,
or a study area. These "shaded patch maps" or "statistical maps" have inherent difficulties for

correct interpretation.

EXPLANATION
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Figure 16.2 Total offstream water withdrawals by state, from Solley et al. (1983).

The first difficulty is that the impression an area makes on the human brain is a function of both
the shading and the size of the polygon. Thus larger areas stand out in comparison to smaller
areas, though their shading may be equal. In figure 16.2, Texas stands out not only because it is
dark, but because it is large. Of the lightly shaded states, the eye is drawn to Montana (MONT)
because of its size rather than to New Jersey (NJ). However, an area's importance may not be
related to its physical size. If population is important, as it may be for the water withdrawals in
each state as shown in figure 16.2, a state with a higher population like New Jersey may be far
more important than is Montana, a state with much smaller population. The weighting given to

larger areas on a shaded map is often inappropriate to the data being illustrated.
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A second limitation is that all variability within areas is totally obscured. Thus a map is only as
precise as the size of the areas being shaded. Water use undoubtedly varies dramatically across
Texas and other states, but that cannot be shown on a shaded map unless the states are
subdivided into counties. Counties vary considerably in size across the country, so that the
generally larger counties in the Western U. S. will produce greater impressions on the viewer

than do smaller Eastern counties.

Third, only a small number of shading levels can be distinguished on a map. Five shades of grey
including black and white can usually be portrayed, but more than five is difficult to distinguish.
Differences degrade as graphs are reproduced on a copier. In an attempt to augment the
number of classes shown on a map, patterns of lines and cross-hatching are sometimes used,
such as the 13.9-16.9 class in figure 16.2. Such patterns quickly become very confusing, actually
reducing the eye's ability to distinguish classes of data. One must also be careful to use a series
of patterns whose ink density increases along with the data TFigure 16.2 seems to violate this
rule, as the shade of the second class (8.0-13.8) appears darker than the third striped pattern.

Two types of alternatives to shaded maps are tried. The first type continues to display the
geographic distribution on a map, with symbols depicting data classes within each area (each
state). Circles or squares with shading or color according to the classification are one possibility.
Bars are another possibility (figure 16.3). With bars the perceptual task is a judgment of length
without a common datum, an increase in precision in that differences between areas may be
distinguished at more than five levels. However it is often difficult to place the bars within state
boundaries. Framed rectangles (figure 16.4) are another symbol which may be used within each
state. For these the task is a judgment of length along a non-alignhed common scale, an

improvement in precision over judgments between shadings.
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Figure 16.3 Withdrawals for offstream use by source and state, from Solley et al. (1983).

Figure 16.4 Murder rates per 100,000 population, from Cleveland and McGill (1984a).
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The second alternative to shaded maps is to abandon a map background, and construct bars or
other ratings for each state. These can be classed by region, though much of the regional

perspective is sacrificed for state-by-state precision when abandoning maps.

16.2.3 Volume and Area

The most common use of area perception is with pie charts. These graphics are most often used
when the sum of data equals 100 percent, so that slices of the pie indicate the relative proportion
of data in each class (figure 16.5). However, only large differences can be distinguished with pie
charts because it is difficult for the human eye to discern differences in area. In figure 16.5 it is
only possible to see that the northeast slice in the lower right part of the pie is larger than the

others. No other differences are easy to distinguish.

B Central

[ Northeast

Figure 16.5 Numbers of students from four regions of the U. S.

It is always possible to replace a pie chart with a figure using one of the higher perceptive tasks
in order to improve precision. For the same data of figure 16.5, figure 16.6 presents a "dot
chart" (Cleveland, 1984), a thin bar graph. Now the judgment is of location along a common
scale (the y-axis), and all differences are clearly seen. The four regions can be ordered and
estimates of the magnitude for each read from the scale. The data are displayed with much

greater precision than with a pie chart.
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Figure 16.6 Dot chart of the student data of figure 16.5.
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Pie charts have little utility for scientific publications, due to their imprecision. The comparison

of water quality at two stations in figure 16.7, for example, would be better done using a more

precise method, such as two stiff diagrams (see Chapter 2). The presence of numbers on the

graph is a clue that the graph is incapable of portraying differences with the necessary precision.

It is instead a circular table. Graphs with numbers are often a "red flag", signalling the

inadequacy of the graph itself.

Magnesium

Magnesium 18%

14%

Calcium

Calcium Sodium 162

19% 15%
—Potassium
Sulfate 2t Sulfate
6 7%
Bicarbonate ; )

3 . Searhonate Chioride

b - 13%
Station 16704000, Yailuku River at Piihonua, Hawaii. Station 16713000, Hailuku River at Hilo, Hawaii.

Figure 16.7 Water quality at two sites in Hawaii (from Yee and Ewart, 1980).

16.2.4 Angle and Slope

Judgements of angle and slope occur when comparing two curves, such as in figure 16.8.

Differences between the curves are often of interest, and differences are represented as distances

in the y direction. However, the human eye sees differences primarily in a direction

perpendicular to the slope of a curve, much like the least normal squares line of Chapter 10. We
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do not naturally see differences as they are plotted. So in figure 16.8 it appears that differences
are largest in the center, and smallest at the extremes of X. However, the bottom figure shows
the differences directly. The largest differences are on the left, with a linear decrease as X
increases! To truly see differences in the top figure a judgment is required about the angles of
the lines in relation to the y axis, and this is quite difficult. A good rule of thumb is that if
differences are of interest, plot the differences directly.

Y Value

e 1 - Curve 2

Lurv

— T r T T

10 20 30 40

X Value
Figure 16.8 Comparison of two curves. From Cleveland and McGill (1985).
© AAAS. Used with permission.

Figure 16.9 is a comparison of measured and model logarithms of streamflow. Which days
show the poorest predictions? Though it appears that the largest difference in log streamflow
occurs on May 16 and in latter June, the mismatch is actually much greater on and near May 6.

If the purpose of the graph is to portray daily differences, the differences themselves should be
plotted.
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Figure 16.9 Measured and simulated streamflow. From Bloyd et al., 1986.

Another type of graph which uses judgments of slope and angle is a cumulative line graph such
as figure 16.10. A quick look at the graph might indicate that x2 and x3 are increasing, simply
because their baseline is increasing. To determine the magnitude of any variable except the one
whose base is the x-axis requires compensating for the non-horizontal baseline angle as it
changes across the range of X. This is obviously difficult to do. The determination of which of
the three items in figure 16.10 is largest in periods 1 and 2 is also quite difficult, for example.

One justification for cumulative line graphs is that they show the proportion of values against
the total, which is shown as the top line. Moving up the table of perceptual tasks results in a
better solution -- to plot each of the variables separately, and plot the total if it is important.
This is done in figure 16.11. Determination that x3 is either equal or greater than the others
during periods 1 and 2 is much easier here. The cyclic variation of x3 is also easier to spot.
Comparisons between variables with small magnitudes such as x2 and x3 are not swamped out
by larger variations in the variable at the base (x1). Judgements are made using position along a

common scale (the y-axis), a much easier and more precise task than in 16.10.
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40

Legend

Figure 16.10 Cumulative line graph.

40 -

Figure 16.11 Variables of figure 16.10 plotted individually.

16.2.5 Length

Judgements of length are required when symbols or bars are to be measured which do not have
a common datum, and where no common scale is available. Figure 16.12 shows the simplest
such case, determination of the length of two offset bars. Which is longer is difficult to visually
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determine. An example requiring the use of length judgments are the bars displayed on the map
of figure 16.3.

To make these judgments more precise, a common scale can be added to each bar. This is done
in figure 16.13 as a framed rectangle. The rectangle surrounding each bar is of exactly the same
length, a common reference frame. Itis now easier to see that the first bar is indeed longer than
the second. This is because the judgment is made using positions of the white areas within the
common scale. Their relative differences are greater than the shaded bars, and so more easily
seen. In situations where a common datum is impossible such as multiple stiff or other diagrams
located on a map, adding a frame of reference will improve the viewer's precision in discerning

differences.

Figure 16.12  Judgement of length without a common scale or datum.

Figure 16.13 Framed rectangles of the figure 16.12 data, adding a common scale.

16.2 6 Position Along Nonaligned Scales

Framed rectangles are examples of graphs with a common but nonaligned scale, ie. without a
common datum. Another graph in this category is a stacked bar chart: stacked (figure 16.14).
These graphs of segmented bars require judgments of position and/or length. Only the lowest
segments of each bar possess a common datum --they are the easiest to compare. All other
comparisons between bars, and among segments within a bar, are more difficult without a

common datum. For example, in figure 16.12 it is difficult to determine which of the top two
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squares of bar 1 is larger. How about the top and bottom squares (D vs A) of bar 3?7 Or group
B squares for bars 1 and 3?

To make comparisons more precise, stacked bars can always be unstacked and placed side-by-
side, producing grouped bar charts (figure 16.15). These graphs belong in the highest precision
category -- position along a common scale (common datum). By using a common datum,
smaller differences are more easily seen. For example. in bar 1 it is now easy to see that C is
larger than D. Square A is larger than D in bar 3, and the group B square for bar 1 is larger than
bar 3. The precision with which the graph can be read is greater for the grouped bar chart than
the stacked chart, a distinct advantage.

Often bars are stacked so that their totals are easy to compare. With grouped bar charts this is
easily accomplished by plotting separate bars of group totals. As both types of bar charts are
equally familiar to viewers, it is difficult to see why stacked bars should ever be used over

grouped bar charts.

25 T

20 1 | Group D

15 il Group C

10 & Group B
5 Group A
0 -

1 2 3 4
Figure 16.14 Stacked bar charts.
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o =~ N W b OO O N @

Figure 16.15 Grouped bar charts for the figure 16.14 data.
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16.2.7 Position Along an Aligned Scale

Grouped bar charts are one example of graphs where data are shown as a position along an
aligned (common datum) scale. Also in this category of highest precision are the dot charts of
Cleveland (1984). These "skinny bar charts" (figure 16.16) remove some of the visual confusion
of bar charts due to the area and shading of the bars. The dots highlight the only information
present -- the position at the top of the bar. Though for simple situations the two graphs are
equivalent, for complex situations dot charts more clearly show the information. A final

advantage to dot charts are that error bars around each value can easily be added.

8 -

7 4

6+ ® GroupD
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2 T ! |
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0 | s'

3

.5
2

N

Figure 16.16 Dot chart for the figure 16.15 data.

Other more-familiar types of graphs also belong in this category, including scatterplots and
boxplots. Though discussed and used fully throughout this book, the strengths of boxplots bear
repeating. Many boxes can be placed on a page, allowing precise summaries and comparisons of
a large amount of information. In figure 16.17 are boxplots for a two-way ANOVA situation.
Differences in concentration due to both land-use category and to sewering are easily seen, as

are skewness and outliers, by comparing the boxes.

16.3 Misleading Graphics to be Avoided

16.3.1 Perspective

Figures are often put into perspective, that is tilted to give an impression of three dimensions, in
newspaper and other popular graphics. The intent is to make the figure look more "solid".
Unfortunately by doing so, judgments of area, length and angle used by the viewer to extract
information become impaired. Numerical values are altered by the tilting so that they no longer

can be accurately read. Thus the appearance may be more solid, but the information is less so.
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Figure 16.17 Boxplots of nitrate concentrations by land use and sewering.
From Eckhardt et al., 1989.

One example is given in figure 16.18. A pie chart is presented on the left with three slices
(labeled A, B and C) of exactly equal size. After being put into a perspective view at the right,
the slices no longer appear equal. Judgements of angle such as these are impossible to get
correct once the angles are altered by perspective. A second example is figure 16.19. There bar
charts are placed into perspective so that lots of bars can be crammed into one figure. A
resulting problem is that some bars are hidden by others. A more serious problem is that
comparisons of bar heights must be done along a sloping plane. The base of the graph is not
level, but increases towards the back. This makes judgments between bar heights difficult. For

example, which is higher, the thermoelectric withdrawals for 1965 or irrigation withdrawals for
1970?

Viewers will tend to see bars towards the back as higher than they should in comparison to bars
nearer the front when perspective is used to tilt the base. Thus the front of the "thermoelectric"
bars must be compared to the back of the "irrigation" bars in order to accurately assess the data

portrayed by bar heights. Comparisons of heights across non-adjacent rows is even more
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difficult. The two bars cited above have exactly the same value of 130,000 million gallons per
day, though the one at the back appears higher.

Figure 16.18 Pie chart before and after being placed into perspective view.
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Figure 16.19 Bar chart of water use data, in perspective view (from Solley et al., 1988).

Perspective should also be avoided when presenting maps. Figure 16.20 is a perspective map of
water use in the United States (Solley et al., 1988). Because the base of the map is tilted, values
at the back will look higher than those in the front for the same quantity. Comparisons between
Montana (at the back) and Louisiana (at the front), for example, are quite difficult. From a table
inside the report, Louisiana has a larger value, but it doesn't appear that way on the map. Note

also that several states are again partially or totally hidden.
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Figure 16.20 Map of water use data in perspective view (from Solley et al., 1983).

Use of perspective solely to attract attention, such as on a cover, is fine. But its use should be
avoided within scientific publications. Only large differences will be able to be distinguished,
and the inherent distortion of angles will make similar values look dissimilar when on different
parts of the graph. Attempts to use perspective to make a graph more "appealing” will only
make it useless for its primary purpose -- to accurately and precisely convey numerical

information.

16.3.2 Graphs With Numbers

Graphs which include numbers may be a signal that the graph is incapable of doing its job. The
graph needs to be made more precise. See for example figures 16.7 and 16.26. Tables providing
the necessary detail for computations can be placed elsewhere in the report if required. But they
do not provide the insight needed to quickly comprehend primary patterns of the data. Adding
numbers to graphs which also do not portray those patterns does not add up to an effective

graph.
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16.3.3 Hidden Scale Breaks

Breaks in the scale of measurement on a graph can be very misleading to the viewer. If scale
breaks are used, it is the job of the presenter to make them as clear as possible. For example, the
scale break in figure 16.21 is not very obvious (it is also not necessary). Bars are drawn right

through the data, incorrectly implying that no break is present.

Operating rates rise for most major adhesive monomers
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Figure 16.21 Hidden scale break, from Greek (1987)

© 1987 American Chemical Society. Used with permission.
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Figure 16.22 Full scale break.
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To make a scale break more obvious, Cleveland (1984) suggested the use of a "full scale break"

as in figure 16.22. There the jump in depth of wells used for sampling is clearly portrayed. It is
difficult for the viewer to misinterpret a scale break using this method. We heartily recommend
use of full scale breaks when breaks must be used. Better yet, avoid using scale breaks by

employing a transformation of the data such as logarithms to make the break unnecessary.

16.3.4 Overlapping Histograms

Overlapping histograms are one of the worst graphs for comparing groups of data, and yet are
quite common. They totally obscure differences and similarities between groups. With the
excellent alternative of group boxplots available there is little reason to use them. Figure 16.23
shows two sets of overlapping histograms, effective porosity (A) and infiltration capacity (B).
Three groups are being compared in A, and two groups in B. There is no way a reader could
verify or disprove any conclusions reached in the report concerning these variables by looking at
these histograms. The use of lines for shading, automatically produced by many graphics

software programs, only makes matters worse. In general, avoid using overlapping histograms!
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Figure 16.23 Opverlapping histograms of two variables. From Foster et al. (1985).
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Exercises

16.1  Tield and laboratory pH were measured on the same samples by Bachman (1984) to
determine if values changed over the time it took for shipment to the lab . The data

were plotted in the figure below. How might the graph be improved in order to show
this comparison?

FIELD LABORATORY

B0

50

MEDIAN = 55

MEDIAN = 5.9 T

Number of samples
Number of samples

Figure 16.24 Field versus lab pH. From Bachman, 1984.

16.2  Seasonal patterns of specific conductance for stations along the Merced River are shown

below. How might this graph be improved to better show both seasonal and
downstream differences?

SPECIFIC CONDUCTAMCE, IN MICRONHOS

Figure 16.25 Specific conductance along the Merced River. From Sorenson, 1982.
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16.3  Variations in dissolved oxygen and biochemical oxygen demand (BOD) were

documented along the Trinity River watershed. How might the graph be improved in
order to better show differences between sites?
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Figure 16.26 DO and BOD in the Trinity River, TX. From Wells et al., 1986.
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16.4  Ice volumes of several glaciers at differing altitudes are compared in the following figure.

How might it be changed to better show those differences?
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Figure 16.27 Ice volumes of Mount Hood glaciers. Each letter represents a different glacier.

From Drieger and Kennard, 1986.
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16.5  Water quality (major ions) was displayed for 13 numbered sites below. What other types
of plots might have shown this more clearly?
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Figure 16.28 Chemical composition of streamwaters at 13 sites.

From Liebermann et al., 1989.
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Construction of Boxplots

The upper and lower limits of the central box are defined using either quartiles or hinges. These
definitions are clarified below. Then the influence of each definition on the position of the
whiskers is demonstrated. Definitions used by commercial software packages are listed, including

one non-conventional form called a "box graph".

Quartiles

Quartiles are the 25th, 50th and 75th percentiles of a data set, as defined in chapter 1. Consider a

data set Xj, i=1,..n. Computation of percentiles follows the equation

Pj = X(n+1)e

where nis the sample size of Xj,
j is the fraction of data less than or equal to the percentile value (for the
3 quartiles, j= .25, .50, and .75).

Non-integer values of (n+1)¢j imply linear interpolation between adjacent values of X.

Computation of quartiles for two small example data sets is illustrated in Table 1.

Hinges
Tukey (1977) used values for the ends of the box which, along with the median, divided the data

into four equal parts. These "fourths" or "hinges" are defined as:

Lower hinge hy, = median of all observations less than or equal to the sample median.
Upper hinge hy = median of all observations equal to or greater than the overall sample
median.

They may also be defined as:

int +3)/2
Lower hinge hy, = X, where L. = nteger [Z(H )/ 1

and

b

Upper hinge hy = Xy, where U = (n+1) — L.

where "integer | |" is the integer portion of the number in brackets. For example, integer [ 5.7 | =

5. Again, non-integer values of L and U imply interpolation. With hinges, however, this will always



452 Statistical Methods in Water Resources

be halfway between adjacent data points. Therefore, hinges are always either data values
themselves, or averages of two data points, and so are easier to compute by hand than are
percentiles. Hinges will generally be similar to quartiles for large (n> 30) sample sizes. For smaller
data sets, differences will be more apparent. For example, when n=12 the lower hinge is halfway
between the 3rd and 4th data points, while the lower quartile is one-quarter of the way between the
two points (see Table 1) . Both measures split the data into one-fourth below and three fourths
above their value. Either are acceptable for use in boxplots.

Table Al
A. For the following data Xj of sample size n=11:
2 3 5 45 46 47 48 50 90 151 208

p,s =  lower quartile = X(n+1).25 =X3 = 5.
P75 =  upper quartile = Xn+1).75 =X9 =90.
Psy= median = Xn+1)e50 =X6 = 47.
hj = lower hinge = median [2 3 5 45 46 47] = 25.
hy =  upper hinge = median [47 48 50 90 151 208] =170.

B. For sample size n=12, and data Xj, i=1,..n equal to:
2 3 5 45 46 47 48 49 50 90 151 208

pos = lower quartile = X(n+1)..25 =X325= X3+ 0.25¢(X4 -X3) = 15.

po5 = upper quartile = X(n+1).75 = X975 = X9 +0.75¢(X10 - X9) = 80.

Pso = median = X(n+1)e.50 = X65 = Xg+050X7-Xg) =475

hj= lowerhinge=  median [2 3 5 45 46 47] = 25,

hy, = upper hinge = median [48 49 50 90 151 208] = 70.
using hinges —— T 1 —— # o

using quartiles 4 I }

B 4m am 120 15 200
n =11 data set

using hinges —— " T 1—— #* o
using quartiles — [ } #*
o 40 0 120 160 200

n =12 data set

Figure Al. Boxplots for the Table Al data
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Figure A1 shows standard boxplots for the Table 1 data using both percentiles and hinges. Data in
Table 1 were designed to maximize differences between the two measures. Real data, and larger
sample sizes, will evidence much smaller differences. Note that the definitions of the box
boundaries directly affect whisker lengths, and also determines which data are plotted as "outside"

values.

It would be ideal if all software used the same conventions for drawing boxplots. However, that
has not happened. Software written by developers who stick to the original definitions prefer
hinges; those who want box boundaries to agree with tabled percentiles use quartiles. The Table 1

data can be used to determine which convention is used to produce boxplots.

Non-conventional definitions

Other statistical software use another (non-conventional) value for the box boundaries (Frigge and
others, 1989). They use the next highest data value for the lower box boundary whenever n/4 is

not an integer. This avoids all interpolation. Note that n, not n+1, is used.

StatView uses a percentile-type boxplot similar to the truncated boxplot, except that the upper and
lower 10 percent of data are plotted as individual points. The weakness of this scheme is that 10
percent of the data will always be plotted individually at each end of the plot, and so it is less
effective for defining and emphasizing unusual values. Also important is that StatView uses yet
another definition for the box boundaries, X(n+2)j , in calculating the quartiles. This non-
conventional boxplot was called a "box graph" by Cleveland (1985).

Therefore some statistical software will produce boxes differing from conventional boxplots,

particularly for small data sets.

Boxplots for Censored Data

Data sets whose values include some observations known only to be below (or above) a limit or
threshold can also be effectively displayed by boxplots. First set all values below the threshold to
some value less than (not equal to) the reporting limit. The actual value is not important, and could
be 0, one-half the reporting limit, etc. Produce the boxplot. Then draw a line across the graph at

the value of the threshold, and erase all lines below this value from the graph.

This procedure was used for data in figure A2. If less than 25 percent of the data are below the
threshold, this procedure will affect at most only the lower whisker (as in the Hoover Dam through
Morelos Dam boxplots). If between 25 and 75 percent are below the threshold, the box will be
partially hidden below the threshold (as in the CO-UT Line and Cisco boxes). If more than 75
percent of the data are below the threshold, part of the upper whisker and outside values will be
visible above the threshold, as in the Lees Ferry box. In each case, these boxplots accurately and
fairly illustrate both the distribution of data above the threshold, and the percentage of data below
the threshold.
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CO-UTLINE  LEESFERRY = AQUEDUCT ' MORELOS DAM

Figure A2. Dissolved solids concentrations along the Colorado River, artificially censored at a
threshold of 600 mg/L.

A second alternative for boxplots of censored data is to estimate the percentiles falling below the
threshold, and drawing dashed portions of the box below the threshold using these estimates.
Helsel and Cohn (1988) have compared methods for estimating these percentiles. When multiple
thresholds occur, such as thresholds which have changed over time or between laboratories, a solid
line can be drawn across the plot at the highest threshold. Portions of the boxes above the highest
threshold will be correct as long as each censored observation is assigned some value below its
threshold. Quartiles falling below the highest threshold should be determined by using the
methods recommended by Helsel and Cohn (1988). All lines below the highest threshold are only
estimates, and should be drawn as dashed lines on the plot.

Displaying confidence intervals

As an aid for displaying whether two groups of data have different medians, confidence intervals
for the median as defined in chapter 3 can be added to boxplots. When boxplots are placed side by
side, their medians are significantly different if the confidence intervals do not overlap. Three
methods of displaying these intervals are shown in figure A3. In the first method (A), the box is
"notched" at both upper and lower limits, making the box narrower for all values within the
interval. In the second (B), parentheses are drawn within the box at each limit. Shading is used in

(O) to illustrate interval width. If displaying differences in medians is not of primary interest, these
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methods add visual confusion to boxplots and are probably best avoided. Confusion is
compounded when the interval width falls beyond the 25th or 75th percentiles. Of the three,
shading seems the easiest to visualize and least confusing.

A B C

Figure A3. Methods for displaying confidence interval of median using a boxplot.
A. Notched boxplots B. Parentheses C. Shaded boxplot
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Tables

Table B1

Table B2

Table B3

Table B4

Table B5

Table B6

Table B7

Table B8

Cunnane plotting positions for n = 1 to 20

Normal quantiles for Cunnane plotting positions of Table B1
Critical values for the PPCC test for normality

Quantiles (p-values) for the rank-sum test

Quantiles (p-values) for the sign test

Critical test statistic values for the signed-rank test

Critical test statistic values for the Friedman test

Quantiles (p-values) for Kendall's tau (7)
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Table B1. Cunnane plotting positions for sample sizes n = 1 to 20

N S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

12 .31 .50 .69 .88

=6
10 26 42 58 .74 90

N=7
08 .22 36 .50 .64 .78 .92

N=28
.07 20 32 .44 56 .68 .80 .93

07 17 28 39 50 .61 .72 .83 .93

N=10
06 .16 25 35 45 55 .65 .75 .84 94

N=11
05 .14 23 32 41 50 .59 .68 .77 .86 .95

N=12
05 .13 21 30 38 46 .54 .62 .70 .79 .87 .95

N=13
05 .12 20 27 35 42 50 58 .65 .73 .80 .88 .95

N=14
04 11 18 25 32 39 46 54 .61 .68 .75 .82 .89 .96

N=15
04 11 17 24 30 37 43 50 57 .63 .70 .76 .83 .89 .96

N=16
.04 .10 .16 22 28 35 41 47 53 59 .65 .72 .78 .84 .90 .96

N=17
03 .09 15 21 27 33 38 44 50 .56 .62 .67 .73 .79 .85 91 .97

N=18
03 .09 14 20 25 31 36 42 47 53 .58 .64 .69 .75 .80 .86 .91 .97

N-19
03 .08 .14 19 24 29 34 40 45 50 .55 .60 .66 .71 .76 .81 .86 .92 .97

N=20
.03 .08 .13 .18 .23 28 .33 38 43 48 .52 57 .62 .67 .72 .77 .82 .87 92 97
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Table B2. Upper tail normal quantiles for the plotting positions of Table B1
(for lower tail quantiles, multiply all nonzero quantiles by —1)
N= 5
0.000 0.502 1.198

N= 6
0.203  0.649 1.300

N= 7
0.000  0.355 0.765 1.383

N= 8
0.153  0.475 0.859 1.453

N=9
0.000  0.276 0575 0939 1513

N= 10
0.123 0377  0.659  1.007  1.565

N=11
0.000  0.225 0463 0.732  1.067  1.611

N= 12
0.103  0.313 0.538 0.796  1.121 1.653

N= 13
0.000  0.191 0.389  0.604  0.852  1.169  1.691

N= 14
0.088  0.267 0456  0.663 0904 1.212  1.725

N= 15
0.000  0.165 0336 0517  0.716 0950  1.252  1.757

N= 16
0.077 0234 0397  0.571 0.765  0.992  1.289 1.787

N= 17
0.000  0.146  0.295 0452  0.620  0.809  1.031 1.323  1.814

N= 18
0.069  0.208  0.351 0502  0.666  0.849  1.067 1354  1.839

N= 19
0.000  0.131 0.264 0402 0548 0.707  0.887  1.101 1.383  1.864

N= 20
0.062  0.187 0315 0449  0.591 0.746 0922  1.133  1.411 1.886
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Table B3. Critical r* values for the probability plot correlation coefficient test of
normality (from Looney and Gulledge, 1985a)

© American Statistical Association. Used with permission.

[reject Hp: data are normal when PPCC r < r* |

O-level
n .005 .010 .025 .050 .100 .250
3 .867 .869 872 .879 .891 924
4 .813 .824 .846 .868 .894 931
5 .807 .826 .856 .880 903 934
6 .820 .838 .8606 .888 910 939
7 .828 .850 877 .898 918 944
8 .840 .861 .887 .906 .924 948
9 .854 871 .894 912 930 952
10 .862 .879 901 918 934 954
11 .870 .886 907 923 938 957
12 .876 .892 912 928 942 960
13 .885 .899 918 932 945 962
14 .890 905 923 935 948 964
15 .896 910 927 939 951 965
16 .899 913 929 941 953 967
17 905 917 932 944 954 968
18 908 920 935 946 957 970
19 914 924 938 949 958 971
20 916 926 940 951 960 972
21 918 930 943 952 961 973
22 .923 .933 .945 .954 .963 974
23 925 935 947 956 964 975
24 927 937 .949 957 .965 976
25 .929 .939 951 959 966 976
26 932 941 952 960 967 977
27 934 943 953 961 968 978
28 936 944 955 962 969 978
29 939 946 956 963 970 979
30 939 947 957 964 971 979
31 942 950 958 965 972 .980
32 943 950 959 966 972 .980
33 944 951 961 967 973 981
34 946 953 962 968 974 981
35 947 954 962 969 974 .982
36 948 .955 963 969 975 .982
37 950 956 964 970 976 .983
38 951 957 965 971 976 .983
39 951 958 966 971 977 .983

40 953 959 966 972 977 984
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Table B3. Cont.

o-level
_n_ .005 010 .025 .050 100 .250
41 .953 .960 967 973 977 984
42 954 961 968 973 978 984
43 956 961 968 974 978 984
44 957 962 969 974 979 985
45 957 963 969 974 979 985
46 958 963 970 975 980 985
47 959 965 971 976 980 986
48 959 965 971 976 980 986
49 961 966 972 976 981 986
50 961 966 972 977 981 986
55 965 969 974 979 982 987
60 967 971 976 980 984 .988
65 969 973 978 981 985 989
70 971 975 979 983 .986 .990
75 973 976 981 984 987 990
80 975 978 982 985 987 991
85 976 979 983 985 988 991
90 977 .980 .984 .986 .988 992
95 979 981 .984 987 .989 992

100 979 982 985 987 989 992
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Table B4. Quantiles (p-values) for the rank-sum test statistic Wrg
p = Prob [Wys = x] = Prob [Wys = x*]
n [smaller sample size] = 3
m=4 m=5 m=06 m=7 m=8 m=9 m=10
x p x* x p x*  x p x*x x p xx x p x* x p x*x x p x*
16 .114 8 18 .125 9 20 .131 10 22 133 11 24 139 12 27 105 12 29 .108 13
17 .057 7 19 .071 8 21 .083 9 23 .092 10 25 .097 11 28 .073 11 30 .080 12
18 .029 6 20 .036 7 22 .048 8 24 .058 9 26 .067 10 29 .050 10 31 .056 11
19 0 5 21 .018 6 23 .024 7 25 .033 8 27 042 9 30 .032 9 32 .038 10
22 0 5 24 012 6 26 .017 7 28 .024 8 31 .018 8 33 .024 9
25 0 5 27 .008 6 29 012 7 32 .009 7 34 014 8
28 0 5 30 .006 6 33 .005 6 35 .007 7
n [smaller sample size] = 4
m=4 m=5 m=6 m=7 m=8 m=9 m=10
X p x* X p x* X p x* X p x* X p x* X p x* X p x*
22 171 14 25 143 15 28 129 16 31 115 17 34 107 18 36 .130 20 39 120 21
23 .100 13 26 .095 14 29 .086 15 32 .082 16 35 .077 17 37 .099 19 40 .094 20
24 057 12 27 .056 13 30 .057 14 33 .055 15 36 .055 16 38 .074 18 41 .071 19
25 .029 11 28 .032 12 31 .033 13 34 .036 14 37 .036 15 39 .053 17 42 .053 18
26 .014 10 29 .016 11 32 .019 12 35 .021 13 38 .024 14 40 .038 16 43 .038 17
27 0 9 30 .008 10 33 .010 11 36 .012 12 39 .014 13 41 .025 15 44 027 16
31 0 9 34 .005 10 37 .006 11 40 .008 12 42 017 14 45 .018 15
38 .003 10 41 .004 11 43 .010 13 46 012 14
44 .006 12 47 .007 13
n [smaller sample size] = 5
m=5 m=06 m=7 m=8 m=9 m=10
x p xx  x p x*¥ x p x* x p x¥ x p x*¥ x p x*
34 111 21 37 123 23 41 101 24 44 111 26 47 120 28 51 .103 29
35 .075 20 38 .089 22 42 .074 23 45 .085 25 48 .095 27 52 .082 28
36 .048 19 39 .063 21 43 .053 22 46 .064 24 49 .073 26 53 .065 27
37 .028 18 40 .041 20 44 037 21 47 .047 23 50 .056 25 54 .050 26
38 .016 17 41 .026 19 45 .024 20 48 .033 22 51 .041 24 55 .038 25
39 .008 16 42 015 18 46 .015 19 49 .023 21 52 .030 23 56 .028 24
40 .004 15 43 .009 17 47 .009 18 50 .015 20 53 .021 22 57 .020 23
44 004 18 48 .005 17 51 .009 19 54 .014 21 58 .014 22
52 .005 18 55 .009 20 59 .010 21
56 .006 19 60 .006 20
n [smaller sample size] = 6
m=06 m=7 m=8 m=9 m=10
X p x* X p x* X p x* X p x* X p x*
47 120 31 51 117 33 55 .114 35 59 112 37 63 .110 39
48 .090 30 52 .090 32 56 .091 34 60 .091 36 64 .090 38
49 .066 29 53 .069 31 57 .071 33 61 .072 35 65 .074 37
50 .047 28 54 .051 30 58 .054 32 62 .057 34 66 .059 36
51 .032 27 55 .037 29 59 .041 31 63 .044 33 67 .047 35
52 .021 26 56 .026 28 60 .030 30 64 .033 32 68 .036 34
53 .013 25 57 .017 27 61 .021 29 65 .025 31 69 .028 33
54 .008 24 58 .011 26 62 .015 28 66 .018 30 70 .021 32
59 .007 25 63 .010 27 67 .013 29 71 .016 31
68 .009 28 72 .011 30
73 .008 29
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TABLE B4 continued

n [smaller sample size]

n [smaller sample size] =7

=9
m=7 m=8 m=9 m=10 m=9 m=10
X p x* X p x* X p x* X p x* X p x* X p x*
61 159 44 65 168 47 70 .150 49 74 15752 98 .149 73 104 .13976
62 130 43 66 .140 46 71 126 48 75 13551 99 129 72 105 .12175
63 104 42 67 116 45 72 105 47 76 11550 100 .111 71 106 .10674
64 .082 41 68 .095 44 73 .087 46 77 09749 101 .095 70 107 .09173
65 .064 40 69 .076 43 74 071 45 78 .08148 102 .081 69 108 .07872
66 .049 39 70 .060 42 75 .057 44 79 .06747 103 .068 68 109 .06771
67 .036 38 71 .047 41 76 .045 43 80 .05446 104 .057 67 110 .05670
68 .027 37 72 .036 40 77 036 42 81 .04445 105 .047 66 111 .04769
69 .019 36 73 .027 39 78 .027 41 82 .03544 106 .039 65 112 .03968
70 .013 35 74 .020 38 79 .021 40 83 .02843 107 .031 64 113 .03367
71 .009 34 75 .014 37 80 .016 39 84 .02242 108 .025 63 114 .02766
72 .006 33 76 .010 36 81 .011 38 85 .01741 109 .020 62 115 .02265
77 .007 35 82 .008 37 86 .01240 110 .016 61 116 .01764
83 .006 36 87 .00939 111 .012 60 117 .01463
112 .009 59 118 .01162
113 .007 58 119 .00961
n [smaller sample size] = 8 n [smaller sample size] = 10
m=8 m=9 m=10 m=10
x p x* x p x* x p x* X p x*
79 13957 84 138 60 89 137 63 119 157 91
80 11756 85 .118 59 90 .118 62 120 .140 90
81 09755 86 .100 58 91 .102 61 121 124 89
82 08054 87 .084 57 92 .086 60 122 109 88
83 06553 88 .069 56 93 .073 59 123 .095 87
84 05252 89 .057 55 94 .061 58 124 .083 86
85 04151 90 .046 54 95 .051 57 125 .072 85
86 03250 91 .037 53 96 .042 56 126 .062 84
87 02549 92 .030 52 97 .034 55 127 .053 83
88 01948 93 .023 51 98 .027 54 128 .045 82
89 01447 84 .018 50 99 .022 53 129 .038 81
90 01046 95 .014 49 100 .017 52 130  .032 80
91 00745 96 .010 48 101 .013 51 131 .026 79
92 00544 97 .008 47 102 .010 50 132 .022 78
133 018 77
134 014 76
135 012 75
136 .009 74
137  .007 73
138  .006 72

Table generated by D. Helsel
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Table B5. -- Quantiles (p-values) for the sign test statistic st

Quantiles for the sign test are identical to quantiles of the binomial distribution with
percentile p=0.5. The approximation given in chapter 6 and used by most statistical
software packages can be used for n = 20. Statistics textbooks that contain a table

of exact quantiles for the binomial distribution for sizes below 20 include Hollander
and Wolfe (1999) and Zar (1999).

An online table of exact quantiles for the binomial distribution can be found as of
5/2002 at: http://faculty.vassar.edu/lowry/binomial01.html

An example of using this online table:

Enter n (the number of data pairs) and p (=0.5). An exact table will be printed. P-
values are cumulative probabilities, or values of the cumulative distribution function
(cdf). For small values of the test statistic s (called k in the online table) — values
below n/2, use the “Down” column to read off a one-sided p-value for the sign test.
ForS" larger than n/2, use the “Up” column. The example output below is for
n=13. A one-sided p-value for S* = 4 (the probability of getting an S* <4) is 0.133.
The p-value for s"=9 (the probability of getting an s" 29) also equals 0.133. For a
two-sided test, p = 0.266.

Cumulative Probability

k Exact Probability Down Up
0 0.000122070313 0.000122070313 1.0
1 0.001586914063 0.001708984375 0.9998779529688
2 0.009521484375 0.01123046875 0.998291015625
3 0.034912109375 0.046142578125 0.98876953125
4 0.087280273438 0.133422851563 0.953857421875
5 0.157104492188 0.29052734375 0.866577148438
6 0.20947265625 0.5 0.70947265625
7 0.20947265625 0.70947265625 0.5
8 0.157104492188 0.866577148438 0.29052734375
S 0.087280273438 0.553857421875 0.133422851563
10 0.034912109375 0.98876953125 0.046142578125
11 0.009521484375 0.998291015625 0.01123046875
12 0.001586914063 0.999877929688 0.001708984375
13 0.000122070313 1.0

0.000122070313
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Figure B1. Two-sided critical region (p-values), shaded,

for the sign test. n=13, S"=4o0r9.
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Table B6 — Critical test statistic values for the signed-rank statistic W+

(from McCornack, 1965)

© American Statistical Association. Used with permission.

The approximation given in chapter 6, used by most statistics software packages, can
be used for n > 15 and o = 0.025. For o0 < 0.025, see exact tables in the

McCornack paper or a textbook such as Hollander and Wolfe (1999), even for large
sample sizes.

[ reject Hp: at one-sided o when [ reject Ho: at one-sided o when
W+ < table entry (small W) | W+ = table entry (large W) |
o-level o-level

n 005 .010 .025 .050 n 005 .010  .025 .050
5 0 5 15
6 0 2 6 21 19
7 0 2 3 7 28 26 25
8 0 1 3 5 8 36 35 33 31
9 1 3 5 8 9 44 42 40 37
10 3 5 8 10 10 52 50 47 45
11 5 7 10 13 11 61 59 56 53
12 7 9 13 17 12 71 69 65 601
13 9 12 17 21 13 82 79 74 70
14 12 15 21 25 14 93 90 84 80
15 15 19 25 30 15 105 101 95 90
16 19 23 29 35 16 117 113 107 101
17 23 27 34 41 17 130 126 119 112
18 27 32 40 47 18 144 139 131 124
19 32 37 46 53 19 158 153 144 137

20 37 43 52 60 20 173 167 158 150



466 Statistical Methods in Water Resources

Table B7 — Critical test statistic values for the Friedman statistic Xf
(from Martin, Leblanc and Toan, 1993)

© The Canadian Journal of Statistics. Used with permission.

The chi-square approximation given in chapter 7 is used by most statistics software
packages. For comparing 3 to 5 groups of data with sample sizes (blocks) n <10 in
each group, an exact table should be used.

[reject Hp: at of when Xf = table entry]

k = 3 groups o-level

_n_ .005 .010 .025 .050 10
3 6.00 6.00
4 8.00 8.00 8.00 6.50 6.00
5 10.00 8.40 7.60 6.40 5.20
6 10.33 9.00 8.33 7.00 5.33
7 10.29 8.86 7.71 7.14 5.43
8 9.75 9.00 7.75 6.25 5.25
9 10.67 8.67 8.00 6.22 5.56
10 10.40 9.60 7.80 6.20 5.00

k = 4 groups o-level

_n_ .005 .010 .025 .050 10
2 6.00 6.00
3 9.00 9.00 8.20 7.40 6.60
4 10.20 9.60 8.40 7.80 6.30
5 10.92 9.96 8.76 7.80 6.36
6 11.40 10.20 8.80 7.60 6.40
7 11.40 10.37 9.00 7.80 6.43
8 11.85 10.50 9.00 7.65 6.30
9 12.07 10.87 9.13 7.80 6.47

10 12.00 10.80 9.12 7.80 6.36

k =5 groups o-level

_n_ .005 .010 .025 .050 10
2 8.00 8.00 7.60 7.20
3 10.67 10.13 9.60 8.53 7.47
4 12.00 11.20 9.80 8.80 7.60
5 12.48 11.68 10.24 8.96 7.68
6 13.07 11.87 10.40 9.07 7.73
7 13.26 12.11 10.51 9.14 7.77
8 13.50 12.30 10.60 9.30 7.80
9 13.69 12.44 10.67 9.24 7.73

10 13.84 12.48 10.72 9.28 7.76
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Table B8 -- Quantiles (p-values) for Kendall's S statistic and tau correlation

For N>10 use the approximation given in section 8.2.2

coefficient

One-sided p = Prob [S = x] = Prob [S = —x]

N = Number of data pairs

N = Number of data pairs

4 5 8 9 3 6 7 10
X X
0 0.625 0592 0548  0.540 1 0.500  0.500 0.500  0.500
2 0375 0408 0452  0.460 3 0.167  0.360 0.386  0.431
4 0167 0242 0360  0.381 5 0.235 0.281 0.364
6 0.042 0117 0274  0.306 7 0.136 0.191 0.300
8 0.042  0.199  0.238 9 0.068 0.119  0.242
10 0.0083 0.138  0.179 11 0.028 0.068  0.190
12 0.089  0.130 13 0.0083  0.035  0.146
14 0.054  0.090 15 0.0014  0.015  0.108
16 0.031 0.060 17 0.0054 0.078
18 0.0156  0.038 19 0.0014  0.054
20 0.0071  0.022 21 0.0002  0.036
22 0.0028  0.0124 23 0.023
24 0.0009  0.0063 25 0.0143
26 0.0002  0.0029 27 0.0083
28 <0.0001  0.0012 29 0.0046
30 0.0004 31 0.0023
32 0.0001 33 0.0011
34 <0.0001 35 0.0005
36 <0.0001 37 0.0002
39 <0.0001
41 <0.0001
43 <0.0001
45 <0.0001

Table generated by D. Helsel
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Data Set C1
Data Set C2
Data Set C3
Data Set C4
Data Set C5
Data Set C6
Data Set C7
Data Set C8
Data Set C9
Data Set C10
Data Set C11
Data Set C12

Data Set C13
Data Set C14
Data Set C15
Data Set C16
Data Set C17
Data Set C18
Data Set C19
Data Set C20

Annual peak discharges for the Saddle River, NJ
Annual streamflows for the Conecuh River, AL
Daily streamflow for the Potomac River, Wash. D.C.
Atrazine concentrations

Subset of iron concentrations at low flow
Complete set of iron concentrations

Specific capacities of wells in Pennsylvania
Corbicula on the Tennessee River

TDS concentrations for the Cuyahoga River, Ohio
Phosphorus transport, Illinois River at Marseilles
Grain size and permeability of alluvial aquifers
ROE and TDS data,

Rappahannock R. near Fredericksburg, Virginia
Streamflow data used for record extension

Mean annual runoff and basin characteristics
Urban total nitrogen loads

Uranium and TDS in groundwaters

Green River, Kentucky sediment transport data
Maumee River, Ohio total P trends data

Water levels, P-R-M system middle aquifer, NJ

Factors affecting contamination from impoundments

Chapter cited
2,3

3,6

(M)

e e e e N o)

10
10
11
11
11
12
12
12
15

Data sets are available in both ASCII and MS Excel formats. See the online location from which
you obtained this book for the data files HhappC.dat and HhappC.xls .



Answers to Selected Exercises

Chapter 1

1.1 For the well yield data:
a) mean = 0.19
b) trimmed mean = 0.05
c) geometric mean = 0.04
d) median = 0.04
e) They differ because the data are skewed. The estimates which are more

robust are similar, while the mean is larger.

1.2 a) standard deviation = 0.31
b) interquartile range = 0.36
c) MAD = 0.04

d) skew = 2.07. quartile skew = 0.83.
Because the data are asymmetric, the median difference is small, but the IQR and

standard deviation are not.

1.3 mean = 1.64 std. dev. = 2.85
median = 0.80 IQR = 0.61
geometric mean = 0.04 MAD = 0.25
skew = 3.09 quartile skew = —0.10

The largest observation is an outlier. Though the skew appears to be strongly positive,
and the standard deviation large, this is due only to the effect of that one point. The
majority of the data are not skewed, as shown by the more resistant quartile skew
coefficient.

a) assuming the outlying observation is accurate, representing some high-nitrogen
location which is important to have sampled, the mean must be used to compute the
mass of nitrogen falling per square mile. It would probably be computed by
weighting concentrations by the surface area represented by each environment. The
median would under-represent this mass loading.

b) the median would be a better "typical" concentration, and the IQR a better "typical"
variability, than the mean and standard deviation. This is due to the strong effect of

the one unusual point on these traditional measures.



470

Statistical Methods in Water Resources

Chapter 2

2.1

Annual Streamflow,

in cfs
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Either a cube root or logarithmic transform would increase symmetry.
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2.2

2.3
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The data are strongly right-skewed. A log transformation makes these data more

S}Tmmetric'
Q-Q plot,
10
2 DATA QUANTILES
8F X=X e
W
£ 6} @
: 3
o
: o
< 4}
o
o
o3
oL
£
ﬁ ‘u\-‘li‘u-\
0 gl | | | I I
0 05 1 15 : N 3

QTZ MONZONITE

35

471



472 Statistical Methods in Water Resources

Boxplots:

Granodiorite {1 } °
Qtz Monzonite [T__}+— °

0.0 2.5 5.0 7.5 10.0

Chloride Concentration

Histograms:
0
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3
. 4
Chloride 5
Conc 5
7
8
9
10

2.0 4.0 6.0 8.0 10.0
Granodiorite

Chloride
Conc

©C ©W o ~NO”OUG A WN=O

—

0.0 4.0 6.0 8.0 10.0

Quartz Monzonite

The granodiorite shows higher chloride concentrations than does the quartz monzonite.
This can be seen with any of the three graphs, but most easily with the boxplot. From
the Q-Q plot, the relationship does not look linear.
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24

There appears to be no effect of the waste treatment plant.

Chapter 3

3.1

3.2

33

3.4

nonparametric:x' = 4 (o/2 =.0154). Rj =5, Ry = 14.
04 <Clps < 3.0 ato =0.031.
This is as close to 0.05 as the table allows.

parametric: ~ Using the natural logs of the data,
exp(-0.045 - 2.11 *~[ 1.63/18 ) < GMy < exp(-0.045 + 2.11 *~[ 1.63/18 ) .
0.51 < GMy < 1.80.

473

Either of intervals is reasonable. The logs of the data still retain some skewness, so the

nonparametric interval may be more realistic. The parametric interval might be
preferred to obtain an alpha of 0.05. The choice would depend on whether the

assumption of lognormality was believed.

symmetric: ~ 0.706 —2.12 ¢4/ 0.639/17 = p < 0.706 + 2.12 *+/ 0.639/17
030 = u = 1.12

Point estimates: mean = 0.705 (assuming normal distribution).

exp(—0.849+0.5+1.067)

= 0.73 (assuming a lognormal distribution).

mean

As the logs of the data are more symmetric than the data prior to transformation, the

lognormal (2nd) estimate is preferred.

Parametric 95% prediction interval:
0.19-2.20-+ \/ 0.0975 + (0.0975/12) to 0.19 +2.20* \/ 0.0975 + (0.0975/12)
or —0.53 to 0.91 gallons/min/foot. Includes 0.85, so same distribution.

Nonparametric 95% prediction interval:

X[0.025+13] to X[0.97513] X0.325 to X12.675

The sample size is too small to produce such a wide (95%) nonparametric prediction
interval. Therefore a parametric interval must be used. However, the negative lower

end of the parametric prediction interval indicates that a symmetric interval is not

appropriate. So an asymmetric interval resulting from taking logarithms should be used

instead of the one above.

The data look relatively symmetric, so no logs taken.
mean: 683 £ 126, or 557->809 o = .05.
median: Rj=06, Ry=15 524->894 o = .041.
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3.5 The 90th percentile = 2445 cfs. A one-sided 95% confidence interval for the 90th
percentile (an upper confidence limit to insure that the intake does not go dry) is found
using the large-sample approximation of equation 3.17:

Ru = 365°0.1+2[0.95] * 1/365¢0.12(0.9) + 0.5
= 36.5 + 1.645°5.73 +0.5 = 46.4
The 46th ranked point is the upper CI, or 2700 cfs.

Chapter 4

4.1 For the before-1969 data, PPCC tr=0.986. For the after-1969 data, PPCC r=0.971.
Critical values of r are 0.948 and 0.929, respectively. Therefore normality cannot be
rejected for either period at o0 = 0.05.

4.2 For the arsenic data, PPCC r=0.844. The critical r* from Appendix table B3 is
r*¥=0.959. Therefore reject normality. For log-transforms of the data, PPCC
r=0.973. Normality of the transformed data is not rejected.

Chapter 5

5.1 The p-value remains the same.

52 Given that we wish to test for a change in concentration, but the direction of the change
is not specified in the problem, this should be a two-sided test. If it had stated we were
looking for an increase, or a decrease, the test would have been a one-sided test.

5.3 a. Quantiles are the 12 "after" data, and 12 quantiles computed from the 19 "before"

data :
i i "after" "before"
1 1.34 1350.00 122213
2 2.92 2260.00 1715.25
3 4.49 2350.00 1739.84
4 6.06 2870.00 1900.82
5 7.64 3060.00 2506.23
6 9.21 3140.00 2614.92
7 10.79 3180.00 2717.21
8 12.36 3430.00 2873.61
9 13.93 3630.00 3375.24
10 15.51 3780.00 3591.15
11 17.08 3890.00 3922.29
12 18.66 5290.00 4617.37
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The relationship appears additive. The Hodges-Lehmann estimate (median of all
possible after—before differences) = 480 cfs.

After regulation, the reservoir appears to be filling. Any test for change in flow
should omit data during the transition period of 1969-1970. Plots of time series are
always a good idea. They increase the investigator's understanding of the data. Low
flows after regulation are not as low as those before. This produces the pattern seen
in the Q-Q plot of the low quantiles being lower after regulation. while the upper
quantiles appear the same, as shown by the drift closer to the x=y line for the higher
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With 1969 and 70 included, Wys = 273.5 p=0.22. The after flows are not
significantly different. With 1969 and 70 excluded, W¢s = 243.5 p=0.06. The after

flows are close to being significantly different -- more data after regulation is needed.



476 Statistical Methods in Water Resources

5.4 Exact test

X Y RY) RX)
1 1
1.5 2
2 3
2.5 4
3 5
3.5 6
4 7
45 8
5.5 9
7.0 10
10.0 11
20.0 12
40.0 13

100.0 14
n=4 m=10 Wy = SRy = 16

From table B4, Prob(Wys = 16) = .027. The two-sided exact p-value = 0.054

Large-sample approximation
n*(N+1) 415 5

The mean is [y = 5 5 0
eme +1
The standard deviation is given by Oy, = pome(N+) =7.0711
W 12
16 - Wy +1/2
Zes=" oo ——1909
W

Using linear interpolation between —1.9110 and —1.8957 in a table of the standard
normal distribution gives the one-tail probability of 0.028. So the two-sided approximate
p-value is 0.056.

t-test on the ranks

Replacing variable values by ranks gives

X=4 S, =2582 S2.=6667 n=4
y=8.9 S y =3.928 82y =15429 m=10
The pooled variance is :
352+ 982
2=—7— =132386

S =3.639


jkmonson

jkmonson
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5.5

5.6

%y

— = —2.27610
Sy /n+1/m)

Linear interpolation for a student's t with 12 degrees of freedom gives

(2.27610 - 2.1788) 15 = 1 1 1= 02

The two-sided rank transform p-value is .044.

Summa
Approach p-value
Rank-Sum Exact 0.054
Rank-Sum Approx. 0.056
t test on ranks 0.044

To compute A, the (n*m)=40 differences (X;—Y;j =Dj) are:

Y1) 05 15 25 35 45 6 9 19 39 99
(Yo) -0.5 0.5 1.5 25 35 5 8 18 38 98
(Ys3) -1.5 =05 0.5 1.5 25 4 7 17 37 97
(Ysq) =25 -15 -05 05 15 3 6 16 36 96

D = median of 40 D]"S (Drank 20 + Dyank 21 )/2 = 3.75

Yields with fracturing Yields without
ferit = <932, accept normality ferit =.928, reject normality

Because one of the groups is non-normal, the rank-sum test is performed.
Wes = ZRwithout = 121.5.  The one-sided p-value from the large-sample approximation
p= 0.032. Reject equality. The yields from fractured rocks are higher.

The test statistic changes very little (Wyg = 123), indicating that most information
contained in the data below detection limit is extracted using ranks. Results are the same
(one-sided p-value = 0.039. Reject equality). A t-test could not be used without
improperly substituting some contrived values for less-thans which might alter the

conclusions.

Chapter 6

6.1

The sign test is computed on all data after 683 cfs is subtracted. ST = 11. From table
B5, reject if ST > 14 (one-sided test). So do not reject. p > 0.25.
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6.2 c is not a matched pair.

6.3 a. Hp: W (South Fork) — L (North Fork) = 0.
H1: U (South Fork) — L (North Fork) # 0.

b. A boxplot of the differences shows no outliers, but the median is low. Conductance
data are usually not skewed, and the PPCC r=0.941, with normality not rejected. So

a t-test on the differences is computed (parametric).

—l —

: : = diffs
-100 -50 0

c. t=—424 p=0.002 Reject Hp.

d. Along with the boxplot above, a scatterplot shows that the South Fork is higher only

once:
S. Fork
4001
Q
3001
2001

240 300 360 420 480

e. The mean difference is —64.7.

6.4 Because of the data below the reporting limit, the sign test is performed on the
differences Sept—June. The one-sided p-value = 0.002. Sept atrazine concentrations are

significantly larger than June concs before application.

6.5 For the t-test, t=1.07 with a one-sided p-value of 0.15. The t-test cannot reject equality
of means because one large outlier in the data produces violations of the assumptions of

normality and equal variance.
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Chapter 7

479

7.1 As alog-transformed variable, pH often closely follows a normal distribution. See the

following boxplots:

BP-1 — T +—
BP-2 Q4 T+
6.0 7.0 8.0 9.0
pH

pH for three piezometer groups (from Robertson et al., 1984)

The PPCC for the three groups (0.955 for BP-1, 0.971 for BP-2, and 0.946 for BP-9)
cannot disprove this assumption. Therefore ANOVA will be used to test the similarity of

the three groups.

Anova Table:

Soutrce df SS MS F p-value
Piez Gp 2 7.07 3.54 9.57 0.002
Error 15 5.54 0. 37

Total 17 12.61

The groups are declared different. Statistics for each are:

GP N  Mean
BP-1 6 7.65
BP-2 6 6.68
BP-9 6 8.20

Std. Dev. Pooled Std. Dev = 0.608
0.596
0.279
0.822

A Tukey's test on the data is then computed to determine which groups are different. The

least significant range for Tukey's test is
LSR = q(095 2 15)"\, 0.37/6  =3.01+0.248

= 0.75

Any group mean pH which differs by more than 0.75 is significantly different by the

Tukey's multiple comparison test. Therefore two piezometer groups are contaminated,

significantly higher than the uncontaminated BP-2 group:
BP-9 = BP-1 > BP-2
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Since the sample sizes are small (n=6 for each group) one might prefer a Kruskal-Wallis

test to protect against any hidden non-normality:

GP N MEDIAN Rj
BP-1 6 7.60 11.3
BP2 6 6.75 3.6
BP9 6 8.00 13.6

Overall Median = 9.5

K=11.59 X20.95 2)= 5.99. Reject H(), with p = 0.003.
ANOVA and Kruskal-Wallis tests give identical results.

7.2 Boxplots of the data indicate skewness. Therefore the Kruskal-Wallis test is computed:
K =724 Corrected for ties, K = 7.31. p =0.027

Reject that all groups have the same median chloride concentration.

granodiorite ] } °

gtz monzonite [__}— °
ephemeral [~ e0

0.0 25 5.0 7.5 10.0
Chloride Conc

The medians are ranked as granodiorite > qtz monzonite > ephemeral. Individual
K-W tests are computed for adjacent pairs at o, = 0.05:

granodiorite = qtz monzonite (p = 0.086)

qtz monzonite = ephemeral (p = 0.27). So:

granodiorite gtz monzonite ephemeral

7.3 Median polish for the data of strata 1:

Winter Spring Summer Fall Year median
1969 25.25 11.25 10.25 10.75 8.75
1970 16.5 2.5 1.5 2 0.00
1971 15 1 0 0.5 —-1.50

Season median 14.25 0.25 —-0.75 —0.25 2.25



Appendisc D Answers 481

Corbicula densities were 14 units higher in winter than in other seasons, and 9 to 10
units higher in 1969 than 1970 or 1971. Those effects dominated all others. This is
shown by a plot of the two-way polished medians:

24.07 i A 1969
! 1970
; 1971
16.0T E
i &
8.0
e
0. :

Winter Spring Summer Fall

The residuals are skewed, as shown in a boxplot:

e T ° o
-10 0 10 20 30
residuals

However, a residuals plot of cell residuals versus the comparison value shows outliers, but an

overall slope of zero, stating that no power transformation will improve the situation very much.
Residuals

201

0 20 40
Comparison Value
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7.4 Due to the outliers noted above, ranks of the Cotbicula data were used to test the effects

of season and year on the number of organisms.

Source df SS MS F p-value

Year 2 1064.7 532.33 13.78 0.000

Season 3 1300.7 433.57 11.23 0.000

Year*Season 6 560.8 93.46 2.42 0.057

Error 24 926.8 38.62

Total 35 3853.0

A two-way ANOVA on the ranks indicates that both season and year are significant

influences on the density of Corbicula, and that there is no interaction. This is illustrated

well by the plot of polished medians above.
7.5 Not answered.
Chapter 8
8.1 The plot of uranium versus total dissolved solids looks like it could be nonlinear near the

0 TDS boundary. So Spearman's rho was computed, and

rho = 0.72 with ty = 4.75 and p<0.001.

)
uranium ° R
) )
[} “ ° 4
10001
)
® e
°° e ) *
[ X J °
5001 ®
)
0.0 3.5 7.0 10.5
TDS

8.2 Pearson's r = 0.637 with ty = 3.79 and p<0.001. Kendall's tau = 0.53 with p<0.001.

The suggestion of nonlinearity would favor either rho or tau, though the nonlinearity is

not serious in this case.
8.3 Not answered.
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Chapter 9

9.1

9.2

9.3

9.4

A residuals plot for the untransformed variables shows strong curvature. A log-log
regression gives an acceptable plot, with one outlier not influencing the line:
log(Yield) = 6.74 + 1.39+log(Grain Size) t=8.14 p < 0.001

The overall mean yield will be the average of estimates of mean yield for the four wells
from the regression equation. Applying the 1/2 s2 correction factor to obtain the mean
yield rather than the median, the estimated mean yields are:

46.104 120.830 316.669 556.380 with overall mean = 260 gal/day/ft2.

Here are some possible transformations, including the log. Can logQQ be improved on?

explanatory variable RZ
Q 40.8%
Q05 51.1%
log Q 57.3%
Q 025 57.4%
Q05 55.4%
Q- 47.9%
1/(14+0.00001Q) 41.8%
1/(140.0001Q) 47.6%
1/(1+0.001Q) 58.5%
1/(1+0.01Q) 52.4%
1/140.1Q) 48.5%

There are perhaps two other good candidate explanatory variables on this list,
QY25 and 1/(1+0.001Q). Neither improve significantly over logQ, based on R? or on
residuals plots. A residuals plot and probability plot of residuals for the hyperbolic

transformation having b=0.001 are below.

When b=0.00001 or smaller, the model is virtually identical to the linear model TDS =
bp+b1Q [a power transformation with @ =1]. When b=0.1 or larger, the model is virtually
identical to the inverse model TDS = bp+b1(1/Q) [a power transformation with 8 =—1].
Values of b in between these provide functions similar to moving down the ladder of
powers from 0 =1 to © =—1. The advantage of using the hyperbolic function is its

interpretability as a mixing of ground and surface waters (Johnson et al., 1969).

If the objective is to predict LOAD, then that (or its transform) should be the dependent
variable. The regression statistics (especially PRESS) will then tell how well the predictions
will do. If In(C) is used as the dependent variable, the standard error s = 0.3394, exactly
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the same as in the equation for In(LOAD), but R2=17.3 % rather than 67.9 % for
In(LOAD). The t statistic on 31 is —4.43, also significant but not as much as when y =
In(LOAD). In other words, the error of the In(C) values is exactly the same magnitude as
the errors of In(LOAD). The percent variation explained drops from 67.9 % to 17.3 %,
the difference being the strong effect of Q on variation in LOAD. Note the changes in
regression coefficients. The previous model was In(LOAD) = 0.789 + 0.761 In(Q). This
one is In(C) = —.194 — .239 In(Q). The intercept decreased by an amount equal to In(2.7)
(the log of the unit conversion coefficient) and the slope decreased by exactly 1 because Q

is removed from both sides. The standard errors of the coefficients are both unchanged.

If LOAD were computed by using the regression for In(C) and then multiplying that result
by 2.7 Q, exactly the same estimates would result as when using the equation for
In(LOAD). This is true regardless of which estimation method is employed (median,
MLE, or Smearing), and will always be true for log-log regression estimation. The moral
of the story is: if your boss thinks that you shouldn't use In(LOAD) as the dependent
variable and you can't convince him or her otherwise, go ahead and predict In(C), and

from that In(LOAD), and you will still get the results you got doing it the simple way.

Chapter 10

10.1

Y Slopes
10 30 10 15 13 9.2
40 -10 7.5 7.33 4
25 16 8.67
55 7 0.5
62 -6
56
Ranked slopes: =10, =6, 0.5, 4, 7, 7.33, 7.55, 8.67, 9.2, 10, 13, 15, 16, 25, 30

O\U‘I-PL»J[\.)H|><
W
S

a) Median slope = 8.67 = Theil slope estimator %1
Median X = 35
Median Y = 475
S=P-M = 13-2 =11
_ S 1 _
b T TUen/2 T 652 =0.73
o interceptby = Ymed— by * Xmed =47.5-8.67235  =17.17
Y =17.17 + 8.67* X is the Kendall-Theil equation

(Y =10.07 + 9.17+ X is the OLS equation for the same data)
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d) from table B8, for S=11 and n=0, two-sided p-value = 20.028 = 0.056.

10.2 X Y Slopes
1 10 30 10 15 47.5 9.2
2 40 -10 7.5 53.33 4
3 30 25 85 8.67
4 55 145 0.5
5 200 —144
6 56

Ranked slopes —144, —10, 0.5, 4, 7.5, 8.67, 9.2, 10, 15, 25, 30, 47.5, 53.33, 85, 145

a) Median slope =10 = Theil slope estimator %1

Median X =35
Median Y =475
b) S and T are unchanged
o) by = 475-10+35 =125
Y = 1254+10X the Kendall-Theil equation is similar to ex. 10.1.
Y = -833+21X the OLS slope has changed a lot from ex. 10.1)

d) the p-value is unchanged.

e) for a 95% confidence interval, the closest entry in table B8 to 01/2=0.025 is
p=0.028 for X;=11. From eqs. 10.3 and 10.4,
Ru = @ = 13for N=15 and X =11.

The rank Rj of the pairwise slope corresponding to the lower confidence limit is
Ry = ﬁ%} +1 = 3.

So an o = 0.054 confidence limit for 181 is the interval between the 3rd and 13th ranked

pairwise slope (the 3rd slope in from either end), or
05< B <533.

10.3  The unweighted OLS regression equation is
Y = —8.3+ 21.0:X t=1.41 p=023
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200T o
Y
O
1007
LS
2nd WLS ©°
o
0 ¢ f f } }
1.2 24 3.6 4.8 6.0
X

The residuals are then divided by 6*(MAD), where the MAD is the median of the absolute

values of the residuals. Bisquare weights are computed for each data point:

pt # 1 2 3 4 5 6
weight 0999 0996  0.935 0954 0179  0.631

A first weighted least squares is then computed:

Y=31+131X t=1.49 p=0.21
Bisquare weights are again computed for each data point, using residuals from the first
WLS:
pt# 1 2 3 4 5 6

weight 0.984 0.952 0.938 1.000 0.000 0.746

A second WLS is then computed:

Y =104+ 8.80 X t=2.73 p =0.07
Though the slope has diminished from the OLS line, the significance has greatly
increased due to the lower weight of the outlier. Note the similarity between this WLS
and the Kendall's robust line. A residuals plot shows that the WLS line fits most of the
data much better than with OLS. The outlier's influence on the slope has diminished,
and its residual remains large.
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160 T
residuals
80 T
0 o o o
1.2 2.4 3.6 4.8 6.0
X

Some object: "Isn't this WLS line the same as throwing away the outlier -- it has a weight
of zero?" The difference is that the outlier was determined to be downweighted to zero
by the data itself, not an arbitrary decision by the data analyst. Weighted least squares
also allows outliers to have partial weights, not simply a zero or one weight as with
discarding the outlier. So WLS is far less arbitrary and far more consistent in its

assignment of weights to all data points than is throwing away outliers.

104  TLowering = —2.07 —0.167 *Years 2 =0.76
[ ]
Lowering °
-3.0 T
-6.0 T *
OLS
0.0 6.0 12.0 18.0 24.0  Years

OLS does not follow the data as well as the smooth because the data are nonlineat.

10.5 Plotting the 20 years of joint data shows that curvature and heteroscedasticity exist, and
transformation is required before regression. Thus the natural logs of both are taken. A

linear relation results, as shown in the following plot.
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3.0 1
Ln(Short)

20T

1.40 2.10 2.80 3.50 4.20
Ln(Base)

Regression between the 20 year joint record at the two stations is:
La(Short) = 1.095 + 0.507+Ln(Base) t = 6.00 p <0.001 R2 = 0.67

Using this equation and the 30 additional years of record at Base, 30 years of simulated
flows at Short are generated. Now the LOC is used to generate estimates of the "Short"
30-year record. Summary statistics for the 20 years of joint Ln(Base) and Ln(Short)
records are as follows:

n Mean Stdev Median P25 P75
Ln(Short) 20 2.319 0.524 2.160 1.862 2.850
Ln(Base) 20 2.414 0.844 2.190 1.802 3.200

From equation 10.10, s
Yi =Y + sign[t]* g}X{ ‘Xi—X), or
Ln(Short) = 2.319 + (.524/.844) * (Ln(Base) — 2.414)
= 0.820 + .621 * Ln(Base)

Note how the slope and intercept for LOC differ from the regression coefficients.
Summary statistics for the estimated flows at "Short" by the two methods are compared
to the true 30-year record from Appendix C13 in the following table.

n Mean Stdev Median b25 P75
OLS est. 30 2.2087 0.4975 2.0228 1.7731 2.6249
LOC est. 30 2.184 0.609 1.956 1.651 2.694
true values 30 2.079 0.613 1.930 1.630 2.290

The standard deviation for the regression estimate is too small, as expected.


jkmonson
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Boxplots are presented below for three groups: the 30-year estimates using regression
and LOC combined with the 20-year record at Short, and the actual 50-year record.
LOC comes closer to correctly estimating the lowest and highest flows. The regression
estimates are too low for high flows, and too high for low flows. They "regress" toward
the mean more than the actual data because the standard deviation of the estimates is
too small, as R2 <1.

OLS est T
lOCest —T_—F—— -
actual —_[ F—— x % 0 0

0 12 24 36 48
Flow at Short

10.6  Not answered.

Chapter 11

11.1  The full multiple regression model contains strong multi-collinearity. The VIFs among

the four percentage variables are huge:
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LOGTN =—-1.3 + 0.596 LOGDA + 0.346 LOGIMP + 0.0314 MMJTEMP

n =42
Parameter
Intercept B
Slopes B
LOGDA
LOGIMP
MMJTEMP
MSRAIN
PRES
PNON
PCOMM
PIND

—0.0494 MSRAIN + 0.040 PRES + 0.035 PNON + 0.037 PCOMM +

0.024 PIND

s = 0.61

Estimate

-1.28

0.596
0.346
0.031
—0.049
0.040
0.035
0.037
0.024

Table 11.9 Regression statistics and VIF's for Exercise 11.1

RZ =

0.59

Std.Err(B)

24.60

0.121
0.228
0.019
0.021
0.245
0.246
0.245
0.246

t-ratio

—0.05

4.94
1.52
1.65
—2.32
0.16
0.14
0.15
0.10

_p

0.959

0.000
0.138
0.107
0.026
0.873
0.888
0.882
0.922

VIF

1.8

3.8
10.1
9.1
9227.2
3062.2
8311.4
2026.2

To determine why the multi-collinearity is so strong, the correlation matrix is computed.

LOG

LOGTN LOGDA

LOGDA
LOGIMP
MMJTEMP
MSRAIN
PRES
PNON
PCOMM
PIND

0.565

0.058  -0.382
-0.205  -0.188
-0.259  -0.083
0.294 0.210
-0.042 0.319
-0.218  -0.441
-0.131 0.060

MM]J

IMP

0.094
0.018
-0.246
-0.639
0.589
0.114

MS

TEMP

0.915
0.040
0.066
-0.027
-0.111

RAIN

0.003
0.065
0.039
-0.164

PRES

-0.321
-0.747
-0.226

PNON PCOMM

-0.206
-0.124

-0.180

Surprisingly, the percentage terms do not have large pair-wise correlation coefficients.

Instead, they are strongly related in that the four of them add to 100%, except for

rounding error. This is why the VIFs are so large. Therefore at least one of them should
be dropped. The variable with the smallest partial F (PIND) could be chosen. This
brings the VIF down from over 9000 to 10, still large. In order to save much time the

Cp and PRESS statistics can be computed for all possible models. The results below
show that the best 5-variable model, containing LOGDA, LOGIMP, MMJTEMP,
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MSRAIN, and PIND, is the best in terms of prediction errors (PRESS) and model

bias/standard error (Cp). VIFs are below 10 (R2 < 0.9) and so are acceptable.

# of
Vars R-sqg
32.
8.
40.
37.
46.
45.
51.
50.
57.
56.
59.
58.
59.
59.
59.

0 J J o000 o U1 U1 i b W WDNDDNDRE B
P P PO R DNMDMDO ODNMDNDDB UL I o0 O

PRESS

22.
30.
21.
22.
20.
19.
18.
19.
17.
18.
18.
18.
19.
19.
20.

R & b O MDD O 00w W N DNMDDN O L

C-p

17.
35.
11.

'_l
NN

O O O v P b I 39 v W wu v o o

O 9 J U U U9 9 O LV

Max VIF
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<

10.
13.

9227
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X: Variable is in the model
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A residuals plot from the minimum PRESS and Cp model shows no hint of curvature or

increasing variance. Therefore this model is preferred.

be

ke
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PRED

Residuals plot for the regression of Exercise 11.1

First compare those models which have equal numbers of parameters and eliminate the

ones with higher SSE.
Compare 4 to 7,
Compare 3 to 6,
Compare 2to 5,
Compare 6 to 8,

eliminate 4
eliminate 3
eliminate 2

eliminate 6

Now, for the remaining models (1, 5,7, 8, 9. 10) perform F tests between pairs of nested

models. The order in which to proceed is arbitrary.

Compare F dfhumdfdenom Ecrit  conclusion

Models 1to 5 11.18 1 123 3.9 reject Ho,eliminate model 1
Models 5to 7 0.28 2 121 3.1 do not reject eliminate model 7
Models 5 to 8 1.39 1 122 3.9 do not reject eliminate model 8
Models 5to 9 0.77 3 120 2.68  do not reject eliminate model 9
Models 5 to 10 0.88 5 118 2.29  do not reject eliminate model 10

Model 5 is the preferred model.



Appendisc D Answers 493

Another possible approach is to use either PRESS or Mallows Cp.

Model p s Cp
1 3 0.5636 14.29
2 4 0.5350 8.37
3 5 0.5343 9.17
4 6 0.5359 10.51
5 4 0.5183 4.41
6 5 0.5207 5.98
7 6 0.5245 7.84
8 5 0.5166 5.00
9 7 0.5212 8.06
10 9 0.5208 9.95

The results are interpreted as: the transport curve is quadratic with a shift in intercept
for the winter months. Only two seasons (not three) can be distinguished. The slope of

the curve does not change with season.

11.3  Not answered.
11.4  Not answered.
Chapter 12
12.1  Regression
load = 25,250 — 12.6 year 2 =10.6%
(t) (1.53) (—=1.50) two-sided p value = 0.134

Multiple regression
load = 28,152 — 14.4 year + 0.696 q 2 = 88.3%
® (4.69) (—4.60)  (10.91) two-sided p value = 0.0001
Mann-Kendall

load = 11,800 — 5.8 year two-sided p value = 0.415
Mann-Kendall on Residuals
Regression model is  load = —110 + 0.681 qr2 = 74.5%

O (-1.24) (7.44)
Kendall fit: residual = 28,250 — 14.4 year two-sided p value = 0.0001
therefore load =—110 + 0.681q + residual

= —110 + 0.681q + 28,250 — 14.4 year
= 28,140 — 14.4 year + 0.681q
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12.2

12.3

12.3.1
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Winter: P =16, M =34, S=-18
1 tie of 3, 2 ties of 2

Var[§] = 159.33
Z = —1.347
p = 0.18 very little evidence of downtrend in winter lead

Spring: P=27, M=238 S=-11
3tiesof 2, 1 tie of 5

Var[§] =249
Z = 0.633
p = 0.53 no evidence of downtrend in spring lead

Summer: P=16, M =33, S =-17

1 tie of 4

Var[§] =156.33

Z = —-1.28

p = 020 very little evidence of downtrend in summer lead
Fall: P=11, M=37, S=-26

1 tie of 4, 1 tie of 2

Var[§] =155.33

Z = 2.005

p = 0.045 fairly strong evidence of downtrend in fall lead
Seasonal Kendall: S=-72

VAR[S] = 720

Z = —2.646

p (2-sided)=  0.008

Thus, even though the evidence from no individual season was highly conclusive, the
data from all seasons taken together provides highly conclusive evidence of a down-

trend in lead.

Maumee River Trends in Total Phosphorus

Parametric analysis first: LOAD vs TIME

Simple linear regression: LOAD = 444 —0.221 TIME
t=-0.42 p=0.673
s = 20.59 R-sq=0.1%  R-sq(adj) = 0.0%
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A boxplot of the residuals shows them to be terribly skewed. A transformation is
required. Try logarithms. Then the regression equation is:
In(LOAD) = 117 — 0.0592 TIME

t=—1.32 p =0.189

s =1.770 R-sq = 1.3% R-sq(adj) = 0.6%

There is a fairly normal distribution of residuals, so a test based on regression seems
legitimate. Very weak evidence of trend -- (two-sided) p-value of 0.189. But are there
strong flow and/or seasonal effects? A plot of the residuals versus log of streamflow
(LQ) shows a strong dependence on flow. Removing this should greatly enhance the

power to detect any trend which is present.
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Boxplots of residuals by month also show a strong seasonal cycle, high in the winter &
spring, low in summer. The best model we could find includes time, In(Q), ln(Q)Z, and
sine and cosine of 21T:

LLOAD = 83.3 — 0.0425 TIME + 1.08 InQ + 0.0679 In(Q)2 — 0.0519 SIN + 0.141 COS

Predictor Coef Stdev t-ratio o)
Constant 83.32 22.06 3.78 0.000
TIME -0.04250 0.01115 -3.81 0.000
1nQ 1.08175 0.04947 21.87 0.000
ln(Q)2 0.06789 0.01868 3.63 0.000
SIN -0.05190 0.06252 -0.83 0.408
COS 0.14058 0.05441 2.58 0.011

s = 0.4398 R-sq = 94.1% R-sg(adj) = 93.9%
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This is interpreted as a strong evidence of downtrend, with a p-value <.001 The slope
(in log units) = —0.0425 per year. All coefficients are significant at o0 = 0.05 except for
sine(21T). The sine must either be left in, or both it and the cosine taken out. To test
whether together they are significant, an F test is performed. The model without these
terms, with the standard error s = 0.449, is:

LLOAD = 85.1 = 0.0434 TIME + 1.06 LQ + 0.0748 LQSQ

Predictor Coef Stdev t-ratio o)
Constant 85.09 22 .51 3.78 0.000
TIME -0.04340 0.01138 -3.81 0.000
1InQ 1.05921 0.04518 23.44 0.000
ln(Q)2 0.07481 0.01865 4.01 0.000
s = 0.4490 R-sq = 93.7% R-sg(adj) = 93.6%

So the F test to compare these two models is:
_ (26.01 -24.57) / 2.0
b= 0.193

Comparing to an F distribution with 2 and 127 degrees of freedom, the two-sided p-

=3.73

value is 0.027. Therefore reject the simpler model in favor of including the seasonal sine

and cosine terms.

To predict estimates of load for the two times and two flow conditions above, natural
logs of these values are input to the regression equation. The third column below

reports the predicted logs of Load from the regression equation.

1nQ Time Predicted 1nL Biag-Corrected L
2.4 1972.5 2.3356 11.3852

0.0 1972.5 -0.6516 0.574136

2.4 1986.5 1.7406 6.27963

0.0 1986.5 -1.2467 0.316640

These predicitons must be transformed and corrected for bias. Using the Ferguson
(MLE) bias correction, 0.5¢s2 = 0.5+(0.4398)2 = 0.097 . So the bias correction equals
exp(0.097), or about 10%. The four predicted total phosphorus loads are given above in

the fourth column.

Therefore the percent change at high flow over the 14-year time period is:
(6.2763 — 11.3852) / 11.3852 = —0.448732

The change in percent per year is
—0.448732 ¢ 100 / 14 = =3.205. That is a —=3.2% change in total P per year.
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The same analysis at lower flow over the 14 years is:

(0.31664 — 0.5741306) / 0.574136 = —0.4485, the same amount as at high flow.
Re-expressing the slope estimate in original units as a percent change, the average
change equals —4.2% per year:

100 © [exp (=0.0425) — 1.0] = —4.16096

12.3.2 'The nonparametric approach
The seasonal-Kendall test on the original observations, using 12 seasons (months): Tau
= —0.06 with a p-value of 0.3835.
log(LLoad) = 0.505 — 0.046 *time ,
where time = 0 at the begining of the first year of the record (typically a water year), and

time is in units of years.

Residuals from a regression of log(LLoad) versus logQQ and logQ2 removes the effect of
flow:
log(Load) = —0.745 + 1.06 logQ + 0.0758 logQ?
The S-K test on the regression residuals: tau = —0.25 with p = 0.0002
and log(Load) = 0.312 — 0.048 etime

So, if flow is not first removed, the significant trend would be missed. Both the
Seasonal Kendall on the residuals and multiple regression give a highly significant p-
value. The S-K slope is 4.8% rather than 4.16% because of the effect of the low
residuals during 1972-1977.

Residuals plot from regression with logQ and logQ?
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12.4  Not answered.

12.5 Nat answered.

Chapter 13

13.1  Not answered

Statistical Methods in Water Resources

13.2 Because there is only one reporting limit, Kendall's tau can easily be computed for this
data: tau = —0.40 with p = 0.023. There is a significant decrease in TPT

concentrations with depth.

13.3  Estimates of the four descriptive statistics for each of 5 multiple-threshold methods (see

Helsel and Cohn, 1988) are:

Method MEAN
ZE (substitute zero) 12.36
HA (substitute 1/2 dI) 13.91
DL (substitute the dl) 15.45
MR (prob plot regression) 12.57
MM (lognormal MLE) 8.30

ST.DEV. MEDIAN IQR

75.48 0.00 1.10
75.28 1.10 3.30
75.19 1.30 4.10
75.44 0.29 1.54
61.52 0.34 1.62

Because of the outlier at 560 pug/L the data have more skewness than a lognormal

distribution, and methods which assume a lognormal distribution for all the data (MM)

would not be expected to estimate moment statistics well. It is not surprising therefore

that the MLLE method produces moment estimates dissimilar to the other methods. We

generally select the MR moment estimates and the MM quantile estimates (those printed
in bold), due to the results of Helsel and Cohn (1988).

Chapter 14

14.1  a) Contingency table

Expected values Ejj

Ttend in C1- (1974-81, 0.=0.1)

A road salt appl. Down No trend Up Totals
Down 5.44 23.84 16.71 46
No change 9.82 43.02 30.15 83
Up 13.73 00.13 42.14 116

Totals 29 127 89 245
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(0-E)2
Table of E

Trend in C1- (1974-81, 0.=0.1)
A road salt appl. Down No trend Up Totals
Down 0.04 2.79 3.56
No change 1.78 0.02 0.88
Up 1.01 1.39 3.93
x2 =15.39 df = 4 p = 0.004

The results indicate that the category of chloride trends is dependent on the category of
salt applications, with a p-value of 0.004. Where increases in road salt occurred, there
are more up trends and fewer down trends than would be expected from the marginal
distributions of up trends and down trends. Where decreases in road salt occurred, there

are fewer up trends than would be expected.

b) Kendall's tau
P =no. pluses = 5(44+25+51+55) + 32(25+55) + 14(51+55) + 44(55) = 7339
M = no. minuses = 32(14+10) + 9(14+44+10+51) + 44(10) + 25(10+51) = 3804
S =7339-3804 = 3535.

3535

T =
b (2452 - (4624 832+ 1162)) (2452 - (292+ 1272+ 892)
2

= 3535 /18164 = 0.19
To test for significance,
1
Og = ‘/5 #(1- (19" +.347+ 477 (1- (127 + 527+ 367))

~(0.85*0.81%2457%)
9

= 10061

and so Zg = 3534/ 1061 = 3.33 and two-sided p= 0.0008.
The two variables are significantly and positively related.

¢) Kendall's tau is more appropriate because

1. It includes the information that the variables are ordinal into the test. The p-value for
Kendall's tau is lower than that for the contingency table, reflecting this additional
information.

2. It provides a measure of the direction of association Ty,. Since T is positive, the

trends in CI~ increase with increasing trends in road salt application.



Statistical Methods in Water Resources

500
14.2  Based on the tables below, there is a significant association between location of the well
and the probability of detecting volatiles. The more protected downdip wells indeed
have less chance of being contaminated than do the outcrop wells.
Expected values Ejj
Location Non-detects Detect VOC Totals
Downdip 91.92 23.08 115
Outcrop 143.08 35.92 179
Totals 235 59 294
(0-E)2
Table of ¢
Location Non-detects Detect VOC
Downdip 2.16 8.59
Outcrop 1.39 5.52
¥2 = 17.647 df =1 p = <0.0001
14.3  To test for association, Kendall's tau-b is used because both time and concentration

variables are ordinal. Computations are shown in the boxes below.
TBT Concentration

Year < 200 > 200 A4 aj
1988 2 7 9 0.18
1989 9 13 22 0.43
1990 10 10 20 0.39
G 21 30 51
Cj 0.41 0.59 1.0
The number of pluses P = 2(13+10) + 9(10) = 136
The number of minuses M = 7(9+10) + 13(10) = 263

So S=136-263 =-127.
To compute the denominator of Ty, SSa =92 + 222 +202 = 965.
SS¢ = 212 + 302 = 1341,
-127 -127
and = 7179 = —0.18.

Tb =
\J(512 - 965) (512 - 1341)
2

From equation 14.9 the approximate value of Og is
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1
oy = \/5- (1-(0.183+0.433+0.393)) + (1-(0.413+0.593) ) +513

. e513
E\/(O'%) (%73) L = /9253 = 96.2

-127+1
and from a table of the normal distribution the one-sided p-value is p = 0.095.
Therefore Hp: T}, = 0 is not rejected at 00=0.05, but is for ot = 0.10. Thus there is weak

evidence of a downtrend in TBT concentrations based on a split at 200 ng/L. Stronger

evidence could be obtained by collecting data for subsequent years, or by obtaining
better resolution of the data (the original data reported concentration values rather than
a split at 200 ng/L).

Chapter 15

15.1  Logistic regression for the full model with four explanatory variables gives:

Variable Parameter Standard
Name Estimate Error Wald's t p-value
Constant —13.20539 3.55770 —3.71 0.0002
Thick 0.51527 0.15093 3.41 0.0004
Yields 0.42909 0.27484 1.56 0.0607
GW Qual 0.03035 0.32460 0.09 0.4642
Hazard 1.08952 0.29860 3.65 0.0002

with a likelihood ratio lry = 49.70 and p<<0.000 as compared to the intercept-only
model. However, two of the variables (Yields and GW Qual) have insignificant t-
statistics. In the following model they are dropped, and Ir recomputed:

Variable Parameter Standard
Name Estimate Error Wald's t p-value
Constant —10.89039 2.43434 —4.47 <0.0001
Thick 0.46358 0.13575 3.41 0.0004
Hazard 1.07401 0.28301 3.80 0.0001

with a likelihood ratio Iry = 52.54 and p<<0.000 as compared to the intercept-only
model. The partial likelihood ratio to test whether the first model is significantly better
than the simpler second model is:

It = Itg(simple) — o (complex) = 52.54 — 49.70 = 2.84
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which for a chi-square distribution with 2 degrees of freedom gives:

p = 0.242.
Therefore the two additional variables (Yields and GW Qual) do not appreciably add to
the explanatory power of the model.
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3-dimensional rotation, 60 bar chart, 62, 206
7-day 10-year low flow, 83 grouped, 422
additive relation, 42, 142 stacked, 421
checking for, 186 bias correction, 258
adjacent values, 26 bisquare weight function, 284
adjusted RZ, 399 block effect, 196
adjusted variable Kendall test, 336 blocking, 181, 197
adjusted variable plots, 301 Blom plotting position, 24
AIC, 399 boxplots, 24, 39, 423
Akaike's information criteria, 399 side-by-side, 129
aligned-ranks, 192 boxplots, 128, 207
alpha level, 107 bulging rule, 230
alpha level, 68 business graphics, 412
alternate hypothesis, 104 categorical variables
analysis of variance, 158 Kruskal-Wallis test for, 382
ANOVA table, 168 categories, 19
assumptions of, 166 censored data, 3, 124, 128
multi-factor, 170 guidelines for use, 373
on the ranks, 163 in trend tests, 353
on within-block ranks, 191 nonparametric tests, 366
one-factor, 164 parametric tests, 366
two-factor ANOVA table, 174 regression, 370
two-way rank tests, 170 characteristics of data, 2
unbalanced design, 179 chemometrics, 372
angles, judgment of on graphs, 417 coefficient of determination, 228
ANOVA. see analysis of variance coefficient of skewness, 11
area, judgment of on graphs, 416 Cohen's method, 353, 360
assumption of independence, 252 color, use of in graphs, 412
asymmetric confidence intervals, 69 comparing among distributions, 35
for the mean, 76 comparison value, 186
attained significance level, 108 compliance with water quality standards, 83
autocorrelation. see serial correlation confidence intervals, 66

for percentiles, 82

for percentiles (nonparametric), 84
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confidence intervals, cont. dot charts, 423
for percentiles (parametric), 90 Duncan's multiple range test, 199, 200
for regression line, 242 Durbin-Watson statistic, 253
for skewed data, 69 efficiency
for the mean, 75 asymptotic relative, 102
for the median, 70 Kendall vs. OLS, 268
confidence level, 68 equal variance, 124
constant variance assumption, 255 error rate, 107, 110
contingency tables, 378 overall, 199
for censored data, 372 pairwise, 199
continuity correction, 122, 141, 147 error sum of squares, 167, 196
control chart, 93 exogenous variables in trend tests, 330
Cook's D, 250 expected value, 224
cotrection for ties explanatory variable, 99, 158, 222
Kendall's tau;, 215 extension of records, 278
rank-sum test, 123 factor, 158
correlation, 209 factorial ANOVA, 170
monotonic, 210 assumptions of, 173
correlation coefficient, 210 far-out values, 26
linear, 218 fixed effects, 180
nonparametric, 212 flood-frequency, 24
critical values flow-duration, 24
lower, 113 framed rectangle, 421
upper, 113 Friedman test, 170, 187, 192
cumulative distribution function, 23 large sample approximation, 188
cumulative line graph, 419 F-test, 168, 174
cumulative logits, 406 geometric mean, 7, 73
Cunnane plotting position, 22, 24, 114 estimation for censored data, 361
degrees of freedom, 160, 167, 297, 310, 380 geometric mean functional regression, 276
detection limit, 3, 128 graphical analysis, 19
guidelines for use of data, 373 graphical comparisons, 35
more than one, 354 graphical methods, 128
trend tests for data below, 353 graphics, 205
DFFITS, 250 graphs
difference between group means, 135 pie chart, 416
confidence interval for, 135 angle and slope, 417
differences between groups boxplots, 423
estimators, 132 cumulative line graphs, 419
discriminant function analysis, 402 dot charts, 423

dot and line plot, 36, 38 framed rectangles, 421
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graphs, cont.

grouped bar charts, 422

hidden scale breaks, 428

judgments of length, 420

misleading, 424

overlapping histograms, 429

precision of, 411

stacked bar charts, 422

use of color, 412

use of numbers on, 427

use of perspective, 424

use of shading, 413
Gringorten plotting position, 24
Gumbel distribution, 90
harmonic mean, 199
Hazen plotting position, 24
heavy tails, 2
heteroscedasticity, 124, 230, 255, 280
hinges, 25
histograms, 2006, 429
histograms, 19, 36
Hodges-Lehmann estimator, 132, 155

confidence interval for, 133, 155

for step trend, 349
homoscedasticity, 51
homoscedasticity, 13
hypothesis tests, 97, 109

choice of, 101

classification, 99

classification of, 106

exact, 103

with censored data, 365
independent groups, 117
inequality of variance, 124
influence, 4, 248, 250
interaction, 172
intercept, 226

confidence interval for, 240

deletion of, 240

nonparametric, 268

interquartile range, 9, 24
interval estimates, 66
invariance to rotation, 280
IQR, 9
iteratively weighted least squares, 283
joint probability, 379
Kendall's nonparametric line;, 370
Kendall's nonparametric line; .i.Sen slope
estimate; .regression
nonparametric;, 266
Kendall's S statistic, 272
Kendall's tau, 326
for categorical variables., 386
for censored data, 372
large sample approximation;, 213
tie correction;, 215
Kendall's tau; .i.tau;, 212
Kendall's tau-b;)., 386
kite diagram, 54
Kruskal-Wallis test, 158, 159
for categorical variables, 382
large sample approximation, 160
rank transform approximation, 163
ladder of powers, 14, 15, 31, 119, 230
large sample approximation, 103, 121
least normal squares, 279
least significant range, 198
least squares, 228
length, judgment of on graphs, 420
leverage, 248
likelihood ratio, 397
likelihood-R2, 398
line of organic correlation, 276
linear regression.  see regression
linearity, 13
linearity, 46
LOC, 276
log likelihood, 397
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logistic regression, 395
for censored data, 371
for multiple responses, 403
logistic transformation, 396
logit, 396
loglinear models, 390
lognormal, 2
lognormal distribution, 73
LOWESS, 47, 288
use in trend tests, 335
LOWESS, 325
MAD, 10, 284
Mann-Kendall trend test, 326
with censored data, 354
Mann-Whitney test, 118
MARA, 192
marginal probability, 379
mass transport, 258
matched-pair tests
graphical presentation of, 152
maximum-likelihood, 360
tobit regression, 370
mean
asymmetric confidence interval for, 76
confidence interval for, 75
mean difference, 157
mean square error, 228
mean squares, 167, 174
measures of location, 3
median, 6
confidence interval for, 70
test for differences in, 118, 159
Median Aligned-Ranks ANOVA, 192
median difference, 154
median polish, 182
mixed effects, 181
MLE, 360
tobit regression, 370
mode, 7

monotonic correlation, 210
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monotonic trend, 327
MOVE, 276
moving average, 286
moving medians, 286
multiple comparison test
graphical display of, 208
multiple comparison tests, 197
for categorical variables, 385
nonparametric, 198, 203
multiple regression, 237
use as a trend test, 337
multiplicative relation, 43
multiply-censored data, 353
hypothesis tests for, 368
nonparametric tests for, 368
multivariate graphical methods, 52
nominal response variables, 406
non-normality, 92, 124
nonparametric interval estimate, 70
nonparametric prediction intervals, 77
nonparametric test for percentiles, 86
nonparametric tests, 101
comparison to parametric, 102
for censored data, 366
normal distribution, 2, 26, 31, 113
normal probability plot, 24, 114
normal quantiles, 28, 114
normal scores, 114
normality
of test statistics, 121
test of, 102, 113, 166
normality assumption, 150
null hypothesis, 104, 107, 108
not rejecting, 109
rejecting, 109
odds ratio, 396
OLS, 222
one-sided p-value, 112
one-sided tests, 105, 109
ordinal variables, 386
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ordinary least squares, 222 power, 102
outliers, 12, 92 power transformation
tests for, 92 effect on paired t-test, 151
outliers, 2, 31, 38, 127, 250 effect on rank-sum test, 118
outside values, 26 effect on signed-rank test, 144
overall error rate, 199 power transformations, 177
paired observations, 138 avoiding, 265
paired t-test, 148 effect on t-test, 128
assumptions of, 148 invariance to, 327
computation, 149 WLS as an alternative, 282
pairwise comparisons, 199 PPCC test, 113
pairwise error rate, 199 precision of graphs, 411
parametric c. i. for the median, 73 prediction interval, 66, 243
parametric prediction intervals, 80 asymmetric, 81
parametric tests, 100 nonparametric, 77, 79, 81, 244
comparison with nonparametric, 102 one-sided, 79
with censored data, 365, 366 parametric, 80, 81
partial likelihood ratio, 398 symmetric, 81
Pearson Type 111 distribution,, 90 two-sided, 78
Pearson's r, 218 prediction residual, 249
percent exceedance, 30 PRESS statistic, 249
percentiles principal components analysis, 59
confidence interval for, 83 probability paper, 29
parametric tests for, 91 probability plot, 27, 31, 35, 41
water quality, 83 probability plot correlation coefficient, 35
percentiles, 9 probability plot correlation coefficient, 113
perceptual tasks for interpreting graphs, 412 profile plot, 53
perspective, use of in graphs, 424 p-value, 108, 111
pie chart, 62 one-sided, 113
pie charts, 416 two-sided, 112, 113
Piper diagram, 58, 59 Q-Q plot, 42, 43, 128, 129
Piper smooth, 59 construction, 45
plotting position, 22, 23, 30, 114 quality control, 93
point estimates, 66 quantile plot, 22, 206
polar smooth, 48, 292 quantile-quantile plot, 129
population, 2 quantiles, 22, 83
positive skewness, 10 quantiles, 42
power, 95, 100, 107 quartile, 9
lack of, 124, 127 quartile skew coefficient, 11

loss of, 102, 150 r squared, 228
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random effects, 180

randomized complete block design, 182, 187

rank transform test, 194
rank transformation test, 123, 170, 203
ranks, 7
ranks, 104
rank-sum test, 110, 118
an alternative to logistic regression, 402
as a test for trend, 349
rating curve, 258
record extension, 278
regression, 221
for censored data, 369
regression
as a test for trend, 328
assumptions, 224
confidence interval on mean response,
242
diagnosing problems, 232
guide to model selection, 263, 316
hypothesis testing, 238
non-normal residuals, 268
nonparametric, 266
normality assumption, 236
robust, 269, 283
validation of equation, 249
regression diagnostics, 238, 246
rejection region, 113
reliability, 66
replicates, 194
replication
ANOVA without, 194
residuals, 31, 226
prediction, 249
standardized, 249
studentized, 249
testing for normality, 236
use in trend tests, 332
residuals plot, 187, 232
trend, 234
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resistant, 6
response variable, 99, 222
tho, 217
risk tolerance, 108
RMSE, 358
robust, 11
robust regression, 269
root mean squared error, 358
sample, 2
sample size, estimating, 95
sampling design, 95
Satterthwaite's approximation, 126
scale breaks, 428
scatterplot matrix, 61
scatterplots, 46, 423
schematic plot, 26
seasonal Kendall test, 339
seasonal rank-sum test, 350
seasonal variation, 234
differences among seasons, 345
graphics for display of, 344
modeling, 338
use of periodic functions, 342
Sen slope estimate, 266
serial correlation, 252
remedies, 254
shading on graphs, 413
Shapiro-Wilk test, 115
sign test, 138, 187
computation, 138
large sample approximation, 141
signed-rank test, 142, 192
large sample approximation, 146
rank transform approximation, 148
significance level, 107, 110
simple boxplot, 25
skew, 10
skewed data, 124
skewness, 2, 31, 69
skewness, 38, 40, 127
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slope, 226
confidence interval for, 240
judgment of on graphs, 417
test of significance, 238
smearing estimator, 259
smooth, 46, 47, 48
lower, 292
LOWESS, 286
middle, 286
outer, 293
upper, 292
smooth, 47
smoothing, 286
smoothness factor, 289
spatial trend, 326
Spearman's rho, 217
spread, 8, 51
stacked bar chart, 62
standard deviation, 9, 36
standard error, 36, 228
standardized residual, 249
star diagram, 54, 58
statistical maps, 413
statistical tables, 113
stem and leaf diagram, 20
step trend, 349
when to test for, 351
Stiff diagram, 53, 58
studentized range, 198
student's t statistic, 75
sum of squares, 196
summary statistics, 10
for censored data, 358
with multiple reporting limits, 364
sums of squares, 173
symmetric confidence intervals, 68, 75
symmetry, 13
assumption of, 151
table of test statistic quantiles, 110
tables, deficiencies of, 410

tails of the distribution, 10, 31
target population, 2
tau, 212
t-distribution
noncentral, 90
test statistic, 108
Theil slope estimate
computation, 266
confidence interval for, 273
efficiency, 268
for trends, 330
with censored data, 354
tie correction
for tests with censored data, 354
tobit regression, 366, 370
tolerance intervals, 83
tolerance probability, 96
transformation bias
in regression, 258
of MLE, 360
transformations, 31, 103, 166, 177, 255
consequences in regression, 256
transformations, 13, 230
t-ratio, 232
trend
exponential change, 347
trend analysis
including exogenous variables, 330
nonparametric, 335
step trends, 349
use of transformations, 347
with censored data, 353
trend slope, 330
seasonal, 341
trilinear diagram, 57
trimmed mean, 7

truncated boxplot, 26
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t-test, 103, 124
as a test for trend, 349
assumptions of, 124
computation of, 125
for multiple comparisons, 199
on ranks, 127
problems with, 124
violation of assumptions, 127
Tukey's multiple comparison test, 199, 201
two-factor ANOVA, 193, 194
two-sided tests, 105, 111
Type I error, 107
Type 1I error, 107
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unequal sample sizes, 179
unequal variances, 126
variance, 9

confidence interval for, 240
violation of test assumptions, 150
Wald's t-statistic;, 398
Weibull plotting position, 24
weight function, 288
weighted least squares, 281
whisker, 25
WLS, 281
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